WO2018168601A1 - 遅延予測装置、遅延予測システム、遅延予測方法および記録媒体 - Google Patents

遅延予測装置、遅延予測システム、遅延予測方法および記録媒体 Download PDF

Info

Publication number
WO2018168601A1
WO2018168601A1 PCT/JP2018/008742 JP2018008742W WO2018168601A1 WO 2018168601 A1 WO2018168601 A1 WO 2018168601A1 JP 2018008742 W JP2018008742 W JP 2018008742W WO 2018168601 A1 WO2018168601 A1 WO 2018168601A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay
state
communication delay
communication
distribution
Prior art date
Application number
PCT/JP2018/008742
Other languages
English (en)
French (fr)
Inventor
安田 真也
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2019505920A priority Critical patent/JP7115465B2/ja
Priority to US16/492,453 priority patent/US11095527B2/en
Publication of WO2018168601A1 publication Critical patent/WO2018168601A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/147Network analysis or design for predicting network behaviour
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • H04L43/0864Round trip delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • H04L47/127Avoiding congestion; Recovering from congestion by using congestion prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • H04L47/283Flow control; Congestion control in relation to timing considerations in response to processing delays, e.g. caused by jitter or round trip time [RTT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay

Definitions

  • the present invention relates to a technique for predicting a delay time required for packet transmission / reception in IP (Internet Protocol) communication.
  • transmission / reception packet loss occurs due to various factors such as interference between radio waves, noise, and communication line congestion, and communication delay time varies from time to time.
  • a large communication delay occurs suddenly, for example, in a remote operation system, it becomes difficult to control the operation target device.
  • the operator or the operation program intends to control the operation target device to stop at a certain position, but in reality, it occurs due to a communication delay. Due to the stop command transmission delay, the operation target device is moved to an unintended position. If the communication delay occurs regularly, the control may be performed in advance, but a high technical level is required to cope with the communication delay that occurs suddenly.
  • the problem caused by the sudden occurrence of communication delay can be reduced by predicting the communication delay.
  • TCP Transmission Control Protocol
  • the transmission source terminal waits for a special packet that means that the packet is received from the reception source terminal, and tries to retransmit the packet if there is no response for a certain period of time. If this waiting time is too short, extra retransmissions occur. On the other hand, if the waiting time is too long, necessary packets are not easily reproduced, and in either case, the throughput is reduced.
  • the predicted delay time when the predicted delay time is large, the difference between the actual stop position and the intended stop position can be reduced by lowering the operation speed of the target device compared to when the predicted delay time is small.
  • Non-Patent Document 1 discloses a technique for providing a standard method for determining the waiting time in TCP / IP communication. This method measures the round trip delay time at regular intervals, calculates an estimated value of the round trip delay time of the next step as exponential smoothing, and adds four times the predicted value of the waiting time fluctuation to the calculated estimated value. In addition, the waiting time is set. Thus, a waiting time with a margin on the safe side is set so as to reduce the need for useless retransmission.
  • Patent Document 1 discloses a method for improving the technique described in Non-Patent Document 1. In the method disclosed in Patent Document 1, it is possible to avoid setting the waiting time unnecessarily long when the round-trip delay time is decreased by dividing the processing according to whether the round-trip delay time is decreased or increased. As a result, a decrease in throughput can be suppressed.
  • Non-Patent Document 1 and Patent Document 1 have the following problems.
  • Non-Patent Document 1 describes that even when the round-trip delay time sharply decreases and the line condition is improved, the control device interprets that the fluctuation of the round-trip delay time is large, and sets the waiting time for the next step. There is a problem that the setting is very long.
  • Non-Patent Document 1 and Patent Document 1 both estimate the maximum value of the future round-trip delay time as small as possible based on the round-trip delay time measured at regular intervals. .
  • the technique of Patent Document 1 is superior in that an estimated delay time smaller than that of Non-Patent Document 1 can be calculated by incorporating a decrease in the round-trip delay time at the timing when the line state is stabilized as a decrease in the estimated delay time. Yes.
  • Non-Patent Document 1 and Patent Document 1 cannot predict such a sudden increase in delay time. Further, even after the delay time is decreased, the sudden increase in delay time affects the estimated delay time (remains as an increase in delay time). For this reason, for example, a wasteful waiting time occurs when performing packet retransmission in TCP / IP communication. Further, when the sudden increase in the delay time is repeated intermittently, the delay cannot be dealt with because the delay is underestimated when the delay time increases and overestimated when the delay time decreases.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a delay prediction device and the like for predicting a future communication delay with high accuracy based on past communication delay data.
  • a delay prediction apparatus provides: Low delay distribution estimation means for estimating the probability distribution of the first communication delay state using the result of measuring the communication delay of the packet in the network; Identifying means for identifying whether the communication delay state is the first communication delay state or the second communication delay state in which the communication delay is larger than the first communication delay state; High delay distribution estimation means for estimating the probability distribution of the second communication delay state; Delay distribution predicting means for predicting a probability distribution of a future communication delay based on the probability distribution of the first communication delay state and the probability distribution of the second communication delay state.
  • the delay prediction system is: A delay prediction device as described above; A control device for remotely controlling a certain operation via a network; A control target device that receives a remote control from the control device and executes an operation.
  • the control device receives, from the delay prediction device, prediction delay information including a future delay time that is predicted based on a communication delay predicted using a result of measuring a packet communication delay in the network. Based on this, remote control for the device to be controlled is determined.
  • the delay prediction method is: Using the result of measuring the communication delay of the packet in the network, the probability distribution of the first communication delay state is estimated, Identifying whether the communication delay state is the first communication delay state or the second communication delay state having a communication delay larger than the first communication delay state; Estimating the probability distribution of the second communication delay state; A probability distribution of a future communication delay is predicted based on the probability distribution of the first communication delay state and the probability distribution of the second communication delay state.
  • the delay prediction program provides: Using the result of measuring the communication delay of the packet in the network, the probability distribution of the first communication delay state is estimated, Identifying whether the communication delay state is the first communication delay state or the second communication delay state having a communication delay larger than the first communication delay state; Estimating the probability distribution of the second communication delay state; Based on the probability distribution of the first communication delay state and the probability distribution of the second communication delay state, the computer is made to predict the probability distribution of the future communication delay.
  • This program may be stored in a recording medium.
  • the present invention it is possible to provide a delay prediction device that predicts a future communication delay with high accuracy based on past communication delay data.
  • FIG. 7 is a graph showing specific examples of a low delay state distribution and a high delay state distribution corresponding to the graph shown in FIG. 6.
  • the sudden increase in delay time in a communication network is a complex intertwining of multiple factors such as the strength of received radio waves and the status of cross traffic, and as described above, prediction by point estimation is difficult.
  • the sudden increase in delay time occurs intermittently over a certain period of time, so it is quantified how much communication delay has occurred within the past time, and in the future By estimating the frequency distribution of the delay time, it can be used to predict future delay fluctuations.
  • FIG. 2 is a graph showing the time dependency of the round trip time actually measured using the LTE line.
  • the vertical axis represents the round-trip delay time (milliseconds) and the horizontal axis represents the elapsed time (seconds).
  • a large delay of about 500 milliseconds between the horizontal axis 40 seconds and 60 seconds that is, a state in which the delay time observed within the observation time is relatively large compared to other delay times (hereinafter, “ High delay state ”).
  • this delay is eliminated in a few seconds
  • the average round trip delay time of about 50 milliseconds that is, a state in which the delay time observed within the observation time is relatively small compared to other delay times (hereinafter referred to as “low delay state”).
  • a round trip delay time of about 200 milliseconds occurs intermittently between 80 seconds and 120 seconds, and the average round trip delay time is about 300 milliseconds between 120 seconds and 140 seconds. There are intermittent delays.
  • FIG. 3 shows this transition as a state transition diagram.
  • the probability of transition from the low delay state to the high delay state is p
  • the probability of transition from the high delay state to the low delay state is q. If the state transition shown in FIG.
  • the expected value of the time ratio occupied by the low delay state is ⁇ q / (p + q) ⁇
  • the expected value of the time ratio occupied by the high delay state is ⁇ P / (p + q) ⁇ .
  • the delay prediction apparatus 10 uses the probability p and the above-described expected value for the degree of contribution from the low delay state in the time when the delay is measured from the measured data of the communication delay measured multiple times (see FIG. 2). Quantify. Further, the degree of contribution from the high delay state is quantified using the probability q and the above-described expected value.
  • the interval of the elapsed time is an example, and in fact, it is often a slightly narrower time interval.
  • the probability p and the probability q correspond to the shape of the probability distribution of the delay time (details will be described later). Therefore, by predicting a set of values of the future probability p and probability q, a delay time distribution corresponding to the set of values can be obtained, and a future delay can be predicted based on the delay time distribution. .
  • the delay prediction apparatus 10 includes a low delay distribution estimation unit 11, an identification unit 12, a high delay distribution estimation unit 13, a delay distribution prediction unit 14, and a delay time measurement.
  • the unit 15 is provided.
  • the delay time measuring unit 15 measures the delay time in advance by sending a plurality of packets through the communication network.
  • FIG. 4 shows a configuration of an apparatus used at the time of delay time measurement.
  • the delay time measurement unit 15 of the delay prediction apparatus 10 performs packet communication with the communication destination terminal 4 via the communication network 3. Specifically, the time when the delay time measurement unit 15 transmits the packet is recorded in a memory (not shown), and the delay prediction device 10 transmits the packet to the communication destination terminal 4.
  • the communication destination terminal 4 immediately returns the packet to the delay prediction device 10.
  • the delay time measuring unit 15 takes the difference between the reception time and the transmission time recorded in advance in the memory, so that the packet reciprocates the communication network 3.
  • Round-trip delay time (Round Trip Time), which is the time taken for
  • the delay prediction device 10 may be connected to the display device 5 so that the round-trip delay time can be displayed as a graph, a number, or the like.
  • the delay time measuring unit 15 uses a predetermined timeout value in the case of UDP communication. If the packet is not returned to the delay prediction device 10 even after waiting for the time corresponding to the timeout value, the delay time measurement unit 15 records an appropriate time equal to or greater than the timeout value in the memory as a round trip delay time. Data loss is prevented by placing (temporarily placing a round-trip delay time).
  • the delay time measurement unit 15 holds the temporary flag value, and refers to the temporary flag value when a packet is returned later with a significant delay.
  • the temporarily placed round-trip delay time may be replaced with an actually measured value.
  • the delay time measuring unit 15 in the present embodiment is not necessarily limited to measuring the round trip delay time.
  • the delay time measurement unit 15 may measure a one-way delay time, and the delay prediction apparatus 10 may use the one-way delay time.
  • the low delay distribution estimation unit 11 estimates the probability distribution of the low delay state using the result of measuring the communication delay of the packet in the network (the output of the delay time measurement unit 15).
  • the low delay distribution estimator 11 assumes that data having a relatively short delay time among the measured delay times is a low delay state, and estimates the probability density (function) of the delay time corresponding to the low delay state.
  • FIG. 5 is a graph showing the actually measured delay time, and the left side of the graph (between 0 and 20 seconds on the horizontal axis) represents the probability density function in the low delay state. The details of the threshold value that clearly separates the low delay state and the high delay state will be described in the next identification unit 12.
  • the estimated distribution is a distribution (hereinafter referred to as a parametric distribution) in which a certain hypothesis is set for a parameter that defines the characteristics of the population.
  • the estimation of the distribution results in the problem of estimating a small number of parameters, the estimation of the distribution becomes easy.
  • the low delay distribution is assumed to be a shifted gamma distribution represented by Expression (1).
  • f (x) is a probability density
  • z is a shift parameter (coefficient)
  • k is a shape parameter
  • is a scale parameter.
  • k and ⁇ are parameters that determine the shape of the gamma distribution.
  • the parameter z corresponds to the lower limit of the domain of gamma distribution. That is, since the delay time of the communication channel is generally larger than zero, the normal gamma distribution is translated in the x-axis direction by z, indicating that the delay time is z or more.
  • the gamma distribution is used as an example, but the low delay distribution function is not necessarily a gamma distribution and may be an arbitrary distribution.
  • the low delay distribution estimation unit 11 uses, for example, what value is measured as the lower percentage of the round-trip delay time in the obtained actual measurement data, and theoretically calculates when the parameter is ⁇ .
  • the parameter ⁇ is estimated by comparing the value and the percentage point. Specifically, for example, assuming that the median value of measured delay time (ie, the lower 50% point) is 70 milliseconds, the cumulative distribution function F (x) of Equation (1) is expressed by the following Equation (2). It is.
  • the identification unit 12 identifies whether the communication delay state is a low delay state or a high delay state in which the communication delay is larger than the low delay state.
  • the identification unit 12 determines a threshold value that distinguishes between the low delay state and the high delay state. For example, when a distribution having no maximum domain value (being infinite), such as the gamma distribution described above, is considered as a low delay state, for example, the 95 percent point of the cumulative distribution function may be adopted as the threshold value. Good. As another example, in the case of using a low-delay state probability distribution whose domain is bounded, the larger domain may be employed as the threshold value.
  • the high delay distribution estimation unit 13 estimates the probability distribution of the high delay state (second communication delay state).
  • the high delay distribution estimation unit 13 estimates a probability density function according to the delay time in the high delay state from the delay time data classified into the high delay state by the identification unit 12. Assuming that a parametric distribution is used in this estimation, the estimation of the distribution results in a problem of estimating a small number of parameters, so that the estimation of the distribution becomes easy.
  • the high delay distribution estimation unit 13 will be described on the assumption that the exponential distribution represented by Expression (3) is used.
  • the high delay distribution estimation unit 13 can estimate the parameter ⁇ of this distribution by fitting the delay time data classified into the high delay state using an optimization method such as the least square method.
  • the delay distribution prediction unit 14 predicts the probability distribution of future communication delays based on the mixed distribution of the low delay state and the high delay state.
  • the delay distribution prediction unit 14 calculates a future low delay state and a high delay state by using a ratio of distributions representing a low delay state and a high delay state in the past, and predicts a probability distribution of a future communication delay.
  • the delay distribution prediction unit 14 models the actually measured current delay time distribution shown in FIG. 5 by combining the estimated high delay state distribution and low delay state distribution (see FIG. 6).
  • FIG. 6 shows specific examples of the low delay state distribution and the high delay state distribution corresponding to the graph of FIG. Note that this modeling is equivalent to determining the probability p and the probability q.
  • the communication path takes either a low-delay state or a high-delay state, and the state is considered as a model that changes state according to a Markov process (see FIG. 3). Further, a packet transmitted in a low delay state is returned after a delay time given by a low delay state distribution (for example, a gamma distribution) has elapsed. On the other hand, a packet transmitted in the high delay state is not returned until the next transition to the low delay state. Therefore, using a model in which the waiting time until the reply is treated as a delay time, the high delay state distribution is expressed as an exponential distribution.
  • the values of the probabilities p and q correspond to the average of the time continuously present between the low delay state and the high delay state in the measurement time, and can be estimated from the delay time data.
  • a delay time data acquisition cycle by the delay distribution prediction unit 14 is set to a constant value ⁇ t (for convenience of explanation, for example, 20 seconds in FIG. 2).
  • the expected value E (p) of the time continuously existing in the low delay state before the transition from the low delay state to the high delay state can be expressed as the following equation (4).
  • the delay distribution prediction unit 14 assumes that the calculation result of the expected value is equal to the “average value of the time continuously present in the low delay state during the period ⁇ T” obtained in the actual measurement. , Estimate the value of probability p.
  • a low delay state (7 seconds), a high delay state (2 seconds), a low delay state (4 seconds), a high delay state (3 seconds), a low delay state (4 seconds) ).
  • the average value of the time continuously present in the low delay state during the period ⁇ T is 5 seconds, the transition from the low delay state to the high delay state continues until the low delay state continues. It can be assumed that the solution of the expected value E (p) of the existing time is 5.
  • the expected value E (q) of the time continuously existing in the high delay state before the transition from the high delay state to the low delay state can be expressed as the following equation (5). Therefore, the value of probability q can be estimated using equation (5).
  • the probability distribution function is configured using functions having different shapes in a portion below the threshold (low delay state) obtained by the identification unit 12 and a portion exceeding the threshold (high delay state).
  • the value obtained by integrating the probability distribution function from 0 to the threshold corresponds to the ratio that the communication state exists in the low delay state during the time ⁇ T. The relationship between this ratio and the probability values (p, q) will be described below.
  • the delay distribution prediction unit 14 also multiplies the probability distribution function in the low delay state by a constant so that the integral value from 0 to the threshold value is ⁇ q / (p + q) ⁇ . Make adjustments. Specifically, when the integral value of the probability distribution function in the low delay state before adjustment is A, the delay distribution prediction unit 14 adds [q / ⁇ A (p + q) ⁇ ] (constant) to the entire function. The product of multiplication is used as a new low-latency state probability distribution function.
  • the delay distribution prediction unit 14 performs adjustment by multiplying the integral value A by a constant [p / ⁇ A (p + q) ⁇ ] to obtain a new probability distribution function of the high delay state.
  • the shapes of the probability distribution graph in the low delay state and the probability distribution graph in the high delay state thus obtained correspond to the probability p and the probability q.
  • the delay distribution prediction unit 14 estimates the future delay time distribution from the probability values predicted as described above.
  • the delay distribution prediction unit 14 intermittently updates the probability values (p, q), and holds past probability values (p, q) in a certain number of memories.
  • a future probability value (p, q) is estimated using these past probability values and time series prediction. For example, in the actual measurement graph shown in FIG. 2, the actual measurement is performed only up to about 150 seconds. However, after 150 seconds have elapsed, the distribution graph of FIG. 6 is created using the delay time predicted by the delay distribution prediction unit 14.
  • step S101 the delay time measuring unit 15 of the delay prediction apparatus 10 performs packet communication with the communication destination terminal 4 a plurality of times via the communication network 3. At this time, the delay time measuring unit 15 measures the time (delay time) until the reply packet to the packet transmitted from the delay prediction device 10 arrives from the communication destination terminal 4.
  • the low delay distribution estimation unit 11 estimates the distribution of the low delay state. Specifically, the low delay distribution estimation unit 11 assumes that data having a short delay time among the measured delay times is a low delay state, and a probability density function (Equation (1) of the delay time corresponding to the low delay state. ))). A probability density function (a gamma distribution is used as an example in the present embodiment) is calculated based on the actually measured delay time and each parameter (z, k, ⁇ ) obtained by estimation.
  • step S103 the identification unit 12 identifies the low delay state and the high delay state. Specifically, the identification unit 12 determines a threshold value for identifying a low delay state and a high delay state.
  • the high delay distribution estimation unit 13 estimates the distribution of the high delay state. Specifically, the high delay distribution estimation unit 13 extracts the delay time data in the high delay state based on the threshold value identified by the identification unit 12, and the high delay state is extracted from the delay time data in the high delay state. The probability density function corresponding to the delay time (using the exponential distribution shown in the equation (3) as an example in this embodiment) is estimated. Specifically, the distribution parameter of the function is estimated.
  • step S105 the delay distribution prediction unit 14 predicts the probability distribution of the future delay time based on the mixed distribution of the low delay state and the high delay state. Specifically, the delay distribution prediction unit 14 combines the estimated current delay time distribution shown in FIG. 5 with the estimated high delay state distribution and low delay state distribution as shown in the graph of FIG. To model.
  • a future communication delay can be predicted with high accuracy based on past communication delay data. This is because, using the measured communication delay time, the low delay distribution estimation unit 11 estimates the distribution of the low delay state, the identification unit 12 distinguishes between the low delay state and the high delay state, and the high delay distribution estimation unit 13 This is because the distribution of the high delay state is estimated, and the delay distribution prediction unit 14 predicts the probability distribution of the delay time in the future based on the mixed distribution of the low delay state and the high delay state.
  • the delay prediction apparatus 10 attention is paid to the fact that the data of the low delay state and the high delay state are mixed in the communication delay time measured a plurality of times over a certain time.
  • the degree is quantified using probability values. Further, how the probability value representing the mixture changes with time is predicted, and the future delay time distribution is shown based on the predicted future probability value.
  • the prediction of the probability value can also be realized by mathematical means such as an autoregressive model.
  • the delay distribution prediction unit 14 estimates the future delay time distribution from the predicted probability value. However, the delay distribution prediction unit 14 may calculate a future delay time based on information including a probability distribution of a future communication delay, and output predicted delay information including the future delay time.
  • the predicted delay information is information including at least one of a probability distribution of future communication delay, a future delay time, and a communication delay state (low delay state or high delay state) identified by the identification unit 12.
  • the delay distribution predicting unit 14 estimates the predicted value of the future delay time (future delay time) by obtaining, for example, an appropriate percentage point from the delay time distribution function (probability distribution of future communication delay). Get as value.
  • the 100% point is always infinite.
  • a 95% point may be adopted as the predicted value.
  • the value output by the delay distribution prediction unit 14 in this way can also be used to determine the retransmission timeout of TCP communication as described in the background art.
  • the value (future delay time) output by the delay distribution prediction unit 14 may be displayed on an external output device such as a monitor as prediction delay information.
  • the calculation of the delay time based on the above distribution may be performed by a unit other than the delay distribution prediction unit 14.
  • the delay prediction system 100 includes a delay prediction device 10a including the configuration of the delay prediction device 10 according to the first embodiment, and a control target device 17 that is a control target of the delay prediction device 10a.
  • the delay prediction apparatus 10a and the control target apparatus 17 are connected by a communication network 3 such as wireless communication.
  • the control unit 16 may be installed outside the delay prediction apparatus 10a.
  • the delay prediction apparatus 10a includes a low delay distribution estimation unit 11, an identification unit 12, a high delay distribution estimation unit 13, a delay distribution prediction unit 14a, a delay time measurement unit 15, and a control unit 16, as shown in FIG.
  • the control unit 16 transmits a signal for controlling the control target device 17 via the communication network 3.
  • the delay distribution prediction unit 14a calculates an arbitrary percentage point of the estimated delay time distribution as described in the first modification, and calculates an estimated delay time based on the percentage point. calculate.
  • the control target device 17 receives the control signal from the delay prediction device 10a, and performs a predetermined operation according to the control signal. For example, when the control target device 17 is a motor having a variable rotation speed, the speed of the motor is changed based on the increase / decrease of the delay time predicted by the delay distribution prediction unit 14. That is, it is possible to control the operation speed of the control target device 17 in accordance with the congestion state of the communication network 3.
  • the state of the communication network 3 is predicted to be congested, that is, when the predicted delay time obtained from the delay distribution prediction unit 14 is large, the delay of transmission of the control signal to the motor (control target device 17). Therefore, the motor operating speed is set to be small. Thereby, the deviation between the state of the device driven by the motor and the desired state can be prevented or reduced.
  • Steps S201 to S205 are the same as steps S101 to S105 in the flowchart shown in FIG.
  • step S206 the delay distribution prediction unit 14a calculates an arbitrary percentage point of the estimated delay time distribution, and calculates an estimated delay time based on the percentage point.
  • the delay distribution prediction unit 14 a transmits information on delay including at least the calculated estimated delay time to the control target device 17 via the communication network 3.
  • the information related to the delay may include control information corresponding to the estimated delay time.
  • step S207 when receiving the information related to the delay, the control target device 17 controls the device itself based on the estimated delay time and the control information included therein. For example, if the control target device 17 is a motor, the operation speed of the motor is adjusted.
  • the control information may be generated on the delay prediction apparatus 10a side based on the estimated delay time. Alternatively, it may be generated on the control target device 17 side based on the estimated delay time received from the delay prediction device 10a side.
  • the delay prediction apparatus predicts the future communication delay with high accuracy based on the past communication delay data, and controls according to this prediction.
  • the target device 17 can be controlled. This is because the delay prediction device 10a classifies communication delay times measured multiple times over a certain period of time into a low delay state and a high delay state, and uses a probability value to determine the degree of mixing of these two delay states. This is because the probability value representing the mixture changes with time and is predicted. Furthermore, it is because the control object apparatus 17 performs control based on the predicted future probability value.
  • the delay prediction apparatus 10b is a minimum configuration for implementing the delay prediction apparatus according to the first and second embodiments.
  • the delay prediction apparatus 10b includes a low delay distribution estimation unit 11, an identification unit 12, a high delay distribution estimation unit 13, and a delay distribution prediction unit 14.
  • the low delay distribution estimation unit 11 estimates the probability distribution of the first communication delay state using the result of measuring the packet communication delay in the network.
  • the identifying unit 12 identifies whether the communication delay state is the first communication delay state or the second communication delay state in which the communication delay is larger than the first communication delay state.
  • the high delay distribution estimation unit 13 estimates the probability distribution of the second communication delay state.
  • the delay distribution prediction unit 14 predicts the probability distribution of the future communication delay based on the probability distribution of the first communication delay state and the probability distribution of the second communication delay state.
  • the future communication delay can be predicted with high accuracy based on the past communication delay data.
  • the delay prediction device 10b the low delay distribution estimation unit 11 estimates the distribution of the low delay state using the measured communication delay time, and the identification unit 12 distinguishes between the low delay state and the high delay state.
  • the high delay distribution estimation unit 13 estimates the distribution of the high delay state
  • the delay distribution prediction unit 14 predicts the probability distribution of the future delay time based on the mixed distribution of the low delay state and the high delay state.
  • each component of each delay prediction device shown in FIGS. 1, 8, and 10 represents a functional unit block. Some or all of the components of the delay prediction apparatus are realized by using any combination of the information processing apparatus 1 and a program as shown in FIG. 11, for example.
  • the information processing apparatus 1 includes the following configuration as an example.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • a program 504 loaded into the RAM 503
  • a storage device 505 for storing the program 504
  • a drive device 507 for reading / writing the recording medium 506
  • a communication interface 508 connected to the communication network 509
  • An input / output interface 510 for inputting / outputting data -Bus 511 connecting each component
  • Each component of the delay prediction apparatus in each embodiment of the present application is realized by the CPU 501 acquiring and executing a program 504 that realizes these functions.
  • the program 504 that realizes the function of each component of the delay prediction apparatus is stored in advance in the storage device 505 or the RAM 503, for example, and is read by the CPU 501 as necessary.
  • the program 504 may be supplied to the CPU 501 via the communication network 509 or may be stored in the recording medium 506 in advance, and the drive device 507 may read the program and supply it to the CPU 501.
  • the delay prediction apparatus may be realized by an arbitrary combination of an information processing apparatus and a program that are separate for each component.
  • a plurality of components included in the delay prediction apparatus may be realized by an arbitrary combination of one information processing apparatus 1 and a program.
  • some or all of the components of the delay prediction apparatus are realized by other general-purpose or dedicated circuits, processors, etc., or combinations thereof. These may be configured by a single chip or may be configured by a plurality of chips connected via a bus.
  • Some or all of the components of the delay prediction apparatus may be realized by a combination of the above-described circuit and the like.
  • the plurality of information processing devices and circuits may be centrally arranged or distributedly arranged. May be.
  • the information processing apparatus, the circuit, and the like may be realized as a form in which each is connected via a communication network, such as a client and server system and a cloud computing system.
  • Low delay distribution estimation means for estimating the probability distribution of the first communication delay state using the result of measuring the communication delay of the packet in the network; Identifying means for identifying whether the communication delay state is the first communication delay state or the second communication delay state in which the communication delay is larger than the first communication delay state; High delay distribution estimation means for estimating a probability distribution of the second communication delay state; A delay distribution prediction unit for predicting a probability distribution of a future communication delay based on the probability distribution of the first communication delay state and the probability distribution of the second communication delay state; .
  • the prediction delay information is Probability distribution of the future communication delay, The future delay time, The delay according to appendix 2, including at least one of the first communication delay state and the second communication delay state, wherein the communication delay state identified by the identification unit is Prediction device.
  • the delay distribution prediction means includes a first value obtained by normalizing an integral value of the probability distribution of the first communication delay state using an expected value of a time ratio occupied by the first communication delay state, Based on the second value normalized by using the expected value of the proportion of the time occupied by the second communication delay state, the integrated value of the probability distribution of the second communication delay state, the future communication delay 4.
  • the delay prediction apparatus according to any one of supplementary notes 1 to 3, which predicts a probability distribution.
  • the estimation of at least one of the first communication delay state and the second communication delay state is performed by estimating a parameter of a parametric probability distribution, according to any one of appendix 1 to appendix 4. Delay prediction device.
  • a delay prediction system including the delay prediction device according to any one of appendix 1 to appendix 7, wherein the delay prediction device can remotely control an operation via a network, A control target device that receives the remote control from the delay prediction device and executes the operation, and the delay prediction device and the control target device are communicably connected, The delay prediction device is configured to perform the control on the control target device based on prediction delay information including a future delay time predicted based on a communication delay predicted using a result of measuring a packet communication delay in the network. Delay prediction system that determines remote control.
  • the probability distribution of the first communication delay state is estimated, Identifying whether the communication delay state is the first communication delay state or the second communication delay state in which the communication delay is greater than the first communication delay state; Estimating a probability distribution of the second communication delay state; A delay prediction method for predicting a probability distribution of a future communication delay based on the probability distribution of the first communication delay state and the probability distribution of the second communication delay state.
  • the probability distribution of the first communication delay state is estimated, Identifying whether the communication delay state is the first communication delay state or the second communication delay state in which the communication delay is greater than the first communication delay state; Estimating a probability distribution of the second communication delay state; A program for causing a computer to predict a probability distribution of a future communication delay based on the probability distribution of the first communication delay state and the probability distribution of the second communication delay state.
  • the delay distribution predicting means is configured such that the integrated value of the probability distribution representing the first communication delay state is q / (p + q) and the integrated value of the probability distribution representing the second communication delay state is p / (p + q).
  • the delay prediction apparatus according to appendix 1 or appendix 3 which normalizes and predicts the probability distribution of the future communication delay.
  • the delay prediction apparatus according to claim 1 wherein the communication delay of the packet in the network is a round-trip delay time in which the packet reciprocates between itself and a communication destination terminal via the network.
  • a preset time is adopted as the round-trip delay time of the packet.
  • the delay prediction apparatus according to appendix 1.
  • Information processing device 3 Communication network 4: Communication destination terminal 5: Display device 10: Delay prediction device 10a: Delay prediction device 10b: Delay prediction device 11: Low delay distribution estimation unit 12: Identification unit 13: High delay distribution estimation Unit 14: Delay distribution prediction unit 14a: Delay distribution prediction unit 15: Delay time measurement unit 16: Control unit 17: Control target device 100: Delay prediction system 501: CPU 503: RAM 504: Program 505: Storage device 506: Recording medium 507: Drive device 508: Communication interface 509: Communication network 510: Input / output interface 511: Bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

過去の通信遅延データにもとづいて将来の通信遅延を高い精度で予測する遅延予測装置を提供する。遅延予測装置10bは、ネットワークにおけるパケットの通信遅延を測定した結果を用いて第1の通信遅延状態の確率分布を推定する低遅延分布推定部11と、通信遅延の状態が第1の通信遅延状態か又は第1の通信遅延状態よりも通信遅延が大きい第2の通信遅延状態かを識別する識別部12と、第2の通信遅延状態の確率分布を推定する高遅延分布推定部13と、第1の通信遅延状態の確率分布および第2の通信遅延状態の確率分布を基に将来の通信遅延の確率分布を予測する遅延分布予測部14とを備える。

Description

遅延予測装置、遅延予測システム、遅延予測方法および記録媒体
 本発明は、IP(Internet Protocol)通信におけるパケット送受信に要する遅延時間を予測する技術に関する。
 近年のインターネットの普及およびマルチデバイス化に伴い、IP通信を利用する機器はますます増え続けている。
 しかし、これらの通信ネットワークでは、電波間の干渉やノイズ、通信回線の輻輳等の様々な要因により、送受信パケットの損失が起こるほか、通信遅延時間が時々刻々変動する。突発的に大きな通信遅延が発生すると、例えば、遠隔操作システムにおいては、操作対象装置の制御が困難になる。具体的には、当該システムにおいて、遠隔操作で操作対象装置を移動させる場合に、操作者や操作プログラムは、ある位置で操作対象装置が停止するよう制御したつもりが、実際は、通信遅延により発生する停止命令の伝達遅延が原因で、意図しない位置にて当該操作対象装置を移動させてしまう。定常的に発生する通信遅延であれば、予めそれを見込んだ制御を行えば良いが、突発的に発生する通信遅延に対応するには、高い技術レベルが要求される。
 突発的な通信遅延発生に起因する問題は、通信遅延を予測することでその影響を小さくすることが可能である。例えば、TCP(Transmission Control Protocol)を利用した通信では、所定時間経過しても情報の欠落がある場合には、当該欠落する情報の再送を行うことで、信頼性のある通信を実現している。具体的に、送信元端末は、パケットを送信後、受信元端末からパケットを受信したことを意味する特殊なパケットが送信されてくるのを待ち、一定時間応答がなければパケットの再送を試みる。この待ち時間が短すぎると余分な再送が発生するが、一方で待ち時間が長すぎると必要なパケットの再生がなかなか実行されず、どちらの場合もスループットが低下する。遠隔操作の場合は、予測された遅延時間が大きいときは、予測遅延時間が小さい場合に比べて対象装置の動作速度を落とすことで、実際の停止位置と意図した停止位置の差異を小さくできる。
 回線の利用状況や電波状況は時々刻々と変化するものであり、また、公衆回線の場合は自分以外の利用者の情報を得ることができないため、未来の通信遅延時間を理論的かつ具体的に予言することは極めて難しい。そこで、自装置のこれまでに発生した過去の通信遅延情報の履歴を用いて、将来の通信遅延に関する情報を知るための試みがなされている。
 非特許文献1は、TCP/IP通信において、前記待ち時間を決める標準的な方法を提供する技術を開示する。この方法は、往復遅延時間を一定時間毎に測定し、その指数平滑として次ステップの往復遅延時間の推定値を算出し、算出された推定値に前記待ち時間の変動の予測値の4倍を加えることで前記待ち時間を設定する。これにより、無駄な再送の必要性を小さくするよう安全側に余裕を持った待ち時間を設定する。
 特許文献1は、非特許文献1記載の技術の改良方法を開示する。特許文献1が開示する方法では、往復遅延時間が減少したときと増加した時で処理を分けることで、往復遅延時間の減少時に待ち時間を不必要に長く設定することを避けることができる。ひいては、スループットの低下を抑えることができる。
特許第4601232号公報
V. Paxson、外 3 名、"Computing TCP's Retransmission Timer"、[online]、2011年6月、IETF、[2017年2月17日検索]、インターネット〈URL:https://tools.ietf.org/html/rfc6298〉
 しかしながら、非特許文献1および特許文献1が開示する技術には以下の問題点がある。
 非特許文献1は、往復遅延時間が急激に減少し、回線の状況が良くなった場合であっても、それを制御装置が往復遅延時間の変動が大きいと解釈し、次ステップの待ち時間を非常に長く設定してしまうという問題がある。
 非特許文献1および特許文献1が開示する技術は、いずれも、一定時間毎に測定された往復遅延時間を元に、将来の往復遅延時間の最大値をできるだけ小さい値として点推定するものである。特に、特許文献1の技術は、回線の状態が安定するタイミングでの往復遅延時間の減少を推定遅延時間の減少として取り込むことで、非特許文献1より小さな推定遅延時間を算出できる点で優れている。
 しかしながら、実際に往復遅延時間を計測すると、何らかの理由により突如発生した突発的な遅延時間の増大がしばしば見られる。非特許文献1および特許文献1が開示する技術は、このような突発的な遅延時間の増大を予想することはできない。更に、遅延時間の減少後も、突発的な遅延時間の増大が、推定遅延時間に影響する(遅延時間の増大として残る)。このため、例えばTCP/IP通信でパケット再送を行う際に、無駄な待ち時間が発生する。また、突発的な遅延時間の増大が間欠的に繰り返される場合、遅延時間が増加する時点では遅延を過小評価し、減少する時点では過大評価することを繰り返すため、スループット低下に対処できない。
 本発明は上記課題に鑑みてなされたものであって、過去の通信遅延データにもとづいて将来の通信遅延を高い精度で予測する遅延予測装置等を提供することを目的とする。
 上記の課題を解決するために、本発明の第1の観点に係る遅延予測装置は、
 ネットワークにおけるパケットの通信遅延を測定した結果を用いて、第1の通信遅延状態の確率分布を推定する低遅延分布推定手段と、
 通信遅延の状態が、第1の通信遅延状態か、又は、第1の通信遅延状態よりも通信遅延が大きい第2の通信遅延状態かを識別する識別手段と、
 第2の通信遅延状態の確率分布を推定する高遅延分布推定手段と、
 第1の通信遅延状態の確率分布および第2の通信遅延状態の確率分布を基に、将来の通信遅延の確率分布を予測する遅延分布予測手段
 とを備える。
 本発明の第2の観点に係る遅延予測システムは、
 上記に記載の遅延予測装置と、
 ある動作を、ネットワークを介して遠隔制御する制御装置と、
 制御装置より遠隔制御を受けて動作を実行する制御対象装置
 とを備え、遅延予測装置、制御装置および制御対象装置は通信可能に接続され、
 制御装置は、遅延予測装置から、ネットワークにおけるパケットの通信遅延を測定した結果を用いて予測された通信遅延を基に予測される将来の遅延時間を含む予測遅延情報を受け取り、当該予測遅延情報を基に、制御対象装置に対する遠隔制御を決定する。
 本発明の第3の観点に係る遅延予測方法は、
 ネットワークにおけるパケットの通信遅延を測定した結果を用いて、第1の通信遅延状態の確率分布を推定し、
 通信遅延の状態が、第1の通信遅延状態か、又は、第1の通信遅延状態よりも通信遅延が大きい第2の通信遅延状態か、を識別し、
 第2の通信遅延状態の確率分布を推定し、
 第1の通信遅延状態の確率分布および第2の通信遅延状態の確率分布を基に、将来の通信遅延の確率分布を予測する。
 本発明の第4の観点に係る遅延予測プログラムは、
 ネットワークにおけるパケットの通信遅延を測定した結果を用いて、第1の通信遅延状態の確率分布を推定し、
 通信遅延の状態が、第1の通信遅延状態か、又は、第1の通信遅延状態よりも通信遅延が大きい第2の通信遅延状態か、を識別し、
 第2の通信遅延状態の確率分布を推定し、
 第1の通信遅延状態の確率分布および第2の通信遅延状態の確率分布を基に、将来の通信遅延の確率分布を予測することをコンピュータに実現させる。尚、本プログラムは記録媒体に格納されていてもよい。
 本発明によれば、過去の通信遅延データに基づき将来の通信遅延を高い精度で予測する遅延予測装置等を提供することができる。
本発明の第1の実施形態に係る遅延予測装置の構成例を示す図である。 LTE(Long Term Evolution)回線を用いて実際に測定された往復遅延時間の時間依存性を示すグラフである。 低遅延状態と高遅延状態の間における状態遷移を表す図である。 遅延予測装置が通信遅延を測定する際の装置の構成例を示す図である。 LTE回線を用いて実際に測定された往復遅延時間の頻度分布を示すグラフである。 図6に示すグラフに対応する、低遅延状態分布および高遅延状態分布の具体例を示すグラフである。 本発明の第1の実施形態に係る遅延予測装置の動作を示すフローチャートである。 本発明の第2の実施形態に係る遅延予測システムの構成例を示す図である。ある。 本発明の第2の実施形態に係る遅延予測システムの動作を示すフローチャートである。 本発明の第3の実施形態に係る遅延予測装置の構成例を示す図である。 各実施形態において使用可能な情報処理装置の構成例を示す図である。
 最初に、本発明の第1の実施形態に係る遅延予測装置10(図1参照)の、基本原理について説明する。
 通信ネットワークにおける突発的な遅延時間の増大は、受信電波の強度、クロストラヒックの状況など複数の要因が複雑に絡み合っているものであり、上述したように点推定による予測は困難である。
 しかしながら、突発的な遅延時間の増大は、ある時間にわたって断続的に発生するものであることから、過去どの程度の時間内にどの程度の大きさの通信遅延が発生したかを数値化し、将来の遅延時間の頻度分布を推定することで将来の遅延変動の予測に活用することはできる。
 図2はLTE回線を用いて実際に測定された往復遅延時間の時間依存性を示すグラフである。当該グラフは、縦軸に往復遅延時間(ミリ秒)、横軸に経過時間(秒)をとる。このグラフでは横軸40秒‐60秒の間に往復遅延時間約500ミリ秒という大きな遅延、即ち、観測時間内に観測された遅延時間が他の遅延時間と相対的に大きい状態(以下、「高遅延状態」と記載)が発生している。しかし、数秒でこの遅延は解消され、平均50ミリ秒程度の往復遅延時間、即ち、観測時間内に観測された遅延時間が他の遅延時間と相対的に小さい状態(以下、「低遅延状態」と記載)に戻っている。その後、80秒‐120秒の間に往復遅延時間200ミリ秒程度の遅延が断続的に発生し、120秒‐140秒、更に140秒以降の間に往復遅延時間の平均が300ミリ秒程度の遅延が断続的に発生している。
 このグラフから見ると、遅延時間は、低遅延状態(第1の通信遅延状態)から高遅延状態(第2の通信遅延状態)に遷移し、所定時間経過後、再度高遅延状態から低遅延状態に戻ることを繰り返す。尚、図3は、この遷移を状態遷移図として表わしたものである。本実施形態においては、低遅延状態から高遅延状態に遷移する確率をp、高遅延状態から低遅延状態に遷移する確率をqとする。尚、図3に示される状態遷移が単純マルコフ過程であるとすると、低遅延状態が占める時間の割合の期待値は{q/(p+q)}、高遅延状態が占める時間の割合の期待値は{p/(p+q)}と表わされる。
 遅延予測装置10は、複数回測定された通信遅延の実測データ(図2参照)から、遅延を測定した時間において、低遅延状態からの寄与の程度を、確率pや上述した期待値を用いて定量化する。更に、高遅延状態からの寄与の程度を、確率qや上述した期待値を用いて定量化する。
 確率pと確率qは、ある時間幅、あるいは測定点数毎に過去のデータから間欠的(定期的または不定期的)に算出される。例えば、以下の例では、経過時間ΔT=20秒毎に確率pと確率qを算出する。尚、この経過時間の間隔は一例であり、実際にはもう少し狭い時間間隔であることが多い。
 また、複数の時系列に並んだ時間幅から、ある時間帯における確率pおよび確率q間の変遷が時系列に得られるため、この変遷を基に、将来の確率pおよび確率qの予測が可能である。
 確率pと確率qは、遅延時間の確率分布の形状と対応している(詳細は後述する)。このため、将来の確率pと確率qの値の組を予測することで、その値の組に対応する遅延時間分布を得ることができ、当該遅延時間分布を基に将来の遅延の予測ができる。
 以下、本発明の第1の実施形態に係る遅延予測装置について説明する。
 <第1の実施形態>
 (遅延予測装置)
 本発明の第1の実施形態に係る遅延予測装置10は、図1に示すように、低遅延分布推定部11、識別部12、高遅延分布推定部13、遅延分布予測部14および遅延時間計測部15を備える。
 遅延時間計測部15は、通信ネットワークに複数回のパケットを流すことにより、予め遅延時間を測定する。図4は、遅延時間測定時に用いられる装置の構成を示す。遅延予測装置10の遅延時間計測部15は、通信ネットワーク3を介して通信先端末4とパケット通信を行う。具体的には、遅延時間計測部15がパケットを送信する時刻を図示しないメモリに記録しておき、遅延予測装置10が通信先端末4にパケットを送信する。通信先端末4は、遅延予測装置10からのパケットを受信すると即座に遅延予測装置10にパケットを返送する。遅延予測装置10が返送されてきたパケットを受信すると、遅延時間計測部15が当該受信の時刻と予めメモリに記録しておいた送信時刻の差分を取ることで、パケットが通信ネットワーク3を往復するのにかかる時間である往復遅延時間(Round Trip Time)を得る。尚、遅延予測装置10を表示装置5に接続し、往復遅延時間をグラフ、数字等で表示可能にしてもよい。
 尚、UDP(User Datagram Protocol)通信の場合は、一般に通信路の信頼性は保証されないため、送信したパケットが通信先端末4に到着する前や、通信先端末4が返送したパケットが遅延予測装置10に到達する前に失われる可能性がある。そこで、遅延時間計測部15は、UDP通信の場合に、予め決定されたタイムアウト値を用いる。そのタイムアウト値に対応する時間待っても遅延予測装置10にパケットが返送されてこない場合、遅延時間計測部15は、タイムアウト値以上の適当な時間を往復遅延時間と仮定してメモリに記録しておく(往復遅延時間を仮置きする)ことで、データの欠損を防ぐ。
 なお、この場合でも、遅延時間計測部15は、仮のフラグ値を保持しておくことで、後で大幅な遅延を持ってパケットが返送されてきた際に、仮のフラグ値を参照して、仮置きした往復遅延時間を実測値に置換してもよい。また、ここでは往復遅延時間を例に挙げてその測定方法の一例を述べたが、本実施形態における遅延時間計測部15は必ずしも往復遅延時間を測定することに限定されない。例えば、遅延時間計測部15は、片道の遅延時間を測定し、遅延予測装置10は、その片道の遅延時間を用いてもよい。
 低遅延分布推定部11は、ネットワークにおけるパケットの通信遅延を測定した結果(遅延時間計測部15の出力)を用いて、低遅延状態の確率分布を推定する。低遅延分布推定部11は、測定された遅延時間のうち、遅延時間が相対的に短いデータを低遅延状態と仮定し、低遅延状態に対応する遅延時間の確率密度(関数)を推定する。例えば、図5は実際に測定された遅延時間を示すグラフであり、当該グラフの左側(横軸0‐20秒辺りの間)は低遅延状態の確率密度関数を表わす。なお、明確に低遅延状態と高遅延状態を分けるしきい値の詳細は、次の識別部12において説明する。
 低遅延分布推定部11において確率分布を推定するとき、推定される分布は、母集団の特性を規定する母数についてある仮説を設ける分布(以下、パラメトリックな分布と記載)であると仮定する。この場合、分布の推定は少数の母数を推定する問題に帰着することから、分布の推定が容易になる。ここでは例として、低遅延分布を、式(1)で示すシフト付きガンマ分布として仮定する。
Figure JPOXMLDOC01-appb-M000001
                     ・・・(1)

 式(1)で、f(x)は確率密度、zはシフト用の母数(係数)、kは形状母数、θは尺度母数を示す。kとθはガンマ分布の形状を決定する母数である。母数zはガンマ分布の定義域の下限に対応する。即ち、通信路の遅延時間は一般にゼロより大きいため、通常のガンマ分布をzだけx軸方向に平行移動して、遅延時間がz以上であることを表す。ここではガンマ分布を例として用いたが、低遅延分布関数は必ずしもガンマ分布である必要はなく、任意の分布でよい。
 式(1)で示されるガンマ分布を用いた場合の低遅延分布推定部11による母数の決定方法の一例について、以下に説明する。zとしては、前述の通りガンマ分布関数のゼロ点がどの程度x方向にシフトされているかを示す母数であるため、分布の最小値が与えられるべきである。したがって、低遅延分布推定部11は、実測により得られた往復遅延時間のデータのうち最小値を取得し、取得した最小値をzに用いる。kはガンマ分布の形状を決定する母数のひとつであり、例えば1~10程度の値である。この2つの母数(zとk)を決めれば、パーセント点(Percentile)は母数θのみに依存することになる。そこで、低遅延分布推定部11は、得られた実測データのうち、例えば往復遅延時間が下位のパーセント点はどのような値として測定されたかを用いて、母数がθの場合の理論的な値とパーセント点との値を比較することで母数θを推定する。具体的には、例えば測定した遅延時間の中央値(すなわち下位50%点)が70ミリ秒だったと仮定すると、式(1)の累積分布関数F(x)が
次の式(2)で表わされる。
Figure JPOXMLDOC01-appb-M000002
                     ・・・(2)

よって、式(2)を用いると、F(70)=0.5の解として母数θの推定値が求まる。
 識別部12は、通信遅延の状態が、低遅延状態か、又は、低遅延状態よりも通信遅延が大きい高遅延状態かを識別する。識別部12は、低遅延状態と高遅延状態とを区別する、しきい値を決定する。例えば、上述したガンマ分布のように、定義域の最大値がない(無限大となる)分布を低遅延状態として考える場合は、例えば累積分布関数の95パーセント点をしきい値として採用してもよい。他の例として、低遅延状態の確率分布として定義域が有界閉なものを用いる場合は、定義域の大きい方をしきい値として採用してもよい。
 高遅延分布推定部13は、高遅延状態(第2の通信遅延状態)の確率分布を推定する。高遅延分布推定部13は、識別部12によって、高遅延状態に分類された遅延時間データから、高遅延状態の遅延時間が従う確率密度関数を推定する。この推定において、パラメトリックな分布を使用すると仮定すると、分布の推定は少数の母数を推定する問題に帰着することから、分布の推定が容易になる。ここでは、高遅延状態分布の例として、高遅延分布推定部13は、式(3)で示す指数分布を使用すると仮定して説明する。
Figure JPOXMLDOC01-appb-M000003
                ・・・(3)

ただし、パラメータλは母数であり、αは規格化定数である。高遅延分布推定部13は、高遅延状態に分類された遅延時間データ、を最小二乗法等の最適化手法を用いてフィッティングすることにより、この分布の母数λを推定することができる。
 遅延分布予測部14は、低遅延状態および高遅延状態の混合分布を基に、将来の通信遅延の確率分布を予測する。遅延分布予測部14は、過去における低遅延状態および高遅延状態を表わす分布の比率を用いて、将来における低遅延状態および高遅延状態を算出し、将来の通信遅延の確率分布を予測する。遅延分布予測部14は、図5に示す実測された現在の遅延時間分布を、推定された高遅延状態分布と低遅延状態分布を組み合わせてモデル化する(図6参照)。図6は、図5のグラフに対応する、低遅延状態分布と高遅延状態分布の具体例を示す。尚、このモデル化は、確率pと確率qとを決定することと同質である。
 遅延分布予測部14による、確率p、qの値の決定方法の例を説明する。通信路は低遅延状態か高遅延状態のいずれかをとるが、その状態はマルコフ過程に従って状態遷移するモデルと考える(図3参照)。さらに、低遅延状態で送出されたパケットは、低遅延状態分布(例えばガンマ分布)で与えられる遅延時間経過後に返信される。一方、高遅延状態で送出されたパケットは、次に低遅延状態に遷移するまで返信されない。よって、その返信までの待ち時間を遅延時間として扱うというモデルを用いると、高遅延状態分布は指数分布として表わされる。
 確率p、qの値は、測定時間において低遅延状態および高遅延状態の間に連続して存在した時間の平均と一対一に対応するため、遅延時間のデータから推定可能である。
 例えば、遅延分布予測部14による、遅延時間データの取得周期を一定値Δt(説明の便宜上、例えば、図2では20秒間)とする。この場合、低遅延状態から高遅延状態に遷移するまでに、低遅延状態に連続して存在する時間の期待値E(p)は次の式(4)のように表わせる。遅延分布予測部14は、この期待値の算出結果と、実際の測定で得られた「周期ΔTの間に低遅延状態に連続して存在した時間の平均値」とを等しいと仮定することで、確率pの値を推定する。例えば、20秒間の通信状態を観測した結果、低遅延状態(7秒)、高遅延状態(2秒)、低遅延状態(4秒)、高遅延状態(3秒)、低遅延状態(4秒)と遷移したとする。この場合、「周期ΔTの間に低遅延状態に連続して存在した時間の平均値」は5秒となるため、低遅延状態から高遅延状態に遷移するまでに、低遅延状態に連続して存在する時間の期待値E(p)の解は5であると仮定できる。
Figure JPOXMLDOC01-appb-M000004
                ・・・(4)

 同様の手法により、高遅延状態から低遅延状態に遷移するまでに、高遅延状態に連続して存在する時間の期待値E(q)は次の式(5)のように表わせる。よって、式(5)を用いて、確率qの値を推定することができる。
Figure JPOXMLDOC01-appb-M000005
                 ・・・(5)

 このようにして、周期ΔT毎の確率p、qの確率値(p、q)が求まる。この確率値の組と、図6のような遅延時間分布のグラフとの対応付けを以下に説明する。
 確率分布関数は、識別部12で得られたしきい値以下の部分(低遅延状態)と、しきい値を超える部分(高遅延状態)で異なる形状の関数を用いて構成される。確率分布関数を0からしきい値まで積分した値は、時間ΔTの間に、通信状態が低遅延状態に存在する割合に相当する。この割合と確率値(p、q)の関係について以下に説明する。
 例えば、図3の遷移が単純マルコフ過程であるとすると、低遅延状態が占める時間の割合の期待値は{q/(p+q)}と求められる。したがって、遅延分布予測部14は、求める確率分布関数も、0からしきい値までの積分値が{q/(p+q)}となるように、低遅延状態の確率分布関数に定数を乗じることで調整を行う。具体的には、調整前の低遅延状態の確率分布関数の積分値がAであったとき、遅延分布予測部14は、関数全体に、[q/{A(p+q)}](定数)を乗じたものを新たな低遅延状態の確率分布関数とする。高遅延状態に関しても同様に、遅延分布予測部14は、上記の積分値Aに定数[p/{A(p+q)}]を乗じて調整を行い、新たな高遅延状態の確率分布関数とする。このようにして得られた低遅延状態の確率分布グラフおよび高遅延状態の確率分布グラフの形状は、確率pおよび確率qと対応する。
 遅延分布予測部14は、以上のように予測された確率値から将来の遅延時間分布を推定する。遅延分布予測部14は、確率値(p、q)を間欠的に更新し、過去の確率値(p、q)を一定数メモリに保持する。これらの過去の確率値と時系列予測とを用いて、将来の確率値(p、q)を推定する。例えば、図2に示す実測グラフにおいては150秒経過辺りまでしか実測がなされていない。しかし、150秒経過後に関しては、遅延分布予測部14が予測した遅延時間を用いて、図6の分布グラフを作成する。
 (遅延予測装置の動作)
 次に、遅延予測装置10の動作について図7に示すフローチャートを参照して説明する。
 先ずステップS101において、遅延予測装置10の遅延時間計測部15は、通信ネットワーク3を介して通信先端末4と複数回のパケット通信を行う。この際、遅延時間計測部15は、遅延予測装置10から送信したパケットに対する回答のパケットが通信先端末4から到着するまでの時間(遅延時間)を測定する。
 ステップS102において、低遅延分布推定部11は、低遅延状態の分布を推定する。具体的に、低遅延分布推定部11は、測定された遅延時間のうち、遅延時間が短いデータを低遅延状態と仮定し、当該低遅延状態に対応する遅延時間の確率密度関数(式(1)参照)を推定する。確率密度関数(本実施形態では一例としてガンマ分布を用いる)は、実測された遅延時間と、推定により得られる各母数(z、k、θ)を基に、算出される。
 ステップS103において、識別部12は、低遅延状態と高遅延状態とを識別する。具体的には、識別部12は、低遅延状態と高遅延状態とを識別するためのしきい値を決定する。
 ステップS104において、高遅延分布推定部13は、高遅延状態の分布を推定する。具体的に、高遅延分布推定部13は、識別部12によって識別されたしきい値を基に、高遅延状態の遅延時間データを抽出し、当該高遅延状態の遅延時間データから、高遅延状態の遅延時間に対応する確率密度関数(本実施形態では一例として、式(3)に示す指数分布を用いる)を推定する。具体的には、当該関数の分布母数を推定する。
 最後に、ステップS105において、遅延分布予測部14は、低遅延状態と高遅延状態の混合分布により将来の遅延時間の確率分布を予測する。具体的に、遅延分布予測部14は、図5に示す実測された現在の遅延時間分布を、推定された高遅延状態分布と低遅延状態分布とを合わせることで、図6に示すグラフのようにモデル化する。
 以上、説明したように、本発明の第1の実施形態によると、過去の通信遅延データを基に将来の通信遅延を高い精度で予測することができる。これは、測定した通信遅延時間を用いて、低遅延分布推定部11が低遅延状態の分布を推定し、識別部12が低遅延状態と高遅延状態とを区別し、高遅延分布推定部13が高遅延状態の分布を推定し、遅延分布予測部14が低遅延状態と高遅延状態との混合分布により将来の遅延時間の確率分布を予測するからである。
 第1の実施形態に係る遅延予測装置10では、ある時間に渡って複数回測定された通信遅延時間には低遅延状態と高遅延状態のデータが混合されていることに着眼し、この混合の度合いを、確率値を使って定量化する。さらに当該混合を表す確率値が時間とともにどのように変化するかを予測し、予測された未来の確率値を基に、将来の遅延時間分布を示す。確率値の予測は、例えば、自己回帰モデル等の数学的な手段によって実現することも可能である。
 (変更例1)
 本発明の第1の実施形態に係る遅延予測装置10の変更例について以下に説明する。第1の実施形態において、遅延分布予測部14は、予測された確率値から将来の遅延時間分布を推定した。しかし、遅延分布予測部14は、将来の通信遅延の確率分布を含む情報に基づいて、将来の遅延時間を算出し、当該将来の遅延時間を含む予測遅延情報を出力してもよい。尚、予測遅延情報は、将来の通信遅延の確率分布、将来の遅延時間、識別部12に識別された通信遅延状態(低遅延状態または高遅延状態)の少なくとも一つを含む情報である。
 例えば、遅延分布予測部14は、遅延時間分布関数(将来の通信遅延の確率分布)から、例えば適当なパーセント点を取得することで将来の遅延時間の予測値(将来の遅延時間)を点推定値として得る。上記の例では、指数分布を高遅延分布として用いているため、100%点は常に無限大となる。指数分布のように定義域が半無限区間になっているような分布では、有限の値を予測値として得るために、例えば95%点を予測値として採用してもよい。このようにして遅延分布予測部14が出力した値は、背景技術で述べたようなTCP通信の再送タイムアウトを決めるために用いることもできる。遅延分布予測部14が出力した値(将来の遅延時間)は、予測遅延情報として、モニタ等の外部出力装置に表示しても良い。尚、上記の分布に基づく遅延時間の算出は、遅延分布予測部14以外の部に処理を行わせても良い。
 <第2の実施形態>
 (遅延予測システム)
 本発明の第2の実施形態に係る遅延予測システム100について図8を参照して説明する。遅延予測システム100は、第1の実施形態に係る遅延予測装置10の構成を含む遅延予測装置10aと、遅延予測装置10aの制御対象となる制御対象装置17を備える。遅延予測装置10aおよび制御対象装置17との間は、無線通信等の通信ネットワーク3にて接続されている。尚、制御部16は遅延予測装置10aの外に設置されていてもよい。
 遅延予測装置10aは、図8に示すように、低遅延分布推定部11、識別部12、高遅延分布推定部13、遅延分布予測部14a、遅延時間計測部15および制御部16を備える。制御部16は、通信ネットワーク3を介して、制御対象装置17を制御するための信号を送信する。
 遅延分布予測部14aは、遅延分布予測部14の機能に加え、変形例1で説明したように、推定した遅延時間分布の任意のパーセント点を算出し、当該パーセント点を基に推定遅延時間を算出する。
 制御対象装置17は、遅延予測装置10aから制御信号を受信し、当該制御信号に従い所定の動作を行う。例えば、制御対象装置17が、回転速度可変のモータである場合は、遅延分布予測部14によって予測された遅延時間の増大・減少に基づいてモータの速度を変化させる。即ち、通信ネットワーク3の混雑状態に合わせて、制御対象装置17の動作速度を制御することを可能とする。
 たとえば、通信ネットワーク3の状態が混雑すると予測されるとき、即ち、遅延分布予測部14から得た予測される遅延時間が大きいときは、モータ(制御対象装置17)への制御信号の伝達の遅延が見込まれることから、モータの動作速度を小さく設定する。これにより、モータによって駆動される機器の状態と所望の状態との乖離を防ぐ、または、小さくすることができる。
 (遅延予測システムの動作)
 次に、遅延予測システム100の動作について図9に示すフローチャートを参照して説明する。
 ステップS201乃至S205については、図7に示すフローチャートのステップS101乃至S105と同様である。
 ステップS206において、遅延分布予測部14aは、推定した遅延時間分布の任意のパーセント点を算出し、当該パーセント点を基に推定遅延時間を算出する。遅延分布予測部14aは、算出した推定遅延時間を少なくとも含む遅延に関する情報を、通信ネットワーク3を介して、制御対象装置17へ送信する。尚、遅延に関する情報には、推定遅延時間に対応する制御情報等が含まれていてもよい。
 ステップS207において、制御対象装置17は、遅延に関する情報を受信すると、これに含まれる、推定遅延時間および制御情報を基に、自装置の制御を行う。例えば、制御対象装置17がモータであれば、モータの動作速度を調整する。尚、制御情報は、推定遅延時間を基に遅延予測装置10a側で生成されてもよい。または、遅延予測装置10a側から受信する推定遅延時間を基に、制御対象装置17側で生成されてもよい。
 上述したように、本発明の第2の実施形態に係る遅延予測システム100によると、過去の通信遅延データに基づき将来の通信遅延を高い精度で遅延予測装置が予測し、この予測に合わせて制御対象装置17が制御を受けることができる。これは、遅延予測装置10aが、ある時間に渡って複数回測定された通信遅延時間を低遅延状態と高遅延状態とに分類し、これら2つの遅延状態の混合の度合いを、確率値を使って定量化し、当該混合を表す確率値が時間とともにどのように変化するかを予測するからである。更に、制御対象装置17が、予測された未来の確率値を基として、制御を実行するからである。
 <第3の実施形態>
 図10に示すように、本発明の第3の実施形態に係る遅延予測装置10bは、第1および第2の実施形態にかかる遅延予測装置を実施するための最小構成である。遅延予測装置10bは、低遅延分布推定部11、識別部12、高遅延分布推定部13および遅延分布予測部14を備える。
 低遅延分布推定部11は、ネットワークにおけるパケットの通信遅延を測定した結果を用いて第1の通信遅延状態の確率分布を推定する。識別部12は、通信遅延の状態が第1の通信遅延状態か又は第1の通信遅延状態よりも通信遅延が大きい第2の通信遅延状態かを識別する。高遅延分布推定部13は、第2の通信遅延状態の確率分布を推定する。遅延分布予測部14は、第1の通信遅延状態の確率分布および第2の通信遅延状態の確率分布を基に将来の通信遅延の確率分布を予測する。
 本発明の第3の実施形態によると、過去の通信遅延データにもとづいて将来の通信遅延を高い精度で予測することができる。これは、遅延予測装置10bのうち、測定した通信遅延時間を用いて低遅延分布推定部11が低遅延状態の分布を推定し、識別部12が低遅延状態と高遅延状態とを区別し、高遅延分布推定部13が高遅延状態の分布を推定し、遅延分布予測部14が低遅延状態と高遅延状態との混合分布により将来の遅延時間の確率分布を予測するからである。
 (情報処理装置の構成)
 上述した本発明の各実施形態において、図1、図8および図10に示す各遅延予測装置の各構成要素は、機能単位のブロックを示している。遅延予測装置の各構成要素の一部又は全部は、例えば図11に示すような情報処理装置1とプログラムとの任意の組み合わせを用いて実現される。情報処理装置1は、一例として、以下のような構成を含む。
  ・CPU(Central Processing Unit)501
  ・ROM(Read Only Memory)502
  ・RAM(Random Access Memory)503
  ・RAM503にロードされるプログラム504
  ・プログラム504を格納する記憶装置505
  ・記録媒体506の読み書きを行うドライブ装置507
  ・通信ネットワーク509と接続する通信インタフェース508
  ・データの入出力を行う入出力インタフェース510
  ・各構成要素を接続するバス511
 本願の各実施形態における遅延予測装置の各構成要素は、これらの機能を実現するプログラム504をCPU501が取得して実行することで実現される。遅延予測装置の各構成要素の機能を実現するプログラム504は、例えば、予め記憶装置505やRAM503に格納されており、必要に応じてCPU501が読み出す。なお、プログラム504は、通信ネットワーク509を介してCPU501に供給されてもよいし、予め記録媒体506に格納されており、ドライブ装置507が当該プログラムを読み出してCPU501に供給してもよい。
 各装置の実現方法には、様々な変形例がある。例えば、遅延予測装置は、構成要素毎にそれぞれ別個の情報処理装置とプログラムとの任意の組み合わせにより実現されてもよい。また、遅延予測装置が備える複数の構成要素が、一つの情報処理装置1とプログラムとの任意の組み合わせにより実現されてもよい。
 また、遅延予測装置の各構成要素の一部又は全部は、その他の汎用または専用の回路、プロセッサ等やこれらの組み合わせによって実現される。これらは、単一のチップによって構成されてもよいし、バスを介して接続される複数のチップによって構成されてもよい。
 遅延予測装置の各構成要素の一部又は全部は、上述した回路等とプログラムとの組み合わせによって実現されてもよい。
 遅延予測装置の各構成要素の一部又は全部が複数の情報処理装置や回路等により実現される場合には、複数の情報処理装置や回路等は、集中配置されてもよいし、分散配置されてもよい。例えば、情報処理装置や回路等は、クライアントアンドサーバシステム、クラウドコンピューティングシステム等、各々が通信ネットワークを介して接続される形態として実現されてもよい。
 以上、本実施形態を参照して本願発明を説明したが、本願発明は上記実施形態および実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 上記の実施形態の一部または全部は、以下の付記のようにも記載されうるが、以下には限られない。
[付記1]
 ネットワークにおけるパケットの通信遅延を測定した結果を用いて、第1の通信遅延状態の確率分布を推定する低遅延分布推定手段と、
 前記通信遅延の状態が、前記第1の通信遅延状態か、又は、前記第1の通信遅延状態よりも前記通信遅延が大きい第2の通信遅延状態かを識別する識別手段と、
 前記第2の通信遅延状態の確率分布を推定する高遅延分布推定手段と、
 前記第1の通信遅延状態の確率分布および前記第2の通信遅延状態の確率分布を基に、将来の通信遅延の確率分布を予測する遅延分布予測手段
 とを備えることを特徴とする遅延予測装置。
[付記2]
 前記遅延分布予測手段は、前記将来の通信遅延の確率分布を含む情報に基づいて、将来の遅延時間を算出し、当該将来の遅延時間を含む予測遅延情報を出力する
付記1記載の遅延予測装置。
[付記3]
 前記予測遅延情報は、
 前記将来の通信遅延の確率分布、
 前記将来の遅延時間、
 前記識別手段に識別された前記通信遅延の状態が、前記第1の通信遅延状態、または、前記第2の通信遅延状態のいずれであるか
のうちの少なくとも一つを含む
付記2に記載の遅延予測装置。
[付記4]
 前記遅延分布予測手段は、前記第1の通信遅延状態の確率分布の積分値を前記第1の通信遅延状態が占める時間の割合の期待値を用いて正規化された第1の値と、前記第2の通信遅延状態の確率分布の積分値を前記第2の通信遅延状態が占める時間の割合の期待値を用いて正規化された第2の値とを基に、前記将来の通信遅延の確率分布を予測する
付記1乃至付記3のいずれかに記載の遅延予測装置。
[付記5]
 前記第1の通信遅延状態および前記第2の通信遅延状態の少なくとも片方の分布の推定は、パラメトリックな確率分布の母数を推定することにより実行される
付記1乃至付記4のいずれかに記載の遅延予測装置。
[付記6]
 前記第1の通信遅延状態を表わす分布として、ガンマ分布を用いる
付記1乃至付記5のいずれかに記載の遅延予測装置。
[付記7]
 前記第2の通信遅延状態を表わす分布として、指数分布を用いる
付記1乃至付記5のいずれかに記載の遅延予測装置。
[付記8]
 付記1乃至付記7のいずれかに記載される遅延予測装置を備える遅延予測システムであって、当該遅延予測装置は、ネットワークを介してある動作を遠隔制御可能であり、
 前記遅延予測装置より前記遠隔制御を受けて前記動作を実行する制御対象装置
 とを備え、前記遅延予測装置および前記制御対象装置は通信可能に接続され、
 前記遅延予測装置は、前記ネットワークにおけるパケットの通信遅延を測定した結果を用いて予測された通信遅延を基に予測される将来の遅延時間を含む予測遅延情報を基に、前記制御対象装置に対する前記遠隔制御を決定する
 遅延予測システム。
[付記9]
 ネットワークにおけるパケットの通信遅延を測定した結果を用いて、第1の通信遅延状態の確率分布を推定し、
 前記通信遅延の状態が、前記第1の通信遅延状態か、又は、前記第1の通信遅延状態よりも前記通信遅延が大きい第2の通信遅延状態か、を識別し、
 前記第2の通信遅延状態の確率分布を推定し、
 前記第1の通信遅延状態の確率分布および前記第2の通信遅延状態の確率分布を基に、将来の通信遅延の確率分布を予測する
遅延予測方法。
[付記10]
 ネットワークにおけるパケットの通信遅延を測定した結果を用いて、第1の通信遅延状態の確率分布を推定し、
 前記通信遅延の状態が、前記第1の通信遅延状態か、又は、前記第1の通信遅延状態よりも前記通信遅延が大きい第2の通信遅延状態か、を識別し、
 前記第2の通信遅延状態の確率分布を推定し、
 前記第1の通信遅延状態の確率分布および前記第2の通信遅延状態の確率分布を基に、将来の通信遅延の確率分布を予測する
 ことをコンピュータに実現させるためのプログラム。
[付記11]
 前記第1の通信遅延状態から前記第2の通信遅延状態へ遷移する確率をp、前記第2の通信遅延状態から前記第1の通信遅延状態へ遷移する確率をqとしたとき、
 前記遅延分布予測手段は、第1の通信遅延状態を表す確率分布の積分値がq/(p+q)に、第2の通信遅延状態を表す確率分布の積分値がp/(p+q)になるよう正規化し、前記将来の通信遅延の確率分布を予測する
付記1または付記3に記載の遅延予測装置。
[付記12]
 前記ネットワークにおける前記パケットの通信遅延とは、前記ネットワークを介し、自装置とある通信先端末との間にてパケットが往復する往復遅延時間である
付記1に記載の遅延予測装置。
[付記13]
 前記ネットワークにおける前記パケットの通信遅延を測定する際に、前記パケットが送信されてから所定の時間が経過しても返ってこないときは、予め設定された時間を当該パケットの往復遅延時間として採用する
付記1に記載の遅延予測装置。
 この出願は2017年3月16日に出願された日本出願特願2017-051409を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1    :情報処理装置
3   :通信ネットワーク
4   :通信先端末
5   :表示装置
10  :遅延予測装置
10a :遅延予測装置
10b :遅延予測装置
11  :低遅延分布推定部
12  :識別部
13  :高遅延分布推定部
14  :遅延分布予測部
14a :遅延分布予測部
15  :遅延時間計測部
16  :制御部
17  :制御対象装置
100 :遅延予測システム
501  :CPU
503  :RAM
504  :プログラム
505  :記憶装置
506  :記録媒体
507  :ドライブ装置
508  :通信インタフェース
509  :通信ネットワーク
510  :入出力インタフェース
511  :バス

Claims (13)

  1.  ネットワークにおけるパケットの通信遅延を測定した結果を用いて、第1の通信遅延状態の確率分布を推定する低遅延分布推定手段と、
     前記通信遅延の状態が、前記第1の通信遅延状態か、又は、前記第1の通信遅延状態よりも前記通信遅延が大きい第2の通信遅延状態かを識別する識別手段と、
     前記第2の通信遅延状態の確率分布を推定する高遅延分布推定手段と、
     前記第1の通信遅延状態の確率分布および前記第2の通信遅延状態の確率分布を基に、将来の通信遅延の確率分布を予測する遅延分布予測手段
     とを備えることを特徴とする遅延予測装置。
  2.  前記遅延分布予測手段は、前記将来の通信遅延の確率分布を含む情報に基づいて、将来の遅延時間を算出し、当該将来の遅延時間を含む予測遅延情報を出力する
    請求項1記載の遅延予測装置。
  3.  前記予測遅延情報は、
     前記将来の通信遅延の確率分布、
     前記将来の遅延時間、
     前記識別手段に識別された前記通信遅延の状態が、前記第1の通信遅延状態、または、前記第2の通信遅延状態のいずれであるか
    のうちの少なくとも一つを含む
    請求項2に記載の遅延予測装置。
  4.  前記遅延分布予測手段は、前記第1の通信遅延状態の確率分布の積分値を前記第1の通信遅延状態が占める時間の割合の期待値を用いて正規化された第1の値と、前記第2の通信遅延状態の確率分布の積分値を前記第2の通信遅延状態が占める時間の割合の期待値を用いて正規化された第2の値とを基に、前記将来の通信遅延の確率分布を予測する
    請求項1または請求項3に記載の遅延予測装置。
  5.  前記第1の通信遅延状態および前記第2の通信遅延状態の少なくとも片方の分布の推定は、パラメトリックな確率分布の母数を推定することにより実行される
    請求項1乃至請求項4のいずれかに記載の遅延予測装置。
  6.  前記第1の通信遅延状態を表わす分布として、ガンマ分布を用いる
    請求項1乃至請求項5のいずれかに記載の遅延予測装置。
  7.  前記第2の通信遅延状態を表わす分布として、指数分布を用いる
    請求項1乃至請求項5のいずれかに記載の遅延予測装置。
  8.  請求項1乃至請求項7のいずれかに記載される遅延予測装置を備える遅延予測システムであって、当該遅延予測装置は、ネットワークを介してある動作を遠隔制御可能であり、
     前記遅延予測装置より前記遠隔制御を受けて前記動作を実行する制御対象装置
     とを備え、前記遅延予測装置および前記制御対象装置は通信可能に接続され、
     前記遅延予測装置は、前記ネットワークにおけるパケットの通信遅延を測定した結果を用いて予測された通信遅延を基に予測される将来の遅延時間を含む予測遅延情報を基に、前記制御対象装置に対する前記遠隔制御を決定する
     遅延予測システム。
  9.  ネットワークにおけるパケットの通信遅延を測定した結果を用いて、第1の通信遅延状態の確率分布を推定し、
     前記通信遅延の状態が、前記第1の通信遅延状態か、又は、前記第1の通信遅延状態よりも前記通信遅延が大きい第2の通信遅延状態か、を識別し、
     前記第2の通信遅延状態の確率分布を推定し、
     前記第1の通信遅延状態の確率分布および前記第2の通信遅延状態の確率分布を基に、将来の通信遅延の確率分布を予測する
    遅延予測方法。
  10.  ネットワークにおけるパケットの通信遅延を測定した結果を用いて、第1の通信遅延状態の確率分布を推定し、
     前記通信遅延の状態が、前記第1の通信遅延状態か、又は、前記第1の通信遅延状態よりも前記通信遅延が大きい第2の通信遅延状態か、を識別し、
     前記第2の通信遅延状態の確率分布を推定し、
     前記第1の通信遅延状態の確率分布および前記第2の通信遅延状態の確率分布を基に、将来の通信遅延の確率分布を予測する
     ことをコンピュータに実現させるためのプログラムを格納した記録媒体。
  11.  前記第1の通信遅延状態から前記第2の通信遅延状態へ遷移する確率をp、前記第2の通信遅延状態から前記第1の通信遅延状態へ遷移する確率をqとしたとき、
     前記遅延分布予測手段は、第1の通信遅延状態を表す確率分布の積分値がq/(p+q)に、第2の通信遅延状態を表す確率分布の積分値がp/(p+q)になるよう正規化し、前記将来の通信遅延の確率分布を予測する
    請求項1または請求項3に記載の遅延予測装置。
  12.  前記ネットワークにおける前記パケットの通信遅延とは、前記ネットワークを介し、自装置とある通信先端末との間にてパケットが往復する往復遅延時間である
    請求項1に記載の遅延予測装置。
  13.  前記ネットワークにおける前記パケットの通信遅延を測定する際に、前記パケットが送信されてから所定の時間が経過しても返ってこないときは、予め設定された時間を当該パケットの往復遅延時間として採用する
    請求項1に記載の遅延予測装置。
PCT/JP2018/008742 2017-03-16 2018-03-07 遅延予測装置、遅延予測システム、遅延予測方法および記録媒体 WO2018168601A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019505920A JP7115465B2 (ja) 2017-03-16 2018-03-07 遅延予測装置、遅延予測システム、遅延予測方法および遅延予測プログラム
US16/492,453 US11095527B2 (en) 2017-03-16 2018-03-07 Delay prediction device, delay prediction system, delay prediction method, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-051409 2017-03-16
JP2017051409 2017-03-16

Publications (1)

Publication Number Publication Date
WO2018168601A1 true WO2018168601A1 (ja) 2018-09-20

Family

ID=63523111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008742 WO2018168601A1 (ja) 2017-03-16 2018-03-07 遅延予測装置、遅延予測システム、遅延予測方法および記録媒体

Country Status (3)

Country Link
US (1) US11095527B2 (ja)
JP (1) JP7115465B2 (ja)
WO (1) WO2018168601A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7233664B1 (ja) 2022-06-10 2023-03-07 17Live株式会社 品質予測のためのシステム、方法、及びコンピュータ可読媒体
JP7309083B1 (ja) * 2022-07-06 2023-07-14 三菱電機株式会社 遠隔制御装置、遠隔制御システム
JP7330398B1 (ja) * 2022-07-06 2023-08-21 三菱電機株式会社 遠隔制御装置、遠隔制御方法、遠隔制御システムおよび移動体

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10938634B1 (en) * 2019-01-31 2021-03-02 Splunk Inc. System and method for centralized analytics for edge devices with enrichment pushdown
JP7192608B2 (ja) * 2019-03-26 2022-12-20 オムロン株式会社 ネットワーク管理装置、管理方法、管理プログラムおよび記録媒体
WO2020202385A1 (ja) * 2019-03-29 2020-10-08 本田技研工業株式会社 基地局、通信システム、通信方法、及びプログラム
US11277326B2 (en) 2020-03-31 2022-03-15 Netflix, Inc. Techniques for detecting changes to circuit delays in telecommunications networks
CN113300901B (zh) * 2020-08-27 2024-03-12 阿里巴巴集团控股有限公司 一种数据流监控方法、装置、电子设备以及存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228823A (ja) * 2010-04-16 2011-11-10 Nec Corp パケットロス率推定装置、パケットロス率推定方法、パケットロス率推定プログラム、及び、通信システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1077559A1 (en) 1999-08-17 2001-02-21 Telefonaktiebolaget Lm Ericsson Method and device for determining a time-parameter
US20090116402A1 (en) * 2004-10-21 2009-05-07 Nec Corporation Communication quality measuring apparatus and communication quality measuring method
US7787374B2 (en) * 2007-03-02 2010-08-31 Agere Systems Inc. Derivative packet delay variation as a metric for packet timing recovery stress testing
US7990909B2 (en) * 2007-11-02 2011-08-02 Ciena Corporation Synchronization of network nodes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228823A (ja) * 2010-04-16 2011-11-10 Nec Corp パケットロス率推定装置、パケットロス率推定方法、パケットロス率推定プログラム、及び、通信システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7233664B1 (ja) 2022-06-10 2023-03-07 17Live株式会社 品質予測のためのシステム、方法、及びコンピュータ可読媒体
JP2023180842A (ja) * 2022-06-10 2023-12-21 17Live株式会社 品質予測のためのシステム、方法、及びコンピュータ可読媒体
JP7309083B1 (ja) * 2022-07-06 2023-07-14 三菱電機株式会社 遠隔制御装置、遠隔制御システム
JP7330398B1 (ja) * 2022-07-06 2023-08-21 三菱電機株式会社 遠隔制御装置、遠隔制御方法、遠隔制御システムおよび移動体
WO2024009418A1 (ja) * 2022-07-06 2024-01-11 三菱電機株式会社 遠隔制御装置、遠隔制御システムおよびリスク判定方法

Also Published As

Publication number Publication date
US20200052974A1 (en) 2020-02-13
US11095527B2 (en) 2021-08-17
JPWO2018168601A1 (ja) 2020-01-16
JP7115465B2 (ja) 2022-08-09

Similar Documents

Publication Publication Date Title
WO2018168601A1 (ja) 遅延予測装置、遅延予測システム、遅延予測方法および記録媒体
US11018967B2 (en) Determining an end user experience score based on client device, network, server device, and application metrics
EP2562972B1 (en) Usable bandwidth measurement system, transmission device, usable bandwidth measurement method and recording medium
CN106789718B (zh) 数据传输的拥塞控制方法、设备、服务器及可编程设备
JP2009516984A (ja) データ伝送経路を評価するためにフィルタリング及びアクティブプロービングを使用すること
CN111541626B (zh) 网络带宽更新方法、装置、电子设备及存储介质
US7855975B2 (en) Response time estimation for intermittently-available nodes
US9166915B2 (en) Communication device, communication method, and recording medium
JP2008219605A (ja) 通信端末、通信システム、輻輳制御方法、及び輻輳制御用プログラム
JP6051939B2 (ja) 帯域測定装置及びプログラム
US9432296B2 (en) Systems and methods for initializing packet transfers
US9019835B2 (en) Parameter estimation device, parameter estimation method, and parameter estimation program
JP6390167B2 (ja) 通信スループット予測装置、通信スループット予測方法、及び、プログラム
US20240235973A1 (en) Determining an end user experience score based on client device, network, server device, and application metrics
US9258240B2 (en) Available bandwidth estimating device
US20160119437A1 (en) Mapping Network Service Dependencies
JP2010213065A (ja) パケット受信装置およびパケット受信システム
JP6048102B2 (ja) 情報処理システム
JP5169441B2 (ja) ネットワーク品質測定システム、ネットワーク品質測定方法及びネットワーク品質測定用プログラム
Lübben Forecasting TCP's Rate to Speed up Slow Start
JP2014112779A (ja) データ送信制御装置、データ送信制御方法、および、コンピュータ・プログラム
JPWO2017077704A1 (ja) スループット計測装置、方法およびプログラム
US20140237136A1 (en) Communication system, communication controller, communication control method, and medium
JP2010068367A (ja) ネットワーク性能監視装置
Lim et al. Estimating the number of competing terminals by cost-reference particle filtering in non-saturated wireless-LAN

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18766851

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019505920

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18766851

Country of ref document: EP

Kind code of ref document: A1