WO2018169191A1 - 공기 조화기 - Google Patents

공기 조화기 Download PDF

Info

Publication number
WO2018169191A1
WO2018169191A1 PCT/KR2018/000574 KR2018000574W WO2018169191A1 WO 2018169191 A1 WO2018169191 A1 WO 2018169191A1 KR 2018000574 W KR2018000574 W KR 2018000574W WO 2018169191 A1 WO2018169191 A1 WO 2018169191A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
refrigerant
stainless steel
air conditioner
less
Prior art date
Application number
PCT/KR2018/000574
Other languages
English (en)
French (fr)
Inventor
홍석표
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/493,600 priority Critical patent/US11486013B2/en
Priority to CN201890000611.8U priority patent/CN211146984U/zh
Priority to EP18768655.5A priority patent/EP3598036B1/en
Publication of WO2018169191A1 publication Critical patent/WO2018169191A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P13/00Making metal objects by operations essentially involving machining but not covered by a single other subclass
    • B23P13/02Making metal objects by operations essentially involving machining but not covered by a single other subclass in which only the machining operations are important
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/32Refrigerant piping for connecting the separate outdoor units to indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Definitions

  • the present invention relates to an air conditioner.
  • An air conditioner may be defined as a device that supplies warm air or cold air to a room using a phase change cycle of a refrigerant.
  • the phase change cycle of the refrigerant may include a compressor for compressing a low-temperature, low-pressure gaseous refrigerant into a high-temperature, high-pressure gaseous refrigerant, and a condenser for phase-changing the high-temperature and high-pressure gaseous refrigerant compressed by the compressor into a high-temperature, high-pressure liquid phase refrigerant.
  • an expansion valve for expanding the high-temperature, high-pressure liquid refrigerant passing through the condenser into a low-temperature, low-pressure two-phase refrigerant, and an evaporator for phase-changing the low-temperature, low-pressure two-phase refrigerant passing through the expansion valve to a low-temperature, low-pressure gas phase refrigerant.
  • the condenser When the phase change cycle of the refrigerant is operated as a device for supplying cold air, the condenser is arranged outdoors and the evaporator is arranged indoors.
  • the compressor, the condenser, the expansion valve, and the evaporator are connected by a refrigerant pipe to form a refrigerant circulation closed circuit.
  • the refrigerant pipe is made of copper (Cu) pipe, but the copper pipe has some problems.
  • the pipe has a disadvantage that it does not have enough pressure resistance to withstand high pressure.
  • new refrigerants such as R410a, R22, and R32 are compressed by a compressor, such as R410a, R22, and R32
  • the refrigerant cycle cannot be damaged as it accumulates the operating time of the refrigerant cycle. have.
  • the pipe has a disadvantage of being vulnerable to vibrations transmitted from the compressor because the stress margin value for withstanding the refrigerant pressure in the pipe is small. For this reason, in order to absorb the vibration and the noise which are transmitted to the pipe, the length of the pipe is lengthened, and at the same time, the pipe is bent and arranged in the x, y, and z axis directions.
  • Stainless steel pipe is made of stainless steel material, has a strong corrosion resistance compared to the copper pipe, and has the advantage of lower price than the copper pipe. In addition, since stainless steel pipes have greater strength and hardness than copper pipes, vibration and noise absorption capacities are superior to copper pipes.
  • the conventional conventional stainless steel pipe is excessively high in strength and hardness compared to the copper pipe, there is a disadvantage in expanding pipe work or pipe bending work for pipe connection.
  • the pipe constituting the refrigerant cycle may be arranged in a shape of bending a specific curvature at a specific point, there is a disadvantage that the bending work is not possible when using a conventional stainless steel pipe.
  • Korean Patent Publication No. 2003-0074232 (September 19, 2003) is a prior art document.
  • an object of the present invention is to provide an air conditioner having a refrigerant pipe to improve the workability by ensuring the ductility of the same pipe.
  • another object of the present invention is to provide an air conditioner having a refrigerant pipe having strength and hardness equal to or greater than that of the same pipe.
  • Another object of the present invention is to provide an air conditioner capable of preventing corrosion of the refrigerant pipe due to refrigerant pressure conditions inside the pipe or environmental conditions outside the pipe.
  • an object of the present invention is to provide an air conditioner equipped with a refrigerant pipe that can maintain a threshold pressure above a set level even if the pipe thickness is reduced.
  • an object of the present invention is to provide an air conditioner having a refrigerant pipe that can reduce the pressure loss of the refrigerant flowing through the pipe by increasing the inner diameter of the pipe.
  • an object of the present invention is to provide an air conditioner having a refrigerant pipe having improved vibration absorption capacity.
  • an object of the present invention is to provide an air conditioner that can reduce the length of the refrigerant pipe by allowing the refrigerant pipe to easily absorb vibrations transmitted from the compressor.
  • an object of the present invention is to provide an air conditioner capable of determining the outer diameter of the refrigerant pipe according to the air conditioning capacity determined based on the capacity of the compressor.
  • an object of the present invention is to provide an air conditioner capable of determining an inner diameter of a refrigerant pipe based on the determined outer diameter of the refrigerant pipe and the thickness of the pipe determined according to the type of the refrigerant.
  • the refrigeration capacity of the air conditioner has a 2kW or more and 7kW or less
  • the air conditioner has a compressor, an outdoor heat exchanger, a main expansion device, and the compressor
  • an outdoor unit including a refrigerant pipe connecting the outdoor heat exchanger and the main expansion device, an indoor unit including an indoor heat exchanger, and a connection pipe connecting the outdoor unit and the indoor unit, and R134a is used as the refrigerant.
  • the refrigerant pipe is made of a soft stainless steel material having a delta ferrite matrix structure of 1% or less based on the particle size, and the refrigerant pipe guides suction of the refrigerant to the compressor and has an outer diameter of 12.70 mm. Characterized in that it is included.
  • the refrigerant pipe further comprises a discharge pipe having an outer diameter of 9.52 mm and guiding the discharge of the refrigerant compressed by the compressor.
  • the inner diameter of the suction pipe is 12.30 mm or less
  • the inner diameter of the discharge pipe is 9.20 mm or less. It is characterized by.
  • the refrigerant pipe further includes a discharge pipe that guides the discharge of the refrigerant compressed by the compressor and has an outer diameter of 7.94 mm, the inner diameter of the suction pipe is 12.30 mm or less, and the inner diameter of the discharge pipe is 7.66 mm or less. It is characterized by.
  • the refrigerant pipe further includes a discharge pipe having an outer diameter of 12.70 mm that guides the discharge of the refrigerant compressed by the compressor, and an inner diameter of the suction pipe is 12.30 mm or less, and an inner diameter of the discharge pipe is 12.30 mm or less. It is characterized by.
  • an outdoor unit including a compressor, an outdoor heat exchanger, a main expansion device, and a refrigerant pipe connecting the compressor, the outdoor heat exchanger, and the main expansion device, an indoor unit including an indoor heat exchanger, and the outdoor unit
  • An air conditioner including a connection pipe connecting the indoor unit, wherein the air conditioner has a refrigeration capacity of 2 kW or more and 7 kW or less, and R134a is used as the refrigerant, and the refrigerant pipe is 1 based on the particle size.
  • Consists of a soft stainless steel material having a delta ferrite matrix structure of less than% the refrigerant pipe, characterized in that the suction pipe guides the suction of the refrigerant to the compressor and comprises a suction pipe having an outer diameter of 15.88mm.
  • the refrigerant pipe further comprises a discharge pipe having an outer diameter of 7.94 mm and guiding the discharge of the refrigerant compressed by the compressor.
  • the inner diameter of the suction pipe is 15.38 mm or less
  • the inner diameter of the discharge pipe is 7.66 mm or less. It is characterized by.
  • the refrigerant pipe further includes a discharge pipe that guides the discharge of the refrigerant compressed by the compressor and has an outer diameter of 9.52 mm, the inner diameter of the suction pipe is 15.38 mm or less, and the inner diameter of the discharge pipe is 9.20 mm or less. It is characterized by.
  • the refrigerant pipe may further include a discharge pipe having an outer diameter of 12.70 mm and guiding the discharge of the refrigerant compressed by the compressor, and an inner diameter of the suction pipe is 15.38 mm or less, and an inner diameter of the discharge pipe is 12.30 mm or less. It is characterized by.
  • the third invention includes an outdoor unit including a compressor, an outdoor heat exchanger, a main expansion device, and a refrigerant pipe connecting the compressor, the outdoor heat exchanger, and the main expansion device, an indoor unit including an indoor heat exchanger, and the outdoor unit.
  • the refrigerant pipe further comprises a discharge pipe having an outer diameter of 7.94 mm and guiding the discharge of the refrigerant compressed by the compressor.
  • the inner diameter of the suction pipe is 9.920 m or less, and the inner diameter of the discharge pipe is 7.66 mm or less. It is characterized by.
  • the refrigerant pipe further includes a discharge pipe that guides the discharge of the refrigerant compressed by the compressor and has an outer diameter of 9.52 mm, the inner diameter of the suction pipe is 9.20 mm or less, and the inner diameter of the discharge pipe is 9.20 mm or less. It is characterized by.
  • the refrigerant pipe further includes a discharge pipe that guides the discharge of the refrigerant compressed by the compressor and has an outer diameter of 12.70 mm, an inner diameter of the suction pipe is 9.20 mm or less, and an inner diameter of the discharge pipe is 12.30 mm or less. It is characterized by.
  • the operating efficiency of the air conditioner can be improved.
  • the austenitic stainless steel pipe it is possible to secure the ductility of the pipe level compared to the conventional stainless steel pipe, as a result there is an advantage that the bent stainless steel pipe can be applied to the refrigerant circulation cycle. That is, compared with the conventional stainless steel pipe, there is an advantage that the degree of freedom in forming the refrigerant pipe increases. In addition, there is an advantage that a relatively inexpensive ductile stainless steel pipe can be used without using expensive copper pipes.
  • the ductile stainless steel pipe according to the present embodiment while the ductility of the copper pipe level is secured, the strength and hardness is greater than that of the copper pipe, the pressure resistance ability is significantly superior to that of the copper pipe, and a variety of new refrigerants having a high saturated vapor pressure refrigerant There is an advantage that can be used for cycles. There is an advantage that the so-called refrigerant freedom is increased.
  • the vibration absorbing ability is remarkably superior to copper pipes.
  • the stainless steel pipe does not need to be bent several times because the pipe does not need to be lengthened for vibration and noise absorption. Therefore, it is easy to secure a space for the refrigerant cycle installation, there is an advantage that can reduce the manufacturing cost by reducing the pipe length.
  • the ductility of the flexible stainless steel pipe according to the present embodiment is improved, the workability of the pipe may be increased.
  • the flexible stainless steel pipe has excellent corrosion resistance compared to copper pipe, the pipe life is long.
  • the suction pipe disposed adjacent to the compressor can be improved, vibration and breakage of the suction pipe can be prevented.
  • the ductility of the suction pipe is increased, the suction pipe can be processed (bended) and easily installed in a limited space.
  • the suction pipe formed of the flexible stainless steel pipe can secure the ductility of the pipe level and the strength is larger than that of the pipe, the pipe thickness can be reduced. That is, even if the pipe thickness becomes thinner than the copper pipe, since the limit pressure of the provided pipe can be maintained, the pipe thickness can be reduced.
  • the strength of the discharge pipe which is disposed on the discharge side of the compressor and flows with the high-pressure refrigerant, can be improved, vibration and breakage of the discharge pipe can be prevented. Further, since the ductility of the discharge pipe is increased, the suction pipe can be processed (bended) and easily installed in a limited space.
  • the discharge pipe formed of the flexible stainless steel pipe can secure the ductility at the same level as that of the pipe, the strength is larger than that of the pipe, thereby reducing the thickness of the pipe. That is, even if the pipe thickness becomes thinner than the copper pipe, since the limit pressure of the provided pipe can be maintained, the pipe thickness can be reduced.
  • the inner diameter of the suction / discharge pipe is increased under the same outer diameter condition as the pipe, and the pressure loss of the refrigerant flowing in the pipe is reduced due to the increase in the inner diameter.
  • the pressure loss inside the pipe is reduced, the amount of refrigerant flow increases, resulting in an improvement in the coefficient of performance (COP) of the refrigerant circulation cycle.
  • COP coefficient of performance
  • the outer diameter and the minimum thickness of the first to fourth refrigerant pipes provided in the air conditioner can be proposed in an optimum range, the strength and ductility of the pipe can be maintained above a set level. Therefore, the installation convenience of the pipe can be increased.
  • FIG. 1 is a diagram of a refrigeration cycle showing the configuration of an air conditioner according to a first embodiment of the present invention.
  • FIG. 2 is a view showing the intake pipe and the discharge pipe of the compressor according to the first embodiment of the present invention.
  • 3 is a microstructure picture of stainless steel with 99% austenite matrix and less than 1% delta ferrite texture.
  • FIG. 5 is a view showing the outer diameter and the inner diameter of the refrigerant pipe according to the first embodiment of the present invention.
  • FIG. 6 is a flow chart showing a method of manufacturing a flexible stainless steel pipe according to a first embodiment of the present invention.
  • FIG. 7 is a view schematically illustrating the cold rolling process of FIG. 6.
  • FIG. 8 is a view schematically illustrating the slitting process of FIG. 6.
  • FIG. 9 is a view schematically illustrating the forming process of FIG. 6.
  • 10 to 13 are cross-sectional views showing a process of manufacturing a flexible stainless steel pipe according to the manufacturing method of FIG.
  • FIG. 14 is a view schematically illustrating the bright annealing process of FIG. 6.
  • FIG. 15 is a graph illustrating an S-N curve experiment to compare fatigue limits of a flexible stainless steel pipe and a conventional copper pipe according to the first embodiment of the present invention.
  • 16 is an experimental graph showing an S-N curve of a ductile stainless steel pipe according to the first embodiment of the present invention.
  • 17 is a view showing the attachment position of the stress measuring sensor for measuring the stress of the pipe.
  • 18 and 19 are experimental data showing result values measured by the stress measuring sensor of FIG. 17.
  • 20 is an experimental graph comparing pressure loss in a pipe of a gas pipe when a flexible stainless steel pipe or a conventional copper pipe according to a first embodiment of the present invention is used as a gas pipe.
  • 21 is an experimental result table showing the performance of the flexible stainless steel pipe and the conventional copper pipe according to the first embodiment of the present invention.
  • 22 is a view showing a plurality of soft stainless steel pipes, aluminum (Al) pipes, and copper pipes as target materials for testing corrosion resistance.
  • FIG. 23 is a result table of measuring corrosion depth for each pipe of FIG. 22.
  • 25 is a view showing the configuration of a flexible stainless steel pipe is a curved pipe according to an embodiment of the present invention.
  • 26 is a view showing one cross section of the curved pipe.
  • 27 is an experimental graph comparing bending loads according to deformation lengths of ductile stainless steel pipes, copper pipes, and aluminum pipes.
  • FIG. 28 is a diagram of a refrigeration cycle showing the construction of an air conditioner according to a second embodiment of the present invention.
  • first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being “connected”, “coupled” or “connected” to another component, that component may be directly connected or connected to that other component, but between components It will be understood that may be “connected”, “coupled” or “connected”.
  • FIG. 1 is a diagram of a refrigeration cycle showing the configuration of an air conditioner according to a first embodiment of the present invention
  • Figure 2 is a view showing the appearance of the suction and discharge piping of the compressor according to the first embodiment of the present invention to be.
  • the air conditioner 10 includes an outdoor unit 20 and an indoor unit 160 to drive a refrigerant cycle through which a refrigerant circulates.
  • an outdoor unit 20 and an indoor unit 160 to drive a refrigerant cycle through which a refrigerant circulates.
  • the air conditioner 10 includes a compressor 100 for compressing a refrigerant.
  • the compressor 100 includes a rotary compressor.
  • the refrigeration capacity that is, the air conditioning capacity of the air conditioner 10 can be determined.
  • the air conditioning capacity may include a cooling capacity or a heating capacity.
  • the air conditioning capacity of the air conditioner 10 according to the present embodiment may be formed in the range of 2kW or more and 7kW or less.
  • the compressor 100 includes a rotary compressor.
  • a BLDC twin rotary compressor is included.
  • the limit amount of refrigerant of the compressor 100 may be 1500 cc, and the amount of oil may be 400 cc.
  • the air conditioner 10 further includes a muffler 105 disposed at the outlet side of the compressor 100.
  • the muffler 105 may reduce noise generated by the high pressure refrigerant discharged from the compressor 100.
  • the muffler 105 includes a chamber that increases the flow cross sectional area of the refrigerant, the chamber forming a resonance chamber.
  • the air conditioner 10 further includes a flow control valve 110 disposed at the outlet side of the muffler 105 and switching the flow direction of the refrigerant compressed by the compressor 100.
  • the flow control valve 110 may include a four-way valve.
  • the flow control valve 110 includes a plurality of ports. In the plurality of ports, a first port 111 into which the high-pressure refrigerant compressed by the compressor 100 flows in, and a second port 112 connected to a pipe extending from the flow control valve 110 to the outdoor heat exchanger side. ), A third port 113 connected to a pipe extending from the flow control valve 110 to the indoor unit 160, and a fourth port 114 extending from the flow control valve 110 to the gas-liquid separator 150. Included.
  • the refrigerant compressed by the compressor 100 may pass through the muffler 105 and then flow into the flow control valve 110 through the first port 111 of the flow control valve 110.
  • the refrigerant flowing into the flow control valve 110 may flow to the outdoor heat exchanger 120.
  • the refrigerant may be discharged from the second port 112 of the flow control valve 110 and introduced into the outdoor heat exchanger 120.
  • the refrigerant flowing into the flow control valve 110 may flow to the indoor unit 160.
  • the refrigerant may be discharged from the third port 113 of the flow control valve 110 and introduced into the indoor unit 160.
  • the air conditioner 10 further includes an outdoor heat exchanger 120 that exchanges heat with outside air.
  • the outdoor heat exchanger 120 is disposed at the outlet side of the flow control valve 110.
  • the outdoor heat exchanger 120 includes a heat exchange pipe 121 and a holder 123 supporting the heat exchange pipe 121.
  • the holder 123 may support both sides of the heat exchange pipe 121.
  • the outdoor heat exchanger 120 further includes a heat exchange fin coupled to the heat exchange pipe 121 to help heat exchange with the outside air.
  • the air conditioner 10 further includes a manifold 130 connected to the first port of the flow control valve 110.
  • the manifold 130 is provided at one side of the outdoor heat exchanger 120 and introduces refrigerant into a plurality of paths of the outdoor heat exchanger 120 during a cooling operation or the outdoor heat exchanger 120 during a heating operation. It is understood as a configuration in which the refrigerant passing through is collected.
  • the air conditioner 10 includes a plurality of connecting pipes 135 extending from the manifold 130 to the outdoor heat exchanger 120.
  • the plurality of connection pipes 135 may be spaced apart from each other from the top to the bottom of the manifold 130.
  • a distributor (not shown) may be provided.
  • the distributor is understood as a configuration in which the refrigerant passing through the outdoor heat exchanger 120 is combined in a cooling operation or the refrigerant is introduced into the outdoor heat exchanger 120 in a heating operation.
  • the air conditioner 10 may further include a plurality of capillaries (not shown) extending from the distributor to the outdoor heat exchanger 120. Each capillary may be connected to a branch pipe (not shown).
  • the branch pipe may be coupled to the outdoor heat exchanger 120.
  • the branch pipe may have a Y shape and may be coupled to the heat exchange pipe 121 of the outdoor heat exchanger 120.
  • the branch pipes may be provided in plural, corresponding to the number of the capillaries.
  • the air conditioner 10 further includes a main expansion device 155 for reducing the refrigerant condensed in the indoor unit 160.
  • the main expansion device 130 may include an electronic expansion valve (Advanced Expansion Valve) capable of adjusting the opening degree.
  • strainer (156, 158, strainer) for separating the foreign matter in the refrigerant is further included.
  • a plurality of strainers 156 and 158 may be provided.
  • the plurality of strainers 156 and 158 may include a first strainer 156 provided on one side of the expansion device 155 and a second strainer 158 provided on the other side of the expansion device 155.
  • the refrigerant condensed in the outdoor heat exchanger 120 may pass through the first strainer 156 and then pass through the second strainer 158 via the expansion device 155.
  • the refrigerant condensed in the indoor unit 160 may pass through the second strainer 158 and then pass through the first strainer 156 via the expansion device 155.
  • the outdoor unit 20 further includes service valves 175 and 176 to which the connection pipes 171 and 172 are connected when assembled with the indoor unit 160.
  • the connection pipes 171 and 172 may be understood as pipes connecting the outdoor unit 20 and the indoor unit 160.
  • the service valves 175 and 176 include a first service valve 175 provided at one side of the outdoor unit 20 and a second service valve 176 provided at the other side of the outdoor unit 20.
  • the connecting pipes 171 and 172 may be connected to the indoor unit 160 from the first connecting pipe 171 and the second service valve 176 extending from the first service valve 175 to the indoor unit 160.
  • An extended second connecting pipe 172 is included.
  • the first connection pipe 171 may be connected to one side of the indoor unit 160
  • the second connection pipe 172 may be connected to the other side of the indoor unit 160.
  • the outdoor unit 20 further includes the pressure sensor 180.
  • the pressure sensor 180 may be installed in a refrigerant pipe extending from the third port 113 of the flow control unit 110 to the second service valve 176.
  • the pressure sensor 180 may detect the pressure of the refrigerant evaporated in the indoor unit 160, that is, the low pressure. On the other hand, the pressure sensor 180 may detect the pressure of the refrigerant compressed by the compressor 100, that is, the high pressure.
  • the outdoor unit 20 further includes a gas-liquid separator 150 disposed on the suction side of the compressor 100 to separate the gaseous refrigerant from the evaporated low-pressure refrigerant and provide it to the compressor 100.
  • the gas-liquid separator 150 may be connected to the fourth port 114 of the flow control unit 110. That is, the outdoor unit 20 may include a refrigerant pipe extending from the fourth port 114 of the flow control unit 110 to the gas-liquid separator 150. Gas phase refrigerant separated from the gas-liquid separator 150 may be sucked into the compressor (100).
  • the indoor unit 160 includes an indoor heat exchanger (not shown) and an indoor fan provided at one side of the indoor heat exchanger to blow indoor air.
  • the indoor unit 160 may further include an indoor expansion device for reducing the condensation refrigerant during the cooling operation.
  • the refrigerant decompressed in the indoor expansion device may be evaporated in the indoor heat exchanger.
  • the indoor unit 160 may be connected to the outdoor unit 20 through first and second connection pipes 171 and 172.
  • a plurality of components of the outdoor unit 20 and the indoor unit 160 are connected by a refrigerant pipe 50, and the refrigerant pipe 50 guides refrigerant circulation in the outdoor unit 20 and the indoor unit 160. can do.
  • the first and second connection pipes 171 and 172 may also be understood to be one component of the refrigerant pipe 50.
  • the outer diameter (pipe diameter) of the refrigerant pipe 50 may be determined based on the air conditioning capacity of the air conditioner 10. For example, when the air conditioning capacity of the air conditioner 10 is increased, the diameter of the refrigerant pipe 50 may be designed to be relatively large.
  • the refrigerant compressed by the compressor 100 flows into the first port 111 of the flow control valve 110 through the muffler 105 and through the second port 112. Discharged.
  • the refrigerant discharged from the flow control valve 110 flows into the outdoor heat exchanger 120 to condense, and passes through the main expansion device 155 via the first strainer 156. At this time, the refrigerant is not decompressed.
  • the refrigerant is discharged from the outdoor unit 20 after passing through the second strainer 158, enters the indoor unit 160 through the first connection pipe 171, and is decompressed by the indoor expansion device. It is evaporated in the indoor heat exchanger (160). The evaporated refrigerant flows back into the outdoor unit 20 through the second connection pipe 172.
  • the refrigerant introduced into the outdoor unit 20 flows into the flow control valve 110 through the third port 113 and is discharged into the flow control valve 110 through the fourth port 114.
  • the refrigerant discharged from the flow control valve 110 is phase-separated in the gas-liquid separator 150, and the separated gas phase refrigerant is sucked into the compressor 100. This cycle can be repeated.
  • the refrigerant compressed by the compressor 100 flows into the first port 111 of the flow control valve 110 through the muffler 105 and through the third port 113. Discharged.
  • the refrigerant discharged from the flow control valve 110 is introduced into the indoor unit 160 through the second connection pipe 172, condensed in the indoor heat exchanger, and then discharged from the indoor unit 160.
  • the refrigerant discharged from the indoor unit 160 flows into the outdoor unit 20 through the first connection pipe 171 and is decompressed by the main expansion device 155 via the second strainer 158.
  • the reduced pressure refrigerant flows into the outdoor heat exchanger 120 after passing through the first strainer 150.
  • the refrigerant is evaporated in the outdoor heat exchanger 120 and flows into the flow control valve 110 through the second port 112.
  • the refrigerant is discharged to the flow control valve 110 through the fourth port 114 and phase separated in the gas-liquid separator 150, the separated gas phase refrigerant is sucked into the compressor (100). This cycle can be repeated.
  • a coolant may be circulated in the outdoor unit 20 and the indoor unit 160.
  • the refrigerant may include R32 or R134a as a single refrigerant.
  • R32 is a methane-based halogenated carbon compound represented by the formula CH2F2.
  • R32 is an environmentally friendly refrigerant having a low ozone depletion potential (ODP) as compared to the conventional R22 (Chemical Formula: CHCLF2), and has a high discharge pressure of the compressor.
  • ODP ozone depletion potential
  • R134a is an ethane halogenated carbon compound represented by the formula CF3CH2F.
  • R134a may be used in an air conditioner as a refrigerant to replace conventional R12 (Chemical Formula: CCl2F2).
  • the refrigerant may include R410a as an azeotropic mixed refrigerant.
  • the R410a is a material in which R32 and R125 (Chemical Formula: CHF2CF3) are mixed in a weight ratio of 50:50.
  • R32 and R125 Chemical Formula: CHF2CF3
  • R134a is used as the refrigerant circulating in the air conditioner 10.
  • the air conditioner 10 may be filled with the above-mentioned refrigerant.
  • the filling amount of the refrigerant may be determined based on the length of the refrigerant pipe 50 constituting the air conditioner 10. For example, 1,100 g may be filled based on a standard pipe having a length of 7.6 m, and 1,350 g may be filled based on a long pipe having a length of 20 m. In addition, for the pipe further configured may be filled 20g per meter.
  • the capacity of the refrigerant compressed by the compressor 100 can be determined.
  • the refrigerant capacity of the compressor 100 may be formed to 1,500cc.
  • the air conditioner 10 includes oil for lubrication or cooling of the compressor.
  • the oil may include PAG-based freezer oil, PVE-based freezer oil, or POE-based freezer oil.
  • the PAG-based refrigeration oil is a synthetic oil made of propylene oxide (Propylene Oxide) as a raw material, has a relatively high viscosity and excellent viscosity characteristics according to temperature. Therefore, when the PAG-based refrigeration oil is used, it is possible to reduce the load on the compressor.
  • Propylene Oxide Propylene Oxide
  • the PVE-based refrigeration oil is a synthetic oil made from vinyl ether, and has good electrical stability with good compatibility with a refrigerant and high volume resistivity.
  • the PVE-based refrigeration oil may be used in a compressor using refrigerants R32, R410a, and R134a.
  • the POE refrigeration oil is a synthetic oil made by dehydrating polyhydric alcohol and carboxylic acid.
  • the POE refrigeration oil has good compatibility with refrigerant and excellent oxidation stability and thermal stability in air.
  • the POE refrigerant oil may be used in a compressor using a refrigerant R32 or R410a.
  • the oil may be PVE-based refrigeration oil (FVC68D).
  • the refrigerant pipe 50 may include a new material pipe strong and excellent workability.
  • the new material pipe may be made of a stainless material and a material having impurities including at least copper (Cu).
  • the new material pipe has a strength greater than that of copper (Cu) pipe, and may be configured to have a better processability than a stainless steel pipe.
  • the new material pipe may be referred to as a "flexible stainless steel pipe.”
  • the flexible stainless steel pipe means a pipe made of flexible stainless steel.
  • the type of refrigerant that can circulate the pipe may be limited.
  • the refrigerant may be formed to have a different operating pressure range. If a refrigerant having a large operating pressure range, that is, a high pressure that can rise, is used in the copper pipe, the copper pipe may be broken and thus leakage of the refrigerant may occur.
  • Ductile stainless steels have lower strength and hardness than conventional stainless steels, but have good bendability.
  • the flexible stainless steel pipe according to the embodiment of the present invention is lower than the conventional stainless steel in strength and hardness, but at least maintains the strength and hardness of the copper tube, and has a level of bendability similar to that of the copper tube, so that the bending workability of the tube This is very good. It is noted here that the flexural property and the bendability are used in the same sense.
  • the refrigerant pipe 50 includes a suction pipe 210 for guiding suction of the refrigerant to the compressor 100.
  • the suction pipe 210 may be understood to be a pipe extending from the fourth port 114 of the flow control valve 110 to the compressor 100.
  • the suction pipe 210 may include the flexible stainless steel pipe.
  • the outer diameter (pipe diameter) of the refrigerant pipe 50 may be determined based on the air conditioning capacity of the air conditioner 10. Therefore, since the air conditioning capacity of the air conditioner 10 according to the present embodiment is formed in the range of 2kW or more and 7kW or less, the outer diameter of the suction pipe 210 may also be determined based on this.
  • the outer diameter of the suction pipe 210 may be formed to be relatively larger than that of the discharge pipe.
  • the outer diameter of the suction pipe 210 is at least one of 9.42 ⁇ 9.62mm, 12.6 ⁇ 12.8mm and 15.78 ⁇ 15.98mm It may be formed to fall within the range.
  • the outer diameter of the suction pipe 210 may be formed to fall within the range of 9.42mm or more and 9.62mm or less. At this time, the outer diameter of the suction pipe 210 may be formed to 9.52mm (see the standard pipe outer diameter of Table 4 to be described later).
  • the outer diameter of the suction pipe 210 may be formed to fall in the range of 12.60mm or more and 12.80mm or less. At this time, the outer diameter of the suction pipe 210 may be formed of 12.7 mm (see the standard pipe outer diameter of Table 4 to be described later).
  • the outer diameter of the suction pipe 210 may be formed to fall within the range of 15.78mm or more and 15.98mm or less. At this time, the outer diameter of the suction pipe 210 may be formed to 15.88 mm (see the standard pipe outer diameter of Table 4 to be described later).
  • the outer diameter of the suction pipe 210 includes an outer diameter value of the expanded pipe when any one pipe is expanded when two or more pipes are connected.
  • the refrigerant pipe 50 further includes a discharge pipe 220 for discharging the refrigerant compressed by the compressor 100.
  • the discharge pipe 220 may be understood to be a pipe extending from the discharge part of the compressor 100 to the first port 111 of the flow control valve 110.
  • the discharge pipe 220 may include a first discharge pipe 220a connecting the compressor 100 and the muffler 105 and a first port 111 of the muffler 105 and the flow control valve 110.
  • the discharge pipe 220 may include the flexible stainless steel pipe.
  • the outer diameter (pipe diameter) of the refrigerant pipe 50 may be determined based on the air conditioning capacity of the air conditioner 10. Therefore, since the air conditioning capacity of the air conditioner 10 according to the present embodiment is formed in the range of 2kW or more and 7kW or less, the outer diameter of the discharge pipe 220 may also be determined based on this.
  • the outer diameter of the discharge pipe 220 may be formed to be relatively smaller than the suction pipe.
  • the outer diameter of the discharge pipe 220 is at least one of 7.84 ⁇ 8.04mm, 9.42 ⁇ 9.92mm and 12.60 ⁇ 12.80mm It may be formed to fall within the range.
  • the outer diameter of the discharge pipe 220 may be formed to fall within the range of 7.84mm or more and 8.04mm or less. At this time, the outer diameter of the discharge pipe 220 may be formed to 7.94mm (see the standard pipe outer diameter of Table 4 to be described later).
  • the outer diameter of the discharge pipe 220 may be formed to fall within the range of 9.42mm or more and 9.62mm or less. At this time, the outer diameter of the discharge pipe 220 may be formed to 9.52mm (see the standard pipe outer diameter of Table 4 to be described later).
  • the outer diameter of the discharge pipe 220 may be formed to fall in the range of 12.60mm or more and 12.80mm or less. At this time, the outer diameter of the discharge pipe 220 may be formed of 12.70mm (see the standard pipe outer diameter of Table 4 to be described later).
  • outer diameters of the first discharge pipe 220a and the second discharge pipe 220b may be different from each other.
  • the outer diameter of the first discharge pipe 220a may be formed in 7.94 mm to fall within the range of 7.84 to 8.04 mm
  • the outer diameter of the second discharge pipe 220b is 9.52 to fall in the range 9.42 ⁇ 9.62 mm. It can be formed in mm. That is, the outer diameter of the second discharge pipe 220b may be larger than the outer diameter of the first discharge pipe 220a which is a pipe relatively close to the compressor.
  • the outer diameter of the discharge pipe 220 includes an outer diameter value of the expanded pipe when any one pipe is expanded when two or more pipes are connected.
  • the strength of the discharge pipe 220 is required to be maintained at a set strength or more. Since the discharge pipe 220 is configured of the new material pipe, the strength of the discharge pipe 220 is maintained high, and refrigerant leakage due to breakage of the discharge pipe 220 can be prevented.
  • the suction pipe 210 may be composed of a new material pipe.
  • FIG. 3 is a microstructure photograph of stainless steel having 99% austenite matrix and 1% or less delta ferrite structure
  • FIG. 4 is a microstructure photograph of stainless steel having only austenitic matrix.
  • Stainless steel according to an embodiment of the present invention includes carbon (C) and chromium (Cr, chromium). Carbon reacts with chromium to precipitate as chromium carbide, which depletes chromium at or around grain boundaries, causing corrosion. Therefore, the content of carbon is preferably kept low.
  • Carbon is an element that combines with other elements to increase creep strength, and when the content of carbon exceeds 0.03%, it is a factor that reduces ductility. Therefore, in the present invention, the content of carbon is set to 0.03% or less.
  • Austenitic tissues have a lower yield strength than ferrite tissues or martensite tissues. Therefore, in order for the soft stainless steel of the present invention to have a degree of warpage (or bending degree of freedom) similar to or equivalent to that of copper, it is preferable that the matrix structure of the stainless steel is made of austenite.
  • silicon is an element that forms ferrite
  • the ratio of ferrite in the matrix structure increases and the stability of ferrite becomes high.
  • the content of silicon is preferably kept as low as possible, it is impossible to completely block silicon from entering into impurities during the manufacturing process.
  • the content of silicon contained in the stainless steel according to the embodiment of the present invention is set to 1.7% or less.
  • Manganese suppresses the phase transformation of the matrix structure of the stainless steel into the martensite system, and serves to enlarge and stabilize the austenite zone. If the content of manganese is less than 1.5%, the effect of inhibiting phase transformation by manganese does not appear sufficiently. Therefore, in order to fully acquire the effect of inhibiting phase transformation by manganese, the lower limit of the content of manganese is set to 1.5%.
  • the upper limit of the content of manganese is set to 3.5%.
  • Coating initiation refers to the first occurrence of corrosion in the absence of corrosion in the base material.
  • Corrosion initiation resistance refers to the property of inhibiting the first occurrence of corrosion in the base material. This can be interpreted in the same sense as the corrosion resistance.
  • the lower limit of the content of chromium is set to 15.0% in the present invention.
  • the upper limit of the content of chromium is set to 18.0%.
  • Nickel improves corrosion growth resistance of stainless steel and stabilizes austenite structure.
  • Corrosion growth means growth which spreads the corrosion which has already arisen in a base material to a wide range
  • corrosion growth resistance means the property which suppresses growth of corrosion
  • the lower limit of the content of nickel of the present invention is set to 7.0%.
  • the upper limit of the content of nickel in the present invention is set to 9.0%.
  • Copper suppresses the phase transformation of the matrix structure of the stainless steel into the martensite structure, and serves to increase the ductility of the stainless steel. If the content of copper is less than 1.0%, the effect of inhibiting phase transformation by copper does not appear sufficiently. Therefore, in this invention, in order to fully acquire the effect of suppressing phase transformation by copper, the lower limit of content of copper is set to 1.0%.
  • the copper content in order for the stainless steel to have a level of warpage equivalent to or similar to that of copper, the copper content must be 1.0% or more.
  • the upper limit of the content of copper is set at 4.0% so that the phase transformation suppression effect of copper can be kept below the saturation level and economical efficiency can be ensured.
  • Molybdenum Mo, molybdenum: 0.03% or less
  • Molybdenum, phosphorus, sulfur and nitrogen harden stainless steel with elements inherent in the steel semi-finished product, and therefore it is desirable to keep it as low as possible.
  • stainless steel When stainless steel is classified in terms of metal structure (or matrix structure), austenitic stainless steel mainly composed of chromium (18%) and nickel (8%), and ferrite mainly containing chromium (18%) Ferrite type stainless steel, and martensite type stainless steel mainly containing chromium (8%).
  • the flexible stainless steel of the present invention is preferably austenitic stainless steel.
  • the austenite structure has a lower yield strength and hardness than the ferrite structure and the martensite structure. Furthermore, when the crystal size is grown under the same conditions, the average particle size of austenite is the largest, which is advantageous for increasing the ductility.
  • the matrix structure of the stainless steel consists only of an austenite structure.
  • austenite structure since it is very difficult to control the base structure of stainless steel only with austenite, it is necessary to include other base structures.
  • delta ferrite ( ⁇ -Ferrite) that occurs during the heat treatment process. That is, the higher the content of the delta ferrite, the higher the hardness of the stainless steel, but the lower the ductility.
  • the stainless steel has at least 90% and preferably at least 99% austenitic matrix based on the particle size area and less than 1% delta ferrite matrix. Therefore, one of the methods for increasing the ductility of stainless steel is to reduce the amount of delta ferrite contained in the austenitic stainless steel.
  • the ductile stainless steel according to the embodiment of the present invention has a delta ferrite matrix structure of 1% or less, it is advantageous to increase the ductility more locally in specific grains than to uniformly distribute it throughout the grains. Do.
  • FIG. 3 is a microstructure photograph of stainless steel having 99% austenite matrix and 1% or less delta ferrite structure
  • FIG. 4 is a microstructure photograph of stainless steel having only austenitic matrix.
  • Stainless steel having the structure of FIG. 3 is a microstructure of a ductile stainless steel according to an embodiment of the present invention.
  • the stainless steel of FIG. 3 and the stainless steel of FIG. 4 have an average particle size corresponding to particle size numbers 5.0 to 7.0.
  • the average particle size is described again below.
  • Table 1 below is a graph comparing the mechanical properties of the stainless steel (material 1) of Figure 3 and the stainless steel (material 2) of FIG.
  • the material 2 has lower physical properties in strength and hardness than the material 1. It can also be seen that Material 2 has a higher elongation than Material 1. From this, it can be said that in order to reduce the strength and hardness of the stainless steel, it is ideal that the stainless steel is composed of only the austenite matrix. However, it is difficult to completely remove the delta ferrite matrix tissue, so it is advisable to keep the proportion of delta ferrite matrix tissue to a minimum.
  • large grains 101 represent austenite matrixes, while small grains 102 in the form of black spots represent delta ferrite matrix structures.
  • the average particle size of the stainless steel can be determined depending on the composition and / or heat treatment conditions.
  • the average particle size of stainless steel affects the strength and hardness of stainless steel. For example, the smaller the average particle size, the greater the strength and hardness of the stainless steel, and the larger the average particle size, the smaller the strength and the hardness of the stainless steel.
  • Soft stainless steel according to an embodiment of the present invention in addition to the good warp properties by adjusting the content of copper and the particle size area of the delta ferrite, and has a lower strength and hardness than conventional stainless steel, It has higher properties than hardness.
  • the average particle size of stainless steel is limited to 30 to 60 ⁇ m.
  • the average particle size of typical austenite tissue is less than 30 ⁇ m. Therefore, the average particle size should be grown to 30 ⁇ m or more through the manufacturing process and heat treatment.
  • an average particle size of 30 to 60 ⁇ m corresponds to a grain size number of 5.0 to 7.0.
  • an average particle size of less than 30 ⁇ m corresponds to ASTM particle size 7.5 or greater.
  • the average particle size of the stainless steel is less than 30 ⁇ m or the particle size number is greater than 7.0, it does not have the properties of low strength and low hardness required by the present invention.
  • the average particle size (or particle number) of stainless steel is a key factor in determining the low strength and low hardness properties of stainless steel.
  • the conventional copper pipe has low strength and low hardness properties, and thus has been commercialized as a refrigerant pipe constituting a refrigerant circulation cycle, but reliability problems due to corrosion and pressure resistance to new refrigerants I have sex problems.
  • the stainless steel according to the embodiment of the present invention has greater strength and hardness than conventional copper pipes and has lower strength and hardness than the stainless steels of Comparative Examples 2 to 5, corrosion resistance and pressure resistance of the copper pipe The problem can be solved, so it is suitable to be used for high pressure new refrigerant piping such as R32.
  • the soft stainless steel defined in the present invention may be said to mean a stainless steel having components as described above in a predetermined ratio and having 99% of austenite and less than 1% of delta ferrite. .
  • FIG. 5 is a view showing the outer diameter and the inner diameter of the refrigerant pipe according to the first embodiment of the present invention.
  • This embodiment is to increase the allowable stress by forming the intake pipe 210 and the discharge pipe 220, which is the most severe pressure and vibration when the state of the refrigerant changes as shown in FIG. There is a characteristic.
  • the present invention is not limited to the suction pipe and the discharge pipe, and any one or more pipes connecting the outdoor unit and the indoor unit may be configured as the flexible stainless steel pipe according to the stress variation.
  • the air conditioning capacity of the air conditioner 10 according to the present embodiment may be selected from the range of 2kW ⁇ 7kW. Based on the air conditioning capacity of the selected air conditioner 10, the outer diameter of the flexible stainless steel pipe can be determined.
  • the refrigerant that may be used in the air conditioner 10 of the present invention may include R32, R134a or R401a as described above.
  • the thickness of the flexible stainless steel pipe may be determined differently according to the type of the refrigerant.
  • the thickness of the flexible stainless steel pipe may be determined according to the following equation.
  • the following equation is calculated based on the KGS Code, which codes technical matters such as facilities, technology, inspection, etc., as defined in ASME B31.1 and the Gas Law, which provides codes for piping standards and guidelines.
  • Textra is the free thickness due to corrosion, threading, etc. do.
  • the Textra is determined to be 0.2 if the material of the pipe consists of copper, aluminum or stainless steel.
  • the outer diameter of the flexible stainless steel pipe used for the suction pipe 210 or the discharge pipe 220 is a, and the inner diameter may be defined as b.
  • Equation 1 it can be seen that the minimum thickness of the pipe is proportional to the outer diameter of the pipe and inversely proportional to the allowable stress.
  • Permissible stress is the standard strength divided by the safety factor, and means the maximum value of the stress (strain force) that is allowed to apply weight when it is recognized as tolerable without deformation or breakage of the pipe when external force is applied to the pipe.
  • the allowable stress criterion for the flexible stainless steel pipe is ASME SEC. VIII Div. Derived to satisfy the code described in 1, the allowable stress (S) can be set to a smaller value of the tensile strength of the pipe divided by 3.5 or the yield strength of the pipe divided by 1.5. Allowable stress is a value that varies depending on the material of the pipe, SME SEC. VIII Div. One criterion may be determined as 93.3 Mpa.
  • stainless steel When the same stress is applied to the pipe, stainless steel may have a larger margin of stress than copper, and thus design freedom of the pipe may be increased.
  • the length of the pipe can be removed from the restriction that must be made long.
  • the air conditioning capacity of the air conditioner 10 that is, the cooling capacity or the heating capacity may be determined.
  • the outer diameter of the flexible stainless steel pipe can be determined in size depending on the refrigeration capacity of the compressor. That is, the capacity of the compressor may be a criterion for determining the outer diameter of the flexible stainless steel pipe.
  • an outer diameter of the suction pipe 210 is provided.
  • Silver may be formed to belong to at least one of the range of 9.42 ⁇ 9.62mm, 12.6 ⁇ 12.8mm and 15.78 ⁇ 15.98mm, the outer diameter of the discharge pipe 220 is 7.84 ⁇ 8.04mm, 9.42 ⁇ 9.62mm and 12.60 ⁇ 12.80 It may be formed to belong to at least one of the range of mm.
  • the present embodiment is characterized in that the air conditioning capacity of the air conditioner 10 is formed to be more than 2kW and less than 7kW.
  • the design pressure may be a pressure of the refrigerant and may correspond to the condensation pressure of the refrigerant cycle.
  • the condensation pressure may be determined based on a temperature value (hereinafter, condensation temperature) of the refrigerant condensed in the outdoor heat exchanger 120 or the indoor heat exchanger.
  • the design pressure may mean a saturated vapor pressure of the refrigerant at the condensation temperature.
  • the condensation temperature of the air conditioner is formed at about 65 ° C.
  • the saturated steam pressure at 65 ° C. is represented by 4.15, so the design pressure P may be determined as 4.15 (MPa).
  • the saturated steam pressure at 65 ° C. is represented by 1.79, so the design pressure P may be determined as 1.79 (MPa).
  • the saturated steam pressure at 65 ° C is represented by 4.30, so the design pressure P may be determined to be 4.30 (MPa).
  • the permissible stress S is determined by ASME SEC. VIII Div. 13.3 is 93.3 MPa
  • the design pressure (P) is determined to be 1.79 MPa when the refrigerant is R134a and the temperature of the refrigerant is 65 degrees.
  • Equation 1 By applying the determined allowable stress (S) and the design pressure (P) in Equation 1 can be confirmed through the following Table 4 to determine the minimum thickness of the pipe calculated according to the outer diameter of the pipe.
  • the minimum thickness of the flexible stainless steel pipe derived based on ASME B31.1 and the minimum thickness of the flexible stainless steel pipe derived based on JIS B 8607 can be confirmed.
  • the embodiment is a flexible stainless steel pipe and the comparative example is a conventional copper pipe.
  • JIS B 8607 is the standard code for pipes used in Japan. In the case of JIS B 8607, unlike ASME B31.1, the minimum thickness is lower than ASME B31.1 because it does not take into account the textra value, which is a marginal thickness due to corrosion and thread processing. do.
  • the textra value can usually be set to 0.2 (mm) for copper, copper alloy, aluminum, aluminum alloy and stainless steel.
  • the minimum thickness of the flexible stainless steel pipe according to the embodiment is derived based on ASME B31.1, but can be applied with a predetermined margin determined between about 0.1 and 0.2 mm in consideration of the pressure when using a refrigerant of R134a.
  • the thickness is determined. That is, the embodiment is understood as suggesting a minimum thickness by providing a margin as an example, and the size of the margin is variable based on the safety factor if it is equal to or more than the calculated minimum thickness.
  • the embodiment is applicable to the thickness of the pipe is 0.40mm and the comparative example is 0.622mm. That is, when a pipe designed to have the same outer diameter is formed of a flexible stainless steel pipe as in the embodiment, it means that the thickness of the pipe can be further reduced, which means that the inner diameter of the pipe can be made larger.
  • the outer diameter of the suction pipe 210 may be formed to belong to at least one of the range of 9.42 ⁇ 9.62mm, 12.60 ⁇ 12.80mm and 15.78 ⁇ 15.98mm.
  • the outer diameter of the discharge pipe 220 may be formed to belong to at least one of the range of 7.84 ⁇ 8.04mm, 9.42 ⁇ 9.62mm and 12.60 ⁇ 12.80mm.
  • the outer diameters of the first discharge pipe 220a and the second discharge pipe 220b may be different from each other.
  • an outer diameter of the first discharge pipe 220a may be formed to fall within a range of 7.84 to 8.04 mm
  • an outer diameter of the second discharge pipe 220b may be formed to fall within a range of 9.42 to 9.62 mm.
  • the first discharge pipe 220a may be 7.94 mm as described above
  • the outer diameter of the second discharge pipe 220b may be 9.52 mm as described above.
  • the maximum value of each inner diameter calculated accordingly uses the above-mentioned content.
  • the outer diameter of the pipe used in the compressor 100 according to the present embodiment is determined by the refrigeration capacity of the compressor or the air conditioning capacity of the air conditioner 10, and the design pressure may be determined by the refrigerant used.
  • the allowable stress of stainless steel is larger than the allowable stress of copper, it can be seen that the thickness of the pipe can be reduced by applying it to Equation 1. have. That is, the allowable stress can be increased by using a soft stainless steel pipe having a relatively high strength or hardness, thereby realizing a thickness reduction at the same pipe outer diameter.
  • the flexible stainless steel pipe according to the present embodiment may be designed to have a larger inner diameter even though it is designed to have the same outer diameter as the conventional copper pipe, so that the flow resistance of the refrigerant may be reduced and the circulation efficiency of the refrigerant may be improved. have.
  • FIG. 6 is a flow chart showing a method of manufacturing a flexible stainless steel pipe according to a first embodiment of the present invention
  • Figure 7 is a schematic view showing the cold rolling step (S1) of Figure 6
  • Figure 8 is a sled of Figure 6 Coating process (S2) schematically showing
  • Figure 9 is a schematic view showing the forming process (S3) of Figure 6
  • the conventional stainless steel has a higher strength and hardness than copper, so the problem of workability has been raised, and in particular, there is a problem in that bending of stainless steel is limited.
  • the flexible stainless steel pipe according to the present invention has a composition containing copper, a matrix structure made of austenite, an average particle size of 30 ⁇ 60 ⁇ m, thereby having a lower strength and lower than conventional stainless steel It has a physical property of hardness.
  • austenite has a resistance strength and low hardness characteristics compared to ferrite or martensite. Therefore, in order to manufacture a flexible stainless steel pipe having the characteristics of low strength and low hardness required by the present invention, based on the particle size area of the flexible stainless steel pipe, having an austenitic matrix of 99% or more and a delta ferrite matrix of 1% or less Should have
  • the present invention as well as the composition ratio of the flexible stainless steel pipe, by performing additional heat treatment, based on the particle size area of the flexible stainless steel pipe has an austenitic matrix of 99% or more and has a delta ferrite matrix of less than 1%. It is done.
  • tubing made of soft stainless steel is difficult to manufacture in a single process because it has higher strength and hardness than copper.
  • the heat treatment step of the flexible stainless steel pipe may include a cutting process (S5), a drawing process (S6) and a bright annealing (S7) process.
  • Cold rolling process (S1) can be understood as a process of rolling the soft stainless steel produced in the casting process between two rolls rotating below the recrystallization temperature. That is, the cold rolled ductile stainless steel may have surface irregularities, wrinkles, and the like of the thin plate being corrected, and metallic gloss applied to the surface thereof.
  • the soft stainless steel is formed in the shape of a sheet 310, and the sheet 310 may be provided by being wound in a coil shape by an uncoiler.
  • the sheet 310 is placed up and down to receive a continuous force passing between the two rolling rolls (Roll) 320 to rotate, the surface area can be widened and its thickness can be thin.
  • the soft stainless steel is provided in the form of a sheet having a thickness of 1.6mm ⁇ 3mm in the casting process, the cold rolling process (S1) can be cold worked to a sheet thickness of less than 1mm.
  • the slitting process S2 may be understood as a process of cutting the cold processed sheet 310 into a plurality of pieces using a slitter in a desired width. That is, the single sheet 310 may be cut and processed into a plurality of pieces through the slitting process (S2).
  • the coil wound by the rotation of the uncoiler 331 is released and the sheet ( 310 may pass through slitter 332.
  • the slitter 332 may include an axis disposed in the vertical direction of the sheet 310 and a rotation cutter 332a coupled to the axis.
  • the rotary cutter 332a may be spaced apart from each other in the width direction of the sheet 310 in the axis.
  • the spacing intervals of the plurality of rotary cutters 332a may be identical to each other, and in some cases, may be different from each other.
  • the single sheet 310 is separated into a plurality of sheets 310a, 310b, 310c, 310d by the plurality of rotary cutters 332a.
  • the sheet 310 may have a suitable diameter or width of the refrigerant pipe to be applied.
  • the sheet 310 may be pressed by a plurality of support rollers 333 and 334 arranged in the vertical direction so that the sheet 310 is precisely cut by the slitter 332.
  • an end portion Bur may be formed on the outer surface of the sheet 310, and such bur needs to be removed. If the bur remains on the outer surface of the sheet 310, not only the welding failure occurs while the pipe processed by the sheet 310 is welded with other pipes, and the refrigerant leaks through the poor welding portion. It can cause problems. Therefore, in the present invention, when the slitting process (S2) is completed, it is necessary to further perform a polishing process for removing the bur.
  • the forming process S3 may be understood as a process of forming a flexible stainless steel in the form of a sheet 310a through various forming rolls 340 to form a pipe 310e.
  • the sheet 310a is wound in the form of a coil on the outer circumferential surface of the uncoiler, the coil wound by the rotation of the uncoiler is unwinded while being alternately arranged in a vertical or horizontal direction Enters the forming rolls 340.
  • the sheet 310a entered into the multi-stage forming rolls 340 may be formed in a pipe 310e shape in which both ends thereof are adjacent to each other while sequentially passing through the forming rolls 340.
  • FIG. 10 shows that the flexible stainless steel in the form of a sheet is rolled into a shape of a pipe 10e. That is, the flexible stainless steel in the form of the sheet 10a may be formed into a pipe 310e in which both side ends 311a and 311b are close to each other through the forming process S3.
  • the welding step S4 may be understood as a step of joining both end portions 311a and 311b of the pipe 310e rolled up by the forming step S3 and being close to each other to form a welded pipe.
  • the seam pipe in the welding process S4 can be implemented by welding both ends which are butt welded by a fusion welder, for example, a conventional electric resistance welder, an argon welder or a high frequency welder.
  • FIG. 11 illustrates a pipe welded by rolling a sheet made of soft stainless steel. Specifically, the two end portions 311a and 311b are joined to each other by welding both end portions 311a and 311b of the pipe 310e in the longitudinal direction of the pipe.
  • a weld zone 313 is formed along the longitudinal direction of the pipe 310e in the welding process.
  • the weld 313 is formed with beads 313a and 313b slightly protruding from the outer circumferential surface 11 and the inner circumferential surface 312 of the pipe 310e, the outer circumferential surface 311 of the pipe. And the inner circumferential surface 312 do not constitute a smooth surface.
  • Heat-affected zones may be further formed on both sides of the weld 313 by heat during the welding process.
  • the heat affected parts 314a and 314b are also formed along the longitudinal direction of the pipe similarly to the weld part 313.
  • the cutting step S5 may be understood as a step of partially cutting the bead 313a of the welding part 313 to make the outer circumferential surface 311 of the pipe into a smooth surface.
  • the cutting process S5 may be performed continuously with the welding process S4.
  • the cutting process S5 may include a process of partially cutting the bead 313a using a bite while moving the pipe in a longitudinal direction through press bead rolling.
  • the cutting process S5 shows a ductile stainless steel pipe finished up to the cutting process S5. That is, the bead 313a formed on the outer circumferential surface 311 of the pipe 310e may be removed through the cutting process S5. In some cases, the cutting process S5 may be performed together with the welding process S4, and alternatively, the cutting process S5 may be omitted.
  • the drawing process S6 may be understood as a process of applying an external force to the bead 313b of the weld 313 to make the inner circumferential surface 312 of the pipe 310e a smooth surface.
  • the drawing process S6 may include a die having a hole having an inner diameter smaller than the outer diameter of the pipe 310e manufactured through the forming process S3 and the welding process S4, and the forming process ( It can be carried out by a drawer comprising a plug having an outer diameter smaller than the inner diameter of the pipe 310e manufactured through S3) and the welding process (S4).
  • the pipe 310e that has undergone the welding step S4 and / or the cutting step S5 passes between the hole and the plug formed in the die, and at this time, the bead 313a formed on the outer circumferential surface 311 of the pipe 310e. Since it protrudes outward from the center of the outer peripheral surface 311 of the pipe can be removed while plastic deformation without passing through the hole of the die.
  • the bead 313b formed on the inner circumferential surface 312 of the pipe 310e is formed to protrude toward the center of the inner circumferential surface 312 of the pipe 310e, the bead 313b may not be passed through the plug and may be removed by plastic deformation.
  • the welding beads 313a and 313b on the inner circumferential surface 312 and the outer circumferential surface 311 of the pipe may be removed through the drawing process S6 as described above.
  • the welding bead 313a on the inner circumferential surface 312 of the pipe is removed, it is possible to prevent the occurrence of a jaw on the inner circumferential surface 312 of the pipe at the time of expansion for the refrigerant pipe.
  • Figure 13 shows a ductile stainless steel pipe finished up to the drawing process (S6). That is, the beads 313a and 313b formed on the outer circumferential surface 311 and the inner circumferential surface 312 of the pipe 310e may be removed through the drawing process S6.
  • the reason for making the outer circumferential surface 311 and the inner circumferential surface 312 of the pipe 310e smooth by cutting and drawing is to form a uniform inner diameter inside the pipe and to facilitate connection with other pipes.
  • the reason for forming a uniform inner diameter inside the pipe is to maintain a smooth flow of the refrigerant and a constant pressure of the refrigerant.
  • grooves may be formed on the outer circumferential surface 311 and the inner circumferential surface 312 of the pipe 310e through machining after the drawing process S6.
  • Bright annealing process S7 may be understood as a process of heating the pipe 310e from which the weld beads have been removed to remove thermal history and residual stress remaining therein.
  • the average particle size (or particle number) of soft stainless steel is a key factor in determining the low strength and low hardness properties of stainless steel.
  • the bright annealing step (S7) is performed by annealing the pipe 310e from which the weld beads have been removed in an air stream of reducing or non-oxidizing gas, and cooling it as it is after annealing.
  • the pipe 310e from which the weld bead is removed passes through the annealing furnace 350 at a constant speed.
  • An atmosphere gas may be filled in the annealing furnace 350, and the inside of the annealing furnace 350 may be heated to a high temperature by an electric heater or a gas burner.
  • the pipe 310e passes through the annealing furnace 350 to obtain a predetermined heat input, and by this heat input, the ductile stainless steel has an austenite matrix and an average particle size of 30 to 60 ⁇ m. It may be formed to have a size.
  • the heat input means heat input into the metal member, and the heat input plays a very important role in controlling the metallic microstructure. Therefore, the present embodiment provides a heat treatment method for controlling the heat input amount.
  • the heat input amount may be determined according to a heat treatment temperature, an atmosphere gas, or a transfer speed of the pipe 310e.
  • the heat treatment temperature is 1050 ⁇ 1100 °C
  • the atmosphere gas is hydrogen or nitrogen
  • the conveying speed of the pipe 310e is 180 ⁇ 220mm / min. Therefore, the pipe 310e may pass through the annealing furnace 350 at a feed rate of 180 to 220 mm / min at annealing heat treatment temperature 1050 to 1100 ° C of the annealing furnace 350.
  • the annealing heat treatment temperature is less than 1050 ° C.
  • sufficient recrystallization of the soft stainless steel does not occur, not only the fine grain structure is obtained, but also the flat grain structure of the crystal grains, thereby damaging the creep strength.
  • the annealing heat treatment temperature exceeds 1100 ° C., high temperature intercrystalline cracking or ductility decrease occurs.
  • the flexible stainless steel according to the present invention manufactured through may be shipped after being temporarily stored in a coiled state by a spool or the like.
  • shape correction and surface polishing may be further performed.
  • FIG. 15 is a graph showing an SN curve experiment to compare fatigue limits of a flexible stainless steel pipe and a conventional copper pipe according to the first embodiment of the present invention
  • FIG. 16 is a flexible stainless steel according to the first embodiment of the present invention. Experimental graph showing the SN curve of a steel pipe.
  • the fatigue limit (or endurance limit) of the flexible stainless steel pipe according to the first embodiment of the present invention is about 200.52 MPa. This is about 175 MPa (8 times) higher than the fatigue limit of 25 MPa of the conventional copper pipe. That is, the flexible stainless steel pipe may have an improved effect on durability, reliability, life expectancy, and design freedom than conventional copper pipes.
  • the effect of the flexible stainless steel pipe will be described in more detail.
  • the flexible stainless steel pipe may determine a maximum tongue stress value based on the fatigue limit value.
  • the maximum allowable stress of the flexible stainless steel pipe may be set to 200 MPa when the air conditioner 10 starts or stops, and may be set to 90 MPa when the air conditioner operates.
  • the reason why the maximum allowable stress has a small value during operation of the air conditioner may be understood as reflecting the stress caused by the refrigerant flowing in the pipe in the operating state.
  • the maximum allowable stress means a stress of the maximum limit that can be allowed to safely use pipes and the like.
  • the pipe and the like may receive an external force during use, the stress is generated inside the pipe by the external force.
  • the internal stress is more than a certain threshold stress value determined by a factor such as a solid material, the pipe may cause permanent deformation or breakage. Therefore, it is possible to safely use the pipe by setting the maximum allowable stress.
  • the solid material may break at a stress much lower than the tensile strength. This is called fatigue of the material, and the breakdown caused by the fatigue is called fatigue breakdown. Fatigue of the material occurs when the material is subjected to repeated loading. In addition, if the limit is exceeded according to the cyclic load, the material may ultimately be broken. The limit that does not break no matter how repeated the load is defined as the fatigue limit endurance limit or the endurance limit.
  • the S-N curve shows the number of repetitions (N, cycles) before breaking when a certain stress is repeated.
  • N cycles
  • a solid material is broken more quickly under stress acting repeatedly, and the number of repetitions of stress until it is broken is affected by the amplitude of the stress applied. Therefore, through the S-N curve, it is possible to analyze how much the stress of the solid material and the repetition number of stresses until the solid material is destroyed.
  • the vertical axis represents stress amplitude and the horizontal axis represents log value of repetition frequency.
  • the S-N curve is a curve that follows the logarithm of the number of repetitions until the material breaks when a stress amplitude is applied.
  • the stress value of the limit at which the S-N curve is horizontal means the fatigue limit or the endurance limit of the above-described material.
  • the fatigue limit of the conventional copper pipe is about 25 MPa. That is, the maximum allowable stress of the copper pipe is 25 MPa.
  • the stress of the pipe may have a value of about 25 to 30 MPa.
  • the conventional copper pipe has a problem of shortening the service life of the pipe and deteriorating durability due to the stress value of the fatigue limit or more as described above.
  • the fatigue limit of the flexible stainless steel pipe is about 200.52 MPa, 8 times the value of the copper pipe. . That is, the maximum allowable stress of the flexible stainless steel pipe is about 200 MPa. Even considering the maximum operating load of the air conditioner, the stress in the pipe provided in the air conditioner does not exceed the maximum allowable stress of the flexible stainless steel pipe. Therefore, when the flexible stainless steel pipe is used in an air conditioner, the service life of the pipe is extended, and durability and reliability are improved.
  • the flexible stainless steel pipe has a design margin of about 175 MPa relative to the fatigue limit of the copper pipe.
  • the outer diameter of the flexible stainless steel pipe is the same as the outer diameter of the conventional copper pipe, the inner diameter can be formed to expand.
  • the minimum thickness of the flexible stainless steel pipe may be smaller than the minimum thickness of the copper pipe, and even in this case, it may have a maximum allowable stress higher than that of the conventional copper pipe due to a relatively high design margin. As a result, the design freedom of the flexible stainless steel pipe is improved.
  • FIG. 17 is a view showing the attachment position of the stress measuring sensor for measuring the stress of the pipe
  • Figures 18 and 19 are experimental data showing the result value measured by the stress measuring sensor of FIG.
  • FIG. 18 shows stress measurement values of a conventional copper pipe and a flexible stainless steel pipe by dividing the start, operation, and stop states of the air conditioner when the air conditioner operates in the standard cooling mode.
  • Figure 18 (b) when the air conditioner operating in the standard heating mode, the air conditioner shows the measured values of the stress of the conventional copper pipe and the flexible stainless steel pipe by distinguishing the start, operation, and stop state of the air conditioner.
  • Figure 19 shows the same stress measurement value as in Figure 4 (a) when the air conditioner is operated in the overload cooling mode
  • Figure 19 (b) is the air conditioner is operated in the overload heating mode
  • the same stress measurement values as in FIG. 4 (b) are shown.
  • the plurality of stress measuring sensors include a suction pipe 210 for guiding refrigerant to be sucked into the compressor 100 and a discharge pipe 220 for guiding the refrigerant compressed at a high temperature and high pressure to the condenser.
  • the suction pipe 210 may be connected to the gas-liquid separator 150 to guide the refrigerant to be sucked into the gas-liquid separator 150.
  • the refrigerant passing through the suction pipe 210 and the discharge pipe 220 may include R32, R134a or R410a.
  • R134a can be used as the refrigerant.
  • the refrigerant passing through the compressor 100 is a high-temperature, high-pressure gas phase refrigerant, so the stress applied to the discharge pipe 220 is higher than the stress applied to the other refrigerant pipe.
  • the compressor 100 may be a vibration in the process of compressing a low-pressure refrigerant to a high-pressure refrigerant, due to the vibration stress of the pipes connected to the compressor 100 and the gas-liquid separator 150 is increased. Can be. Therefore, since the stress in the suction pipe 210 and the discharge pipe 220 is relatively high compared to other connection pipe, the maximum allowable stress by installing a stress measuring sensor in the suction pipe 210 and the discharge pipe 220 You need to check if it is within.
  • the suction pipe 210 and the discharge pipe 220 may be formed with the highest stress at the bent portion. Therefore, the stress measuring sensor is installed on the two bent portions 215a and 215b of the suction pipe 210 and the two bent portions 225a and 225b of the discharge pipe 220 and the suction pipe 210 is provided. ) And the stress applied to the discharge pipe 220 is required to be within the maximum allowable stress.
  • the maximum stress value is measured as 9.6 MPa at start up and 29.1 MPa at stop.
  • the maximum stress measurement value 29.1 MPa at rest exceeds the maximum allowable stress value (25 MPa) of the copper pipe. According to this, durability of a pipe can cause shortening of a pipe life.
  • the stress value is measured as 19.2 MPa at start up, 23.2 MPa at run time, and 38.7 MPa at stop time. That is, the stress measurement value in the said flexible stainless steel pipe is a value which satisfies 200 MPa (start / stop) or 90 MPa (operation) or less which is the maximum allowable stress, and the difference with the said maximum allowable stress is also formed very much.
  • the flexible stainless steel pipe is improved in durability compared to the conventional copper pipe, and using the flexible stainless steel pipe as the suction pipe 210 and the discharge pipe 220, provides improved pipe life and reliability than conventional copper pipe can do.
  • 20 is an experimental graph comparing pressure loss in a pipe of a gas pipe when a flexible stainless steel pipe or a conventional copper pipe according to a first embodiment of the present invention is used as a gas pipe.
  • 21 is an experimental result table showing the performance of the flexible stainless steel pipe and the conventional copper pipe according to the first embodiment of the present invention.
  • the gas pipe may be understood as a pipe that guides the flow of the vaporized low pressure gas phase refrigerant or the compressed high pressure gas phase refrigerant on the basis of the refrigerant cycle.
  • FIG. 20 are experimental graphs in a standard pipe (5m), and (b) and (b) of FIG. 20 are experiments in a long pipe (50m). It is a graph.
  • the flexible stainless steel pipe according to the embodiment of the present invention is greatly improved in durability and design freedom than the conventional copper pipe. Therefore, the flexible stainless steel pipe may have the same outer diameter as that of the copper pipe and may have an inner diameter larger than that of the copper pipe. Due to the enlarged inner diameter, the flexible stainless steel pipe may reduce the flow resistance of the refrigerant than the copper pipe and increase the refrigerant flow rate. And, the flexible stainless steel pipe can reduce the pressure loss inside the tube than conventional copper pipe.
  • the pressure loss in the pipe of the gas pipe is about 2.3 KPa smaller than that of the conventional copper pipe in the cooling mode with respect to the standard pipe having a length of 5 m. Is formed.
  • the pressure loss amount ⁇ P of the flexible stainless steel pipe is about 6.55 KPa
  • the pressure loss amount ⁇ P of the copper pipe is about 8.85 KPa. That is, in the standard pipe 5m cooling mode, the pressure loss amount of the flexible stainless steel pipe is reduced by about 26% from the pressure loss amount of the copper pipe.
  • the pressure loss in the pipe of the gas pipe is about 1.2 KPa less than the pressure loss ( ⁇ P) of the conventional copper pipe when the heating mode in the standard pipe (5m), the pressure loss amount ( ⁇ P) of the flexible stainless steel pipe. That is, in the heating mode, the pressure loss amount ⁇ P of the flexible stainless steel pipe is about 3.09 KPa, and the pressure loss amount ⁇ P of the copper pipe is about 4.29 KPa. That is, in the standard pipe 5m heating mode, the pressure loss amount of the flexible stainless steel pipe is reduced by about 28% from the pressure loss amount of the copper pipe.
  • the pressure loss in the pipe of the gas pipe is about 16.9 KPa smaller than that of the conventional copper pipe when the cooling mode is in a long pipe having a length of 50 m in the cooling mode.
  • the pressure loss amount ⁇ P of the flexible stainless steel pipe is about 50.7 KPa
  • the pressure loss amount ⁇ P of the copper pipe is about 67.6 KPa. That is, in the cooling mode of the long pipe (50m), the pressure loss of the flexible stainless steel pipe has a value of about 25% less than the pressure loss of the copper pipe.
  • the pressure loss in the pipe of the gas pipe is about 10.2 KPa less than the pressure loss ( ⁇ P) of the conventional copper pipe when the heating mode in the long pipe (50m), the pressure loss amount ( ⁇ P) of the flexible stainless steel pipe. That is, in the heating mode, the pressure loss amount ⁇ P of the flexible stainless steel pipe is about 29.03 KPa, and the pressure loss amount ⁇ P of the copper pipe is about 39.23 KPa. That is, in the long pipe 50m heating mode, the pressure loss amount of the flexible stainless steel pipe is reduced by about 26% from the pressure loss amount of the copper pipe.
  • a refrigerant pressure loss may occur in the gas pipe, the suction pipe 210 of the compressor 100, or the discharge pipe 220.
  • the refrigerant pressure loss causes adverse effects such as a decrease in refrigerant purifying amount, a decrease in volumetric efficiency, a rise in compressor discharge gas temperature, an increase in power per unit refrigeration capacity, and a decrease in coefficient of performance (COP).
  • the suction pipe or the discharge pipe is composed of a flexible stainless steel pipe
  • the pressure loss in the pipe can be reduced compared to the conventional copper pipe, so that the refrigerant flow rate increases, and the compressor Can be reduced (eg, power consumption (kW)) and increase the coefficient of performance (COP).
  • the coefficient of performance is a measure of the efficiency of the device to lower or raise the temperature, such as a refrigerator (refrigerator), air conditioner (air conditioner), heat pump (heat pump), etc., compared to the amount of work (Work) It is defined as the ratio of the heat output (cooling capacity or heating capacity).
  • the heat pump it is called a heating performance factor because it is a device that raises the temperature, and can be labeled COPh.
  • the heat pump may be called a cooling performance factor COPc.
  • the coefficient of performance (COP) is defined as a value obtained by dividing the amount of heat (Q) extracted from the heat source or supplied to the heat source by the amount of mechanical work.
  • the cooling capacity is about 9.36 (kW) copper pipe
  • the flexible stainless steel pipe is about 9.45 (kW). That is, the heat quantity Q of the flexible stainless steel pipe has a value increased by about 100.9% of the copper pipe.
  • the power consumption is about 2.07 kW for the copper pipe and about 2.06 kW for the flexible stainless steel pipe. Therefore, the efficiency (COP) is 4.53 in the copper pipe and 4.58 in the flexible stainless steel pipe, so that the flexible stainless steel pipe has improved efficiency to about 100.9% of the conventional copper pipe.
  • the heating capacity is about 11.28 kW for the copper pipe and about 11.31 kW for the ductile stainless steel pipe. That is, the heat quantity Q of the flexible stainless steel pipe has a value increased by about 100.2% of the copper pipe.
  • the power consumption is about 2.55 kW for the copper pipe and about 2.55 kW for the flexible stainless steel pipe. Therefore, the efficiency (COP) is 4.43 in the copper pipe and 4.44 in the flexible stainless steel pipe, so that the flexible stainless steel pipe has improved efficiency to about 100.2% of the conventional copper pipe.
  • the improvement of the efficiency (performance coefficient) according to the reduction in the internal pressure loss of the pipe is more apparent in the long pipe (50m) than the standard pipe (5m). That is, the longer the length of the pipe, the more the performance of the flexible stainless steel pipe can be improved compared to the conventional copper pipe.
  • the cooling capacity is about 8.03 (kW) in the soft stainless steel pipe
  • the copper pipe is about 7.77 (kW). That is, the heat quantity Q of the flexible stainless steel pipe has a value increased by about 103.4% of the copper pipe.
  • the power consumption of the flexible stainless steel pipe is about 2.08 kW, and the power consumption of the copper pipe is about 2.08 kW. Therefore, the efficiency (COP) is 3.74 in the copper pipe and 3.86 in the flexible stainless steel pipe, so that the flexible stainless steel pipe has an improved efficiency to about 103.2% of the conventional copper pipe.
  • the heating capacity of the pipe is about 8.92 (kW)
  • the heating capacity of the flexible stainless steel pipe is about 9.07 (kW). That is, the heat quantity Q of the flexible stainless steel pipe has a value of about 101.7% of the copper pipe.
  • the power consumption is about 2.54 kW for the copper pipe and about 2.53 kW for the flexible stainless steel pipe. Therefore, the efficiency (COP) is 3.51 in the copper pipe and 3.58 in the flexible stainless steel pipe, so that the efficiency of the flexible stainless steel pipe is improved to about 102% compared to the efficiency of the conventional copper pipe.
  • FIG. 22 is a view illustrating a plurality of soft stainless steel pipes, aluminum (Al) pipes, and copper pipes as target materials for testing corrosion resistance
  • FIG. 23 is a result table of measuring corrosion depths for each pipe of FIG. 22,
  • FIG. 24 is It is a result graph of FIG.
  • Corrosion resistance refers to the property of a material to resist corrosion and erosion. This is also called corrosion resistance. In general, stainless steel and titanium do not corrode better than carbon steel, and thus have high corrosion resistance.
  • the corrosion resistance test includes a salt spray test and a gas test. Through the corrosion resistance test, it is possible to determine the resistance of the product to the atmosphere including salt, and to investigate the thermal resistance, the quality of the protective film, the uniformity, and the like.
  • the cyclic corrosion test means a corrosion test method that is repeatedly performed in the atmosphere of salt spray, drying, and wet for the purpose of approaching or promoting the natural environment. For example, it can be evaluated by setting a test time of 30 cycles, 60 cycles, 90 cycles, 180 cycles such that one cycle is 8 hours, salt spray 2 hours, drying 4 hours, and wet 2 hours.
  • the salt spray test of the composite corrosion test is most widely carried out as an accelerated test method for examining the corrosion resistance of the plating, and is a test to investigate the corrosion resistance by exposing the sample in the spray of saline.
  • a plurality of flexible stainless steel pipes S1, S2, and S3, a plurality of aluminum pipes A1, A2, and A3, and a plurality of copper pipes C1, C2, and C3 that perform the composite corrosion test may be used.
  • the corrosion depth ( ⁇ m) was measured by setting arbitrary positions (D1, D2) in each pipe.
  • the pipe measured as having the deepest corrosion depth is an aluminum pipe having an average of 95 ⁇ m.
  • the maximum value of the corrosion depth ( ⁇ m) is also the deepest aluminum pipe 110 ⁇ m, followed by copper pipe 49 ⁇ m, the ductile stainless steel pipe 36 ⁇ m has the lowest value.
  • the flexible stainless steel pipe has the best corrosion resistance, and has an effect superior to conventional pipes in terms of durability and performance described above.
  • the pipes use not only straight pipes but also curved pipes formed by bending by an external force of the worker installing the pipes.
  • the straight pipe or curved pipe connects an outdoor unit and an indoor unit.
  • the flexible stainless steel pipe according to the embodiment of the present invention is lower than the strength of the conventional stainless steel, and lowered to a higher level than the conventional copper pipe. Therefore, since the above-mentioned curved pipe etc. can be formed, low moldability with respect to the conventional stainless steel pipe can be solved. In this regard, the bendability test is described in detail below.
  • FIG. 25 is a view showing a configuration of a flexible stainless steel pipe according to an embodiment of the present invention consists of a curved pipe
  • Figure 26 is a view showing a cross section of the curved pipe
  • Figure 27 is a flexible stainless steel pipe, copper pipe and aluminum pipe This is an experimental graph comparing the bending load along the deformation length.
  • the flexible stainless steel pipe may be configured as a curved pipe by the bending force.
  • the flexible stainless steel pipe may have a '-' shape shown in FIG. 25 (a) or a 'S' shape shown in FIG. 25 (b).
  • the centerline of the flexible stainless steel pipe may include a curved portion having a curvature to be bent in one direction to another direction. And the curve has a radius of curvature (R).
  • the radius of curvature R is defined as a value indicating the degree of curvature at each point of the curve.
  • the radius of curvature (R) of the flexible stainless steel pipe forming the curved pipe may include a minimum radius of curvature (Rmin) that can be used in the pipe does not generate wrinkles, even if the straight pipe is formed into a curved pipe, vibration does not occur.
  • the minimum radius of curvature (Rmin) can be measured in the curved pipe that satisfies the set criteria for the ratio of the maximum, minimum outer diameter.
  • the flexible stainless steel pipe may be configured as a curved pipe such that the ratio (E / F) of the maximum outer diameter F and the minimum outer diameter E exceeds 0.85 and has a value less than one.
  • E / F The maximum and minimum outer diameter ratios (E / F) are based on conservative calculations based on the standards of American Society of Mechanical Engineers (ASME) and Japanese Industrial Standards (JIS) (Table 5).
  • D is an outer diameter value in a straight pipe (reference pipe), and R is a radius of curvature.
  • FIG. 27 shows the results of testing the bendability of the flexible stainless steel pipe that satisfies the set criteria (ratio of maximum and minimum outer diameters).
  • the diameter (duct) of the soft stainless steel pipe is 15.88 (mm).
  • bending means that the beam bends downwards or upwards in a state in which the beam is transformed when a load is applied.
  • the lower portion acts as a tensile force
  • the lower portion acts as a compressive force.
  • the flexible stainless steel pipe has a radius of curvature R smaller than that of the copper pipe, the flexible stainless steel pipe may be bent equally or more than the copper pipe.
  • the said flexible stainless steel pipe can form a curved pipe at the same level as the said copper pipe, there exists an effect that moldability improves compared with the conventional stainless steel pipe.
  • the bending force of the worker is assumed to be the maximum bending load of the copper pipe and the aluminum pipe.
  • the bending force of the worker may be 900N.
  • the applied force (N) rapidly increases in the deformation length range of 0 to 2.5 mm, and the force at the deformation length gradually decreases as the slope increases and approaches the maximum force (N). Goes.
  • the maximum bending load of the flexible stainless steel pipe is 750 N
  • the maximum bending load of the copper pipe and aluminum pipe is 900N.
  • the maximum bending load of the flexible stainless steel pipe is smaller than other conventional pipes.
  • the operator can be molded to bend the flexible stainless steel pipe using a force within 83% of the maximum bending load of the copper pipe and the aluminum pipe.
  • the operator can make the flexible stainless steel pipe into a curved pipe with less force than the force applied to make the copper pipe and the aluminum pipe into a curved pipe.
  • the flexible stainless steel pipe according to the embodiment of the present invention has an effect of improving formability in comparison with copper pipes and aluminum pipes as well as conventional stainless steel pipes. Therefore, there is an advantage that the ease of installation work is also improved.
  • FIG. 28 is a diagram of a refrigeration cycle showing the construction of an air conditioner according to a second embodiment of the present invention.
  • the air conditioning capacity of the air conditioner 10 is 2.5 kW or more and 3.5 kW or less.
  • the air conditioner 10 may include a refrigerant pipe 50a for guiding the flow of the refrigerant circulating in the refrigeration cycle.
  • the refrigerant pipe 50a may include a new material pipe. Since the new material pipe is formed with a lower thermal conductivity than the copper pipe, when the coolant flows through the coolant pipe 50a, less heat loss may occur than when the copper pipe flows.
  • the refrigerant pipe 50a includes a first refrigerant pipe 51a extending from the second port 112 of the flow control valve 110 toward the manifold 130, that is, the outdoor heat exchanger 120. do.
  • the first refrigerant pipe 51a may be configured as the new material pipe.
  • the high-pressure gaseous refrigerant may flow in the first refrigerant pipe 51a during the cooling operation, and the low-pressure gaseous refrigerant may flow in the heating operation.
  • the outer diameter of the first refrigerant pipe 51a may be 12.60 to 12.90 mm based on the air conditioning capacity of the air conditioner 10.
  • the outer diameter of the standard pipe of the first refrigerant pipe 51a is 12.70 mm, and the minimum thickness of the first refrigerant pipe 51a is 0.40 mm in the case of ASME B31.1, JIS B. In the case of the 8607, it is 0.20 mm, and in the case of applying the margin, 0.50 mm may be formed.
  • the threshold thickness value that can be applied to the first refrigerant pipe 51a among the above criteria becomes 0.20 mm based on JIS B 8607.
  • the refrigerant pipe 50a further includes a second refrigerant pipe 52a extending from the outdoor heat exchanger 120 to the main expansion device 155.
  • the second refrigerant pipe 52a may be configured as the new material pipe.
  • a high pressure liquid refrigerant may flow in the second refrigerant pipe 52a during a cooling operation, and a low pressure liquid refrigerant may flow in a heating operation.
  • the outer diameter of the second refrigerant pipe 52a may be formed to be 6.25 to 6.55 mm based on the air conditioning capacity of the air conditioner 10.
  • the outside diameter of the standard pipe of the second refrigerant pipe (52a) is 6.35mm
  • the minimum thickness of the second refrigerant pipe (52a) is 0.30mm
  • JIS B for ASME B31.1 In the case of the 8607, 0.10 mm may be used, and in the case of applying the margin, 0.40 mm may be formed.
  • the threshold thickness value that can be applied to the second refrigerant pipe 52a among the above criteria becomes 0.10 mm based on JIS B 8607.
  • the refrigerant pipe 50a further includes a third refrigerant pipe 53a extending from the main expansion device 155 to the first service valve 175.
  • the third refrigerant pipe 53a may be configured as the new material pipe.
  • the high pressure liquid refrigerant may flow in the third refrigerant pipe 53a during the cooling and heating operations.
  • the outer diameter of the third refrigerant pipe 53a may be formed to be 6.25 to 6.55 mm based on the air conditioning capacity of the air conditioner 10.
  • the outside diameter of the standard pipe of the third refrigerant pipe (53a) is 6.35mm
  • the minimum thickness of the third refrigerant pipe (53a) is 0.30mm
  • JIS B for ASME B31.1 In the case of the 8607, 0.10 mm may be used, and in the case of applying the margin, 0.40 mm may be formed.
  • the threshold thickness value that can be applied to the third refrigerant pipe 53a among the above criteria becomes 0.10 mm based on JIS B 8607.
  • the refrigerant pipe 50a further includes a fourth refrigerant pipe 54a extending from the second service valve 176 to the third port 113 of the flow control valve 110.
  • the fourth refrigerant pipe (54a) may be composed of the new material pipe.
  • a low pressure gaseous refrigerant may flow in the fourth refrigerant pipe 53a and a high pressure gaseous refrigerant may flow in the heating operation.
  • the outer diameter of the fourth refrigerant pipe 54a may be 12.60 to 12.8 mm based on the air conditioning capacity of the air conditioner 10.
  • the outer diameter of the standard pipe of the fourth refrigerant pipe (54a) is 12.70mm
  • the minimum thickness of the fourth refrigerant pipe (54a) is 0.40mm
  • JIS B for ASME B31.1 In the case of the 8607, it is 0.20 mm
  • 0.50 mm may be formed.
  • the threshold thickness value that can be applied to the fourth refrigerant pipe 54a among the above criteria is 0.20 mm based on JIS B 8607.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compressor (AREA)

Abstract

본 발명은 공기 조화기에 관한 것이다. 본 실시예에 따른 공기 조화기의 냉동능력은 2kW 이상 7kW 이하를 가지고, 공기 조화기를 순환하는 냉매로는 R134a가 사용되며, 냉매 배관에는, 적어도 크롬(Cr), 니켈(Ni) 및 망간(Mn)과 함께, 구리(Cu)를 가지는 물질로 구성되는 연성 스테인리스 강관이 포함되므로, 냉매배관의 강도 및 경도를 동 배관 이상으로 유지하면서, 가공성이 좋게 유지할 수 있다는 이점이 있다.

Description

공기 조화기
본 발명은 공기 조화기에 관한 것이다.
공기 조화기는 냉매의 상변화 사이클을 이용하여 실내로 따뜻한 공기 또는 차가운 공기를 공급하는 장치로 정의될 수 있다.
상세히, 상기 냉매의 상변화 사이클은, 저온 저압의 기상 냉매를 고온 고압의 기상 냉매로 압축하는 압축기와, 상기 압축기에 의하여 압축된 고온 고압의 기상 냉매를 고온 고압의 액상 냉매로 상변화시키는 응축기와, 상기 응축기를 통과한 고온 고압의 액상 냉매를 저온 저압의 2상 냉매로 팽창시키는 팽창변과, 상기 팽창변을 통과한 저온 저압의 2상 냉매를 저온 저압의 기상 냉매로 상변화시키는 증발기를 포함할 수 있다.
상기 냉매의 상변화 사이클이 차가운 공기를 공급하는 장치로 작동하는 경우, 상기 응축기는 실외에 배치되고, 상기 증발기는 실내에 배치된다. 그리고, 상기 압축기, 응축기, 팽창변, 및 증발기는 냉매 배관에 의하여 연결되어, 냉매 순환 폐회로를 구성한다.
상기 냉매 배관은 일반적으로 구리 소재의 동(Cu) 배관이 많이 사용되고 있으나, 상기 동 배관은 몇가지 문제점을 안고 있다.
첫째, 냉매로서 물이 사용되는 전열교환기에 상기 동 배관이 사용될 경우, 배관의 내주면에 스케일(scale)이 누적되어, 배관의 신뢰성에 악영향을 줄 수 있다. 즉, 상기 동 배관의 내주면에 스케일이 누적되면 관 내주면을 씻어내는 세관 작업이 필요하거나, 관 교체 작업이 필요할 수 있다.
둘째, 동 배관은 고압을 견딜 수 있는 내압 특성을 충분히 가지지 못하는 단점이 있다. 특히 압축기에 의하여 고압으로 압축되는 냉매, 예컨대 R410a, R22, R32와 같은 신냉매가 적용되는 냉매 순환 사이클에 상기 동 배관이 적용될 경우, 냉매 사이클의 운전 시간이 누적됨에 따라 고압을 견디지 못하고 파손될 우려가 있다.
셋째, 동 배관은 배관 내부의 냉매 압력을 견디기 위한 응력 마진 값이 작기 때문에, 압축기로부터 전달되는 진동에 취약한 단점이 있다. 이러한 이유로 인하여, 동 배관으로 전달되는 진동과 그에 따른 소음을 흡수하기 위하여, 배관의 길이를 길게 하고, 동시에 x,y, 및 z축 방향으로 배관을 휘어서 배치한다.
그 결과, 에어컨 실외기 또는 히트 펌프를 사용하는 세탁기의 내부에는 동 배관을 수용할 수 있는 설치 공간이 충분하지 못하기 때문에, 배관 설치에 어려움이 따른다.
또한, 시장에서 구리 가격이 상대적으로 높고 가격 변동이 심하기 때문에, 동 배관을 사용하기에 어려움이 따른다.
이러한 문제점을 개선하기 위하여 최근에는 스테인리스 강관이 동 배관을 대체할 수 있는 새로운 수단으로 떠오르고 있다.
스테인리스 강관은 스테인리스강 소재로 이루어지며, 동 배관에 비하여 강한 내식성을 가지며, 동 배관보다 가격이 저렴한 장점이 있다. 그리고, 스테인리스 강관은 동 배관에 비하여 강도와 경도가 크기 때문에, 진동 및 소음의 흡수 능력이 동 배관에 비하여 뛰어난 장점이 있다.
또한, 스테인리스 강관은 동 배관에 비하여 내압 특성이 좋기 때문에, 고압에도 파손 염려가 없다.
그러나, 일반적인 종래의 스테인리스 강관은, 동 배관에 비하여 강도와 경도가 과도하게 높기 때문에, 관 연결을 위한 확관 작업 또는 관 벤딩 작업에 불리한 단점이 있다. 특히, 냉매 사이클을 구성하는 배관은 특정 지점에서 특정 곡률로 휘어지는 형태로 배치될 수 있는데, 종래의 스테인리스 강관을 사용할 경우 배관을 휘는 작업이 불가능한 단점이 있다.
선행기술문헌으로 한국공개특허공보 제2003-0074232호(2003년09월19일)가 있다.
본 발명은 상기와 같은 문제점을 해결하기 위하여, 동배관 수준의 연성을 확보하여 가공성이 개선되는 냉매배관이 구비되는 공기 조화기를 제공하는 것을 목적으로 한다.
또한, 동배관 이상의 강도와 경도를 구비하는 냉매배관이 구비되는 공기 조화기를 제공하는 것을 목적으로 한다.
또한, 배관 내부의 냉매압력 조건, 또는 배관 외부의 환경조건 등에 의하여 냉매배관이 부식되는 것을 방지할 수 있는 공기 조화기를 제공하는 것을 목적으로 한다.
또한, 배관의 두께를 줄여도 한계 압력을 설정수준 이상으로 유지할 수 있는 냉매배관이 구비되는 공기 조화기를 제공하는 것을 목적으로 한다.
또한, 배관의 내경을 증가하여 배관 내부를 흐르는 냉매의 압력 손실이 감소할 수 있는 냉매배관이 구비되는 공기 조화기를 제공하는 것을 목적으로 한다.
또한, 진동 흡수능력이 개선된 냉매배관이 구비되는 공기 조화기를 제공하는 것을 목적으로 한다. 특히, 냉매배관이 압축기로부터 전달되는 진동을 용이하게 흡수하도록 함으로써, 냉매배관의 길이를 감소할 수 있는 공기 조화기를 제공하는 것을 목적으로 한다.
또한, 압축기의 능력에 기초하여 결정되는 공조능력에 따라 냉매배관의 외경을 결정할 수 있는 공기 조화기를 제공하는 것을 목적으로 한다.
또한, 상기 결정된 냉매배관의 외경 및 냉매의 종류에 따라 결정되는 배관의 두께에 기초하여, 냉매배관의 내경을 결정할 수 있는 공기 조화기를 제공하는 것을 목적으로 한다.
상기한 과제를 해결하기 위하여, 본 실시예에 따른 제 1 발명은, 공기 조화기의 냉동능력은 2kW 이상 7kW 이하를 가지고, 상기 공기조화기에는 압축기, 실외 열교환기, 메인 팽창장치, 및 상기 압축기와, 상기 실외 열교환기 및 상기 메인 팽창장치를 연결하는 냉매배관이 포함되는 실외기와, 실내 열교환기를 포함하는 실내기 및 상기 실외기와 상기 실내기를 연결하는 연결배관이 포함되며, 상기 냉매로는 R134a가 사용되며, 상기 냉매배관은, 입도면적을 기준으로 1% 이하의 델타 페라이트 기지조직을 가지는 연성 스테인리스 소재로 구성되고, 상기 냉매배관에는, 상기 압축기로 냉매의 흡입을 가이드 하며 외경이 12.70mm인 흡입배관이 포함되는 것을 특징으로 한다.
이때, 상기 냉매배관에는, 상기 압축기에서 압축된 냉매의 토출을 가이드 하며 외경이 9.52mm인 토출배관이 더 포함되고, 상기 흡입배관의 내경은 12.30mm 이하이며, 상기 토출배관의 내경은 9.20mm 이하인 것을 특징으로 한다.
또는, 상기 냉매배관에는, 상기 압축기에서 압축된 냉매의 토출을 가이드 하며 외경이 7.94mm인 토출배관이 더 포함되고, 상기 흡입배관의 내경은 12.30mm 이하이며, 상기 토출배관의 내경은 7.66mm 이하인 것을 특징으로 한다.
또는, 상기 냉매배관에는, 상기 압축기에서 압축된 냉매의 토출을 가이드 하며 외경이 12.70mm인 토출배관이 더 포함되고, 상기 흡입배관의 내경은 12.30mm 이하이며, 상기 토출배관의 내경은 12.30mm 이하인 것을 특징으로 한다.
제 2 발명은, 압축기, 실외 열교환기, 메인 팽창장치, 및 상기 압축기와, 상기 실외 열교환기 및 상기 메인 팽창장치를 연결하는 냉매배관이 포함되는 실외기와, 실내 열교환기를 포함하는 실내기 및 상기 실외기와 상기 실내기를 연결하는 연결배관이 포함되는 공기조화기로서, 상기 공기 조화기의 냉동능력은 2kW 이상 7kW 이하를 가지고, 상기 냉매로는 R134a가 사용되며, 상기 냉매배관은, 입도면적을 기준으로 1% 이하의 델타 페라이트 기지조직을 가지는 연성 스테인리스 소재로 구성되고, 상기 냉매배관에는, 상기 압축기로 냉매의 흡입을 가이드 하며 외경이 15.88mm인 흡입배관이 포함되는 것을 특징으로 한다.
이때, 상기 냉매배관에는, 상기 압축기에서 압축된 냉매의 토출을 가이드 하며 외경이 7.94mm인 토출배관이 더 포함되고, 상기 흡입배관의 내경은 15.38mm 이하이며, 상기 토출배관의 내경은 7.66mm 이하인 것을 특징으로 한다.
또는, 상기 냉매배관에는, 상기 압축기에서 압축된 냉매의 토출을 가이드 하며 외경이 9.52mm인 토출배관이 더 포함되며, 상기 흡입배관의 내경은 15.38mm 이하이며, 상기 토출배관의 내경은 9.20mm 이하인 것을 특징으로 한다.
또는, 상기 냉매배관에는, 상기 압축기에서 압축된 냉매의 토출을 가이드 하며 외경이 12.70mm인 토출배관이 더 포함되고, 상기 흡입배관의 내경은 15.38mm 이하이며, 상기 토출배관의 내경은 12.30mm 이하인 것을 특징으로 한다.
제 3 발명은, 압축기, 실외 열교환기, 메인 팽창장치, 및 상기 압축기와, 상기 실외 열교환기 및 상기 메인 팽창장치를 연결하는 냉매배관이 포함되는 실외기와, 실내 열교환기를 포함하는 실내기 및 상기 실외기와 상기 실내기를 연결하는 연결배관이 포함되는 공기 조화기로서, 상기 공기 조화기의 냉동능력은 2kW 이상 7kW 이하를 가지고, 상기 냉매로는 R134a가 사용되며, 상기 냉매배관은, 입도면적을 기준으로 1% 이하의 델타 페라이트 기지조직을 가지는 연성 스테인리스 소재로 구성되고, 상기 냉매배관에는, 상기 압축기로 냉매의 흡입을 가이드 하며 외경이 9.52mm인 흡입배관이 포함되는 것을 특징으로 한다.
이때, 상기 냉매배관에는, 상기 압축기에서 압축된 냉매의 토출을 가이드 하며 외경이 7.94mm인 토출배관이 더 포함되고, 상기 흡입배관의 내경은 9.920m 이하이며, 상기 토출배관의 내경은 7.66mm 이하인 것을 특징으로 한다.
또는, 상기 냉매배관에는, 상기 압축기에서 압축된 냉매의 토출을 가이드 하며 외경이 9.52mm인 토출배관이 더 포함되고, 상기 흡입배관의 내경은 9.20mm 이하이며, 상기 토출배관의 내경은 9.20mm 이하인 것을 특징으로 한다.
또는, 상기 냉매배관에는, 상기 압축기에서 압축된 냉매의 토출을 가이드 하며 외경이 12.70mm인 토출배관이 더 포함되고, 상기 흡입배관의 내경은 9.20mm 이하이며, 상기 토출배관의 내경은 12.30mm 이하인 것을 특징으로 한다.
상기와 같은 구성을 이루는 공조 장치에 의하면 다음과 같은 효과가 있다.
상세히, 공기 조화기의 냉동 능력에 부합하는 냉매를 사용함으로써, 공기 조화기의 운전효율이 개선될 수 있다.
또한, 오스테아니트계 스테인리스 강관이 적용됨으로써, 종래의 스테인리스 강관에 비하여 동 배관 수준의 연성을 확보할 수 있고, 그 결과 냉매 순환 사이클에 굽은 스테인리스 강관이 적용될 수 있는 장점이 있다. 즉, 종래의 스테인리스 강관에 비하여 냉매 배관의 성형 자유도가 증가하는 장점이 있다. 그리고, 값비싼 동 배관을 사용하지 않고, 상대적으로 저렴한 연성 스테인리스 강관을 사용할 수 있다는 이점이 있다.
또한, 본 실시예에 따른 연성 스테인리스 강관은 동 배관 수준의 연성이 확보되면서 강도와 경도는 동 배관보다 크기 때문에, 내압 능력이 동 배관에 비하여 현저히 뛰어나, 포화 증기압이 높은 다양한 종류의 신 냉매를 냉매 사이클에 사용할 수 있는 장점이 있다. 소위 냉매 자유도가 증가하는 장점이 있다.
그리고, 동 배관에 비하여 강도와 경도가 큰 스테인리스 강관은 동 배관에 비하여 응력 마진이 높기 때문에, 진동 흡수 능력이 동 배관에 비하여 현저히 뛰어난 장점이 있다. 다시 말하면, 스테인리스 강관의 경우 진동과 소음 흡수를 위하여 배관을 길게 할 필요가 없기 때문에, 배관을 여러 번 벤딩할 필요가 없게 된다. 따라서, 냉매 사이클 설치를 위한 공간 확보가 용이하게 되고, 배관 길이 축소에 따른 제조 비용 절감 효과를 얻을 수 있는 장점이 있다.
또한, 본 실시예에 따른 연성 스테인리스 강관의 연성이 개선되므로, 배관의 가공성이 증가할 수 있다. 그리고, 상기 연성 스테인리스 강관은 동 배관에 비하여 내식성이 뛰어나기 때문에, 배관 수명이 길어지는 장점이 있다.
또한, 압축기에 인접하게 배치되는 흡입배관의 강도를 개선할 수 있으므로 흡입배관의 진동 및 파손을 방지할 수 있다. 그리고, 흡입배관의 연성이 증가하므로, 흡입배관을 가공(벤딩)하여 제한된 공간내에 용이하게 설치할 수 있다.
그리고, 연성 스테인리스 강관으로 구성되는 흡입배관은 동 배관 수준의 연성을 확보할 수 있으면서 강도가 동 배관보다 크기 때문에, 배관의 두께를 줄일 수 있다. 즉, 동 배관에 비하여 배관 두께가 얇아지더라도, 구비 배관의 한계 압력을 유지할 수 있기 때문에, 배관 두께의 축소가 가능하다.
또한, 압축기의 토출측에 배치되어 고압의 냉매가 유동하는 토출배관의 강도를 개선할 수 있으므로, 토출배관의 진동 및 파손을 방지할 수 있다. 그리고, 토출배관의 연성이 증가하므로, 흡입배관을 가공(벤딩)하여 제한된 공간내에 용이하게 설치할 수 있다.
그리고, 연성 스테인리스 강관으로 구성되는 토출배관은 동 배관 수준의 연성을 확보할 수 있으면서 강도가 동 배관보다 크기 때문에, 배관의 두께를 줄일 수 있다. 즉, 동 배관에 비하여 배관 두께가 얇아지더라도, 구비 배관의 한계 압력을 유지할 수 있기 때문에, 배관 두께의 축소가 가능하다.
그 결과, 동 배관과 동일한 외경 조건에서 흡입/토출배관의 내경이 증가하게 되고, 내경 증가로 인하여 배관 내부를 흐르는 냉매의 압력 손실이 감소하는 장점이 있다. 배관 내부의 압력 손실이 감소함에 따라, 냉매 유동량이 증가하여 냉매 순환 사이클의 성적 계수(COP)가 향상되는 결과를 가져오는 장점이 있다.
또한, 공기 조화기에 구비되는 제 1~4 냉매배관의 외경 및 최소두께가 최적의 범위로 제안될 수 있으므로, 배관의 강도 및 연성을 설정수준 이상으로 유지할 수 있게 된다. 따라서, 배관의 설치 편의성이 증가될 수 있다.
도 1은 본 발명의 제 1 실시예에 따른 공기 조화기의 구성을 보여주는 냉동 사이클에 관한 선도이다.
도 2는 본 발명의 제 1 실시예에 따른 압축기의 흡입배관 및 토출배관의 모습을 보여주는 도면이다.
도 3은 99%의 오스테나이트 기지 조직과 1% 이하의 델타 페라이트 조직을 갖는 스테인리스강의 미세 조직 사진이다.
도 4는 오스테나이트 기지 조직만을 갖는 스테인리스강의 미세 조직 사진이다.
도 5는 본 발명의 제 1 실시예에 따른 냉매배관의 외경 및 내경을 보여주는 도면이다.
도 6은 본 발명의 제 1 실시예에 따른 연성 스테인리스 강관의 제조방법을 보인 플로우 챠트이다.
도 7은 도 6의 냉간 압연 공정을 개략적으로 보인 도면이다.
도 8은 도 6의 슬리팅 공정을 개략적으로 보인 도면이다.
도 9는 도 6의 포밍 공정을 개략적으로 보인 도면이다.
도 10 내지 도 13은 도 6의 제조방법에 따라 연성 스테인리스 강관을 제조하는 과정을 보인 단면도이다.
도 14는 도 6의 광휘소둔 공정을 개략적으로 보인 도면이다.
도 15는 본 발명의 제 1 실시예에 따른 연성 스테인리스 강관과 종래의 동 배관의 피로한도를 비교할 수 있는 S-N 곡선(Curve) 실험 그래프이다.
도 16은 본 발명의 제 1 실시예에 따른 연성 스테인리스 강관의 S-N 곡선을 보여주는 실험 그래프이다.
도 17은 배관의 응력을 측정하기 위한 응력 측정 센서의 부착 위치를 보여주는 도면이다.
도 18 및 도 19는 도 17의 응력 측정 센서가 측정한 결과 값을 보여주는 실험 데이터이다.
도 20은 본 발명의 제 1 실시예에 따른 연성 스테인리스 강관 또는 종래의 동 배관이 가스배관(Gas Pipe)으로 사용되는 경우, 가스배관(Gas Pipe)의 관내 압력손실을 비교하는 실험 그래프이다.
도 21은 본 발명의 제 1 실시예에 따른 연성 스테인리스 강관과 종래 동 배관의 성능을 보여주는 실험결과 테이블이다.
도 22는 내식성을 시험하기 위한 대상재인 복수개의 연성 스테인리스 강관, 알루미늄(Al) 배관 및 동 배관을 보여주는 도면이다.
도 23은 상기 도 22의 배관별로 부식 깊이를 측정한 결과 테이블이다.
도 24는 도 23의 결과 그래프이다.
도 25는 본 발명의 실시예에 따른 연성 스테인리스 강관이 곡관으로 구성되는 모습을 보여주는 도면이다.
도 26은 상기 곡관의 일 단면을 보여주는 도면이다.
도 27은 연성 스테인리스 강관, 동 배관 및 알루미늄 배관의 변형 길이에 따른 벤딩 하중을 비교하는 실험 그래프이다.
도 28은 본 발명의 제 2 실시예에 따른 공기 조화기의 구성을 보여주는 냉동 사이클에 관한 선도이다.
이하, 본 발명의 일부 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시 예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
도 1은 본 발명의 제 1 실시예에 따른 공기 조화기의 구성을 보여주는 냉동 사이클에 관한 선도이고, 도 2는 본 발명의 제 1 실시예에 따른 압축기의 흡입배관 및 토출배관의 모습을 보여주는 도면이다.
<실외기의 구성>
도 1을 참조하면, 본 발명의 제 1 실시예에 따른 공기 조화기(10)에는, 냉매가 순환하는 냉매 사이클을 운전하기 위하여, 실외기(20) 및 실내기(160)가 포함된다. 먼저, 실외기(20)의 구성을 설명한다.
[압축기]
도 1을 참조하면, 본 발명의 제 1 실시예에 따른 공기 조화기(10)에는, 냉매를 압축하는 압축기(100)가 포함된다. 일례로, 상기 압축기(100)에는 로터리 압축기가 포함된다.
상기 압축기(100)의 압축능력에 기초하여, 상기 공기 조화기(10)의 냉동능력, 즉 공조능력이 결정될 수 있다. 상기 공조능력에는, 냉방능력 또는 난방능력이 포함될 수 있다. 본 실시예에 따른 공기 조화기(10)의 공조능력은 2kW 이상 7kW 이하의 범위에서 형성될 수 있다.
상기 압축기(100)는 회전식 압축기가 포함된다. 일례로, BLDC 트윈(Twin) 로터리 압축기가 포함된다. 그리고 상기 압축기(100)의 한계 냉매량은 1500cc이며, 오일량은 400cc일 수 있다.
[머플러]
상기 공기 조화기(10)에는, 상기 압축기(100)의 출구측에 배치되는 머플러(105)가 더 포함된다. 상기 머플러(105)는 상기 압축기(100)에서 토출된 고압의 냉매에서 발생되는 소음을 저감시킬 수 있다. 상기 머플러(105)에는, 냉매의 유동 단면적을 증가시키는 챔버가 포함되며, 상기 챔버는 공명실을 형성한다.
[유동조절 밸브]
상기 공기 조화기(10)에는, 상기 머플러(105)의 출구측에 배치되며 상기 압축기(100)에서 압축된 냉매의 유동방향을 전환하는 유동 조절밸브(110)가 더 포함된다.
일례로, 상기 유동 조절밸브(110)에는, 사방변(four-way valve)이 포함될 수 있다. 상세히, 상기 유동 조절밸브(110)에는, 다수의 포트가 포함된다. 상기 다수의 포트에는, 상기 압축기(100)에서 압축된 고압의 냉매가 유입되는 제 1 포트(111), 상기 유동 조절밸브(110)로부터 실외 열교환기측으로 연장되는 배관에 연결되는 제 2 포트(112), 상기 유동 조절밸브(110)로부터 실내기(160)로 연장되는 배관에 연결되는 제 3 포트(113) 및 상기 유동 조절밸브(110)로부터 기액 분리기(150)로 연장되는 제 4 포트(114)가 포함된다.
[냉난방 운전시, 유동조절 밸브의 작용]
상기 압축기(100)에서 압축된 냉매는 상기 머플러(105)를 통과한 후, 상기 유동 조절밸브(110)의 제 1 포트(111)를 통하여 상기 유동 조절밸브(110)로 유입될 수 있다.
상기 공기 조화기(10)가 냉방운전 할 때, 상기 유동 조절밸브(110)로 유입되는 냉매는 실외 열교환기(120)로 유동할 수 있다. 일례로, 냉매는 상기 유동 조절밸브(110)의 제 2 포트(112)에서 배출되어 상기 실외 열교환기(120)로 유입될 수 있다.
반면에, 상기 공기 조화기(10)가 난방운전 할 때, 상기 유동 조절밸브(110)로 유입되는 냉매는 실내기(160)로 유동할 수 있다. 일례로, 냉매는 상기 유동 조절밸브(110)의 제 3포트(113)에서 배출되어 상기 실내기(160)로 유입될 수 있다.
[실외 열교환기]
상기 공기 조화기(10)에는, 외기와 열교환 하는 실외 열교환기(120)가 더 포함된다. 상기 실외 열교환기(120)는 상기 유동 조절밸브(110)의 출구측에 배치된다.
상기 실외 열교환기(120)에는, 열교환 배관(121) 및 상기 열교환 배관(121)을 지지하는 홀더(123)가 포함된다. 상기 홀더(123)는 상기 열교환 배관(121)의 양측을 지지할 수 있다. 도면에 도시되지는 않았으나, 상기 실외 열교환기(120)에는 상기 열교환 배관(121)에 결합되어 외기와의 열교환을 도와주는 열교환 핀이 더 포함된다.
[매니폴드 및 연결관]
상기 공기 조화기(10)에는, 상기 유동 조절밸브(110)의 제 1 포트에 연결되는 매니폴드(130)가 더 포함된다. 상기 매니폴드(130)는 상기 실외 열교환기(120)의 일측에 구비되며, 냉방운전시 냉매를 상기 실외 열교환기(120)의 다수의 경로로 유입시키거나 난방운전시 상기 실외 열교환기(120)를 통과한 냉매가 모여지는 구성으로서 이해된다.
상기 공기 조화기(10)에는, 상기 매니폴드(130)로부터 상기 실외 열교환기(120)로 연장되는 다수의 연결관(135)이 포함된다. 상기 다수의 연결관(135)은 상기 매니폴드(130)의 상부로부터 하부까지 서로 이격되어 배치될 수 있다.
[분배기]
상기 실외 열교환기(120)의 일측에는, 분배기(미도시)가 구비될 수 있다. 상기 분배기는, 냉방운전시 상기 실외 열교환기(120)를 통과한 냉매가 합쳐지거나, 난방운전시 냉매를 상기 실외 열교환기(120)로 분배하여 유입시키는 구성으로서 이해된다.
[캐필러리 및 분지관]
상기 공기 조화기(10)에는, 상기 분배기로부터 상기 실외 열교환기(120)로 연장되는 다수의 캐필러리(미도시)가 더 포함될 수 있다. 각 캐필러리는 분지관(미도시)에 연결될 수 있다.
상기 분지관은 상기 실외 열교환기(120)에 결합될 수 있다. 일례로, 상기 분지관은 Y자형으로 구성되어 상기 실외 열교환기(120)의 열교환 배관(121)에 결합될 수 있다. 상기 분지관은 상기 다수의 캐필러리의 수에 대응하여, 다수 개가 구비될 수 있다.
[팽창장치 및 스트레이너]
상기 공기 조화기(10)에는, 상기 실내기(160)에서 응축된 냉매를 감압하는 메인 팽창장치(155)가 더 포함된다. 일례로, 상기 메인 팽창장치(130)에는, 개도 조절이 가능한 전자 팽창밸브(Electronic Expansion Valve)가 포함될 수 있다.
상기 팽창장치(155)의 일측에는, 냉매 중 이물을 분리시키는 스트레이너(156,158, strainer)가 더 포함된다. 상기 스트레이너(156,158)는 다수 개가 제공될 수 있다. 상기 다수의 스트레이너(156,158)에는, 상기 팽창장치(155)의 일측에 구비되는 제 1 스트레이너(156) 및 상기 팽창장치(155)의 타측에 구비되는 제 2 스트레이너(158)가 포함될 수 있다.
냉방운전시, 상기 실외 열교환기(120)에서 응축된 냉매는 상기 제 1 스트레이너(156)를 통과한 후, 상기 팽창장치(155)를 경유하여 상기 제 2 스트레이너(158)를 통과할 수 있다. 반대로, 난방운전시, 상기 실내기(160)에서 응축된 냉매는 상기 제 2 스트레이너(158)를 통과한 후, 상기 팽창장치(155)를 경유하여 상기 제 1 스트레이너(156)를 통과할 수 있다.
[서비스 밸브 및 설치배관]
상기 실외기(20)에는, 실내기(160)와 조립할 때 연결배관(171,172)이 접속되는 서비스 밸브(175,176)가 더 포함된다. 상기 연결배관(171,172)은 상기 실외기(20)와 상기 실내기(160)를 연결하는 배관으로서 이해될 수 있다.
상기 서비스 밸브(175,176)에는, 상기 실외기(20)의 일측에 구비되는 제 1 서비스밸브(175) 및 상기 실외기(20)의 타측에 구비되는 제 2 서비스밸브(176)가 포함된다.
그리고, 상기 연결배관(171,172)에는, 상기 제 1 서비스밸브(175)로부터 상기 실내기(160)로 연장되는 제 1 연결배관(171) 및 상기 제 2 서비스밸브(176)로부터 상기 실내기(160)로 연장되는 제 2 연결배관(172)이 포함된다. 일례로, 상기 제 1 연결배관(171)은 상기 실내기(160)의 일측에 연결되고, 상기 제 2 연결배관(172)은 상기 실내기(160)의 타측에 연결될 수 있다.
[압력센서]
상기 실외기(20)에는, 상기 압력센서(180)가 더 포함된다. 상기 압력센서(180)는 상기 유동 조절부(110)의 제 3 포트(113)로부터 상기 제 2 서비스밸브(176)로 연장되는 냉매배관에 설치될 수 있다.
냉방운전시, 상기 압력센서(180)는 상기 실내기(160)에 증발된 냉매의 압력, 즉 저압을 감지할 수 있다. 반면에, 상기 압력센서(180)는 상기 압축기(100)에서 압축된 냉매의 압력, 즉 고압을 감지할 수 있다.
[기액분리기]
상기 실외기(20)에는, 상기 압축기(100)의 흡입측에 배치되어, 증발된 저압의 냉매 중 기상냉매를 분리하여 상기 압축기(100)로 제공하는 기액분리기(150)가 더 포함된다. 상기 기액분리기(150)는 상기 유동 조절부(110)의 제 4 포트(114)에 연결될 수 있다. 즉, 상기 실외기(20)에는, 상기 유동 조절부(110)의 제 4 포트(114)로부터 상기 기액분리기(150)로 연장되는 냉매배관이 포함될 수 있다. 상기 기액분리기(150)에서 분리된 기상냉매는 상기 압축기(100)로 흡입될 수 있다.
<실내기의 구성>
상기 실내기(160)에는, 실내 열교환기(미도시) 및 상기 실내 열교환기의 일측에 구비되어 실내 공기를 불어주는 실내 팬이 포함된다. 그리고, 상기 실내기(160)에는, 냉방운전시 응축냉매를 감압하는 실내 팽창장치가 더 포함될 수 있다. 그리고, 상기 실내 팽창장치에서 감압된 냉매는 상기 실내 열교환기에서 증발될 수 있다.
상기 실내기(160)는 제 1,2 연결배관(171,172)을 통하여 상기 실외기(20)에 연결될 수 있다.
[냉매배관]
상기한 실외기(20)의 다수의 구성들 및 실내기(160)는 냉매 배관(50)에 의하여 연결되며, 상기 냉매 배관(50)은 상기 실외기(20) 및 실내기(160)에서의 냉매 순환을 가이드 할 수 있다. 상기한 제 1,2 연결배관(171,172) 또한 상기 냉매 배관(50)의 일 구성인 것으로 이해될 수 있다.
상기 냉매 배관(50)의 외경(관경)은 공기 조화기(10)의 공조능력에 기초하여 결정될 수 있다. 일례로, 상기 공기 조화기(10)의 공조능력이 증가하면, 상기 냉매 배관(50)의 관경은 상대적으로 크게 설계될 수 있다.
[냉방운전시 냉매유동]
공기 조화기(10)가 냉방운전 되면, 압축기(100)에서 압축된 냉매는 머플러(105)를 거쳐 유동 조절밸브(110)의 제 1 포트(111)로 유입되고 제 2 포트(112)를 통하여 배출된다. 상기 유동 조절밸브(110)에서 배출된 냉매는 상기 실외 열교환기(120)로 유입되어 응축되고, 제 1 스트레이너(156)를 경유하여 상기 메인 팽창장치(155)를 통과한다. 이 때, 냉매의 감압은 이루어지지 않는다.
그리고, 상기 감압된 냉매는 제 2 스트레이너(158)를 거친후 실외기(20)에서 배출되며, 제 1 연결배관(171)을 통하여 상기 실내기(160)로 유입되고 실내 팽창장치에서 감압된 후 상기 실내기(160)의 실내 열교환기에서 증발된다. 상기 증발된 냉매는 상기 제 2 연결배관(172)을 통하여 상기 실외기(20)로 다시 유입된다.
상기 실외기(20)로 유입된 냉매는 제 3 포트(113)를 통하여 상기 유동 조절밸브(110)로 유입되며, 제 4 포트(114)를 통하여 상기 유동 조절밸브(110)에 배출된다. 그리고, 상기 유동 조절밸브(110)에서 배출된 냉매는 기액분리기(150)에서 상분리되고, 분리된 기상냉매는 상기 압축기(100)로 흡입된다. 이러한 사이클이 반복될 수 있다.
[난방운전시 냉매유동]
공기 조화기(10)가 난방운전 되면, 압축기(100)에서 압축된 냉매는 머플러(105)를 거쳐 유동 조절밸브(110)의 제 1 포트(111)로 유입되고 제 3 포트(113)를 통하여 배출된다. 상기 유동 조절밸브(110)에서 배출된 냉매는 제 2 연결배관(172)을 통하여 상기 실내기(160)로 유입되어 실내 열교환기에서 응축된 후 실내기(160)에서 배출된다. 상기 실내기(160)에서 배출된 냉매는 제 1 연결배관(171)을 통하여 실외기(20)로 유입되며, 제 2 스트레이너(158)를 경유하여 상기 메인 팽창장치(155)에서 감압된다.
그리고, 상기 감압된 냉매는 제 1 스트레이너(150)를 거친후 상기 실외 열교환기(120)로 유입된다. 그리고, 냉매는 상기 실외 열교환기(120)에서 증발되고, 제 2 포트(112)를 통하여 상기 유동 조절밸브(110)로 유입된다.
그리고, 냉매는 제 4 포트(114)를 통하여 상기 유동 조절밸브(110)에 배출되고 기액분리기(150)에서 상분리되며, 분리된 기상냉매는 상기 압축기(100)로 흡입된다. 이러한 사이클이 반복될 수 있다.
[냉매]
공기 조화기(10)의 냉방 또는 난방운전을 위하여, 상기 실외기(20) 및 실내기(160)에는 냉매가 순환될 수 있다. 일례로, 상기 냉매에는, 단일 냉매로서 R32 또는 R134a가 포함될 수 있다.
상기 R32는 메탄계 할로겐화 탄소화합물로서, 화학식 CH2F2로 표현된다. 상기 R32는 종래의 R22(화학식 : CHCLF2)에 비하여, 오존파괴계수(Ozone Depletion Potential, ODP)가 낮은 친환경 냉매로서 압축기의 토출압력이 높은 특성을 가진다.
상기 R134a는 에탄계 할로겐화 탄소화합물로서, 화학식 CF3CH2F로 표현된다. 상기 R134a는 종래의 R12(화학식 : CCl2F2)를 대체하는 냉매로서 공기 조화기에 사용될 수 있다.
다른 예로서, 상기 냉매에는 비공비 혼합냉매로서 R410a가 포함될 수 있다.
상기 R410a는 R32와 R125 (화학식 : CHF2CF3)를 50:50의 중량비로 혼합한 물질로서, 증발기에서 증발(포화액=>포화기체)될 때 온도가 상승되고 응축기에서 응축(포화기체=>포화액)될 때 온도가 하강되는 성질을 가지므로, 열교환 효율이 개선되는 효과를 가질 수 있다.
본 실시예에서는 상기 공기 조화기(10)를 순환하는 냉매로서 R134a를 사용한다.
[냉매 순환량]
본 실시예에 따른 공기 조화기(10)에는, 상기한 냉매가 충진될 수 있다. 냉매의 충진량은 상기 공기 조화기(10)를 구성하는 냉매 배관(50)의 길이에 기초하여 결정될 수 있다. 일례로, 길이 7.6m로 구성되는 표준배관을 기준으로 1,100g이 충진되며, 길이 20m로 구성되는 장배관을 기준으로 1,350g이 충진될 수 있다. 그 이외에 추가로 구성되는 배관에 대하여는 미터당 20g이 충진될 수 있다.
그리고, 공기 조화기(10)의 공조능력에 기초하여, 상기 압축기(100)에서 압축되는 냉매의 용량이 결정될 수 있다. 본 실시예와 같이, 2~7kW의 공조능력을 기준으로, 상기 압축기(100)의 냉매 용량은 1,500cc로 형성될 수 있다.
[오일]
본 실시예에 따른 공기 조화기(10)에는 압축기의 윤활 또는 냉각을 위한 오일이 포함된다. 상기 오일에는, PAG계 냉동기유, PVE계 냉동기유 또는 POE계 냉동기유가 포함될 수 있다.
상기 PAG계 냉동기유는 프로필렌 옥시드(Propylene Oxide)를 원료로 하여 만들어진 합성유로서, 점도가 상대적으로 높아 온도에 따른 점도특성이 우수하다. 따라서, 상기 PAG계 냉동기유가 사용되면, 압축기의 부하를 적게 하는 것이 가능하다.
상기 PVE계 냉동기유는 비닐에테르(Vinyl ether)를 원료 하여 만들어진 합성유로서, 냉매와의 상용성이 좋고 체적저항률이 높아 전기 안정성이 우수한 특성을 가진다. 일례로, 상기 PVE계 냉동기유는 냉매 R32, R410a, R134a를 사용하는 압축기에 사용될 수 있다.
상기 POE계 냉동기유는 다가알콜과 카르본산을 탈수축합 하여 만든 합성유로서 냉매와의 상용성이 좋고 공기 중에서의 산화안정성 및 열안정성이 우수한 특성을 가진다. 일례로, 상기 POE계 냉동기유는 냉매 R32 또는 R410a를 사용하는 압축기에 사용될 수 있다.
본 실시예에서, 오일은 PVE계 냉동기유(FVC68D)가 사용될 수 있다.
[신소재 배관] : 연성 스테인리스 강관
상기 냉매배관(50)에는, 강하면서도 가공성이 우수한 신소재 배관이 포함될 수 있다. 상세히, 상기 신소재 배관에는, 스테인리스 소재와, 적어도 구리(Cu)가 포함한 불순물을 가지는 물질로 구성될 수 있다. 상기 신소재 배관은 동(Cu) 배관의 강도보다는 큰 강도를 가지며, 스테인리스 강관보다는 가공성이 좋게 구성될 수 있다. 일례로, 상기 신소재 배관을 "연성 스테인리스 강관"이라 이름할 수 있다. 상기 연성 스테인리스 강관은 연성 스테인리스 강으로 제조되는 배관을 의미한다.
상기 냉매배관(50)이 동 배관으로 구성된다면, 상기 동 배관을 순환할 수 있는 냉매의 종류는 제한될 수 있다. 냉매는 그 종류에 따라 작동압력의 범위가 다르게 형성될 수 있다. 만약, 작동압력의 범위가 큰, 즉 상승할 수 있는 고압이 높은 냉매가 동 배관에 사용되는 경우, 상기 동 배관이 파손되고 이에 따라 냉매의 누설이 발생될 수 있다.
그러나, 본 실시예와 같이, 신소재 배관으로서 연성 스테인리스 강관을 사용하는 경우, 상기한 문제점이 발생되는 것을 방지할 수 있다.
[연성 스테인리스강의 성질]
연성 스테인리스강은, 종래의 스테인리스강에 비하여 강도와 경도가 낮은 반면, 휨성이 좋은 특징이 있다. 본 발명의 실시예에 따른 연성 스테인리스 강관은 강도와 경도에 있어서 종래의 일반적인 스테인리스강보다 낮지만 적어도 동관의 강도와 경도 이상을 유지하며, 동관의 휨성과 유사한 수준의 휨성을 가지기 때문에 관의 굽힘 가공성이 매우 좋다고 할 수 있다. 여기서 휨성과 굽힘성은 동일한 의미로 사용됨을 밝혀둔다.
결국, 상기 연성 스테인리스강의 강도는 상기 동 배관의 강도보다 높기 때문에 배관의 파손염려가 줄어들 수 있다. 따라서, 공기 조화기(10)에 선택할 수 있는 냉매의 종류가 많아지는 효과가 나타난다.
[압축기의 흡입배관]
상기 냉매배관(50)에는, 상기 압축기(100)로 냉매의 흡입을 가이드 하는 흡입배관(210)이 포함된다. 상기 흡입배관(210)은 상기 유동 조절밸브(110)의 제 4 포트(114)로부터 상기 압축기(100)로 연장되는 배관인 것으로 이해될 수 있다.
상기 흡입배관(210)에는, 상기 연성 스테인리스강관이 포함될 수 있다.
상술한 바와 같이, 상기 냉매 배관(50)의 외경(관경)은 공기 조화기(10)의 공조능력에 기초하여 결정될 수 있다. 따라서, 본 실시예에 따른 공기 조화기(10)의 공조능력은 2kW 이상 7kW 이하의 범위에서 형성되므로 흡입배관(210)의 외경도 이에 기초하여 결정될 수 있다.
상기 흡입배관(210)에는 저압의 기상냉매가 유동되므로, 상기 흡입배관(210)의 외경은 토출배관보다 상대적으로 크게 형성될 수 있다.
본 실시예에 따른 공기 조화기(10)의 공조능력(2kW 이상 7kW 이하)에서, 상기 흡입배관(210)의 외경은 9.42~9.62mm, 12.6~12.8mm 및 15.78~15.98mm 중 적어도 어느 하나의 범위에 속하도록 형성될 수 있다.
일 실시예로, 상기 흡입배관(210)의 외경은 9.42mm 이상 9.62mm 이하의 범위에 속하도록 형성될 수 있다. 이때, 상기 흡입배관(210)의 외경은 9.52mm(후술할 표4의 표준 배관 외경 참고)로 형성될 수 있다.
다른 실시예로, 상기 흡입배관(210)의 외경은 12.60mm 이상 12.80mm 이하의 범위에 속하도록 형성될 수 있다. 이때, 상기 흡입배관(210)의 외경은 12.7 mm(후술할 표4의 표준 배관 외경 참고)로 형성될 수 있다.
또 다른 실시예로, 상기 흡입배관(210)의 외경은 15.78mm 이상 15.98mm 이하의 범위에 속하도록 형성될 수 있다. 이때, 상기 흡입배관(210)의 외경은 15.88 mm(후술할 표4의 표준 배관 외경 참고)로 형성될 수 있다.
상기 흡입배관(210)의 외경은, 2개 이상의 배관을 접속할 때 어느 하나의 배관을 확관하는 경우, 상기 확관된 배관의 외경 값을 포함한다.
[압축기의 토출배관]
상기 냉매배관(50)에는, 상기 압축기(100)에서 압축된 냉매를 토출하는 토출배관(220)이 더 포함된다. 상기 토출배관(220)은 상기 압축기(100)의 토출부로부터 상기 유동 조절밸브(110)의 제 1 포트(111)로 연장되는 배관인 것으로 이해될 수 있다. 일례로, 상기 토출배관(220)은, 상기 압축기(100)와 머플러(105)를 연결하는 제 1 토출배관(220a) 및 상기 머플러(105)와 유동 조절밸브(110)의 제 1 포트(111)를 연결하는 제 2 토출배관(220b)을 포함할 수 있다.
상기 토출배관(220)에는 상기 연성 스테인리스강관이 포함될 수 있다.
상술한 바와 같이, 상기 냉매 배관(50)의 외경(관경)은 공기 조화기(10)의 공조능력에 기초하여 결정될 수 있다. 따라서, 본 실시예에 따른 공기 조화기(10)의 공조능력은 2kW 이상 7kW 이하의 범위에서 형성되므로 토출배관(220)의 외경도 이에 기초하여 결정될 수 있다.
그리고, 상기 토출배관(220)에는 고압의 기상냉매가 유동하므로, 상기 토출배관(220)의 외경은 흡입배관보다 상대적으로 작게 형성될 수 있다.
본 실시예에 따른 공기 조화기(10)의 공조능력(2kW 이상 7kW 이하)에서, 상기 토출배관(220)의 외경은 7.84~8.04mm, 9.42~9.62mm 및 12.60~12.80mm 중 적어도 어느 하나의 범위에 속하도록 형성될 수 있다.
일 실시예로, 상기 토출배관(220)의 외경은 7.84mm 이상 8.04mm 이하의 범위에 속하도록 형성될 수 있다. 이때, 상기 토출배관(220)의 외경은 7.94mm(후술할 표4의 표준 배관 외경 참고)로 형성될 수 있다.
다른 실시예로, 상기 토출배관(220)의 외경은 9.42mm 이상 9.62mm 이하의 범위에 속하도록 형성될 수 있다. 이때, 상기 토출배관(220)의 외경은 9.52mm(후술할 표4의 표준 배관 외경 참고)로 형성될 수 있다.
또 다른 실시예로, 상기 토출배관(220)의 외경은 12.60mm 이상 12.80mm 이하의 범위에 속하도록 형성될 수 있다. 이때, 상기 토출배관(220)의 외경은 12.70mm(후술할 표4의 표준 배관 외경 참고)로 형성될 수 있다.
한편, 상기 제 1 토출배관(220a)과 제 2 토출배관(220b)의 외경은 서로 상이하게 형성될 수 있다. 일례로, 상기 제 1 토출배관(220a)의 외경은 7.84~8.04 mm 범위에 속하도록 7.94 mm로 형성될 수 있고, 상기 제 2 토출배관(220b)의 외경은 9.42~9.62 mm 범위에 속하도록 9.52mm 로 형성될 수 있다. 즉, 상기 제 2 토출배관(220b)의 외경은 압축기로부터 상대적으로 가까운 배관인 상기 제 1 토출배관(220a)의 외경보다 크게 형성될 수 있다.
상기 토출배관(220)의 외경은, 2개 이상의 배관을 접속할 때 어느 하나의 배관을 확관하는 경우, 상기 확관된 배관의 외경 값을 포함한다.
상기 토출배관(220)에는 고압의 가스냉매가 유동하고 압축기(100)에서 발생되는 진동에 의하여 움직임이 크게 발생할 수 있으므로, 상기 토출배관(220)의 강도는 설정강도 이상으로 유지되는 것이 요구된다. 상기 토출배관(220)이 상기 신소재 배관으로 구성됨으로써, 토출배관(220)의 강도가 높게 유지되고 상기 토출배관(220)의 파손에 따른 냉매 누설을 방지할 수 있다.
한편, 상기 흡입배관(210)에는 상대적으로 낮은 저압의 냉매가 유동하기는 하나, 상기 압축기(100)에 인접하게 위치한 배관으로서, 상기 압축기(100)의 진동에 의하여 움직임이 크게 발생할 수 있다. 따라서, 상기 흡입배관(210)의 강도는 설정강도 이상으로 유지되는 것이 요구되므로, 상기 흡입배관(210)은 신소재 배관으로 구성될 수 있다.
이하에서는 본 발명의 실시예에 따른 연성 스테인리스강의 특성을 정의하는 구성 요소들에 대하여 설명하며, 이하에서 설명되는 각 구성 요소의 구성비는 중량비(weight percent, wt.%)임을 밝혀둔다.
도 3은 99%의 오스테나이트 기지 조직과 1% 이하의 델타 페라이트 조직을 갖는 스테인리스강의 미세 조직 사진이고, 도 4는 오스테나이트 기지 조직만을 갖는 스테인리스강의 미세 조직 사진이다.
1. 스테인리스강의 조성(composition)
(1) 탄소(C, carbon) : 0.3% 이하
본 발명의 실시예에 따른 스테인리스 강은 탄소(C)와 크롬(Cr, chromium)을 포함한다. 탄소는 크롬과 반응하여 크롬탄화물(chromium carbide)로 석출되는데, 입계(grain boundary) 또는 그 주변에 크롬이 고갈되어 부식의 원인이 된다. 따라서, 탄소의 함량은 적게 유지되는 것이 바람직하다.
탄소는 타 원소와 결합하여 크리프 강도(creep strength)를 높이는 작용을 하는 원소이고, 탄소의 함량이 0.03%를 초과하면 오히려 연성을 저하시키는 요인이 된다. 따라서, 본 발명에서는 탄소의 함량을 0.03% 이하로 설정한다.
(2) 규소(Si, silicon) : 0 초과 1.7% 이하
오스테나이트 조직은 페라이트 조직 또는 마르텐사이트 조직에 비해 낮은 항복 강도를 가진다. 따라서, 본 발명의 연성 스테인리스 강이 구리와 유사 또는 동등한 수준의 휨성(또는 휨 자유도)를 가지기 위해서는 스테인리스 강의 기지 조직이 오스테나이트로 이루어지는 것이 좋다.
그러나, 규소는 페라이트를 형성하는 원소이기 대문에, 규소의 함량이 증가할 수록 기지 조직에서 페라이트의 비율이 증가하게 되고, 페라이트의 안정성이 높아지게 된다. 규소의 함량은 가능한 한 적게 유지되는 것이 바람직하지만, 제조 과정에서 규소가 불순물로 유입되는 것을 완전히 차단하는 것은 불가능하다.
규소의 함량이 1.7%를 초과하면 스테인리스 강이 구리 소재 수준의 연성을 가지기 어렵고, 충분한 가공성을 확보하기 어려워진다. 따라서, 본 발명의 실시예에 따른 스테인리스 강에 포함되는 규소의 함량을 1.7% 이하로 설정한다.
(3) 망간(Mn, manganess) : 1.5 ~ 3.5%
망간은 스테인리스 강의 기지 조직이 마르텐사이트계로 상변태되는 것을 억제하고, 오스테나이트 구역을 확대시켜 안정화하는 작용을 한다. 만일, 망간의 함량이 1.5% 미만이면, 망간에 의한 상변태 억제 효과가 충분히 나타나지 않는다. 따라서, 망간에 의한 상변태 억제 효과를 충분히 얻기 위해서는 망간의 함량 하한을 1.5%로 설정한다.
그러나, 망간의 함량이 증가할 수록 스테인리스 강의 항복 강도가 상승하여, 스테인리스 강의 연성을 저하시키는 요인이 되므로, 망간의 함량 산한을 3.5%로 설정한다.
(4) 크롬(Cr, chromium) : 15 ~ 18%
망간은 스테인리스강의 부식개시저항성(Corrosion Initiation Resistance)을 향상시키는 원소이다. 부식개시란, 부식되지 않음 모재(base material)에 부식이 존재하지 않은 상태에서 최초로 부식이 발생하는 것을 의미하고, 부식개시저항성이란 모재에 최초로 부식이 발생하는 것을 억제하는 성질을 의미한다. 이는, 내식성과 동일한 의미로 해석될 수 있다.
크롬의 함량이 15.0%보다 낮으면 스테인리스 강이 충분한 부식개시 저항성(또는 내식성)을 갖지 못하므로, 본 발명에서는 크롬의 함량 하한을 15.0%로 설정한다.
반대로, 크롬의 함량이 너무 많아지면 상온에서 페라이트 조직이 되어 연성이 감소하게 되며, 특히 고온에서 오스테나이트의 안정성이 없어져 취화하기 때문에 강도의 저하를 초래한다. 따라서, 본 발명에서는 크롬의 함량 상한을 18.0%로 설정한다.
(5) 니켈(Ni, nickel) : 7.0 ~ 9.0%
니켈은 스테인리스 강의 부식성장저항성(Corrosion Growth Resistance)을 향상시키고, 오스테나이트 조직을 안정화시키는 성질을 가지고 있다.
부식성장이란, 이미 모재에 발생된 부식이 넓은 범위로 퍼지면서 성장하는 것을 의미하고, 부식성장저항성이란, 부식의 성장을 억제하는 성질을 의미한다.
니켈의 함량이 7.0%보다 낮으면 스테인리스 강이 충분한 부식성장저항성을 가지지 못하므로, 본 발명의 니켈의 함량 하한을 7.0%로 설정한다.
또한, 니켈의 함량이 과잉되면 스테인리스강의 강도와 경도를 증가시켜 스테인리스 강의 충분한 가공성을 확보하기 어려워진다. 뿐만 아니라, 비용 증가를 초래하여 경제적인 면에서도 바람직하지 않다. 따라서, 본 발명에서 니켈의 함량 상한을 9.0%로 설정한다.
(6) 구리(Cu, Copper) : 1.0 ~ 4.0%
구리는 스테인리스강의 기지 조직이 마르텐사이트 조직으로 상변태되는 것을 억제하여, 스테인리스강의 연성을 높이는 작용을 하다. 구리의 함량이 1.0% 미만이면 구리에 의한 상변태 억제 효과가 충분히 나타나지 않는다. 따라서, 본 발명에서는 구리에 의한 상변태 억제 효과를 충분히 얻기 위해서, 구리의 함량 하한을 1.0%로 설정한다.
특히, 스테인리스강이 구리의 휨성과 동등 또는 유사한 수준의 휨성을 가지도록 하기 위해서는, 구리의 함량이 1.0% 이상으로 되어야 한다.
구리의 함량이 증가할수록, 기지 조직의 상변태 억제 효과가 증가하지만, 그 증가폭은 점차 작아진다. 그리고, 구리의 함유량이 과잉되어 4 ~ 4.5%를 초과하면 그 효과는 포화되고 마르텐사이트 발생을 촉진하기 때문에 바람직하지 않다. 그리고, 구리가 고가의 원소이기 때문에 경제성에도 영향을 주게 된다. 따라서, 구리의 상변태 억제 효과가 포화 수준 미만으로 유지되고 경제성이 확보될 수 있도록 구리의 함량 상한을 4.0%로 설정한다.
(7) 몰리브덴(Mo, molybdenum) : 0.03% 이하
(8) 인(P, phosphorus) : 0.04% 이하
(9) 황(S, sulfer) : 0.04% 이하
(10) 질소(N, nitrogen) : 0.03% 이하
몰리브덴, 인, 황. 및 질소는 강철 반제품에 본래부터 포함되어 있는 원소들로 스테인리스강을 경화시키므로, 가능한 낮은 함량으로 유지하는 것이 바람직하다.
2. 스테인리스강의 기지 조직(matrix structure)
스테인리스 강을 금속 조직(또는 기지조직) 측면에서 분류하면, 크롬(18%)과 니켈(8%)을 주성분으로 하는 오스테나이트계(Ostenite type) 스테인리스강과, 크롬(18%)을 주성분으로 하는 페라이트계(Ferrite type) 스테인리스 강, 및 크롬(8%)을 주성분으로 하는 마르텐사이트계(Martensite type) 스테인리스 강으로 분류된다.
그리고, 오스테나이트계 스테인리스강이 염분이나 산에 대한 내식성이 우수하고, 연성이 큰 특징을 가지고 있기 때문에, 본 발명의 연성 스테인리스강은 기지 조직이 오스테나이트계 스테인리스강이 좋다.
또한, 오스테나이트 조직은 페라이트 조직이나 마르텐사이트 조직에 비해 항복 강도와 경도가 낮은 특성을 가진다. 나아가, 동일한 조건에서 결정 크기를 성장시켰을 때, 오스테나이트의 평균 입도 크기가 가장 커서 연성을 높이는데 유리하다.
스테인리스강의 연성을 높이기 위해서는, 스테인리스 강의 기지 조직이 오스테나이트 조직으로만 이루어지는 것이 가장 바람직하다. 그러나, 스테인리스 강의 기지 조직을 오스테나이트만으로 제어하는 것이 매우 어렵기 때문에, 다른 기지 조직을 포함할 수 밖에 없다.
상세히, 오스테나이트계 스테인리스강의 연성에 영향을 주는 다른 기지 조직은 열처리 과정에서 발생하는 델타 페라이트(δ-Ferrite)이다. 즉, 상기 델타 페라이트의 함유량이 많을수록 스테인리스강의 경도는 높아지는 반면 연성은 떨어지게 된다.
스테인리스 강이 입도 면적을 기준으로 90% 이상 바람직하게는 99% 이상의 오스테나이트 기지 조직을 가지고, 1% 이하의 델타 페라이트 기지 조직을 가지는 것이 좋다. 따라서, 스테인리스 강의 연성을 크게 하기 위한 방법들 중 하나로서 오스테나이트계 스테인리스강에 포함된 델타 페라이트의 양을 감소시키는 것을 들 수 있다.
본 발명의 실시예에 따른 연성 스테인리스 강이 1% 이하의 델타 페라이트 기지 조직을 가지는 경우에도, 상기 델타 페라이트가 결정립 전체에 균일하게 분포되는 것보다 국부적으로 특정 결정립에 밀집 분포되는 것이 연성 증가에 유리하다.
[연성 스테인리스 강의 미세조직]
도 3은 99%의 오스테나이트 기지 조직과 1% 이하의 델타 페라이트 조직을 갖는 스테인리스강의 미세 조직 사진이고, 도 4는 오스테나이트 기지 조직만을 갖는 스테인리스강의 미세 조직 사진이다. 도 3의 조직을 가지는 스테인리스강이 본 발명의 실시예에 따른 연성 스테인리스 강의 미세 조직이다.
도 3의 스테인리스 강과 도 4의 스테인리스 강은 입도번호 5.0 ~ 7.0에 해당하는 평균 입도 크기를 갖는다. 평균 입도 크기에 대해서는 아래에서 다시 설명한다.
아래 표 1은, 도 3의 스테인리스 강(소재 1)과 도 3의 스테인리스 강(소재 2)의 기계적 물성을 비교한 그래프이다.
종류 기계적 물성
항복강도[MPa] 인장강도[MPa 경도[Hv] 연신율[%]
소재 1 스테인리스강(오스테나이트 + 델타 페라이트) 180 500 120 52
소재 2 스테인리스강(오스테나이트) 160 480 110 60
상기 [표 1]을 참조하면, 소재 2가 소재 1에 비하여 강도와 경도에 있어서 더 낮은 물성을 갖는 것을 알 수 있다. 또한, 소재 2가 소재 1에 비하여 높은 연신율을 가지는 것을 알 수 있다. 이로부터, 스테인리스강의 강도와 경도를 낮추기 위해서는 스테인리스강이 오스테나이트 기지 조직만으로 이루어지는 것이 이상적이라 할 수 있다. 그러나, 델타 페라이트 기지 조직을 완전히 제거하는데는 어려움이 많으므로, 델타 페라이트 기지 조직의 비율을 최소한으로 가져가는 것이 좋다.
또한, 상술한 바와 같이, 델타 페라이트 조직이 균일하게 분포되는 것보다 특정 결정립에 밀집하여 분포하면 스테인리스 강의 연질화에 더 좋은 효과가 있다.
도 3에서 큰 결정립(101)은 오스테나이트 기지 조직을 나타내고, 흑색 반점 형태의 작은 결정립(102)이 델타 페라이트 기지 조직을 나타낸다.
3. 스테인리스강의 평균 입도 크기(average diameter)
스테인리스강의 평균 입도 크기는, 조성 및/또는 열처리 조건에 따라 결정될 수 있다. 스테인리스 강의 평균 입도 크기는, 스테인리스 강의 강도와 경도에 영향을 미친다. 이를테면, 평균 입도 크기가 작을수록 스테인리스강의 강도와 경도는 커지고, 평균 입도 크기가 클수록 스테인리스강의 강도와 경도는 작아진다.
본 발명의 실시예에 따른 연성 스테인리스강은, 구리의 함량과 델타 페라이트의 입도 면적을 조절하여 휨성이 좋은 특성 외에, 종래의 일반적인 스테인리스강에 비하여 강도와 경도가 낮은 특성을 가지며, 구리의 강도와 경도보다는 높은 특성을 가진다.
이를 위해서는, 스테인리스강의 평균 입도 크기를 30 ~ 60μm로 제한한다. 일반적인 오스테나이트 조직의 평균 입도 크기는 30μm보다 작다. 따라서, 제조 공정 및 열처리를 통해 평균 입도 크기를 30μm 이상으로 성장시켜야 한다.
미국재료시험협회(American Society for Testing and Materials, ASTM)의 기준에 따르면, 30 ~ 60μm의 평균 입도 크기는 5.0 ~ 7.0의 입도 번호(Grain size No.)에 해당한다. 이에 반해, 30μm보다 작은 평균 입도 크기는 ASTM 입도번호 7.5 이상에 해당한다.
스테인리스강의 평균 입도 크기가 30μm보다 작거나 입도 번호가 7.0보다 크면, 본 발명에서 요구하는 저강도 및 저경도의 특성을 가지지 못한다. 특히, 스테인리스강의 평균 입도 크기(또는 입도 번호)는 스테인리스강의 저강도 및 저경도 특성을 결정하는 핵심 인자에 해당한다.
아래 [표 2]를 참조하면, 종래의 동배관은 저강도 및 저경도의 물성을 가지므로, 냉매 순환 사이클을 구성하는 냉매 배관으로 상용화되어 있으나, 부식으로 인한 신뢰성 문제 및 신냉매에 대한 내압력성 문제를 안고 있다.
그리고, 비교예 2 내지 5의 스테인리스강들은 동배관에 비하여 과도하게 큰 강도와 경도를 가지기 때문에, 구리의 부식성과 내압력성 문제는 해결하더라도 가공성이 떨어지는 문제점을 안고 있다.
이에 반해, 본 발명의 실시예에 따른 스테인리스 강은 종래의 동배관보다 강도와 경도가 크고, 비교예 2 내지 5의 스테인리스강보다 낮은 강도와 경도를 가지기 때문에, 동 배관이 가지는 내식성과 내압력성 문제를 해소할 수 있어 R32와 같은 고압 신냉매용 배관으로 사용되기 적절하다.
뿐만 아니라, 동배관보다 높은 연신율을 가지기 때문에, 기존의 스테인리스강이 가지는 가공성 문제도 해결되는 장점이 있다.
종류 기계적 물성
항복강도[MPa] 인장강도[MPa] 경도[Hv] 연신율[%]
비교예 1 동배관(C1220T) 100 270 100 45이상
비교에 2-5 스테인리스강(입도번호 7.5이상) 200 내외 500 내외 130 내외 50이상
본 발명 스테인리스강(입도번호 5.0 ~ 7.0) 160 내외 480 내외 120 이하 60 이상
정리하면, 본 발명에서 정의되는 연성 스테인리스강은, 상기에서 설명된 바와 같은 구성 요소들이 설정 비율만큼 함유되고, 99%의 오스테나이트와 1%이하의 델타 페라이트를 가지는 스테인리스 강을 의미한다고 할 수 있다.
도 5는 본 발명의 제 1 실시예에 따른 냉매배관의 외경 및 내경을 보여주는 도면이다.
도 2 및 도 5를 함께 참조하면, 본 발명의 제 1 실시예에 따른 압축기(100)가 구동하면, 상기 압축기(100)로 흡입된 냉매는 압축 후 온도 변화를 수반하게 된다. 이러한 온도의 변화로 인해 흡입 배관(210)과 토출 배관(220)측에서 응력의 변화가 다른 배관에 비해 심하게 발생된다.
본 실시예는 도 4에서와 같이 냉매의 상태 변화시 압력 및 진동이 가장 심하게 나타나는 흡입 배관(210) 및 토출 배관(220)을 연질화 과정을 거친 연성 스테인리스 강관으로 형성하여 허용 응력을 높이는 점에 특징이 있다. 그러나, 흡입 배관 및 토출 배관에만 한정되는 것은 아니며 응력의 변동 상황에 따라 실외기 및 실내기를 연결하는 어느 하나 이상의 배관을 상기 연성 스테인리스 강관으로 구성할 수 있다.
본 실시예에 따른 공기 조화기(10)의 공조능력은 2kW~7kW 범위에서 선택될 수 있다. 상기 선택된 공기 조화기(10)의 공조능력에 기초하여, 상기 연성 스테인리스 강관의 외경이 결정될 수 있다.
그리고, 본 발명의 공기 조화기(10)에서 사용될 수 있는 냉매에는, 상기한 바와 같이 R32, R134a 또는 R401a가 포함될 수 있다. 특히, 본 발명에서 상기 연성 스테인리스 강관의 두께는 상기 냉매의 종류에 따라 상이하게 결정될 수 있다.
[연성 스테인리스 강관의 두께 설정방법]
상기 연성 스테인리스 강관의 두께는 다음과 같은 수학식에 따라 결정될 수 있다. 하기의 수학식은 배관에 관한 규격 및 지침에 관한 코드를 제공하는 ASME B31.1 및 가스관계법령에서 정한 시설, 기술, 검사 등의 기술적 사항을 코드화한 KGS Code에 근거하여 산출된 것이다.
여기서, tm은 스테인리스 배관의 최소 두께, P는 설계압력(MPa), D0는 스테인리스 배관의 외경(mm), S는 허용 응력(M/mm2), Textra는 부식, 나사산가공 등에 따른 여유두께를 의미한다. 상기 Textra는 배관의 재질이 구리, 알루미늄 또는 스테인리스 강으로 구성되는 경우 0.2로 결정된다.
[배관 관경의 정의]
도 5에 도시된 바와 같이, 흡입배관(210) 또는 토출배관(220)에 사용되는 연성 스테인리스 강관의 외경은 a이고, 그 내경은 b로 정의될 수 있다. 수학식 1을 살펴보면, 배관의 최소 두께는 배관의 외경에는 비례하고, 허용 응력에는 반비례함을 알 수 있다.
[허용 응력, S]
허용 응력은 기준 강도를 안전율로 나눈 것으로, 배관에 외력이 가해지는 경우 배관의 변형 또는 파손이 발생하지 않고 견딜만하다고 인정되어 중량을 가하도록 허용되어 있는 응력(변형력)의 최대값을 의미한다.
본 실시예에서 연성 스테인리스 강관의 허용응력 기준은 ASME SEC. VIII Div. 1에 기재된 코드를 만족하도록 도출된 것으로, 허용 응력(S)은 배관의 인장 강도를 3.5로 나눈 값 또는 배관의 항복 강도를 1.5로 나눈 값 중에 작은 값으로 설정될 수 있다. 허용 응력은 배관의 재질에 의해 변화되는 값이며, SME SEC. VIII Div. 1 기준 93.3Mpa로 결정될 수 있다.
배관에 동일한 응력이 가해지는 경우, 구리에 비해 스테인리스는 응력의 마진이 크게 형성될 수 있으므로, 배관의 설계 자유도가 증가될 수 있다. 결국, 배관에 전달되는 응력을 줄이기 위하여, 배관의 길이를 길게 형성하여야 하는 제한에서 벗어날 수 있다. 일례로, 압축기(100)로부터 전달되는 진동을 저감하기 위하여, 제한된 설치공간 내에서, 루프(loop) 형태로 배관을 여러 번 절곡(bending)하여 배치할 필요가 없게 된다.
[연성 스테인리스 강관의 외경]
압축기의(100)의 능력에 기초하여, 상기 공기 조화기(10)의 공조능력, 즉 냉방능력 또는 난방능력이 결정될 수 있다. 그리고, 연성 스테인리스 강관의 외경은 압축기의 냉동 능력에 따라 그 크기가 결정될 수 있다. 즉, 압축기의 용량이 상기 연성 스테인리스 강관의 외경을 결정하는 기준이 될 수 있다.
일례로, 2kW 이상 7kW 이하의 공조 능력을 갖는 공기 조화기(10)에 있어서, 상기 흡입배관(210) 및 토출배관(220)을 상기 연성 스테인리스 강관으로 구성하는 경우, 흡입 배관(210)의 외경은 9.42~9.62mm, 12.6~12.8㎜ 및 15.78~15.98mm 중 적어도 어느 하나의 범위에 속하도록 형성될 수 있으며, 토출배관(220)의 외경은 7.84~8.04mm, 9.42~9.62㎜ 및 12.60~12.80mm 중 적어도 어느 하나의 범위에 속하도록 형성될 수 있다.
본 실시예는 공기 조화기(10)의 공조 능력이 2kW 이상 7kW 이하로 형성되는 것을 특징으로 한다.
[냉매의 종류에 따른 설계압력, P]
설계압력은 냉매의 압력으로서, 냉매 사이클의 응축압력에 대응될 수 있다. 일례로, 상기 응축압력은 실외 열교환기(120) 또는 실내 열교환기에서 응축되는 냉매의 온도값(이하, 응축온도)에 기초하여 결정될 수 있다. 그리고, 상기 설계압력은 상기 응축온도에서 냉매의 포화 증기압을 의미할 수 있다. 일반적으로, 공기 조화기의 응축온도는 약 65℃ 내외로 형성된다.
냉매의 종류에 따른 포화증기압(계기 압력)은 [표 3]에 개시된다.
냉매온도(℃) R134a(Mpa) R410a(Mpa) R32(Mpa)
-20 0.03 0.30 0.30
0 0.19 0.70 0.71
20 0.47 1.35 1.37
40 0.91 2.32 1.47
60 1.58 3.73 3.85
65 1.79 4.15 4.30
[표 3]을 참조하면, R410a를 냉매로 사용한 경우 65℃에서의 포화증기압이 4.15로 나타나므로 상기 설계압력(P)을 4.15(MPa)로 결정될 수 있다.
R134a을 냉매로 사용한 경우, 65℃에서의 포화증기압이 1.79로 나타나므로 상기 설계압력(P)을 1.79(MPa)로 결정될 수 있다.
또한, R32를 냉매로 사용한 경우, 65℃에서의 포화증기압이 4.30으로 나타나므로 상기 설계압력(P)은 4.30(MPa)로 결정될 수 있다.
[연성 스테인리스 강관의 최소 두께 계산]
상기한 바와 같이, 허용 응력(S)은 ASME SEC. VIII Div. 1을 기준으로 93.3 MPa이며, 설계 압력(P)은 냉매가 R134a이고 냉매의 온도가 65도 일 때 1.79 MPa로 결정된다.
결정된 허용 응력(S)과 설계 압력(P)을 수학식 1에 적용하여 배관의 외경에 따라 계산된 배관의 최소 두께를 다음과 같은 [표 4]를 통해 확인할 수 있다.
표준 배관 외경 두께(㎜)
마진을 적용한실시예(연성 스테인리스 강관) 비교예(구리 배관) 계산된 두께(R134A)
R134A ASME B31.1(tm) JIS B 8607(tm-texrta)
φ4.00 0.40 0.25 0.05
φ4.76 0.40 0.26 0.06
φ5.00 0.40 0.27 0.07
φ6.35 0.40 0.622 0.30 0.10
φ7.00 0.40 0.32 0.12
φ7.94 0.40 0.622 0.34 0.14
φ9.52 0.40 0.622 0.36 0.16
φ12.70 0.50 0.622 0.40 0.20
φ15.88 0.50 0.800 0.45 0.25
φ19.05 0.50 0.800 0.49 0.29
φ22.20 0.60 1.041 0.53 0.33
φ25.40 0.60 1.168 0.57 0.37
φ28.00 0.70 1.168 0.61 0.41
φ31.80 0.70 1.283 0.66 0.46
φ34.90 0.80 1.283 0.70 0.50
φ38.10 0.80 1.410 0.74 0.54
φ41.28 1.00 1.410 0.78 0.58
φ50.80 1.00 0.89 0.69
φ54.00 1.20 1.623 0.93 0.73
[표 4]를 참조하면, ASME B31.1에 근거하여 도출된 연성 스테인리스 강관의 최소 두께와 JIS B 8607에 근거하여 도출된 연성 스테인리스 강관의 최소 두께를 확인할 수 있다. 여기서, 실시예는 연성 스테인리스 강관을 적용한 것이고 비교예는 기존의 동 배관을 적용한 것이다.
JIS B 8607는 일본에서 사용되는 배관의 기준 코드로서 JIS B 8607의 경우에는 ASME B31.1와는 달리 부식, 나사산가공 등에 따른 여유두께인 textra값을 고려하지 않으므로 최소두께가 ASME B31.1보다 작게 도출된다. textra값은 보통 동, 동합금, 알루미늄, 알루미늄 합금, 스테인리스의 경우 0.2(mm)로 설정될 수 있다.
실시예에 따른 연성 스테인리스 강관의 최소 두께는 ASME B31.1에 근거하여 도출된 것이지만, R134a의 냉매를 사용하는 경우의 압력을 고려하여 약 0.1~0.2mm 사이에서 결정되는 소정의 마진을 두어 적용 가능한 두께를 결정한 것이다. 즉, 실시예는, 하나의 예로서 마진을 두어 최소 두께를 제안하는 것으로 이해되며, 계산된 최소 두께 이상이라면 상기 마진의 크기는 안전율에 기초하여 변동 가능하다.
구체적으로, [표 4]에서 동일한 외경(φ7.94)의 경우를 살펴보면, 실시예는 적용가능한 배관의 두께가 0.40mm 이며 비교예는 0.622mm임을 확인할 수 있다. 즉, 동일한 외경을 갖도록 설계된 배관을 실시예와 같이 연성 스테인리스 강관으로 형성한 경우에는 배관의 두께를 더욱 감소시킬 수 있음을 의미하며, 이는 배관의 내경을 더욱 크게 형성할 수 있음을 의미한다.
본 실시예에서, 상기 흡입배관(210)의 외경은 9.42~9.62mm, 12.60~12.80㎜ 및 15.78~15.98mm 중 적어도 어느 하나의 범위에 속하도록 형성될 수 있다.
상기 흡입배관(210)의 외경이 12.60~12.80 mm의 범위에서 형성되는 경우, [표 4]를 참조하면 상기 흡입배관(210)의 표준배관 외경은 12.70 mm이며, 상기 흡입배관(210)의 최소두께는, ASME B31.1의 경우 0.40 mm, JIS B 8607의 경우 0.20 mm이며, 마진을 적용한 실시예의 경우 0.50 mm를 형성할 수 있다. 따라서, 상기한 기준들 중, 상기 흡입배관(210)에 적용될 수 있는 한계 두께 값은 JIS B 8607을 기준으로, 0.20 mm가 된다. 결국, 상기 흡입배관(210)의 내경은 12.30mm (=12.70-2*0.20) 이하로 형성될 수 있다.
다른 실시예로, 상기 흡입배관(210)의 외경이 9.42~9.62 mm의 범위에서 형성되는 경우,[표 4]를 참조하면 상기 흡입배관(210)의 표준배관 외경은 9.52 mm이며, 상기 흡입배관(210)의 최소두께는, ASME B31.1의 경우 0.36 mm, JIS B 8607의 경우 0.16 mm이며, 마진을 적용한 실시예의 경우 0.40 mm를 형성할 수 있다. 따라서, 상기한 기준들 중, 상기 흡입배관(210)에 적용될 수 있는 한계 두께 값은 JIS B 8607을 기준으로, 0.16 mm가 된다. 결국, 상기 흡입배관(210)의 내경은 9.20mm (=9.52-2*0.16) 이하로 형성될 수 있다.
또 다른 실시예로, 상기 흡입배관(210)의 외경이 15.78~15.98 mm의 범위에서 형성되는 경우,[표 4]를 참조하면 상기 흡입배관(210)의 표준배관 외경은 15.88 mm이며, 상기 흡입배관(210)의 최소두께는, ASME B31.1의 경우 0.45 mm, JIS B 8607의 경우 0.25 mm이며, 마진을 적용한 실시예의 경우 0.50 mm를 형성할 수 있다. 따라서, 상기한 기준들 중, 상기 흡입배관(210)에 적용될 수 있는 한계 두께 값은 JIS B 8607을 기준으로, 0.25 mm가 된다. 결국, 상기 흡입배관(210)의 내경은 15.38mm (=15.88-2*0.25) 이하로 형성될 수 있다.
본 실시예에서, 상기 토출배관(220)의 외경은 7.84~8.04mm, 9.42~9.62㎜ 및 12.60~12.80mm 중 적어도 어느 하나의 범위에 속하도록 형성될 수 있다.
먼저, 상기 토출배관(220)의 외경이 9.42~9.62 mm의 범위에서 형성되는 경우, [표 4]를 참조하면, 상기 토출배관(220)의 표준배관 외경은 9.52 mm이며, 상기 토출배관(220)의 최소두께는, ASME B31.1의 경우 0.36mm, JIS B 8607의 경우 0.16mm이며, 마진을 적용한 실시예의 경우 0.40mm를 형성할 수 있다. 따라서, 상기한 기준들 중, 상기 토출배관(210)에 적용될 수 있는 한계 두께값은 JIS B 8607을 기준으로 0.16mm가 된다. 결국, 상기 토출배관(220)의 내경은 9.20 mm (=9.52-2*0.16) 이하로 형성될 수 있다.
다른 실시예로, 상기 토출배관(220)의 외경이 7.84~8.04mm의 범위에서 형성되는 경우, [표 4]를 참조하면, 상기 토출배관(220)의 표준배관 외경은 7.94mm이며, 상기 토출배관(220)의 최소두께는, ASME B31.1의 경우 0.34mm, JIS B 8607의 경우 0.14mm이며, 마진을 적용한 실시예의 경우 0.50mm를 형성할 수 있다. 따라서, 상기한 기준들 중, 상기 토출배관(220)에 적용될 수 있는 한계 두께값은 JIS B 8607을 기준으로, 0.14mm가 된다. 결국, 상기 토출배관(220)의 내경은 7.66mm (=7.94-2*0.14) 이하로 형성될 수 있다.
또 다른 실시예로, 상기 토출배관(220)의 외경이 12.60~12.80 mm의 범위에서 형성되는 경우, [표 4]를 참조하면, 상기 토출배관(220)의 표준배관 외경은 12.70 mm이며, 상기 토출배관(220)의 최소두께는, ASME B31.1의 경우 0.40mm, JIS B 8607의 경우 0.20mm이며, 마진을 적용한 실시예의 경우 0.50mm를 형성할 수 있다. 따라서, 상기한 기준들 중, 상기 토출배관(220)에 적용될 수 있는 한계 두께값은 JIS B 8607을 기준으로, 0.20mm가 된다. 결국, 상기 토출배관(220)의 내경은 12.30 mm (=12.70-2*0.20) 이하로 형성될 수 있다.
한편, 상기 제 1 토출배관(220a)과 제 2 토출배관(220b)의 외경을 서로 상이하게 형성할 수 있다. 일례로, 상기 제 1 토출배관(220a)의 외경은 7.84~8.04 mm의 범위에 속하도록 형성될 수 있으며, 상기 제 2 토출배관(220b)의 외경은 9.42~9.62 mm의 범위에 속하도록 형성될 수 있다. 이 경우, 상기 제 1 토출배관(220a)은 상술한 바와 같이 7.94 mm로 형성될 수 있으며, 상기 제 2 토출배관(220b)의 외경은 상술한 바와 같이 9.52 mm로 형성될 수 있다. 그리고 이에 따라 각각 산출되는 내경의 최대 값은 앞서 서술한 내용을 원용한다.
정리하면, 본 실시예에 따른 압축기(100)에 사용되는 배관의 외경은 압축기의 냉동 능력 또는 공기 조화기(10)의 공조능력에 의하여 결정되며, 설계압력은 사용되는 냉매에 따라 결정될 수 있다.
실시예와 같이 흡입 배관과 토출 배관을 연성 스테인리스 강관으로 구성하는 경우, 스테인리스의 허용응력이 구리의 허용응력에 비하여 크기 때문에, 수학식 1에 이를 적용하면 배관의 두께를 감소시킬 수 있음을 알 수 있다. 즉, 강도 또는 경도가 상대적으로 높은 연성 스테인리스 강관을 사용함으로써 허용응력이 증가될 수 있고, 이에 따라 동일한 배관 외경에서의 두께 감소를 구현할 수 있는 것이다.
따라서, 본 실시예에 따른 연성 스테인리스 강관은 종래의 동 배관과 동일한 외경을 가지도록 설계되더라도 내경이 더 커지도록 설계될 수 있으므로, 냉매의 유동저항을 감소시킬 수 있고 냉매의 순환효율이 개선될 수 있다.
도 6은 본 발명의 제 1 실시예에 따른 연성 스테인리스 강관의 제조방법을 보인 플로우 챠트이고, 도 7은 도 6의 냉간 압연 공정(S1)을 개략적으로 보인 도면이고, 도 8은 도 6의 슬리팅 공정(S2)을 개략적으로 보인 도면이고, 도 9는 도 6의 포밍 공정(S3)을 개략적으로 보인 도면이고, 도 10 내지 도 13은 도 6의 제조방법에 따라 연성 스테인리스 강관을 제조하는 과정을 보인 단면도이고, 도 14는 도 6의 광휘소둔 공정(S7)을 개략적으로 보인 도면이다.
앞서 설명된 바와 같이, 종래의 스테인리스강은 구리보다 높은 강도 및 경도를 가지므로 가공성의 문제가 제기되었고, 특히 스테인리스강으로 굽힘 가공을 수행하는 것이 제한되는 문제점이 있었다.
[요구되는 연성 스테인리스 강관의 성질]
이러한 문제를 해결하기 위하여, 본 발명에 따른 연성 스테인리스 강관은, 구리를 포함하는 조성, 오스테나이트로 이루어지는 기지조직, 30~60㎛의 평균 입도 크기를 가짐으로써, 종래의 스테인리스강보다 저강도 및 저경도의 물성을 가진다.
특히, 오스테나이트는 페라이트나 마르텐사이트에 비해 저항복강도 및 저경도 특성을 가진다. 따라서, 본 발명에서 요구하는 저강도 및 저경도의 특성을 가진 연성 스테인리스 강관을 제조하기 위해서는, 연성 스테인리스 강관의 입도 면적을 기준으로 99% 이상의 오스테나이트 기지조직을 갖고 1% 이하의 델타 페라이트 기지조직을 가져야 한다.
이를 위하여, 본 발명에서는 연성 스테인리스 강관의 조성비뿐만 아니라, 추가적인 열처리를 수행하여, 연성 스테인리스 강관의 입도 면적을 기준으로 99% 이상의 오스테나이트 기지조직을 갖고 1% 이하의 델타 페라이트 기지조직을 가지는 것을 특징으로 한다.
<연성 스테인리스 강관의 열처리 공정>
연성 스테인리스 강관의 열처리 공정에 대하여 구체적으로 설명한다.
구리로 이루어진 배관이 인발이라는 단일 공정으로 형성될 수 있는 것과 달리, 연성 스테인리스강으로 이루어진 배관은 구리보다 높은 강도 및 경도를 갖기 때문에 단일 공정으로는 제조되기 어렵다.
본 실시예에 따른 연성 스테인리스 강관의 열처리 공정은, 냉간 압연 공정(S1), 슬리팅(Slitting) 공정(S2), 포밍(Forming) 공정(S3), 용접(Welding) 공정(S4), 절삭(Cutting) 공정(S5), 인발(Drawing) 공정(S6) 및 광휘소둔(Bright Annealing)(S7) 공정을 포함할 수 있다.
[제 1 공정 : 냉간 압연 공정(S1)]
냉간 압연 공정(S1)은, 주조 공정에서 생산된 연성 스테인리스강을 재결정 온도 이하로 회전하는 2개의 롤 사이를 통과시켜 압연하는 공정으로 이해될 수 있다. 즉, 냉간 압연된 연성 스테인리스강은 박판의 표면 요철이나 주름 등이 교정되고 표면에 금속광택이 부여될 수 있다.
도 7에 도시된 바와 같이, 연성 스테인리스강은 시트(steet)(310) 형상으로 이루어지며, 시트(310)는 언코일러(uncoiler)에 의해 코일(Coil) 형상으로 감아져서 제공될 수 있다.
상기 시트(310)는 상하로 배치되어 회전하는 2개의 압연 롤(Roll)(320) 사이를 통과하여 연속적인 힘을 받음으로써, 표면적은 넓어지고 그 두께는 얇아질 수 있다. 본 실시예에서, 연성 스테인리스강은 주조 공정에서 1.6mm~3mm의 두께를 가진 시트 형태로 제공되며, 냉간 압연 공정(S1)을 통해 시트의 두께가 1mm 이하로 냉간 가공될 수 있다.
[제 2 공정 : 슬리팅 공정(S2)]
슬리팅 공정(S2)은, 냉간 가공된 시트(310)를 슬리터를 이용하여 원하는 폭으로 다수 개로 절단하는 공정으로 이해될 수 있다. 즉, 단일의 시트(310)는 슬리팅 공정(S2)을 거쳐 다수 개로 절단되어 가공될 수 있다.
도 8에 도시된 바와 같이, 냉간 가공된 시트(310)는 언코일러(331)의 외주면에 코일 형태로 감아진 상태에서, 언코일러(331)의 회전에 의해 감아진 코일이 풀리면서 상기 시트(310)가 슬리터(332)를 통과할 수 있다.
일 예로, 상기 슬리터(332)는 상기 시트(310)의 상하 방향으로 배치되는 축 및 상기 축에 결합되는 회전 커터(332a)를 포함할 수 있다. 상기 회전 커터(332a)는 상기 축에서 상기 시트(310)의 폭 방향으로 다수 개가 이격 배치될 수 있다. 상기 다수 개의 회전 커터(332a)의 이격 간격은 서로 동일할 수 있고 경우에 따라서는 서로 다를 수 있다.
따라서, 상기 시트(310)가 상기 슬리터(332)를 통과하게 되면, 단일의 시트(310)는 다수 개의 회전 커터(332a)에 의해 다수 개의 시트(310a, 310b, 310c, 310d)로 분리될 수 있다. 이러한 과정을 통해, 상기 시트(310)는 적용될 냉매배관의 적합한 직경 또는 폭을 가질 수 있다. 이때, 상기 시트(310)는 상기 슬리터(332)에 의해 정밀하게 절단되도록, 상하 방향으로 배치되는 다수의 지지 롤러(333, 334)에 의해 가압될 수 있다.
한편, 슬리팅 공정(S2)이 완료되면, 상기 시트(310)의 외면에 끝말림부(Bur)가 형성될 수 있는데, 이러한 Bur는 제거될 필요가 있다. 만약, 상기 시트(310)의 외면에 Bur가 잔존하게 되면, 상기 시트(310)로 가공된 배관이 다른 배관과 용접되는 과정에서 용접 불량이 발생할 뿐만 아니라, 용접이 불량한 부분을 통해 냉매가 누수되는 문제를 초래할 수 있다. 따라서, 본 발명에서는 슬리팅 공정(S2)이 완료되면, Bur 제거를 위한 연마 공정이 추가로 이루어질 필요가 있다.
[제 3 공정 : 포밍 공정(S3)]
포밍 공정(S3)은, 시트(310a) 형태의 연성 스테인리스강을 여러 단계의 성형 롤들(340)을 통과시켜 배관(310e) 형태로 성형하는 공정으로 이해될 수 있다.
도 9에 도시된 바와 같이, 상기 시트(310a)는 언코일러의 외주면에 코일 형태로 감아진 상태에서, 언코일러의 회전에 의해 감아진 코일이 풀리면서 수직 또는 수평방향으로 교호적으로 배치된 다단의 성형 롤들(340)로 진입된다. 이러한 다단의 성형 롤들(340)로 진입된 시트(310a)는 순차적으로 성형 롤들(340)을 통과하면서 양측단이 서로 인접한 배관(310e) 형상으로 성형될 수 있다.
도 10은 시트 형태의 연성 스테인리스강을 말아 배관(10e)의 형상으로 성형된 것을 보이고 있다. 즉, 시트(10a) 형태의 연성 스테인리스강은 포밍 공정(S3)을 통해 양측단(311a, 311b)이 서로 가까워진 배관(310e)으로 성형될 수 있다.
[제 4 공정 : 용접 공정(S4)]
용접 공정(S4)은, 포밍 공정(S3)에 의해 말려져 서로 가까워진 배관(310e)의 양측단(311a, 311b)을 서로 접합하여 이음매 파이프(welded pipe)로 만드는 공정으로 이해될 수 있다. 용접 공정(S4)에서의 이음매 파이프는 용융 용접기, 예를 들면 통상의 전기 저항 용접기, 아르곤 용접기 또는 고주파 용접기 등에 의해 맞대어진 양측단이 용접됨으로써 구현될 수 있다.
도 11은 연성 스테인리스강으로 이루어진 시트를 말아 용접한 배관을 도시한 것이다. 구체적으로, 상기 배관(310e)의 양측단(311a, 311b)을 배관의 길이 방향으로 용접함으로써 상기 양측단(311a, 311b)을 서로 접합시킨다.
이때, 용접 과정에서 상기 배관(310e)의 길이 방향을 따라 용접부(weld zone)(313)가 형성된다. 도 11에 도시된 바와 같이, 상기 용접부(313)에는 배관(310e)의 외주면(11) 및 내주면(312)으로부터 약간 돌출된 비드(313a, 313b)가 형성되기 때문에, 상기 배관의 외주면(311) 및 내주면(312)은 평활면(smooth surface)을 구성하지 않는다.
상기 용접부(313)의 양측에는 용접 과정에서의 열에 의해 열영향부(HAZ :heat-affected zone, 314a, 314b)가 더 형성될 수 있다. 상기 열영향부(314a, 314b)도 용접부(313)와 마찬가지로 배관의 길이 방향을 따라 형성된다.
[제 5 공정 : 절삭 공정(S5)]
절삭 공정(S5)은, 상기 용접부(313)의 비드(313a)를 부분적으로 잘라내어 배관의 외주면(311)을 평활면으로 만드는 공정으로 이해될 수 있다. 상기 절삭 공정(S5)은 용접 공정(S4)과 연속적으로 이루어질 수 있다.
일 예로, 절삭 공정(S5)은 프레스 비드 롤링(press bead rolling)을 통해 배관을 길이 방향으로 이동시키면서 바이트(bite)를 이용하여 비드(313a)를 부분적으로 잘라내는 과정을 포함할 수 있다.
도 12는 절삭 공정(S5)까지 마친 연성 스테인리스 강관을 보여준다. 즉, 절삭 공정(S5)을 통해 상기 배관(310e)의 외주면(311)에 형성된 비드(313a)가 제거될 수 있다. 경우에 따라서, 절삭 공정(S5)은 용접 공정(S4)과 함께 수행될 수 있으며, 이와는 다르게 절삭 공정(S5)은 생략될 수 있다.
[제 6 공정 : 인발 공정(S6)]
인발 공정(S6)은, 상기 용접부(313)의 비드(313b)에 외력을 가해 배관(310e)의 내주면(312)을 평활면으로 만드는 공정으로 이해될 수 있다.
일 예로, 인발 공정(S6)은 포밍 공정(S3) 및 용접 공정(S4)을 거쳐 제조된 배관(310e)의 외경보다 작은 내경을 가지는 홀(hole)이 형성된 다이스(dies)와, 포밍 공정(S3) 및 용접 공정(S4)을 거쳐 제조된 상기 배관(310e)의 내경보다 작은 외경을 가지는 플러그(plug)를 포함하는 인발기(引拔機)에 의해 수행될 수 있다.
구체적으로, 용접 공정(S4) 및/또는 절삭 공정(S5)을 거친 배관(310e)은 다이스에 형성된 홀과 플러그 사이를 통과하는데, 이때 배관(310e)의 외주면(311)에 형성된 비드(313a)는 배관의 외주면(311)의 중심 외측으로 돌출되어 형성되기 때문에 다이스의 홀을 통과하지 못하고 소성 변형되면서 제거될 수 있다.
마찬가지로, 상기 배관(310e)의 내주면(312)에 형성된 비드(313b)는 배관(310e)의 내주면(312) 중심부 측으로 돌출되어 형성되기 때문에 플러그를 통과하지 못하고 소성 변형되면서 제거될 수 있다.
즉, 상술한 바와 같은 인발 공정(S6)을 거치면서 상기 배관의 내주면(312) 및 외주면(311) 상의 용접 비드(313a, 313b)가 제거될 수 있다. 그리고, 상기 배관의 내주면(312) 상의 용접 비드(313a)가 제거되기 때문에, 냉매배관을 위한 확관 시 배관의 내주면(312) 상에 턱이 발생하는 것을 원천적으로 방지할 수 있다.
도 13은 인발 공정(S6)까지 마친 연성 스테인리스 강관을 보여준다. 즉, 인발 공정(S6)을 통해 상기 배관(310e)의 외주면(311) 및 내주면(312)에 형성된 비드(313a, 313b)가 제거될 수 있다.
절삭과 인발을 통해 배관(310e)의 외주면(311)과 내주면(312)을 평활면으로 만드는 이유는, 배관 내부의 균일한 내경을 형성하고, 타 배관과의 연결을 용이하게 하기 위함이다. 또한, 배관 내부의 균일한 내경을 형성하는 이유는 원활한 냉매의 흐름과 일정한 냉매의 압력을 유지시키기 위함이다. 도시되지는 않았으나, 인발 공정(S6) 이후에 기계 가공을 통해 배관(310e)의 외주면(311)과 내주면(312)에 그루브(미도시)를 형성할 수 있다.
[제 7 공정 : 광휘소둔 공정(S7)]
광휘소둔(Bright Annealing) 공정(S7)은, 용접 비드가 제거된 배관(310e)을 가열하여 내부에 남아있는 열이력 및 잔류응력을 제거하는 공정으로 이해될 수 있다. 본 실시예에서는 연성 스테인리스강의 입도 면적을 기준으로 99% 이상의 오스테나이트 기지조직을 갖고 1% 이하의 델타 페라이트 기지조직을 가지도록 함과 동시에, 연성 스테인리스강의 평균 입도 크기를 30~60㎛로 성장시키기 위하여, 본 열처리 공정을 수행하는 것을 특징으로 한다.
특히, 연성 스테인리스강의 평균 입도 크기(또는 입도번호)는 스테인리스강의 저강도 및 저경도 특성을 결정하는 핵심 인자에 해당한다. 구체적으로, 광휘소둔 공정(S7)은 용접 비드가 제거된 배관(310e)을 환원성이나 비산화성 가스의 기류 내에서 소둔을 행하고, 소둔 후에 그대로 냉각시킴으로써 수행된다.
도 14에 도시된 바와 같이, 용접 비드가 제거된 배관(310e)은 일정 속도로 소둔로(annealing furnace, 350)를 통과한다. 상기 소둔로(350) 내에는 분위기 가스가 채워지고, 상기 소둔로(350) 내부는 전기히터 또는 가스버너 등에 의해 고온으로 가열된 상태일 수 있다.
즉, 상기 배관(310e)은 상기 소둔로(350)를 통과하면서 소정 입열량(heat input)을 얻게 되고, 이러한 입열량에 의해서 연성 스테인리스강은 오스테나이트 기지조직과, 30~60㎛의 평균 입도 크기를 갖도록 형성될 수 있다.
상기 입열량은 금속부재에 들어간 열량을 의미하며, 상기 입열량은 금속학적 미세조직 조절에 대단히 중요한 역할을 한다. 따라서, 본 실시예에서는 상기 입열량을 제어하기 위한 열처리 방법을 제시한다.
광휘소둔 공정(S7)에서 상기 입열량은 열처리 온도, 분위기 가스 또는 배관(310e)의 이송속도에 따라 정해질 수 있다.
본 실시예에 따른 광휘소둔 공정(S7)의 경우, 열처리 온도는 1050~1100℃이고, 분위기 가스는 수소 또는 질소이며, 배관(310e)의 이송속도는 180~220mm/min이다. 따라서, 상기 배관(310e)은 소둔로(350)의 소둔 열처리 온도 1050~1100℃에서 180~220mm/min의 이송속도로 소둔로(350)를 통과할 수 있다.
여기서, 소둔 열처리 온도가 1050℃ 미만이면 연성 스테인리스강의 충분한 재결정이 일어나지 않고, 세립조직이 얻어지지 않을 뿐만 아니라 결정립의 편평(扁平)한 가공조직이 되어 크리프강도를 손상시키게 된다. 반대로, 소둔 열처리 온도가 1100℃를 초과하면 고온 입계균열(intercrystalline cracking)이나 연성저하를 초래하게 된다.
또한, 용접 비드가 제거된 배관(310e)이 소둔로(350)를 180mm/min 미만의 이송속도로 통과할 경우, 장시간에 의해 생산성이 떨어지는 문제가 있다. 반대로, 배관(310e)이 소둔로(350)를 220mm/min을 초과한 이송속도로 통과할 경우, 연성 스테인리스강 내에 존재하는 응력이 충분히 제거되지 않을 뿐만 아니라, 오스트나이트 기지조직의 평균 입도 크기가 30㎛ 이하로 형성된다. 즉, 배관(310e)의 이송속도가 너무 빠르면, 연성 스테인리스강의 평균 입도 크기가 30㎛ 이하로 되어, 본 발명에서 요구하는 저강도 및 저경도의 특성을 가질 수 없게 된다.
상술한 바와 같이, 냉간 압연 공정(S1), 슬리팅 공정(S2), 포밍 공정(S3), 용접 공정(S4), 절삭 공정(S5), 인발 공정(S6) 및 광휘소둔 공정(S7)을 거쳐 제조된 본 발명에 따른 연성 스테인리스강은 스풀(spool) 등에 의해 코일링된 상태로 임시적으로 보관된 후 출하될 수 있다.
도시되진 않았으나, 광휘소둔 공정(S7)이 완료된 후에, 형상 교정 및 표면 연마 가공이 추가로 수행될 수 있다.
<피로 파괴 시험>
도 15는 본 발명의 제 1 실시예에 따른 연성 스테인리스 강관과 종래의 동 배관의 피로한도를 비교할 수 있는 S-N 곡선(Curve) 실험 그래프이고, 도 16은 본 발명의 제 1 실시예에 따른 연성 스테인리스 강관의 S-N 곡선을 보여주는 실험 그래프이다.
도 15 및 도 16을 참조하면, 본 발명의 제 1 실시예에 따른 연성 스테인리스 강관의 피로한도(또는 내구한도)는 약 200.52 MPa 이다. 이는 종래 동 배관의 피로한도 25 MPa에 비해 약 175 MPa (8배) 높은 값이다. 즉, 상기 연성 스테인리스 강관은, 종래 동 배관보다 내구성, 신뢰성, 기대수명, 설계 자유도면에서 향상된 효과를 가질 수 있다. 이하에서는, 상기 연성 스테인리스 강관의 효과에 대해 보다 상세히 설명한다.
[최대 허용응력]
상기 연성 스테인리스 강관은 상기 피로한도 값에 기초하여, 최대 혀용응력 값을 결정할 수 있다. 일례로, 상기 연성 스테인리스 강관의 최대 허용응력은, 공기조화기(10)의 기동 또는 정지 시에 200MPa로 설정할 수 있으며, 공기조화기의 운전 시에는 90MPa로 설정할 수 있다. 상기 공기조화기의 운전 시에 최대 허용응력이 작은 값을 가지는 이유는 운전 상태에서 배관 내부를 유동하는 냉매에 의한 응력을 반영한 것으로 이해할 수 있다.
상기 최대 허용응력은 배관등을 안전하게 사용하는데 허용될 수 있는 최대 한도의 응력을 의미한다. 일례로, 배관등은 사용 중 외력을 받을 수 있으며, 상기 외력에 의하여 배관의 내부에는 응력이 발생한다. 여기서, 상기 내부 응력이 고체재료 등의 요인에 의해 정해지는 어느 한계 응력 값 이상이 되는 경우, 상기 배관은 영구변형을 일으키거나 파괴될 수 있다. 따라서, 최대 허용응력을 정함으로써 상기 배관을 안전하게 사용할 수 있도록 한다.
[피로한도]
강(Steel) 등과 같은 고체재료에 반복 응력이 연속으로 가해지면, 상기 고체재료는 인장강도보다 훨씬 낮은 응력에서 파괴될 수 있다. 이를 재료의 피로(fatigue)라고 하며, 상기 피로에 의한 파괴를 피로 파괴라 한다. 상기 재료의 피로는 재료가 반복하중을 받으면 발생한다. 그리고 반복하중에 따라 어느 한도를 넘으면 종국적으로 재료가 파단될 수 있는데, 아무리 반복하중을 받아도 파단되지 않는 한도를 피로한도(fatigue limit endurance limit) 또는 내구한도라 정의한다.
[피로한도와 S-N 곡선의 관계]
S-N 곡선은, 어떠한 응력(Stress)을 반복했을 경우, 파괴하기까지의 반복 횟수(N, cycle)를 나타낸 것이다. 상세히, 고체재료는 여러 번 반복해서 작용하는 응력을 받으면 더 빨리 파괴되며, 파괴되기까지의 응력의 반복횟수는 가해지는 응력의 진폭에 영향을 받는다. 따라서, 상기 S-N 곡선을 통해, 상기 고체재료가 파괴되기까지 어느 정도 크기의 응력과 응력의 반복횟수에 영향을 받는지 분석할 수 있다.
도 15 및 도 16의 S-N 곡선 실험 그래프에서, 세로축은 응력진폭(Stress)을 나타내며, 가로축은 반복횟수의 로그(Log)값을 나타낸다. 그리고 S-N 곡선은, 응력진폭을 가했을 때 재료가 파괴되기까지의 반복횟수의 로그 값을 따라 그어지는 곡선이다. 일반적으로, 금속재료의 S-N 곡선은 응력진폭이 작을수록 파괴까지의 반복횟수는 증가한다. 그리고 응력진폭이 어느 값 이하가 되면 무한히 반복하더라도 파괴되지 않는다. 여기서, S-N 곡선이 수평이 되는 한계의 응력 값은 상술한 재료의 피로한도 또는 내구한도를 의미한다.
[동 배관의 피로한도 문제점]
도 15의 종래 연질 동(Cu)배관의 피로파괴 실험데이터에 기초하는 종래 동 배관의 S-N 곡선을 살펴보면, 종래 동 배관의 피로한도는 약 25 MPa인 것을 확인할 수 있다. 즉, 상기 동 배관의 최대 허용응력은 25 MPa이다. 그러나, 공기조화기의 운전 상태에 따라(도 18 참조), 상기 공기조화기의 기동 또는 정지 시에는 배관의 응력이 약 25 ~ 30 MPa의 값을 가지는 경우가 발생할 수 있다. 결국, 종래 동 배관은 상술한 바와 같이 피로한도 이상의 응력 값에 인하여, 배관의 수명이 단축되고, 내구성을 떨어지는 문제가 있다.
[연성 스테인리스 강관의 효과]
도 15 및 도 16에서, 상기 연성 스테인리스 강관의 피로파괴 실험데이터에 기초하는 본 발명의 S-N 곡선을 살펴보면, 상기 연성 스테인리스 강관의 피로한도는 약 200.52 MPa로, 상기 동 배관 대비 8배의 값을 가진다. 즉, 상기 연성 스테인리스 강관의 최대 허용응력은 약 200 MPa 이다. 공기조화기의 최대 운전부하를 고려하더라도, 공기 조화기에 구비되는 배관내의 응력은 상기 연성 스테인리스 강관의 최대 허용응력을 초과하지 않는다. 따라서, 상기 연성 스테인리스 강관이 공기 조화기에 사용될 경우, 배관의 수명이 연장되며, 내구성 및 신뢰성이 향상되는 장점이 있다
상기 연성 스테인리스 강관은, 상기 동 배관의 피로한도에 비해 약 175MPa의 설계 여유가 존재한다. 상세히, 상기 연성 스테인리스 강관의 외경은 종래 동 배관의 외경과 동일하고, 내경은 확장되도록 형성할 수 있다.
즉, 상기 연성 스테인리스 강관의 최소 두께는 상기 동 배관의 최소 두께보다 작을 수 있으며, 이러한 경우에도 상대적으로 높은 설계 여유로 인하여 종래 동 배관보다 높은 최대 허용응력을 가질 수 있다. 결국, 상기 연성 스테인리스 강관의 설계 자유도가 향상되는 효과가 있다.
<응력 측정 실험>
상기 공기 조화기의 운전 조건에 따라 종래 동 배관의 피로한도 이상의 응력이 배관 내에 발생할 수 있다. 반면에, 연성 스테인리스 강관이 공기 조화기에 사용되는 경우, 상기 연성 스테인리스 강관에서 발생되는 최대 응력 값은 상기 연성 스테인리스 강관의 피로한도에 미치지 못한다. 이하에서는, 이와 관련하여 상세히 설명한다.
도 17은 배관의 응력을 측정하기 위한 응력 측정 센서의 부착 위치를 보여주는 도면이며, 도 18 및 도 19는 도 17의 응력 측정 센서가 측정한 결과 값을 보여주는 실험 데이터이다.
상세히, 도 18의 (a)는, 공기조화기가 표준 냉방모드로 동작하는 경우, 상기 공기조화기의 기동, 운전, 정지상태를 구분하여 종래 동 배관과 연성 스테인리스 강관의 응력 측정 값을 보여주며, 도 18의 (b)는, 공기조화기가 표준 난방모드로 동작하는 경우, 상기 공기조화기의 기동, 운전, 정지상태를 구분하여 종래 동 배관과 연성 스테인리스 강관의 응력 측정 값을 보여준다.
그리고 도 19의 (a)는 공기조화기가 과부하 냉방모드로 동작되는 경우에 도 4(a)와 마찬가지의 응력 측정값을 보여주며, 도 19의 (b)는 공기조화기가 과부하 난방모드로 동작되는 경우에 도 4(b)와 마찬가지의 응력 측정값을 보여준다.
[응력측정센서 설치 위치]
도 17을 참조하면, 복수의 응력 측정센서는, 압축기(100)로 냉매가 흡입되도록 안내하는 흡입배관(210)과, 상기 압축기에서 고온, 고압으로 압축된 냉매를 응축기로 안내하는 토출배관(220)에 설치할 수 있다. 상세히, 상기 흡입배관(210)은 기액분리기(150)와 연결되어, 상기 기액분리기(150)로 냉매가 흡입되도록 안내할 수 있다. 그리고 상기 흡입배관(210) 및 토출배관(220)을 통과하는 냉매에는, R32, R134a 또는 R410a이 포함될 수 있다.
본 실시예에서는, 냉매로서 R134a가 사용될 수 있다.
공기조화기 사이클 측면에서, 압축기(100)를 통과한 냉매는 고온, 고압의 기상 냉매이므로 상기 토출배관(220)에 작용하는 응력은 다른 냉매배관에 작용하는 응력보다 높다.
한편, 상기 압축기(100)는 저압의 냉매를 고압의 냉매로 압축하는 과정에서 진동이 발생할 수 있는데, 상기 진동에 기인하여 압축기(100) 및 기액분리기(150)와 연결되는 배관들의 응력이 상승될 수 있다. 따라서, 상기 흡입배관(210) 및 토출배관(220)에서의 응력은 다른 연결배관에 비해 상대적으로 높기 때문에, 상기 흡입배관(210) 및 토출배관(220)에 응력 측정 센서를 설치하여 최대 허용응력 이내인지 확인할 필요가 있다.
또한, 상기 흡입배관(210)과 토출배관(220)은, 절곡되는 부분에서 응력이 가장 높게 형성될 수 있다. 따라서, 상기 응력 측정센서는 상기 흡입배관(210)의 2개의 절곡된 부분(215a,215b)과 토출배관(220)의 2개의 절곡된 부분(225a,225b)에 설치하여, 상기 흡입배관(210) 및 토출배관(220)에 작용하는 응력이 최대 허용응력 이내인지 확인할 필요가 있다.
[종래 동 배관의 응력 측정]
도 18 및 도 19를 참조하면, 상기 흡입배관 및 토출배관이 종래 동 배관으로 구성되는 경우, 최대 응력값은, 기동 시 4.9 MPa 운전 시 9.6 MPa, 정지 시 29.1 MPa로 측정된다. 상술한 바와 같이, 정지 시 최대 응력 측정 값 29.1 MPa은 상기 동 배관의 최대 허용응력 값(25MPa)을 초과한다. 이에 의하면, 배관의 내구성을 배관 수명의 단축을 야기시킬 수 있다.
[연성 스테인리스 강관의 응력 측정]
흡입배관(210) 및 토출배관(220)이 본 발명의 실시예에 따른 연성 스테인리스 강관으로 구성되는 경우, 응력값은 기동 시 19.2 MPa, 운전 시 23.2 MPa, 정지 시 38.7 MPa으로 측정된다. 즉, 상기 연성 스테인리스 강관에서의 응력 측정값은, 최대 허용응력인 200 MPa(기동/정지) 또는 90 MPa(운전) 이하를 만족시키는 값이며, 상기 최대 허용응력과의 차이도 매우 크게 형성된다.
따라서, 상기 연성 스테인리스 강관은 종래 동 배관에 비하여 내구성이 향상되며, 상기 연성 스테인리스 강관을 상기 흡입배관(210) 및 토출배관(220)으로 사용하면, 기존의 동 배관보다 향상된 배관 수명과 신뢰성을 제공할 수 있다.
<성능(COP)의 향상>
도 20은 본 발명의 제 1 실시예에 따른 연성 스테인리스 강관 또는 종래의 동 배관이 가스배관(Gas Pipe)으로 사용되는 경우, 가스배관(Gas Pipe)의 관내 압력손실을 비교하는 실험 그래프이고, 도 21은 본 발명의 제 1 실시예에 따른 연성 스테인리스 강관과 종래 동 배관의 성능을 보여주는 실험결과 테이블이다. 상기 가스배관은, 냉매 사이클을 기준으로, 증발된 저압의 기상 냉매 또는 압축된 고압의 기상 냉매의 유동을 가이드 하는 배관으로서 이해될 수 있다.
보다 상세히, 도 20의 (a) 및 도 21의 (a)는 표준배관(5m)에서의 실험 그래프이고, 도 20의 (b) 및 도 21의 (b)는 장배관(50m)에서의 실험 그래프이다.
[관내 압력 손실 비교]
도 20의 (a) 및 도 20의 (b)를 참고하면, 그래프의 세로축은 가스배관에서의 압력변화량 또는 압력손실량(△P= Pin-Pout, 단위 KPa)을 나타내며, 가로축은 공기조화기의 냉방모드 또는 난방모드를 나타낸다.
본 발명의 실시예에 따른 연성 스테인리스 강관은, 상술한 바와 같이 종래 동 배관보다 내구성 및 설계 자유도가 크게 향상된다. 따라서, 상기 연성 스테인리스 강관은, 상기 동 배관과 동일한 외경을 가지며, 상기 동 배관보다 확대된 내경을 가질 수 있다. 상기 확대된 내경에 의하여, 상기 연성 스테인리스 강관은 상기 동 배관보다 냉매의 유동 저항이 감소하고, 냉매유량이 증가할 수 있다. 그리고, 상기 연성 스테인리스 강관은 종래의 동 배관보다 관내 측 압력손실을 저감 시킬 수 있다.
[표준배관에서의 관내 압력손실 비교]
도 20의 (a)를 참조하면, 가스 배관의 관내 압력손실은, 5m의 길이를 가지는 표준배관에 대하여, 냉방모드일 때 연성 스테인리스 강관의 압력손실량이 종래 동 배관의 압력손실량보다 약 2.3 KPa 작게 형성된다. 상세히, 냉방모드에서, 상기 연성 스테인리스 강관의 압력손실량(△P)은 약 6.55 KPa 이며, 상기 동 배관의 압력손실량(△P)은 약 8.85 KPa으로 나타난다. 즉, 표준배관(5m) 냉방모드에서, 상기 연성 스테인리스 강관의 압력손실량은 상기 동 배관의 압력손실량보다 약 26% 감소한 값을 가진다.
또한, 상기 가스배관의 관내 압력손실은 표준배관(5m)에서 난방모드일 때, 연성 스테인리스 강관의 압력손실량(△P)이 종래 동 배관의 압력손실량(△P)보다 약 1.2 KPa 작다. 즉, 난방모드에서, 상기 연성 스테인리스 강관의 압력손실량(△P)은 약 3.09 KPa 이며, 상기 동 배관의 압력손실량(△P)은 약 4.29 KPa이다. 즉, 표준배관(5m) 난방모드에서, 상기 연성 스테인리스 강관의 압력손실량은 상기 동 배관의 압력손실량보다 약 28% 감소한 값을 가진다.
[장배관에서의 관내 압력손실 비교]
도 20의 (b)를 참조하면, 가스배관의 관내 압력손실은, 50m의 길이를 가지는 장배관에서 냉방모드일 때, 연성 스테인리스 강관의 압력손실량이 종래 동 배관의 압력손실량보다 약 16.9 KPa 작다. 상세히, 냉방모드에서, 상기 연성 스테인리스 강관의 압력손실량(△P)은 약 50.7 KPa 이며, 상기 동 배관의 압력손실량(△P)은 약 67.6 KPa 이다. 즉, 장배관(50m)의 냉방모드에서, 상기 연성 스테인리스 강관의 압력손실량은 상기 동 배관의 압력손실량보다 약 25% 감소한 값을 가진다.
또한, 상기 가스배관의 관내 압력손실은, 장배관(50m)에서 난방모드일 때, 연성 스테인리스 강관의 압력손실량(△P)이 종래 동 배관의 압력손실량(△P)보다 약 10.2 KPa 작다. 즉, 난방모드에서, 상기 연성 스테인리스 강관의 압력손실량(△P)은 약 29.03 KPa 이며, 상기 동 배관의 압력손실량(△P)은 약 39.23 KPa이다. 즉, 장배관(50m) 난방모드에서, 상기 연성 스테인리스 강관의 압력손실량은 상기 동 배관의 압력손실량보다 약 26% 감소한 값을 가진다.
[성능계수]
상기 가스배관(Gas Pipe), 압축기(100)의 흡입배관(210) 또는 토출배관(220)의 내부에서는 냉매 압력손실이 발생할 수 있다. 상기 냉매 압력손실은, 냉매 순화양 감소, 체적효율 감소, 압축기 토출가스 온도상승, 단위 냉동능력당 동력의 증가, 성능계수(COP) 감소라는 악영향을 초래한다.
따라서, 상기 도 20에서 나타나는 것과 같이, 상술한 가스배관, 흡입배관 또는 토출배관을 연성 스테인리스 강관으로 구성하는 경우, 종래의 동 배관보다 관내 압력 손실을 저감 시킬 수 있으므로, 냉매유량이 증가하며, 압축기의 압축일 (예를 들어, 소비전력(kW))이 감소되고, 성능계수(COP)를 증가시킬 수 있다.
상기 성능계수(COP)는 냉장고(refrigerator), 에어컨(air conditioner), 열펌프(heat pump)등과 같이, 온도를 낮추거나 올리는 기구의 효율을 나타내는 척도로서, 투입된 일(Work)의 양에 대비하여, 출력 또는 공급한 열량(냉방능력 또는 난방능력)의 비로 정의된다. 열펌프의 경우 온도를 올리는 기구이므로 난방 성능 계수라고 하며 COPh 라고 표기할 수 있으며, 냉장고나 에어컨의 경우는 온도를 낮추는 기구이므로 냉방 성능 계수 COPc라 표기할 수 있다. 또한, 성능계수(COP)는 열원(heat source)에서 뽑아내거나 열원에 공급한 열량(Q)을 기계적인 일(mechanical work)의 양(Work)으로 나눠준 값으로 정의된다.
[표준배관에서의 성능 계수 비교]
도 21의 (a)를 참고하면, 표준배관(5m)에서 냉방모드일 때, 냉방 능력은 동 배관이 약 9.36(kW)이고, 상기 연성 스테인리스 강관이 약 9.45(kW)이다. 즉, 상기 연성 스테인리스 강관의 열량(Q)는 상기 동 배관의 약 100.9% 증가한 값을 가진다. 그리고 소비전력은 동 배관이 약 2.07 (kW)이고, 상기 연성 스테인리스 강관이 약 2.06 (kW)이다. 따라서, 효율(COP)은, 상기 동 배관에서 4.53이고 상기 연성 스테인리스 강관에서 4.58이므로, 상기 연성 스테인리스 강관이 종래 동 배관의 약 100.9%로 향상된 효율을 가진다.
또한, 표준배관(5m)에서 난방모드일 때, 난방능력은 동 배관이 약 11.28(kW)이고, 상기 연성 스테인리스 강관이 약 11.31(kW)이다. 즉, 상기 연성 스테인리스 강관의 열량(Q)은 상기 동 배관의 약 100.2% 증가한 값을 가진다. 그리고 소비전력은 동 배관이 약 2.55 (kW)이고, 상기 연성 스테인리스 강관이 약 2.55 (kW)이다. 따라서, 효율(COP)은, 상기 동 배관에서 4.43이고 상기 연성 스테인리스 강관에서 4.44이므로, 상기 연성 스테인리스 강관이 종래 동 배관의 약 100.2%로 향상된 효율을 가진다.
[장배관에서의 성능 계수 비교]
상기 배관의 관내 측 압력손실 저감에 따른 효율(성능계수)의 향상은, 상기 표준배관(5m)보다 장배관(50m)에서 더욱 확연히 드러난다. 즉, 배관의 길이가 길어질수록, 종래 동 배관에 비교하여 개선되는 연성 스테인리스 강관의 성능이 더욱 향상될 수 있다.
도 21의 (b)를 참고하면, 장배관(5m)에서 냉방모드일 때, 냉방 능력은 연성 스테인리스 강관이 약 8.03 (kW)이고, 상기 동 배관이 약 7.77 (kW)이다. 즉, 상기 연성 스테인리스 강관의 열량(Q)은 상기 동 배관의 약 103.4% 증가한 값을 가진다. 그리고, 상기 연성 스테인리스 강관의 소비전력은 약 2.08 (kW)이고, 상기 동 배관의 소비전력은 약 2.08 (kW)이다. 따라서, 효율(COP)은, 상기 동 배관에서 3.74 이고, 상기 연성 스테인리스 강관에서 3.86이므로, 상기 연성 스테인리스 강관이 종래 동 배관의 약 103.2%로 향상된 효율을 가진다.
또한, 장배관(50m)에서 난방모드일 때, 동 배관의 난방능력은 약 8.92 (kW)이고, 상기 연성 스테인리스 강관의 난방능력은 약 9.07 (kW)이다. 즉, 상기 연성 스테인리스 강관의 열량(Q)은 상기 동 배관의 약 101.7% 값을 가진다. 그리고 소비전력은 동 배관이 약 2.54 (kW)이고, 상기 연성 스테인리스 강관이 약 2.53 (kW)이다. 따라서, 효율(COP)은, 상기 동 배관에서 3.51이고, 상기 연성 스테인리스 강관에서 3.58이므로, 상기 연성 스테인리스 강관의 효율은 종래 동 배관의 효율 대비 약 102%로 향상된다.
<내식성 시험>
도 22는 내식성을 시험하기 위한 대상재인 복수개의 연성 스테인리스 강관, 알루미늄(Al) 배관 및 동 배관을 보여주는 도면이고, 도 23은 상기 도 22의 배관별로 부식 깊이를 측정한 결과 테이블이고, 도 24는 도 23의 결과 그래프이다.
내식성은 어떤 물질이 부식이나 침식에 잘 견디는 성질을 의미한다. 이는 내부식성이라고도 한다. 일반적으로, 스테린리스강이나 티타늄은 탄소강보다 잘 부식되지 않기 때문에 내식성이 강하다. 한편, 내식성 시험은, 염수 분무시험, 가스시험 등의 방식이 있다. 상기 내식성 시험을 통해 염분을 포함한 대기에 대한 제품의 저항성을 판단하고, 내열화성, 보호피막의 품질, 균일성 등을 조사할 수 있다.
[복합부식시험]
도 22 내지 도 24를 참조하면, 본 발명의 실시예에 따른 연성 스테인리스 강관, 다른 배관 비교군(Al,Cu)과 함께 복합부식시험(cyclic corrosion test)을 수행한 경우, 부식 깊이(μm)가 비교군에 비해 가장 작은 값을 가지므로 내식성이 가장 우수한 배관인 것을 확인할 수 있다. 이하에서는 이와 관련하여 상세히 설명한다.
상기 복합부식시험(cyclic corrosion test)은, 자연 환경에 근접 또는 촉진시킬 목적으로 염수 분무, 건조, 습윤의 분위기를 반복하여 행하는 부식 시험법을 의미한다. 예를 들어, 1사이클을 8시간으로 하고, 염수 분무 2시간, 건조 4시간, 습윤 2시간으로 하여 30사이클, 60사이클, 90사이클, 180사이클 등, 시험 시간을 정해놓고 실시하여 평가할 수 있다. 상기 복합부식시험 중 염수 분무 시험은, 도금의 내식성을 조사하는 촉진시험법으로 가장 넓게 실시되며, 식염수의 분무 중에서 시료를 폭로시켜 내식성을 조사하는 시험이다.
도 22를 참조하면, 상기 복합부식시험을 수행하는 복수개의 연성 스테인리스 강관(S1,S2,S3), 복수개의 알루미늄 배관(A1,A2,A3) 및 복수개의 동 배관(C1,C2,C3)을 보여주며, 각각의 배관에서 임의의 위치(D1,D2)를 정하여 부식 깊이(μm)를 측정하였다.
[시험 결과 및 연성 스테인리스 강관의 장점]
도 23 및 도 24를 참조하면, 부식 깊이가 가장 깊은 것으로 측정된 배관은 평균 95μm를 가지는 알루미늄 배관이다. 그 다음으로 동 배관이 평균 22μm이고, 연성 스테인리스 강관은 평균 19 μm로 가장 내식성이 우수한 측정 값을 가진다. 또한, 부식 깊이(μm)의 최대치(Max)도 알루미늄 배관이 110μm로 가장 깊으며, 그 다음으로 동 배관이 49μm이고, 상기 연성 스테인리스 강관은 36μm로 가장 최하 값을 가진다.
종래 동 배관을 대체하기 위해 알루미늄 배관의 사용을 시도하였으나, 상술한 실험 결과와 같이 부식이 쉽게 일어나는 등 내식성이 가장 떨어지므로 큰 단점이 존재한다. 반면에, 상기 연성 스테인리스 강관은 내식성이 가장 우수하며, 앞서 상술하였던 내구성 및 성능면에서도 종래의 배관보다 우수한 효과가 있다.
<벤딩성 시험>
개별적인 설치환경에 따라 배관을 연결하는 공기조화기 설치작업의 경우, 상기 배관은, 직관뿐만 아니라 배관을 설치하는 작업자의 외력으로 벤딩을 주어 형성하는 곡관도 사용한다. 그리고 상기 직관 또는 곡관은 실외기와 실내기 등을 연결한다.
종래 스테인리스 배관은 동 배관보다 강도가 매우 높다. 따라서, 종래 스테인리스 배관의 높은 강도로 인하여, 작업자가 배관에 외력을 가하여 휘어지는 곡관을 형성하는 것은 매우 어렵다. 따라서, 설치작업의 편의성을 위해, 동 배관 또는 알루미늄 배관을 사용해야 하는 문제가 있었다.
그러나 본 발명의 실시예에 따른 연성 스테인리스 강관은, 종래의 스테인리스 강의 강도보다 낮고, 종래의 동배관보다 높은 수준으로 낮아진다. 따라서, 상술한 곡관 등을 형성할 수 있으므로 종래 스테인리스 배관에 대한 낮은 성형성을 해결할 수 있다. 이와 관련하여, 이하에서 벤딩성 실험에 대해 상세히 설명한다.
[곡관의 형상 및 곡률반경]
도 25는 본 발명의 실시예에 따른 연성 스테인리스 강관이 곡관으로 구성되는 모습을 보여주는 도면이고, 도 26은 상기 곡관의 일 단면을 보여주는 도면이고, 도 27은 연성 스테인리스 강관, 동 배관 및 알루미늄 배관의 변형 길이에 따른 벤딩 하중을 비교하는 실험 그래프이다.
도 25을 참조하면, 본 발명의 실시예에 따른 연성 스테인리스 강관은 벤딩 힘에 의해 곡관으로 구성될 수 있다. 예를 들어, 상기 연성 스테인리스 강관은 도 25의 (a)에 도시되는 ‘ㄱ’자 형상 또는 도 25의 (b)에 도시되는 ‘S’자 형상을 가질 수 있다.
도 25의 (a) 및 도 25의 (b)를 참조하면, 상기 연성 스테인리스 강관의 중심선은 일 방향에서 타 방향으로 절곡되도록 곡률을 가지는 곡선 부분을 포함할 수 있다. 그리고 상기 곡선은 곡률 반경(R)을 가진다.
상기 곡률반경(R)은, 곡선의 각 점에 있어서 만곡의 정도를 표시하는 값으로 정의된다. 한편, 상기 곡관을 형성하는 연성 스테인리스 강관의 곡률반경(R)은, 직관을 곡관으로 성형하여도 주름이 생기지 않으며, 진동이 발생하지 않는 배관에서 사용 가능한 최소 곡률반경(Rmin)을 포함할 수 있다. 그리고 최소 곡률반경(Rmin)은 최대, 최소 외경의 비에 대한 설정기준을 만족하는 곡관에서 측정할 수 있다.
[연성 스테인리스 강관의 최대/최소 외경의 비]
도 26을 참조하면, 연성 스테인리스 강관은 최대 외경(F)과 최소 외경(E)의 비(E/F)가 0.85를 초과하고 1보다 작은 값을 가지도록, 곡관으로 구성될 수 있다.
상기 최대, 최소 외경의 비(E/F)는 ASME(American Society of Mechanical Engineers) 및 JIS(Japanese Industrial Standards)의 기준(표 5)을 기초로 보수적으로 산정한 기준이다.
이하 [표 5]는 최대, 최소 외경의 비에 대한 설정기준을 보여준다.
ASME (F-E) < 0.08*D
JIS R>4D 일때, E > (2/3)*D
설정 기준 (E/F) > 0.85
상기 [표 5]에서, D는 직관(기준 배관)에서의 외경 값이며, R는 곡률 반경을 의미한다.
[연성 스테인리스 강관, 동 배관 및 알루미늄 배관의 벤딩성 비교]
도 27에서는, 상기 설정기준(최대, 최소 외경의 비)을 만족하는 연성 스테인리스 강관의 벤딩성을 시험한 결과를 보여준다. 본 벤딩성 시험에서, 상기 연성 스테인리스 강관의 관경(Ф)은 15.88(mm) 이다.
한편, 벤딩(bending)은, 하중이 걸렸을 때 보가 번형하는 상태로 아래 또는 위로 휘는 것을 의미한다. 상기 보가 하방으로 휘는 경우 밑부분은 인장력이 작용하며, 보가 상방으로 휘는 경우 밑부분은 압축력이 작용한다.
도 27을 참조하면, 각각 관경(Ф)이 15.88 (mm)인, 알루미늄 배관, 동 배관 및 연성 스테인리스 강관의 변형 길이(mm)에 따라 가해지는 힘(N)이 도시된다.
한편, 상기 관경(Ф)이 15.88 (mm)에서 최소 곡률 반경(Rmin)을 측정하면, 동 배관은 85 mm 이며, 연성 스테인리스 강관은 70 mm 이다. 이에 의하면, 상기 연성 스테인리스 강관은, 동 배관보다 작은 곡률 반경(R)을 가지는 것이므로 상기 동 배관에 비해 동등 또는 그 이상으로 휘어질 수 있다.
따라서, 상기 연성 스테인리스 강관은, 상기 동 배관과 동등한 수준으로 곡관을 형성할 수 있기 때문에, 종래의 스테인리스 배관에 비해 성형성이 향상되는 효과가 있다. 이때, 작업자의 벤딩 가능한 힘은, 동 배관 및 알루미늄 배관의 최대 벤딩 하중으로 가정한다. 본 실시예에서 작업자의 벤딩 가능한 힘은 900N일 수 있다.
벤딩성 시험 결과 그래프를 살펴보면, 변형 길이 0~2.5mm 구간에서는 가해지는 힘(N)이 급격히 상승하며, 그 이후 변형 길이에서의 힘은, 점차 기울기가 작아지다가 최대치의 힘(N)으로 점근해 간다.
또한, 상기 벤딩성 시험 결과 그래프에서 최대 벤딩 하중을 비교해 보면, 상기 연성 스테인리스 강관의 최대 벤딩 하중은 750 N이며, 구리 배관 및 알루미늄 배관의 최대 벤딩 하중은 900N 이다. 즉, 상기 연성 스테인리스 강관의 최대 벤딩 하중이 다른 종래의 배관보다 가장 작게 나타난다.
따라서, 작업자는 동 배관 및 알루미늄 배관의 최대 벤딩 하중의 83% 이내의 힘을 사용하여 연성 스테인리스 강관을 휘도록 성형할 수 있다. 결국, 작업자는 상기 동 배관 및 알루미늄 배관을 곡관으로 만들기 위해 가하는 힘보다 적은 힘을 들여 상기 연성 스테인리스 강관을 곡관으로 만들 수 있다.
정리하면, 본 발명의 실시예에 따른 연성 스테인리스 강관은, 종래의 스테인리스 배관뿐만 아니라, 동 배관 및 알루미늄 배관에 비해 성형성이 향상되는 효과가 있다. 따라서, 설치 작업의 용이성도 향상되는 장점이 있다.
<제 2 실시예>
이하에서는 본 발명의 제 2 실시예에 대하여 설명한다. 본 실시예는 신소재 배관으로 구성되는 냉매배관에 있어서 제 1 실시예와 차이점을 가지는 바 차이점을 위주로 설명하며, 제 1 실시예와 동일한 부분에 대하여는 제 1 실시예의 설명과 도면부호를 원용한다.
도 28은 본 발명의 제 2 실시예에 따른 공기 조화기의 구성을 보여주는 냉동 사이클에 관한 선도이다.
[신소재 배관으로 구성되는 냉매배관]
도 28을 참조하면, 본 발명의 제 2 실시예에 따른 공기 조화기(10)의 공조능력은 2.5 kW 이상 3.5 kW 이하를 형성한다. 상기 공기 조화기(10)에는, 냉동 사이클을 순환하는 냉매의 유동을 가이드 하는 냉매 배관(50a)이 포함될 수 있다. 상기 냉매 배관(50a)에는 신소재 배관이 포함될 수 있다. 상기 신소재 배관은 동 배관에 비하여 열전도율이 낮게 형성되므로, 냉매가 상기 냉매 배관(50a)을 유동하는 경우 상기 동 배관을 유동하는 경우보다 열손실이 적게 발생되는 효과가 나타날 수 있다.
[제 1 냉매배관]
상세히, 상기 냉매 배관(50a)에는, 유동 조절밸브(110)의 제 2 포트(112)로부터 상기 매니폴드(130), 즉 실외 열교환기(120)측으로 연장되는 제 1 냉매배관(51a)이 포함된다. 상기 제 1 냉매배관(51a)은 상기 신소재 배관으로 구성될 수 있다.
상기 제 1 냉매배관(51a)에는 냉방운전시 고압의 기상냉매가 유동하고, 난방운전시 저압의 기상냉매가 유동할 수 있다. 상기 제 1 냉매배관(51a)의 외경은 상기 공기 조화기(10)의 공조능력에 기초하여, 12.60~12.90 mm로 형성될 수 있다.
상기 [표 4]를 참조하면, 상기 제 1 냉매배관(51a)의 표준 배관 외경은 12.70mm 이며, 상기 제 1 냉매배관(51a)의 최소두께는, ASME B31.1의 경우 0.40mm, JIS B 8607의 경우 0.20mm이며, 마진을 적용한 실시예의 경우 0.50mm 를 형성할 수 있다.
따라서, 상기한 기준들 중, 상기 제 1 냉매배관(51a)에 적용될 수 있는 한계 두께 값은 JIS B 8607을 기준으로, 0.20mm가 된다. 결국, 상기 제 1 냉매배관(51a)의 내경은 12.30 mm(=12.7-2*0.20) 이하로 형성될 수 있다.
[제 2 냉매배관]
상기 냉매 배관(50a)에는, 실외열교환기(120)로부터 메인 팽창장치(155)로 연장되는 제 2 냉매배관(52a)이 더 포함된다. 상기 제 2 냉매배관(52a)은 상기 신소재 배관으로 구성될 수 있다.
상기 제 2 냉매배관(52a)에는 냉방운전시 고압의 액냉매가 유동하며, 난방운전시 저압의 액 냉매가 유동할 수 있다. 상기 제 2 냉매배관(52a)의 외경은 상기 공기 조화기(10)의 공조능력에 기초하여, 6.25~6.55mm로 형성될 수 있다.
상기 [표 4]를 참조하면, 상기 제 2 냉매배관(52a)의 표준 배관 외경은 6.35mm 이며, 상기 제 2 냉매배관(52a)의 최소두께는, ASME B31.1의 경우 0.30mm, JIS B 8607의 경우 0.10mm이며, 마진을 적용한 실시예의 경우 0.40mm 를 형성할 수 있다.
따라서, 상기한 기준들 중, 상기 제 2 냉매배관(52a)에 적용될 수 있는 한계 두께 값은 JIS B 8607을 기준으로, 0.10mm가 된다. 결국, 상기 제 2 냉매배관(52a)의 내경은 6.15 mm(=6.35-2*0.10) 이하로 형성될 수 있다.
[제 3 냉매배관]
상기 냉매 배관(50a)에는, 상기 메인 팽창장치(155)로부터 제 1 서비스밸브(175)로 연장되는 제 3 냉매배관(53a)이 더 포함된다. 상기 제 3 냉매배관(53a)은 상기 신소재 배관으로 구성될 수 있다.
상기 제 3 냉매배관(53a)에는 냉방 및 난방운전시 고압의 액 냉매가 유동할 수 있다. 상기 제 3 냉매배관(53a)의 외경은 상기 공기 조화기(10)의 공조능력에 기초하여, 6.25~6.55mm로 형성될 수 있다.
상기 [표 4]를 참조하면, 상기 제 3 냉매배관(53a)의 표준 배관 외경은 6.35mm 이며, 상기 제 3 냉매배관(53a)의 최소두께는, ASME B31.1의 경우 0.30mm, JIS B 8607의 경우 0.10mm이며, 마진을 적용한 실시예의 경우 0.40mm 를 형성할 수 있다.
따라서, 상기한 기준들 중, 상기 제 3 냉매배관(53a)에 적용될 수 있는 한계 두께 값은 JIS B 8607을 기준으로, 0.10mm가 된다. 결국, 상기 제 3 냉매배관(53a)의 내경은 6.15 mm(=6.35-2*0.10) 이하로 형성될 수 있다.
[제 4 냉매배관]
상기 냉매 배관(50a)에는, 상기 제 2 서비스밸브(176)로부터 상기 유동 조절밸브(110)의 제 3 포트(113)로 연장되는 제 4 냉매배관(54a)이 더 포함된다. 상기 제 4 냉매배관(54a)은 상기 신소재 배관으로 구성될 수 있다.
상기 제 4 냉매배관(53a)에는 냉방운전시 저압의 기상냉매가 유동하며, 난방운전시 고압의 기상냉매가 유동할 수 있다. 상기 제 4 냉매배관(54a)의 외경은 상기 공기 조화기(10)의 공조능력에 기초하여, 12.60~12.8 mm로 형성될 수 있다.
상기 [표 4]를 참조하면, 상기 제 4 냉매배관(54a)의 표준 배관 외경은 12.70mm 이며, 상기 제 4 냉매배관(54a)의 최소두께는, ASME B31.1의 경우 0.40mm, JIS B 8607의 경우 0.20mm이며, 마진을 적용한 실시예의 경우 0.50mm 를 형성할 수 있다.
따라서, 상기한 기준들 중, 상기 제 4 냉매배관(54a)에 적용될 수 있는 한계 두께 값은 JIS B 8607을 기준으로, 0.20mm가 된다. 결국, 상기 제 4 냉매배관(54a)의 내경은 12.30 mm(=12.7-2*0.20) 이하로 형성될 수 있다.

Claims (21)

  1. 압축기, 실외 열교환기, 메인 팽창장치, 및 상기 압축기와, 상기 실외 열교환기 및 상기 메인 팽창장치를 연결하는 냉매배관이 포함되는 실외기와, 실내 열교환기를 포함하는 실내기 및 상기 실외기와 상기 실내기를 연결하는 연결배관이 포함되는 공기 조화기로서,
    상기 공기 조화기의 냉동능력은 2kW 이상 7kW 이하를 가지고,
    상기 냉매로는 R134a가 사용되며,
    상기 냉매배관은,
    입도면적을 기준으로 1% 이하의 델타 페라이트 기지조직을 가지는 연성 스테인리스 소재로 구성되고,
    상기 냉매배관에는, 상기 압축기로 냉매의 흡입을 가이드 하며 외경이 12.70mm인 흡입배관이 포함되는 공기 조화기.
  2. 제 1 항에 있어서,
    상기 냉매배관에는, 상기 압축기에서 압축된 냉매의 토출을 가이드 하며 외경이 9.52mm인 토출배관이 더 포함되는 공기 조화기.
  3. 제 2 항에 있어서,
    상기 흡입배관의 내경은 12.30mm 이하이며, 상기 토출배관의 내경은 9.20mm 이하인 공기 조화기.
  4. 제 1 항에 있어서,
    상기 냉매배관에는, 상기 압축기에서 압축된 냉매의 토출을 가이드 하며 외경이 7.94mm인 토출배관이 더 포함되는 공기 조화기.
  5. 제 4 항에 있어서,
    상기 흡입배관의 내경은 12.30mm 이하이며, 상기 토출배관의 내경은 7.66mm 이하인 공기 조화기.
  6. 제 1 항에 있어서,
    상기 냉매배관에는, 상기 압축기에서 압축된 냉매의 토출을 가이드 하며 외경이 12.70mm인 토출배관이 더 포함되는 공기 조화기.
  7. 제 6 항에 있어서,
    상기 흡입배관의 내경은 12.30mm 이하이며, 상기 토출배관의 내경은 12.30mm 이하인 공기 조화기.
  8. 압축기, 실외 열교환기, 메인 팽창장치, 및 상기 압축기와, 상기 실외 열교환기 및 상기 메인 팽창장치를 연결하는 냉매배관이 포함되는 실외기와, 실내 열교환기를 포함하는 실내기 및 상기 실외기와 상기 실내기를 연결하는 연결배관이 포함되는 공기 조화기로서,
    상기 공기 조화기의 냉동능력은 2kW 이상 7kW 이하를 가지고,
    상기 냉매로는 R134a가 사용되며,
    상기 냉매배관은,
    입도면적을 기준으로 1% 이하의 델타 페라이트 기지조직을 가지는 연성 스테인리스 소재로 구성되고,
    상기 냉매배관에는, 상기 압축기로 냉매의 흡입을 가이드 하며 외경이 15.88mm인 흡입배관이 포함되는 공기 조화기.
  9. 제 8 항에 있어서,
    상기 냉매배관에는, 상기 압축기에서 압축된 냉매의 토출을 가이드 하며 외경이 7.94mm인 토출배관이 더 포함되는 공기 조화기.
  10. 제 9 항에 있어서,
    상기 흡입배관의 내경은 15.38mm 이하이며, 상기 토출배관의 내경은 7.66mm 이하인 공기 조화기.
  11. 제 8 항에 있어서,
    상기 냉매배관에는, 상기 압축기에서 압축된 냉매의 토출을 가이드 하며 외경이 9.52mm인 토출배관이 더 포함되는 공기 조화기.
  12. 제 11 항에 있어서,
    상기 흡입배관의 내경은 15.38mm 이하이며, 상기 토출배관의 내경은 9.20mm 이하인 공기 조화기.
  13. 제 8 항에 있어서,
    상기 냉매배관에는, 상기 압축기에서 압축된 냉매의 토출을 가이드 하며 외경이 12.70mm인 토출배관이 더 포함되는 공기 조화기.
  14. 제 13 항에 있어서,
    상기 흡입배관의 내경은 15.38mm 이하이며, 상기 토출배관의 내경은 12.30mm 이하인 공기 조화기.
  15. 압축기, 실외 열교환기, 메인 팽창장치, 및 상기 압축기와, 상기 실외 열교환기 및 상기 메인 팽창장치를 연결하는 냉매배관이 포함되는 실외기와, 실내 열교환기를 포함하는 실내기 및 상기 실외기와 상기 실내기를 연결하는 연결배관이 포함되는 공기 조화기로서,
    상기 공기 조화기의 냉동능력은 2kW 이상 7kW 이하를 가지고,
    상기 냉매로는 R134a가 사용되며,
    상기 냉매배관은,
    입도면적을 기준으로 1% 이하의 델타 페라이트 기지조직을 가지는 연성 스테인리스 소재로 구성되고,
    상기 냉매배관에는, 상기 압축기로 냉매의 흡입을 가이드 하며 외경이 9.52mm인 흡입배관이 포함되는 공기 조화기.
  16. 제 15 항에 있어서,
    상기 냉매배관에는, 상기 압축기에서 압축된 냉매의 토출을 가이드 하며 외경이 7.94mm인 토출배관이 더 포함되는 공기 조화기.
  17. 제 16 항에 있어서,
    상기 흡입배관의 내경은 9.20mm 이하이며, 상기 토출배관의 내경은 7.66mm 이하인 공기 조화기.
  18. 제 15 항에 있어서,
    상기 냉매배관에는, 상기 압축기에서 압축된 냉매의 토출을 가이드 하며 외경이 9.52mm인 토출배관이 더 포함되는 공기 조화기.
  19. 제 18 항에 있어서,
    상기 흡입배관의 내경은 9.20mm 이하이며, 상기 토출배관의 내경은 9.20mm 이하인 공기 조화기.
  20. 제 15 항에 있어서,
    상기 냉매배관에는, 상기 압축기에서 압축된 냉매의 토출을 가이드 하며 외경이 12.70mm인 토출배관이 더 포함되는 공기 조화기.
  21. 제 20 항에 있어서,
    상기 흡입배관의 내경은 9.20mm 이하이며, 상기 토출배관의 내경은 12.30mm 이하인 공기 조화기.
PCT/KR2018/000574 2017-03-13 2018-01-11 공기 조화기 WO2018169191A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/493,600 US11486013B2 (en) 2017-03-13 2018-01-11 Air conditioner
CN201890000611.8U CN211146984U (zh) 2017-03-13 2018-01-11 空调机
EP18768655.5A EP3598036B1 (en) 2017-03-13 2018-01-11 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0031381 2017-03-13
KR1020170031381A KR20180104507A (ko) 2017-03-13 2017-03-13 공기 조화기

Publications (1)

Publication Number Publication Date
WO2018169191A1 true WO2018169191A1 (ko) 2018-09-20

Family

ID=63523171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000574 WO2018169191A1 (ko) 2017-03-13 2018-01-11 공기 조화기

Country Status (5)

Country Link
US (1) US11486013B2 (ko)
EP (1) EP3598036B1 (ko)
KR (1) KR20180104507A (ko)
CN (1) CN211146984U (ko)
WO (1) WO2018169191A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180104513A (ko) * 2017-03-13 2018-09-21 엘지전자 주식회사 공기 조화기
KR20180104509A (ko) * 2017-03-13 2018-09-21 엘지전자 주식회사 공기 조화기
KR20180104520A (ko) * 2017-03-13 2018-09-21 엘지전자 주식회사 공기 조화기

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030074232A (ko) 2002-03-08 2003-09-19 스미토모 긴조쿠 고교 가부시키가이샤 내수증기산화성이 우수한 오스테나이트계 스테인레스 강관및 그 제조방법
KR20040100668A (ko) * 2003-05-23 2004-12-02 두산중공업 주식회사 화력 설비에서의 내압을 받는 배관의 최소 두께 결정 방법
KR20130045931A (ko) * 2010-09-29 2013-05-06 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 오스테나이트계 고 Mn 스테인리스 강 및 그 제조 방법과, 그 강을 사용한 부재
WO2013146103A1 (ja) * 2012-03-26 2013-10-03 日立アプライアンス株式会社 冷凍サイクル装置
KR20160028400A (ko) * 2014-09-03 2016-03-11 삼성전자주식회사 공기 조화기 및 그 제어방법
WO2016051606A1 (ja) * 2014-10-03 2016-04-07 三菱電機株式会社 空気調和装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950007792A (ko) 1993-09-04 1995-04-15 이헌조 식기 세척기
JPH10115296A (ja) 1996-10-11 1998-05-06 Sanyo Electric Co Ltd 冷媒圧縮機
EP1162412A4 (en) * 1999-03-02 2003-03-12 Daikin Ind Ltd COOLING DEVICE
JP3750457B2 (ja) 2000-02-04 2006-03-01 三菱電機株式会社 冷凍空調装置
KR100532877B1 (ko) 2002-04-17 2005-12-01 스미토모 긴조쿠 고교 가부시키가이샤 고온강도와 내식성이 우수한 오스테나이트계 스테인레스강및 상기 강으로부터 이루어지는 내열 내압부재와 그제조방법
JP2010151327A (ja) 2007-03-28 2010-07-08 Toshiba Carrier Corp 冷凍サイクル装置
JP2010121190A (ja) 2008-11-21 2010-06-03 Nisshin Steel Co Ltd 高圧水素輸送用オーステナイト系ステンレス鋼溶接管およびその製造方法
IT1403689B1 (it) 2011-02-07 2013-10-31 Dalmine Spa Tubi in acciaio ad alta resistenza con eccellente durezza a bassa temperatura e resistenza alla corrosione sotto tensioni da solfuri.
JPWO2013151043A1 (ja) 2012-04-02 2015-12-17 東芝キヤリア株式会社 冷凍サイクル装置
KR101659186B1 (ko) 2014-12-26 2016-09-23 주식회사 포스코 가요성이 우수한 오스테나이트계 스테인리스강
EP3153784B1 (en) * 2015-10-06 2017-08-23 Daikin Europe N.V. Air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030074232A (ko) 2002-03-08 2003-09-19 스미토모 긴조쿠 고교 가부시키가이샤 내수증기산화성이 우수한 오스테나이트계 스테인레스 강관및 그 제조방법
KR20040100668A (ko) * 2003-05-23 2004-12-02 두산중공업 주식회사 화력 설비에서의 내압을 받는 배관의 최소 두께 결정 방법
KR20130045931A (ko) * 2010-09-29 2013-05-06 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 오스테나이트계 고 Mn 스테인리스 강 및 그 제조 방법과, 그 강을 사용한 부재
WO2013146103A1 (ja) * 2012-03-26 2013-10-03 日立アプライアンス株式会社 冷凍サイクル装置
KR20160028400A (ko) * 2014-09-03 2016-03-11 삼성전자주식회사 공기 조화기 및 그 제어방법
WO2016051606A1 (ja) * 2014-10-03 2016-04-07 三菱電機株式会社 空気調和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3598036A4

Also Published As

Publication number Publication date
EP3598036A4 (en) 2020-12-30
KR20180104507A (ko) 2018-09-21
CN211146984U (zh) 2020-07-31
EP3598036B1 (en) 2024-07-24
US20200103150A1 (en) 2020-04-02
US11486013B2 (en) 2022-11-01
EP3598036A1 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
WO2018169186A1 (ko) 공기 조화기
WO2018182152A1 (ko) 연성 스테인리스 강관
WO2018236021A1 (ko) 공기 조화기
WO2018169185A1 (ko) 공기 조화기
WO2018169183A1 (ko) 공기 조화기
WO2019004546A1 (ko) 가스 히트 펌프 시스템
WO2018169191A1 (ko) 공기 조화기
WO2018169190A1 (ko) 공기 조화기
WO2018169192A1 (ko) 공기 조화기
WO2018169193A1 (ko) 공기 조화기
WO2018169182A1 (ko) 공기 조화기
WO2018169184A1 (ko) 공기 조화기
WO2019066153A1 (ko) 공기 조화기
WO2018074882A1 (ko) 공기 조화기
WO2018236020A1 (ko) 흡수식 칠러
WO2018169189A1 (ko) 공기 조화기
WO2018169188A1 (ko) 공기 조화기
WO2020130232A1 (en) Copper-alloy stainless pipe, air conditioner including the same, and method of manufacturing the same
WO2016105089A1 (ko) 열처리 강재, 내구특성이 우수한 초고강도 성형품 및 그 제조방법
WO2017171178A1 (ko) 스테인리스강 및 상기 스테인리스강으로 이루어지는 배관
WO2016089167A1 (ko) 냉수생성 탱크 및 이를 구비하는 냉수기
WO2019132342A1 (ko) 내충격성이 우수한 열연강판, 강관, 부재 및 그 제조 방법
WO2019203391A1 (ko) 전극 보일러 시스템
WO2018169187A1 (ko) 공기 조화기
WO2016080788A1 (ko) 건조기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018768655

Country of ref document: EP

Effective date: 20191014