WO2018169072A1 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
WO2018169072A1
WO2018169072A1 PCT/JP2018/010583 JP2018010583W WO2018169072A1 WO 2018169072 A1 WO2018169072 A1 WO 2018169072A1 JP 2018010583 W JP2018010583 W JP 2018010583W WO 2018169072 A1 WO2018169072 A1 WO 2018169072A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
passage
compression chamber
suction
height
Prior art date
Application number
PCT/JP2018/010583
Other languages
French (fr)
Japanese (ja)
Inventor
丈雄 林
ちひろ 遠藤
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201880017804.9A priority Critical patent/CN110418892B/en
Priority to JP2019506315A priority patent/JP6787480B2/en
Priority to ES18767860T priority patent/ES2953629T3/en
Priority to EP18767860.2A priority patent/EP3597923B1/en
Priority to MYPI2019005092A priority patent/MY195534A/en
Publication of WO2018169072A1 publication Critical patent/WO2018169072A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/102Adjustment of the interstices between moving and fixed parts of the machine by means other than fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/806Pipes for fluids; Fittings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/10Geometry of the inlet or outlet
    • F04C2250/101Geometry of the inlet or outlet of the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/20Geometry of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/30Geometry of the stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/17Tolerance; Play; Gap

Definitions

  • the present invention relates to a rotary compressor used in, for example, an air conditioner.
  • Japanese Unexamined Patent Publication No. 2016-118142 discloses a two-cylinder rotary compressor having an upper cylinder and a lower cylinder, in which refrigerant is compressed in a compression chamber formed in each cylinder.
  • An accumulator is attached to the side of the compressor.
  • Two suction pipes are connected to the accumulator. Of the two suction pipes, one is connected to the upper cylinder and the other is connected to the lower cylinder.
  • Refrigerant is supplied from the accumulator to the upper cylinder and the lower cylinder via each suction pipe.
  • a piston having a roller is disposed in a compression chamber formed in each of the upper cylinder and the lower cylinder.
  • the compression chamber is partitioned into a low pressure chamber into which the refrigerant is introduced by a piston and a high pressure chamber into which the refrigerant is compressed.
  • An object of the present invention is to provide a rotary compressor that can be reduced in size and can suppress a decrease in compressor efficiency.
  • a rotary compressor according to the present invention is a rotary compressor that houses a compression mechanism and a drive mechanism having a drive shaft that drives the compression mechanism, and the compression mechanism is a cylinder in which a compression chamber is formed.
  • a plurality of cylinders arranged in the axial direction of the drive shaft so that the drive shafts are positioned in the plurality of compression chambers, and arranged at both ends of the cylinders in the axial direction, and partitioning the compression chambers
  • a plurality of end plate members, and a plurality of pistons which are arranged inside each compression chamber and driven by the drive shaft.
  • the plurality of cylinders include a first cylinder and a second cylinder adjacent to the first cylinder via one end plate member, and the rotary compressor is supplied from an external device via a suction pipe.
  • a first passage for supplying the refrigerant to the compression chamber of the first cylinder, and a second passage for branching from the first passage and supplying the refrigerant to the compression chamber of the second cylinder A suction passage is formed.
  • the surface area of the region facing the suction passage in the second cylinder is smaller than the surface area of the region facing the suction passage in the first cylinder.
  • the difference between the height of the second cylinder in the axial direction and the height of the piston arranged in the compression chamber of the second cylinder in the axial direction is about the axial direction of the first cylinder.
  • the difference between the height and the height of the piston disposed in the compression chamber of the first cylinder in the axial direction is smaller.
  • the external device may be an accumulator or an arbitrary device arranged between the accumulator and the rotary compressor according to the present invention.
  • the first passage passes through the first cylinder and does not pass through the second cylinder
  • the second passage branches from the first passage inside the first cylinder, and It may pass through both the first cylinder and the second cylinder.
  • the suction pipe may be configured to be insertable into the first cylinder so that a distal end thereof is located in the first cylinder.
  • the suction pipe is configured to be insertable into the end plate member so that the tip thereof is positioned in the end plate member disposed on the opposite side of the first cylinder from the second cylinder. May have been.
  • a difference between a height of the cylinder in the axial direction and a height of the piston disposed in the compression chamber of the cylinder in the axial direction is The smaller the surface area of the area facing the suction passage in the cylinder, the smaller.
  • the height of the cylinder in the axial direction is Hc (mm)
  • the cylinder is disposed inside the compression chamber formed in the cylinder.
  • the height of the piston in the axial direction is Hp (mm)
  • the surface area of the region facing the suction passage in the cylinder is As (mm 2 )
  • the direction perpendicular to the axial direction of the suction passage in the cylinder is When the length is Ls (mm), 3.9 ⁇ 0.0001 ⁇ (Hc ⁇ Hp) /Hc ⁇ 1.4 ⁇ 0.0001 ⁇ As/ (Hc ⁇ Ls) ⁇ 6.7 ⁇ 0.0001 Is satisfied.
  • the surface area of the region facing the suction passage in the second cylinder is smaller than the surface area of the region facing the suction passage in the first cylinder. Therefore, the second cylinder has a smaller temperature drop due to the refrigerant in the vicinity of the region facing the suction passage in the cylinder than the first cylinder. Therefore, the temperature difference between the second cylinder and the piston disposed in the compression chamber of the second cylinder becomes small, and the difference in dimensional change during thermal expansion becomes small.
  • the difference between the height of the cylinder and the height of the piston (that is, the axial end surface of the piston and the axial end surface of the end plate member) is compared with the first cylinder. ) Is reduced, oil leakage from the inner peripheral portion of the piston to the compression chamber is reduced, thereby improving volumetric efficiency and illustration efficiency. Therefore, even when two cylinders and an external device are connected by a single suction pipe in order to reduce the size of the compressor, a decrease in compressor efficiency due to an increase in suction resistance can be compensated by an improvement in volumetric efficiency and illustration efficiency. As a result, a decrease in compressor efficiency can be suppressed. That is, it is possible to achieve both downsizing of the compressor and suppression of reduction in compressor efficiency.
  • the rotary compressor 1 according to the first embodiment is a two-cylinder rotary compressor, and includes a sealed container 2, a drive mechanism 3 and a compression mechanism 4 accommodated in the sealed container 2.
  • the sealed container 2 is a cylindrical container whose upper and lower ends are closed.
  • An accumulator 5 is attached to the side of the sealed container 2.
  • the accumulator 5 is connected to the compression mechanism 4 by a single suction pipe 6 for introducing a refrigerant.
  • a discharge pipe 7 for discharging the refrigerant compressed by the compression mechanism 4 is provided on the top of the sealed container 2. Lubricating oil is stored at the bottom of the sealed container 2.
  • the compressor 1 is used by being incorporated in a refrigeration cycle in an air conditioner, for example, and compresses the refrigerant supplied from the suction pipe 6 and discharges it from the discharge pipe 7.
  • R32 or R410A is used as the refrigerant.
  • the compressor 1 is installed in the direction shown in FIG. 1, that is, the direction in which the axial direction of the compressor 1 (the same as the axial direction of a drive shaft 3b described later) is the vertical direction.
  • the drive mechanism 3 is provided to drive the compression mechanism 4, and includes a motor 3a serving as a drive source and a drive shaft 3b attached to the motor 3a.
  • the motor 3a includes a substantially annular stator 3aa fixed to the inner peripheral surface of the hermetic container 2, and a substantially annular rotor 3ab disposed on the radially inner side of the stator 3aa via an air gap.
  • the rotor 3ab has a magnet (not shown), and the stator 3aa has a coil (not shown).
  • the drive shaft 3b is fixed to the inner peripheral surface of the rotor 3ab, and rotates together with the rotor 3ab to drive the compression mechanism 4.
  • the drive shaft 3b has eccentric portions 3c and 3d in a compression chamber 31 and a compression chamber 51, which will be described later (see FIGS. 2A, 2B, and 3).
  • the eccentric parts 3c and 3d are all formed in a columnar shape, and the central axis thereof is eccentric with respect to the rotation center of the drive shaft 3b.
  • Pistons 32 and 52 of the compression mechanism 4 are mounted on the eccentric portions 3c and 3d, respectively.
  • an oil supply passage (not shown) is formed in the lower half of the drive shaft 3b.
  • the oil supply passage extends in the vertical direction and branches in the radial direction of the drive shaft 3b at several locations.
  • a spiral blade-shaped pump member (not shown) is attached to the lower end of the drive shaft 3b to suck up lubricating oil into the oil supply path as the drive shaft 3b rotates.
  • the lubricating oil sucked up from the lower end of the drive shaft 3b by the pump member is discharged from the side surface of the drive shaft 3b and supplied to each sliding portion of the compression mechanism 4 such as the compression chambers 31 and 51, for example.
  • the compression mechanism 4 includes an upper muffler 10a, 10b, an upper head 20 (end plate member), an upper cylinder 30 (cylinder), a middle plate 40 (end plate member), a lower cylinder 50 (cylinder), and a lower head. 60 (end plate member) and a lower muffler 70 are included. These are arranged in order from top to bottom along the axial direction of the drive shaft 3b.
  • the upper cylinder 30 is a substantially circular plate-like member.
  • a compression chamber 31 which is a circular hole penetrating the upper cylinder 30 in the axial direction of the drive shaft 3b is formed at the center of the upper cylinder 30.
  • a piston 32 is disposed in the compression chamber 31.
  • the piston 32 includes an annular roller 32a and a blade 32b extending radially outward from the outer peripheral surface of the roller 32a.
  • the roller 32 a is mounted in the compression chamber 31 so as to be rotatable relative to the outer peripheral surface of the eccentric portion 3 c.
  • the upper cylinder 30 is formed with a transverse passage 30 a extending in the radial direction of the upper cylinder 30 as a suction passage for introducing the refrigerant into the compression chamber 31.
  • the radially inner end of the lateral passage 30 a opens to the compression chamber 31, and the radially outer end of the lateral passage 30 a opens to the outer peripheral surface of the upper cylinder 30.
  • the suction pipe 6 is inserted into the lateral passage 30a from the radially outer end of the lateral passage 30a, and the tip thereof is located near the center of the lateral passage 30a.
  • the upper cylinder 30 is formed with a vertical passage 30b extending vertically downward from the horizontal passage 30a as a suction passage for introducing the refrigerant into the compression chamber 51.
  • the vertical passage 30 b branches from between the radially inner end of the horizontal passage 30 a and the tip position of the suction pipe 6, extends vertically downward, and opens to the lower surface of the upper cylinder 30.
  • the upper cylinder 30 is formed with a blade accommodating portion 33 having a shape that is recessed radially outward from the peripheral wall surface of the compression chamber 31.
  • a pair of bushes 34 facing the circumferential direction of the upper cylinder 30 are arranged in the blade accommodating portion 33.
  • the pair of bushes 34 has a shape obtained by semi-dividing a substantially cylindrical member.
  • the pair of bushes 34 can swing in the blade accommodating portion 33 with the blade 32b disposed therebetween.
  • the blade 32 b is disposed between the pair of bushes 34 so as to advance and retreat in the radial direction of the upper cylinder 30.
  • the compression chamber 31 is divided into a low pressure chamber and a high pressure chamber by a blade 32b.
  • the upper head 20 is disposed so as to contact the upper end surface of the upper cylinder 30, and the compression chamber 31 is partitioned by closing the upper end of the compression chamber 31.
  • the upper head 20 is a substantially annular member, and the drive shaft 3b is rotatably inserted in the center thereof.
  • the upper head 20 is fixed to the inner peripheral surface of the sealed container 2 by welding or the like.
  • Upper mufflers 10a and 10b are disposed above the upper head 20.
  • An upper muffler space is formed between the upper head 20 and the upper muffler 10b and between the upper muffler 10a and the upper muffler 10b.
  • the upper muffler space reduces noise caused by the refrigerant discharge.
  • the upper head 20 is provided with a discharge hole 35 that allows the compression chamber 31 and the upper muffler space to communicate with each other and discharges the refrigerant compressed in the compression chamber 31 to the upper muffler space.
  • the discharge hole 35 is closed by a plate-like discharge valve (not shown). The discharge valve is elastically deformed to open the discharge hole 35 when the pressure in the compression chamber 31 becomes equal to or higher than a predetermined pressure.
  • the middle plate 40 is a circular plate-like member, and is disposed so as to contact the lower end surface of the upper cylinder 30 and the upper end surface of the lower cylinder 50 as shown in FIG. As shown in FIG. 3, the middle plate 40 closes the lower end of the compression chamber 31 of the upper cylinder 30 to partition the compression chamber 31 and closes the upper end of the compression chamber 51 of the lower cylinder 50 to compress the compression chamber 51. Is partitioned.
  • the middle plate 40 is formed with a vertical passage 40 a connected to the vertical passage 30 b of the upper cylinder 30 as a suction passage for introducing the refrigerant into the compression chamber 51.
  • the vertical passage 40a connects the vertical passage 30b of the upper cylinder 30 and the horizontal passage 50a of the lower cylinder 50 described later.
  • the lower cylinder 50 adjacent to the upper cylinder 30 via the middle plate 40 is a substantially circular plate-like member like the upper cylinder 30.
  • a compression chamber 51 which is a circular hole that penetrates the lower cylinder 50 in the axial direction of the drive shaft 3b, is formed at the center of the lower cylinder 50.
  • a piston 52 is disposed in the compression chamber 51.
  • the piston 52 includes an annular roller 52a and a blade 52b extending radially outward from the outer peripheral surface of the roller 52a.
  • the roller 52a is mounted in the compression chamber 51 so as to be rotatable relative to the outer peripheral surface of the eccentric portion 3d.
  • the lower cylinder 50 is formed with a transverse passage 50 a extending in the radial direction of the lower cylinder 50 as a suction passage for introducing the refrigerant into the compression chamber 51.
  • the lateral passage 50a is formed by cutting out the upper surface of the lower cylinder 50.
  • the radially inner end of the lateral passage 50 a opens to the compression chamber 51.
  • the radially outer end of the lateral passage 50a is closed by the wall surface of the lower cylinder 50 in the radial direction and opens upward.
  • the radially outer end of the horizontal passage 50a is connected to the vertical passage 40a of the middle plate 40 through the upper opening. A portion of the lateral passage 50 a excluding the opening is closed by the lower surface of the middle plate 40.
  • the lower cylinder 50 is formed with a blade accommodating portion 53 having a shape recessed from the peripheral wall surface of the compression chamber 51 radially outward.
  • a pair of bushes 54 facing the circumferential direction of the lower cylinder 50 are arranged in the blade accommodating portion 53.
  • the pair of bushes 54 has a shape in which a substantially cylindrical member is divided in half.
  • the pair of bushes 54 can swing in the blade accommodating portion 53 with the blade 52b disposed therebetween.
  • the blade 52b is disposed between the pair of bushes 54 so as to be able to advance and retract in the radial direction of the lower cylinder 50.
  • the compression chamber 51 is divided into a low pressure chamber and a high pressure chamber by a blade 52b.
  • the lower head 60 is arranged so as to contact the lower end surface of the lower cylinder 50, and the compression chamber 51 is partitioned by closing the lower end of the compression chamber 51.
  • the lower head 60 is a substantially annular member, and the drive shaft 3b is rotatably inserted in the center thereof.
  • a lower muffler 70 is disposed below the lower head 60.
  • a lower muffler space is formed between the lower head 60 and the lower muffler 70. The lower muffler space reduces noise associated with refrigerant discharge.
  • the lower head 60 is provided with a discharge hole 55 that allows the compression chamber 51 and the lower muffler space to communicate with each other and discharges the refrigerant compressed in the compression chamber 51 to the lower muffler space.
  • the discharge hole 55 is closed by a plate-like discharge valve (not shown). The discharge valve is elastically deformed to open the discharge hole 55 when the pressure in the compression chamber 51 becomes equal to or higher than a predetermined pressure.
  • the lower muffler space communicates with the upper muffler space through through holes formed in the lower head 60, the lower cylinder 50, the middle plate 40, the upper cylinder 30 and the upper head 20, respectively.
  • the rotary compressor 1 of the present embodiment includes an upper suction passage (first passage) for supplying refrigerant to the compression chamber 31 of the upper cylinder 30 and a passage branched from the upper suction passage (first passage).
  • a suction passage including a lower suction passage (second passage) for supplying the refrigerant to the compression chamber 51 of the cylinder 50 is formed.
  • the upper suction passage is a horizontal passage from the distal end of the suction pipe 6 to the compression chamber 31 among the lateral passages 30a formed in the upper cylinder 30, and passes through the upper cylinder 30 and The lower cylinder 50 is not passed.
  • the lower suction passage includes a vertical passage 30b formed in the upper cylinder 30, a vertical passage 40a formed in the middle plate 40, and a horizontal passage 50a formed in the lower cylinder 50 (see FIG. 3).
  • the lower suction passage passes through both the upper cylinder 30 and the lower cylinder 50.
  • the horizontal passage from the front end of the suction pipe 6 to the compression chamber 31 in the horizontal passage 30a (not including from the front end of the suction pipe 6 to the radially outer end of the horizontal passage 30a in the horizontal passage 30a).
  • the vertical passage 30 b form a suction passage in the upper cylinder 30.
  • the lateral passage 50 a forms a suction passage in the lower cylinder 50.
  • the surface area of the region facing the suction passage in the lower cylinder 50 is smaller than the surface area of the region facing the suction passage in the upper cylinder 30.
  • the surface area of the region facing the suction passage in the cylinder is the surface area of the inner peripheral surface of the wall forming the suction passage in the cylinder, and the surface area of the wall surface through which the refrigerant sucked from the accumulator 5 passes. Therefore, the surface area of the region facing the suction passage in the upper cylinder 30 is the surface area of the region facing the horizontal passage from the distal end of the suction pipe 6 to the compression chamber 31 in the lateral passage 30a and the vertical passage 30b.
  • the surface area of the region facing the suction passage in the lower cylinder 50 is the surface area of the region facing the lateral passage 50a.
  • the temperature drop due to the refrigerant in the vicinity of the region facing the suction passage is smaller than that of the upper cylinder 30. Therefore, the temperature difference between the lower cylinder 50 and the piston 52 disposed in the compression chamber 51 of the lower cylinder 50 is reduced, and the difference in dimensional change during thermal expansion is reduced.
  • the difference between the height A3 of the lower cylinder 50 and the height A4 of the piston 52 disposed in the compression chamber 51 of the lower cylinder 50 is It is smaller than the difference between the height A1 of the cylinder 30 and the height A2 of the piston 32 disposed in the compression chamber 31 of the upper cylinder 30 (A3-A4 ⁇ A1-A2).
  • the difference between the height A1 of the upper cylinder 30 and the height A2 of the piston 32 and the difference between the height A3 of the lower cylinder 50 and the height A4 of the piston 52 are determined when the compressor 1 is stopped (at room temperature). Time).
  • the rotary compressor 1 of the present embodiment includes an upper suction passage for supplying refrigerant to the compression chamber 31 of the upper cylinder 30 to which the suction pipe 6 is connected, a passage branched from the upper suction passage, and compression of the lower cylinder 50.
  • a suction passage including a lower suction passage for supplying the refrigerant to the chamber 51 is formed.
  • the surface area of the region facing the suction passage of the lower cylinder 50 is smaller than the surface area of the region facing the suction passage of the upper cylinder 30. Therefore, in the lower cylinder 50, the temperature drop due to the refrigerant near the area facing the suction passage in the cylinder is smaller than that in the upper cylinder 30.
  • the temperature difference between the lower cylinder 50 and the piston 52 disposed in the compression chamber 51 of the lower cylinder 50 is reduced, and the difference in dimensional change during thermal expansion is reduced. Therefore, in the lower cylinder 50, as compared with the upper cylinder 30, there is a problem even if the gap between the axial end surface of the piston 52 and the axial end surfaces of the end plate members 40 and 60 adjacent thereto is reduced. Hateful. Then, by reducing the oil leakage from the inner peripheral portion of the piston to the compression chamber, the volumetric efficiency and the illustration efficiency can be improved, so that the two cylinders 30, 50 can be reduced in order to reduce the size of the compressor 1.
  • the accumulator 5 can be connected by a single suction pipe 6, a decrease in compressor efficiency due to an increase in suction resistance can be compensated by an improvement in volumetric efficiency and illustrated efficiency, and a decrease in compressor efficiency can be suppressed.
  • a decrease in compressor efficiency due to an increase in suction resistance can be compensated by an improvement in volumetric efficiency and illustrated efficiency, and a decrease in compressor efficiency can be suppressed.
  • the upper suction passage (first passage) passes through the upper cylinder 30 and does not pass through the lower cylinder 50
  • the lower suction passage (second passage) is located in the upper cylinder 30. It branches from the suction passage and passes through both the upper cylinder 30 and the lower cylinder 50.
  • the suction pipe 6 is configured to be insertable into the upper cylinder 30 so that the tip thereof is located in the upper cylinder 30.
  • the linear lateral passage 30a constitutes the refrigerant passage from the tip of the suction pipe 6 to the compression chamber 31 of the upper cylinder 30, and an increase in suction resistance can be suppressed.
  • the compressor 101 accommodates the drive mechanism 3 and the compression mechanism 104.
  • the compressor 101 is disposed on the opposite side of the upper cylinder 130 from the lower cylinder 50 as a suction passage for introducing refrigerant into the compression chamber 31 of the upper cylinder 130.
  • the upper head 120 is formed with a lateral passage 120a extending in the radial direction of the upper head 120 and a longitudinal passage 120b extending vertically downward from the lateral passage 120a.
  • the radially inner end of the horizontal passage 120a is closed by the wall surface of the upper head 120 in the radial direction and opens downward.
  • the radially inner end of the lateral passage 120a is connected to the lateral passage 130a of the upper cylinder 130 through the lower opening.
  • the radially outer end of the lateral passage 120 a opens to the outer peripheral surface of the upper head 120.
  • the suction pipe 6 is inserted from the lateral passage 120a into the lateral passage 120a, and the tip thereof is located near the center of the lateral passage 120a.
  • the upper cylinder 130 is formed with a lateral passage 130 a extending in the radial direction of the upper cylinder 130 as a suction passage for introducing the refrigerant into the compression chamber 31 of the upper cylinder 130.
  • the lateral passage 130a is formed by cutting out the upper surface of the upper cylinder 130.
  • the radially inner end of the lateral passage 130 a opens to the compression chamber 31.
  • the radially outer end of the lateral passage 130a is closed by the wall surface of the upper cylinder 130 in the radial direction and opens upward.
  • the radially outer end of the horizontal passage 130a is connected to the vertical passage 120b of the upper head 120 through the upper opening.
  • a portion of the lateral passage 130 a except the opening is closed by the lower surface of the upper head 120.
  • the upper cylinder 130 is formed with a vertical passage 130b extending vertically downward from the horizontal passage 130a as a suction passage for introducing the refrigerant into the compression chamber 51 of the lower cylinder 150.
  • the vertical passage 130b branches off from the horizontal passage 130a, extends vertically downward, and opens to the lower surface of the upper cylinder 130.
  • a vertical passage 40a connected to the vertical passage 130b of the upper cylinder 130 is formed as a suction passage for introducing the refrigerant into the compression chamber 51 of the lower cylinder 50.
  • the vertical passage 40a connects the vertical passage 130b of the upper cylinder 130 and the horizontal passage 50a of the lower cylinder 50 described later.
  • the lower cylinder 50 adjacent to the upper cylinder 130 via the middle plate 40 extends in the radial direction of the lower cylinder 50 as a suction passage for introducing the refrigerant into the compression chamber 51.
  • the existing lateral passage 50a is formed.
  • the lateral passage 50a is formed by cutting out the upper surface of the lower cylinder 50.
  • the radially inner end of the lateral passage 50 a opens to the compression chamber 51.
  • the radially outer end of the lateral passage 50a is closed by the wall surface of the lower cylinder 50 in the radial direction and opens upward.
  • the radially outer end of the horizontal passage 50a is connected to the vertical passage 40a of the middle plate 40 through the upper opening. A portion of the lateral passage 50 a excluding the opening is closed by the lower surface of the middle plate 40.
  • the rotary compressor 101 includes an upper suction passage (first passage) for supplying refrigerant to the compression chamber 31 of the upper cylinder 130, and a passage branched from the upper suction passage (first passage).
  • a suction passage including a lower suction passage (second passage) for supplying the refrigerant to the compression chamber 51 of the cylinder 50 is formed.
  • the upper suction passage includes a horizontal passage and a vertical passage 120b from the front end of the suction pipe 6 to the radially inner end of the horizontal passage 50a in the horizontal passage 120a formed in the upper head 120.
  • the lower suction passage includes a vertical passage 130b formed in the upper cylinder 130, a vertical passage 40a formed in the middle plate 40, and a horizontal passage 50a formed in the lower cylinder 50 (see FIG. 6).
  • the horizontal passage 130a and the vertical passage 130b form a suction passage in the upper cylinder 130.
  • the lateral passage 50 a forms a suction passage in the lower cylinder 50.
  • the surface area of the region facing the suction passage in the lower cylinder 50 is smaller than the surface area of the region facing the suction passage in the upper cylinder 130.
  • the temperature drop due to the refrigerant near the region facing the suction passage is smaller than that of the upper cylinder 130. Therefore, the temperature difference between the lower cylinder 50 and the piston 52 disposed in the compression chamber 51 of the lower cylinder 50 is reduced, and the difference in dimensional change during thermal expansion is reduced.
  • the difference between the height A3 of the lower cylinder 50 and the height A4 of the piston 52 disposed in the compression chamber 51 of the lower cylinder 50 is It is smaller than the difference between the height A1 of the cylinder 130 and the height A2 of the piston 32 disposed in the compression chamber 31 of the upper cylinder 130 (A3-A4 ⁇ A1-A2).
  • the difference between the height A1 of the upper cylinder 130 and the height A2 of the piston 32 and the difference between the height A3 of the lower cylinder 50 and the height A4 of the piston 52 are determined when the compressor 101 is stopped (at room temperature). Time).
  • an upper suction passage that supplies refrigerant to the compression chamber 31 of the upper cylinder 130 and a passage branched from the upper suction passage and supplies refrigerant to the compression chamber 51 of the lower cylinder 50.
  • a suction passage including a lower suction passage is formed.
  • the surface area of the region facing the suction passage of the lower cylinder 50 is smaller than the surface area of the region facing the suction passage of the upper cylinder 130. Therefore, in the lower cylinder 50, the temperature drop due to the refrigerant near the area facing the suction passage in the cylinder is smaller than that in the upper cylinder 130.
  • the temperature difference between the lower cylinder 50 and the piston 52 disposed in the compression chamber 51 of the lower cylinder 50 is reduced, and the difference in dimensional change during thermal expansion is reduced. Therefore, in the lower cylinder 50, as compared with the upper cylinder 130, there is a problem even if the gap between the axial end surface of the piston 52 and the axial end surfaces of the end plate members 40 and 60 adjacent thereto is reduced. Hateful. Then, by reducing the oil leakage from the piston inner peripheral portion to the compression chamber, the volumetric efficiency and the illustration efficiency can be improved, so that the two cylinders 130, 50 can be reduced in order to reduce the size of the compressor 101.
  • the accumulator 5 can be connected by a single suction pipe 6, a decrease in compressor efficiency due to an increase in suction resistance can be compensated by an improvement in volumetric efficiency and illustrated efficiency, and a decrease in compressor efficiency can be suppressed. In this way, in the present embodiment, it is possible to achieve both downsizing of the compressor 101 and suppression of reduction in compressor efficiency.
  • the upper suction passage (first passage) passes through the upper cylinder 130 and does not pass through the lower cylinder 50
  • the lower suction passage (second passage) is located in the upper cylinder 130. It branches from the suction passage and passes through both the upper cylinder 130 and the lower cylinder 50.
  • the suction pipe 6 has an upper head 120 such that the tip of the suction pipe 6 is positioned in the upper head 120 which is an end plate member disposed on the opposite side of the upper cylinder 130 from the lower cylinder 50. It is configured to be insertable.
  • the upper suction passage has one portion where the traveling direction of the refrigerant changes from the vertical to the horizontal in the upper cylinder 130, and the lower suction passage has the traveling direction of the refrigerant in the lower cylinder 50 from the vertical to the horizontal. It will have one point that changes to. That is, it is difficult for a large difference in suction resistance to occur between the upper suction passage and the lower suction passage.
  • the compressor 1 according to the third embodiment is different from the first embodiment in that the suction pipe 6 of the accumulator 5 is configured to be inserted into the lower cylinder 250.
  • symbol is attached
  • the compressor 201 accommodates the drive mechanism 3 and the compression mechanism 204.
  • a lateral passage 250 a extending in the radial direction of the lower cylinder 250 is formed in the lower cylinder 250.
  • the radially inner end of the lateral passage 250 a opens into the compression chamber 51, and the radially outer end of the lateral passage 250 a opens at the outer peripheral surface of the lower cylinder 250.
  • the suction pipe 6 is inserted into the lateral passage 250a from the radially outer end of the lateral passage 250a, and the tip thereof is located near the center of the lateral passage 250a.
  • the lower cylinder 250 is formed with a vertical passage 250b extending vertically upward from the horizontal passage 250a as a suction passage for introducing the refrigerant into the compression chamber 31 of the upper cylinder 230.
  • the vertical passage 250 b branches from the radial inner end of the horizontal passage 250 a and the tip position of the suction pipe 6, extends vertically upward, and opens on the upper surface of the lower cylinder 250.
  • the lower cylinder 250 is formed with a vertical passage 250c extending vertically downward from the horizontal passage 250a.
  • the vertical passage 250c branches from the radially inner end of the horizontal passage 250a and the tip position of the suction pipe 6 (a position overlapping the vertical passage 250b vertically) and extends vertically downward to the lower surface of the lower cylinder 250. Is open. This opening is closed by the lower head 60.
  • the middle plate 240 is formed with a vertical passage 240 a connected to the vertical passage 250 b of the lower cylinder 250 as a suction passage for introducing the refrigerant into the compression chamber 31.
  • the vertical passage 240a connects the vertical passage 250b of the lower cylinder 250 and the horizontal passage 230a of the upper cylinder 230 described later.
  • a lateral passage 230a extending in the radial direction of the upper cylinder 230 is formed as a suction passage for introducing the refrigerant into the compression chamber 31.
  • the lateral passage 230a is formed by cutting out the lower surface of the upper cylinder 230.
  • the radially inner end of the lateral passage 230 a opens to the compression chamber 31.
  • the radially outer end of the lateral passage 230a is closed by the wall surface of the upper cylinder 230 in the radial direction and opens downward.
  • the radially outer end of the lateral passage 230a is connected to the longitudinal passage 240a of the middle plate 240 through the lower opening. A portion of the lateral passage 230 a excluding the opening is closed by the upper surface of the middle plate 240.
  • the compressor 201 of the present embodiment includes a lower suction passage (first passage) for supplying refrigerant to the compression chamber 51 of the lower cylinder 250, and a passage branched from the lower suction passage (first passage) and the upper cylinder.
  • a suction passage including an upper suction passage (second passage) for supplying the refrigerant to the compression chamber 31 of 230 is formed.
  • the lower suction passage is a horizontal passage from the front end of the suction pipe 6 to the compression chamber 51 in the lateral passage 250a formed in the lower cylinder 250, and the upper suction passage is the lower cylinder.
  • the vertical passage 250 b is formed in the vertical plate 250 b
  • the vertical passage 240 a is formed in the middle plate 240
  • the horizontal passage 230 a is formed in the upper cylinder 230.
  • the horizontal passage from the front end of the suction pipe 6 to the compression chamber 51 in the horizontal passage 250a (not including from the front end of the suction pipe 6 to the radially outer end of the horizontal passage 250a in the horizontal passage 250a).
  • the vertical passage 250 b form a suction passage in the lower cylinder 250.
  • the lateral passage 230 a forms a suction passage in the upper cylinder 230.
  • the surface area of the region facing the suction passage in the upper cylinder 230 is smaller than the surface area of the region facing the suction passage in the lower cylinder 250.
  • the temperature drop due to the refrigerant in the vicinity of the region facing the suction passage is smaller than that of the lower cylinder 250. Therefore, the temperature difference between the upper cylinder 230 and the piston 32 disposed in the compression chamber 31 of the upper cylinder 230 is reduced, and the difference in dimensional change during thermal expansion is reduced.
  • the difference between the height A1 of the upper cylinder 230 and the height A2 of the piston 32 disposed in the compression chamber 31 of the upper cylinder 230 is lower. It is smaller than the difference between the height A3 of the cylinder 250 and the height A4 of the piston 52 disposed in the compression chamber 51 of the lower cylinder 250 (A1-A2 ⁇ A3-A4).
  • the difference between the height A3 of the lower cylinder 250 and the height A4 of the piston 52 and the difference between the height A1 of the upper cylinder 230 and the height A2 of the piston 32 are determined when the compressor 201 is stopped (at room temperature). Time).
  • a refrigerant is supplied to the compression chamber 31 of the upper cylinder 230, which is a lower intake passage that supplies refrigerant to the compression chamber 51 of the lower cylinder 250 and a passage branched from the lower intake passage.
  • a suction passage including an upper suction passage is formed.
  • the surface area of the region facing the suction passage of the upper cylinder 230 is smaller than the surface area of the region facing the suction passage of the lower cylinder 250. Therefore, in the upper cylinder 230, the temperature drop due to the refrigerant in the vicinity of the region facing the suction passage in the cylinder is smaller than in the lower cylinder 250.
  • the temperature difference between the upper cylinder 230 and the piston 32 disposed in the compression chamber 31 of the upper cylinder 230 is reduced, and the difference in dimensional change during thermal expansion is reduced. Therefore, in the upper cylinder 230, as compared with the lower cylinder 250, there is a problem even if the gap between the axial end surface of the piston 32 and the axial end surfaces of the end plate members 20 and 240 adjacent thereto is reduced. Hateful. Then, by reducing the oil leakage from the piston inner peripheral portion to the compression chamber, the volumetric efficiency and the illustration efficiency can be improved. Therefore, in order to reduce the size of the compressor 201, the two cylinders 230 and 250 are reduced.
  • the accumulator 5 can be connected by a single suction pipe 6, a decrease in compressor efficiency due to an increase in suction resistance can be compensated by an improvement in volumetric efficiency and illustrated efficiency, and a decrease in compressor efficiency can be suppressed. In this way, in the present embodiment, it is possible to achieve both reduction in size of the compressor 201 and suppression of reduction in compressor efficiency.
  • the lower suction passage (first passage) passes through the lower cylinder 250 and does not pass through the upper cylinder 230
  • the upper suction passage (second passage) is located inside the lower cylinder 250. It branches from the suction passage and passes through both the lower cylinder 250 and the upper cylinder 230.
  • the suction pipe 6 is configured to be insertable into the lower cylinder 250 so that the tip thereof is located in the lower cylinder 250.
  • the linear lateral passage 250a constitutes the refrigerant passage from the tip of the suction pipe 6 to the compression chamber 51 of the lower cylinder 250, and an increase in suction resistance can be suppressed.
  • the second cylinder reduces the difference between the height of the cylinder and the height of the piston as compared with the first cylinder, so that the compression chamber extends from the piston inner peripheral portion. This reduces the oil leakage to the compressor, thereby improving the compressor efficiency.
  • the compressor efficiency can be improved.
  • seizure due to sliding friction between the piston and the end plate member is likely to occur, and the reliability is lowered.
  • seizure due to sliding friction between the piston and the end plate member is less likely to occur, and the reliability is improved while the compressor efficiency decreases. End up.
  • the present inventors conducted a verification test using a plurality of rotary compressors (including several types) to determine whether acceptable compressor efficiency can be obtained while ensuring reliability.
  • the height Hc (mm) in the drive shaft axial direction of the cylinder the height Hp (mm) in the axial direction of the piston arranged inside the compression chamber formed in the cylinder, the suction passage in the cylinder
  • the surface area As (mm 2 ) of the facing region and the length Ls (mm) of the suction passage in the cylinder were used as variables.
  • the length Ls is the length of the suction passage in a plane orthogonal to the drive shaft axis direction, and is the length in the radial direction of the cylinder in the above-described embodiment. Examples of the length Ls are shown as L1 and L2 in FIGS.
  • FIG. 9 is a graph depicting the results.
  • the parameter on the vertical axis is (the difference in height between the cylinder and the piston (Hc ⁇ Hp) / cylinder height Hc), which represents the rate of change of the cylinder height as the temperature changes.
  • Hc ⁇ Hp the difference in height between the cylinder and the piston
  • Hc ⁇ Hp the height difference from the piston
  • the parameter on the horizontal axis is (surface area As of the area facing the suction passage in the cylinder / cylinder height Hp ⁇ length Ls in the extending direction of the suction passage), and represents the ease of temperature change of the cylinder. . That is, the larger the surface area of the area facing the suction passage in the cylinder, the more the cylinder is cooled by the refrigerant and the temperature is likely to decrease. On the other hand, as the cylinder height and the length in the extending direction of the suction passage are larger, the temperature of the cylinder is less likely to decrease due to the increase in heat capacity. As described above, the temperature in the vicinity of the region facing the suction passage in the cylinder varies according to the balance between the surface area As, the cylinder height Hp, and the length Ls in the extending direction of the suction passage. .
  • an approximate line A represented as a straight line is a limit line indicating a lower limit of performance in terms of compressor efficiency. That is, an acceptable compressor efficiency is obtained in the region below the approximate line A.
  • the approximate line B expressed as a straight line having the same inclination as the approximate line A is a limit line that is acceptable in terms of reliability (no seizure occurs). That is, the region where the seizure does not occur is above the approximate line B.
  • the first cylinder may be the lower cylinder 50 and the second cylinder may be the upper cylinder 30. That is, the surface area of the region facing the suction passage in the upper cylinder 30 may be smaller than the surface area of the region facing the suction passage in the lower cylinder 50.
  • the first cylinder may be the lower cylinder 50 and the second cylinder may be the upper cylinder 130. That is, the surface area of the region facing the suction passage in the upper cylinder 130 may be smaller than the surface area of the region facing the suction passage in the lower cylinder 50.
  • the first cylinder may be the upper cylinder 230 and the second cylinder may be the lower cylinder 250. That is, the surface area of the region facing the suction passage in the lower cylinder 250 may be smaller than the surface area of the region facing the suction passage in the upper cylinder 230.
  • the configuration (arrangement, cross-sectional shape, etc.) of the suction passage is not limited to that shown in the first to third embodiments, and may be changed as appropriate.
  • the example in which the lateral passages 30a, 50a; 130a; 230a, 250a extend in the radial direction of the cylinder has been described, but these lateral passages communicate with the compression chamber. As long as it is, it may extend in any direction within a plane perpendicular to the axial direction of the drive shaft.
  • the accumulator fixed to the rotary compressor according to the present invention is exemplified as the external device, but is not limited to this.
  • the external device may be, for example, an accumulator that is not fixed to the rotary compressor according to the present invention, or a device (evaporator or the like) other than the accumulator.
  • the piston roller and the blade are integrally formed, but the roller and the blade may be formed separately.
  • a two-cylinder rotary compressor having an upper cylinder and a lower cylinder has been described.
  • a rotary compressor having three or more cylinders may be used.
  • the difference between the height in the drive shaft axial direction of the cylinder and the height in the axial direction of the piston disposed in the compression chamber of the cylinder is a region facing the suction passage in the cylinder. The smaller the surface area, the smaller.

Abstract

Provided is a rotary compressor which includes first and second cylinders arranged in the axial direction of a driving shaft, and in which a suction path for supplying a refrigerant, supplied through a suction pipe from an external apparatus, to each of compression chambers is formed. The surface area of a suction path-facing region in the second cylinder is smaller than the surface area of a suction path-facing region in the first cylinder. The difference between the height of the second cylinder in the axial direction and the height in the axial direction of a piston disposed in a compression chamber of the second cylinder is smaller than the difference between the height of the first cylinder in the axial direction and the height in the axial direction of a piston disposed in a compression chamber of the first cylinder (A3-A4 < A1-A2). Therefore, miniaturization of the compressor and inhibition of degradation in compressor efficiency can both be achieved.

Description

ロータリ圧縮機Rotary compressor
 本発明は、例えば空気調和機等に使用されるロータリ圧縮機に関する。 The present invention relates to a rotary compressor used in, for example, an air conditioner.
 特開2016-118142号公報は、上シリンダ及び下シリンダを有し、それぞれに形成された圧縮室において冷媒が圧縮される2シリンダのロータリ圧縮機を開示している。圧縮機の側方には、アキュムレータが取り付けられている。アキュムレータには、2つの吸入管が接続されている。2つの吸入管のうち、一方は上シリンダに接続され、他方は下シリンダに接続されている。上シリンダ及び下シリンダには、各吸入管を介して、アキュムレータから冷媒が供給される。上シリンダ及び下シリンダのそれぞれに形成された圧縮室には、ローラを有するピストンが配置されている。圧縮室は、ピストンによって冷媒が導入される低圧室と、冷媒が圧縮される高圧室とに区画されている。 Japanese Unexamined Patent Publication No. 2016-118142 discloses a two-cylinder rotary compressor having an upper cylinder and a lower cylinder, in which refrigerant is compressed in a compression chamber formed in each cylinder. An accumulator is attached to the side of the compressor. Two suction pipes are connected to the accumulator. Of the two suction pipes, one is connected to the upper cylinder and the other is connected to the lower cylinder. Refrigerant is supplied from the accumulator to the upper cylinder and the lower cylinder via each suction pipe. A piston having a roller is disposed in a compression chamber formed in each of the upper cylinder and the lower cylinder. The compression chamber is partitioned into a low pressure chamber into which the refrigerant is introduced by a piston and a high pressure chamber into which the refrigerant is compressed.
特開2016-118142号公報JP 2016-118142 A
 2シリンダのロータリ圧縮機を小型化する場合、アキュムレータなどの冷媒を供給するための外部機器も小型化することが好ましい。しかしながら、アキュムレータに2つの吸入管を接続すると、アキュムレータの小型化が困難である。その対策として、2シリンダのロータリ圧縮機とアキュムレータとを1つの吸入管により接続することにより、アキュムレータを小型化することが考えられる。しかし、この場合、吸入管の分岐によって吸入抵抗が増加し、圧縮機効率が低下し得る。 When downsizing a 2-cylinder rotary compressor, it is preferable to reduce the size of external equipment for supplying a refrigerant such as an accumulator. However, when two suction pipes are connected to the accumulator, it is difficult to reduce the size of the accumulator. As a countermeasure, it is conceivable to reduce the size of the accumulator by connecting the two-cylinder rotary compressor and the accumulator with one suction pipe. However, in this case, the suction resistance increases due to the branching of the suction pipe, and the compressor efficiency may decrease.
 本発明の目的は、小型化が可能であると共に圧縮機効率の低下を抑制できるロータリ圧縮機を提供することである。 An object of the present invention is to provide a rotary compressor that can be reduced in size and can suppress a decrease in compressor efficiency.
 本発明にかかるロータリ圧縮機は、圧縮機構と、前記圧縮機構を駆動する駆動軸を有する駆動機構とを収容したロータリ圧縮機であって、前記圧縮機構は、圧縮室がそれぞれ形成されたシリンダであって、複数の前記圧縮室内に前記駆動軸が位置するように前記駆動軸の軸方向に配列された複数のシリンダと、各シリンダの前記軸方向についての両端に配置され、前記圧縮室を区画する複数の端板部材と、各圧縮室の内部に配置され、前記駆動軸により駆動される複数のピストンとを備えている。前記複数のシリンダは、第1シリンダと、1つの前記端板部材を介して前記第1シリンダに隣接した第2シリンダとを含み、前記ロータリ圧縮機には、外部機器から吸入管を介して供給された冷媒を前記第1シリンダの前記圧縮室に供給する第1通路、及び、前記第1通路から分岐した通路であり且つ前記第2シリンダの前記圧縮室に冷媒を供給する第2通路を含む吸入通路が形成されている。前記第2シリンダにおいて前記吸入通路に面した領域の表面積は、前記第1シリンダにおいて前記吸入通路に面した領域の表面積よりも小さい。そして、前記第2シリンダの前記軸方向についての高さと前記第2シリンダの前記圧縮室に配置された前記ピストンの前記軸方向についての高さとの差は、前記第1シリンダの前記軸方向についての高さと前記第1シリンダの前記圧縮室に配置された前記ピストンの前記軸方向についての高さとの差よりも小さい。 A rotary compressor according to the present invention is a rotary compressor that houses a compression mechanism and a drive mechanism having a drive shaft that drives the compression mechanism, and the compression mechanism is a cylinder in which a compression chamber is formed. A plurality of cylinders arranged in the axial direction of the drive shaft so that the drive shafts are positioned in the plurality of compression chambers, and arranged at both ends of the cylinders in the axial direction, and partitioning the compression chambers A plurality of end plate members, and a plurality of pistons which are arranged inside each compression chamber and driven by the drive shaft. The plurality of cylinders include a first cylinder and a second cylinder adjacent to the first cylinder via one end plate member, and the rotary compressor is supplied from an external device via a suction pipe. A first passage for supplying the refrigerant to the compression chamber of the first cylinder, and a second passage for branching from the first passage and supplying the refrigerant to the compression chamber of the second cylinder A suction passage is formed. The surface area of the region facing the suction passage in the second cylinder is smaller than the surface area of the region facing the suction passage in the first cylinder. The difference between the height of the second cylinder in the axial direction and the height of the piston arranged in the compression chamber of the second cylinder in the axial direction is about the axial direction of the first cylinder. The difference between the height and the height of the piston disposed in the compression chamber of the first cylinder in the axial direction is smaller.
 外部機器は、アキュムレータであってもよいし、アキュムレータと本発明に係るロータリ圧縮機との間に配置された任意の機器であってもよい。 The external device may be an accumulator or an arbitrary device arranged between the accumulator and the rotary compressor according to the present invention.
 本発明において、前記第1通路は、前記第1シリンダを通過し且つ前記第2シリンダを通過せず、前記第2通路は、前記第1シリンダの内部において前記第1通路から分岐して、前記第1シリンダ及び前記第2シリンダの両方を通過してよい。 In the present invention, the first passage passes through the first cylinder and does not pass through the second cylinder, and the second passage branches from the first passage inside the first cylinder, and It may pass through both the first cylinder and the second cylinder.
 本発明において、前記吸入管は、その先端が前記第1シリンダ内に位置するように前記第1シリンダに挿入可能に構成されていてよい。 In the present invention, the suction pipe may be configured to be insertable into the first cylinder so that a distal end thereof is located in the first cylinder.
 本発明において、前記吸入管は、その先端が前記第1シリンダに対して前記第2シリンダとは反対側に配置された前記端板部材内に位置するように当該端板部材に挿入可能に構成されていてよい。 In the present invention, the suction pipe is configured to be insertable into the end plate member so that the tip thereof is positioned in the end plate member disposed on the opposite side of the first cylinder from the second cylinder. May have been.
 また、本発明において、好ましくは、前記複数のシリンダにおいて、当該シリンダの前記軸方向についての高さと当該シリンダの前記圧縮室に配置された前記ピストンの前記軸方向についての高さとの差は、当該シリンダにおいて前記吸入通路に面した領域の表面積が小さいほど小さい。 In the present invention, preferably, in the plurality of cylinders, a difference between a height of the cylinder in the axial direction and a height of the piston disposed in the compression chamber of the cylinder in the axial direction is The smaller the surface area of the area facing the suction passage in the cylinder, the smaller.
 さらに、本発明において、好ましくは、前記複数のシリンダのいずれについても、当該シリンダの前記軸方向についての高さをHc(mm)、当該シリンダに形成された前記圧縮室の内部に配置された前記ピストンの前記軸方向についての高さをHp(mm)、当該シリンダにおける前記吸入通路に面した領域の表面積をAs(mm2)、当該シリンダにおける前記吸入通路の前記軸方向と直交する方向についての長さをLs(mm)としたときに、
 3.9×0.0001≦(Hc-Hp)/Hc-1.4×0.0001×As/(Hc・Ls)≦6.7×0.0001
 が満たされる。
Furthermore, in the present invention, preferably, for any of the plurality of cylinders, the height of the cylinder in the axial direction is Hc (mm), and the cylinder is disposed inside the compression chamber formed in the cylinder. The height of the piston in the axial direction is Hp (mm), the surface area of the region facing the suction passage in the cylinder is As (mm 2 ), and the direction perpendicular to the axial direction of the suction passage in the cylinder is When the length is Ls (mm),
3.9 × 0.0001 ≦ (Hc−Hp) /Hc−1.4×0.0001×As/ (Hc · Ls) ≦ 6.7 × 0.0001
Is satisfied.
 本発明のロータリ圧縮機には、第1シリンダの圧縮室に冷媒を供給する第1通路と、第1通路から分岐した通路であり且つ第2シリンダの圧縮室に冷媒を供給する第2通路とを含む吸入通路が形成されている。また、第2シリンダにおいて吸入通路に面した領域の表面積は、第1シリンダにおいて吸入通路に面した領域の表面積よりも小さい。したがって、第2シリンダは、第1シリンダと比べ、シリンダにおける吸入通路に面した領域付近の冷媒による温度低下が小さくなる。そのため、第2シリンダと、第2シリンダの圧縮室内に配置されたピストンとの間において、温度差が小さくなり、熱膨張時における寸法変化量の差が小さくなる。そこで、このロータリ圧縮機では、第2シリンダについて、第1シリンダと比較して、シリンダの高さとピストンの高さとの差(つまり、ピストンの軸方向の端面と端板部材の軸方向の端面との隙間)を小さくすることで、ピストン内周部から圧縮室への油漏れを低減させ、これによって容積効率及び図示効率を向上させている。したがって、圧縮機を小型化するために2つのシリンダと外部機器とを1つの吸入管により接続した場合でも、吸入抵抗の増加による圧縮機効率の低下を容積効率及び図示効率の向上で補うことができるため、圧縮機効率の低下を抑制できる。つまり、圧縮機の小型化と、圧縮機効率の低下抑制とを両立できる。 In the rotary compressor of the present invention, a first passage for supplying the refrigerant to the compression chamber of the first cylinder, a second passage that is a passage branched from the first passage and supplies the refrigerant to the compression chamber of the second cylinder, Is formed. The surface area of the region facing the suction passage in the second cylinder is smaller than the surface area of the region facing the suction passage in the first cylinder. Therefore, the second cylinder has a smaller temperature drop due to the refrigerant in the vicinity of the region facing the suction passage in the cylinder than the first cylinder. Therefore, the temperature difference between the second cylinder and the piston disposed in the compression chamber of the second cylinder becomes small, and the difference in dimensional change during thermal expansion becomes small. Therefore, in this rotary compressor, the difference between the height of the cylinder and the height of the piston (that is, the axial end surface of the piston and the axial end surface of the end plate member) is compared with the first cylinder. ) Is reduced, oil leakage from the inner peripheral portion of the piston to the compression chamber is reduced, thereby improving volumetric efficiency and illustration efficiency. Therefore, even when two cylinders and an external device are connected by a single suction pipe in order to reduce the size of the compressor, a decrease in compressor efficiency due to an increase in suction resistance can be compensated by an improvement in volumetric efficiency and illustration efficiency. As a result, a decrease in compressor efficiency can be suppressed. That is, it is possible to achieve both downsizing of the compressor and suppression of reduction in compressor efficiency.
本発明の第1実施形態に係るロータリ圧縮機をアキュムレータと共に示す図である。It is a figure which shows the rotary compressor which concerns on 1st Embodiment of this invention with an accumulator. 図1に示すロータリ圧縮機の上シリンダの上面図である。It is a top view of the upper cylinder of the rotary compressor shown in FIG. 図1に示すロータリ圧縮機の下シリンダの上面図である。It is a top view of the lower cylinder of the rotary compressor shown in FIG. 図1に示すロータリ圧縮機の圧縮機構の部分拡大図である。It is the elements on larger scale of the compression mechanism of the rotary compressor shown in FIG. 本発明の第2実施形態に係るロータリ圧縮機を示す図である。It is a figure which shows the rotary compressor which concerns on 2nd Embodiment of this invention. 図4に示すロータリ圧縮機の上シリンダの上面図である。It is a top view of the upper cylinder of the rotary compressor shown in FIG. 図4に示すロータリ圧縮機の下シリンダの上面図である。It is a top view of the lower cylinder of the rotary compressor shown in FIG. 図4に示すロータリ圧縮機の圧縮機構の部分拡大図である。It is the elements on larger scale of the compression mechanism of the rotary compressor shown in FIG. 本発明の第3実施形態に係るロータリ圧縮機を示す図である。It is a figure which shows the rotary compressor which concerns on 3rd Embodiment of this invention. 図7に示すロータリ圧縮機の圧縮機構の部分拡大図である。It is the elements on larger scale of the compression mechanism of the rotary compressor shown in FIG. 複数のロータリ圧縮機について行った実験結果を示すグラフである。It is a graph which shows the experimental result done about a plurality of rotary compressors.
[第1実施形態]
 まず、図1-図3を参照しつつ第1実施形態にかかるロータリ圧縮機1について説明する。図1に示すように、本実施形態に係る圧縮機1は、2シリンダ型のロータリ圧縮機であって、密閉容器2と、密閉容器2内に収容された駆動機構3および圧縮機構4とを有している。密閉容器2は、上下両端が塞がれた円筒状の容器である。密閉容器2の側方には、アキュムレータ5が取り付けられている。アキュムレータ5は、冷媒を導入するための1本の吸入管6により、圧縮機構4に接続されている。密閉容器2の上部には、圧縮機構4で圧縮された冷媒を排出するための排出管7が設けられている。密閉容器2の底部には潤滑油が溜められている。
[First Embodiment]
First, the rotary compressor 1 according to the first embodiment will be described with reference to FIGS. As shown in FIG. 1, the compressor 1 according to this embodiment is a two-cylinder rotary compressor, and includes a sealed container 2, a drive mechanism 3 and a compression mechanism 4 accommodated in the sealed container 2. Have. The sealed container 2 is a cylindrical container whose upper and lower ends are closed. An accumulator 5 is attached to the side of the sealed container 2. The accumulator 5 is connected to the compression mechanism 4 by a single suction pipe 6 for introducing a refrigerant. A discharge pipe 7 for discharging the refrigerant compressed by the compression mechanism 4 is provided on the top of the sealed container 2. Lubricating oil is stored at the bottom of the sealed container 2.
 圧縮機1は、例えば空気調和機などにおいて冷凍サイクルに組み込まれて使用され、吸入管6から供給される冷媒を圧縮して排出管7から排出する。圧縮機1では、冷媒として、例えばR32やR410Aが使用されている。圧縮機1は、図1に示す向き、即ち、圧縮機1の軸方向(後述する駆動軸3bの軸方向と同じ)が上下方向となる向きに設置される。 The compressor 1 is used by being incorporated in a refrigeration cycle in an air conditioner, for example, and compresses the refrigerant supplied from the suction pipe 6 and discharges it from the discharge pipe 7. In the compressor 1, for example, R32 or R410A is used as the refrigerant. The compressor 1 is installed in the direction shown in FIG. 1, that is, the direction in which the axial direction of the compressor 1 (the same as the axial direction of a drive shaft 3b described later) is the vertical direction.
 駆動機構3は、圧縮機構4を駆動するために設けられており、駆動源となるモータ3aと、モータ3aに取り付けられた駆動軸3bとで構成されている。モータ3aは、密閉容器2の内周面に固定された略円環状の固定子3aaと、固定子3aaの径方向内側にエアギャップを介して配置された略円環状の回転子3abとを含む。回転子3abは磁石(図示省略)を有し、固定子3aaはコイル(図示省略)を有している。 The drive mechanism 3 is provided to drive the compression mechanism 4, and includes a motor 3a serving as a drive source and a drive shaft 3b attached to the motor 3a. The motor 3a includes a substantially annular stator 3aa fixed to the inner peripheral surface of the hermetic container 2, and a substantially annular rotor 3ab disposed on the radially inner side of the stator 3aa via an air gap. . The rotor 3ab has a magnet (not shown), and the stator 3aa has a coil (not shown).
 駆動軸3bは、回転子3abの内周面に固定されており、回転子3abと一体的に自転して圧縮機構4を駆動する。駆動軸3bは、後述する圧縮室31内と圧縮室51内とに、偏心部3c、3dをそれぞれ有している(図2A、図2B及び図3参照)。偏心部3c、3dは、いずれも円柱状に形成されており、その中心軸が駆動軸3bの回転中心に対して偏心している。偏心部3c、3dには、圧縮機構4のピストン32、52がそれぞれ装着されている。 The drive shaft 3b is fixed to the inner peripheral surface of the rotor 3ab, and rotates together with the rotor 3ab to drive the compression mechanism 4. The drive shaft 3b has eccentric portions 3c and 3d in a compression chamber 31 and a compression chamber 51, which will be described later (see FIGS. 2A, 2B, and 3). The eccentric parts 3c and 3d are all formed in a columnar shape, and the central axis thereof is eccentric with respect to the rotation center of the drive shaft 3b. Pistons 32 and 52 of the compression mechanism 4 are mounted on the eccentric portions 3c and 3d, respectively.
 また、駆動軸3bの下側略半分の内部には、給油路(図示省略)が形成されている。給油路は、上下方向に延在するとともに数箇所で駆動軸3bの径方向に枝分かれしている。駆動軸3bの下端には、駆動軸3bの回転に伴って潤滑油を給油路内に吸い上げる螺旋羽根形状のポンプ部材(図示省略)が取り付けられている。ポンプ部材によって駆動軸3bの下端から吸い上げられた潤滑油は、駆動軸3bの側面から排出されて、例えば圧縮室31、51など圧縮機構4の各摺動部に供給される。 Also, an oil supply passage (not shown) is formed in the lower half of the drive shaft 3b. The oil supply passage extends in the vertical direction and branches in the radial direction of the drive shaft 3b at several locations. A spiral blade-shaped pump member (not shown) is attached to the lower end of the drive shaft 3b to suck up lubricating oil into the oil supply path as the drive shaft 3b rotates. The lubricating oil sucked up from the lower end of the drive shaft 3b by the pump member is discharged from the side surface of the drive shaft 3b and supplied to each sliding portion of the compression mechanism 4 such as the compression chambers 31 and 51, for example.
 圧縮機構4は、上マフラ10a、10bと、上ヘッド20(端板部材)と、上シリンダ30(シリンダ)と、ミドルプレート40(端板部材)と、下シリンダ50(シリンダ)と、下ヘッド60(端板部材)と、下マフラ70とを含んでいる。これらは、駆動軸3bの軸方向に沿って、上から下に向かって順に配列されている。 The compression mechanism 4 includes an upper muffler 10a, 10b, an upper head 20 (end plate member), an upper cylinder 30 (cylinder), a middle plate 40 (end plate member), a lower cylinder 50 (cylinder), and a lower head. 60 (end plate member) and a lower muffler 70 are included. These are arranged in order from top to bottom along the axial direction of the drive shaft 3b.
 図1及び図2Aに示すように、上シリンダ30は、略円形板状の部材である。上シリンダ30の中央部には、駆動軸3bの軸方向に上シリンダ30を貫通した円形孔である圧縮室31が形成されている。圧縮室31内には、ピストン32が配置されている。ピストン32は、円環状のローラ32aと、ローラ32aの外周面から径方向外側に延在するブレード32bとから構成されている。ローラ32aは、偏心部3cの外周面に対して相対回転可能に装着されて、圧縮室31内に配置されている。 As shown in FIGS. 1 and 2A, the upper cylinder 30 is a substantially circular plate-like member. A compression chamber 31 which is a circular hole penetrating the upper cylinder 30 in the axial direction of the drive shaft 3b is formed at the center of the upper cylinder 30. A piston 32 is disposed in the compression chamber 31. The piston 32 includes an annular roller 32a and a blade 32b extending radially outward from the outer peripheral surface of the roller 32a. The roller 32 a is mounted in the compression chamber 31 so as to be rotatable relative to the outer peripheral surface of the eccentric portion 3 c.
 図2A及び図3に示すように、上シリンダ30には、圧縮室31に冷媒を導入するための吸入通路として、上シリンダ30の径方向に延在した横通路30aが形成されている。横通路30aの径方向内側端部は、圧縮室31に開口し、横通路30aの径方向外側端部は、上シリンダ30の外周面に開口している。横通路30aの径方向外側端部から横通路30a内に吸入管6が挿入されており、その先端が横通路30aの中央付近に位置している。また、上シリンダ30には、圧縮室51に冷媒を導入するための吸入通路として、横通路30aから鉛直下方に延在した縦通路30bが形成されている。縦通路30bは、横通路30aにおける径方向内側端部と吸入管6の先端位置との間から分岐し、鉛直下方に延在して上シリンダ30の下面に開口している。 As shown in FIGS. 2A and 3, the upper cylinder 30 is formed with a transverse passage 30 a extending in the radial direction of the upper cylinder 30 as a suction passage for introducing the refrigerant into the compression chamber 31. The radially inner end of the lateral passage 30 a opens to the compression chamber 31, and the radially outer end of the lateral passage 30 a opens to the outer peripheral surface of the upper cylinder 30. The suction pipe 6 is inserted into the lateral passage 30a from the radially outer end of the lateral passage 30a, and the tip thereof is located near the center of the lateral passage 30a. The upper cylinder 30 is formed with a vertical passage 30b extending vertically downward from the horizontal passage 30a as a suction passage for introducing the refrigerant into the compression chamber 51. The vertical passage 30 b branches from between the radially inner end of the horizontal passage 30 a and the tip position of the suction pipe 6, extends vertically downward, and opens to the lower surface of the upper cylinder 30.
 また、図2Aに示すように、上シリンダ30には、圧縮室31の周壁面から径方向外側に凹んだ形状のブレード収容部33が形成されている。ブレード収容部33内には、上シリンダ30の周方向に対向する一対のブッシュ34が配置されている。一対のブッシュ34は、略円柱状の部材を半分割した形状である。一対のブッシュ34は、その間にブレード32bが配置された状態で、ブレード収容部33内において揺動可能である。また、ブレード32bは、一対のブッシュ34の間において、上シリンダ30の径方向に進退可能に配置されている。圧縮室31は、ブレード32bによって、低圧室と高圧室とに区画されている。 Further, as shown in FIG. 2A, the upper cylinder 30 is formed with a blade accommodating portion 33 having a shape that is recessed radially outward from the peripheral wall surface of the compression chamber 31. A pair of bushes 34 facing the circumferential direction of the upper cylinder 30 are arranged in the blade accommodating portion 33. The pair of bushes 34 has a shape obtained by semi-dividing a substantially cylindrical member. The pair of bushes 34 can swing in the blade accommodating portion 33 with the blade 32b disposed therebetween. Further, the blade 32 b is disposed between the pair of bushes 34 so as to advance and retreat in the radial direction of the upper cylinder 30. The compression chamber 31 is divided into a low pressure chamber and a high pressure chamber by a blade 32b.
 図1に示すように、上ヘッド20は、上シリンダ30の上端面に接するように配置されており、圧縮室31の上端を閉塞することで圧縮室31を区画している。上ヘッド20は、略円環状の部材であって、その中央部に駆動軸3bが回転可能に挿通されている。上ヘッド20は、溶接などによって密閉容器2の内周面に固定されている。 As shown in FIG. 1, the upper head 20 is disposed so as to contact the upper end surface of the upper cylinder 30, and the compression chamber 31 is partitioned by closing the upper end of the compression chamber 31. The upper head 20 is a substantially annular member, and the drive shaft 3b is rotatably inserted in the center thereof. The upper head 20 is fixed to the inner peripheral surface of the sealed container 2 by welding or the like.
 上ヘッド20の上方には、上マフラ10a、10bが配置されている。上ヘッド20と上マフラ10bとの間及び上マフラ10aと上マフラ10bとの間には、上マフラ空間が形成されている。上マフラ空間により、冷媒の吐出に伴う騒音の低減が図られている。 Upper mufflers 10a and 10b are disposed above the upper head 20. An upper muffler space is formed between the upper head 20 and the upper muffler 10b and between the upper muffler 10a and the upper muffler 10b. The upper muffler space reduces noise caused by the refrigerant discharge.
 図2Aに示すように、上ヘッド20には、圧縮室31と上マフラ空間とを連通させ、圧縮室31で圧縮された冷媒を上マフラ空間に吐出する吐出孔35が設けられている。吐出孔35は、板状の吐出弁(図示省略)によって塞がれている。吐出弁は、圧縮室31の圧力が所定の圧力以上となると弾性変形して吐出孔35を開口する。 As shown in FIG. 2A, the upper head 20 is provided with a discharge hole 35 that allows the compression chamber 31 and the upper muffler space to communicate with each other and discharges the refrigerant compressed in the compression chamber 31 to the upper muffler space. The discharge hole 35 is closed by a plate-like discharge valve (not shown). The discharge valve is elastically deformed to open the discharge hole 35 when the pressure in the compression chamber 31 becomes equal to or higher than a predetermined pressure.
 ミドルプレート40は、円形板状の部材であって、図1に示すように、上シリンダ30の下端面及び下シリンダ50の上端面に接するように配置されている。図3に示すように、ミドルプレート40は、上シリンダ30の圧縮室31の下端を閉塞することで圧縮室31を区画とともに、下シリンダ50の圧縮室51の上端を閉塞することで圧縮室51を区画している。ミドルプレート40には、圧縮室51に冷媒を導入するための吸入通路として、上シリンダ30の縦通路30bに接続された縦通路40aが形成されている。縦通路40aは、上シリンダ30の縦通路30bと、後述の下シリンダ50の横通路50aとを接続している。 The middle plate 40 is a circular plate-like member, and is disposed so as to contact the lower end surface of the upper cylinder 30 and the upper end surface of the lower cylinder 50 as shown in FIG. As shown in FIG. 3, the middle plate 40 closes the lower end of the compression chamber 31 of the upper cylinder 30 to partition the compression chamber 31 and closes the upper end of the compression chamber 51 of the lower cylinder 50 to compress the compression chamber 51. Is partitioned. The middle plate 40 is formed with a vertical passage 40 a connected to the vertical passage 30 b of the upper cylinder 30 as a suction passage for introducing the refrigerant into the compression chamber 51. The vertical passage 40a connects the vertical passage 30b of the upper cylinder 30 and the horizontal passage 50a of the lower cylinder 50 described later.
 図1及び図2Bに示すように、ミドルプレート40を介して上シリンダ30に隣接した下シリンダ50は、上シリンダ30と同様に、略円形板状の部材である。下シリンダ50の中央部には、駆動軸3bの軸方向に下シリンダ50を貫通した円形孔である圧縮室51が形成されている。圧縮室51内には、ピストン52が配置されている。ピストン52は、円環状のローラ52aと、ローラ52aの外周面から径方向外側に延在するブレード52bとから構成されている。ローラ52aは、偏心部3dの外周面に対して相対回転可能に装着されて、圧縮室51内に配置されている。 As shown in FIGS. 1 and 2B, the lower cylinder 50 adjacent to the upper cylinder 30 via the middle plate 40 is a substantially circular plate-like member like the upper cylinder 30. A compression chamber 51, which is a circular hole that penetrates the lower cylinder 50 in the axial direction of the drive shaft 3b, is formed at the center of the lower cylinder 50. A piston 52 is disposed in the compression chamber 51. The piston 52 includes an annular roller 52a and a blade 52b extending radially outward from the outer peripheral surface of the roller 52a. The roller 52a is mounted in the compression chamber 51 so as to be rotatable relative to the outer peripheral surface of the eccentric portion 3d.
 図2B及び図3に示すように、下シリンダ50には、圧縮室51に冷媒を導入するための吸入通路として、下シリンダ50の径方向に延在した横通路50aが形成されている。横通路50aは、下シリンダ50の上面が切り欠かれることにより形成されている。横通路50aの径方向内側端部は、圧縮室51に開口している。横通路50aの径方向外側端部は、径方向において下シリンダ50の壁面により塞がれ、上方に開口している。図3に示すように、横通路50aの径方向外側端部は、当該上方の開口を介して、ミドルプレート40の縦通路40aに接続されている。横通路50aにおける前記開口を除く部分は、ミドルプレート40の下面により塞がれている。 As shown in FIGS. 2B and 3, the lower cylinder 50 is formed with a transverse passage 50 a extending in the radial direction of the lower cylinder 50 as a suction passage for introducing the refrigerant into the compression chamber 51. The lateral passage 50a is formed by cutting out the upper surface of the lower cylinder 50. The radially inner end of the lateral passage 50 a opens to the compression chamber 51. The radially outer end of the lateral passage 50a is closed by the wall surface of the lower cylinder 50 in the radial direction and opens upward. As shown in FIG. 3, the radially outer end of the horizontal passage 50a is connected to the vertical passage 40a of the middle plate 40 through the upper opening. A portion of the lateral passage 50 a excluding the opening is closed by the lower surface of the middle plate 40.
 また、図2Bに示すように、下シリンダ50には、圧縮室51の周壁面から径方向外側に凹んだ形状のブレード収容部53が形成されている。ブレード収容部53内には、下シリンダ50の周方向に対向する一対のブッシュ54が配置されている。一対のブッシュ54は、略円柱状の部材を半分割した形状である。一対のブッシュ54は、その間にブレード52bが配置された状態で、ブレード収容部53内において揺動可能である。また、ブレード52bは、一対のブッシュ54の間において、下シリンダ50の径方向に進退可能に配置されている。圧縮室51は、ブレード52bによって、低圧室と高圧室とに区画されている。 Further, as shown in FIG. 2B, the lower cylinder 50 is formed with a blade accommodating portion 53 having a shape recessed from the peripheral wall surface of the compression chamber 51 radially outward. A pair of bushes 54 facing the circumferential direction of the lower cylinder 50 are arranged in the blade accommodating portion 53. The pair of bushes 54 has a shape in which a substantially cylindrical member is divided in half. The pair of bushes 54 can swing in the blade accommodating portion 53 with the blade 52b disposed therebetween. The blade 52b is disposed between the pair of bushes 54 so as to be able to advance and retract in the radial direction of the lower cylinder 50. The compression chamber 51 is divided into a low pressure chamber and a high pressure chamber by a blade 52b.
 図1に示すように、下ヘッド60は、下シリンダ50の下端面に接するように配置されており、圧縮室51の下端を閉塞することで圧縮室51を区画している。下ヘッド60は、略円環状の部材であって、その中央部に駆動軸3bが回転可能に挿通されている。 As shown in FIG. 1, the lower head 60 is arranged so as to contact the lower end surface of the lower cylinder 50, and the compression chamber 51 is partitioned by closing the lower end of the compression chamber 51. The lower head 60 is a substantially annular member, and the drive shaft 3b is rotatably inserted in the center thereof.
 下ヘッド60の下方には、下マフラ70が配置されている。下ヘッド60と下マフラ70との間には、下マフラ空間が形成されている。下マフラ空間により、冷媒の吐出に伴う騒音の低減が図られている。 A lower muffler 70 is disposed below the lower head 60. A lower muffler space is formed between the lower head 60 and the lower muffler 70. The lower muffler space reduces noise associated with refrigerant discharge.
 図2Bに示すように、下ヘッド60には、圧縮室51と下マフラ空間とを連通させ、圧縮室51で圧縮された冷媒を下マフラ空間に吐出する吐出孔55が設けられている。吐出孔55は、板状の吐出弁(図示省略)によって塞がれている。吐出弁は、圧縮室51の圧力が所定の圧力以上となると弾性変形して吐出孔55を開口する。 As shown in FIG. 2B, the lower head 60 is provided with a discharge hole 55 that allows the compression chamber 51 and the lower muffler space to communicate with each other and discharges the refrigerant compressed in the compression chamber 51 to the lower muffler space. The discharge hole 55 is closed by a plate-like discharge valve (not shown). The discharge valve is elastically deformed to open the discharge hole 55 when the pressure in the compression chamber 51 becomes equal to or higher than a predetermined pressure.
 下マフラ空間は、下ヘッド60、下シリンダ50、ミドルプレート40、上シリンダ30および上ヘッド20にそれぞれ形成された貫通孔を介して、上マフラ空間と連通している。 The lower muffler space communicates with the upper muffler space through through holes formed in the lower head 60, the lower cylinder 50, the middle plate 40, the upper cylinder 30 and the upper head 20, respectively.
 本実施形態のロータリ圧縮機1には、上シリンダ30の圧縮室31に冷媒を供給する上吸入通路(第1通路)、及び、上吸入通路(第1通路)から分岐した通路であり且つ下シリンダ50の圧縮室51に冷媒を供給する下吸入通路(第2通路)を含む吸入通路が形成されている。本実施形態では、上吸入通路は、上シリンダ30に形成された横通路30aのうち、吸入管6の先端から圧縮室31に到るまでの水平な通路であり、上シリンダ30を通過し且つ下シリンダ50を通過しない。下吸入通路は、上シリンダ30に形成された縦通路30bと、ミドルプレート40に形成された縦通路40aと、下シリンダ50に形成された横通路50aとで構成される(図3参照)。下吸入通路は、上シリンダ30と下シリンダ50の両方を通過する。 The rotary compressor 1 of the present embodiment includes an upper suction passage (first passage) for supplying refrigerant to the compression chamber 31 of the upper cylinder 30 and a passage branched from the upper suction passage (first passage). A suction passage including a lower suction passage (second passage) for supplying the refrigerant to the compression chamber 51 of the cylinder 50 is formed. In the present embodiment, the upper suction passage is a horizontal passage from the distal end of the suction pipe 6 to the compression chamber 31 among the lateral passages 30a formed in the upper cylinder 30, and passes through the upper cylinder 30 and The lower cylinder 50 is not passed. The lower suction passage includes a vertical passage 30b formed in the upper cylinder 30, a vertical passage 40a formed in the middle plate 40, and a horizontal passage 50a formed in the lower cylinder 50 (see FIG. 3). The lower suction passage passes through both the upper cylinder 30 and the lower cylinder 50.
 言い換えると、横通路30aのうち吸入管6の先端から圧縮室31に到るまでの水平な通路(横通路30aのうち吸入管6の先端から横通路30aの径方向外側端部までを含まない)と、縦通路30bとが、上シリンダ30において吸入通路を形成している。そして、横通路50aが、下シリンダ50において吸入通路を形成している。本実施形態において、下シリンダ50において吸入通路に面した領域の表面積は、上シリンダ30において吸入通路に面した領域の表面積よりも小さくなっている。 In other words, the horizontal passage from the front end of the suction pipe 6 to the compression chamber 31 in the horizontal passage 30a (not including from the front end of the suction pipe 6 to the radially outer end of the horizontal passage 30a in the horizontal passage 30a). ) And the vertical passage 30 b form a suction passage in the upper cylinder 30. The lateral passage 50 a forms a suction passage in the lower cylinder 50. In the present embodiment, the surface area of the region facing the suction passage in the lower cylinder 50 is smaller than the surface area of the region facing the suction passage in the upper cylinder 30.
 「シリンダにおいて吸入通路に面した領域の表面積」とは、シリンダにおいて吸入通路を形成する壁の内周面の表面積であり、シリンダにおいてアキュムレータ5から吸入された冷媒が通過する壁面の表面積である。したがって、上シリンダ30において吸入通路に面した領域の表面積は、横通路30aのうち吸入管6の先端から圧縮室31に到るまでの水平な通路に面した領域の表面積と、縦通路30bに面した領域の表面積との合計であり、下シリンダ50において吸入通路に面した領域の表面積は、横通路50aに面した領域の表面積である。 “The surface area of the region facing the suction passage in the cylinder” is the surface area of the inner peripheral surface of the wall forming the suction passage in the cylinder, and the surface area of the wall surface through which the refrigerant sucked from the accumulator 5 passes. Therefore, the surface area of the region facing the suction passage in the upper cylinder 30 is the surface area of the region facing the horizontal passage from the distal end of the suction pipe 6 to the compression chamber 31 in the lateral passage 30a and the vertical passage 30b. The surface area of the region facing the suction passage in the lower cylinder 50 is the surface area of the region facing the lateral passage 50a.
 吸入通路に面した領域の表面積が上シリンダ30に比べて小さい下シリンダ50では、上シリンダ30と比べ、吸入通路に面した領域付近における冷媒による温度低下が小さくなる。そのため、下シリンダ50と、下シリンダ50の圧縮室51に配置されたピストン52との間において、温度差が小さくなり、熱膨張時における寸法変化量の差が小さくなる。 In the lower cylinder 50 where the surface area of the region facing the suction passage is smaller than that of the upper cylinder 30, the temperature drop due to the refrigerant in the vicinity of the region facing the suction passage is smaller than that of the upper cylinder 30. Therefore, the temperature difference between the lower cylinder 50 and the piston 52 disposed in the compression chamber 51 of the lower cylinder 50 is reduced, and the difference in dimensional change during thermal expansion is reduced.
 そこで、本実施形態の圧縮機1では、図3に示すように、下シリンダ50の高さA3と、下シリンダ50の圧縮室51に配置されたピストン52の高さA4との差が、上シリンダ30の高さA1と、上シリンダ30の圧縮室31に配置されたピストン32の高さA2との差よりも小さくなっている(A3-A4<A1-A2)。ここで、上シリンダ30の高さA1とピストン32の高さA2との差、及び、下シリンダ50の高さA3とピストン52の高さA4との差は、圧縮機1の停止時(常温時)におけるものである。 Therefore, in the compressor 1 of this embodiment, as shown in FIG. 3, the difference between the height A3 of the lower cylinder 50 and the height A4 of the piston 52 disposed in the compression chamber 51 of the lower cylinder 50 is It is smaller than the difference between the height A1 of the cylinder 30 and the height A2 of the piston 32 disposed in the compression chamber 31 of the upper cylinder 30 (A3-A4 <A1-A2). Here, the difference between the height A1 of the upper cylinder 30 and the height A2 of the piston 32 and the difference between the height A3 of the lower cylinder 50 and the height A4 of the piston 52 are determined when the compressor 1 is stopped (at room temperature). Time).
 本実施形態のロータリ圧縮機1には、吸入管6が接続された上シリンダ30の圧縮室31に冷媒を供給する上吸入通路と、上吸入通路から分岐した通路であり且つ下シリンダ50の圧縮室51に冷媒を供給する下吸入通路を含む吸入通路が形成されている。そして、下シリンダ50の吸入通路に面した領域の表面積が、上シリンダ30の吸入通路に面した領域の表面積より小さい。したがって、下シリンダ50では、上シリンダ30と比べ、シリンダにおける吸入通路に面した領域付近の冷媒による温度低下が小さくなる。そのため、下シリンダ50と、下シリンダ50の圧縮室51に配置されたピストン52との間において、温度差が小さくなり、熱膨張時における寸法変化量の差が小さくなる。このため、下シリンダ50では、上シリンダ30と比較して、ピストン52の軸方向の端面とこれに隣接する端板部材40,60の軸方向の端面との隙間を小さくしても支障が生じにくい。そして、これによって、ピストン内周部から圧縮室への油漏れを低減させることで、容積効率及び図示効率を向上させることができるので、圧縮機1を小型化するために2つのシリンダ30,50とアキュムレータ5とを1つの吸入管6により接続した場合でも、吸入抵抗の増加による圧縮機効率の低下を容積効率及び図示効率の向上で補い、圧縮機効率の低下を抑制できる。このようにして、本実施形態では、圧縮機1の小型化と、圧縮機効率の低下抑制とを両立できる。 The rotary compressor 1 of the present embodiment includes an upper suction passage for supplying refrigerant to the compression chamber 31 of the upper cylinder 30 to which the suction pipe 6 is connected, a passage branched from the upper suction passage, and compression of the lower cylinder 50. A suction passage including a lower suction passage for supplying the refrigerant to the chamber 51 is formed. The surface area of the region facing the suction passage of the lower cylinder 50 is smaller than the surface area of the region facing the suction passage of the upper cylinder 30. Therefore, in the lower cylinder 50, the temperature drop due to the refrigerant near the area facing the suction passage in the cylinder is smaller than that in the upper cylinder 30. Therefore, the temperature difference between the lower cylinder 50 and the piston 52 disposed in the compression chamber 51 of the lower cylinder 50 is reduced, and the difference in dimensional change during thermal expansion is reduced. Therefore, in the lower cylinder 50, as compared with the upper cylinder 30, there is a problem even if the gap between the axial end surface of the piston 52 and the axial end surfaces of the end plate members 40 and 60 adjacent thereto is reduced. Hateful. Then, by reducing the oil leakage from the inner peripheral portion of the piston to the compression chamber, the volumetric efficiency and the illustration efficiency can be improved, so that the two cylinders 30, 50 can be reduced in order to reduce the size of the compressor 1. And the accumulator 5 can be connected by a single suction pipe 6, a decrease in compressor efficiency due to an increase in suction resistance can be compensated by an improvement in volumetric efficiency and illustrated efficiency, and a decrease in compressor efficiency can be suppressed. Thus, in this embodiment, it is possible to achieve both downsizing of the compressor 1 and suppression of reduction in compressor efficiency.
 また、本実施形態においては、上吸入通路(第1通路)は、上シリンダ30を通過し且つ下シリンダ50を通過せず、下吸入通路(第2通路)は、上シリンダ30の内部において上吸入通路から分岐して、上シリンダ30及び下シリンダ50の両方を通過する。これにより、下シリンダ50において吸入通路に面した領域の表面積が、上シリンダ30において吸入通路に面した領域の表面積よりも小さいという構成を容易に得ることができる。 In the present embodiment, the upper suction passage (first passage) passes through the upper cylinder 30 and does not pass through the lower cylinder 50, and the lower suction passage (second passage) is located in the upper cylinder 30. It branches from the suction passage and passes through both the upper cylinder 30 and the lower cylinder 50. Thereby, the structure that the surface area of the region facing the suction passage in the lower cylinder 50 is smaller than the surface area of the region facing the suction passage in the upper cylinder 30 can be easily obtained.
 さらに、本実施形態においては、吸入管6は、その先端が上シリンダ30内に位置するように上シリンダ30に挿入可能に構成されている。これにより、吸入管6の先端から上シリンダ30の圧縮室31までの冷媒の通路を構成するのが直線状の横通路30aだけとなって、吸入抵抗の増加を抑制することができる。 Furthermore, in the present embodiment, the suction pipe 6 is configured to be insertable into the upper cylinder 30 so that the tip thereof is located in the upper cylinder 30. As a result, only the linear lateral passage 30a constitutes the refrigerant passage from the tip of the suction pipe 6 to the compression chamber 31 of the upper cylinder 30, and an increase in suction resistance can be suppressed.
[第2実施形態]
 次に、図4-図6を参照しつつ第2実施形態にかかる圧縮機について説明する。第1実施形態の圧縮機1では、アキュムレータ5の吸入管6が上シリンダ30に挿入可能に構成された場合を説明したが、本実施形態にかかる圧縮機101は、アキュムレータ5の吸入管6が上ヘッド120に挿入可能に構成された点で第1実施形態と異なる。なお、本実施形態において、前記第1実施形態と同様の構成を有するものについては、同じ符号を付してその説明を適宜省略する。
[Second Embodiment]
Next, a compressor according to a second embodiment will be described with reference to FIGS. In the compressor 1 of the first embodiment, the case where the suction pipe 6 of the accumulator 5 is configured to be insertable into the upper cylinder 30 has been described. However, the compressor 101 according to the present embodiment has the suction pipe 6 of the accumulator 5 being The second embodiment is different from the first embodiment in that it can be inserted into the upper head 120. In addition, in this embodiment, about the thing which has the structure similar to the said 1st Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted suitably.
 本実施形態にかかる圧縮機101は、駆動機構3と、圧縮機構104とを収容している。この圧縮機101において、図5A及び図6に示すように、上シリンダ130の圧縮室31に冷媒を導入するための吸入通路として、上シリンダ130に対して下シリンダ50とは反対側に配置された上ヘッド120には、上ヘッド120の径方向に延在した横通路120aと、横通路120aから鉛直下方に延在した縦通路120bとが形成されている。横通路120aの径方向内側端部は、径方向において上ヘッド120の壁面により塞がれ、下方に開口している。横通路120aの径方向内側端部は、当該下方の開口を介して、上シリンダ130の横通路130aに接続されている。横通路120aの径方向外側端部は、上ヘッド120の外周面に開口している。横通路120aから横通路120a内に吸入管6が挿入されており、その先端が横通路120aの中央付近に位置している。 The compressor 101 according to the present embodiment accommodates the drive mechanism 3 and the compression mechanism 104. In this compressor 101, as shown in FIGS. 5A and 6, the compressor 101 is disposed on the opposite side of the upper cylinder 130 from the lower cylinder 50 as a suction passage for introducing refrigerant into the compression chamber 31 of the upper cylinder 130. The upper head 120 is formed with a lateral passage 120a extending in the radial direction of the upper head 120 and a longitudinal passage 120b extending vertically downward from the lateral passage 120a. The radially inner end of the horizontal passage 120a is closed by the wall surface of the upper head 120 in the radial direction and opens downward. The radially inner end of the lateral passage 120a is connected to the lateral passage 130a of the upper cylinder 130 through the lower opening. The radially outer end of the lateral passage 120 a opens to the outer peripheral surface of the upper head 120. The suction pipe 6 is inserted from the lateral passage 120a into the lateral passage 120a, and the tip thereof is located near the center of the lateral passage 120a.
 上シリンダ130には、上シリンダ130の圧縮室31に冷媒を導入するための吸入通路として、上シリンダ130の径方向に延在した横通路130aが形成されている。横通路130aは、上シリンダ130の上面が切り欠かれることにより形成されている。横通路130aの径方向内側端部は、圧縮室31に開口している。横通路130aの径方向外側端部は、径方向において上シリンダ130の壁面により塞がれ、上方に開口している。横通路130aの径方向外側端部は、当該上方の開口を介して、上ヘッド120の縦通路120bに接続されている。横通路130aにおける前記開口を除く部分は、上ヘッド120の下面により塞がれている。また、上シリンダ130には、下シリンダ150の圧縮室51に冷媒を導入するための吸入通路として、横通路130aから鉛直下方に延在した縦通路130bが形成されている。縦通路130bは、横通路130aから分岐し、鉛直下方に延在して上シリンダ130の下面に開口している。 The upper cylinder 130 is formed with a lateral passage 130 a extending in the radial direction of the upper cylinder 130 as a suction passage for introducing the refrigerant into the compression chamber 31 of the upper cylinder 130. The lateral passage 130a is formed by cutting out the upper surface of the upper cylinder 130. The radially inner end of the lateral passage 130 a opens to the compression chamber 31. The radially outer end of the lateral passage 130a is closed by the wall surface of the upper cylinder 130 in the radial direction and opens upward. The radially outer end of the horizontal passage 130a is connected to the vertical passage 120b of the upper head 120 through the upper opening. A portion of the lateral passage 130 a except the opening is closed by the lower surface of the upper head 120. The upper cylinder 130 is formed with a vertical passage 130b extending vertically downward from the horizontal passage 130a as a suction passage for introducing the refrigerant into the compression chamber 51 of the lower cylinder 150. The vertical passage 130b branches off from the horizontal passage 130a, extends vertically downward, and opens to the lower surface of the upper cylinder 130.
 ミドルプレート40には、下シリンダ50の圧縮室51に冷媒を導入するための吸入通路として、上シリンダ130の縦通路130bに接続された縦通路40aが形成されている。縦通路40aは、上シリンダ130の縦通路130bと、後述の下シリンダ50の横通路50aとを接続している。 In the middle plate 40, a vertical passage 40a connected to the vertical passage 130b of the upper cylinder 130 is formed as a suction passage for introducing the refrigerant into the compression chamber 51 of the lower cylinder 50. The vertical passage 40a connects the vertical passage 130b of the upper cylinder 130 and the horizontal passage 50a of the lower cylinder 50 described later.
 図5B及び図6に示すように、ミドルプレート40を介して上シリンダ130に隣接した下シリンダ50には、圧縮室51に冷媒を導入するための吸入通路として、下シリンダ50の径方向に延在した横通路50aが形成されている。横通路50aは、下シリンダ50の上面が切り欠かれることにより形成されている。横通路50aの径方向内側端部は、圧縮室51に開口している。横通路50aの径方向外側端部は、径方向において下シリンダ50の壁面により塞がれ、上方に開口している。図6に示すように、横通路50aの径方向外側端部は、当該上方の開口を介して、ミドルプレート40の縦通路40aに接続されている。横通路50aにおける前記開口を除く部分は、ミドルプレート40の下面により塞がれている。 As shown in FIGS. 5B and 6, the lower cylinder 50 adjacent to the upper cylinder 130 via the middle plate 40 extends in the radial direction of the lower cylinder 50 as a suction passage for introducing the refrigerant into the compression chamber 51. The existing lateral passage 50a is formed. The lateral passage 50a is formed by cutting out the upper surface of the lower cylinder 50. The radially inner end of the lateral passage 50 a opens to the compression chamber 51. The radially outer end of the lateral passage 50a is closed by the wall surface of the lower cylinder 50 in the radial direction and opens upward. As shown in FIG. 6, the radially outer end of the horizontal passage 50a is connected to the vertical passage 40a of the middle plate 40 through the upper opening. A portion of the lateral passage 50 a excluding the opening is closed by the lower surface of the middle plate 40.
 本実施形態のロータリ圧縮機101には、上シリンダ130の圧縮室31に冷媒を供給する上吸入通路(第1通路)、及び、上吸入通路(第1通路)から分岐した通路であり且つ下シリンダ50の圧縮室51に冷媒を供給する下吸入通路(第2通路)を含む吸入通路が形成されている。本実施形態では、上吸入通路は、上ヘッド120に形成された横通路120aのうち吸入管6の先端から横通路50aの径方向内側端部に到るまでの水平な通路及び縦通路120bと、上シリンダ130に形成された横通路130aとで構成される。下吸入通路は、上シリンダ130に形成された縦通路130bと、ミドルプレート40に形成された縦通路40aと、下シリンダ50に形成された横通路50aとで構成される(図6参照)。 The rotary compressor 101 according to the present embodiment includes an upper suction passage (first passage) for supplying refrigerant to the compression chamber 31 of the upper cylinder 130, and a passage branched from the upper suction passage (first passage). A suction passage including a lower suction passage (second passage) for supplying the refrigerant to the compression chamber 51 of the cylinder 50 is formed. In the present embodiment, the upper suction passage includes a horizontal passage and a vertical passage 120b from the front end of the suction pipe 6 to the radially inner end of the horizontal passage 50a in the horizontal passage 120a formed in the upper head 120. , And a lateral passage 130a formed in the upper cylinder 130. The lower suction passage includes a vertical passage 130b formed in the upper cylinder 130, a vertical passage 40a formed in the middle plate 40, and a horizontal passage 50a formed in the lower cylinder 50 (see FIG. 6).
 言い換えると、横通路130aと、縦通路130bとが、上シリンダ130において吸入通路を形成している。そして、横通路50aが、下シリンダ50において吸入通路を形成している。本実施形態において、下シリンダ50において吸入通路に面した領域の表面積は、上シリンダ130において吸入通路に面した領域の表面積よりも小さくなっている。 In other words, the horizontal passage 130a and the vertical passage 130b form a suction passage in the upper cylinder 130. The lateral passage 50 a forms a suction passage in the lower cylinder 50. In the present embodiment, the surface area of the region facing the suction passage in the lower cylinder 50 is smaller than the surface area of the region facing the suction passage in the upper cylinder 130.
 吸入通路に面した領域の表面積が上シリンダ130に比べて小さい下シリンダ50では、上シリンダ130に比べて、吸入通路に面した領域付近における冷媒による温度低下が小さくなる。そのため、下シリンダ50と、下シリンダ50の圧縮室51に配置されたピストン52との間において、温度差が小さくなり、熱膨張時における寸法変化量の差が小さくなる。 In the lower cylinder 50 where the surface area of the region facing the suction passage is smaller than that of the upper cylinder 130, the temperature drop due to the refrigerant near the region facing the suction passage is smaller than that of the upper cylinder 130. Therefore, the temperature difference between the lower cylinder 50 and the piston 52 disposed in the compression chamber 51 of the lower cylinder 50 is reduced, and the difference in dimensional change during thermal expansion is reduced.
 そこで、本実施形態の圧縮機101では、図6に示すように、下シリンダ50の高さA3と、下シリンダ50の圧縮室51に配置されたピストン52の高さA4との差が、上シリンダ130の高さA1と、上シリンダ130の圧縮室31に配置されたピストン32の高さA2との差よりも小さくなっている(A3-A4<A1-A2)。ここで、上シリンダ130の高さA1とピストン32の高さA2との差、及び、下シリンダ50の高さA3とピストン52の高さA4との差は、圧縮機101の停止時(常温時)におけるものである。 Therefore, in the compressor 101 of this embodiment, as shown in FIG. 6, the difference between the height A3 of the lower cylinder 50 and the height A4 of the piston 52 disposed in the compression chamber 51 of the lower cylinder 50 is It is smaller than the difference between the height A1 of the cylinder 130 and the height A2 of the piston 32 disposed in the compression chamber 31 of the upper cylinder 130 (A3-A4 <A1-A2). Here, the difference between the height A1 of the upper cylinder 130 and the height A2 of the piston 32 and the difference between the height A3 of the lower cylinder 50 and the height A4 of the piston 52 are determined when the compressor 101 is stopped (at room temperature). Time).
 本実施形態のロータリ圧縮機101には、上シリンダ130の圧縮室31に冷媒を供給する上吸入通路と、上吸入通路から分岐した通路であり且つ下シリンダ50の圧縮室51に冷媒を供給する下吸入通路を含む吸入通路が形成されている。そして、下シリンダ50の吸入通路に面した領域の表面積は、上シリンダ130の吸入通路に面した領域の表面積より小さい。したがって、下シリンダ50では、上シリンダ130と比べ、シリンダにおける吸入通路に面した領域付近の冷媒による温度低下が小さくなる。そのため、下シリンダ50と、下シリンダ50の圧縮室51に配置されたピストン52との間において、温度差が小さくなり、熱膨張時における寸法変化量の差が小さくなる。このため、下シリンダ50では、上シリンダ130と比較して、ピストン52の軸方向の端面とこれに隣接する端板部材40,60の軸方向の端面との隙間を小さくしても支障が生じにくい。そして、これによって、ピストン内周部から圧縮室への油漏れを低減させることで、容積効率及び図示効率を向上させることができるので、圧縮機101を小型化するために2つのシリンダ130,50とアキュムレータ5とを1つの吸入管6により接続した場合でも、吸入抵抗の増加による圧縮機効率の低下を容積効率及び図示効率の向上で補い、圧縮機効率の低下を抑制できる。このようにして、本実施形態では、圧縮機101の小型化と、圧縮機効率の低下抑制とを両立できる。 In the rotary compressor 101 of the present embodiment, an upper suction passage that supplies refrigerant to the compression chamber 31 of the upper cylinder 130 and a passage branched from the upper suction passage and supplies refrigerant to the compression chamber 51 of the lower cylinder 50. A suction passage including a lower suction passage is formed. The surface area of the region facing the suction passage of the lower cylinder 50 is smaller than the surface area of the region facing the suction passage of the upper cylinder 130. Therefore, in the lower cylinder 50, the temperature drop due to the refrigerant near the area facing the suction passage in the cylinder is smaller than that in the upper cylinder 130. Therefore, the temperature difference between the lower cylinder 50 and the piston 52 disposed in the compression chamber 51 of the lower cylinder 50 is reduced, and the difference in dimensional change during thermal expansion is reduced. Therefore, in the lower cylinder 50, as compared with the upper cylinder 130, there is a problem even if the gap between the axial end surface of the piston 52 and the axial end surfaces of the end plate members 40 and 60 adjacent thereto is reduced. Hateful. Then, by reducing the oil leakage from the piston inner peripheral portion to the compression chamber, the volumetric efficiency and the illustration efficiency can be improved, so that the two cylinders 130, 50 can be reduced in order to reduce the size of the compressor 101. And the accumulator 5 can be connected by a single suction pipe 6, a decrease in compressor efficiency due to an increase in suction resistance can be compensated by an improvement in volumetric efficiency and illustrated efficiency, and a decrease in compressor efficiency can be suppressed. In this way, in the present embodiment, it is possible to achieve both downsizing of the compressor 101 and suppression of reduction in compressor efficiency.
 また、本実施形態においては、上吸入通路(第1通路)は、上シリンダ130を通過し且つ下シリンダ50を通過せず、下吸入通路(第2通路)は、上シリンダ130の内部において上吸入通路から分岐して、上シリンダ130及び下シリンダ50の両方を通過する。これにより、下シリンダ50において吸入通路に面した領域の表面積が、上シリンダ130において吸入通路に面した領域の表面積よりも小さいという構成を容易に得ることができる。 In the present embodiment, the upper suction passage (first passage) passes through the upper cylinder 130 and does not pass through the lower cylinder 50, and the lower suction passage (second passage) is located in the upper cylinder 130. It branches from the suction passage and passes through both the upper cylinder 130 and the lower cylinder 50. Thus, a configuration in which the surface area of the region facing the suction passage in the lower cylinder 50 is smaller than the surface area of the region facing the suction passage in the upper cylinder 130 can be easily obtained.
 さらに、本実施形態においては、吸入管6は、その先端が上シリンダ130に対して下シリンダ50とは反対側に配置された端板部材である上ヘッド120内に位置するように上ヘッド120に挿入可能に構成されている。これにより、上吸入通路は上シリンダ130内において冷媒の進行方向が鉛直から水平へと変化する箇所を1つ有することになり、下吸入通路は下シリンダ50内において冷媒の進行方向が鉛直から水平へと変化する箇所を1つ有することになる。すなわち、上吸入通路と下吸入通路とで吸入抵抗に大きな差が生じにくくなる。 Further, in the present embodiment, the suction pipe 6 has an upper head 120 such that the tip of the suction pipe 6 is positioned in the upper head 120 which is an end plate member disposed on the opposite side of the upper cylinder 130 from the lower cylinder 50. It is configured to be insertable. As a result, the upper suction passage has one portion where the traveling direction of the refrigerant changes from the vertical to the horizontal in the upper cylinder 130, and the lower suction passage has the traveling direction of the refrigerant in the lower cylinder 50 from the vertical to the horizontal. It will have one point that changes to. That is, it is difficult for a large difference in suction resistance to occur between the upper suction passage and the lower suction passage.
[第3実施形態]
 次に、図7及び図8を参照しつつ第3実施形態にかかる圧縮機について説明する。第3実施形態の圧縮機1では、アキュムレータ5の吸入管6が下シリンダ250に挿入可能に構成された点で第1実施形態と異なる。なお、本実施形態において、前記第1実施形態と同様の構成を有するものについては、同じ符号を付してその説明を適宜省略する。
[Third Embodiment]
Next, the compressor concerning 3rd Embodiment is demonstrated, referring FIG.7 and FIG.8. The compressor 1 according to the third embodiment is different from the first embodiment in that the suction pipe 6 of the accumulator 5 is configured to be inserted into the lower cylinder 250. In addition, in this embodiment, about the thing which has the structure similar to the said 1st Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted suitably.
 本実施形態にかかる圧縮機201は、駆動機構3と、圧縮機構204とを収容している。図7及び図8に示すように、下シリンダ250の圧縮室51に冷媒を導入するための吸入通路として、下シリンダ250には、下シリンダ250の径方向に延在した横通路250aが形成されている。横通路250aの径方向内側端部は、圧縮室51に開口し、横通路250aの径方向外側端部は、下シリンダ250の外周面に開口している。横通路250aの径方向外側端部から横通路250a内に吸入管6が挿入されており、その先端が横通路250aの中央付近に位置している。また、下シリンダ250には、上シリンダ230の圧縮室31に冷媒を導入するための吸入通路として、横通路250aから鉛直上方に延在した縦通路250bが形成されている。縦通路250bは、横通路250aにおける径方向内側端部と吸入管6の先端位置との間から分岐し、鉛直上方に延在して下シリンダ250の上面に開口している。さらに、下シリンダ250には、横通路250aから鉛直下方に延在した縦通路250cが形成されている。縦通路250cは、横通路250aにおける径方向内側端部と吸入管6の先端位置との間(縦通路250bと上下に重なる位置)から分岐し、鉛直下方に延在して下シリンダ250の下面に開口している。この開口は下ヘッド60によって閉塞されている。 The compressor 201 according to the present embodiment accommodates the drive mechanism 3 and the compression mechanism 204. As shown in FIGS. 7 and 8, as a suction passage for introducing the refrigerant into the compression chamber 51 of the lower cylinder 250, a lateral passage 250 a extending in the radial direction of the lower cylinder 250 is formed in the lower cylinder 250. ing. The radially inner end of the lateral passage 250 a opens into the compression chamber 51, and the radially outer end of the lateral passage 250 a opens at the outer peripheral surface of the lower cylinder 250. The suction pipe 6 is inserted into the lateral passage 250a from the radially outer end of the lateral passage 250a, and the tip thereof is located near the center of the lateral passage 250a. The lower cylinder 250 is formed with a vertical passage 250b extending vertically upward from the horizontal passage 250a as a suction passage for introducing the refrigerant into the compression chamber 31 of the upper cylinder 230. The vertical passage 250 b branches from the radial inner end of the horizontal passage 250 a and the tip position of the suction pipe 6, extends vertically upward, and opens on the upper surface of the lower cylinder 250. Further, the lower cylinder 250 is formed with a vertical passage 250c extending vertically downward from the horizontal passage 250a. The vertical passage 250c branches from the radially inner end of the horizontal passage 250a and the tip position of the suction pipe 6 (a position overlapping the vertical passage 250b vertically) and extends vertically downward to the lower surface of the lower cylinder 250. Is open. This opening is closed by the lower head 60.
 ミドルプレート240には、圧縮室31に冷媒を導入するための吸入通路として、下シリンダ250の縦通路250bに接続された縦通路240aが形成されている。縦通路240aは、下シリンダ250の縦通路250bと、後述の上シリンダ230の横通路230aとを接続している。 The middle plate 240 is formed with a vertical passage 240 a connected to the vertical passage 250 b of the lower cylinder 250 as a suction passage for introducing the refrigerant into the compression chamber 31. The vertical passage 240a connects the vertical passage 250b of the lower cylinder 250 and the horizontal passage 230a of the upper cylinder 230 described later.
 ミドルプレート240を介して下シリンダ250に隣接した上シリンダ230には、圧縮室31に冷媒を導入するための吸入通路として、上シリンダ230の径方向に延在した横通路230aが形成されている。横通路230aは、上シリンダ230の下面が切り欠かれることにより形成されている。横通路230aの径方向内側端部は、圧縮室31に開口している。横通路230aの径方向外側端部は、径方向において上シリンダ230の壁面により塞がれ、下方に開口している。横通路230aの径方向外側端部は、当該下方の開口を介して、ミドルプレート240の縦通路240aに接続されている。横通路230aにおける前記開口を除く部分は、ミドルプレート240の上面により塞がれている。 In the upper cylinder 230 adjacent to the lower cylinder 250 via the middle plate 240, a lateral passage 230a extending in the radial direction of the upper cylinder 230 is formed as a suction passage for introducing the refrigerant into the compression chamber 31. . The lateral passage 230a is formed by cutting out the lower surface of the upper cylinder 230. The radially inner end of the lateral passage 230 a opens to the compression chamber 31. The radially outer end of the lateral passage 230a is closed by the wall surface of the upper cylinder 230 in the radial direction and opens downward. The radially outer end of the lateral passage 230a is connected to the longitudinal passage 240a of the middle plate 240 through the lower opening. A portion of the lateral passage 230 a excluding the opening is closed by the upper surface of the middle plate 240.
 本実施形態の圧縮機201には、下シリンダ250の圧縮室51に冷媒を供給する下吸入通路(第1通路)、及び、下吸入通路(第1通路)から分岐した通路であり且つ上シリンダ230の圧縮室31に冷媒を供給する上吸入通路(第2通路)を含む吸入通路が形成されている。本実施形態では、下吸入通路は、下シリンダ250に形成された横通路250aのうち、吸入管6の先端から圧縮室51に到るまでの水平な通路であり、上吸入通路は、下シリンダ250に形成された縦通路250bと、ミドルプレート240に形成された縦通路240aと、上シリンダ230に形成された横通路230aとで構成される。 The compressor 201 of the present embodiment includes a lower suction passage (first passage) for supplying refrigerant to the compression chamber 51 of the lower cylinder 250, and a passage branched from the lower suction passage (first passage) and the upper cylinder. A suction passage including an upper suction passage (second passage) for supplying the refrigerant to the compression chamber 31 of 230 is formed. In the present embodiment, the lower suction passage is a horizontal passage from the front end of the suction pipe 6 to the compression chamber 51 in the lateral passage 250a formed in the lower cylinder 250, and the upper suction passage is the lower cylinder. The vertical passage 250 b is formed in the vertical plate 250 b, the vertical passage 240 a is formed in the middle plate 240, and the horizontal passage 230 a is formed in the upper cylinder 230.
 言い換えると、横通路250aのうち吸入管6の先端から圧縮室51に到るまでの水平な通路(横通路250aのうち吸入管6の先端から横通路250aの径方向外側端部までを含まない)と、縦通路250bとが、下シリンダ250において吸入通路を形成している。そして、横通路230aが、上シリンダ230において吸入通路を形成している。本実施形態において、上シリンダ230において吸入通路に面した領域の表面積は、下シリンダ250において吸入通路に面した領域の表面積よりも小さくなっている。 In other words, the horizontal passage from the front end of the suction pipe 6 to the compression chamber 51 in the horizontal passage 250a (not including from the front end of the suction pipe 6 to the radially outer end of the horizontal passage 250a in the horizontal passage 250a). ) And the vertical passage 250 b form a suction passage in the lower cylinder 250. The lateral passage 230 a forms a suction passage in the upper cylinder 230. In the present embodiment, the surface area of the region facing the suction passage in the upper cylinder 230 is smaller than the surface area of the region facing the suction passage in the lower cylinder 250.
 吸入通路に面した領域の表面積が下シリンダ250に比べて小さい上シリンダ230では、下シリンダ250に比べて、吸入通路に面した領域付近における冷媒による温度低下が小さくなる。そのため、上シリンダ230と、上シリンダ230の圧縮室31に配置されたピストン32との間において、温度差が小さくなり、熱膨張時における寸法変化量の差が小さくなる。 In the upper cylinder 230 in which the surface area of the region facing the suction passage is smaller than that of the lower cylinder 250, the temperature drop due to the refrigerant in the vicinity of the region facing the suction passage is smaller than that of the lower cylinder 250. Therefore, the temperature difference between the upper cylinder 230 and the piston 32 disposed in the compression chamber 31 of the upper cylinder 230 is reduced, and the difference in dimensional change during thermal expansion is reduced.
 そこで、本実施形態の圧縮機201では、図8に示すように、上シリンダ230の高さA1と、上シリンダ230の圧縮室31に配置されたピストン32の高さA2との差が、下シリンダ250の高さA3と、下シリンダ250の圧縮室51に配置されたピストン52の高さA4との差よりも小さくなっている(A1-A2<A3-A4)。ここで、下シリンダ250の高さA3とピストン52の高さA4との差、及び、上シリンダ230の高さA1とピストン32の高さA2との差は、圧縮機201の停止時(常温時)におけるものである。 Therefore, in the compressor 201 of this embodiment, as shown in FIG. 8, the difference between the height A1 of the upper cylinder 230 and the height A2 of the piston 32 disposed in the compression chamber 31 of the upper cylinder 230 is lower. It is smaller than the difference between the height A3 of the cylinder 250 and the height A4 of the piston 52 disposed in the compression chamber 51 of the lower cylinder 250 (A1-A2 <A3-A4). Here, the difference between the height A3 of the lower cylinder 250 and the height A4 of the piston 52 and the difference between the height A1 of the upper cylinder 230 and the height A2 of the piston 32 are determined when the compressor 201 is stopped (at room temperature). Time).
 本実施形態のロータリ圧縮機201には、下シリンダ250の圧縮室51に冷媒を供給する下吸入通路と、下吸入通路から分岐した通路であり且つ上シリンダ230の圧縮室31に冷媒を供給する上吸入通路を含む吸入通路が形成されている。そして、上シリンダ230の吸入通路に面した領域の表面積は、下シリンダ250の吸入通路に面した領域の表面積より小さい。したがって、上シリンダ230では、下シリンダ250と比べ、シリンダにおける吸入通路に面した領域付近の冷媒による温度低下が小さくなる。そのため、上シリンダ230と、上シリンダ230の圧縮室31に配置されたピストン32との間において、温度差が小さくなり、熱膨張時における寸法変化量の差が小さくなる。このため、上シリンダ230では、下シリンダ250と比較して、ピストン32の軸方向の端面とこれに隣接する端板部材20,240の軸方向の端面との隙間を小さくしても支障が生じにくい。そして、これによって、ピストン内周部から圧縮室への油漏れを低減させることで、容積効率及び図示効率を向上させることができるので、圧縮機201を小型化するために2つのシリンダ230,250とアキュムレータ5とを1つの吸入管6により接続した場合でも、吸入抵抗の増加による圧縮機効率の低下を容積効率及び図示効率の向上で補い、圧縮機効率の低下を抑制できる。このようにして、本実施形態では、圧縮機201の小型化と、圧縮機効率の低下抑制とを両立できる。 In the rotary compressor 201 of the present embodiment, a refrigerant is supplied to the compression chamber 31 of the upper cylinder 230, which is a lower intake passage that supplies refrigerant to the compression chamber 51 of the lower cylinder 250 and a passage branched from the lower intake passage. A suction passage including an upper suction passage is formed. The surface area of the region facing the suction passage of the upper cylinder 230 is smaller than the surface area of the region facing the suction passage of the lower cylinder 250. Therefore, in the upper cylinder 230, the temperature drop due to the refrigerant in the vicinity of the region facing the suction passage in the cylinder is smaller than in the lower cylinder 250. Therefore, the temperature difference between the upper cylinder 230 and the piston 32 disposed in the compression chamber 31 of the upper cylinder 230 is reduced, and the difference in dimensional change during thermal expansion is reduced. Therefore, in the upper cylinder 230, as compared with the lower cylinder 250, there is a problem even if the gap between the axial end surface of the piston 32 and the axial end surfaces of the end plate members 20 and 240 adjacent thereto is reduced. Hateful. Then, by reducing the oil leakage from the piston inner peripheral portion to the compression chamber, the volumetric efficiency and the illustration efficiency can be improved. Therefore, in order to reduce the size of the compressor 201, the two cylinders 230 and 250 are reduced. And the accumulator 5 can be connected by a single suction pipe 6, a decrease in compressor efficiency due to an increase in suction resistance can be compensated by an improvement in volumetric efficiency and illustrated efficiency, and a decrease in compressor efficiency can be suppressed. In this way, in the present embodiment, it is possible to achieve both reduction in size of the compressor 201 and suppression of reduction in compressor efficiency.
 また、本実施形態においては、下吸入通路(第1通路)は、下シリンダ250を通過し且つ上シリンダ230を通過せず、上吸入通路(第2通路)は、下シリンダ250の内部において下吸入通路から分岐して、下シリンダ250及び上シリンダ230の両方を通過する。これにより、上シリンダ230において吸入通路に面した領域の表面積が、下シリンダ250において吸入通路に面した領域の表面積よりも小さいという構成を容易に得ることができる。 Further, in the present embodiment, the lower suction passage (first passage) passes through the lower cylinder 250 and does not pass through the upper cylinder 230, and the upper suction passage (second passage) is located inside the lower cylinder 250. It branches from the suction passage and passes through both the lower cylinder 250 and the upper cylinder 230. Thereby, the configuration in which the surface area of the region facing the suction passage in the upper cylinder 230 is smaller than the surface area of the region facing the suction passage in the lower cylinder 250 can be easily obtained.
 さらに、本実施形態においては、吸入管6は、その先端が下シリンダ250内に位置するように下シリンダ250に挿入可能に構成されている。これにより、吸入管6の先端から下シリンダ250の圧縮室51までの冷媒の通路を構成するのが直線状の横通路250aだけとなって、吸入抵抗の増加を抑制することができる。 Furthermore, in the present embodiment, the suction pipe 6 is configured to be insertable into the lower cylinder 250 so that the tip thereof is located in the lower cylinder 250. Thereby, only the linear lateral passage 250a constitutes the refrigerant passage from the tip of the suction pipe 6 to the compression chamber 51 of the lower cylinder 250, and an increase in suction resistance can be suppressed.
[実機による検証試験]
 ここで、複数のロータリ圧縮機について行った試験結果について説明する。上述したように、本発明に係るロータリ圧縮機では、第2シリンダは、第1シリンダと比較して、シリンダの高さとピストンの高さとの差を小さくすることで、ピストン内周部から圧縮室への油漏れを低減させ、これによって圧縮機効率を向上させている。シリンダの高さとピストンの高さとの差が小さいほど、圧縮機効率を向上させることができる一方で、ピストンと端板部材との摺動摩擦による焼付きが生じやすくなって信頼性が低下する。逆に言うと、シリンダの高さとピストンの高さとの差が大きいほど、ピストンと端板部材との摺動摩擦による焼付きが生じにくくなって信頼性が向上する一方で、圧縮機効率が低下してしまう。
[Verification test with actual machine]
Here, the results of tests performed on a plurality of rotary compressors will be described. As described above, in the rotary compressor according to the present invention, the second cylinder reduces the difference between the height of the cylinder and the height of the piston as compared with the first cylinder, so that the compression chamber extends from the piston inner peripheral portion. This reduces the oil leakage to the compressor, thereby improving the compressor efficiency. As the difference between the height of the cylinder and the height of the piston is smaller, the compressor efficiency can be improved. On the other hand, seizure due to sliding friction between the piston and the end plate member is likely to occur, and the reliability is lowered. Conversely, as the difference between the cylinder height and the piston height increases, seizure due to sliding friction between the piston and the end plate member is less likely to occur, and the reliability is improved while the compressor efficiency decreases. End up.
 そこで、本発明者らは、信頼性を確保しつつ許容可能な圧縮機効率が得られるかどうかを、複数のロータリ圧縮機(いくつかのタイプを含む)を用いて実証試験を行った。この試験では、シリンダの駆動軸軸方向についての高さHc(mm)、シリンダに形成された圧縮室の内部に配置されたピストンの軸方向についての高さHp(mm)、シリンダにおける吸入通路に面した領域の表面積As(mm2)、シリンダにおける吸入通路の長さLs(mm)を変数とした。長さLsは、駆動軸軸方向と直交する平面内での吸入通路の長さであり、上述した実施形態ではシリンダの径方向への長さである。長さLsの例を、図3、図6及び図8にL1、L2として示す。 Therefore, the present inventors conducted a verification test using a plurality of rotary compressors (including several types) to determine whether acceptable compressor efficiency can be obtained while ensuring reliability. In this test, the height Hc (mm) in the drive shaft axial direction of the cylinder, the height Hp (mm) in the axial direction of the piston arranged inside the compression chamber formed in the cylinder, the suction passage in the cylinder The surface area As (mm 2 ) of the facing region and the length Ls (mm) of the suction passage in the cylinder were used as variables. The length Ls is the length of the suction passage in a plane orthogonal to the drive shaft axis direction, and is the length in the radial direction of the cylinder in the above-described embodiment. Examples of the length Ls are shown as L1 and L2 in FIGS.
 上記4つの変数Hc、Hp、As、Lsを変化させた各圧縮機について、ピストンと端板部材との摺動摩擦による焼付きが生じるかどうか、及び、許容可能な圧縮機効率が得られるかどうかを評価した。図9は、その結果を描いたグラフである。 For each compressor with the four variables Hc, Hp, As, and Ls changed, whether seizure occurs due to sliding friction between the piston and the end plate member, and whether acceptable compressor efficiency is obtained. Evaluated. FIG. 9 is a graph depicting the results.
 図9において、縦軸のパラメータは(シリンダとピストンの高さの差(Hc-Hp)/シリンダ高さHc)であって、温度変化に伴うシリンダ高さの変化率を表している。シリンダにおける吸入通路に面した領域付近の温度が冷媒によって低下するとシリンダが熱収縮するため、ピストンとの高さの差(Hc-Hp)が小さくなる。そして、これがゼロになるとピストンが端板部材に挟み込まれて焼付きが生じ、圧縮機が損傷する虞がある。縦軸の数値が大きいほど焼付きが生じにくい。 In FIG. 9, the parameter on the vertical axis is (the difference in height between the cylinder and the piston (Hc−Hp) / cylinder height Hc), which represents the rate of change of the cylinder height as the temperature changes. When the temperature near the area facing the suction passage in the cylinder is reduced by the refrigerant, the cylinder is thermally contracted, and the height difference (Hc−Hp) from the piston is reduced. When this becomes zero, the piston is sandwiched between the end plate members and seizure occurs, which may damage the compressor. As the numerical value on the vertical axis increases, seizure hardly occurs.
 横軸のパラメータは(シリンダにおいて吸入通路に面した領域の表面積As/シリンダ高さHp×吸入通路の延在方向の長さLs)であって、シリンダの温度変化のしやすさを表している。すなわち、シリンダにおいて吸入通路に面した領域の表面積が大きいほど、シリンダは冷媒によって冷却されて温度が低下しやすい。一方、シリンダ高さ及び吸入通路の延在方向の長さが大きいほど、熱容量増加により、シリンダは温度が低下しにくい。このように、シリンダにおける吸入通路に面した領域付近の温度は、当該領域の表面積As、シリンダ高さHp、及び、吸入通路の延在方向の長さLsの三者のバランスに応じて変動する。 The parameter on the horizontal axis is (surface area As of the area facing the suction passage in the cylinder / cylinder height Hp × length Ls in the extending direction of the suction passage), and represents the ease of temperature change of the cylinder. . That is, the larger the surface area of the area facing the suction passage in the cylinder, the more the cylinder is cooled by the refrigerant and the temperature is likely to decrease. On the other hand, as the cylinder height and the length in the extending direction of the suction passage are larger, the temperature of the cylinder is less likely to decrease due to the increase in heat capacity. As described above, the temperature in the vicinity of the region facing the suction passage in the cylinder varies according to the balance between the surface area As, the cylinder height Hp, and the length Ls in the extending direction of the suction passage. .
 図9において、直線として表される近似線Aは、圧縮機効率の面での性能下限を示す限界線である。すなわち、許容可能な圧縮機効率が得られるのは、近似線Aよりも下の領域である。また、近似線Aと同じ傾きを有する直線として表される近似線Bは、信頼性の面で許容可能な(焼付きが生じない)限界線である。すなわち、焼付きが生じないのは、近似線Bよりも上の領域である。ここで、
近似線Aは、
(Hc-Hp)/Hc=1.4×0.0001×As/(Hc・Ls)+6.7×0.0001
であり、
近似線Bは、
(Hc-Hp)/Hc=1.4×0.0001×As/(Hc・Ls)+3.9×0.0001
である。
In FIG. 9, an approximate line A represented as a straight line is a limit line indicating a lower limit of performance in terms of compressor efficiency. That is, an acceptable compressor efficiency is obtained in the region below the approximate line A. The approximate line B expressed as a straight line having the same inclination as the approximate line A is a limit line that is acceptable in terms of reliability (no seizure occurs). That is, the region where the seizure does not occur is above the approximate line B. here,
The approximate line A is
(Hc−Hp) /Hc=1.4×0.0001×As/ (Hc · Ls) + 6.7 × 0.0001
And
The approximate line B is
(Hc−Hp) /Hc=1.4×0.0001×As/ (Hc · Ls) + 3.9 × 0.0001
It is.
 したがって、上記4つの変数Hc、Hp、As、Lsの値を、関係式
 3.9×0.0001≦(Hc-Hp)/Hc-1.4×0.0001×As/(Hc・Ls)≦6.7×0.0001
を満たすような値とすることで、圧縮機効率及び信頼性の両方を満たす圧縮機を得ることができる。
Therefore, the values of the four variables Hc, Hp, As, and Ls are expressed by the relational expression 3.9 × 0.0001 ≦ (Hc−Hp) /Hc−1.4×0.0001×As/ (Hc · Ls). ≦ 6.7 × 0.0001
By setting it as the value which satisfy | fills, the compressor which satisfy | fills both compressor efficiency and reliability can be obtained.
[変形例]
 上述した第1実施形態において、第1シリンダが下シリンダ50で、第2シリンダが上シリンダ30であってもよい。すなわち、上シリンダ30において吸入通路に面した領域の表面積が、下シリンダ50において吸入通路に面した領域の表面積よりも小さくてもよい。同様に、第2実施形態において、第1シリンダが下シリンダ50で、第2シリンダが上シリンダ130であってもよい。すなわち、上シリンダ130において吸入通路に面した領域の表面積が、下シリンダ50において吸入通路に面した領域の表面積よりも小さくてもよい。また、第3実施形態において、第1シリンダが上シリンダ230で、第2シリンダが下シリンダ250であってもよい。すなわち、下シリンダ250において吸入通路に面した領域の表面積が、上シリンダ230において吸入通路に面した領域の表面積よりも小さくてもよい。
[Modification]
In the first embodiment described above, the first cylinder may be the lower cylinder 50 and the second cylinder may be the upper cylinder 30. That is, the surface area of the region facing the suction passage in the upper cylinder 30 may be smaller than the surface area of the region facing the suction passage in the lower cylinder 50. Similarly, in the second embodiment, the first cylinder may be the lower cylinder 50 and the second cylinder may be the upper cylinder 130. That is, the surface area of the region facing the suction passage in the upper cylinder 130 may be smaller than the surface area of the region facing the suction passage in the lower cylinder 50. In the third embodiment, the first cylinder may be the upper cylinder 230 and the second cylinder may be the lower cylinder 250. That is, the surface area of the region facing the suction passage in the lower cylinder 250 may be smaller than the surface area of the region facing the suction passage in the upper cylinder 230.
 吸入通路の構成(配置、断面形状など)は、前記第1-第3実施形態に示したものに限られず、適宜変更してよい。一例として、第1-第3実施形態では、横通路30a、50a;130a;230a、250aがシリンダの径方向に延在している例について説明したが、これらの横通路は、圧縮室に連通している限りにおいて、駆動軸の軸方向と直交する平面内において任意の方向に延在していてよい。 The configuration (arrangement, cross-sectional shape, etc.) of the suction passage is not limited to that shown in the first to third embodiments, and may be changed as appropriate. As an example, in the first to third embodiments, the example in which the lateral passages 30a, 50a; 130a; 230a, 250a extend in the radial direction of the cylinder has been described, but these lateral passages communicate with the compression chamber. As long as it is, it may extend in any direction within a plane perpendicular to the axial direction of the drive shaft.
 第1-第3実施形態では、外部機器として、本発明に係るロータリ圧縮機に固定されたアキュムレータを例示したが、これに限定されない。外部機器は、例えば、本発明に係るロータリ圧縮機に固定されていないアキュムレータや、アキュムレータ以外の機器(蒸発器等)であってもよい。 In the first to third embodiments, the accumulator fixed to the rotary compressor according to the present invention is exemplified as the external device, but is not limited to this. The external device may be, for example, an accumulator that is not fixed to the rotary compressor according to the present invention, or a device (evaporator or the like) other than the accumulator.
 第1-第3実施形態では、ピストンのローラとブレードが一体に構成されているが、ローラとブレードが別体に構成されてよい。 In the first to third embodiments, the piston roller and the blade are integrally formed, but the roller and the blade may be formed separately.
 第1-第3実施形態では、上シリンダ及び下シリンダを有した2シリンダのロータリ圧縮機について説明したが、3以上のシリンダを有したロータリ圧縮機であってよい。この場合、3以上のシリンダにおいて、シリンダの駆動軸軸方向についての高さと当該シリンダの圧縮室に配置されたピストンの前記軸方向についての高さとの差は、当該シリンダにおいて吸入通路に面した領域の表面積が小さいほど小さいことが好ましい。 In the first to third embodiments, a two-cylinder rotary compressor having an upper cylinder and a lower cylinder has been described. However, a rotary compressor having three or more cylinders may be used. In this case, in three or more cylinders, the difference between the height in the drive shaft axial direction of the cylinder and the height in the axial direction of the piston disposed in the compression chamber of the cylinder is a region facing the suction passage in the cylinder. The smaller the surface area, the smaller.
 以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、前記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。 As mentioned above, although embodiment of this invention was described based on drawing, it should be thought that a specific structure is not limited to these embodiment. The scope of the present invention is shown not by the above description of the embodiment but by the scope of the claims, and further includes meanings equivalent to the scope of the claims and all modifications within the scope.
1;201 ロータリ圧縮機
3 駆動機構
4;204 圧縮機構
20;120 上ヘッド(端板部材)
30;130;230 上シリンダ(シリンダ、第1シリンダ)
31、51 圧縮室
32、52 ピストン
40;240 ミドルプレート(端板部材)
50;250 下シリンダ(シリンダ、第2シリンダ)
60 下ヘッド(端板部材)
DESCRIPTION OF SYMBOLS 1; 201 Rotary compressor 3 Drive mechanism 4; 204 Compression mechanism 20; 120 Upper head (end plate member)
30; 130; 230 Upper cylinder (cylinder, first cylinder)
31, 51 Compression chamber 32, 52 Piston 40; 240 Middle plate (end plate member)
50; 250 Lower cylinder (cylinder, second cylinder)
60 Lower head (end plate member)

Claims (6)

  1.  圧縮機構と、前記圧縮機構を駆動する駆動軸を有する駆動機構とを収容したロータリ圧縮機であって、
     前記圧縮機構は、
     圧縮室がそれぞれ形成されたシリンダであって、複数の前記圧縮室内に前記駆動軸が位置するように前記駆動軸の軸方向に配列された複数のシリンダと、
     各シリンダの前記軸方向についての両端に配置され、前記圧縮室を区画する複数の端板部材と、
     各圧縮室の内部に配置され、前記駆動軸により駆動される複数のピストンとを備え、
     前記複数のシリンダは、第1シリンダと、1つの前記端板部材を介して前記第1シリンダに隣接した第2シリンダとを含み、
     前記ロータリ圧縮機には、外部機器から吸入管を介して供給された冷媒を前記第1シリンダの前記圧縮室に供給する第1通路、及び、前記第1通路から分岐した通路であり且つ前記第2シリンダの前記圧縮室に冷媒を供給する第2通路を含む吸入通路が形成されており、
     前記第2シリンダにおいて前記吸入通路に面した領域の表面積は、前記第1シリンダにおいて前記吸入通路に面した領域の表面積よりも小さく、
     前記第2シリンダの前記軸方向についての高さと前記第2シリンダの前記圧縮室に配置された前記ピストンの前記軸方向についての高さとの差は、前記第1シリンダの前記軸方向についての高さと前記第1シリンダの前記圧縮室に配置された前記ピストンの前記軸方向についての高さとの差よりも小さいことを特徴とするロータリ圧縮機。
    A rotary compressor containing a compression mechanism and a drive mechanism having a drive shaft for driving the compression mechanism,
    The compression mechanism is
    A plurality of cylinders arranged in the axial direction of the drive shaft so that the drive shafts are positioned in the plurality of compression chambers, respectively.
    A plurality of end plate members disposed at both ends of each cylinder in the axial direction and defining the compression chamber;
    A plurality of pistons disposed inside each compression chamber and driven by the drive shaft;
    The plurality of cylinders include a first cylinder and a second cylinder adjacent to the first cylinder via one end plate member,
    The rotary compressor includes a first passage for supplying a refrigerant supplied from an external device through a suction pipe to the compression chamber of the first cylinder, and a passage branched from the first passage. A suction passage including a second passage for supplying a refrigerant to the compression chamber of two cylinders is formed;
    The surface area of the region facing the suction passage in the second cylinder is smaller than the surface area of the region facing the suction passage in the first cylinder,
    The difference between the height of the second cylinder in the axial direction and the height of the piston arranged in the compression chamber of the second cylinder in the axial direction is the height of the first cylinder in the axial direction. The rotary compressor characterized by being smaller than the difference with the height about the said axial direction of the said piston arrange | positioned at the said compression chamber of a said 1st cylinder.
  2.  前記第1通路は、前記第1シリンダを通過し且つ前記第2シリンダを通過せず、
     前記第2通路は、前記第1シリンダの内部において前記第1通路から分岐して、前記第1シリンダ及び前記第2シリンダの両方を通過することを特徴とする請求項1に記載のロータリ圧縮機。
    The first passage passes through the first cylinder and does not pass through the second cylinder;
    2. The rotary compressor according to claim 1, wherein the second passage is branched from the first passage inside the first cylinder and passes through both the first cylinder and the second cylinder. .
  3.  前記吸入管は、その先端が前記第1シリンダ内に位置するように前記第1シリンダに挿入可能に構成されていることを特徴とする請求項2に記載のロータリ圧縮機。 3. The rotary compressor according to claim 2, wherein the suction pipe is configured to be inserted into the first cylinder so that a tip thereof is located in the first cylinder.
  4.  前記吸入管は、その先端が前記第1シリンダに対して前記第2シリンダとは反対側に配置された前記端板部材内に位置するように当該端板部材に挿入可能に構成されていることを特徴とする請求項2に記載のロータリ圧縮機。 The suction pipe is configured to be insertable into the end plate member so that a tip of the suction pipe is located in the end plate member disposed on the opposite side of the first cylinder from the second cylinder. The rotary compressor according to claim 2.
  5.  前記複数のシリンダにおいて、当該シリンダの前記軸方向についての高さと当該シリンダの前記圧縮室に配置された前記ピストンの前記軸方向についての高さとの差は、当該シリンダにおいて前記吸入通路に面した領域の表面積が小さいほど小さいことを特徴とする請求項1~4のいずれか1項に記載のロータリ圧縮機。 In the plurality of cylinders, a difference between a height of the cylinder in the axial direction and a height of the piston arranged in the compression chamber of the cylinder in the axial direction is a region facing the suction passage in the cylinder. The rotary compressor according to any one of claims 1 to 4, wherein the rotary compressor has a smaller surface area.
  6.  前記複数のシリンダのいずれについても、当該シリンダの前記軸方向についての高さをHc(mm)、当該シリンダに形成された前記圧縮室の内部に配置された前記ピストンの前記軸方向についての高さをHp(mm)、当該シリンダにおける前記吸入通路に面した領域の表面積をAs(mm2)、当該シリンダにおける前記吸入通路の前記軸方向と直交する方向についての長さをLs(mm)としたときに、
     3.9×0.0001≦(Hc-Hp)/Hc-1.4×0.0001×As/(Hc・Ls)≦6.7×0.0001
     が満たされることを特徴とする請求項1~5のいずれか1項に記載のロータリ圧縮機。
    For any of the plurality of cylinders, the height of the cylinder in the axial direction is Hc (mm), and the height of the piston disposed in the compression chamber formed in the cylinder in the axial direction. Hp (mm), the surface area of the cylinder facing the suction passage is As (mm 2 ), and the length of the cylinder in the direction perpendicular to the axial direction of the suction passage is Ls (mm). sometimes,
    3.9 × 0.0001 ≦ (Hc−Hp) /Hc−1.4×0.0001×As/ (Hc · Ls) ≦ 6.7 × 0.0001
    The rotary compressor according to any one of claims 1 to 5, wherein:
PCT/JP2018/010583 2017-03-17 2018-03-16 Rotary compressor WO2018169072A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880017804.9A CN110418892B (en) 2017-03-17 2018-03-16 Rotary compressor
JP2019506315A JP6787480B2 (en) 2017-03-17 2018-03-16 Rotary compressor
ES18767860T ES2953629T3 (en) 2017-03-17 2018-03-16 rotary compressor
EP18767860.2A EP3597923B1 (en) 2017-03-17 2018-03-16 Rotary compressor
MYPI2019005092A MY195534A (en) 2017-03-17 2018-03-16 Rotary Compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017052710 2017-03-17
JP2017-052710 2017-03-17

Publications (1)

Publication Number Publication Date
WO2018169072A1 true WO2018169072A1 (en) 2018-09-20

Family

ID=63523571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010583 WO2018169072A1 (en) 2017-03-17 2018-03-16 Rotary compressor

Country Status (6)

Country Link
EP (1) EP3597923B1 (en)
JP (1) JP6787480B2 (en)
CN (1) CN110418892B (en)
ES (1) ES2953629T3 (en)
MY (1) MY195534A (en)
WO (1) WO2018169072A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3951181A4 (en) * 2019-04-25 2022-04-13 Mitsubishi Heavy Industries Thermal Systems, Ltd. Rotary compressor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110848140A (en) * 2019-11-27 2020-02-28 广东美芝制冷设备有限公司 Compressor air suction structure, compressor and refrigeration and heating equipment
DE102020117343A1 (en) * 2020-07-01 2022-01-05 Weinmann Emergency Medical Technology Gmbh + Co. Kg Pump device, device for ventilation and method for providing a breathing gas
JP2022044311A (en) * 2020-09-07 2022-03-17 瀋陽中航機電三洋制冷設備有限公司 Rotary compressor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195483A (en) * 1986-02-21 1987-08-28 Toshiba Corp 2-cylinder type rotary compressor
JP2009062929A (en) * 2007-09-07 2009-03-26 Toshiba Carrier Corp Rotary compressor and refrigerating cycle device
JP2016118142A (en) 2014-12-19 2016-06-30 株式会社富士通ゼネラル Rotary compressor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176790A (en) * 1984-09-19 1986-04-19 Sanyo Electric Co Ltd Assembling of rotary compressor
JPH02218884A (en) * 1989-02-21 1990-08-31 Toshiba Corp Multicylinder compressor
JP2001132673A (en) * 1999-11-04 2001-05-18 Matsushita Electric Ind Co Ltd Hermetic rotary compressor
KR20030051086A (en) * 2001-12-20 2003-06-25 주식회사 엘지이아이 Suction apparatus for twin rotary compressor
JP2005207306A (en) * 2004-01-22 2005-08-04 Mitsubishi Electric Corp Two cylinder rotary compressor
CN102644597B (en) * 2011-02-16 2014-09-24 广东美芝制冷设备有限公司 Double-cylinder rotary compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195483A (en) * 1986-02-21 1987-08-28 Toshiba Corp 2-cylinder type rotary compressor
JP2009062929A (en) * 2007-09-07 2009-03-26 Toshiba Carrier Corp Rotary compressor and refrigerating cycle device
JP2016118142A (en) 2014-12-19 2016-06-30 株式会社富士通ゼネラル Rotary compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3951181A4 (en) * 2019-04-25 2022-04-13 Mitsubishi Heavy Industries Thermal Systems, Ltd. Rotary compressor

Also Published As

Publication number Publication date
CN110418892B (en) 2021-07-06
CN110418892A (en) 2019-11-05
EP3597923A1 (en) 2020-01-22
EP3597923A4 (en) 2021-01-20
JPWO2018169072A1 (en) 2019-12-12
ES2953629T3 (en) 2023-11-14
EP3597923B1 (en) 2023-05-31
JP6787480B2 (en) 2020-11-18
MY195534A (en) 2023-01-31

Similar Documents

Publication Publication Date Title
WO2018169072A1 (en) Rotary compressor
KR101587286B1 (en) compressor
WO2013005568A1 (en) Multi-cylinder rotary compressor and refrigeration cycle device
JP5370450B2 (en) Compressor
EP2418386B1 (en) Rotary compressor
JP6648342B2 (en) Hermetic refrigerant compressor and refrigeration system
KR101573938B1 (en) compressor
JP5766165B2 (en) Rotary compressor
JP2012149545A (en) Rotary compressor
JP6700691B2 (en) Electric compressor
EP2589810B1 (en) Rotary compressor
JP2019035391A (en) Compressor
JP5781355B2 (en) Hermetic rotary compressor
JP2009127517A (en) Enclosed compressor
US10968911B2 (en) Oscillating piston-type compressor
WO2017141309A1 (en) Rotary compressor
JP5217856B2 (en) Rotary compressor
KR101557506B1 (en) compressor
JP2015227632A (en) Compressor
JP6568758B2 (en) Hermetic compressor and refrigeration cycle apparatus
EP2857688A1 (en) Rotary compressor
WO2019142315A1 (en) Rotary compressor
JP2015113808A (en) Rotary compressor
JP4622793B2 (en) Hermetic compressor
JP2014105588A (en) Hermetic type compressor, and refrigerator, freezer, and air conditioner using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767860

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019506315

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018767860

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018767860

Country of ref document: EP

Effective date: 20191017