WO2018169136A1 - 3레벨 양방향 직류-직류 컨버터 - Google Patents

3레벨 양방향 직류-직류 컨버터 Download PDF

Info

Publication number
WO2018169136A1
WO2018169136A1 PCT/KR2017/007017 KR2017007017W WO2018169136A1 WO 2018169136 A1 WO2018169136 A1 WO 2018169136A1 KR 2017007017 W KR2017007017 W KR 2017007017W WO 2018169136 A1 WO2018169136 A1 WO 2018169136A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
voltage
inductor
switches
current
Prior art date
Application number
PCT/KR2017/007017
Other languages
English (en)
French (fr)
Inventor
최우영
Original Assignee
전북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교산학협력단 filed Critical 전북대학교산학협력단
Publication of WO2018169136A1 publication Critical patent/WO2018169136A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a three-level bidirectional DC-DC converter, and more particularly, to a three-level bidirectional DC-DC converter of a soft-switching operation.
  • the bidirectional DC-DC converter converts a constant DC power into another DC power by a switching operation method of a power semiconductor such as an Insulated Gate Bipolar Transistor (IGBT) or a Metal Oxide Semiconductor Field Effect Transistor (MOSFET).
  • a power semiconductor such as an Insulated Gate Bipolar Transistor (IGBT) or a Metal Oxide Semiconductor Field Effect Transistor (MOSFET).
  • FIG. 1 is a circuit diagram of a two-level bidirectional DC-DC converter according to a conventional embodiment.
  • V L is a low voltage
  • V H is a high voltage higher than the low voltage V L.
  • Power is converted in both directions in accordance with the switching operation of the switches S1 and S2.
  • the voltage of the switch (S1 and S2) in accordance with the switching operation of the switch (S1 and S2) connecting point (A) and the ground (Ground) the point (N) is represented by V H voltage and the zero voltage. Therefore, the bidirectional DC-DC converter shown in FIG. 1 is referred to as a two-level bidirectional DC-DC converter.
  • the two-level bidirectional DC-DC converter has a high voltage stress on the switching element during switching, resulting in switching power loss.
  • FIG. 2 is a circuit diagram of a three-level bidirectional DC-DC converter according to a conventional embodiment.
  • the two capacitors (C1 and C2) voltage is half the voltage V H of each that is, the V H / 2. Accordingly, the voltages of the connection point A of the switches S1 and S2 and the connection point N of the capacitors C1 and C2 according to the switching operations of the switches S1 and S2 are represented by + V H / 2 voltage and 0 voltage. On the other hand, the voltage at the connection point B of the switches S3 and S4 and the connection point N of the capacitors C1 and C2 according to the switching operation of the switches S3 and S4 is represented by -V H / 2 voltage and 0 voltage. . Therefore, the circuit shown in FIG. 2 is referred to as a three-level bidirectional DC-DC converter.
  • the conventional three-level bidirectional DC-DC converter has a feature that the voltage across the switch is reduced by half when each switch is erased compared to the two-level bidirectional DC-DC converter. Due to this feature, the three-level bidirectional DC-DC converter enables the use of power semiconductors with low switch voltage stress and low on-state resistance when conducting. It is characterized by high power conversion efficiency.
  • each switching element has a problem in that switching power loss occurs due to the switching operation of the power semiconductor when conducting. This will be described with reference to FIG. 3.
  • FIG. 3 is an operation waveform diagram corresponding to a switching operation of one switch in the three-level bidirectional DC-DC converter shown in FIG. 2, and is a switching waveform of one switching section of the switch S2 in the three-level bidirectional DC-DC converter. That is, the waveform of the inductor current i L1 , the switch current i S2 , and the switch voltage V S2 are shown.
  • the three-level bidirectional DC-DC converter of the operation method is called a three-level bidirectional DC-DC converter of the hard switching operation method.
  • An object of the present invention is to provide a three-level bidirectional DC-DC converter of a soft switching operation method that reduces switching power loss without using a power semiconductor circuit.
  • the three-level bidirectional DC-DC converter includes a first voltage section for generating a low voltage, a second voltage section for generating a high voltage higher than the low voltage, four switches connected in series, and at least one inductor, and selective switching of each switch.
  • a three-level switch unit for generating a three-level voltage in operation, and an LC resonant element, and among the four switches, a resonant current is applied to a switch connected in series when the first or second switch is connected in series.
  • a second resonator including a first resonator and an LC resonator, the second resonator configured to apply a resonant current to the switches connected in series when the third switch or the fourth switch connected in series is conducted.
  • the first resonator includes a resonant inductor having one end connected to a connection point of the first and second switches, a positive polarity connected to the other end of the inductor, and a connection point of the second and third switches connected to the second voltage part. And a resonant capacitor having a negative polarity connected to the node.
  • the second resonator includes a resonant inductor having one end connected to a connection point of the third and fourth switches, a positive polarity of a resonant capacitor connected to the other end of the inductor, and a connection point between the second and third switches and the second switch. It includes a resonant capacitor connected to the negative polarity of the resonant capacitor at the node connecting the voltage portion.
  • the four switches operate in a pulse width modulation scheme with respect to a constant switching frequency, the first switch and the second switch S2 operate complementarily to each other, and the third switch and the fourth switch complement each other. It works as an enemy.
  • the gate signals of the second switch and the third switch have a 180 degree phase difference
  • the gate signals of the first switch and the fourth switch have a 180 degree phase difference
  • the three-level bidirectional DC-DC converter When the low voltage is input to the first voltage part and the high voltage is output to the second voltage part, the three-level bidirectional DC-DC converter according to the embodiment of the present invention operates in four modes, In the first mode, the first switch and the fourth switch are erased, the second switch and the third switch are conducted, and in the second mode, the second switch and the third switch are erased, and the first switch and The fourth switch is turned on, the first switch and the third switch are turned off in a third mode, the second switch and the fourth switch are turned on, and the second switch and the fourth switch are turned on in a fourth mode. The switch is erased and the first switch and the third switch are conducted.
  • the three-level bidirectional DC-DC converter When the high voltage is input to the second voltage part and the low voltage is output to the first voltage part, the three-level bidirectional DC-DC converter according to the embodiment of the present invention operates in four modes, In the first mode, the second switch and the third switch are erased and the first switch and the fourth switch are conducted. In the second mode, the first switch and the fourth switch are erased, and the second switch and The third switch is turned on, the second switch and the fourth switch are turned off in a third mode, and the first switch and the third switch are turned on, and the first switch and the third switch are turned on in a fourth mode. Is erased and the second switch and the fourth switch are conducted.
  • FIG. 1 is a circuit diagram of a two-level bidirectional DC-DC converter according to a conventional embodiment.
  • FIG. 2 is a circuit diagram of a three-level bidirectional DC-DC converter according to a conventional embodiment.
  • FIG. 3 is an operation waveform diagram corresponding to a switching operation of one switch in FIG. 2.
  • FIG. 4 is a circuit diagram of a three-level bidirectional DC-DC converter according to an embodiment of the present invention.
  • 5 to 8 are equivalent circuit diagrams for respective modes during a boost operation in a three-level bidirectional DC-DC converter according to an exemplary embodiment of the present invention.
  • 9 to 12 are equivalent circuit diagrams for respective modes during the step-down operation in the three-level bidirectional DC-DC converter according to the embodiment of the present invention.
  • FIG. 13 is an operation waveform diagram of a switch in a three-level bidirectional DC-DC converter according to an exemplary embodiment of the present invention.
  • a three-level bidirectional DC-DC converter may include a first voltage unit 10, a second voltage unit 20, a three-level switch unit 30, and a first resonator unit ( 40 and the second resonator 50.
  • the first voltage unit 10 generates a voltage lower than the second voltage unit 20, that is, a low voltage V L
  • the second voltage unit 20 generates a voltage higher than the first voltage unit 10, that is, a high voltage.
  • V H Produces (V H ).
  • the three-level bidirectional DC-DC converter according to the embodiment of the present invention operates in a boost type
  • the first voltage unit 10 becomes an input terminal and the second voltage unit 20 becomes an output terminal.
  • the three-level bidirectional DC-DC converter according to the embodiment of the present invention operates in the step-down type
  • the second voltage unit 20 becomes an input terminal and the first voltage unit 10 becomes an output terminal.
  • the first voltage unit 10 is configured by one capacitor C 0
  • the second voltage unit 20 is configured by two capacitors C 1 and C 2 connected in series.
  • the present invention is not limited to this.
  • the three-level switch unit 30 includes four switches connected in series and at least one inductor, and generates a three-level voltage by the selective switching operation of each switch.
  • the three-level switch unit 30 includes four switches S1, S2, S3, and S4, which are sequentially connected in series, and the contact point A and the first voltage unit 10 of the switch S1 and the switch S2.
  • an inductor (L 1 ) connected to generate a voltage of 0V, + V H / 2, -V H / 2.
  • All the switches S1 to S4 operate in a pulse-width modulation method with respect to a constant switching frequency.
  • the switch S1 and the switch S2 are complementary to each other, and the switch S3 and the switch S4 are also complementary to each other.
  • the gate signal (Gating Signal) of the switch S2 and the switch S3 has a 180 degree phase difference, and the gate signals of the switch S1 and the switch S4 also have a 180 degree phase difference.
  • the voltages of the capacitors C 1 and C 2 are each half of the voltage V H. Therefore, according to the switching operation of the switch S1 and the switch S2, the voltage of the connection point A of the switches S1 and S2 is represented by a voltage of + V H / 2 and the connection point N of the capacitors C 1 and C 2 . The voltage at) is represented by zero voltage. On the other hand, the voltage of the connection point B of the switches S3 and S4 according to the switching operation of the switch S3 and the switch S4 is represented by -V H / 2 voltage and the connection point of the capacitors C 1 and C 2 ( The voltage at N) is represented by zero voltage.
  • the first resonator 40 is composed of an LC resonant element. When the switch S1 or the switch S2 is connected, the first resonator 40 applies a resonant current to the switch S1 or the switch S2 that is connected in series and conducts a switch S1. ) Or switch S2 causes soft switching.
  • the first resonator 40 has a resonant inductor L r1 having one end connected to the connection point A of the switches S1 and S2, and a positive polarity is connected to the other end of the inductor L r1 , and the switch (
  • the resonant capacitor C r1 is connected to a node having a negative polarity at a node between the connection point S2 and S3 and the connection point N of the capacitors C 1 and C 2 .
  • the second resonator 50 is composed of an LC resonant element. When the switch S3 or the switch S4 is connected, the second resonator 50 applies a resonant current to the switch S3 or the switch S4 that is connected in series and conducts a switch S3. Or switch S4 to soft switch.
  • the second resonator 50 has a resonant inductor L r2 having one end connected to the connection point B of the switches S3 and S4, and a positive polarity is connected to the other end of the inductor L r2 , and the switch ( And a capacitor C r2 , which is a resonant capacitor having a negative polarity connected to a node between the connection point of S2 and S3 and the connection point N of the capacitors C 1 and C 2 .
  • a two-way DC-DC converter includes a first voltage section 10 in the V L voltage is input, a second voltage unit 20 in the V H voltage step-up at the time of output (Step -Up) and the main control switch (S2) and switch (S3).
  • the three-level bidirectional DC-DC converter according to the embodiment of the present invention is stepped down. It operates as a (step-down) converter, in which the main switches are switches S1 and S4.
  • FIGS. 5 to 8 are equivalent circuit diagrams for respective modes during a boost operation in a three-level bidirectional DC-DC converter according to an exemplary embodiment of the present invention.
  • the three-level bidirectional DC-DC converter according to an embodiment of the present invention has the following four modes of operation when the step-up operation.
  • Mode 1 (see Fig. 5): The switch S1 and the switch S4 are erased, and the switch S2 and the switch S3 are conducted. Accordingly, the inductor current i L1 sequentially flows through the inductor L 1 , the second switch S2, the third switch S3, and the capacitor C 0 . In this case, the series resonance is generated in the first resonator 40 through the inductor L r1 , the switch S2, and the capacitor C r1 . In the second resonator 50, series resonance is generated through the inductor L r2 , the capacitor C r2 , and the switch S3.
  • the current i S2 of the switch S2 flows together with the current i L1 flowing through the inductor L 1 and the inductor current i Lr1 of the first resonator 40.
  • the current i S3 of the switch S3 flows with the current i L1 flowing in the inductor L 1 and the inductor current i Lr2 of the second resonator 50.
  • Mode 3 (see Fig. 7): The switch S1 and the switch S3 are erased, and the switch S2 and the switch S4 are conducted. Inductor current i L1 flows through inductor L 1 , switch S2, capacitor C 2 , switch S4, and capacitor C 0 . In this case, the series resonance is generated in the first resonator 40 through the inductor L r1 , the switch S2, and the capacitor C r1 . In the second resonator 50, series resonance is generated through the inductor L r2 , the capacitor C 2 , the capacitor C r2 , and the switch S4.
  • the current i S2 of the switch S1 flows together.
  • the current i S3 of the switch S3 flows with the current i L1 flowing through the inductor L 1 and the inductor current i Lr2 of the second resonator 50.
  • FIGS. 9 to 12 are equivalent circuit diagrams for respective modes during the step-down operation in the three-level bidirectional DC-DC converter according to the embodiment of the present invention.
  • the three-level bidirectional DC-DC converter according to an embodiment of the present invention has the following four operation modes when the step-down operation.
  • Mode 1 (see Fig. 9): The switch S2 and the switch S3 are erased, and the switch S1 and the switch S4 are conducted. Inductor current i L1 flows through inductor L 1 , capacitor C 0 , switch S4, capacitor C 2 , capacitor C 1 , and switch S1. In this case, the series resonance is generated in the first resonator 40 through the inductor L r1 , the capacitor C r1 , the capacitor C 1 , and the switch S1. In the second resonator 50, series resonance occurs through the inductor L r2 , the switch S4, the capacitor C 2 , and the capacitor C r2 .
  • Mode 2 (see Fig. 10): The switch S1 and the switch S4 are erased, and the switch S2 and the switch S3 are conducted. Inductor current i L1 flows through inductor L 1 , capacitor C 0 , switch S2 and switch S3. In this case, the first resonance unit 40 is in a series resonance is generated through the inductor (Lr1 i), the capacitor (C r1) and a switch (S2). In the second resonator 50, series resonance is generated through the inductor L Lr2 , the switch S3, and the capacitor Cr r2 .
  • Mode 3 (see Fig. 11): The switch S2 and the switch S4 are erased, and the switch S1 and the switch S3 are conducted. Inductor current i L1 flows through inductor L 1 , capacitor C 0 , switch S3, capacitor C 1 , and switch S1. In this case, in the first resonator 40, series resonance is generated through the inductor i Lr1 , the capacitor C r1 , the capacitor C 1 , and the switch S1. In the second resonator 50, series resonance is generated through the inductor L Lr2 , the switch S3, and the capacitor Cr r2 .
  • the current i S3 of the switch S3 the current i L1 flowing in the inductor L 1 and the inductor current i Lr2 of the second resonator 50 flow together.
  • Mode 4 (see Fig. 12): The switch S1 and the switch S3 are erased, and the switch S2 and the switch S4 are conducted. Inductor current i L1 flows through inductor L 1 , capacitor C 0 , switch S4, capacitor C 2 , and switch S2. At this time, the series resonance is generated in the first resonator through the inductor i Lr1 , the capacitor C r1 , and the switch S2. In the second resonator 50, series resonance is generated through the inductor L Lr2 , the switch S4, the capacitor C 2 , and the capacitor C r2 .
  • the current i S2 of the switch S2 flows together with the current i L1 flowing in the inductor L 1 and the inductor current i Lr1 of the first resonator unit.
  • the current i S4 of the switch S4 the current i L1 flowing in the inductor L 1 and the inductor current i Lr2 of the second resonator 50 flow together.
  • the three-level bidirectional DC-DC converter switches each during the step-up and step-down operation through two resonators 40 and 50 formed of the same LC resonant circuit elements. to S4) the inductor current of each resonator unit (40, 50) due to the series resonance of the LC resonance element (i Lr1 Or i Lr2) to flow to the respective switches with the inductor current (L 1).
  • FIG. 13 is an operation waveform diagram of one switch in a three-level bidirectional DC-DC converter according to an exemplary embodiment of the present invention, in which switch S2 is taken as an example.
  • (a) is the voltage V S2 of the switch S2
  • (b) is the inductor current i L1 when the switch S2 is conducting
  • (c) is the switch S2 conducting and the inductor current (i Lr1) at the time
  • (d) is the current (i S2) of the switch (S2).
  • the inductor current i L1 and the inductor current i Lr1 are injected together into the switch S2.
  • the current i S2 of the switch S2 becomes a negative current at the moment of conduction, so that the switch It flows through the body diode of S2.
  • the voltage V S2 across the switch S2 becomes a zero voltage, so that the switch S2 performs zero voltage switching, so that the three-level bidirectional DC-DC converter performs a soft switching operation.
  • the three-level bidirectional DC-DC converter according to an exemplary embodiment of the present invention may be used in a power supply device or a power device such as a solar power conversion device and an energy storage device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

본 발명은 저전압을 생성하는 제1 전압부, 상기 저전압보다 높은 고전압을 생성하는 제2 전압부, 직렬 연결된 4개의 스위치 및 적어도 하나의 인덕터를 포함하며, 각 스위치의 선택적 스위칭 동작으로 3레벨의 전압을 생성하는 3레벨 스위치부, LC 공진 소자로 구성되고 상기 4개의 스위치 중 직렬 연결된 제1 스위치 또는 제2 스위치 도통 시 직렬 공진하여 도통된 스위치로 공진 전류를 인가하는 제1 공진부, 그리고 LC 공진 소자로 구성되고, 상기 4개의 스위치 중 직렬 연결된 제3 스위치 또는 제4 스위치 도통 시 직렬 공진하여 도통된 스위치로 공진 전류를 인가하는 제2 공진부를 포함하는 3레벨 양방향 직류-직류 컨버터에 관한 것이다.

Description

3레벨 양방향 직류-직류 컨버터
본 발명은 3레벨 양방향 직류-직류 컨버터에 관한 것으로, 구체적으로는, 소프트 스위칭(soft-switching) 동작 방식의 3레벨 양방향 직류-직류 컨버터에 관한 것이다.
양방향 직류-직류 컨버터는 IGBT (Insulated Gate Bipolar Transistor) 혹은 MOSFET (Metal Oxide Semiconductor Field Effect Transistor)과 같은 전력용 반도체의 스위칭 동작 방식에 의하여 일정 직류 전력을 다른 직류 전력으로 변환한다.
이러한 양방향 직류-직류 컨버터의 일 예를 도 1을 참고로 하여 설명한다. 도 1은 종래의 실시 예에 따른 2레벨(Two-level) 양방향 직류-직류 컨버터의 회로도이다. 도 1에서 VL은 저전압(Low Voltage)이고, VH는 저전압(VL)보다 높은 고전압(High Voltage)이다. 스위치(S1과 S2)의 스위칭 동작에 따라서 양방향으로 전력이 변환된다. 그리고 스위치(S1과 S2)의 스위칭 동작에 따른 스위치(S1과 S2)의 연결점(A)와 그라운드 (Ground) 지점(N)의 전압은 VH 전압과 0 전압으로 나타난다. 따라서 도 1에 도시된 양방향 직류-직류 컨버터를 2레벨 양방향 직류-직류 컨버터로 일컫는다.
그런데 이러한 2레벨 양방향 직류-직류 컨버터는 스위칭 시 스위칭 소자에 걸리는 전압 스트레스가 높아 스위칭 전력 손실이 발생한다.
이러한 이유로 2레벨 양방향 직류-직류 컨버터보다 스위칭 소자에 걸리는 전압 스트레스를 낮출 수 있는 특징을 가지는 3레벨 양방향 직류-직류 컨버터가 제안되었으며, 그 일 예를 도 2를 참조로 하여 설명한다. 도 2는 종래의 실시 예에 따른 3레벨 양방향 직류-직류 컨버터의 회로도이다.
도 2에 도시된 양방향 직류-직류 컨버터는 네 개의 스위치(S1, S2, S3, S4)가 직렬로 연결되고, 두 개의 커패시터(C1, C2)가 직렬로 연결된다. 스위치(S1과 S2)의 연결점(A)에 인덕터(L1)가 연결되고, 스위치(S3과 S4)의 연결점 (B)에 저전압(VL)의 그라운드가 연결된다. 그리고 스위치(S2과 S3)의 연결점은 커패시터(C1과 C2)의 연결점(N)과 연결된다.
이러한 연결 구조에 의해, 두 커패시터(C1과 C2)의 전압은 각각 VH 전압의 절반 즉, VH/2가 된다. 따라서 스위치(S1과 S2)의 스위칭 동작에 따른 스위치(S1과 S2)의 연결점(A)와 커패시터(C1과 C2)의 연결점(N)의 전압은 +VH/2전압과 0 전압으로 나타난다. 반면, 스위치(S3과 S4)의 스위칭 동작에 따른 스위치(S3과 S4)의 연결점(B)와 커패시터(C1과 C2)의 연결점(N)의 전압은 -VH/2전압과 0 전압으로 나타난다. 따라서 도 2에 도시된 회로를 3레벨 양방향 직류-직류 컨버터로 일컫는다.
이러한 종래의 3레벨 양방향 직류-직류 컨버터는 2레벨 양방향 직류-직류 컨버터에 비하여 각 스위치가 소거 시, 스위치 양단에 걸리는 전압이 절반으로 줄어드는 특징을 지니고 있다. 이러한 특징으로 인하여 3레벨 양방향 직류-직류 컨버터는 스위치 내압 (Voltage Stress)이 낮고 도통 시 도통 저항 (On-State Resistance)이 낮은 전력용 반도체의 사용을 가능하게 하여, 2레벨 양방향 직류-직류 컨버터보다 높은 전력 변환 효율(Power Conversion Efficiency)을 지니는 특징을 지닌다.
하지만 종래의 3레벨 양방향 직류-직류 컨버터에서 각 스위칭 소자들은 도통 시, 전력용 반도체의 스위칭 동작으로 인하여 스위칭 전력 손실이 발생되는 문제를 지니고 있다. 이를 도 3을 참조로 설명한다.
도 3은 도 2에 도시된 3레벨 양방향 직류-직류 컨버터에서 하나의 스위치의 스위칭 동작에 대응한 동작 파형도로서, 3레벨 양방향 직류-직류 컨버터에서 스위치(S2)의 한 스위칭 구간에서의 스위칭 파형들 즉, 인덕터 전류(iL1)의 파형, 스위치 전류(iS2), 스위치 전압(VS2)을 나타낸다.
스위치(S2)가 도통 시 인덕터 전류(iL1)가 스위치(S2)로 주입되고, 스위치(S2)에 주입된 인덕터 전류(iL1)는 스위치(S2) 양단의 전압(VS2)과 겹치게 되면서 스위칭 전력 손실이 발생하게 된다. 이러한 동작 방식의 3레벨 양방향 직류-직류 컨버터를 하드 스위칭(Hard Switching) 동작 방식의 3레벨 양방향 직류-직류 컨버터라고 한다.
이러한 3레벨 양방향 직류-직류 컨버터의 문제를 해결하기 위하여, 종래에는 별도의 스위칭 방식의 전력용 반도체 회로를 추가하여 스위칭 전력 손실을 줄이는 연구가 이루어지고 있다.
그러나, 추가적인 스위칭 방식의 전력용 반도체 회로는 제작이 복잡하고, 생산 단가가 높으며, 수율이 낮아지는 단점을 지니며, 스위칭 동작으로 인하여 추가적인 스위칭 전력 손실이 발생함으로써 전력 변환 효율이 감소되는 단점을 지닌다.
본 발명이 해결하고자 하는 과제는 전력용 반도체 회로를 이용하지 않으면서 스위칭 전력 손실을 줄이는 소프트 스위칭 동작 방식의 3레벨 양방향 직류-직류 컨버터를 제공하는 것이다.
상기 과제 이외에도 구체적으로 언급되지 않은 다른 과제를 달성하는 데 본 발명에 따른 실시 예가 사용될 수 있다.
상기 과제를 해결하기 위한 본 발명의 실시 예에 따르면 소프트 스위칭 동작 방식의 3레벨 양방향 직류-직류 컨버터가 제공된다. 이 3레벨 양방향 직류-직류 컨버터는 저전압을 생성하는 제1 전압부, 상기 저전압보다 높은 고전압을 생성하는 제2 전압부, 직렬 연결된 4개의 스위치 및 적어도 하나의 인덕터를 포함하며, 각 스위치의 선택적 스위칭 동작으로 3레벨의 전압을 생성하는 3레벨 스위치부, LC 공진 소자로 구성되고, 상기 4개의 스위치 중 직렬 연결된 제1 스위치 또는 제2 스위치 도통 시 직렬 공진하여 도통된 스위치로 공진 전류를 인가하는 제1 공진부, 그리고 LC 공진 소자로 구성되고, 상기 4개의 스위치 중 직렬 연결된 제3 스위치 또는 제4 스위치 도통 시 직렬 공진하여 도통된 스위치로 공진 전류를 인가하는 제2 공진부를 포함한다.
상기 제1 공진부는 상기 제1 및 제2 스위치의 연결점에 일단이 연결된 공진 인덕터와, 상기 인덕터의 타단에 (+) 극성이 연결되고 상기 제2 및 제3 스위치의 연결점과 상기 제2 전압부를 연결하는 노드에 (-) 극성이 연결된 공진 커패시터를 포함한다.
상기 제2 공진부는 상기 제3 및 제4 스위치의 연결점에 일단이 연결된 공진 인덕터와, 상기 인덕터의 타단에 공진 커패시터의 (+) 극성이 연결되고 상기 제2 및 제3 스위치의 연결점과 상기 제2 전압부를 연결하는 노드에 공진 커패시터의 (-) 극성이 연결된 공진 커패시터를 포함한다.
상기 4개의 스위치는 일정한 스위칭 주파수에 대하여 펄스폭 변조 방식으로 동작하며, 상기 제1 스위치와 상기 제2 스위치(S2)가 서로 상보적으로 동작하고, 상기 제3 스위치와 상기 제4 스위치가 서로 상보적으로 동작한다.
상기 제2 스위치와 제3 스위치의 게이트 신호는 180도 위상 차이를 가지고, 상기 제1 스위치와 제4 스위치의 게이트 신호는 180도 위상 차이를 가진다.
상기 제1 전압부에 저전압이 입력되고 상기 제2 전압부에 고전압이 출력되는 승압형으로 동작하는 경우에, 본 발명의 실시 예에 따른 3레벨 양방향 직류-직류 컨버터는 4가지 모드로 동작하며, 제1 모드 시 상기 제1 스위치와 상기 제4 스위치는 소거되고, 상기 제2 스위치와 상기 제3 스위치가 도통되며, 제2 모드 시 상기 제2 스위치와 상기 제3 스위치은 소거되고, 상기 제1 스위치과 상기 제4 스위치가 도통되며, 제3 모드 시 상기 제1 스위치와 상기 제3 스위치는 소거되고, 상기 제2 스위치와 상기 제4 스위치가 도통되며, 제4 모드 시 상기 제2 스위치와 상기 제4 스위치는 소거되고, 상기 제1 스위치와 상기 제3 스위치가 도통된다.
상기 제2 전압부에 고전압이 입력되고 상기 제1 전압부에 저전압이 출력되는 강압형으로 동작하는 경우에, 본 발명의 실시 예에 따른 3레벨 양방향 직류-직류 컨버터는 4가지 모드로 동작하며, 제1 모드 시 상기 제2 스위치와 상기 제3 스위치는 소거되고 상기 제1 스위치와 상기 제4 스위치가 도통되며, 제2 모드 시 상기 제1 스위치와 상기 제4 스위치는 소거되고 상기 제2 스위치와 상기 제3 스위치가 도통되며, 제3 모드 시 상기 제2 스위치와 상기 제4 스위치는 소거되고 상기 제1 스위치와 상기 제3 스위치가 도통되며, 제4 모드 시 상기 제1 스위치와 상기 제3 스위치는 소거되고 상기 제2 스위치와 상기 제4 스위치가 도통된다.
본 발명의 실시 예에 따르면, 종래의 3레벨 양방향 직류-직류 컨버터의 스위칭 전력 손실 문제를 해결함으로써, 3레벨 양방향 직류-직류 컨버터가 사용되는 전력 변환 응용 장치의 전력 변환 효율을 개선할 수 있다.
또한, 본 발명의 실시 예에 따르면, 스위칭 전력 손실 문제를 해결하기 위하여 간단한 수동소자를 이용함으로써, 제작이 용이하고 생산 단가가 낮으며, 수율을 높일 수 있다.
도 1은 종래의 실시 예에 따른 2레벨 양방향 직류-직류 컨버터의 회로도이다.
도 2는 종래의 실시 예에 따른 3레벨 양방향 직류-직류 컨버터의 회로도이다.
도 3은 도 2에서 하나의 스위치의 스위칭 동작에 대응한 동작 파형도이다.
도 4는 본 발명의 실시 예에 따른 3레벨 양방향 직류-직류 컨버터의 회로도이다.
도 5 내지 도 8은 본 발명의 실시 예에 따른 3레벨 양방향 직류-직류 컨버터에서 승압형 동작 시 각 모드에 따른 등가 회로도이다.
도 9 내지 도 12는 본 발명의 실시 예에 따른 3레벨 양방향 직류-직류 컨버터에서 강압형 동작 시 각 모드에 따른 등가 회로도이다.
도 13은 본 발명의 실시 예에 따른 3레벨 양방향 직류-직류 컨버터에서 하나의 스위치에서의 동작 파형도이다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시 예에 대해 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며 명세서 전체에서 동일 또는 유사한 구성요소에 대해서는 동일한 도면부호가 사용되었다. 또한, 널리 알려져 있는 공지기술의 경우 그 구체적인 설명은 생략한다.
본 명세서에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "…부", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
이하에서는 첨부한 도면을 참조로 하여 본 발명의 실시 예에 따른 3레벨 양방향 직류-직류 컨버터를 설명한다.
도 4는 본 발명의 실시 예에 따른 3레벨 양방향 직류-직류 컨버터의 회로도이다. 도 4를 참고하면, 본 발명의 실시 예에 따른 3레벨 양방향 직류-직류 컨버터는 제1 전압부(10), 제2 전압부(20), 3레벨 스위치부(30), 제1 공진부(40) 및 제2 공진부(50)를 포함한다.
제1 전압부(10)는 제2 전압부(20)보다 낮은 전압 즉, 저전압(VL)을 생성하고, 제2 전압부(20)는 제1 전압부(10)보다 높은 전압 즉, 고전압(VH)을 생성한다. 본 발명의 실시 예에 따른 3레벨 양방향 직류-직류 컨버터가 승압형으로 동작하는 경우에는 제1 전압부(10)가 입력단이 되고, 제2 전압부(20)가 출력단이 된다. 그리고 본 발명의 실시 예에 따른 3레벨 양방향 직류-직류 컨버터가 강압형으로 동작하는 경우에는 제2 전압부(20)가 입력단이 되고, 제1 전압부(10)가 출력단이 된다.
도 4에서는 일 예로, 제1 전압부(10)가 하나의 커패시터(C0)로 구성되고, 제2 전압부(20)가 직렬 연결된 2개의 커패시터(C1, C2)로 구성된 것으로 하였지만, 본 발명은 이에 한정되지 않는다.
3레벨 스위치부(30)는 직렬 연결된 4개의 스위치 및 적어도 하나의 인덕터를 포함하며, 각 스위치의 선택적 스위칭 동작으로 3레벨의 전압을 생성한다. 일 예로, 3레벨 스위치부(30)는 순차적으로 직렬 연결된 4개의 스위치(S1, S2, S3, S4) 및, 스위치(S1)와 스위치(S2)의 접점(A)과 제1 전압부(10)에 연결된 인덕터(L1)를 포함하며, 0V, +VH/2, -VH/2의 전압을 생성한다.
모든 스위치(S1 내지 S4)는 일정한 스위칭 주파수 (Switching Frequency)에 대하여 펄스폭 변조 (Pulse-Width Modulation) 방식으로 동작한다. 그리고 스위치(S1)과 스위치(S2)는 서로 상보적(Complementary)으로 동작하고, 스위치(S3)과 스위치(S4)도 서로 상보적으로 동작한다. 또한 스위치(S2)와 스위치(S3)의 게이트 신호(Gating Signal)는 180 도 위상 (Phase) 차이를 지니고, 마찬가지로 스위치(S1)과 스위치(S4)의 게이트 신호 또한 180 도 위상 차이를 갖는다.
커패시터(C1, C2)의 전압은 각각 VH 전압의 절반이 된다. 따라서 스위치(S1)와 스위치(S2)의 스위칭 동작에 따라서 스위치(S1, S2)의 연결점(A)의 전압은 +VH/2 전압으로 나타나고, 커패시터(C1, C2)의 연결점(N)에서의 전압은 0 전압으로 나타난다. 반면, 스위치(S3)과 스위치(S4)의 스위칭 동작에 따른 스위치(S3, S4)의 연결점(B)의 전압은 - VH/2 전압으로 나타나고, 커패시터(C1, C2)의 연결점(N)에서의 전압은 0 전압으로 나타난다.
제1 공진부(40)는 LC 공진 소자로 구성되고, 스위치(S1) 또는 스위치(S2) 도통 시 직렬 공진하여 도통된 스위치(S1) 또는 스위치(S2)로 공진 전류를 인가하여, 스위치(S1) 또는 스위치(S2)가 소프트 스위칭하게 한다. 예컨대, 제1 공진부(40)는 스위치(S1, S2)의 연결점(A)에 일단이 연결된 공진 인덕터(Lr1)와, 인덕터(Lr1)의 타단에 (+) 극성이 연결되고 스위치(S2, S3)의 연결점과 커패시터(C1, C2)의 연결점(N) 간의 노드에 (-) 극성이 연결된 공진 커패시터(Cr1)를 포함한다.
제2 공진부(50)는 LC 공진 소자로 구성되고, 스위치(S3) 또는 스위치(S4) 도통 시 직렬 공진하여 도통된 스위치(S3) 또는 스위치(S4)로 공진 전류를 인가하여, 스위치(S3) 또는 스위치(S4)가 소프트 스위칭하게 한다. 예컨대, 제2 공진부(50)는 스위치(S3, S4)의 연결점(B)에 일단이 연결된 공진 인덕터(Lr2)와, 인덕터(Lr2)의 타단에 (+) 극성이 연결되고 스위치(S2, S3)의 연결점과 커패시터(C1, C2)의 연결점(N) 간의 노드에 (-) 극성이 연결된 공진 커패시터인 커패시터(Cr2)를 포함한다.
이러한 본 발명의 실시 예에 따른 3레벨 양방향 직류-직류 컨버터는 제1 전압부(10)에 VL 전압이 입력되고, 제2 전압부(20)에서 VH 전압을 출력 시에 승압형 (Step-Up) 컨버터로 동작하며, 이때 주제어 스위치(Main Control Switch)는 스위치(S2)와 스위치(S3)이다. 반면, 제2 전압부(20)에 VH 전압이 입력되고, 제1 전압부(10)에서 VL 전압을 출력 시에, 본 발명의 실시 예에 따른 3레벨 양방향 직류-직류 컨버터는 강압형(Step-Down) 컨버터로 동작하며, 이때 주제어 스위치는 스위치(S1)와 스위치(S4)이다.
이하에서는 도 5 내지 도 8을 참고하여 본 발명의 실시 예에 따른 3레벨 양방향 직류-직류 컨버터에서의 승압형 동작을 설명한다. 도 5 내지 도 8은 본 발명의 실시 예에 따른 3레벨 양방향 직류-직류 컨버터에서 승압형 동작 시 각 모드에 따른 등가 회로도이다.
도 5 내지 도 8에 도시된 바와 같이, 본 발명의 실시 예에 따른 3레벨 양방향 직류-직류 컨버터가 승압형 동작 시, 다음 네 가지 동작 모드를 지닌다.
(1) 모드 1(도 5 참조): 스위치(S1)와 스위치(S4)는 소거되고, 스위치(S2)와 스위치(S3)가 도통된다. 이에 따라 인덕터 전류(iL1)는 순차적으로 인덕터(L1), 제2 스위치(S2), 제3 스위치(S3) 및 커패시터(C0)를 통하여 흐르게 된다. 이때, 제1 공진부(40)에서는 인덕터(Lr1), 스위치(S2)와 커패시터(Cr1)을 통하여 직렬 공진 (Series Resonance)이 발생된다. 그리고, 제2 공진부(50)에서는 인덕터(Lr2), 커패시터(Cr2)와 스위치(S3)를 통하여 직렬 공진이 발생된다. 이에 따라, 스위치(S2)의 전류(iS2)는 인덕터(L1)에 흐르는 전류(iL1)와 제1 공진부(40)의 인덕터 전류(iLr1)가 함께 흐른다. 또한 스위치(S3)의 전류(iS3)은 인덕터(L1)에 흐르는 전류(iL1)와 제2 공진부(50)의 인덕터 전류(iLr2)가 함께 흐른다.
(2) 모드 2(도 6 참조): 스위치(S2)와 스위치(S3)는 소거되고, 스위치(S1)와 스위치(S4)가 도통된다. 인덕터 전류(iL1)는 순차적으로 인덕터(L1), 스위치(S1), 커패시터(C1), 커패시터(C2), 스위치(S4) 및 커패시터(C0)를 통하여 흐르게 된다. 이때, 제1 공진부(40)에서는 인덕터(Lr1), 스위치(S1), 커패시터(C1), 커패시터(Cr1)을 통하여 직렬 공진이 발생된다. 그리고 제2 공진부(50)에서는 인덕터(Lr2), 커패시터(C2), 커패시터(Cr2) 및 스위치(S4)를 통하여 직렬 공진이 발생된다. 스위치(S1)의 전류(iS1)은 인덕터(L1)에 흐르는 전류(iL1)와 제1 공진부(40)의 인덕터 전류(iLr1)가 함께 흐른다. 스위치(S4)의 전류(iS4)는 인덕터(L1)에 흐르는 전류(iL1)와 제2 공진부(50)의 인덕터 전류(ir2)가 함께 흐른다.
(3) 모드 3(도 7 참조): 스위치(S1)와 스위치(S3)는 소거되고, 스위치(S2)와 스위치(S4)가 도통된다. 인덕터 전류(iL1)는 인덕터(L1), 스위치(S2), 커패시터(C2), 스위치(S4) 및 커패시터(C0)를 통하여 흐르게 된다. 이때, 제1 공진부(40)에서는 인덕터(Lr1), 스위치(S2)와 커패시터(Cr1)을 통하여 직렬 공진이 발생된다. 그리고 제2 공진부(50)에서는 인덕터(Lr2), 커패시터(C2), 커패시터(Cr2)와 스위치(S4)를 통하여 직렬 공진이 발생된다. 스위치(S2)의 전류(iS2)은 인덕터(L1)에 흐르는 전류(iL1)와 제1 공진부(40)의 인덕터 전류(ILr1)가 함께 흐른다. 스위치(S4)의 전류(iS4)는 인덕터(L1)에 흐르는 전류(iL1)와 제2 공진부(50)의 인덕터 전류(iLr2)가 함께 흐른다.
(4) 모드 4(도 8 참조): 스위치(S2)와 스위치(S4)는 소거되고, 스위치(S1)와 스위치(S3)가 도통된다. 인덕터 전류(iL1)는 순차적으로 인덕터(L1), 스위치(S1), 커패시터(C1), 스위치(S3) 및 커패시터(C0)를 통하여 흐르게 된다. 이때, 제1 공진부(40)에서는 인덕터(Lr1), 스위치(S1), 커패시터(C1), 커패시터(Cr1)을 통하여 직렬 공진이 발생된다. 제2 공진부(50)에서는 인덕터(Lr2), 커패시터(Cr2)와 스위치(S3)를 통하여 직렬 공진이 발생된다. 스위치(S1)의 전류(iS2)는 인덕터(L1)에 흐르는 전류(iL1)와 제1 공진부(40)의 인덕터 전류(iLr1)가 함께 흐른다. 또한, 스위치(S3)의 전류(iS3)는 인덕터(L1)에 흐르는 전류(iL1)와 제2 공진부(50)의 인덕터 전류(iLr2)가 함께 흐른다.
이하에서는 도 9 내지 도 12를 참고하여 본 발명의 실시 예에 따른 3레벨 양방향 직류-직류 컨버터에서의 강압형 동작을 설명한다. 도 9 내지 도 12는 본 발명의 실시 예에 따른 3레벨 양방향 직류-직류 컨버터에서 강압형 동작 시 각 모드에 따른 등가 회로도이다.
도 9 내지 도 12에 도시된 바와 같이, 본 발명의 실시 예에 따른 3레벨 양방향 직류-직류 컨버터가 강압형 동작 시, 다음 네 가지 동작 모드를 지닌다.
모드 1(도 9 참조): 스위치(S2)와 스위치(S3)은 소거되고, 스위치(S1)과 스위치(S4)가 도통된다. 인덕터 전류(iL1)는 인덕터(L1), 커패시터(C0), 스위치(S4), 커패시터(C2), 커패시터(C1) 및 스위치(S1)을 통하여 흐르게 된다. 이때, 제1 공진부(40)에서는 인덕터(Lr1), 커패시터(Cr1), 커패시터(C1) 및 스위치(S1)을 통하여 직렬 공진이 발생된다. 제2 공진부(50)에서는 인덕터(Lr2), 스위치(S4), 커패시터(C2)와 커패시터(Cr2)를 통하여 직렬 공진이 발생한다. 스위치(S1)의 전류(iS1)은 인덕터(L1)에 흐르는 전류(iL1)와 제1 공진부(40)의 인덕터 전류(iLr1) 가 함께 흐른다. 스위치(S4)의 전류(iS4)는 인덕터(L1)에 흐르는 전류(iL1)와 제2 공진부(50)의 인덕터 전류(ir2)가 함께 흐른다.
모드 2(도 10 참조): 스위치(S1)과 스위치(S4)는 소거되고, 스위치(S2)와 스위치(S3)이 도통된다. 인덕터 전류(iL1)는 인덕터(L1), 커패시터(C0), 스위치(S2) 및 스위치(S3)를 통하여 흐르게 된다. 이때, 제1 공진부(40)에서는 인덕터(iLr1), 커패시터(Cr1)과 스위치(S2)를 통하여 직렬 공진이 발생된다. 제2 공진부(50)에서는 인덕터(LLr2), 스위치(S3)와 커패시터(Cr2)를 통하여 직렬 공진이 발생된다. 스위치(S2)의 전류(iS2)는 인덕터(L1)에 흐르는 전류(iL1)와 제1 공진부(40)의 인덕터 전류(iLr1)가 함께 흐른다. 스위치(S3)의 전류(iS3)은 인덕터(L1)에 흐르는 전류(iL1)와 제2 공진부(50)의 인덕터 전류(iLr2)가 함께 흐른다.
모드 3(도 11 참조): 스위치(S2)와 스위치(S4)는 소거되고, 스위치(S1)과 스위치(S3)이 도통된다. 인덕터 전류(iL1)는 인덕터(L1), 커패시터(C0), 스위치(S3), 커패시터(C1) 및 스위치(S1) 을 통하여 흐르게 된다. 이때, 제1 공진부(40) 에서는 인덕터(iLr1), 커패시터(Cr1), 커패시터(C1) 및 스위치(S1)를 통하여 직렬 공진이 발생된다. 제2 공진부(50)에서는 인덕터(LLr2), 스위치(S3)와 커패시터(Cr2)를 통하여 직렬 공진이 발생된다. 스위치(S1)의 전류(iS1)는 인덕터(L1)에 흐르는 전류(iL1)와 제1 공진부(40)의 인덕터 전류(iLr1)가 함께 흐른다. 스위치(S3)의 전류(iS3)은 인덕터(L1)에 흐르는 전류(iL1)와 제2 공진부(50)의 인덕터 전류(iLr2)가 함께 흐른다.
모드 4(도 12 참조): 스위치(S1)과 스위치(S3)은 소거되고, 스위치(S2)와 스위치(S4)가 도통된다. 인덕터 전류(iL1)는 인덕터(L1), 커패시터(C0), 스위치(S4), 커패시터(C2) 및 스위치(S2)를 통하여 흐르게 된다. 이때, 제1 공진부에서는 인덕터(iLr1), 커패시터(Cr1), 및 스위치(S2)를 통하여 직렬 공진이 발생된다. 제2 공진부(50)에서는 인덕터(LLr2), 스위치(S4), 커패시터(C2)와 커패시터(Cr2)를 통하여 직렬 공진이 발생된다. 스위치(S2)의 전류(iS2)은 인덕터(L1)에 흐르는 전류(iL1)와 제1 공진부의 인덕터 전류(iLr1)가 함께 흐른다. 스위치(S4)의 전류(iS4)은 인덕터(L1)에 흐르는 전류(iL1)와 제2 공진부(50)의 인덕터 전류(iLr2)가 함께 흐른다.
이상과 같이 동작하는 본 발명의 실시 예에 따른 3레벨 양방향 직류-직류 컨버터는 동일한 LC 공진 회로 소자들로 구성된 2개의 공진부(40, 50)를 통하여 승압 및 강압 동작 시, 각 스위치들(S1 내지 S4)이 LC 공진 소자들의 직렬 공진으로 인한 각 공진부(40, 50)의 인덕터 전류(iLr1 또는 iLr2 )가 인덕터 전류(L1)와 함께 각 스위치에 흐르게 된다.
이때, 각 스위치들의 스위칭 순간에 공진 회로의 인덕터 전류의 절대치(Absolute Value)가 인덕터 전류(L1)의 절대치보다 크면, 각 스위치의 전류는 도통 순간에 음전류(Negative Current)가 되어서 각 스위치의 바디 다이오드(Body Diode)를 통하여 흐르게 된다. 이때 스위치 양단의 전압은 영전압(Zero Voltage)이 되어서, 각 스위치는 영전압 스위칭 (Zero Voltage Switching)을 하게 됨으로써, 3레벨 양방향 직류-직류 컨버터에 사용되는 전력용 반도체 소자들의 스위칭 전력 손실 문제가 해결된다.
이하에서는 본 발명의 실시 예에 따른 3레벨 양방향 직류-직류 컨버터에서 3레벨 스위치부(30)의 각 스위치(S1 내지 S4)에서의 동작 파형도를 도 13을 참고하여 설명한다. 설명에 앞서, 각 스위치(S1 내지 S4)의 스위칭 동작 시의 파형은 동일하므로 스위치(S2)를 일 예로 하여 설명한다.
도 13은 본 발명의 실시 예에 따른 3레벨 양방향 직류-직류 컨버터에서 하나의 스위치에서의 동작 파형도로서, 스위치(S2)를 일 예로 한 것이다.
도 13에서, (a)는 스위치(S2)의 전압(VS2)이고, (b)는 스위치(S2)가 도통 시의 인덕터 전류(iL1)이며, (c)는 스위치(S2)가 도통 시의 인덕터 전류(iLr1)이고, (d)는 스위치(S2)의 전류(iS2)이다.
스위치(S2)가 도통 시 인덕터 전류(iL1)과 인덕터 전류(iLr1)가 스위치(S2)로 함께 주입된다. 이때, 스위치(S2)의 스위칭 손간에 인덕터 전류(iLr1)의 절대치가 인덕터 전류(iL1)의 절대치보다 크므로, 스위치(S2)의 전류(iS2)는 도통 순간에 음전류가 되어 스위치(S2)의 바디 다이오드를 통하여 흐르게 된다. 이때 스위치(S2) 양단의 전압(VS2)은 영전압이 되어서 스위치(S2)는 영전압 스위칭을 하게 됨으로써, 3레벨 양방향 직류-직류 컨버터는 소프트 스위칭 동작을 하게 된다.
이상에서 본 발명의 실시 예에 대하여 상세하게 설명하였으나, 본 발명의 권리범위가 이에 한정되는 것은 아니며 본 발명이 속하는 분야에서 통상의 지식을 가진 자가 여러 가지로 변형 및 개량한 형태 또한 본 발명의 권리범위에 속한다.
본 발명의 실시 예에 따른 3레벨 양방향 직류-직류 컨버터는 태양광 발전 전력 변환 장치, 에너지 저장 장치 등과 같은 전원 장치나 전력 장치에 이용될 수 있다.

Claims (7)

  1. 저전압을 생성하는 제1 전압부,
    상기 저전압보다 높은 고전압을 생성하는 제2 전압부,
    직렬 연결된 4개의 스위치 및 적어도 하나의 인덕터를 포함하며, 각 스위치의 선택적 스위칭 동작으로 3레벨의 전압을 생성하는 3레벨 스위치부,
    LC 공진 소자로 구성되고, 상기 4개의 스위치 중 직렬 연결된 제1 스위치 또는 제2 스위치 도통 시 직렬 공진하여 도통된 스위치로 공진 전류를 인가하는 제1 공진부, 그리고
    LC 공진 소자로 구성되고, 상기 4개의 스위치 중 직렬 연결된 제3 스위치 또는 제4 스위치 도통 시 직렬 공진하여 도통된 스위치로 공진 전류를 인가하는 제2 공진부
    를 포함하는 3레벨 양방향 직류-직류 컨버터.
  2. 제1항에서,
    상기 제1 공진부는
    상기 제1 및 제2 스위치의 연결점에 일단이 연결된 공진 인덕터와, 상기 인덕터의 타단에 (+) 극성이 연결되고 상기 제2 및 제3 스위치의 연결점과 상기 제2 전압부를 연결하는 노드에 (-) 극성이 연결된 공진 커패시터를 포함하는 3레벨 양방향 직류-직류 컨버터.
  3. 제1항 또는 제2항에서,
    상기 제2 공진부는 상기 제3 및 제4 스위치의 연결점에 일단이 연결된 공진 인덕터와, 상기 인덕터의 타단에 (+) 극성이 연결되고 상기 제2 및 제3 스위치의 연결점과 상기 제2 전압부를 연결하는 노드에 (-) 극성이 연결된 공진 커패시터를 포함하는 3레벨 양방향 직류-직류 컨버터.
  4. 제1항에서,
    상기 4개의 스위치는 일정한 스위칭 주파수에 대하여 펄스폭 변조 방식으로 동작하며, 상기 제1 스위치와 상기 제2 스위치(S2)가 서로 상보적으로 동작하고, 상기 제3 스위치와 상기 제 4스위치가 서로 상보적으로 동작하는 3레벨 양방향 직류-직류 컨버터.
  5. 제1항에서,
    상기 제2 스위치와 제3 스위치의 게이트 신호는 180도 위상 차이를 가지고, 상기 제1 스위치과 제4 스위치의 게이트 신호는 180도 위상 차이를 가지는 3레벨 양방향 직류-직류 컨버터.
  6. 제1항에서,
    상기 제1 전압부에 저전압이 입력되고 상기 제2 전압부에 고전압이 출력되는 승압형으로 동작하는 경우에,
    제1 모드 시 상기 제1 스위치와 상기 제4 스위치는 소거되고, 상기 제2 스위치와 상기 제3 스위치가 도통되며, 제2 모드 시 상기 제2 스위치와 상기 제3 스위치은 소거되고, 상기 제1 스위치과 상기 제4 스위치가 도통되며, 제3 모드 시 상기 제1 스위치와 상기 제3 스위치는 소거되고, 상기 제2 스위치와 상기 제4 스위치가 도통되며, 제4 모드 시 상기 제2 스위치와 상기 제4 스위치는 소거되고, 상기 제1 스위치와 상기 제3 스위치가 도통되는 3레벨 양방향 직류-직류 컨버터.
  7. 제1항에서,
    상기 제2 전압부에 고전압이 입력되고 상기 제1 전압부에 저전압이 출력되는 강압형으로 동작하는 경우에,
    제1 모드 시 상기 제2 스위치와 상기 제3 스위치는 소거되고 상기 제1 스위치와 상기 제4 스위치가 도통되며, 제2 모드 시 상기 제1 스위치와 상기 제4 스위치는 소거되고 상기 제2 스위치와 상기 제3 스위치가 도통되며, 제3 모드 시 상기 제2 스위치와 상기 제4 스위치는 소거되고 상기 제1 스위치와 상기 제3 스위치가 도통되며, 제4 모드 시 상기 제1 스위치와 상기 제3 스위치는 소거되고 상기 제2 스위치와 상기 제4 스위치가 도통되는 3레벨 양방향 직류-직류 컨버터.
PCT/KR2017/007017 2017-03-15 2017-07-03 3레벨 양방향 직류-직류 컨버터 WO2018169136A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170032598A KR101961412B1 (ko) 2017-03-15 2017-03-15 3레벨 양방향 직류-직류 컨버터
KR10-2017-0032598 2017-03-15

Publications (1)

Publication Number Publication Date
WO2018169136A1 true WO2018169136A1 (ko) 2018-09-20

Family

ID=63522391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007017 WO2018169136A1 (ko) 2017-03-15 2017-07-03 3레벨 양방향 직류-직류 컨버터

Country Status (2)

Country Link
KR (1) KR101961412B1 (ko)
WO (1) WO2018169136A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110098730A (zh) * 2019-06-11 2019-08-06 阳光电源股份有限公司 一种三电平Boost变换器、控制方法及光伏系统
CN112583267A (zh) * 2020-12-15 2021-03-30 山特电子(深圳)有限公司 双向dc-dc变换器及包括其的不间断电源
US20220337156A1 (en) * 2018-12-28 2022-10-20 Active-Semi, Inc. Resonant charge pump circuit
CN115664211A (zh) * 2022-12-14 2023-01-31 惠州市乐亿通科技有限公司 Dc/dc变换器及电源装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713768B (zh) * 2020-12-28 2022-06-28 中车永济电机有限公司 一种高度集成充放电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014075928A (ja) * 2012-10-05 2014-04-24 Hitachi Ltd 直流電源装置およびその制御方法
KR101464478B1 (ko) * 2013-07-15 2014-11-24 주식회사 동아일렉콤 다중 입력 llc 공진형 dc―dc 컨버터
US20150303815A1 (en) * 2014-04-16 2015-10-22 The Regents Of The University Of Colorado Modular dc-dc converter
WO2016011380A1 (en) * 2014-07-17 2016-01-21 The Trustees Of Dartmouth College System and method for two-phase interleaved dc-dc converters
US9419522B1 (en) * 2013-02-13 2016-08-16 University Of Maryland ZVS DC/DC converter for converting voltage between a battery and a DC link in a hybrid energy storage system and method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4836980B2 (ja) 2008-03-11 2011-12-14 三菱電機株式会社 Dc/dc電力変換装置
DE102008002525A1 (de) * 2008-06-19 2009-12-24 Robert Bosch Gmbh Gleichspannungswandler
BR112013031254A2 (pt) 2011-06-10 2017-04-25 Koninklijke Philips Nv dispositivo driver e equipamento luminoso

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014075928A (ja) * 2012-10-05 2014-04-24 Hitachi Ltd 直流電源装置およびその制御方法
US9419522B1 (en) * 2013-02-13 2016-08-16 University Of Maryland ZVS DC/DC converter for converting voltage between a battery and a DC link in a hybrid energy storage system and method thereof
KR101464478B1 (ko) * 2013-07-15 2014-11-24 주식회사 동아일렉콤 다중 입력 llc 공진형 dc―dc 컨버터
US20150303815A1 (en) * 2014-04-16 2015-10-22 The Regents Of The University Of Colorado Modular dc-dc converter
WO2016011380A1 (en) * 2014-07-17 2016-01-21 The Trustees Of Dartmouth College System and method for two-phase interleaved dc-dc converters

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220337156A1 (en) * 2018-12-28 2022-10-20 Active-Semi, Inc. Resonant charge pump circuit
US11984804B2 (en) * 2018-12-28 2024-05-14 Active-Semi, Inc. Resonant charge pump circuit
CN110098730A (zh) * 2019-06-11 2019-08-06 阳光电源股份有限公司 一种三电平Boost变换器、控制方法及光伏系统
CN112583267A (zh) * 2020-12-15 2021-03-30 山特电子(深圳)有限公司 双向dc-dc变换器及包括其的不间断电源
CN112583267B (zh) * 2020-12-15 2022-06-07 山特电子(深圳)有限公司 双向dc-dc变换器及包括其的不间断电源
CN115664211A (zh) * 2022-12-14 2023-01-31 惠州市乐亿通科技有限公司 Dc/dc变换器及电源装置

Also Published As

Publication number Publication date
KR20180105479A (ko) 2018-09-28
KR101961412B1 (ko) 2019-03-22

Similar Documents

Publication Publication Date Title
WO2018169136A1 (ko) 3레벨 양방향 직류-직류 컨버터
US10523121B2 (en) Direct current-direct current converter
US7706156B2 (en) Resonant converter with synchronous rectification drive circuit
US7729144B2 (en) DC/DC power conversion device
US7130205B2 (en) Impedance source power converter
EP3163734B1 (en) Dc-dc converter with high transformer ratio
CN101594053A (zh) 一种宽范围电压输入的电源转换器
WO2018048057A1 (ko) Dc-dc 컨버터 및 이를 포함하는 2단 전력단 컨버터
Bhat et al. A unified approach to characterization of PWM and quasi-PWM switching converters: Topological constraints, classification, and synthesis
US11121627B2 (en) DC/DC conversion system
AU2012266985A1 (en) Inverter apparatus and solar photovoltaic grid-connected system using the same
US10148196B2 (en) Inverter and control method thereof
CN107659128B (zh) Dc/dc开关变换器功率输出晶体管集成驱动电路
WO2016076517A1 (ko) 전력변환부
US20210249962A1 (en) Converter
CN106154086A (zh) 一种具有拓扑切换能力的mmc动态模拟子模块单元
CN109302058A (zh) 一种具有类三电平输出的直流—直流模块化多电平变换器及其控制方法
US9124176B2 (en) Voltage converter comprising a storage inductor with one winding and a storage inductor with two windings
CN113346750A (zh) 基于耦合电感的软开关同相buck-boost变换器及控制方法
CN103647448A (zh) 集成降压-反激式高功率因数恒流电路及装置
US20220337157A1 (en) High step-down modular dc power supply
US11973419B2 (en) Inverter circuit and method, for example for use in power factor correction
CN108667304A (zh) 同步整流反激式直流-直流电源转换装置及控制方法
CN110677027A (zh) 一种嵌位型升压功率变换电路
US20230008233A1 (en) Ac/dc converter stage for converter system with input series structure with improved common mode performance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901291

Country of ref document: EP

Kind code of ref document: A1