WO2018171177A1 - 一种网络质量评估工具的指标权重验证方法及装置 - Google Patents

一种网络质量评估工具的指标权重验证方法及装置 Download PDF

Info

Publication number
WO2018171177A1
WO2018171177A1 PCT/CN2017/106815 CN2017106815W WO2018171177A1 WO 2018171177 A1 WO2018171177 A1 WO 2018171177A1 CN 2017106815 W CN2017106815 W CN 2017106815W WO 2018171177 A1 WO2018171177 A1 WO 2018171177A1
Authority
WO
WIPO (PCT)
Prior art keywords
network quality
quality assessment
verification
value
algorithm
Prior art date
Application number
PCT/CN2017/106815
Other languages
English (en)
French (fr)
Inventor
王臻
牛涛
Original Assignee
上海中兴软件有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海中兴软件有限责任公司 filed Critical 上海中兴软件有限责任公司
Publication of WO2018171177A1 publication Critical patent/WO2018171177A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/50Testing arrangements

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a method and device for verifying an indicator weight of a network quality assessment tool.
  • Network quality assessment is an important tool to monitor the status of network resources and ensure the security of network operations. With the development of communication networks, how to make the network quality assessment reflect the actual running state of the network more realistically, how to make the network quality assessment more flexible to adapt to different network types has become a new technical field.
  • the current network quality assessment tools usually use the Key Indications of different dimensions of the network to calculate the evaluation results of a network according to the determination algorithm given by the experts.
  • This non-customizable determination algorithm makes the actual network lack the basic data of any key indicators in the algorithm, and the evaluation results calculated by the evaluation tool can not correctly reflect the true state of the network.
  • the non-customization of this tool algorithm also hinders operators from using key indicators of the new dimension into the network quality assessment tool.
  • the related network quality assessment mainly adopts the fixed algorithm because once the open algorithm is customized, there is a lack of an index weight verification algorithm to ensure the correctness of the customized algorithm.
  • the verification algorithm of indicator weight is the key technology for network quality assessment tools to correctly reflect the network status.
  • the general network quality assessment tool algorithms are given by experts, and can only rely on the feedback of user service personnel and the actual use experience of users to verify the effectiveness of the algorithm. This type of verification has slow feedback, poor operability, and large human interference.
  • the technical problem solved by the solution provided by the embodiment of the present disclosure is the network adaptability lacking by the network quality assessment tool of the fixed algorithm and the compatibility with the key indicators of the new dimension.
  • the first network quality assessment value and the second network quality assessment value respectively calculated by using the first network quality assessment algorithm and the second network quality assessment algorithm, and according to the first network quality assessment
  • the value and the second network quality evaluation value are obtained by the indicator weight verification cloud mean value, standard deviation, and the distribution of the compliance;
  • the mean value, the standard deviation, and the distribution of the network quality assessment values of the cloud are verified according to the indicator weights, and whether the first network quality assessment algorithm is available is evaluated, and the adjusted indicator weights are verified according to the evaluation results.
  • the first network quality assessment algorithm refers to a network quality assessment algorithm after the indicator weight adjustment;
  • the second network quality assessment algorithm refers to a network quality assessment algorithm before the indicator weight adjustment;
  • the first network quality assessment The value refers to the network quality evaluation value after the indicator weight adjustment;
  • the second network quality evaluation value refers to the network quality evaluation value before the indicator weight adjustment.
  • the sending, by the network quality assessment tool, the first network quality assessment algorithm and the second network quality assessment algorithm to the verification node in the indicator weight verification cloud includes:
  • the network node that receives the network quality assessment tool sends the indicator that includes the first network quality assessment algorithm and the second network quality assessment algorithm used by the network quality assessment tool. Weight verification request;
  • the received indicator weight verification request including the first network quality assessment algorithm and the second network quality assessment algorithm used by the network quality assessment tool is sent to all verification nodes in the indicator weight verification cloud.
  • the mean, standard deviation, and compliance distribution of the network quality assessment values of the cloud include:
  • each verification node in the indicator weight verification cloud After each verification node in the indicator weight verification cloud receives the indicator weight verification request, it determines whether to participate in the network quality according to whether it has the key indicator original data required by the network quality assessment algorithm and its current load status. Verification of the evaluation algorithm;
  • the average value, the standard deviation, and the distribution of the network quality evaluation values of the indicator weight verification cloud are obtained according to the first network quality evaluation value and the second network quality evaluation value sent by each verification node.
  • the evaluating, by the indicator weight, the mean, standard deviation, and the distribution of the network quality assessment values of the cloud, and evaluating whether the first network quality assessment algorithm is available includes:
  • the mean value of the network quality evaluation value is lower than a preset mean threshold, determining that the first evaluation result is acceptable, and using the standard deviation of the network quality evaluation value and the preset standard deviation threshold, Whether the first network quality assessment algorithm is available for the second evaluation;
  • the standard deviation of the network quality evaluation value is lower than a preset standard deviation threshold, determining that the second evaluation result is acceptable, and performing a third evaluation on whether the distribution of the first network quality evaluation value conforms to the normal distribution ;
  • the evaluating whether the first network quality assessment algorithm is available further includes:
  • verifying the adjusted indicator weights according to the evaluation result includes:
  • a sending module configured to send the first network quality assessment algorithm and the second network quality assessment algorithm used by the network quality assessment tool to all verification nodes in the indicator weight verification cloud;
  • An acquiring module configured to receive and collect, by each verification verification node participating in the verification, a first network quality assessment value and a second network quality assessment value respectively calculated by using the first network quality assessment algorithm and the second network quality assessment algorithm, and according to the The first network quality evaluation value and the second network quality evaluation value are obtained by the indicator weight verification cloud mean value, standard deviation, and obedience distribution of the network quality evaluation value;
  • the evaluation module is configured to: according to the indicator weight, verify the mean, standard deviation, and compliance distribution of the network quality assessment value of the cloud, evaluate whether the first network quality assessment algorithm is available, and adjust the adjusted indicator weight according to the evaluation result. authenticating.
  • the first network quality assessment algorithm refers to a network quality assessment algorithm after the indicator weight adjustment;
  • the second network quality assessment algorithm refers to a network quality assessment algorithm before the indicator weight adjustment;
  • the first network quality assessment The value refers to the network quality evaluation value after the indicator weight adjustment;
  • the second network quality evaluation value refers to the network quality evaluation value before the indicator weight adjustment.
  • control node of a network quality assessment tool includes a processor and a memory, wherein the memory is configured to store executable program code; the processor reads the memory by reading The executable program code stored in the program to run the program corresponding to the executable program code is set to perform the following steps:
  • the first network quality assessment value and the second network quality assessment value respectively calculated by using the first network quality assessment algorithm and the second network quality assessment algorithm, and according to the first network quality assessment
  • the value and the second network quality evaluation value are obtained by the indicator weight verification cloud mean value, standard deviation, and the distribution of the compliance;
  • the mean value, the standard deviation, and the distribution of the network quality assessment values of the cloud are verified according to the indicator weights, and whether the first network quality assessment algorithm is available is evaluated, and the adjusted indicator weights are verified according to the evaluation results.
  • the network quality assessment algorithm composed of the network quality assessment tool on the network operator network is used to verify the cloud, and the correctness of the algorithm after the indicator weight adjustment is verified, and the network quality assessment tool algorithm is customized. After the validity.
  • FIG. 1 is a flowchart of a method for verifying an indicator weight of a network quality assessment tool according to an embodiment of the present disclosure
  • FIG. 2 is a structural block diagram of an indicator weight verification apparatus of a network quality assessment tool according to an embodiment of the present disclosure
  • FIG. 3 is a structural block diagram of an indicator weight verification cloud provided by an embodiment of the present disclosure.
  • FIG. 4 is a flowchart of index weight verification provided by an embodiment of the present disclosure.
  • the network quality assessment tool deployed in the EMS constitutes an algorithm indicator weight verification cloud, and the network quality assessment tool in the cloud can use the stored network basic data as the cloud.
  • One of the network quality assessment tools provides verification of the network quality assessment algorithm after the weight customization, and this verification method is called the weight cloud verification of the network quality assessment indicator.
  • FIG. 3 is a structural block diagram of an indicator weight verification cloud provided by an embodiment of the present disclosure.
  • the following nodes need to be set up, as shown in FIG. 3, including: a control node for index weight verification, one or more storage nodes for index weight verification, and more EMSs with network quality assessment tools are deployed as verification nodes.
  • the control node is used to control the entire verification process, including the distribution of the verification request, the verification of the statistics of the data, and the determination of the verification result.
  • the storage node is configured to store the process data of the previous verification and the previous evaluation results of the network quality assessment tool, and provide a reference for the weighted modified evaluation value.
  • the EMS of the deployed network quality assessment tool is used as the verification node as much as possible, and is included in the unified scheduling of the indicator weight verification cloud, and the network basic data stored therein is used as the basis for verification.
  • control node of a network quality assessment tool includes a processor and a memory, wherein the memory is configured to store executable program code; the processor reads the memory by reading The stored executable program code runs a program corresponding to the executable program code and is set to perform the following steps:
  • the first network quality assessment value and the second network quality assessment value respectively calculated by using the first network quality assessment algorithm and the second network quality assessment algorithm, and according to the first network quality assessment
  • the value and the second network quality evaluation value are obtained by the indicator weight verification cloud mean value, standard deviation, and the distribution of the compliance;
  • the mean value, the standard deviation, and the distribution of the network quality assessment values of the cloud are verified according to the indicator weights, and whether the first network quality assessment algorithm is available is evaluated, and the adjusted indicator weights are verified according to the evaluation results.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 1 is a flowchart of a method for verifying an indicator weight of a network quality assessment tool according to an embodiment of the present disclosure, such as As shown in Figure 1, it includes:
  • Step S101 Send the first network quality assessment algorithm and the second network quality assessment algorithm used by the network quality assessment tool to all the verification nodes in the indicator weight verification cloud;
  • Step S102 Receive and count the first network quality evaluation value and the second network quality evaluation value respectively calculated by the verification node participating in the verification by using the first network quality assessment algorithm and the second network quality assessment algorithm, and according to the first The network quality evaluation value and the second network quality evaluation value are obtained by the indicator weight verification cloud mean value, standard deviation, and the distribution of the network quality evaluation values;
  • Step S103 Verify the mean, standard deviation, and compliance distribution of the network quality assessment value of the cloud according to the indicator weight, evaluate whether the first network quality assessment algorithm is available, and verify the adjusted indicator weight according to the evaluation result.
  • the first network quality assessment algorithm refers to a network quality assessment algorithm after the indicator weight adjustment; the second network quality assessment algorithm refers to a network quality assessment algorithm before the indicator weight adjustment; the first network quality assessment value. Refers to the network quality evaluation value after the indicator weight adjustment; the second network quality evaluation value refers to the network quality evaluation value before the indicator weight adjustment.
  • the first network quality assessment algorithm and the second network quality assessment algorithm used by the network quality assessment tool are sent to the verification node in the indicator weight verification cloud, including: the indicator weight of the network quality assessment algorithm used by the network quality assessment tool At the time of verification, receiving, by the network node deploying the network quality assessment tool, an indicator weight verification request including a first network quality assessment algorithm and a second network quality assessment algorithm used by the network quality assessment tool; and the received network quality included
  • the first network quality assessment algorithm used by the evaluation tool and the indicator weight verification request of the second network quality assessment algorithm are sent to all verification nodes in the indicator weight verification cloud.
  • the mean, standard deviation, and compliant distribution of the network quality assessment values of the weight verification cloud include: after each verification node in the indicator weight verification cloud receives the indicator weight verification request, according to whether it has the network quality assessment algorithm The required key indicator raw data and its current load status determine whether to participate in the verification of the network quality assessment algorithm; receiving and counting each verification node that decides to participate in the verification of the network quality assessment algorithm to utilize the indicator weight verification request a first network quality evaluation value calculated by the first network quality assessment algorithm, and a second network quality evaluation value calculated by using the second network quality assessment algorithm; and the first network quality evaluation value and the second network quality evaluation value according to each verification node , get the indicator weight to verify the cloud's network quality assessment value , Standard deviation and the distribution of obedience.
  • the estimating, by the indicator weight, the mean, standard deviation, and the distribution of the network quality assessment values of the cloud, and determining whether the first network quality assessment algorithm is available includes: using the mean and the pre-measurement of the network quality assessment value Setting a mean threshold value, performing a first evaluation on whether the first network quality assessment algorithm is available; if the mean value of the network quality assessment value is lower than a preset mean threshold, determining that the first evaluation result is acceptable, and Using the standard deviation of the network quality evaluation value and the preset standard deviation threshold, performing a second evaluation on whether the first network quality assessment algorithm is available; if the standard deviation of the network quality assessment value is lower than a preset standard The difference threshold determines that the second evaluation result is acceptable, And performing a third evaluation on whether the distribution of the first network quality assessment value conforms to the normal distribution; if the distribution of the first network quality assessment value conforms to the normal distribution, determining that the third evaluation result is acceptable.
  • the method further includes: after determining that the third evaluation result is acceptable, sending, to the storage node, the network quality evaluation value of the verification node participating in the verification.
  • the historical average query request determining, according to the historical mean value of the network quality evaluation value and the preset historical mean threshold value of the storage node, whether the evaluation result of the first network quality assessment algorithm is acceptable for the evaluation; if the network quality evaluation value If the historical mean value is lower than the preset historical mean threshold value, it is determined that the evaluation result of the first network quality assessment algorithm is acceptable for the evaluation.
  • the verifying the adjusted indicator weight according to the evaluation result includes: if the evaluation result is that the evaluation is acceptable, the adjusted indicator weight is successfully verified; if the evaluation result is unacceptable, the adjusted indicator Weight verification failed.
  • FIG. 2 is a structural block diagram of an indicator weight verification apparatus of a network quality assessment tool according to an embodiment of the present disclosure. As shown in FIG. 2, the method includes: a sending module 201, configured to use a first network quality assessment used by a network quality assessment tool.
  • the algorithm and the second network quality assessment algorithm are sent to all the verification nodes in the indicator weight verification cloud;
  • the obtaining module 202 is configured to receive and count each verification node participating in the verification using the first network quality assessment algorithm and the second network quality assessment algorithm Calculating a first network quality evaluation value and a second network quality evaluation value respectively, and obtaining an average value and a standard of the network quality evaluation value of the indicator weight according to the first network quality evaluation value and the second network quality evaluation value a difference and a compliant distribution;
  • the evaluation module 203 is configured to verify, according to the indicator weight, a mean, a standard deviation, and a compliant distribution of the network quality assessment value of the cloud, and evaluate whether the first network quality assessment algorithm is available, and according to the evaluation result , verify the adjusted indicator weights.
  • the first network quality assessment algorithm refers to a network quality assessment algorithm after the indicator weight adjustment; the second network quality assessment algorithm refers to a network quality assessment algorithm before the indicator weight adjustment; the first network quality assessment value. Refers to the network quality evaluation value after the indicator weight adjustment; the second network quality evaluation value refers to the network quality evaluation value before the indicator weight adjustment.
  • the sending module 201, the obtaining module 202, and the evaluating module 203 are all disposed in the control node.
  • FIG. 4 is a flowchart of the indicator weight verification provided by the embodiment of the present disclosure.
  • the method includes: adopting a general network quality assessment tool algorithm: [100*(1-R1*10)*W1+100*(1- R2*10)*W2+100*(1-R3*10)*W3]/(W1+W2+W3), where R1 represents the ratio of the number of cells whose cell availability is lower than 95% to the total number of cells, and R2 represents The ratio of the number of cells whose cell connection rate is lower than 95% to the total number of cells, and R3 represents the ratio of the number of cells whose cell call rate is higher than 5% to the total number of cells.
  • the W1, W2, and W3 points represent the weights of the indicators R1, R2, and R3, which are initially set to 3, 3, and 4.
  • Step S401 The verification node that needs to verify the indicator weight sends the verification request to the control node;
  • a network quality assessment tool needs to verify whether the modified indicator weight is normal.
  • the network quality assessment algorithm (the indicator weights W1, W2, W3 is 5, 3, 4) and the network quality before the adjustment of the indicator weights need to be adjusted.
  • the verification request of the evaluation algorithm (indicator weights W1, W2, W3 is 3, 3, 4) is sent to the control node.
  • Step S402 The control node sends the verification request to all the verification nodes it controls;
  • control node After receiving the verification request, the control node sends the network quality evaluation algorithm adjusted by the indicator weight and the network quality evaluation algorithm before the adjustment of the indicator weight to all the verification nodes controlled by the control node.
  • Step S403 The verification node respectively calculates an evaluation value according to the indicator formula before and after the weight modification and sends the evaluation value to the control node;
  • the verification node After the verification node receives the network quality evaluation algorithm before and after the adjustment of the indicator weight sent by the control node, it determines whether to participate according to the original data of the key indicators required by the network quality assessment algorithm before and after the adjustment of the indicator weight and the current load status of the verification node. This evaluation is verified.
  • the verification node performs network quality assessment algorithm based on the indicator weight adjustment and the network quality evaluation algorithm before the adjustment of the indicator weight, and uses the original data of the key indicators stored by itself to calculate two different network quality evaluation values before and after the weight adjustment, and sends them to the control. node.
  • Step S404 The control node summarizes the evaluation values of the verification nodes, and calculates the mean value, standard deviation, and distribution of the evaluation values;
  • the control node collects two different network quality evaluation values before and after the weight adjustment sent by the verification node, and calculates the network quality evaluation value calculated by the algorithm before and after the adjustment of the network quality indicator weight adjustment in the cloud, and obtains the network quality.
  • Step S405 Whether the average value of the verification result is acceptable
  • step S411 If the deviation of the mean value of the two evaluation values is greater than the threshold of 1.67%, the process proceeds to step S411, and the adjustment of the secondary weight is considered to be incorrect, and the error result of the adjustment is sent to the storage node for storage by the control node; if the deviation is less than 1.67% If the threshold is reached, the process proceeds to step S406.
  • the mean value of the network quality evaluation values of all the verification nodes participating in the verification in the verification cloud calculated by the algorithm modified by the indicator weight and the algorithm before the weight modification of the index are calculated.
  • the deviation of the mean value of the network quality evaluation values of all the verification nodes participating in the verification is not greater than the change weight / (total weight after change ⁇ 10). That is to say, a correct indicator weight modification is unlikely to significantly improve or reduce the quality evaluation value of the verification cloud.
  • Step S406 verifying whether the distribution of the results obeys a normal distribution
  • step S411 If the distribution of the next evaluation value does not conform to the normal distribution, the process proceeds to step S411, and the adjustment of the secondary weight is considered to be incorrect, and the adjusted error result is sent to the storage node for storage by the control node. If it follows the normal distribution, it proceeds to step S407.
  • the distribution of the network quality evaluation values of all the verification nodes participating in the verification in the verification cloud calculated by the algorithm modified by the index weight and the algorithm before the weight modification of the index are modified according to the algorithm modified by the index weight
  • the calculated distribution of the network quality evaluation values of all the verification nodes participating in the verification in the verification cloud shall obey the normal distribution, and the difference between the standard deviations of the two normal distributions shall not be greater than the number of verification nodes participating in the verification. That is, a correct indicator weight modification is unlikely to significantly change the distribution of the quality assessment values of the verification cloud.
  • Step S407 Whether the standard deviation of the verification result is acceptable
  • step S411 If the standard deviation of the two evaluation value distributions is greater than the threshold of 5%, the process proceeds to step S411, and the adjustment of the secondary weight is considered to be incorrect, and the adjusted error result is sent to the storage node for storage by the control node. If the deviation is less than the threshold of 5%, the process proceeds to step S408.
  • the index weight of the algorithm After the index weight of the algorithm is modified, if the modification is correct, the difference between the evaluation value of the verification node itself and the historical evaluation mean calculated by the algorithm modified by the index weight is greater than the change weight/(the total weight after the change ⁇ 10) The ratio is not greater than the change weight / (total weight after change ⁇ 5). That is, a correct indicator weight modification cannot rely on the modification of a single key indicator weight to significantly change the evaluation value of its network quality.
  • Step S408 The control node queries the storage node to obtain a historical evaluation value of the verification node.
  • the control node queries the storage node for the historical mean value of the network quality evaluation value of the verification node participating in the verification, and calculates whether the proportion of the calculation node deviating from the historical average value of 1.67% is greater than 3.33%.
  • Step S409 Whether there is a large deviation from the historical result
  • step S410 If the deviation from the historical mean is less than the acceptable threshold of 3.33%, it is considered that the network quality assessment algorithm of the weight adjustment is correct, and the process proceeds to step S410; otherwise, the evaluation algorithm is not accepted by the system, and the process proceeds to step S411, and the adjustment is performed. Any results will be sent by the control node to the storage node where the cloud is verified.
  • Step S410 the indicator weight adjustment is correct
  • Step S411 The index weight adjustment fails.
  • the network quality assessment algorithm composed of the network quality assessment tool on the operator network is used to verify the cloud, and the correctness of the algorithm after the index weight adjustment is verified.
  • the implementation of the network weight assessment tool's index weights can be modified.
  • the method for verifying the weight of the network quality assessment tool verifies the cloud by using the network quality assessment algorithm composed of the network quality assessment tool on the operator network, and verifies the correctness of the algorithm after the indicator weight adjustment.
  • the implementation of the network weight assessment tool's index weights can be modified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本公开涉及了一种网络质量评估工具的指标权重验证方法及装置,涉及通信技术领域,其方法包括:将网络质量评估工具所用的第一网络质量评估算法和第二网络质量评估算法发送给指标权重验证云中的所有验证节点;接收并统计每个参与验证的验证节点利用第一网络质量评估算法和第二网络质量评估算法分别算出的第一网络质量评估值和第二网络质量评估值,并根据所述第一网络质量评估值和所述第二网络质量评估值得到指标权重验证云的网络质量评估值的均值、标准差以及服从的分布;根据所述指标权重验证云的网络质量评估值的均值、标准差以及服从的分布,对第一网络质量评估算法是否可用进行评估,并根据评估结果,对调整后的指标权重进行验证。

Description

一种网络质量评估工具的指标权重验证方法及装置 技术领域
本公开涉及通信技术领域,特别涉及一种网络质量评估工具的指标权重验证方法及装置。
背景技术
网络质量评估是监控网络资源状态,保证网络运行安全的一种重要工具。随着通讯网络的发展,如何让网络质量评估更真实地反映网络的实际运行状态,如何让网络质量评估更具弹性以适应不同的网络类型,成为了一个新的技术领域。
当前的网络质量评估工具通常利用网络不同维度的关键指标(Key Indication),根据专家给出的确定算法,计算出一个网络的评价结果。这种不可定制的确定算法,使得实际网络只要缺少算法中任一关键指标的基础数据,评估工具计算出的评价结果都不能正确反映网络的真实状态。这种工具算法的不可定制性,也阻碍了运营商将新维度的关键指标利用到网络质量评估工具中。
相关网络质量评估主要采用固定算法是由于一旦开放算法定制后,缺乏一种指标权重的验证算法来保证定制算法的正确性。指标权重的验证算法是网络质量评估工具能否正确反映网络状态的关键技术。
一般的网络质量评估工具算法都由专家给出,只能依靠用户服务人员的反馈和用户的实际使用感受去验证算法的有效性。这种验证方式反馈慢,可操作性差,人为因素干扰大。
发明内容
根据本公开实施例提供的方案解决的技术问题是固定算法的网络质量评估工具所缺乏的网络适应性和对新维度关键指标的兼容性。
根据本公开实施例提供的一种网络质量评估工具的指标权重验证方法,包括:
将网络质量评估工具所用的第一网络质量评估算法和第二网络质量评估算法发送给指标权重验证云中的所有验证节点;
接收并统计每个参与验证的验证节点利用第一网络质量评估算法和第二网络质量评估算法分别算出的第一网络质量评估值和第二网络质量评估值,并根据所述第一网络质量评估值和所述第二网络质量评估值得到指标权重验证云的网络质量评估值的均值、标准差以及服从的分布;
根据所述指标权重验证云的网络质量评估值的均值、标准差以及服从的分布,对第一网络质量评估算法是否可用进行评估,并根据评估结果,对调整后的指标权重进行验证。
优选地,所述第一网络质量评估算法是指指标权重调整后的网络质量评估算法;所述第二网络质量评估算法是指指标权重调整前的网络质量评估算法;所述第一网络质量评估 值是指指标权重调整后的网络质量评估值;所述第二网络质量评估值是指指标权重调整前的网络质量评估值。
优选地,所述将网络质量评估工具所用的第一网络质量评估算法和第二网络质量评估算法发送给指标权重验证云中的验证节点包括:
当网络质量评估工具所用网络质量评估算法的指标权重需要验证时,接收部署该网络质量评估工具的网络节点发送包含网络质量评估工具所用的第一网络质量评估算法和第二网络质量评估算法的指标权重验证请求;
将所接收的包含网络质量评估工具所用的第一网络质量评估算法和第二网络质量评估算法的指标权重验证请求发送给指标权重验证云中的所有验证节点。
优选地,所述接收并统计每个参与验证的验证节点利用第一网络质量评估算法和第二网络质量评估算法分别算出的第一网络质量评估值和第二网络质量评估值,并根据其得到指标权重验证云的网络质量评估值的均值、标准差以及服从的分布包括:
指标权重验证云中的每个验证节点收到所述指标权重验证请求后,根据其是否拥有所述网络质量评估算法所需要的关键指标原始数据和其当前的负载状况决定是否参与所述网络质量评估算法的验证;
接收并统计每个决定参与所述网络质量评估算法验证的验证节点利用所述指标权重验证请求中的第一网络质量评估算法算出的第一网络质量评估值,以及利用第二网络质量评估算法算出第二网络质量评估值;
根据每个验证节点发送的第一网络质量评估值和第二网络质量评估值,得到指标权重验证云的网络质量评估值的均值、标准差以及服从的分布。
优选地,所述根据所述指标权重验证云的网络质量评估值的均值、标准差以及服从的分布,对第一网络质量评估算法是否可用进行评估包括:
利用所述网络质量评估值的均值与预置的均值门限值,对第一网络质量评估算法是否可用进行第一评估;
若所述网络质量评估值的均值低于预置的均值门限值,则确定第一评估结果可接受,并利用所述网络质量评估值的标准差与预置的标准差门限值,对第一网络质量评估算法是否可用进行第二评估;
若所述网络质量评估值的标准差低于预置的标准差门限值,则确定第二评估结果可接受,并对第一网络质量评估值服从的分布是否符合正态分布进行第三评估;
若第一网络质量评估值服从的分布符合正态分布,则确定第三评估结果可接受。
优选地,所述对第一网络质量评估算法是否可用进行评估,还包括:
在确定第三评估结果可接受后,向存储节点发送查询所述参与验证的验证节点的网络质量评估值的历史均值的查询请求;
根据存储节点返回网络质量评估值的历史均值和预置的历史均值门限值,判断所述第一网络质量评估算法的评估结果是否为评估可接受;
若网络质量评估值的历史均值低于预置的历史均值门限值,则判断所述第一网络质量评估算法的评估结果为评估可接受。
优选地,根据所述评估结果,对调整后的指标权重进行验证包括:
若评估结果为评估可接受时,则调整后的指标权重验证成功;
若评估结果为评估不可接受时,则调整后的指标权重验证失败。
根据本公开实施例提供的一种网络质量评估工具的指标权重验证装置,包括:
发送模块,设置为将网络质量评估工具所用的第一网络质量评估算法和第二网络质量评估算法发送给指标权重验证云中的所有验证节点;
获取模块,设置为接收并统计每个参与验证的验证节点利用第一网络质量评估算法和第二网络质量评估算法分别算出的第一网络质量评估值和第二网络质量评估值,并根据所述第一网络质量评估值和所述第二网络质量评估值得到指标权重验证云的网络质量评估值的均值、标准差以及服从的分布;
评估模块,设置为根据所述指标权重验证云的网络质量评估值的均值、标准差以及服从的分布,对第一网络质量评估算法是否可用进行评估,并根据评估结果,对调整后的指标权重进行验证。
优选地,所述第一网络质量评估算法是指指标权重调整后的网络质量评估算法;所述第二网络质量评估算法是指指标权重调整前的网络质量评估算法;所述第一网络质量评估值是指指标权重调整后的网络质量评估值;所述第二网络质量评估值是指指标权重调整前的网络质量评估值。
根据本公开实施例提供的一种网络质量评估工具的控制节点,所述控制节点包括处理器和存储器,其中,所述存储器设置为存储可执行程序代码;所述处理器通过读取所述存储器中存储的可执行程序代码来运行与可执行程序代码对应的程序,设置为执行以下步骤:
将网络质量评估工具所用的第一网络质量评估算法和第二网络质量评估算法发送给指标权重验证云中的所有验证节点;
接收并统计每个参与验证的验证节点利用第一网络质量评估算法和第二网络质量评估算法分别算出的第一网络质量评估值和第二网络质量评估值,并根据所述第一网络质量评估值和所述第二网络质量评估值得到指标权重验证云的网络质量评估值的均值、标准差以及服从的分布;
根据所述指标权重验证云的网络质量评估值的均值、标准差以及服从的分布,对第一网络质量评估算法是否可用进行评估,并根据评估结果,对调整后的指标权重进行验证。
根据本公开实施例提供的方案,利用网络运营商网络上的网络质量评估工具组成的网络质量评估算法验证云,,验证了指标权重调整后算法的正确性,同时保证了网络质量评估工具算法定制后的有效性。
附图说明
图1是本公开实施例提供的一种网络质量评估工具的指标权重验证方法的流程图;
图2是本公开实施例提供的一种网络质量评估工具的指标权重验证装置的结构框图;
图3是本公开实施例提供的指标权重验证云的结构框图;
图4是本公开实施例提供的指标权重验证流程图。
具体实施方式
以下结合附图对本公开的优选实施例进行详细说明,应当理解,以下所说明的优选实施例仅用于说明和解释本公开,并不用于限定本公开。
本公开实施例将已部署在EMS(Element Management System,网元管理系统)中的网络质量评估工具组成一个算法指标权重验证云,云中的网络质量评估工具可以利用其存储的网络基础数据为云中的某一网络质量评估工具提供权重定制后的网络质量评估算法的验证,将这一验证方法称为网络质量评估指标的权重云验证。
图3是本公开实施例提供的指标权重验证云的结构框图,需要设置以下节点,如图3所示,包括:一个指标权重验证的控制节点、一个或多个指标权重验证的存储节点以及多个部署有网络质量评估工具的EMS作为验证节点。
所述控制节点,用来控制整个验证的过程,包括验证请求的分发,验证数据的统计和验证结果的判定。
所述存储节点,用来存储历次验证的过程数据和网络质量评估工具的历次评估结果,用于对权重修改后的评估值提供参照。
将尽可能多的部署网络质量评估工具的EMS作为验证节点,纳入到指标权重验证云中统一调度,用其中存储的网络基础数据作为验证的基础。
本公开实施例提供的一种网络质量评估工具的控制节点,所述控制节点包括处理器和存储器,其中,所述存储器设置为存储可执行程序代码;所述处理器通过读取所述存储器中存储的可执行程序代码来运行与可执行程序代码对应的程序,设置为执行以下步骤:
将网络质量评估工具所用的第一网络质量评估算法和第二网络质量评估算法发送给指标权重验证云中的所有验证节点;
接收并统计每个参与验证的验证节点利用第一网络质量评估算法和第二网络质量评估算法分别算出的第一网络质量评估值和第二网络质量评估值,并根据所述第一网络质量评估值和所述第二网络质量评估值得到指标权重验证云的网络质量评估值的均值、标准差以及服从的分布;
根据所述指标权重验证云的网络质量评估值的均值、标准差以及服从的分布,对第一网络质量评估算法是否可用进行评估,并根据评估结果,对调整后的指标权重进行验证。
实施例一:
图1是本公开实施例提供的一种网络质量评估工具的指标权重验证方法的流程图,如 图1所示,包括:
步骤S101:将网络质量评估工具所用的第一网络质量评估算法和第二网络质量评估算法发送给指标权重验证云中的所有验证节点;
步骤S102:接收并统计每个参与验证的验证节点利用第一网络质量评估算法和第二网络质量评估算法分别算出的第一网络质量评估值和第二网络质量评估值,并根据所述第一网络质量评估值和所述第二网络质量评估值得到指标权重验证云的网络质量评估值的均值、标准差以及服从的分布;
步骤S103:根据所述指标权重验证云的网络质量评估值的均值、标准差以及服从的分布,对第一网络质量评估算法是否可用进行评估,并根据评估结果,对调整后的指标权重进行验证。
其中,所述第一网络质量评估算法是指指标权重调整后的网络质量评估算法;所述第二网络质量评估算法是指指标权重调整前的网络质量评估算法;所述第一网络质量评估值是指指标权重调整后的网络质量评估值;所述第二网络质量评估值是指指标权重调整前的网络质量评估值。
其中,所述将网络质量评估工具所用的第一网络质量评估算法和第二网络质量评估算法发送给指标权重验证云中的验证节点包括:当网络质量评估工具所用网络质量评估算法的指标权重需要验证时,接收部署该网络质量评估工具的网络节点发送的包含网络质量评估工具所用的第一网络质量评估算法和第二网络质量评估算法的指标权重验证请求;将所接收的所述包含网络质量评估工具所用的第一网络质量评估算法和第二网络质量评估算法的指标权重验证请求发送给指标权重验证云中的所有验证节点。
其中,所述接收并统计每个参与验证的验证节点利用第一网络质量评估算法和第二网络质量评估算法分别算出的第一网络质量评估值和第二网络质量评估值,并根据其得到指标权重验证云的网络质量评估值的均值、标准差以及服从的分布包括:指标权重验证云中的每个验证节点收到所述指标权重验证请求后,根据其是否拥有所述网络质量评估算法所需要的关键指标原始数据和其当前的负载状况决定是否参与所述网络质量评估算法的验证;接收并统计每个决定参与所述网络质量评估算法验证的验证节点利用所述指标权重验证请求中的第一网络质量评估算法算出的第一网络质量评估值,以及利用第二网络质量评估算法算出第二网络质量评估值;根据每个验证节点的第一网络质量评估值和第二网络质量评估值,得到指标权重验证云的网络质量评估值的均值、标准差以及服从的分布。
其中,所述根据所述指标权重验证云的网络质量评估值的均值、标准差以及服从的分布,对第一网络质量评估算法是否可用进行评估包括:利用所述网络质量评估值的均值与预置的均值门限值,对第一网络质量评估算法是否可用进行第一评估;若所述网络质量评估值的均值低于预置的均值门限值,则确定第一评估结果可接受,并利用所述网络质量评估值的标准差与预置的标准差门限值,对第一网络质量评估算法是否可用进行第二评估;若所述网络质量评估值的标准差低于预置的标准差门限值,则确定第二评估结果可接受, 并对第一网络质量评估值服从的分布是否符合正态分布进行第三评估;若第一网络质量评估值服从的分布符合正态分布,则确定第三评估结果可接受。示例性而言,所述对第一网络质量评估算法是否可用进行评估,还包括:在确定第三评估结果可接受后,向存储节点发送查询所述参与验证的验证节点的网络质量评估值的历史均值的查询请求;根据存储节点返回网络质量评估值的历史均值和预置的历史均值门限值,判断所述第一网络质量评估算法的评估结果是否为评估可接受;若网络质量评估值的历史均值低于预置的历史均值门限值,则判断所述第一网络质量评估算法的评估结果为评估可接受。
其中,所述根据评估结果,对调整后的指标权重进行验证包括:若评估结果为评估可接受时,则调整后的指标权重验证成功;若评估结果为评估不可接受时,则调整后的指标权重验证失败。
实施例二
图2是本公开实施例提供的一种网络质量评估工具的指标权重验证装置的结构框图,如图2所示,包括:发送模块201,设置为将网络质量评估工具所用的第一网络质量评估算法和第二网络质量评估算法发送给指标权重验证云中的所有验证节点;获取模块202,设置为接收并统计每个参与验证的验证节点利用第一网络质量评估算法和第二网络质量评估算法分别算出的第一网络质量评估值和第二网络质量评估值,并根据所述第一网络质量评估值和所述第二网络质量评估值得到指标权重验证云的网络质量评估值的均值、标准差以及服从的分布;评估模块203,设置为根据所述指标权重验证云的网络质量评估值的均值、标准差以及服从的分布,对第一网络质量评估算法是否可用进行评估,并根据评估结果,对调整后的指标权重进行验证。
其中,所述第一网络质量评估算法是指指标权重调整后的网络质量评估算法;所述第二网络质量评估算法是指指标权重调整前的网络质量评估算法;所述第一网络质量评估值是指指标权重调整后的网络质量评估值;所述第二网络质量评估值是指指标权重调整前的网络质量评估值。
其中,所述发送模块201、获取模块202以及评估模块203均设置在控制节点内。
实施例三
图4是本公开实施例提供的指标权重验证流程图,如图4所示,包括:采用一般的网络质量评估工具算法:【100*(1-R1*10)*W1+100*(1-R2*10)*W2+100*(1-R3*10)*W3】/(W1+W2+W3),其中,R1代表小区可用率低于95%的小区数与小区总数的比值,R2代表小区接通率低于95%的小区数与小区总数的比值,R3代表小区掉话率高于5%的小区数与小区总数的比值。W1、W2、W3分代表指标R1、R2、R3的权重,这里初始设置为3、3、4。
如果需要定制网络质量评估工具指标公式,将初始权重W1、W2、W3调整为5、3、 4,并有20个节点参与验证,示例性包括:
步骤S401:需验证指标权重的验证节点将验证请求发送给控制节点;
一个网络质量评估工具需要验证修改后的指标权重是否正常,需要把包含指标权重调整后的网络质量评估算法(指标权重W1、W2、W3为5、3、4)和指标权重调整前的网络质量评估算法(指标权重W1、W2、W3为3、3、4)的验证请求发送给控制节点。
步骤S402:控制节点将验证请求发送给其控制的所有验证节点;
控制节点收到验证请求后,将指标权重调整后的网络质量评估算法和指标权重调整前的网络质量评估算法发送给所有其控制的验证节点。
步骤S403:验证节点根据权重修改前后的指标公式分别计算评估值并发送给控制节点;
验证节点收到控制节点发送的指标权重调整前后的网络质量评估算法后,根据是否拥有指标权重调整前后的网络质量评估算法所需要的关键指标的原始数据和该验证节点当前的负载状况决定是否参与此次评估验证。
验证节点依据指标权重调整后的网络质量评估算法和指标权重调整前的网络质量评估算法,利用自身存储的关键指标的原始数据计算出权重调整前后两个不同的网络质量评估值,并发送给控制节点。
步骤S404:控制节点汇总验证节点的评估值,计算出评估值的均值、标准差和分布;
控制节点收集到足够的验证节点发送的权重调整前后两个不同的网络质量评估值,统计出整个验证云内网络质量指标权重调整前后的算法计算出的网络质量评估值,并得到所述网络质量评估值的均值、标准差和服从的分布。
步骤S405:验证结果均值是否可接受;
如果前后两次评估值均值的偏差大于1.67%的门限,则进入步骤S411,认为该次权重的调整不正确,调整的错误结果将会被控制节点发送给存储节点储存;如果偏差小于1.67%的门限,则进入步骤S406。
算法的指标权重修改后,如果修改正确,那么依据该指标权重修改后的算法所计算出的验证云中所有参与验证的验证节点网络质量评估值的均值和该指标权重修改前的算法所计算出的所有参与验证的验证节点网络质量评估值的均值的偏差不大于变更权重/(变更后总权重×10)。也就是一个正确的指标权重修改不可能显著提升或降低验证云全网的质量评估值。
步骤S406:验证结果分布是否服从正态分布;
如果后一次评估值的分布不符合正态分布,则进入步骤S411,认为该次权重的调整不正确,调整的错误结果将会被控制节点发送给存储节点储存。如果服从正态分布,则进入步骤S407。
算法的指标权重修改后,如果修改正确,那么依据该指标权重修改后的算法所计算出的验证云中所有参与验证的验证节点网络质量评估值的分布和该指标权重修改前的算法 所计算出的验证云中所有参与验证的验证节点网络质量评估值的分布都应该服从正态分布,且两个正态分布标准差的差值不应该大于1/参与验证的验证节点数量。也就是一个正确的指标权重修改不可能显著改变验证云全网的质量评估值的分布。
步骤S407:验证结果标准差是否可接受;
如果前后两次评估值分布的标准差大于5%的门限,则进入步骤S411,认为该次权重的调整不正确,调整的错误结果将会被控制节点发送给存储节点储存。如果偏差小于5%的门限,则进入步骤S408。
算法的指标权重修改后,如果修改正确,那么依据该指标权重修改后的算法所计算出的验证节点自身的评估值与历史评估均值的差值大于变更权重/(变更后总权重×10)的比例不大于变更权重/(变更后总权重×5)。也就是一个正确的指标权重修改不可能依靠单一关键指标权重的修改大幅改变其网络质量的评估值。
步骤S408:控制节点查询存储节点获取验证节点的历史评估值;
控制节点从存储节点查询出参与验证的验证节点的网络质量评估值的历史均值,计算偏离历史均值1.67%的计算节点的比例是否大于3.33%。
步骤S409:与历史结果是否有较大偏差;
如果偏离历史均值的比例小于可接受的3.33%的门限,就认为此次权重调整的网络质量评估算法是正确的,进入步骤S410;否则评估算法便不可被系统接受,进入步骤S411,且调整的任何结果将会被控制节点发送给云验证的存储节点存储。
步骤S410:指标权重调整正确;
步骤S411:指标权重调整失败。
根据本公开实施例提供的方案,利用运营商网络上的网络质量评估工具组成的网络质量评估算法验证云,验证了指标权重调整后的算法的正确性。保证了网络质量评估工具的指标权重可修改的实现。
尽管上文对本公开进行了详细说明,但是本公开不限于此,本技术领域技术人员可以根据本公开的原理进行各种修改。因此,凡按照本公开原理所作的修改,都应当理解为落入本公开的保护范围。
工业实用性
本公开实施例提供的网络质量评估工具的指标权重验证方法,通过利用运营商网络上的网络质量评估工具组成的网络质量评估算法验证云,验证了指标权重调整后的算法的正确性。保证了网络质量评估工具的指标权重可修改的实现。

Claims (10)

  1. 一种网络质量评估工具的指标权重验证方法,包括:
    将网络质量评估工具所用的第一网络质量评估算法和第二网络质量评估算法发送给指标权重验证云中的所有验证节点;
    接收并统计每个参与验证的验证节点利用第一网络质量评估算法和第二网络质量评估算法分别算出的第一网络质量评估值和第二网络质量评估值,并根据所述第一网络质量评估值和所述第二网络质量评估值得到指标权重验证云的网络质量评估值的均值、标准差以及服从的分布;
    根据所述指标权重验证云的网络质量评估值的均值、标准差以及服从的分布,对第一网络质量评估算法是否可用进行评估,并根据评估结果,对调整后的指标权重进行验证。
  2. 根据权利要求1所述的方法,所述第一网络质量评估算法是指指标权重调整后的网络质量评估算法;所述第二网络质量评估算法是指指标权重调整前的网络质量评估算法;所述第一网络质量评估值是指指标权重调整后的网络质量评估值;所述第二网络质量评估值是指指标权重调整前的网络质量评估值。
  3. 根据权利要求1或2所述的方法,所述将网络质量评估工具所用的第一网络质量评估算法和第二网络质量评估算法发送给指标权重验证云中的验证节点包括:
    当网络质量评估工具所用网络质量评估算法的指标权重需要验证时,接收部署该网络质量评估工具的网络节点发送的包含网络质量评估工具所用的第一网络质量评估算法和第二网络质量评估算法的指标权重验证请求;
    将所接收的包含网络质量评估工具所用的第一网络质量评估算法和第二网络质量评估算法的指标权重验证请求发送给指标权重验证云中的所有验证节点。
  4. 根据权利要求3所述的方法,所述接收并统计每个参与验证的验证节点利用第一网络质量评估算法和第二网络质量评估算法分别算出的第一网络质量评估值和第二网络质量评估值,并根据其得到指标权重验证云的网络质量评估值的均值、标准差以及服从的分布包括:
    指标权重验证云中的每个验证节点收到所述指标权重验证请求后,根据其是否拥有所述网络质量评估算法所需要的关键指标原始数据和其当前的负载状况决定是否参与所述网络质量评估算法的验证;
    接收并统计每个决定参与所述网络质量评估算法验证的验证节点利用所述指标权重验证请求中的第一网络质量评估算法算出的第一网络质量评估值,以及利用第二网络质量评估算法算出第二网络质量评估值;
    根据每个验证节点的第一网络质量评估值和第二网络质量评估值,得到指标权重验证云的网络质量评估值的均值、标准差以及服从的分布。
  5. 根据权利要求4所述的方法,所述根据所述指标权重验证云的网络质量评估值的 均值、标准差以及服从的分布,对第一网络质量评估算法是否可用进行评估包括:
    利用所述网络质量评估值的均值与预置的均值门限值,对第一网络质量评估算法是否可用进行第一评估;
    若所述网络质量评估值的均值低于预置的均值门限值,则确定第一评估结果可接受,并利用所述网络质量评估值的标准差与预置的标准差门限值,对第一网络质量评估算法是否可用进行第二评估;
    若所述网络质量评估值的标准差低于预置的标准差门限值,则确定第二评估结果可接受,并对第一网络质量评估值服从的分布是否符合正态分布进行第三评估;
    若第一网络质量评估值服从的分布符合正态分布,则确定第三评估结果可接受。
  6. 根据权利要求5所述的方法,所述对第一网络质量评估算法是否可用进行评估,还包括:
    在确定第三评估结果可接受后,向存储节点发送查询所述参与验证的验证节点的网络质量评估值的历史均值的查询请求;
    根据存储节点返回网络质量评估值的历史均值和预置的历史均值门限值,判断所述第一网络质量评估算法的评估结果是否为评估可接受;
    若网络质量评估值的历史均值低于预置的历史均值门限值,则判断所述第一网络质量评估算法的评估结果为评估可接受。
  7. 根据权利要求6所述的方法,根据所述评估结果,对调整后的指标权重进行验证包括:
    若评估结果为评估可接受时,则调整后的指标权重验证成功;
    若评估结果为评估不可接受时,则调整后的指标权重验证失败。
  8. 一种网络质量评估工具的指标权重验证装置,包括:
    发送模块,设置为将网络质量评估工具所用的第一网络质量评估算法和第二网络质量评估算法发送给指标权重验证云中的所有验证节点;
    获取模块,设置为接收并统计每个参与验证的验证节点利用第一网络质量评估算法和第二网络质量评估算法分别算出的第一网络质量评估值和第二网络质量评估值,并根据所述第一网络质量评估值和所述第二网络质量评估值得到指标权重验证云的网络质量评估值的均值、标准差以及服从的分布;
    评估模块,设置为根据所述指标权重验证云的网络质量评估值的均值、标准差以及服从的分布,对第一网络质量评估算法是否可用进行评估,并根据评估结果,对调整后的指标权重进行验证。
  9. 根据权利要求8所述的装置,所述第一网络质量评估算法是指指标权重调整后的网络质量评估算法;所述第二网络质量评估算法是指指标权重调整前的网络质量评估算法;所述第一网络质量评估值是指指标权重调整后的网络质量评估值;所述第二网络质量评估值是指指标权重调整前的网络质量评估值。
  10. 一种网络质量评估工具的控制节点,所述控制节点包括处理器和存储器,其中,所述存储器设置为存储可执行程序代码;所述处理器通过读取所述存储器中存储的可执行程序代码来运行与可执行程序代码对应的程序,设置为执行以下步骤:
    将网络质量评估工具所用的第一网络质量评估算法和第二网络质量评估算法发送给指标权重验证云中的所有验证节点;
    接收并统计每个参与验证的验证节点利用第一网络质量评估算法和第二网络质量评估算法分别算出的第一网络质量评估值和第二网络质量评估值,并根据所述第一网络质量评估值和所述第二网络质量评估值得到指标权重验证云的网络质量评估值的均值、标准差以及服从的分布;
    根据所述指标权重验证云的网络质量评估值的均值、标准差以及服从的分布,对第一网络质量评估算法是否可用进行评估,并根据评估结果,对调整后的指标权重进行验证。
PCT/CN2017/106815 2017-03-20 2017-10-19 一种网络质量评估工具的指标权重验证方法及装置 WO2018171177A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710164314.9A CN108632104B (zh) 2017-03-20 2017-03-20 一种网络质量评估工具的指标权重验证方法及装置
CN201710164314.9 2017-03-20

Publications (1)

Publication Number Publication Date
WO2018171177A1 true WO2018171177A1 (zh) 2018-09-27

Family

ID=63584046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106815 WO2018171177A1 (zh) 2017-03-20 2017-10-19 一种网络质量评估工具的指标权重验证方法及装置

Country Status (2)

Country Link
CN (1) CN108632104B (zh)
WO (1) WO2018171177A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112671793A (zh) * 2020-12-30 2021-04-16 北京八分量信息科技有限公司 区块链中确定证实节点的方法、装置及相关产品

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109412892B (zh) * 2018-10-23 2022-03-01 株洲中车时代电气股份有限公司 一种网络通信质量评估系统及方法
CN109710552B (zh) * 2018-12-29 2021-01-15 深圳市联影医疗数据服务有限公司 总线传输质量评估方法、系统和计算机存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100130264A1 (en) * 2008-11-21 2010-05-27 Yong Su-Khiong Method and system for communication of different modulation formats from a wireless station in a wireless system
CN101951617A (zh) * 2010-08-17 2011-01-19 工业和信息化部通信计量中心 基于层次分析法的移动网络通信质量评价方法
CN102137425A (zh) * 2011-02-24 2011-07-27 华为技术有限公司 链路质量评估方法和装置
CN102904773A (zh) * 2012-09-27 2013-01-30 北京邮电大学 一种网络业务质量的测量方法和装置
CN104022899A (zh) * 2014-05-28 2014-09-03 中国科学院信息工程研究所 一种网络管理系统的三维评估方法及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9405830B2 (en) * 2007-02-28 2016-08-02 Aol Inc. Personalization techniques using image clouds
US8560670B2 (en) * 2008-01-31 2013-10-15 Centurylink Intellectual Property Llc System and method for characterizing communication network capacity in a geographic area
CN102571406B (zh) * 2010-12-30 2015-03-11 中国移动通信集团河北有限公司 数据业务节点质量分析方法、装置及数据业务短板分析系统
CN102056195A (zh) * 2011-01-21 2011-05-11 大唐移动通信设备有限公司 一种业务质量的确定方法和无线接入网络设备
CN104915205B (zh) * 2015-06-08 2019-05-07 北京航空航天大学 一种适用于在线数据密集型应用的请求多副本任务执行方法
CN105139095A (zh) * 2015-09-23 2015-12-09 河海大学 基于属性区间模型的配电网运行状态评估方法
CN106296019A (zh) * 2016-08-17 2017-01-04 云南电网有限责任公司电力科学研究院 区域电能质量综合评估方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100130264A1 (en) * 2008-11-21 2010-05-27 Yong Su-Khiong Method and system for communication of different modulation formats from a wireless station in a wireless system
CN101951617A (zh) * 2010-08-17 2011-01-19 工业和信息化部通信计量中心 基于层次分析法的移动网络通信质量评价方法
CN102137425A (zh) * 2011-02-24 2011-07-27 华为技术有限公司 链路质量评估方法和装置
CN102904773A (zh) * 2012-09-27 2013-01-30 北京邮电大学 一种网络业务质量的测量方法和装置
CN104022899A (zh) * 2014-05-28 2014-09-03 中国科学院信息工程研究所 一种网络管理系统的三维评估方法及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112671793A (zh) * 2020-12-30 2021-04-16 北京八分量信息科技有限公司 区块链中确定证实节点的方法、装置及相关产品
CN112671793B (zh) * 2020-12-30 2022-10-14 北京八分量信息科技有限公司 区块链中确定证实节点的方法、装置及相关产品

Also Published As

Publication number Publication date
CN108632104B (zh) 2021-04-30
CN108632104A (zh) 2018-10-09

Similar Documents

Publication Publication Date Title
CN111262346B (zh) 一种变电站一体化自动验收系统和方法
WO2018171177A1 (zh) 一种网络质量评估工具的指标权重验证方法及装置
WO2016055030A1 (en) Methods and systems for provisioning a virtual network in software defined networks
CN104468200B (zh) 数据中心网络设备健康度的自适应评价方法
CN102077530B (zh) 检查无线业务及减缓分组删除以避免无线饱和的方法和设备
WO2012107002A1 (zh) 一种获取关键性能指标的方法和装置
CN112073991B (zh) 一种接入网的业务处理方法及设备
JP7565953B2 (ja) 電気自動車充電ステーションの信頼性評価方法及び装置
EP4046358B1 (en) Secure tokens for controlling access to a resource in a resource distribution network
CN115862823A (zh) 一种基于移动网络的设备智能调度方法及系统
CN111162883A (zh) 一种数据传输方法、装置和系统
CN105636097B (zh) 一种校验网络性能统计数据的方法及装置
CN116781529A (zh) 基于大数据分析的网络规划系统及方法
US11790349B2 (en) Secure tokens for controlling access to a resource in a resource distribution network
WO2016127048A1 (en) Method and system for measurement and characterization of channel delays for broadband power line communications
CN115225500A (zh) 一种网络切片分配方法及装置
CN110677544B (zh) Pcrf位置脚本更新方法、装置、设备及存储介质
CN114880106A (zh) 一种算力匹配方法、装置和管理平台
WO2021056435A1 (zh) 用于异常检测的方法和装置
KR102085202B1 (ko) 3상 전력선 통신 장치 및 3상 전력선 통신 장치의 통신 방법
KR101964050B1 (ko) 폴링 제어 장치, 방법 및 컴퓨터 프로그램
CN117575291B (zh) 基于边缘参数熵的联邦学习的数据协同管理方法
CN110958071A (zh) 一种基于4g模块的电子式互感器时钟误差自校准系统及方法
CN103442406A (zh) 一种接入控制方法及装置
Midoglu et al. Server link load modeling and request scheduling for crowdsourcing-based benchmarking systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902181

Country of ref document: EP

Kind code of ref document: A1