WO2018169446A2 - Self-propelled firing unit - Google Patents

Self-propelled firing unit Download PDF

Info

Publication number
WO2018169446A2
WO2018169446A2 PCT/RU2018/000053 RU2018000053W WO2018169446A2 WO 2018169446 A2 WO2018169446 A2 WO 2018169446A2 RU 2018000053 W RU2018000053 W RU 2018000053W WO 2018169446 A2 WO2018169446 A2 WO 2018169446A2
Authority
WO
WIPO (PCT)
Prior art keywords
self
propelled
output
angle
input
Prior art date
Application number
PCT/RU2018/000053
Other languages
French (fr)
Russian (ru)
Other versions
WO2018169446A3 (en
Inventor
Вячеслав Викторович ЛАПИН
Владимир Алексеевич ВОРОНЦОВ
Евгений Сергеевич ЛЯДОВ
Станислав Алексеевич БАСАЛОВ
Вячеслав Петрович КУЗНЕЦОВ
Владимир Михайлович ГОРНОСТАЕВ
Юрий Иванович БЕЛЫЙ
Станислав Владимирович ФЁДОРОВ
Александр Евгеньевич МОНИН
Анатолий Фёдорович ВАСИЛЬЕВ
Юрий Петрович ЛИРИОНОВ
Владимир Сергеевич ШАРОВ
Original Assignee
Акционерное общество "Концерн воздушно-космической обороны "Алмаз-Антей"
Акционерное общество "Ульяновский механический завод"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Концерн воздушно-космической обороны "Алмаз-Антей", Акционерное общество "Ульяновский механический завод" filed Critical Акционерное общество "Концерн воздушно-космической обороны "Алмаз-Антей"
Publication of WO2018169446A2 publication Critical patent/WO2018169446A2/en
Publication of WO2018169446A3 publication Critical patent/WO2018169446A3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/04Aiming or laying means for dispersing fire from a battery ; for controlling spread of shots; for coordinating fire from spaced weapons

Definitions

  • the utility model relates to the field of military equipment and can be used as part of medium-range anti-aircraft missile systems (SAM) as the main combat weapon.
  • SAM medium-range anti-aircraft missile systems
  • Known self-propelled firing system (patent jNbl43315), containing a self-propelled chassis, a launcher with mounted missiles with semi-active radar homing heads, a radar station, a digital computer system, a gyroscopic system for measuring heading angles, roll, pitch, the input of which is connected to the output of the navigation system, and the output is connected to a digital computing system, the interface device, the input of which is connected to the output of the optoelectronic system, and the output is connected to the input intellectual th system.
  • the applied gyroscopic system uses a manual input mode of input data. The complexity of the known device and manual operations for entering data into the gyroscopic system reduce the reliability of the SDA.
  • SUP self-propelled gun mount
  • the heel and pitch angles are transmitted to the DAC. Errors in measuring coordinates that arise due to the fact that the tracked vehicle is not on an ideally horizontal base are determined and eliminated in the DAC.
  • the heading angle is also transmitted to the CVC, which must be taken into account for interaction in a single coordinate system with the radar stations of the complex, the command post and other air defense systems.
  • the disadvantage of the SDA 9A317 is that the IKV-1 course vertical line used in the gyroscopic system produces angles in the form of sine-cosine voltages, which must be converted to a digital serial code for transmission to the SDS CVS.
  • the use of additional phase-to-code converters complicates the equipment and reduces reliability.
  • Known closest in technical essence to the claimed self-propelled firing system [patent N ° 91 155], containing a tracked vehicle, a launching device on which anti-aircraft guided missiles, an electro-hydraulic tracking drive, a radar station, a digital computer system, an information system of vertical and course Ts -061K.
  • the Ts-061K information system is intended for installation on aircraft that can perform complex spatial maneuvers, for example, the Nesterov loop.
  • the information complex is equipped with an external roll frame, which complicates its design and reliability. This in turn reduces the reliability of the JMA as a whole.
  • the proposed utility model solves the problem of improving the reliability of the JMA.
  • a self-propelled gun mount containing self-propelled chassis, a launcher that houses anti-aircraft guided missiles, an electro-hydraulic tracking drive, a radar station, a digital computer system, an angle meter with a fiber optic gyroscope and a pairing device are introduced, with the output the angle meter is connected to the input of the interface device, and the input-output of the interface device is connected to the input-output of the DAC.
  • the angle meter is designed to form a heading angle, pitch angle, roll angle in a digital code that is fed to the IUG output.
  • Heading angle - the angle between the projection of the longitudinal axis of the SOU chassis on the horizon plane and the direction to the North.
  • Pitch angle - the angle in the vertical plane between the longitudinal axis of the SOU chassis and its projection onto the horizon plane.
  • the angle of heel is the angle in the plane perpendicular to the longitudinal axis of the chassis of the JMA between the transverse axis of the chassis of the JMA and its projection onto the horizon plane.
  • IUG you can apply, for example, the IBZ-100.12-01 meter, which is produced commercially. This meter uses fiber-optic gyroscopes, the principle of which is based on measuring the phase difference of two counterpropagating waves propagating in an annular fiber interferometer, which occurs when it is rotated due to the Sagnac effect.
  • the interface device is designed to transmit measurement information to the DAC at its request according to the exchange protocol.
  • the interface device can be implemented using the DAC program.
  • Self-propelled chassis with respect to the horizontal plane of which the heights of the heel and pitch are measured, is designed to transport the JMA to the guarded object, all the JMA systems and devices are placed on the chassis.
  • a self-propelled chassis you can use the GM 969B-01 tracked vehicle or the MZKT-69221 wheeled chassis, which are mass-produced.
  • missiles are sent towards the target being followed.
  • SAM commercially available 9MZ 17 anti-aircraft guided missiles.
  • the SDA radar is activated, which surveys the space in its sector of responsibility, and then accompanies those detected and identified as dangerous air targets.
  • the tracking data that is, the azimuth, elevation angle, speed, range of several targets at the same time, is sent to the DAC, where, taking into account the angle of heel and pitch entered from the angle meter in the DAC, the tasks of pointing the launching device to the anticipated point, the missile meeting tasks with the target are solved, signals are generated pointing missiles at the target in angles and radial velocity.
  • the heading angle measured and entered into the CVS determines the orientation of the JMA in the area relative to the cardinal points, which allows you to distribute the detected dangerous targets between other firing systems for air defense systems for firing.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Gyroscopes (AREA)
  • Navigation (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

A self-propelled firing unit relates to the field of military hardware and may be used as part of a medium-range anti-aircraft rocket missile complex as a main means of combat. The proposed utility model addresses the problem of improving the reliability of a self-propelled firing unit. A self-propelled firing unit includes a self-propelled chassis, a launcher on which guided anti-aircraft missiles are arranged, an electro-hydraulic servo drive, a radar station, a digital computer system, an angle-measuring device having a fiber-optic gyroscope, and an interface device, wherein the angle-measuring device output is connected to an interface input, while an interface input-output is connected to a digital computer system input-output.

Description

Самоходная огневая установка  Self-propelled firing system
Полезная модель относится к области военной техники и может быть использована в составе зенитных ракетных комплексов (ЗРК) средней дальности в качестве основного боевого средства. The utility model relates to the field of military equipment and can be used as part of medium-range anti-aircraft missile systems (SAM) as the main combat weapon.
Известна самоходная огневая установка (патент jNbl43315), содержащая самоходное шасси, пусковое устройство с установленными ракетами с полуактивными радиолокационными головками самонаведения, радиолокационную станцию, цифровую вычислительную систему, гироскопическую систему измерения углов курса, крена, тангажа, вход которой соединен с выходом системы навигации, а выход соединен с цифровой вычислительной системой, устройство сопряжения, вход которого соединен с выходом оптико-электронной системы, а выход соединен с входом интеллектуальной системы. В примененной гироскопической системе используется ручной режим ввода исходных данных. Сложность известного устройства и ручные операции по вводу данных в гироскопическую систему снижают надежность СОУ.  Known self-propelled firing system (patent jNbl43315), containing a self-propelled chassis, a launcher with mounted missiles with semi-active radar homing heads, a radar station, a digital computer system, a gyroscopic system for measuring heading angles, roll, pitch, the input of which is connected to the output of the navigation system, and the output is connected to a digital computing system, the interface device, the input of which is connected to the output of the optoelectronic system, and the output is connected to the input intellectual th system. The applied gyroscopic system uses a manual input mode of input data. The complexity of the known device and manual operations for entering data into the gyroscopic system reduce the reliability of the SDA.
Известна самоходная огневая установка (СОУ) 9А317 [Самоходный зенитный ракетный комплекс «БУК». Техника и вооружение вчера, сегодня, завтра, N°6, 2003, часть 1, стр. 28], содержащая гусеничную машину, пусковое устройство, на котором размещены четыре зенитные управляемые ракеты, электрогидравлический следящий привод, радиолокационную станцию с фазированной антенной решеткой, цифровую вычислительную систему (ЦВС), гироскопическую систему измерения углов курса, крена и тангажа.  Known self-propelled gun mount (SOU) 9A317 [Self-propelled anti-aircraft missile system "BUK". Equipment and weapons yesterday, today, tomorrow, N ° 6, 2003, part 1, p. 28], containing a tracked vehicle, a launching device on which four anti-aircraft guided missiles, an electro-hydraulic tracking drive, a radar station with a phased array, digital Computing system (CVS), gyroscopic system for measuring course angles, roll and pitch.
При определении радиолокационной станцией СОУ угловых координат опасных целей с гироскопической системы в ЦВС передаются значения углов крена и тангажа. В ЦВС определяются и устраняются ошибки при измерении координат, которые возникают из-за того, что гусеничная машина находится не на идеально горизонтальном основании. В ЦВС передается также курсовой угол, который необходимо учитывать для взаимодействия в единой системе координат с радиолокационными станциями комплекса, командным пунктом и другими огневыми установками ЗРК.  When determining the angular coordinates of dangerous targets by the SDA radar station from the gyroscopic system, the heel and pitch angles are transmitted to the DAC. Errors in measuring coordinates that arise due to the fact that the tracked vehicle is not on an ideally horizontal base are determined and eliminated in the DAC. The heading angle is also transmitted to the CVC, which must be taken into account for interaction in a single coordinate system with the radar stations of the complex, the command post and other air defense systems.
Недостаток СОУ 9А317 заключается в том, что примененная в гироскопической системе курсовертикаль ИКВ-1 выдает углы в виде синусно-косинусных напряжений, которые необходимо преобразовывать в цифровой последовательный код для передачи в ЦВС СОУ. Применение дополнительных преобразователей фаза-код усложняет аппаратуру и снижает надежность. Известна наиболее близкая по технической сущности к заявляемой самоходная огневая установка [патент N°91 155], содержащая гусеничную машину, пусковое устройство, на котором размещены зенитные управляемые ракеты, электрогидравлический следящий привод, радиолокационную станцию, цифровую вычислительную систему, информационный комплекс вертикали и курса Ц-061К. The disadvantage of the SDA 9A317 is that the IKV-1 course vertical line used in the gyroscopic system produces angles in the form of sine-cosine voltages, which must be converted to a digital serial code for transmission to the SDS CVS. The use of additional phase-to-code converters complicates the equipment and reduces reliability. Known closest in technical essence to the claimed self-propelled firing system [patent N ° 91 155], containing a tracked vehicle, a launching device on which anti-aircraft guided missiles, an electro-hydraulic tracking drive, a radar station, a digital computer system, an information system of vertical and course Ts -061K.
Информационный комплекс Ц-061К предназначен для установки на летательных аппаратах, которые могут совершать сложные пространственные маневры, например, петлю Нестерова. Для обеспечения ортогональности всех трех осей вращения гироплатформы при любых маневрах информационный комплекс снабжен внешней рамой крена, что усложняет его конструкцию и надежность. Это в свою очередь снижает надежность СОУ в целом.  The Ts-061K information system is intended for installation on aircraft that can perform complex spatial maneuvers, for example, the Nesterov loop. To ensure the orthogonality of all three axes of rotation of the gyro platform during any maneuvers, the information complex is equipped with an external roll frame, which complicates its design and reliability. This in turn reduces the reliability of the JMA as a whole.
Предлагаемой полезной моделью решается задача повышения надежности СОУ. Для достижения этого технического результата в самоходную огневую установку, содержащую самоходные шасси, пусковое устройство, на котором размещены зенитные управляемые ракеты, электрогидравлический следящий привод, радиолокационную станцию, цифровую вычислительную систему, введены измеритель углов с волоконно-оптическим гироскопом и устройство сопряжения, при этом выход измерителя углов соединен со входом устройства сопряжения, а вход-выход устройства сопряжения соединен со входом-выходом ЦВС.  The proposed utility model solves the problem of improving the reliability of the JMA. To achieve this technical result, a self-propelled gun mount containing self-propelled chassis, a launcher that houses anti-aircraft guided missiles, an electro-hydraulic tracking drive, a radar station, a digital computer system, an angle meter with a fiber optic gyroscope and a pairing device are introduced, with the output the angle meter is connected to the input of the interface device, and the input-output of the interface device is connected to the input-output of the DAC.
Измеритель углов (ИУГ) предназначен для формирования угла курса, угла тангажа, угла крена в цифровом коде, который поступает на выход ИУГ. Угол курса - угол между проекцией продольной оси шасси СОУ на плоскость горизонта и направлением на Север. Угол тангажа - угол в вертикальной плоскости между продольной осью шасси СОУ и ее проекцией на плоскость горизонта. Угол крена - угол в плоскости, перпендикулярной продольной оси шасси СОУ между поперечной осью шасси СОУ и ее проекцией на плоскость горизонта. В качестве ИУГ можно применить, например, измеритель ИБЗ- 100.12-01 , который выпускается серийно. В этом измерителе применены волоконно-оптические гироскопы, принцип действия которых основан на измерении разности фаз двух встречных волн, распространяющихся в кольцевом волоконном интерферометре, которая возникает при его вращении за счет эффекта Саньяка.  The angle meter (IUG) is designed to form a heading angle, pitch angle, roll angle in a digital code that is fed to the IUG output. Heading angle - the angle between the projection of the longitudinal axis of the SOU chassis on the horizon plane and the direction to the North. Pitch angle - the angle in the vertical plane between the longitudinal axis of the SOU chassis and its projection onto the horizon plane. The angle of heel is the angle in the plane perpendicular to the longitudinal axis of the chassis of the JMA between the transverse axis of the chassis of the JMA and its projection onto the horizon plane. As IUG you can apply, for example, the IBZ-100.12-01 meter, which is produced commercially. This meter uses fiber-optic gyroscopes, the principle of which is based on measuring the phase difference of two counterpropagating waves propagating in an annular fiber interferometer, which occurs when it is rotated due to the Sagnac effect.
Устройство сопряжения предназначено для передачи измерительной информации в ЦВС по ее запросу согласно протоколу обмена. Устройство сопряжения можно реализовать с помощью программы ЦВС. Самоходное шасси, относительно горизонтальной плоскости которого измеряются утлы крена и тангажа, предназначено для транспортировки СОУ к охраняемому объекту, на шасси размещены все системы и устройства СОУ. В качестве самоходного шасси можно применить гусеничную машина ГМ 969Б-01 или колесное шасси МЗКТ-69221 , которые выпускаются серийно. The interface device is designed to transmit measurement information to the DAC at its request according to the exchange protocol. The interface device can be implemented using the DAC program. Self-propelled chassis, with respect to the horizontal plane of which the heights of the heel and pitch are measured, is designed to transport the JMA to the guarded object, all the JMA systems and devices are placed on the chassis. As a self-propelled chassis, you can use the GM 969B-01 tracked vehicle or the MZKT-69221 wheeled chassis, which are mass-produced.
С помощью ПУ, которое следящим электрогидроприводом вращается в горизонтальной плоскости и качается в вертикальной плоскости, ЗУР направляются в сторону сопровождаемой цели. В качестве пускового устройства можно использовать серийно выпускаемое ПУ 9П619. В качестве ЗУР можно использовать серийно выпускаемые зенитные управляемые ракеты 9МЗ 17.  With the help of the launcher, which rotates in a horizontal plane by a servo-electric actuator and swings in a vertical plane, missiles are sent towards the target being followed. As a starting device, you can use commercially available PU 9P619. As SAM, you can use the commercially available 9MZ 17 anti-aircraft guided missiles.
С помощью ЦВС, которая обрабатывает сигналы с выхода РЛС, и учитывает углы крена, тангажа и курса производится формирование команд управления пусковой установкой, выработка углов упреждения и формирование сигналов наведения ракет. В качестве ЭВМ ЦВС можно использовать серийно выпускаемую машину «БАГЕТ».  Using the DAC, which processes the signals from the output of the radar, and takes into account the roll, pitch and course angles, the formation of launcher control commands, the development of lead angles and the formation of missile guidance signals are generated. As a computer, CVS, you can use the mass-produced machine "BAGET".
СОУ работает следующим образом.  SOU works as follows.
При угрозе воздушного нападения включается РЛС СОУ, которая осуществляет обзор пространства в своем секторе ответственности, а затем сопровождает обнаруженные и опознанные как опасные воздушные цели. Данные сопровождения, то есть азимут, угол места, скорость, дальность одновременно нескольких целей поступают в ЦВС, где с учетом введенных из измерителя углов в ЦВС углов крена и тангажа решаются задачи наведения пускового устройства в упрежденную точку, задачи встречи ракеты с целью, формируются сигналы наведения ЗУР на цель по углам и радиальной скорости. Измеренный и введенный в ЦВС курсовой угол определяет ориентацию СОУ на местности относительно сторон света, что позволяет распределить обнаруженные опасные цели между другими огневыми установками ЗРК для обстрела. При входе воздушных целей в зону поражения СОУ осуществляются пуски ракет по сопровождаемым целям.  If there is a threat of an air attack, the SDA radar is activated, which surveys the space in its sector of responsibility, and then accompanies those detected and identified as dangerous air targets. The tracking data, that is, the azimuth, elevation angle, speed, range of several targets at the same time, is sent to the DAC, where, taking into account the angle of heel and pitch entered from the angle meter in the DAC, the tasks of pointing the launching device to the anticipated point, the missile meeting tasks with the target are solved, signals are generated pointing missiles at the target in angles and radial velocity. The heading angle measured and entered into the CVS determines the orientation of the JMA in the area relative to the cardinal points, which allows you to distribute the detected dangerous targets between other firing systems for air defense systems for firing. When air targets enter the SDA destruction zone, missiles are launched against the targets followed.
Таким образом, применение в самоходной огневой установке измерителя углов на основе волоконно-оптических гироскопов увеличивает надежность СОУ.  Thus, the use of an angle meter based on fiber-optic gyroscopes in a self-propelled firing installation increases the reliability of the JMA.

Claims

Формула полезной модели  Utility Model Formula
Самоходная огневая установка, содержащая самоходное шасси, пусковое устройство, на котором размещены зенитные управляемые ракеты, электрогидравличе- ский следящий привод, радиолокационную станцию, цифровую вычислительную си- стему - ЦВС, отличающаяся тем, что в нее введены измеритель углов с волоконно- оптическим гироскопом и устройство сопряжения, при этом выход измерителя углов соединен со входом устройства сопряжения, а вход-выход устройства сопряжения со- единен со входом-выходом ЦВС. A self-propelled firing system containing a self-propelled chassis, a launching device on which anti-aircraft guided missiles are placed, an electro-hydraulic tracking drive, a radar station, a digital computer system - CVS, characterized in that an angle meter with a fiber optic gyroscope and the interface device, while the output of the angle meter is connected to the input of the interface device, and the input-output of the interface device is connected to the input-output of the DAC.
PCT/RU2018/000053 2016-12-27 2018-01-31 Self-propelled firing unit WO2018169446A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2016151902 2016-12-27
RU2016151902 2016-12-27

Publications (2)

Publication Number Publication Date
WO2018169446A2 true WO2018169446A2 (en) 2018-09-20
WO2018169446A3 WO2018169446A3 (en) 2018-11-29

Family

ID=63523717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2018/000053 WO2018169446A2 (en) 2016-12-27 2018-01-31 Self-propelled firing unit

Country Status (1)

Country Link
WO (1) WO2018169446A2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5347910A (en) * 1985-10-15 1994-09-20 The Boeing Company Target acquisition system
US6422508B1 (en) * 2000-04-05 2002-07-23 Galileo Group, Inc. System for robotic control of imaging data having a steerable gimbal mounted spectral sensor and methods
RU91155U1 (en) * 2009-10-07 2010-01-27 Открытое акционерное общество "Ульяновский механический завод" (ОАО "УМЗ") SELF-PROPELLED FIRE INSTALLATION
RU143315U1 (en) * 2014-02-25 2014-07-20 Открытое акционерное общество "Научно-исследовательский институт приборостроения имени В.В. Тихомирова" SELF-PROPELLED FIRE INSTALLATION OF DETECTING, MAINTENANCE AND LIGHTING OF TARGETS, GUIDING AND LAUNCHING MEDIUM-DISTANCE ANTI-ROCKET COMPLEX Rocket

Also Published As

Publication number Publication date
WO2018169446A3 (en) 2018-11-29

Similar Documents

Publication Publication Date Title
US7023380B2 (en) RF attitude measurement system and method
RU2659622C1 (en) Rotating along the roll angle with direction gyroscope to the target acquisition zone by the homing head rocket outputting method and system for its implementation
US8093539B2 (en) Integrated reference source and target designator system for high-precision guidance of guided munitions
US8076621B2 (en) Integrated reference source and target designator system for high-precision guidance of guided munitions
US8155819B2 (en) System and method for effecting vehicle maneuver to compensate for IMU error
US8637798B2 (en) Integrated reference source and target designator system for high-precision guidance of guided munitions
CN110285708B (en) Rapid detection method for north-seeking precision of self-propelled gun positioning and orienting system
CN110160519A (en) Body attitude calculation method for pulse shape modification rocket projectile
US3156435A (en) Command system of missile guidance
US4142695A (en) Vehicle guidance system
US6142412A (en) Highly accurate long range optically-aided inertially guided type missile
RU91155U1 (en) SELF-PROPELLED FIRE INSTALLATION
RU176385U1 (en) Self-propelled firing system
WO2018169446A2 (en) Self-propelled firing unit
RU2674401C2 (en) Method of firing guided artillery projectile
RU2253820C2 (en) Mobile antiaircraft guided missile system
US4202516A (en) Electronic tripod technique
US8513580B1 (en) Targeting augmentation for short-range munitions
GB1056815A (en) Fire control system for weapons
RU2230278C1 (en) Helicopter weapon guidance system
US4152969A (en) Fire control correction system for wind and target motion
US3342982A (en) Space vehicle navigation system for obtaining either gyro drift, launch position, or coordinate system orientation
Baghiyan Quaternion-based algorithm of ground target tracking by aircraft
RU2392575C2 (en) Self-homing device
US4643373A (en) Missile system for naval use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18766895

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18766895

Country of ref document: EP

Kind code of ref document: A2