WO2019142315A1 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
WO2019142315A1
WO2019142315A1 PCT/JP2018/001563 JP2018001563W WO2019142315A1 WO 2019142315 A1 WO2019142315 A1 WO 2019142315A1 JP 2018001563 W JP2018001563 W JP 2018001563W WO 2019142315 A1 WO2019142315 A1 WO 2019142315A1
Authority
WO
WIPO (PCT)
Prior art keywords
vane
cylinder
groove
vane spring
rotary compressor
Prior art date
Application number
PCT/JP2018/001563
Other languages
French (fr)
Japanese (ja)
Inventor
亮 濱田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/001563 priority Critical patent/WO2019142315A1/en
Priority to KR1020207017500A priority patent/KR102299099B1/en
Priority to JP2019565650A priority patent/JP6869378B2/en
Priority to CN201880083934.2A priority patent/CN111566351B/en
Priority to CZ2020386A priority patent/CZ309161B6/en
Publication of WO2019142315A1 publication Critical patent/WO2019142315A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with or adaptation to specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0057Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/14Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors

Definitions

  • the present invention relates to a rotary compressor used for a cooling device such as an air conditioner.
  • a rotary compressor includes a motor unit and a compression mechanism unit driven by the motor unit in a sealed container.
  • the compression mechanism portion is provided in a vane groove formed in the radial direction of the cylinder, and has a vane that divides the cylinder chamber of the cylinder into a suction chamber and a compression chamber.
  • the compression mechanism portion is housed in a cylinder chamber and is housed in a rolling piston that eccentrically rotates to compress a refrigerant, and is housed in a vane spring housing hole formed in the cylinder and presses the tip of the vane against the outer peripheral surface of the rolling piston It has a vane spring that urges in the same way.
  • the vane groove is formed long to increase the sliding area between the vane and the vane groove, and the sliding condition between the vane and the vane groove is stabilized to improve the reliability. It is valid.
  • the vane spring in order for the vane spring to urge the vane to follow the rolling piston, it is necessary to secure a sufficient length of the vane spring storage hole. Therefore, in the rotary compressor, when the vane groove is made longer, the closed container is also expanded by that amount, and there is a problem that the entire apparatus becomes large.
  • the present invention has been made to solve the problems as described above, and the sliding area between the vane and the vane groove can be widened without increasing the closed container, and the reliability can be improved. , And a rotary compressor.
  • a rotary compressor includes a motor unit and a compression mechanism unit for compressing a refrigerant by a driving force transmitted from the motor unit in a sealed container, and the compression mechanism unit includes an eccentric shaft unit.
  • a crank shaft rotatably driven by the motor unit, a cylinder fixed to the closed container and having a cylinder chamber, a bearing provided on both end surfaces of the cylinder and closing the cylinder chamber, the eccentric shaft A rolling piston which is fitted in a part and stored in the cylinder chamber, and is eccentrically rotated with the eccentric shaft to compress the refrigerant, and provided in a vane groove formed in a radial direction of the cylinder, and suctioning the cylinder chamber And a vane, which is divided into a chamber and a compression chamber, and a vane spring storage hole formed in the cylinder, and the tip end portion of the vane is the rolling piston A vane spring biased to press against the outer peripheral surface, and a vane spring groove for extending the vane spring storage hole is provided in the cylinder from
  • the vane can be biased by the vane spring accommodated in the vane spring groove, and the rolling piston can be made to follow. it can. Therefore, in the rotary compressor, since the vane groove can be formed long by the length of the vane spring storage hole, the sliding area between the vane and the vane groove can be increased, and the reliability is improved. It can be done.
  • FIG. 1 is a longitudinal sectional view schematically showing an entire structure of a rotary compressor according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the main parts of the compression mechanism of the rotary compressor according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional view showing a cylinder of the rotary compressor according to Embodiment 1 of the present invention.
  • FIG. 4 is a sectional view taken along line AA shown in FIG.
  • the rotary compressor 100 includes a motor unit 2 and a compression mechanism unit 3 that compresses a refrigerant by a driving force transmitted from the motor unit 2 inside the sealed container 1. And.
  • the motor unit 2 and the compression mechanism unit 3 are connected via a crankshaft 4.
  • the refrigerant is, for example, R410 refrigerant.
  • the sealed container 1 is connected to the accumulator 12 via the suction pipe 10, and the refrigerant gas is taken in from the accumulator 12.
  • the accumulator 12 is provided to separate the refrigerant into a liquid refrigerant and a gas refrigerant and to prevent the liquid refrigerant from being sucked into the compression mechanism 3 as much as possible.
  • a discharge pipe 11 for discharging the compressed refrigerant is connected to an upper portion of the sealed container 1.
  • refrigeration oil (not shown) is stored.
  • the refrigeration oil mainly lubricates the sliding portion of the compression mechanism 3.
  • the motor unit 2 includes an annular stator 20 fixedly supported on the inner wall surface of the sealed container 1 by shrink fitting or the like, and a rotor 21 rotatably provided opposite to the inner side surface of the stator 20. It is configured.
  • the crankshaft 4 is inserted into the rotor 21. Electric power is supplied to the motor unit 2 from the outside through an airtight terminal (not shown) and driven.
  • the compression mechanism unit 3 includes a crankshaft 4 rotationally driven by the motor unit 2, a cylinder 5 having a cylinder chamber 50, and an upper bearing 51 as a bearing for closing the cylinder chamber 50.
  • a lower bearing 52, a rolling piston 6, and a vane 7 are provided.
  • the crankshaft 4 has a main shaft portion 40 fixed to the rotor 21 of the motor portion 2, a sub shaft portion 41 provided on the opposite side of the main shaft portion 40 across the cylinder 5, a main shaft portion 40 and a sub shaft portion 41. And an eccentric shaft portion 42 provided therebetween.
  • An oil suction hole is formed at the axial center of the crankshaft 4.
  • the crankshaft 4 is provided with a spiral centrifugal pump in the oil suction hole so that the refrigeration oil stored in the bottom of the closed container 1 can be pumped up and supplied to the sliding portion of the compression mechanism 3 There is.
  • the cylinder 5 has an outer peripheral portion fixed to the closed container 1 by a bolt or the like. As shown in FIG. 2, the cylinder 5 has a circular outer periphery, and a cylinder chamber 50 which is a circular space is formed inside. The cylinder chamber 50 forms a compression chamber for compressing the refrigerant when driven. As shown in FIG. 1, both ends of the cylinder chamber 50 in the axial direction of the crankshaft 4 are open, and an upper bearing 51 provided on the upper surface of the cylinder 5 and a lower bearing 52 provided on the lower surface of the cylinder 5 are provided. Is blocked by Further, a suction port (not shown) through which refrigerant gas from the suction pipe 10 passes is provided in the cylinder 5 so as to penetrate the cylinder chamber 50 from the outer peripheral surface.
  • the upper bearing 51 is slidably fitted to the main shaft portion 40 of the crankshaft 4 and closes one end surface (the motor portion 2 side) of the cylinder chamber 50 of the cylinder 5.
  • the lower bearing 52 is slidably fitted to the countershaft portion 41 of the crankshaft 4 and closes the other end surface (refrigerator oil side) of the cylinder chamber 50.
  • the upper bearing 51 is provided with a discharge hole through which the refrigerant compressed in the compression chamber is discharged. Further, a discharge muffler is attached to the upper bearing 51 so as to cover the discharge hole.
  • the rolling piston 6 is formed in a ring shape, and is slidably fitted to the eccentric shaft portion 42 of the crankshaft 4.
  • the rolling piston 6 is provided in the cylinder chamber 50 together with the eccentric shaft portion 42, and eccentrically rotates with the eccentric shaft portion 42 in the cylinder chamber 50 to compress the refrigerant.
  • the cylinder 5 is formed with a vane groove 70 communicating with the cylinder chamber 50 and extending in the radial direction.
  • a vane 7 which divides the cylinder chamber 50 into a suction chamber and a compression chamber is slidably fitted.
  • the vane 7 reciprocates within the vane groove 70 following the eccentric rotation of the rolling piston 6 while the tip end abuts against the outer peripheral portion of the rolling piston 6 during the compression process.
  • the cylinder chamber 50 is divided into a suction chamber and a compression chamber when the tip end portion of the vane 7 abuts on the outer peripheral portion of the rolling piston 6.
  • the vanes 7 are made of, for example, a nonmagnetic material.
  • a vane spring housing hole 80 is formed on the back side of the vane groove 70 in the cylinder 5.
  • the inner diameter of the vane spring housing hole 80 is formed larger than the inner diameter of the vane groove 70.
  • the vane spring 8 disposed in series with the vane 7 is accommodated in the vane spring accommodation hole 80.
  • the vane spring 8 biases the tip end of the vane 7 against the outer peripheral surface of the rolling piston 6.
  • the vane spring 8 is formed of, for example, a coil spring.
  • the operation of the rotary compressor 100 will be described.
  • the motor unit 2 is driven.
  • the rolling piston 6 fitted to the eccentric shaft portion 42 of the crankshaft 4 is eccentrically rotated, and the refrigerant is compressed in the cylinder chamber 50.
  • the refrigerant compressed in the cylinder chamber 50 is discharged from the discharge hole of the upper bearing 51 into the space of the discharge muffler, and then discharged into the closed container 1 from the discharge hole of the discharge muffler.
  • the discharged refrigerant is discharged from the discharge pipe 11.
  • the vane groove 70 is formed long to widen the sliding area between the vane 7 and the vane groove 70, and the sliding state between the vane 7 and the vane groove 70 is stabilized. It is effective in improving the quality.
  • the vane 7 with the vane spring 8 it is necessary to secure a sufficient length of the vane spring storage hole 80. Therefore, in the rotary compressor 100, when the vane groove 70 becomes long, the closed container 1 is also enlarged by that amount, and the entire apparatus becomes large.
  • the vane spring groove 9 for extending the vane spring accommodation hole 80 is formed from the vane spring accommodation hole 80 around the vane groove 70. It is formed toward the chamber 50. That is, the vane spring 8 is accommodated in the vane spring accommodation hole 80 and the vane spring groove 9, and reciprocates in the vane spring accommodation hole 80 and the vane spring groove 9.
  • the length of the vane spring groove 9 shall be suitably changed and formed according to the structure of a compressor, or the kind of refrigerant
  • the vane spring groove 9 is formed in an annular shape corresponding to the shape of the vane spring 8, and is formed so as to partially cross the vertically elongated vane groove 70. This is because the vane spring 8 biases the tip end of the vane 7 against the outer peripheral surface of the rolling piston 6 while extending the vane spring storage hole 80. Since the vane spring groove 9 needs to pass the vane spring 8, the outer diameter is larger than the outer diameter of the vane spring 8 and the inner diameter is smaller than the inner diameter of the vane spring 8.
  • the size and shape of the vane spring groove 9 are not limited to the illustrated form.
  • the vane spring groove 9 can extend the vane spring storage hole 80, and if the stored vane spring 8 can urge the tip end portion of the vane 7 to press the outer peripheral surface of the rolling piston 6, another embodiment May be.
  • the vane spring 8 is biased by the vane spring 8 stored in the vane spring groove 9 even if the length of the vane spring storage hole 80 is shortened. And the rolling piston 6 can be made to follow. Therefore, the rotary compressor 100 can form the vane groove 70 longer by an amount corresponding to the shortening of the length of the vane spring accommodation hole 80, so the sliding area between the vane 7 and the vane groove 70 can be increased. , Can improve the reliability.
  • the vane spring groove 9 has an annular shape corresponding to the coiled vane spring 8. Therefore, the rotary compressor 100 according to the first embodiment can smoothly store the vane spring 8 in the vane spring groove 9, so that the vane spring 8 urges the vane 7 to follow the rolling piston 6. Can be enhanced.
  • the outer diameter of the cylinder 5 is about 150 mm and the inner diameter is about 70 mm.
  • the outer diameter of the rolling piston 6 is about 45 mm
  • the length of the vane groove 70 is about 35 mm
  • the height of the vane 7 is about 20 mm
  • the vane spring groove 9 is about 10 mm.
  • the suction pressure is about 0.2 MPaG and the discharge pressure is about 4.2 MPaG as an operating pressure.
  • the operating frequency is about 120 rps.
  • the severity of the sliding conditions of the vanes 7 and the vane grooves 70 is indicated by a PV value which is the product of the pressure P supporting the vanes 7 and the operating speed V of the vanes 7.
  • the pressure P is the difference between the suction pressure and the discharge pressure divided by the sliding area of the vane 7 and the vane groove 70.
  • the PV value is 9.00 W / mm 2 or more
  • the sliding condition of the vane 7 and the vane groove 70 is severe, and the compressor failure occurs due to the large difference between the suction pressure and the discharge pressure.
  • 70 requires surface treatment such as manganese treatment.
  • the vane spring groove 9 is provided, and the sliding area of the vane 7 and the vane groove 70 is increased, so the PV value is 7.00 W / mm 2 .
  • the surface treatment of the groove 70 becomes unnecessary.
  • the PV value is 9.00 W / mm 2 and the vane groove needs to be surface-treated.
  • the operating refrigerant of the rotary compressor 100 may use an HC refrigerant such as propane or R1234yf or an HFO refrigerant in addition to the R410A refrigerant. Since the HC refrigerant and the HFO refrigerant have a small difference between the suction pressure and the discharge pressure, the pressure for supporting the vanes 7 becomes small, and a base spring force stronger than that of the R410A refrigerant is required.
  • the dimensions of the rotary compressor 100 are set such that the outer diameter of the cylinder 5 is about 160 mm and the inner diameter is about 70 mm.
  • the outer diameter of the rolling piston 6 is about 45 mm
  • the length of the vane groove 70 is about 40 mm
  • the height of the vane 7 is about 20 mm
  • the vane spring groove 9 is about 20 mm.
  • general heating operating conditions for operating the rotary compressor are, as operating pressure, a suction pressure of about 0.2 MPaG and a discharge pressure of about 2.0 MPaG.
  • the operating frequency is about 120 rps.
  • the PV value based on the above value is 7.08 W / mm 2 . Therefore, in the rotary compressor 100 of the first embodiment, the surface treatment of the vane groove 70 is unnecessary. On the other hand, in the conventional rotary compressor, since the length of the vane groove can be secured, for example, only about 10 mm, the PV value is 14.17 W / mm 2 and the vane groove needs to be surface-treated. As described above, in the rotary compressor 100 according to the first embodiment, the reliability can be improved even when using the HC refrigerant or the HFO refrigerant as the operating refrigerant.
  • FIG. 5 is a modified example of the rotary compressor according to Embodiment 1 of the present invention, and is a cross-sectional view showing the main part of the compression mechanism.
  • 6 is a cross-sectional view showing only the cylinder of the compression mechanism shown in FIG.
  • the vane spring groove 9 for extending the vane spring accommodation hole 80 is formed around the vane groove 70 from the position near the outer peripheral surface of the cylinder 5 toward the cylinder chamber 50. ing.
  • the vane spring storage hole 80 is provided to fix the wound portion of the vane spring 8. That is, the rotary compressor shown in FIGS. 5 and 6 has a configuration in which the length of the vane spring housing hole 80 is made as short as possible, and the vane groove 70 is formed longer to slide the vane 7 and the vane groove 70. A wide dynamic area can be secured.
  • FIG. 7 is a cross-sectional view showing a cylinder of a rotary compressor according to Embodiment 2 of the present invention.
  • the same components as those of the rotary compressor described in the first embodiment are denoted by the same reference numerals, and the description thereof will be appropriately omitted.
  • the rotary compressor according to the second embodiment has the inclined portion 81 connecting the side wall of the vane groove 70 from the side wall of the vane spring accommodation hole 80, and the vane spring groove 9 extends from the inclined portion 81 toward the cylinder chamber 50. It is characterized by being formed.
  • the vane spring storage hole 80 is formed by drilling, the end on the cylinder chamber 50 side may be in a triangular shape substantially the same as the tip shape of the drill. Even in such a case, the vane spring groove 9 can be formed from the inclined portion 81 toward the cylinder chamber 50, and the vane spring storage hole 80 can be extended.
  • the outer diameter of the cylinder 5 is about 140 mm and the inner diameter is about 70 mm.
  • the outer diameter of the rolling piston 6 is about 45 mm
  • the length of the vane groove 70 is about 30 mm
  • the height of the vane 7 is about 20 mm
  • the vane spring groove 9 is about 10 mm
  • the length of the inclined portion 81 is about 10 mm.
  • the suction pressure is about 1.0 MPaG and the discharge pressure is about 3.5 MPaG.
  • the operating frequency is about 120 rps.
  • the PV value based on the above value is 6.56 W / mm 2 . Therefore, in the rotary compressor of the second embodiment, the surface treatment of the vane groove 70 is unnecessary. On the other hand, in the conventional rotary compressor, since the length of the vane groove can be secured, for example, only about 20 mm, the PV value is 9.84 W / mm 2 and the surface treatment of the vane groove is required.
  • the vane spring accommodation hole 80 has the inclined portion 81 connecting the side wall of the vane groove 70 from the side wall of the vane spring accommodation hole 80, and the vane spring groove 9 is inclined. Even in the case of being formed from the portion 81 toward the cylinder chamber 50, the same function and effect as those of the rotary compressor of the first embodiment can be obtained.
  • FIG. 8 is a cross-sectional view showing the main parts of the compression mechanism of the rotary compressor according to Embodiment 3 of the present invention.
  • FIG. 9 is a cross-sectional view showing only the cylinder of the compression mechanism shown in FIG.
  • the same components as those of the rotary compressor described in the first embodiment are denoted by the same reference numerals, and the description thereof will be appropriately omitted.
  • the vane spring 8 urging the tip end of the vane 7 to press the outer peripheral surface of the rolling piston 6 is formed in the cylinder 5 It is configured to be housed in the vane spring groove 90.
  • the vane spring groove 90 is formed around the vane groove 70 from the outer peripheral surface of the cylinder 5 toward the cylinder chamber 50.
  • the cross section taken along line AA shown in FIG. 9 is the same as the shape shown in FIG. 4 described in the first embodiment. That is, the vane spring groove 90 of the rotary compressor according to the third embodiment is also formed in an annular shape corresponding to the shape of the coiled vane spring 8 so that it partially intersects the vertically elongated vane groove 70. It is done. Therefore, since this rotary compressor can smoothly accommodate the vane spring 8 in the vane spring groove 90, the function of urging the vane 7 by the vane spring 8 to follow the rolling piston 6 can be enhanced.
  • the vane spring groove 90 needs to pass the vane spring 8
  • the outside diameter is larger than the outside diameter of the vane spring 8 and the inside diameter is smaller than the inside diameter of the vane spring 8.
  • the size and shape of the vane spring groove 90 are not limited to the illustrated form.
  • the vane spring groove 90 may have another form as long as the housed vane spring 8 can urge the tip end portion of the vane 7 against the outer peripheral surface of the rolling piston 6.
  • the vane 7 can be urged by the vane spring 8 accommodated in the vane spring groove 90 having a sufficient length to follow the rolling piston 6. Further, in the rotary compressor, since the vane groove 70 can be formed long in the radial direction of the cylinder 5 regardless of the length of the vane spring groove 90, the sliding area between the vane 7 and the vane groove 70 is increased. The reliability can be improved.
  • the outer diameter of the cylinder 5 is about 160 mm and the inner diameter is about 70 mm.
  • the outer diameter of the rolling piston 6 is about 45 mm
  • the length of the vane groove 70 is about 40 mm
  • the height of the vane 7 is about 20 mm
  • the vane spring groove 90 is about 20 mm.
  • a suction pressure is about 0.2 MPaG and a discharge pressure is about 4.7 MPaG.
  • the operating frequency is about 120 rps.
  • the PV value based on the above value is 8.85 W / mm 2 . Therefore, in the rotary compressor of the third embodiment, the surface treatment of the vane groove 70 is unnecessary. On the other hand, in the conventional rotary compressor, since the length of the vane groove can be secured, for example, only about 20 mm, the PV value is 17.71 W / mm 2 and the surface treatment of the vane groove 70 is required.
  • the present invention has been described above based on the embodiment, the present invention is not limited to the configuration of the embodiment described above.
  • the internal configuration of the illustrated rotary compressor 100 is merely an example, and the present invention is not limited to the above-described content, and the present invention can be similarly implemented even in a rotary compressor including other components. .
  • it is a twin rotary compressor or the like provided with two compression chambers.
  • the present invention includes the scope of variations in design changes and applications which are ordinarily made by those skilled in the art without departing from the technical concept of the present invention.
  • Reference Signs List 1 sealed container, 2 motor unit, 3 compression mechanism unit, 4 crankshaft, 5 cylinder, 6 rolling piston, 7 vane, 8 vane spring, 9 vane spring groove, 10 suction pipe, 11 discharge pipe, 12 accumulator, 20 fixed 21 rotor, 40 main shaft portion, 41 sub shaft portion, 42 eccentric shaft portion, 50 cylinder chamber, 51 upper bearing, 52 lower bearing, 70 vane groove, 80 vane spring storage hole, 81 inclined portion, 90 vane spring groove , 100 rotary compressors.

Abstract

This rotary compressor comprises, within a hermetic container, an electric motor section, and a compression mechanism section in which a refrigerant is compressed by a drive force transmitted from the electric motor section. The compression mechanism section has: a crankshaft rotationally driven by the electric motor section; a cylinder having a cylinder chamber; a bearing which closes the cylinder chamber; a rolling piston which eccentrically rotates with an eccentric shaft section to compress the refrigerant; a vane which divides the cylinder chamber into a suction chamber and a compression chamber; and a vane spring which urges the front end of the vane so as to press the front end against the outer peripheral surface of the rolling piston. The cylinder has a vane spring groove which lengthens a vane spring containing hole, and the vane spring groove is formed around a vane groove so as to extend from the vane spring containing hole toward the cylinder chamber.

Description

ロータリ圧縮機Rotary compressor
 本発明は、空気調和機などの冷熱機器に用いるロータリ圧縮機に関するものである。 The present invention relates to a rotary compressor used for a cooling device such as an air conditioner.
 ロータリ圧縮機は、例えば特許文献1にも開示されているように、密閉容器内に、電動機部と、該電動機部によって駆動される圧縮機構部と、を備えている。圧縮機構部は、シリンダーの径方向に形成されたベーン溝に設けられ、シリンダーのシリンダー室を吸入室と圧縮室とに仕切るベーンを有している。また、圧縮機構部は、シリンダー室に収納され、偏心回転して冷媒を圧縮するローリングピストンと、シリンダーに形成されたベーンスプリング収納孔に収納され、ベーンの先端部をローリングピストンの外周面に押し付けるように付勢するベーンスプリングを有している。 As disclosed in, for example, Patent Document 1, a rotary compressor includes a motor unit and a compression mechanism unit driven by the motor unit in a sealed container. The compression mechanism portion is provided in a vane groove formed in the radial direction of the cylinder, and has a vane that divides the cylinder chamber of the cylinder into a suction chamber and a compression chamber. The compression mechanism portion is housed in a cylinder chamber and is housed in a rolling piston that eccentrically rotates to compress a refrigerant, and is housed in a vane spring housing hole formed in the cylinder and presses the tip of the vane against the outer peripheral surface of the rolling piston It has a vane spring that urges in the same way.
特開平11-022675号公報Unexamined-Japanese-Patent No. 11-022675 gazette
 一般に、ロータリ圧縮機は、ベーン溝を長く形成して、ベーンとベーン溝との摺動面積を広くし、ベーンとベーン溝の摺動状態を安定化させることが、信頼性を向上させる上で有効である。しかし、ベーンスプリングでベーンを付勢してローリングピストンに追従させるためには、ベーンスプリング収納孔の長さを十分に確保する必要がある。そのため、ロータリ圧縮機は、ベーン溝を長くすると、密閉容器もその分だけ拡大され、装置全体が大型になる問題があった。 Generally, in a rotary compressor, the vane groove is formed long to increase the sliding area between the vane and the vane groove, and the sliding condition between the vane and the vane groove is stabilized to improve the reliability. It is valid. However, in order for the vane spring to urge the vane to follow the rolling piston, it is necessary to secure a sufficient length of the vane spring storage hole. Therefore, in the rotary compressor, when the vane groove is made longer, the closed container is also expanded by that amount, and there is a problem that the entire apparatus becomes large.
 本発明は、上記のような課題を解決するためになされたものであり、密閉容器を拡大することなく、ベーンとベーン溝との摺動面積を広くして、信頼性を向上させることができる、ロータリ圧縮機を提供することを目的とする。 The present invention has been made to solve the problems as described above, and the sliding area between the vane and the vane groove can be widened without increasing the closed container, and the reliability can be improved. , And a rotary compressor.
 本発明に係るロータリ圧縮機は、密閉容器内に、電動機部と、前記電動機部から伝達される駆動力によって冷媒を圧縮する圧縮機構部と、を備え、前記圧縮機構部は、偏心軸部を有し、前記電動機部により回転駆動されるクランク軸と、前記密閉容器に固定され、シリンダー室を有するシリンダーと、前記シリンダーの両端面に設けられ、前記シリンダー室を閉塞する軸受と、前記偏心軸部に嵌合されて前記シリンダー室に収納され、前記偏心軸部と共に偏心回転して冷媒を圧縮するローリングピストンと、前記シリンダーの径方向に形成されたベーン溝に設けられ、前記シリンダー室を吸入室と圧縮室とに仕切るベーンと、前記シリンダーに形成されたベーンスプリング収納孔に収納され、前記ベーンの先端部を前記ローリングピストンの外周面に押し付けるように付勢するベーンスプリングと、を有し、前記シリンダーには、前記ベーンスプリング収納孔を延長させるベーンスプリング溝が、前記ベーン溝の周囲に、前記ベーンスプリング収納孔から前記シリンダー室に向かって形成されているものである。 A rotary compressor according to the present invention includes a motor unit and a compression mechanism unit for compressing a refrigerant by a driving force transmitted from the motor unit in a sealed container, and the compression mechanism unit includes an eccentric shaft unit. A crank shaft rotatably driven by the motor unit, a cylinder fixed to the closed container and having a cylinder chamber, a bearing provided on both end surfaces of the cylinder and closing the cylinder chamber, the eccentric shaft A rolling piston which is fitted in a part and stored in the cylinder chamber, and is eccentrically rotated with the eccentric shaft to compress the refrigerant, and provided in a vane groove formed in a radial direction of the cylinder, and suctioning the cylinder chamber And a vane, which is divided into a chamber and a compression chamber, and a vane spring storage hole formed in the cylinder, and the tip end portion of the vane is the rolling piston A vane spring biased to press against the outer peripheral surface, and a vane spring groove for extending the vane spring storage hole is provided in the cylinder from the vane spring storage hole around the vane groove; It is formed towards the chamber.
 本発明に係るロータリ圧縮機によれば、ベーンスプリング収納孔の長さを短くしても、ベーンスプリング溝に収納されたベーンスプリングでベーンを付勢することができ、ローリングピストンに追従させることができる。よって、ロータリ圧縮機は、ベーンスプリング収納孔の長さを短くした分だけ、ベーン溝を長く形成することができるので、ベーンとベーン溝の摺動面積を広くすることができ、信頼性を向上させることができる。 According to the rotary compressor of the present invention, even if the length of the vane spring accommodation hole is shortened, the vane can be biased by the vane spring accommodated in the vane spring groove, and the rolling piston can be made to follow. it can. Therefore, in the rotary compressor, since the vane groove can be formed long by the length of the vane spring storage hole, the sliding area between the vane and the vane groove can be increased, and the reliability is improved. It can be done.
本発明の実施の形態1に係るロータリ圧縮機の全体構造を概略的に示した縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the longitudinal cross-sectional view which showed roughly the whole structure of the rotary compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るロータリ圧縮機の圧縮機構部の要部を示した横断面図である。It is the cross-sectional view which showed the principal part of the compression mechanism part of the rotary compressor concerning Embodiment 1 of this invention. 本発明の実施の形態1に係るロータリ圧縮機のシリンダーを示した横断面図である。It is a cross-sectional view showing a cylinder of a rotary compressor concerning Embodiment 1 of the present invention. 図3に示したA-A線矢視断面図である。FIG. 4 is a cross-sectional view taken along line AA shown in FIG. 3; 本発明の実施の形態1に係るロータリ圧縮機の変形例であって、圧縮機構部の要部を示した横断面図である。It is a modification of the rotary compressor concerning Embodiment 1 of this invention, Comprising: It is a cross-sectional view which showed the principal part of the compression mechanism part. 図5に示した圧縮機構部のシリンダーのみを示した横断面図である。It is a cross-sectional view which showed only the cylinder of the compression mechanism part shown in FIG. 本発明の実施の形態2に係るロータリ圧縮機のシリンダーを示した横断面図である。It is a cross-sectional view which showed the cylinder of the rotary compressor concerning Embodiment 2 of this invention. 本発明の実施の形態3に係るロータリ圧縮機の圧縮機構部の要部を示した横断面図である。It is the cross-sectional view which showed the principal part of the compression mechanism part of the rotary compressor concerning Embodiment 3 of this invention. 図8に示した圧縮機構部のシリンダーのみを示した横断面図である。It is a cross-sectional view which showed only the cylinder of the compression mechanism part shown in FIG.
 以下、図面を参照して、本発明の実施の形態について説明する。なお、各図中、同一または相当する部分には、同一符号を付して、その説明を適宜省略または簡略化する。また、各図に記載の構成について、その形状、大きさ、及び配置等は、本発明の範囲内で適宜変更することができる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts will be denoted by the same reference numerals, and the description thereof will be appropriately omitted or simplified. Further, the configuration, size, arrangement and the like of the configuration described in each drawing can be appropriately changed within the scope of the present invention.
 実施の形態1.
 先ず、本発明の実施の形態1に係るロータリ圧縮機を図1~図6に基づいて説明する。図1は、本発明の実施の形態1に係るロータリ圧縮機の全体構造を概略的に示した縦断面図である。図2は、本発明の実施の形態1に係るロータリ圧縮機の圧縮機構部の要部を示した横断面図である。図3は、本発明の実施の形態1に係るロータリ圧縮機のシリンダーを示した横断面図である。図4は、図3に示したA-A線矢視断面図である。
Embodiment 1
First, a rotary compressor according to a first embodiment of the present invention will be described based on FIGS. 1 to 6. FIG. 1 is a longitudinal sectional view schematically showing an entire structure of a rotary compressor according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view showing the main parts of the compression mechanism of the rotary compressor according to Embodiment 1 of the present invention. FIG. 3 is a cross-sectional view showing a cylinder of the rotary compressor according to Embodiment 1 of the present invention. FIG. 4 is a sectional view taken along line AA shown in FIG.
 実施の形態1に係るロータリ圧縮機100は、図1に示すように、密閉容器1の内部に、電動機部2と、該電動機部2から伝達される駆動力によって冷媒を圧縮する圧縮機構部3と、を有する構成である。電動機部2と圧縮機構部3は、クランク軸4を介して連結されている。なお、冷媒は、一例としてR410冷媒である。 As shown in FIG. 1, the rotary compressor 100 according to Embodiment 1 includes a motor unit 2 and a compression mechanism unit 3 that compresses a refrigerant by a driving force transmitted from the motor unit 2 inside the sealed container 1. And. The motor unit 2 and the compression mechanism unit 3 are connected via a crankshaft 4. The refrigerant is, for example, R410 refrigerant.
 密閉容器1は、吸入管10を介してアキュームレーター12と接続されており、アキュームレーター12から冷媒ガスが取り込まれる。アキュームレーター12は、冷媒を液冷媒とガス冷媒に分離し、液冷媒がなるべく圧縮機構部3の内部に吸入されないようにするために設けられている。また、密閉容器1の上部には、圧縮された冷媒が排出される吐出管11が接続されている。密閉容器1内の底部には、冷凍機油(図示せず)が貯留されている。冷凍機油は、主に圧縮機構部3の摺動部を潤滑するものである。 The sealed container 1 is connected to the accumulator 12 via the suction pipe 10, and the refrigerant gas is taken in from the accumulator 12. The accumulator 12 is provided to separate the refrigerant into a liquid refrigerant and a gas refrigerant and to prevent the liquid refrigerant from being sucked into the compression mechanism 3 as much as possible. Further, a discharge pipe 11 for discharging the compressed refrigerant is connected to an upper portion of the sealed container 1. At the bottom of the closed container 1, refrigeration oil (not shown) is stored. The refrigeration oil mainly lubricates the sliding portion of the compression mechanism 3.
 電動機部2は、密閉容器1の内壁面に焼き嵌め等により固着支持された円環状の固定子20と、固定子20の内側面に対向して回転可能に設けられた回転子21と、で構成されている。回転子21には、クランク軸4が嵌入されている。電動機部2は、外部から図示省略の気密端子を介して電力が供給されて駆動する。 The motor unit 2 includes an annular stator 20 fixedly supported on the inner wall surface of the sealed container 1 by shrink fitting or the like, and a rotor 21 rotatably provided opposite to the inner side surface of the stator 20. It is configured. The crankshaft 4 is inserted into the rotor 21. Electric power is supplied to the motor unit 2 from the outside through an airtight terminal (not shown) and driven.
 圧縮機構部3は、図1及び図2に示すように、電動機部2によって回転駆動されるクランク軸4と、シリンダー室50を有するシリンダー5と、シリンダー室50を閉塞する軸受として上軸受51及び下軸受52と、ローリングピストン6と、ベーン7と、を備えている。 As shown in FIGS. 1 and 2, the compression mechanism unit 3 includes a crankshaft 4 rotationally driven by the motor unit 2, a cylinder 5 having a cylinder chamber 50, and an upper bearing 51 as a bearing for closing the cylinder chamber 50. A lower bearing 52, a rolling piston 6, and a vane 7 are provided.
 クランク軸4は、電動機部2の回転子21に固定された主軸部40と、シリンダー5を挟んで主軸部40の反対側に設けられた副軸部41と、主軸部40と副軸部41との間に設けられた偏心軸部42と、を有している。クランク軸4の軸心部には、油吸込み穴が形成されている。クランク軸4は、油吸込み穴内に螺旋状の遠心ポンプが設けられており、密閉容器1の底に貯留されている冷凍機油をくみ上げ、圧縮機構部3の摺動部に供給できるようになっている。 The crankshaft 4 has a main shaft portion 40 fixed to the rotor 21 of the motor portion 2, a sub shaft portion 41 provided on the opposite side of the main shaft portion 40 across the cylinder 5, a main shaft portion 40 and a sub shaft portion 41. And an eccentric shaft portion 42 provided therebetween. An oil suction hole is formed at the axial center of the crankshaft 4. The crankshaft 4 is provided with a spiral centrifugal pump in the oil suction hole so that the refrigeration oil stored in the bottom of the closed container 1 can be pumped up and supplied to the sliding portion of the compression mechanism 3 There is.
 シリンダー5は、外周部がボルト等により密閉容器1に固定されている。シリンダー5は、図2に示すように、外周が円形状に形成され、内部に円形状の空間であるシリンダー室50が形成されている。このシリンダー室50は、駆動時に冷媒を圧縮する圧縮室を形成する。シリンダー室50は、図1に示すように、クランク軸4の軸方向の両端が開口しており、シリンダー5の上面に設けられた上軸受51と、シリンダー5の下面に設けられた下軸受52によって閉塞されている。また、シリンダー5には、吸入管10からの冷媒ガスが通る吸入ポート(図示省略)が、外周面からシリンダー室50に貫通して設けられている。 The cylinder 5 has an outer peripheral portion fixed to the closed container 1 by a bolt or the like. As shown in FIG. 2, the cylinder 5 has a circular outer periphery, and a cylinder chamber 50 which is a circular space is formed inside. The cylinder chamber 50 forms a compression chamber for compressing the refrigerant when driven. As shown in FIG. 1, both ends of the cylinder chamber 50 in the axial direction of the crankshaft 4 are open, and an upper bearing 51 provided on the upper surface of the cylinder 5 and a lower bearing 52 provided on the lower surface of the cylinder 5 are provided. Is blocked by Further, a suction port (not shown) through which refrigerant gas from the suction pipe 10 passes is provided in the cylinder 5 so as to penetrate the cylinder chamber 50 from the outer peripheral surface.
 上軸受51は、クランク軸4の主軸部40に摺動自在に嵌合し、シリンダー5のシリンダー室50の一方の端面(電動機部2側)を閉塞する。一方、下軸受52は、クランク軸4の副軸部41に摺動自在に嵌合し、シリンダー室50の他方の端面(冷凍機油側)を閉塞する。なお、図示することは省略したが、上軸受51には、圧縮室で圧縮された冷媒が吐出される吐出孔が形成されている。また、上軸受51には、吐出孔を覆うように吐出マフラーが取り付けられている。 The upper bearing 51 is slidably fitted to the main shaft portion 40 of the crankshaft 4 and closes one end surface (the motor portion 2 side) of the cylinder chamber 50 of the cylinder 5. On the other hand, the lower bearing 52 is slidably fitted to the countershaft portion 41 of the crankshaft 4 and closes the other end surface (refrigerator oil side) of the cylinder chamber 50. Although not shown, the upper bearing 51 is provided with a discharge hole through which the refrigerant compressed in the compression chamber is discharged. Further, a discharge muffler is attached to the upper bearing 51 so as to cover the discharge hole.
 ローリングピストン6は、リング状で構成され、クランク軸4の偏心軸部42に摺動自在に嵌合されている。ローリングピストン6は、偏心軸部42と共にシリンダー室50に設けられており、シリンダー室50内で偏心軸部42と共に偏心回転して冷媒を圧縮するものである。 The rolling piston 6 is formed in a ring shape, and is slidably fitted to the eccentric shaft portion 42 of the crankshaft 4. The rolling piston 6 is provided in the cylinder chamber 50 together with the eccentric shaft portion 42, and eccentrically rotates with the eccentric shaft portion 42 in the cylinder chamber 50 to compress the refrigerant.
 シリンダー5には、図2に示すように、シリンダー室50に連通し径方向に延びるベーン溝70が形成されている。ベーン溝70には、シリンダー室50を吸入室と圧縮室とに仕切るベーン7が、摺動自在に嵌入させて設けられている。ベーン7は、圧縮工程中に、先端部がローリングピストン6の外周部に当接したまま、ローリングピストン6の偏心回転に追従してベーン溝70内を往復摺動する。シリンダー室50は、ベーン7の先端部がローリングピストン6の外周部に当接することにより、吸入室と圧縮室とに仕切られる。ベーン7は、例えば非磁性材料で構成されている。 As shown in FIG. 2, the cylinder 5 is formed with a vane groove 70 communicating with the cylinder chamber 50 and extending in the radial direction. In the vane groove 70, a vane 7 which divides the cylinder chamber 50 into a suction chamber and a compression chamber is slidably fitted. The vane 7 reciprocates within the vane groove 70 following the eccentric rotation of the rolling piston 6 while the tip end abuts against the outer peripheral portion of the rolling piston 6 during the compression process. The cylinder chamber 50 is divided into a suction chamber and a compression chamber when the tip end portion of the vane 7 abuts on the outer peripheral portion of the rolling piston 6. The vanes 7 are made of, for example, a nonmagnetic material.
 また、シリンダー5には、図2に示すように、ベーン溝70の背面側にベーンスプリング収納孔80が形成されている。ベーンスプリング収納孔80の内径は、ベーン溝70の内径よりも大径に形成されている。ベーンスプリング収納孔80には、ベーン7と直列に配置されたベーンスプリング8が収納されている。ベーンスプリング8は、ベーン7の先端部をローリングピストン6の外周面に押し付けるように付勢するものである。ベーンスプリング8は、例えばコイルバネで構成されている。 Further, as shown in FIG. 2, a vane spring housing hole 80 is formed on the back side of the vane groove 70 in the cylinder 5. The inner diameter of the vane spring housing hole 80 is formed larger than the inner diameter of the vane groove 70. The vane spring 8 disposed in series with the vane 7 is accommodated in the vane spring accommodation hole 80. The vane spring 8 biases the tip end of the vane 7 against the outer peripheral surface of the rolling piston 6. The vane spring 8 is formed of, for example, a coil spring.
 次に、実施の形態1のロータリ圧縮機100の動作について説明する。このロータリ圧縮機100では、アキュームレーター12の冷媒を吸入管10および吸入ポートを通じてシリンダー室50の圧縮室に導入してから、電動機部2を駆動させる。ロータリ圧縮機100は、電動機部2が駆動すると、クランク軸4の偏心軸部42に嵌合されたローリングピストン6が偏心回転し、シリンダー室50内において冷媒が圧縮される。シリンダー室50で圧縮された冷媒は、上軸受51の吐出孔から吐出マフラーの空間内に吐出された後、吐出マフラーの吐出穴から密閉容器1内に吐出される。吐出された冷媒は、吐出管11から排出される。 Next, the operation of the rotary compressor 100 according to the first embodiment will be described. In the rotary compressor 100, after the refrigerant of the accumulator 12 is introduced into the compression chamber of the cylinder chamber 50 through the suction pipe 10 and the suction port, the motor unit 2 is driven. In the rotary compressor 100, when the motor unit 2 is driven, the rolling piston 6 fitted to the eccentric shaft portion 42 of the crankshaft 4 is eccentrically rotated, and the refrigerant is compressed in the cylinder chamber 50. The refrigerant compressed in the cylinder chamber 50 is discharged from the discharge hole of the upper bearing 51 into the space of the discharge muffler, and then discharged into the closed container 1 from the discharge hole of the discharge muffler. The discharged refrigerant is discharged from the discharge pipe 11.
 ところで、ロータリ圧縮機100は、ベーン溝70を長く形成して、ベーン7とベーン溝70との摺動面積を広くし、ベーン7とベーン溝70の摺動状態を安定化させることが、信頼性を向上させる上で有効である。一方、ベーンスプリング8でベーン7を付勢してローリングピストン6に追従させるためには、ベーンスプリング収納孔80の長さを十分に確保する必要がある。そのため、ロータリ圧縮機100は、ベーン溝70が長くなると、密閉容器1もその分だけ拡大され、装置全体が大型となる。 By the way, in the rotary compressor 100, the vane groove 70 is formed long to widen the sliding area between the vane 7 and the vane groove 70, and the sliding state between the vane 7 and the vane groove 70 is stabilized. It is effective in improving the quality. On the other hand, in order to urge the vane 7 with the vane spring 8 to follow the rolling piston 6, it is necessary to secure a sufficient length of the vane spring storage hole 80. Therefore, in the rotary compressor 100, when the vane groove 70 becomes long, the closed container 1 is also enlarged by that amount, and the entire apparatus becomes large.
 そこで、実施の形態1におけるシリンダー5には、図2及び図3に示すように、ベーンスプリング収納孔80を延長させるベーンスプリング溝9が、ベーン溝70の周囲に、ベーンスプリング収納孔80からシリンダー室50に向かって形成されている。つまり、ベーンスプリング8は、ベーンスプリング収納孔80及びベーンスプリング溝9に収納され、ベーンスプリング収納孔80及びベーンスプリング溝9において往復動作する。なお、ベーンスプリング溝9の長さは、圧縮機の構造又は冷媒の種類に応じて、適宜変更して形成するものとする。 Therefore, as shown in FIGS. 2 and 3, in the cylinder 5 in the first embodiment, the vane spring groove 9 for extending the vane spring accommodation hole 80 is formed from the vane spring accommodation hole 80 around the vane groove 70. It is formed toward the chamber 50. That is, the vane spring 8 is accommodated in the vane spring accommodation hole 80 and the vane spring groove 9, and reciprocates in the vane spring accommodation hole 80 and the vane spring groove 9. In addition, the length of the vane spring groove 9 shall be suitably changed and formed according to the structure of a compressor, or the kind of refrigerant | coolant.
 ベーンスプリング溝9は、図4に示すように、ベーンスプリング8の形状に対応させた円環状で形成され、縦長のベーン溝70と一部が交差するように形成されている。これは、ベーンスプリング収納孔80を延長させつつ、ベーン7の先端部をローリングピストン6の外周面に押し付けるようにベーンスプリング8で付勢するためである。ベーンスプリング溝9は、ベーンスプリング8を通す必要があるため、ベーンスプリング8の外径よりも外径が大きく、ベーンスプリング8の内径よりも内径が小さい大きさとする。 As shown in FIG. 4, the vane spring groove 9 is formed in an annular shape corresponding to the shape of the vane spring 8, and is formed so as to partially cross the vertically elongated vane groove 70. This is because the vane spring 8 biases the tip end of the vane 7 against the outer peripheral surface of the rolling piston 6 while extending the vane spring storage hole 80. Since the vane spring groove 9 needs to pass the vane spring 8, the outer diameter is larger than the outer diameter of the vane spring 8 and the inner diameter is smaller than the inner diameter of the vane spring 8.
 なお、ベーンスプリング溝9の大きさ及び形状は、図示した形態に限定されない。ベーンスプリング溝9は、ベーンスプリング収納孔80を延長させることができ、収納したベーンスプリング8がベーン7の先端部をローリングピストン6の外周面に押し付けるように付勢することができれば、他の形態でもよい。 The size and shape of the vane spring groove 9 are not limited to the illustrated form. The vane spring groove 9 can extend the vane spring storage hole 80, and if the stored vane spring 8 can urge the tip end portion of the vane 7 to press the outer peripheral surface of the rolling piston 6, another embodiment May be.
 以上のように、実施の形態1に係るロータリ圧縮機100によれば、ベーンスプリング収納孔80の長さを短くしても、ベーンスプリング溝9に収納されたベーンスプリング8でベーン7を付勢することができ、ローリングピストン6に追従させることができる。よって、ロータリ圧縮機100は、ベーンスプリング収納孔80の長さを短くした分だけ、ベーン溝70を長く形成することができるので、ベーン7とベーン溝70の摺動面積を広くすることができ、信頼性を向上させることができる。 As described above, according to the rotary compressor 100 according to the first embodiment, the vane spring 8 is biased by the vane spring 8 stored in the vane spring groove 9 even if the length of the vane spring storage hole 80 is shortened. And the rolling piston 6 can be made to follow. Therefore, the rotary compressor 100 can form the vane groove 70 longer by an amount corresponding to the shortening of the length of the vane spring accommodation hole 80, so the sliding area between the vane 7 and the vane groove 70 can be increased. , Can improve the reliability.
 また、ベーンスプリング溝9は、コイル状のベーンスプリング8に対応させた円環状である。よって、実施の形態1に係るロータリ圧縮機100は、ベーンスプリング溝9にベーンスプリング8を円滑に収納させることができるので、ベーンスプリング8でベーン7を付勢してローリングピストン6に追従させる機能を高めることができる。 Further, the vane spring groove 9 has an annular shape corresponding to the coiled vane spring 8. Therefore, the rotary compressor 100 according to the first embodiment can smoothly store the vane spring 8 in the vane spring groove 9, so that the vane spring 8 urges the vane 7 to follow the rolling piston 6. Can be enhanced.
 ここで、実施の形態1のロータリ圧縮機の効果を具体的な数値を用いて説明する。ロータリ圧縮機100の寸法は、一例として、シリンダー5の外径が150mm程度、内径が70mm程度とする。そして、ローリングピストン6の外径が45mm程度、ベーン溝70の長さが35mm程度、ベーン7の高さが20mm程度、ベーンスプリング溝9が10mm程度とする。ロータリ圧縮機100を動作させる際の一般的な暖房運転条件は、動作圧力として、吸入圧が0.2MPaG程度、吐出圧が4.2MPaG程度である。運転周波数は、120rps程度である。 Here, the effects of the rotary compressor according to the first embodiment will be described using specific numerical values. As an example of the dimensions of the rotary compressor 100, the outer diameter of the cylinder 5 is about 150 mm and the inner diameter is about 70 mm. The outer diameter of the rolling piston 6 is about 45 mm, the length of the vane groove 70 is about 35 mm, the height of the vane 7 is about 20 mm, and the vane spring groove 9 is about 10 mm. As a general heating operation condition at the time of operating the rotary compressor 100, the suction pressure is about 0.2 MPaG and the discharge pressure is about 4.2 MPaG as an operating pressure. The operating frequency is about 120 rps.
 一般に、ベーン7とベーン溝70の摺動条件の厳しさは、ベーン7を支持する圧力Pとベーン7の動作速度Vの積であるPV値で示される。圧力Pとは、吸入圧と吐出圧との差を、ベーン7とベーン溝70の摺動面積で割ったものである。PV値が9.00W/mm以上の場合、ベーン7とベーン溝70の摺動条件が厳しく、吸入圧と吐出圧の差が大きいことに起因する圧縮機の故障が発生するため、ベーン溝70にマンガン処理などの表面処理が必要となる。 In general, the severity of the sliding conditions of the vanes 7 and the vane grooves 70 is indicated by a PV value which is the product of the pressure P supporting the vanes 7 and the operating speed V of the vanes 7. The pressure P is the difference between the suction pressure and the discharge pressure divided by the sliding area of the vane 7 and the vane groove 70. When the PV value is 9.00 W / mm 2 or more, the sliding condition of the vane 7 and the vane groove 70 is severe, and the compressor failure occurs due to the large difference between the suction pressure and the discharge pressure. 70 requires surface treatment such as manganese treatment.
 実施の形態1のロータリ圧縮機100では、ベーンスプリング溝9が設けられており、ベーン7とベーン溝70の摺動面積を増加させているので、PV値が7.00W/mmとなり、ベーン溝70の表面処理が不要となる。一方、従来のロータリ圧縮機では、ベーン溝の長さが30mmしか確保できないため、PV値は9.00W/mmとなり、ベーン溝に表面処理が必要となる。 In the rotary compressor 100 according to the first embodiment, the vane spring groove 9 is provided, and the sliding area of the vane 7 and the vane groove 70 is increased, so the PV value is 7.00 W / mm 2 . The surface treatment of the groove 70 becomes unnecessary. On the other hand, in the conventional rotary compressor, since the length of the vane groove can be secured only 30 mm, the PV value is 9.00 W / mm 2 and the vane groove needs to be surface-treated.
 次に、ロータリ圧縮機100の動作冷媒について説明する。ロータリ圧縮機100の動作冷媒は、R410A冷媒の他に、プロパン若しくはR1234yfなどのHC冷媒、又はHFO冷媒を使用してもよい。HC冷媒及びHFO冷媒は、吸入圧と吐出圧との差が小さいため、ベーン7を支持する圧力が小さくなり、R410A冷媒よりも強いベーススプリング力が必要となる。例えば、ロータリ圧縮機100の寸法を、シリンダー5の外径が160mm程度、内径が70mm程度とする。そして、ローリングピストン6の外径が45mm程度、ベーン溝70の長さが40mm程度、ベーン7の高さが20mm程度、ベーンスプリング溝9が20mm程度とする。動作冷媒としてプロパンを使用した場合に、ロータリ圧縮機を動作させる際の一般的な暖房運転条件は、動作圧力として、吸入圧が0.2MPaG程度、吐出圧が2.0MPaG程度である。運転周波数は、120rps程度である。 Next, the operation refrigerant of the rotary compressor 100 will be described. The operating refrigerant of the rotary compressor 100 may use an HC refrigerant such as propane or R1234yf or an HFO refrigerant in addition to the R410A refrigerant. Since the HC refrigerant and the HFO refrigerant have a small difference between the suction pressure and the discharge pressure, the pressure for supporting the vanes 7 becomes small, and a base spring force stronger than that of the R410A refrigerant is required. For example, the dimensions of the rotary compressor 100 are set such that the outer diameter of the cylinder 5 is about 160 mm and the inner diameter is about 70 mm. The outer diameter of the rolling piston 6 is about 45 mm, the length of the vane groove 70 is about 40 mm, the height of the vane 7 is about 20 mm, and the vane spring groove 9 is about 20 mm. When propane is used as the operating refrigerant, general heating operating conditions for operating the rotary compressor are, as operating pressure, a suction pressure of about 0.2 MPaG and a discharge pressure of about 2.0 MPaG. The operating frequency is about 120 rps.
 上記数値に基づくPV値は、7.08W/mmである。そのため、実施の形態1のロータリ圧縮機100では、ベーン溝70の表面処理が不要である。一方、従来のロータリ圧縮機では、ベーン溝の長さが例えば10mm程度しか確保することができないため、PV値が14.17W/mmとなり、ベーン溝に表面処理が必要となる。このように、実施の形態1に係るロータリ圧縮機100では、動作冷媒としてHC冷媒又はHFO冷媒と使用した場合であっても、信頼性を向上させることができる。 The PV value based on the above value is 7.08 W / mm 2 . Therefore, in the rotary compressor 100 of the first embodiment, the surface treatment of the vane groove 70 is unnecessary. On the other hand, in the conventional rotary compressor, since the length of the vane groove can be secured, for example, only about 10 mm, the PV value is 14.17 W / mm 2 and the vane groove needs to be surface-treated. As described above, in the rotary compressor 100 according to the first embodiment, the reliability can be improved even when using the HC refrigerant or the HFO refrigerant as the operating refrigerant.
 次に、実施の形態1に係るロータリ圧縮機の変形例を図5及び図6に基づいて説明する。図5は、本発明の実施の形態1に係るロータリ圧縮機の変形例であって、圧縮機構部の要部を示した横断面図である。図6は、図5に示した圧縮機構部のシリンダーのみを示した横断面図である。 Next, a modification of the rotary compressor according to the first embodiment will be described based on FIGS. 5 and 6. FIG. 5 is a modified example of the rotary compressor according to Embodiment 1 of the present invention, and is a cross-sectional view showing the main part of the compression mechanism. 6 is a cross-sectional view showing only the cylinder of the compression mechanism shown in FIG.
 図5及び図6に示すロータリ圧縮機では、ベーンスプリング収納孔80を延長させるベーンスプリング溝9が、シリンダー5の外周面の近傍位置からシリンダー室50に向かって、ベーン溝70の周囲に形成されている。ベーンスプリング収納孔80は、ベーンスプリング8の座巻部分を固定するために設けている。つまり、図5及び図6に示すロータリ圧縮機は、ベーンスプリング収納孔80の長さを可能な限り短くした構成であり、ベーン溝70をより長く形成して、ベーン7とベーン溝70の摺動面積を広く確保することができる。 In the rotary compressor shown in FIGS. 5 and 6, the vane spring groove 9 for extending the vane spring accommodation hole 80 is formed around the vane groove 70 from the position near the outer peripheral surface of the cylinder 5 toward the cylinder chamber 50. ing. The vane spring storage hole 80 is provided to fix the wound portion of the vane spring 8. That is, the rotary compressor shown in FIGS. 5 and 6 has a configuration in which the length of the vane spring housing hole 80 is made as short as possible, and the vane groove 70 is formed longer to slide the vane 7 and the vane groove 70. A wide dynamic area can be secured.
 実施の形態2.
 次に、本発明の実施の形態2に係るロータリ圧縮機を、図7に基づいて説明する。図7は、本発明の実施の形態2に係るロータリ圧縮機のシリンダーを示した横断面図である。なお、実施の形態1で説明したロータリ圧縮機と同一の構成については、同一の符号を付して、その説明を適宜省略する。
Second Embodiment
Next, a rotary compressor according to a second embodiment of the present invention will be described based on FIG. FIG. 7 is a cross-sectional view showing a cylinder of a rotary compressor according to Embodiment 2 of the present invention. The same components as those of the rotary compressor described in the first embodiment are denoted by the same reference numerals, and the description thereof will be appropriately omitted.
 実施の形態2に係るロータリ圧縮機では、ベーンスプリング収納孔80の側壁からベーン溝70の側壁を繋ぐ傾斜部81を有しており、ベーンスプリング溝9が傾斜部81からシリンダー室50に向かって形成されていることを特徴としている。ベーンスプリング収納孔80は、ドリル加工によって形成されると、シリンダー室50側の端部が、ドリルの先端形状と略同一の三角形状となる場合がある。このような場合であっても、傾斜部81からシリンダー室50に向かってベーンスプリング溝9を形成でき、ベーンスプリング収納孔80を延長させることができる。 The rotary compressor according to the second embodiment has the inclined portion 81 connecting the side wall of the vane groove 70 from the side wall of the vane spring accommodation hole 80, and the vane spring groove 9 extends from the inclined portion 81 toward the cylinder chamber 50. It is characterized by being formed. When the vane spring storage hole 80 is formed by drilling, the end on the cylinder chamber 50 side may be in a triangular shape substantially the same as the tip shape of the drill. Even in such a case, the vane spring groove 9 can be formed from the inclined portion 81 toward the cylinder chamber 50, and the vane spring storage hole 80 can be extended.
 ここで、実施の形態2のロータリ圧縮機の効果を具体的な数値を用いて説明する。ロータリ圧縮機の寸法は、一例として、シリンダー5の外径が140mm程度、内径が70mm程度である。ローリングピストン6の外径が45mm程度、ベーン溝70の長さが30mm程度、ベーン7の高さが20mm程度、ベーンスプリング溝9が10mm程度、傾斜部81の長さが10mm程度である。ロータリ圧縮機を動作させる際の一般的な冷房運転条件は、動作圧力として、吸入圧が1.0MPaG程度、吐出圧が3.5MPaG程度である。運転周波数は、120rps程度である。 Here, the effects of the rotary compressor according to the second embodiment will be described using specific numerical values. As for the dimensions of the rotary compressor, for example, the outer diameter of the cylinder 5 is about 140 mm and the inner diameter is about 70 mm. The outer diameter of the rolling piston 6 is about 45 mm, the length of the vane groove 70 is about 30 mm, the height of the vane 7 is about 20 mm, the vane spring groove 9 is about 10 mm, and the length of the inclined portion 81 is about 10 mm. As a general cooling operation condition at the time of operating the rotary compressor, as the operating pressure, the suction pressure is about 1.0 MPaG and the discharge pressure is about 3.5 MPaG. The operating frequency is about 120 rps.
 上記数値に基づくPV値は、6.56W/mmである。そのため、実施の形態2のロータリ圧縮機では、ベーン溝70の表面処理が不要である。一方、従来のロータリ圧縮機では、ベーン溝の長さが例えば20mm程度しか確保することができないため、PV値が9.84W/mmとなり、ベーン溝の表面処理が必要となる。 The PV value based on the above value is 6.56 W / mm 2 . Therefore, in the rotary compressor of the second embodiment, the surface treatment of the vane groove 70 is unnecessary. On the other hand, in the conventional rotary compressor, since the length of the vane groove can be secured, for example, only about 20 mm, the PV value is 9.84 W / mm 2 and the surface treatment of the vane groove is required.
 したがって、実施の形態2のロータリ圧縮機のように、ベーンスプリング収納孔80が、ベーンスプリング収納孔80の側壁からベーン溝70の側壁を繋ぐ傾斜部81を有し、ベーンスプリング溝9が、傾斜部81からシリンダー室50に向かって形成された場合であっても、上記実施の形態1のロータリ圧縮機と同様の作用効果を得ることができる。 Therefore, as in the rotary compressor of the second embodiment, the vane spring accommodation hole 80 has the inclined portion 81 connecting the side wall of the vane groove 70 from the side wall of the vane spring accommodation hole 80, and the vane spring groove 9 is inclined. Even in the case of being formed from the portion 81 toward the cylinder chamber 50, the same function and effect as those of the rotary compressor of the first embodiment can be obtained.
 実施の形態3.
 次に、本発明の実施の形態3に係るロータリ圧縮機を、図8及び図9に基づいて説明する。図8は、本発明の実施の形態3に係るロータリ圧縮機の圧縮機構部の要部を示した横断面図である。図9は、図8に示した圧縮機構部のシリンダーのみを示した横断面図である。なお、実施の形態1で説明したロータリ圧縮機と同一の構成については、同一の符号を付して、その説明を適宜省略する。
Third Embodiment
Next, a rotary compressor according to a third embodiment of the present invention will be described based on FIG. 8 and FIG. FIG. 8 is a cross-sectional view showing the main parts of the compression mechanism of the rotary compressor according to Embodiment 3 of the present invention. FIG. 9 is a cross-sectional view showing only the cylinder of the compression mechanism shown in FIG. The same components as those of the rotary compressor described in the first embodiment are denoted by the same reference numerals, and the description thereof will be appropriately omitted.
 実施の形態3に係るロータリ圧縮機は、図8及び図9に示すように、ベーン7の先端部をローリングピストン6の外周面に押し付けるように付勢するベーンスプリング8が、シリンダー5に形成されたベーンスプリング溝90に収納された構成である。このベーンスプリング溝90は、ベーン溝70の周囲に、シリンダー5の外周面からシリンダー室50に向かって形成されている。 In the rotary compressor according to the third embodiment, as shown in FIG. 8 and FIG. 9, the vane spring 8 urging the tip end of the vane 7 to press the outer peripheral surface of the rolling piston 6 is formed in the cylinder 5 It is configured to be housed in the vane spring groove 90. The vane spring groove 90 is formed around the vane groove 70 from the outer peripheral surface of the cylinder 5 toward the cylinder chamber 50.
 図9に示すA-A線矢視断面は、実施の形態1で説明した図4に示す形状と同じである。つまり、実施の形態3に係るロータリ圧縮機のベーンスプリング溝90も、コイル状のベーンスプリング8の形状に対応させた円環状で形成され、縦長のベーン溝70と一部が交差するように形成されている。よって、このロータリ圧縮機は、ベーンスプリング溝90にベーンスプリング8を円滑に収納させることができるので、ベーンスプリング8でベーン7を付勢してローリングピストン6に追従させる機能を高めることができる。 The cross section taken along line AA shown in FIG. 9 is the same as the shape shown in FIG. 4 described in the first embodiment. That is, the vane spring groove 90 of the rotary compressor according to the third embodiment is also formed in an annular shape corresponding to the shape of the coiled vane spring 8 so that it partially intersects the vertically elongated vane groove 70. It is done. Therefore, since this rotary compressor can smoothly accommodate the vane spring 8 in the vane spring groove 90, the function of urging the vane 7 by the vane spring 8 to follow the rolling piston 6 can be enhanced.
 なお、ベーンスプリング溝90は、ベーンスプリング8を通す必要があるため、ベーンスプリング8の外径よりも外径が大きく、ベーンスプリング8の内径よりも内径が小さい大きさとする。また、ベーンスプリング溝90の大きさ及び形状は、図示した形態に限定されない。ベーンスプリング溝90は、収納したベーンスプリング8がベーン7の先端部をローリングピストン6の外周面に押し付けるように付勢することができれば、他の形態でもよい。 Since the vane spring groove 90 needs to pass the vane spring 8, the outside diameter is larger than the outside diameter of the vane spring 8 and the inside diameter is smaller than the inside diameter of the vane spring 8. Further, the size and shape of the vane spring groove 90 are not limited to the illustrated form. The vane spring groove 90 may have another form as long as the housed vane spring 8 can urge the tip end portion of the vane 7 against the outer peripheral surface of the rolling piston 6.
 したがって、実施の形態3のロータリ圧縮機は、十分な長さを有するベーンスプリング溝90に収納されたベーンスプリング8でベーン7を付勢してローリングピストン6に追従させることができる。また、ロータリ圧縮機は、ベーンスプリング溝90の長さに関係なく、ベーン溝70をシリンダー5の径方向に長く形成することができるので、ベーン7とベーン溝70の摺動面積を広くすることができ、信頼性を向上させることができる。 Therefore, in the rotary compressor according to the third embodiment, the vane 7 can be urged by the vane spring 8 accommodated in the vane spring groove 90 having a sufficient length to follow the rolling piston 6. Further, in the rotary compressor, since the vane groove 70 can be formed long in the radial direction of the cylinder 5 regardless of the length of the vane spring groove 90, the sliding area between the vane 7 and the vane groove 70 is increased. The reliability can be improved.
 ここで、実施の形態3のロータリ圧縮機の効果を具体的な数値を用いて説明する。ロータリ圧縮機の寸法は、一例として、シリンダー5の外径が160mm程度、内径が70mm程度である。ローリングピストン6の外径が45mm程度、ベーン溝70の長さが40mm程度、ベーン7の高さが20mm程度、ベーンスプリング溝90が20mm程度である。ロータリ圧縮機を動作させる際の一般的な暖房運転条件は、動作圧力として、吸入圧が0.2MPaG程度、吐出圧が4.7MPaG程度である。運転周波数は、120rps程度である。 Here, the effects of the rotary compressor according to the third embodiment will be described using specific numerical values. As for the dimensions of the rotary compressor, for example, the outer diameter of the cylinder 5 is about 160 mm and the inner diameter is about 70 mm. The outer diameter of the rolling piston 6 is about 45 mm, the length of the vane groove 70 is about 40 mm, the height of the vane 7 is about 20 mm, and the vane spring groove 90 is about 20 mm. As a general heating operation condition at the time of operating the rotary compressor, as an operating pressure, a suction pressure is about 0.2 MPaG and a discharge pressure is about 4.7 MPaG. The operating frequency is about 120 rps.
 上記数値に基づくPV値は、8.85W/mmである。そのため、実施の形態3のロータリ圧縮機では、ベーン溝70の表面処理が不要である。一方、従来のロータリ圧縮機では、ベーン溝の長さが例えば20mm程度しか確保することができないため、PV値が17.71W/mmとなり、ベーン溝70の表面処理が必要となる。 The PV value based on the above value is 8.85 W / mm 2 . Therefore, in the rotary compressor of the third embodiment, the surface treatment of the vane groove 70 is unnecessary. On the other hand, in the conventional rotary compressor, since the length of the vane groove can be secured, for example, only about 20 mm, the PV value is 17.71 W / mm 2 and the surface treatment of the vane groove 70 is required.
 以上に本発明を実施の形態に基づいて説明したが、本発明は上述した実施の形態の構成に限定されるものではない。例えば、図示したロータリ圧縮機100の内部構成は、一例であって、上述した内容に限定されるものではなく、他の構成要素を含んだロータリ圧縮機であっても同様に実施することができる。具体的には、2つ圧縮室を備えたツインロータリ圧縮機等である。要するに、本発明は、その技術的思想を逸脱しない範囲において、当業者が通常に行う設計変更及び応用のバリエーションの範囲を含むものである。 Although the present invention has been described above based on the embodiment, the present invention is not limited to the configuration of the embodiment described above. For example, the internal configuration of the illustrated rotary compressor 100 is merely an example, and the present invention is not limited to the above-described content, and the present invention can be similarly implemented even in a rotary compressor including other components. . Specifically, it is a twin rotary compressor or the like provided with two compression chambers. In short, the present invention includes the scope of variations in design changes and applications which are ordinarily made by those skilled in the art without departing from the technical concept of the present invention.
 1 密閉容器、2 電動機部、3 圧縮機構部、4 クランク軸、5 シリンダー、6 ローリングピストン、7 ベーン、8 ベーンスプリング、9 ベーンスプリング溝、10 吸入管、11 吐出管、12 アキュームレーター、20 固定子、21 回転子、40 主軸部、41 副軸部、42 偏心軸部、50 シリンダー室、51 上軸受、52 下軸受、70 ベーン溝、80 ベーンスプリング収納孔、81 傾斜部、90 ベーンスプリング溝、100 ロータリ圧縮機。 Reference Signs List 1 sealed container, 2 motor unit, 3 compression mechanism unit, 4 crankshaft, 5 cylinder, 6 rolling piston, 7 vane, 8 vane spring, 9 vane spring groove, 10 suction pipe, 11 discharge pipe, 12 accumulator, 20 fixed 21 rotor, 40 main shaft portion, 41 sub shaft portion, 42 eccentric shaft portion, 50 cylinder chamber, 51 upper bearing, 52 lower bearing, 70 vane groove, 80 vane spring storage hole, 81 inclined portion, 90 vane spring groove , 100 rotary compressors.

Claims (4)

  1.  密閉容器内に、電動機部と、前記電動機部から伝達される駆動力によって冷媒を圧縮する圧縮機構部と、を備え、
     前記圧縮機構部は、
     偏心軸部を有し、前記電動機部により回転駆動されるクランク軸と、
     前記密閉容器に固定され、シリンダー室を有するシリンダーと、
     前記シリンダーの両端面に設けられ、前記シリンダー室を閉塞する軸受と、
     前記偏心軸部に嵌合されて前記シリンダー室に収納され、前記偏心軸部と共に偏心回転して冷媒を圧縮するローリングピストンと、
     前記シリンダーの径方向に形成されたベーン溝に設けられ、前記シリンダー室を吸入室と圧縮室とに仕切るベーンと、
     前記シリンダーに形成されたベーンスプリング収納孔に収納され、前記ベーンの先端部を前記ローリングピストンの外周面に押し付けるように付勢するベーンスプリングと、を有し、
     前記シリンダーには、前記ベーンスプリング収納孔を延長させるベーンスプリング溝が、前記ベーン溝の周囲に、前記ベーンスプリング収納孔から前記シリンダー室に向かって形成されている、ロータリ圧縮機。
    The sealed container includes a motor unit and a compression mechanism unit that compresses a refrigerant by a driving force transmitted from the motor unit.
    The compression mechanism unit is
    A crankshaft which has an eccentric shaft portion and is rotationally driven by the motor portion;
    A cylinder fixed to the closed container and having a cylinder chamber;
    Bearings provided on both end surfaces of the cylinder and closing the cylinder chamber;
    A rolling piston which is fitted to the eccentric shaft portion and accommodated in the cylinder chamber and is eccentrically rotated with the eccentric shaft portion to compress the refrigerant;
    A vane which is provided in a vane groove formed in a radial direction of the cylinder and which divides the cylinder chamber into a suction chamber and a compression chamber;
    And a vane spring housed in a vane spring housing hole formed in the cylinder and biasing the tip end of the vane against the outer peripheral surface of the rolling piston.
    The rotary compressor, wherein a vane spring groove for extending the vane spring storage hole is formed in the cylinder around the vane groove from the vane spring storage hole toward the cylinder chamber.
  2.  前記ベーンスプリング収納孔は、該ベーンスプリング収納孔の側壁から前記ベーン溝の側壁を繋ぐ傾斜部を有し、
     前記ベーンスプリング溝は、前記傾斜部から前記シリンダー室に向かって形成されている、請求項1に記載のロータリ圧縮機。
    The vane spring receiving hole has an inclined portion connecting the side wall of the vane groove from the side wall of the vane spring receiving hole,
    The rotary compressor according to claim 1, wherein the vane spring groove is formed from the inclined portion toward the cylinder chamber.
  3.  密閉容器内に、電動機部と、前記電動機部から伝達される駆動力によって冷媒を圧縮する圧縮機構部と、を備え、
     前記圧縮機構部は、
     偏心軸部を有し、前記電動機部により回転駆動されるクランク軸と、
     前記密閉容器に固定され、シリンダー室を有するシリンダーと、
     前記シリンダーの両端面に設けられ、前記シリンダー室を閉塞する軸受と、
     前記偏心軸部に嵌合されて前記シリンダー室に収納され、前記偏心軸部と共に偏心回転して冷媒を圧縮するローリングピストンと、
     前記シリンダーの径方向に形成されたベーン溝に設けられ、前記シリンダー室を吸入室と圧縮室とに仕切るベーンと、
     前記シリンダーに形成されたベーンスプリング溝に収納され、前記ベーンの先端部を前記ローリングピストンの外周面に押し付けるように付勢するベーンスプリングと、を有し、
     前記ベーンスプリング溝は、前記ベーン溝の周囲に、前記シリンダーの外周面から前記シリンダー室に向かって形成された構成である、ロータリ圧縮機。
    The sealed container includes a motor unit and a compression mechanism unit that compresses a refrigerant by a driving force transmitted from the motor unit.
    The compression mechanism unit is
    A crankshaft which has an eccentric shaft portion and is rotationally driven by the motor portion;
    A cylinder fixed to the closed container and having a cylinder chamber;
    Bearings provided on both end surfaces of the cylinder and closing the cylinder chamber;
    A rolling piston which is fitted to the eccentric shaft portion and accommodated in the cylinder chamber and is eccentrically rotated with the eccentric shaft portion to compress the refrigerant;
    A vane which is provided in a vane groove formed in a radial direction of the cylinder and which divides the cylinder chamber into a suction chamber and a compression chamber;
    And a vane spring housed in a vane spring groove formed in the cylinder and biasing the tip end of the vane against the outer peripheral surface of the rolling piston.
    The rotary compressor, wherein the vane spring groove is formed around the vane groove from an outer peripheral surface of the cylinder toward the cylinder chamber.
  4.  前記ベーンスプリングは、コイル状であり、
     前記ベーンスプリング溝は、前記ベーンスプリングの形状に対応させた円環状である、請求項1~3のいずれか一項に記載のロータリ圧縮機。
    The vane spring is coiled,
    The rotary compressor according to any one of claims 1 to 3, wherein the vane spring groove has an annular shape corresponding to the shape of the vane spring.
PCT/JP2018/001563 2018-01-19 2018-01-19 Rotary compressor WO2019142315A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2018/001563 WO2019142315A1 (en) 2018-01-19 2018-01-19 Rotary compressor
KR1020207017500A KR102299099B1 (en) 2018-01-19 2018-01-19 rotary compressor
JP2019565650A JP6869378B2 (en) 2018-01-19 2018-01-19 Rotary compressor
CN201880083934.2A CN111566351B (en) 2018-01-19 2018-01-19 Rotary compressor
CZ2020386A CZ309161B6 (en) 2018-01-19 2018-01-19 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/001563 WO2019142315A1 (en) 2018-01-19 2018-01-19 Rotary compressor

Publications (1)

Publication Number Publication Date
WO2019142315A1 true WO2019142315A1 (en) 2019-07-25

Family

ID=67300970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001563 WO2019142315A1 (en) 2018-01-19 2018-01-19 Rotary compressor

Country Status (5)

Country Link
JP (1) JP6869378B2 (en)
KR (1) KR102299099B1 (en)
CN (1) CN111566351B (en)
CZ (1) CZ309161B6 (en)
WO (1) WO2019142315A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226787U (en) * 1988-04-11 1990-02-21
JP2007224875A (en) * 2006-02-27 2007-09-06 Matsushita Electric Ind Co Ltd Compressor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223082A (en) * 1992-02-10 1993-08-31 Daikin Ind Ltd Rotary compressor
JPH1122675A (en) 1997-07-08 1999-01-26 Toshiba Ave Corp Rotary compressor
JP3967474B2 (en) * 1998-09-10 2007-08-29 東芝キヤリア株式会社 Rotary compressor
KR100438954B1 (en) * 2001-12-04 2004-07-03 주식회사 엘지이아이 Vane supporting device for enclosed compressor
CN101100998B (en) * 2007-07-29 2010-09-01 广东美芝制冷设备有限公司 Rotary type compressor sliding sheet torsional spring and its uses
JP2014206173A (en) * 2014-07-04 2014-10-30 ▲荒▼田 哲哉 Discharge mechanism of positive-displacement compressor
TWI499750B (en) * 2014-06-10 2015-09-11 Round Shine Industrail Co Ltd A multi-blade rotary compressor and a mathod for multiple cycle
WO2016174751A1 (en) * 2015-04-28 2016-11-03 三菱電機株式会社 Compressor
CN106930943A (en) * 2015-12-29 2017-07-07 珠海凌达压缩机有限公司 Compressor, pump assembly and its cylinder
CN206738152U (en) * 2017-05-31 2017-12-12 广东美芝精密制造有限公司 Rotary compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226787U (en) * 1988-04-11 1990-02-21
JP2007224875A (en) * 2006-02-27 2007-09-06 Matsushita Electric Ind Co Ltd Compressor

Also Published As

Publication number Publication date
JP6869378B2 (en) 2021-05-12
CZ2020386A3 (en) 2020-07-29
JPWO2019142315A1 (en) 2020-08-27
CZ309161B6 (en) 2022-03-30
KR20200087836A (en) 2020-07-21
CN111566351B (en) 2021-12-28
CN111566351A (en) 2020-08-21
KR102299099B1 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
JP4909597B2 (en) Hermetic rotary compressor and refrigeration cycle apparatus
US10781817B2 (en) Compressor having centrifugation and differential pressure structure for oil supplying
US11002273B2 (en) Compressor having enhanced wrap structure
US20170248139A1 (en) Two-cylinder hermetic compressor
JP5991958B2 (en) Rotary compressor
WO2019142315A1 (en) Rotary compressor
KR101380987B1 (en) Rotary compressor
WO2017208455A1 (en) Scroll compressor
JP6195466B2 (en) Scroll compressor
JP4792947B2 (en) Compressor
EP2636903A2 (en) Rotary compressor
JP2014234785A (en) Scroll compressor
WO2022264792A1 (en) Scroll compressor
WO2020230230A1 (en) Rotary compressor
JP2009115067A (en) Two-stage compression rotary compressor
KR102182171B1 (en) Scroll compressor
US10816000B2 (en) Compressor having centrifugation structure for supplying oil
JP2954757B2 (en) Fluid compressor
EP3211233B1 (en) Two-cylinder hermetic compressor
WO2017141343A1 (en) Compressor
JP2016130460A (en) Rotary compressor
KR20180090324A (en) Rotary compressor
WO2016139825A1 (en) Rotary compressor
JP2018059515A (en) Rotary compressor
JP6011647B2 (en) Rotary compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901531

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019565650

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207017500

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901531

Country of ref document: EP

Kind code of ref document: A1