WO2018168562A1 - Transducer array, photoacoustic probe, and photoacoustic measuring device - Google Patents

Transducer array, photoacoustic probe, and photoacoustic measuring device Download PDF

Info

Publication number
WO2018168562A1
WO2018168562A1 PCT/JP2018/008480 JP2018008480W WO2018168562A1 WO 2018168562 A1 WO2018168562 A1 WO 2018168562A1 JP 2018008480 W JP2018008480 W JP 2018008480W WO 2018168562 A1 WO2018168562 A1 WO 2018168562A1
Authority
WO
WIPO (PCT)
Prior art keywords
transducer
transducer array
array
photoacoustic
elements
Prior art date
Application number
PCT/JP2018/008480
Other languages
French (fr)
Japanese (ja)
Inventor
梅村 晋一郎
西條 芳文
晋 吉澤
高木 亮
亮 長岡
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2019505900A priority Critical patent/JP7164078B2/en
Publication of WO2018168562A1 publication Critical patent/WO2018168562A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones

Definitions

  • the present invention relates to a transducer array including a plurality of transducer elements, and a photoacoustic probe and a photoacoustic measuring apparatus including the transducer array.
  • a photoacoustic measuring apparatus that performs imaging (photoacoustic imaging) of an inside of an inspection target such as a living body using a photoacoustic effect.
  • imaging photoacoustic imaging
  • the photoacoustic measurement device irradiates a living body with light having a predetermined wavelength.
  • a substance contained in the living body absorbs light energy, and a photoacoustic wave, which is an elastic wave, is generated with the thermal expansion of the living tissue.
  • a photoacoustic measuring device detects this photoacoustic wave as an ultrasonic wave.
  • photoacoustic imaging is performed by a photoacoustic measuring device creating a photoacoustic image based on the detected photoacoustic signal.
  • a transducer array (hereinafter sometimes referred to as “array”) configured by arranging a plurality of transducer elements (hereinafter sometimes referred to as “elements”) capable of detecting ultrasonic waves is a photoacoustic imaging. It is used for.
  • the received beam can be deflected (steered) electronically.
  • the inside of the inspection object can be three-dimensionally imaged by steering the reception beam over three dimensions.
  • the solid aperture of the transducer array is increased and the elements are densely arranged. As a result, the S / N ratio can be improved, and as a result, deeper inspection can be performed.
  • the electrical impedance of the element be equal to or less than the electrical impedance of the cable connected to the element and the input impedance of the preamplifier. In this case, it is necessary to increase the element size to some extent. However, when the element size is larger than ⁇ / 2 with respect to the wavelength ⁇ of the received ultrasonic wave, it is difficult to make the element interval smaller than ⁇ / 2. Further, at this time, if the elements are arranged at equal intervals, a grating lobe is generated, thereby increasing an unnecessary response. In particular, when the reception beam is steered, it is greatly affected by the grating lobe.
  • Patent Document 1 discloses an array in which a plurality of elements are arranged at various radii at intervals along a logarithmic spiral.
  • the present invention has been made in view of the background art, and an object of the present invention is to provide a transducer array that achieves both improvement in sensitivity and suppression of unnecessary response, and a photoacoustic probe and a photoacoustic measurement apparatus including the transducer array.
  • the purpose is to provide.
  • the present invention is not limited to this purpose, and is a function and effect derived from each configuration shown in the embodiment for carrying out the invention described later, and has another function and effect that cannot be obtained by conventional techniques. is there.
  • a transducer array including a plurality of transducer elements capable of detecting ultrasonic waves, each of the plurality of transducer elements being randomly arranged in a two-dimensional manner, and the plurality of transducer elements Are arranged adjacent to each other without a gap.
  • a transducer array including a plurality of transducer elements capable of detecting an ultrasonic wave, each of the plurality of transducer elements being randomly arranged in a two-dimensional manner, and when the received beam is not deflected
  • the transducer array is characterized in that an unnecessary response level with respect to the main response is -30 dB or less.
  • a transducer array according to any one of [1] to [7], and a light irradiation unit that irradiates a subject with light emitted from a light source, the transducer array being irradiated with the light.
  • a photoacoustic probe which detects a photoacoustic wave generated in the subject and outputs a photoacoustic signal.
  • a photoacoustic measurement device comprising: the photoacoustic probe according to [8]; and a signal processing unit that processes the photoacoustic signal to generate photoacoustic image data.
  • the present invention it is possible to provide a transducer array that achieves both improvement in sensitivity and suppression of unnecessary response due to a grating lobe, and a photoacoustic probe and a photoacoustic measuring apparatus including the transducer array.
  • FIG. 1 It is a figure which shows a beam profile in case the focal displacement of the transducer array of 1st embodiment is 1 mm, (a) is a figure which shows 1-dimensional intensity distribution, (b) is a figure which shows 2D intensity distribution. is there. It is a schematic diagram for demonstrating arrangement
  • the photoacoustic measurement device, photoacoustic probe, and transducer array according to the first embodiment will be described with reference to FIGS.
  • the first embodiment is also simply referred to as this embodiment.
  • the inspection target is a blood vessel of a living body.
  • the photoacoustic measurement device 1 of the present embodiment includes a photoacoustic probe 2, a control unit 41, a preamplifier unit 42, an AD conversion unit 43, a beamform unit 44, a signal processing unit 45, a display unit 46, A mechanical scanning unit 47 and a position detection unit 48 are provided.
  • the photoacoustic probe 2 includes a light irradiation unit 10 and a transducer array 20.
  • the transducer array 20 includes a plurality of transducer elements 21 capable of detecting ultrasonic waves.
  • the control unit 41, the beamform unit 44, and the signal processing unit 45 are functional parts that are realized by executing a program through arithmetic processing by a CPU (Central Processing Unit) (not shown) included in the photoacoustic measurement apparatus 1.
  • the CPU reads and executes programs stored in a data storage device that stores data and programs such as HDD (Hard Disk Drive), SSD (Solid State Device), RAM (Random Access Memory), and ROM (Read Only Memory).
  • HDD Hard Disk Drive
  • SSD Solid State Device
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the means for realizing the processing functions in the control unit 41, the beamform unit 44, and the signal processing unit 45 are not limited to programs, and may be realized by hardware mounted on the photoacoustic measurement apparatus 1.
  • control unit 41, the beamform unit 44, and the signal processing unit 45 may be configured as a one-chip microcomputer incorporating a ROM, a RAM, a CPU, or the like, or a DSP (Digital Signal Processor), FPGA (Field It may be configured as an electronic circuit such as -Programmable (Gate Array) or ASIC (Application Specific Integrated Circuit).
  • DSP Digital Signal Processor
  • FPGA Field It may be configured as an electronic circuit such as -Programmable (Gate Array) or ASIC (Application Specific Integrated Circuit).
  • the control unit 41 controls the light irradiation unit 10, the transducer array 20, the signal processing unit 45, and the mechanical scanning unit 47, and outputs a signal for synchronizing these operations. For example, the control unit 41 transmits an output timing signal for controlling the output timing of the irradiation light to the light irradiation unit 10 and transmits a detection timing signal for controlling the detection timing of the photoacoustic wave of the transducer array 20. As described above, the control unit 41 transmits a signal for controlling the operation timing of the light irradiation unit 10 and the transducer array 20 so that the photoacoustic probe 2 detects the photoacoustic signal in synchronization with the output of the irradiation light. Can do.
  • the preamplifier unit 42 is an amplifier that amplifies an input signal.
  • the preamplifier section 42 is provided corresponding to a signal electrode 22 of the transducer array 20 described later (see FIG. 2).
  • the preamplifier unit 42 amplifies the photoacoustic signal input from each signal electrode 22 and outputs the amplified signal to the AD conversion unit 43.
  • the AD converter 43 is an AD converter that converts an analog signal into a digital signal.
  • the AD conversion unit 43 is provided corresponding to the signal electrode 22 and the preamplifier unit 42, respectively.
  • the AD conversion unit 43 converts the amplified signal of the analog photoacoustic wave signal input from the preamplifier unit 42 into a digitized signal.
  • the AD conversion unit 43 outputs the digitized signal to the beam form unit 44.
  • the beamform unit 44 is a delay process that gives a delay time corresponding to the positional relationship between the reception focus and each signal electrode 22 to each signal input from the plurality of AD conversion units 43 corresponding to the signal electrode 22. Then, a phasing addition process is performed together with an addition process for adding signals whose phases are matched by the delay process. The beamform unit 44 outputs the signal subjected to the phasing addition processing to the signal processing unit 45.
  • the signal processing unit 45 receives the signal input from the beamform unit 44 and generates photoacoustic image data.
  • the signal processing unit 45 performs processes such as filter processing, logarithmic compression, and envelope detection on the input signal.
  • the signal processing part 45 performs a process required for image generation with respect to the signal which performed the above processes, and produces
  • the signal processing unit 45 outputs the generated photoacoustic image data to the display unit 46.
  • the display unit 46 receives the photoacoustic image data input from the signal processing unit 45 and displays the photoacoustic image.
  • the display unit 46 is a display such as a CRT (Cathode Ray Tube) or an LCD (Liquid Crystal Display).
  • the display unit 46 may display a two-dimensional photoacoustic image or a three-dimensional photoacoustic image according to the processing in the signal processing unit 45.
  • the mechanical scanning unit 47 moves the photoacoustic probe 2 in a one-dimensional direction, a two-dimensional direction, or a three-dimensional direction, thereby changing the position of the subject, the light irradiation unit 10 and the transducer array 20. .
  • the mechanical scanning unit 47 for example, an automatic fine moving table that has a permanent magnet rotor induction motor and finely moves the photoacoustic probe 2 in three directions perpendicular to each other is used.
  • the mechanical scanning unit 47 can mechanically scan the position where the transducer array 20 detects the photoacoustic wave. The operation of the mechanical scanning unit 47 is controlled by the control unit 41.
  • the position detection unit 48 detects the position of the photoacoustic probe 2.
  • the position detection unit 48 for example, a magnetic, infrared, ultrasonic, or optical position sensor is used.
  • the position detection unit 48 can detect the amount of movement of the photoacoustic probe 2 and adjust the positional relationship between the subject and the photoacoustic probe 2.
  • the position information of the photoacoustic probe 2 detected by the position detection unit 48 is output to the control unit 41.
  • the photoacoustic probe 2 has a cylindrical housing (not shown).
  • the photoacoustic probe 2 has a cable connected to the control unit 41 and the preamplifier unit 42 on the upper surface of the housing. Furthermore, the photoacoustic probe 2 has an opening 30 in contact with the subject on the bottom surface of the housing (see FIG. 3).
  • the light irradiation unit 10 and the transducer array 20 are provided in the opening 30.
  • a photoacoustic wave is generated in the living body by irradiation of irradiation light emitted from the light source of the light irradiation unit 10, and the transducer array 20 detects this photoacoustic wave and outputs a photoacoustic signal. Then, the photoacoustic signal output from the photoacoustic probe 2 is input to the preamplifier unit 42.
  • the light irradiation unit 10 has one or more light sources (not shown) that emit light of a predetermined wavelength.
  • a light source that emits irradiation light to an object to be inspected and generates a photoacoustic wave by the irradiation light can be used.
  • a light source for example, a laser such as a solid laser, a gas laser, a semiconductor laser, or a chemical laser, a light emitting diode, or the like can be used.
  • a laser is preferably used because it is excellent in directivity and convergence and can provide a high output.
  • the light source is preferably a pulsed light source that outputs pulsed light having a pulse width of 1 to 100 nsec.
  • the wavelength of the irradiation light emitted from the light source propagates to the substance in the subject to be measured, and a wavelength that can be absorbed according to the light absorption characteristics of the substance is selected.
  • a wavelength belonging to the near infrared wavelength region is selected.
  • the wavelength range is usually 600 to 1000 nm, preferably 700 to 850 nm.
  • the irradiation light output from the light source is guided to the opening 30 using a light guide means (not shown) such as an optical fiber, a light guide plate, a lens, and a mirror, and is irradiated on the subject.
  • a light guide means such as an optical fiber, a light guide plate, a lens, and a mirror
  • the light irradiation by the light irradiation unit 10 and the irradiation conditions are controlled by the control unit 41.
  • FIG. 2 shows a part of the common electrode 23 and the piezoelectric composite 24 provided in the opening 30.
  • the transducer array 20 is sandwiched between a plurality of signal electrodes 22a and 22b, a common electrode (ground electrode) 23, a signal electrode 22a and 22b, and a common electrode 23 provided on a substrate (not shown).
  • the piezoelectric composite 24 is provided.
  • FIG. 2 shows two transducer elements 21a and 21b.
  • transducer element 21 In the case where the transducer elements 21a and 21b are not distinguished from each other, a description may be given with the reference numeral “transducer element 21”. Further, when the signal electrodes 22a and 22b are not distinguished from each other, there may be a case where a symbol is given as “signal electrode 22”.
  • the piezoelectric composite 24 is arranged in a two-dimensional lattice shape with the height direction aligned, and the columnar piezoelectric bodies 25 having substantially the same height, and between the piezoelectric bodies 25 and around the piezoelectric bodies 25. And a polymer body 26 filled at substantially the same height.
  • the piezoelectric body 25 is formed in a quadrangular prism shape with a square cross section, but the shape is not limited to this, and may be a polygonal column shape with a polygonal cross section or a cylindrical shape with a circular cross section. From the viewpoint of production efficiency, a quadrangular prism shape is preferable.
  • the signal electrode 22 and the common electrode 23 are provided to face each other with the piezoelectric composite 24 interposed therebetween.
  • the signal electrode 22 and the common electrode 23 are provided to face one end and the other end in the longitudinal direction of the piezoelectric body 25 on a plane orthogonal to the direction in which the piezoelectric bodies 25 are continuous.
  • the signal electrode 22 is electrically connected to the preamplifier section 42 by a signal line (not shown).
  • the photoacoustic signal output from the signal electrode 22 is input to the preamplifier unit 42.
  • the common electrode 23 is provided on a surface that receives photoacoustic waves.
  • the common electrode 23 is grounded by a ground wire (not shown).
  • the common electrode 23 is a ground electrode provided in common to the transducer elements 21.
  • the signal electrode 22 and the common electrode 23 are members in which a conductive metal or alloy is formed in a plate shape. Although it does not specifically limit as a metal used for the signal electrode 22 and the common electrode 23, Gold, silver, copper, platinum, aluminum, nickel etc. are mentioned.
  • the method of forming the signal electrode 22 and the common electrode 23 on the piezoelectric composite 24 is not particularly limited, but can be formed by a method such as plating, sputtering, etching, vacuum deposition, or screen printing.
  • the piezoelectric composite 24 has a piezoelectric body 25 connected in one axial direction and a polymer body 26 connected in any of the three axial directions when the composite is viewed in three orthogonal directions.
  • -3 type piezoelectric composite is used.
  • the piezoelectric composite 24 is not limited to the 1-3 type, and for example, a 0-3 type, 3-0 type, 3-1 type, 3-2 type, 3-3 type piezoelectric composite may be used. Good.
  • 1- A type 3 piezoelectric composite is preferred.
  • the ratio (length / width) between the length and width of the columnar piezoelectric body 25 is not particularly limited, but is usually 3 to 10, preferably 4 to 6.
  • the piezoelectric body 25 is formed by, for example, cutting a piezoelectric material into a lattice shape using a dicing machine or the like, and providing gaps at predetermined intervals between the columnar piezoelectric materials.
  • a piezoelectric material a material exhibiting a piezoelectric effect that generates a voltage in response to pressure displacement caused by a photoacoustic wave applied from the outside is used.
  • the piezoelectric material used for the piezoelectric body 25 is not particularly limited.
  • piezoelectric ceramics such as lead zirconate titanate (PZT), barium titanate, lead titanate, and lead niobate ceramics; lithium niobate; Examples thereof include single crystals such as zinc titanate niobate titanate (PZNT) and lead magnesium niobate titanate (PMNT); organic materials such as polyvinylidene fluoride (PVDF) and polyurea (PU).
  • PVDF polyvinylidene fluoride
  • PU polyurea
  • the polymer body 26 is formed by filling a polymer material around the piezoelectric body 25 cut in a lattice shape.
  • the polymer material used for the polymer body 26 is not particularly limited.
  • an organic synthetic resin such as an epoxy resin, a silicone resin, a polyester resin, a polyethylene resin, a polystyrene resin, a polyurethane resin, a polyamide resin, or a polycarbonate resin can be used. Molecule.
  • the transducer element 21 is configured.
  • the transducer element 21 includes at least the signal electrode 22, the piezoelectric body 25, and the common electrode 23 in this order.
  • the piezoelectric bodies 25 arranged at positions corresponding to the signal electrode 22 are grouped so as to be included in each transducer element 21.
  • 54 piezoelectric bodies 25 are grouped into 24 and 30 groups by two signal electrodes 22a and 22b, and are included in transducer elements 21a and 21b, respectively.
  • the transducer element 21 can be formed in a desired size and shape.
  • the transducer array 20 has a high degree of design freedom in the area occupied by the transducer elements 21 in the transducer array 20.
  • the case where the signal electrode 22 is rectangular has been described as an example.
  • the shape of the signal electrode 22 is not limited to this, and for example, a polygon, a circle, an ellipse, a star, or a contour is used. It may be an irregular shape consisting of a curve. In the case of a polygon, the corner may be rounded.
  • the signal electrodes 22 are arranged along the lattice-like arrangement of the piezoelectric bodies 25 so as to cover the individual piezoelectric bodies 25, but the correspondence relationship between the signal electrodes 22 and the piezoelectric bodies 25 is as follows. It is not limited to this.
  • the signal electrode 22 may be disposed obliquely with respect to the lattice-like arrangement of the piezoelectric bodies 25. Further, the signal electrode 22 may be arranged so that the piezoelectric body 25 is positioned on the boundary line of the end portion of the signal electrode 22 in a plan view with respect to the piezoelectric body 25. That is, the signal electrode 22 may be disposed so as to cover only a part of the piezoelectric body 25. However, when the signal electrode 22 is arranged so as to cover only a part of the piezoelectric body 25 and the piezoelectric body 25 is exposed to the outside of the signal electrode 22 from the boundary line of the signal electrode 22, The piezoelectric body 25 cannot contribute to detection of photoacoustic waves.
  • the signal electrode 22 it is preferable to arrange the signal electrode 22 so that the boundary line of the signal electrode 22 passes between the adjacent piezoelectric bodies 25. Accordingly, the detection efficiency of the photoacoustic wave can be improved by arranging the signal electrode 22 so that the entire individual piezoelectric body 25 is covered with the signal electrode 22 in plan view. Further, the distance between the adjacent signal electrodes 22a and 22b preferably does not exceed the distance between the adjacent piezoelectric bodies 25, that is, the thickness of the polymer body 26 sandwiched between the piezoelectric bodies 25.
  • the number of transducer elements 21 provided in the transducer array 20 is usually 10 to 10,000, preferably 20 to 1,000, and more preferably 100 to 500. In the present embodiment, a case where the transducer array 20 includes 256 transducer elements 21 will be described as an example. As the number of transducer elements 21 increases, the resolution of the transducer array 20 tends to increase. On the other hand, as the number of transducer elements 21 increases, the number of circuits necessary for processing such as amplification and delay of the photoacoustic signal obtained by each transducer element 21 increases, and the load of calculation processing tends to increase. Moreover, when the number of connection lines from the transducer element 21 increases, the cable of the transducer element 21 becomes thick, and the handling is reduced.
  • a backing layer (not shown) is provided on the signal electrode 22 side of the transducer element 21.
  • the backing layer is provided on the side opposite to the ultrasonic wave receiving direction of the transducer element 21 and suppresses noise by absorbing and attenuating the ultrasonic wave.
  • the material used for the backing layer include epoxy resin, natural rubber, and synthetic rubber.
  • the backing layer may contain powders such as titanium oxide, tungsten oxide, and ferrite.
  • An acoustic matching layer (not shown) is provided on the common electrode 23 side of the transducer element 21.
  • the acoustic matching layer is provided on the ultrasonic wave receiving direction side of the transducer element 21 to match the acoustic impedance between the piezoelectric composite 24 and the inspection object and suppress reflection at these boundary surfaces. is there.
  • the acoustic impedance of the acoustic matching layer is preferably set to the acoustic impedance between the piezoelectric composite 24 and the inspection object.
  • Examples of the material used for the acoustic matching layer include polyethylene, polypropylene, polycarbonate, polydimide, polyethylene terephthalate, epoxy resin, and urethane resin.
  • the acoustic matching layer may contain resin particles or metal particles.
  • FIG. 3A is a diagram showing an arrangement relationship between the light irradiation unit 10 and the transducer array 20 in the opening 30 on the side of the photoacoustic probe 2 in contact with the inspection object.
  • FIG. 3A shows the transducer elements 21 arranged in a partial spherical shape projected on a plane.
  • the area occupied by the transducer element 21 is indicated by a white area.
  • region which parts other than the transducer element 21 and the light irradiation part 10 occupy is shown by the black area
  • region is shown by the center of gravity position 27 of each transducer element 21 is indicated by a point.
  • FIG. 3B is a diagram for explaining the structure of the transducer array 20 provided in a partial spherical shape.
  • FIG. 3A shows a positional relationship between the transducer array 20 including a plurality of transducer elements 21 and the light irradiation unit 10 disposed at the center surrounded by the transducer elements 21.
  • FIG. 3A in the transducer array 20, the plurality of transducer elements 21 are randomly arranged at their center positions 27 in a two-dimensional manner. Further, the plurality of transducer elements 21 are arranged adjacent to each other without a gap.
  • the arrangement relationship and shape of the transducer elements 21 are determined by the arrangement relationship of the signal electrodes 22. That is, the arrangement relationship and shape of the transducer elements 21 refer to the arrangement relationship and shape of the signal electrodes 22.
  • “random” means that the transducer elements 21 are irregularly arranged so as to suppress the generation of grating lobes. Furthermore, in the transducer array 20, the irregular arrangement of the transducer elements 21 that suppress the generation of grating lobes spreads in a two-dimensional manner.
  • a regularly arranged array in which grating lobes are generated for example, a two-dimensional array in which elements are arranged in a lattice such as a square lattice, a rectangular lattice, a hexagonal lattice, an oblique lattice, or a parallel lattice.
  • An array a two-dimensional array in which elements arranged in a straight line at equal intervals or unequal intervals are arranged in parallel and at equal intervals, an element arranged in an annular shape at equal intervals or unequal intervals, and the ring diameters at equal intervals
  • a two-dimensional array arranged concentrically instead of the above.
  • Any transducer array 20 may be used as long as it suppresses the generation of grating lobes, and a regular arrangement of several transducer elements 21 may appear in a part of the transducer array 20.
  • the barycentric position 27 of the transducer element 21 refers to the barycentric position of the signal electrode 22 of the transducer element 21.
  • the position of the center of gravity of the signal electrode 22 is calculated as the centroid of the signal electrode 22 by regarding the density of the signal electrode 22 as being uniform.
  • the calculation of the position of the center of gravity can be performed by a known method. For example, when the shape of the element 21 is a circle or an ellipse, the center thereof is calculated as the barycentric position. When the shape of the transducer element 21 is a triangle, the intersection of the three middle lines of each vertex is calculated as the barycentric position.
  • the shape of the transducer element 21 is a quadrangle
  • the element 21 is divided by a first diagonal line and divided into two triangles, and the barycentric position of each of the divided triangles is obtained.
  • This procedure is also performed for a second diagonal line different from the first diagonal line, and the barycentric position of each of the divided triangles is obtained.
  • the intersection of the line segment connecting the centroid positions of the two triangles divided by the first diagonal line and the line segment connecting the centroid positions of the two triangles divided by the second diagonal line is calculated as the centroid position.
  • the shape of the transducer element 21 is a polygon
  • the element 21 is first divided into diagonal lines and divided into a plurality of triangles, and the barycentric position of each of the divided triangles is obtained.
  • centroid position is calculated by repeating the procedure for obtaining the centroid position of the polygon.
  • shape of the element 21 is an indefinite shape whose contour is a curve
  • shape of the element 21 can be approximated to a polygon inscribed in the contour, and the center of gravity of the polygon can be calculated.
  • the term “adjacently arranged without a gap” does not mean an aspect in which the signal electrodes 22 of adjacent transducer elements 21 are in contact with each other, but are arranged so close that the signal electrodes 22 do not contact each other. Say what you are. As described above, the mode in which the signal electrodes 22 are arranged adjacent to each other with substantially no gap allows the photoacoustic signals from the transducer elements 21 to be extracted independently.
  • the transducer elements 21 are preferably arranged between adjacent transducer elements 21 so that the sides of the signal electrodes 22 face each other. Thereby, for example, the gap between the adjacent transducer elements 21 is reduced as compared with the case where the signal electrode 22 faces point-to-point and the case where the signal electrode 22 faces point-to-face, so that the transducer element 21 can be arranged.
  • the shape of the transducer element 21 arranged in this way is preferably a polygon.
  • the transducer array 20 is arranged so that the opening 30 is filled with the transducer elements 21.
  • the reason why the plurality of transducer elements 21 are arranged adjacent to each other without a gap is that the inventors of the present invention generate a grating lobe when there is a gap between the randomly arranged transducer elements 21. This is because the unnecessary response at the time of non-deflection may be increased. That is, by arranging a plurality of randomly arranged transducer elements 21 adjacent to each other with no gap, it is possible to suppress an increase in unnecessary response when the received beam is not deflected.
  • the arrangement of the transducer elements 21 can be defined from the relationship between the main response of the transducer array 20 and the unnecessary response.
  • the transducer array 20 when the receiving beam is not deflected, the transducer array 20 preferably has an unnecessary response level with respect to the main response of ⁇ 30 dB or less, more preferably ⁇ 35 dB or less, and further preferably ⁇ 40 dB or less.
  • the unnecessary response level is within the above range, the transducer elements 20 are arranged adjacent to each other without a gap so as to suppress the influence of unnecessary responses caused by the gap between the adjacent transducer elements 21. Can be provided.
  • the unnecessary response level is obtained from the beam profile of the transducer array 20.
  • the beam profile indicates the intensity distribution of reception sensitivity with respect to the distance from the center of the array with respect to the reception beam formed by the transducer array 20.
  • a peak of reception sensitivity derived from the main lobe generated in the direction of the focus appears as a main response in a region near the array center.
  • the intensity of the reception sensitivity that appears in a region outside the range including the peak derived from the main lobe is regarded as an unnecessary response.
  • the ratio of the strongest peak intensity in the intensity of the reception sensitivity derived from the unnecessary response to the peak intensity of the reception sensitivity of the main response with the strongest reception sensitivity is obtained, and the unnecessary response level ( dB) is calculated.
  • the point response characteristics in photoacoustic imaging are measured for a medium in which microspheres made of a material having a light absorption rate that cannot be ignored are embedded in a medium where light absorption can be ignored.
  • a point response characteristic is measured by irradiating the microsphere with a light pulse and receiving and recording the generated photoacoustic wave with a transducer array.
  • a beam profile is obtained by moving the microsphere relative to the transducer array and repeating the operations of irradiation with light pulses and reception of photoacoustic waves. At this time, when paying attention to the received beam profile, it is preferable to measure with the relative positional relationship between the light source and the microsphere being constant.
  • the radius of the microsphere is preferably 1/2 or less of the focused ultrasonic wavelength.
  • a similar beam profile can also be obtained by numerical simulation of ultrasonic propagation.
  • the numerical value calculation is generally performed by regarding the transducer array as an aggregate of point receiving elements.
  • the interval between the point receiving elements is preferably set to 1 ⁇ 2 or less of the focused ultrasonic wavelength. In order to satisfy this condition, when the transducer array is made of a piezoelectric composite, it is sufficient to replace each of the piezoelectric columns constituting the transducer with a point receiving element.
  • the transducer elements 21 may be spaced from each other as long as the effect of unnecessary response caused by the gap between the adjacent transducer elements 21 is suppressed. More specifically, the interval between adjacent transducer elements 21 is preferably 1 / 2 ⁇ or less, more preferably 1 / 3 ⁇ or less, further preferably, relative to the wavelength ⁇ of the photoacoustic wave received by the transducer element 21. Is 1 / 6 ⁇ or less.
  • the arrangement relationship of the transducer elements 21 can also be indicated by a filling rate indicating the total area occupied by the transducer elements 21 with respect to the opening area of the transducer array 20.
  • This filling rate is preferably 90% or more, more preferably 95% or more, still more preferably 98% or more, and particularly preferably 99% or more.
  • the filling rate is within the above range, the transducer array 20 in which the transducer elements 21 are arranged adjacent to each other without a gap is suppressed to such an extent that the influence of an unnecessary response caused by the gap between the adjacent transducer elements 21 is suppressed. Can be provided.
  • the opening area of the transducer array 20 is the sum of the area occupied by the transducer elements 21 and the area of the portion sandwiched between adjacent transducer elements 21. That is, in the entire opening 30 shown in FIG. 4, the area of the portion where the light irradiation unit 10 is arranged and the region 102 indicated by the oblique lines outside the assembly composed of the plurality of transducer elements 21 are the transducer array 20. Not included in the opening area.
  • the variation coefficient of the area of the transducer element 21 is preferably 50% or less, more preferably 30% or less, still more preferably 20% or less, and particularly preferably 10%.
  • the coefficient of variation (%) of the area of the transducer element 21 can be calculated by dividing the standard deviation of the area of the transducer element 21 by the average value of the transducer element 21 and multiplying by 100.
  • the coefficient of variation of the distance between the gravity center positions 27 of the adjacent transducer elements 21 is preferably 25% or less, more preferably 10% or less. More preferably, it is 5% or less, particularly preferably 2% or less.
  • the transducer elements 21 tend to be arranged at substantially equal distance intervals. As a result, the transducer elements 21 can be arranged in the entire transducer array 20 so as to reduce the bias, and a gap generated between the transducer elements 21 can be suppressed.
  • the variation coefficient (%) of the distance between adjacent elements of the transducer element 21 is obtained by dividing the standard deviation of the distance between adjacent elements of the transducer element 21 by the average value of the distance between adjacent elements of the transducer element 21 and multiplying by 100. It can be calculated by
  • the distance between adjacent elements will be described with reference to FIG.
  • the adjacent element distance L 1 between the element 21a and the element 21f, the element 21a, device 21b, 21c, 21d, 21e, 21g regard to adjacent elements the distance between each of the elements 21a This is the distance between adjacent elements.
  • the variation coefficient of the distance between adjacent elements of the adjacent transducer elements 21 described above indicates a variation coefficient of the distance between adjacent elements for all the transducer elements 21 included in the transducer array 20.
  • the filling factor, area, and distance between adjacent elements of the transducer element 21 it can be measured by actually measuring the size of the signal electrode 22 of the transducer element 21 included in the transducer array 20. At this time, it may be observed and measured using a magnifying glass or a microscope as necessary.
  • the transducer array 20 is provided with a partial spherical surface 31 in the opening 30 of the photoacoustic probe 2.
  • the partial spherical surface 31 is a spherical crown which is a side surface portion of a spherical notch cut by a bottom surface of a cone having a vertex angle of 90 degrees and a generatrix length of 30 mm in a sphere having a radius of 30 mm and having a vertex angle of 90 degrees. It has the shape of
  • the partial spherical surface 31 has a diameter of the opening 30 of 42.4 mm, and an F number representing a ratio of the focal length to the diameter is 0.8.
  • the transducer element 21 is disposed on the concave portion on the partial spherical surface 31.
  • the transducer array 20 is formed so that the piezoelectric composite 24 forms a partial spherical surface 31.
  • the piezoelectric composite 24 formed into a partial spherical shape is heated by a plate-shaped piezoelectric composite 24 and sandwiched between a preliminarily heated spherical concave mold and a spherical convex shape, and is bent into a spherical shell shape. Can be obtained.
  • the transducer element 21 is obtained by providing the signal electrode 22 and the common electrode 23 as well as the signal line and the ground line on the piezoelectric composite 24 formed into a partial spherical shape.
  • the transducer element 21 is arranged in a partial spherical shape with the common electrode 23 facing the concave surface.
  • the transducer elements 21 are arranged by an adjacent circle arranging step of arranging a plurality of circles adjacent to each other in a partial spherical shape and a dividing step of dividing an area sandwiched between the plurality of circles arranged in the adjacent circle arranging step. be able to.
  • an additional circle is installed so as to be adjacent to the basic circle.
  • the basic circle and the additional circle may be collectively referred to as a virtual circle.
  • four basic circles 111 are installed near the array center 110 (step S1).
  • the virtual circle is installed such that the outer circumference of the virtual circle is in contact with the surface of the partial spherical surface 31 described with reference to FIG.
  • the center-to-center distance of each basic circle 111 is set to be less than twice the diameter of the basic circle. This is to prevent the additional circle 112 from being installed at a position overlapping the center 110 when the additional circle 112 described later is installed.
  • the diameters of the basic circle 111 and the additional circle 112 and the additional circle described later are set to the same length.
  • the diameters of these virtual circles correspond to the minimum distance between the gravity center positions 27 of the adjacent transducer elements 21 and can be appropriately set according to the desired performance of the transducer array 20.
  • the array center 110 is a position corresponding to the center of the transducer array 20.
  • an additional circle 112 is placed at a position where the distance from the array center 110 is the smallest, in contact with at least two of the basic circles 111 arranged in step S1. (Step S2). Here, four additional circles 112 are provided.
  • step S2 eight virtual circles obtained by adding the four additional circles 112 installed in step S2 to the basic circle 111 installed in step S1 are used as the basic circle 113, and step S2 and Similarly, an additional circle 114 is set (step S3).
  • four additional circles 114 are provided.
  • additional circles will be set in the same manner.
  • 12 virtual circles obtained by adding the four additional circles 114 installed in step S3 to the basic circle 113 are used as the basic circle 115, and the additional circle 116 is added in the same manner as in step S2. Is installed.
  • four additional circles 116 are provided.
  • FIG. 6A shows that four additional circles 118 are installed in addition to the basic circle 117 installed around the array center 110.
  • FIG. 6B shows a basic circle 117 and an additional circle 118 installed in a partial spherical surface 119 in a side view.
  • the partial spherical surface 119 has the same crown shape as the partial spherical surface 31 described above. In this way, the installation of additional circles is repeated until a desired number of virtual circles are installed according to the design of the transducer array 20. As shown in FIG.
  • the virtual circle can be installed as long as the additional circle to be installed is located within the virtual opening 130 having the same shape and the same area as the opening 30.
  • 256 virtual circles 121 are installed in the virtual opening 130.
  • the area occupied by the virtual circle 121 is indicated by a white area.
  • a region occupied by a portion other than the virtual circle 121 is indicated by a black region.
  • the division process will be described.
  • the region sandwiched between the virtual circles 121 arranged in the adjacent circle arranging step is divided, and the region occupied by the virtual circle 121 is expanded to this divided region.
  • the area between the virtual circles 121 is divided such that the area closest to the center of the virtual circle 121 adjacent to this area is incorporated in the virtual circle 121.
  • the virtual circle 121 installed on the partial spherical surface is divided on the surface of the partial spherical virtual opening 130.
  • the division step can be performed by Voronoi division with the center of the plurality of virtual circles 121 arranged in the adjacent circle arrangement step as a generating point.
  • Voronoi division means that when a plurality of points (hereinafter, sometimes referred to as “base points”) are arranged on a certain surface, any point on that surface belongs to the closest base point. This means dividing the surface. Specifically, the Voronoi division connects adjacent generating points with line segments, draws a vertical bisector between the generating points, and creates a Voronoi boundary connecting the vertical bisectors. Is done.
  • Voronoi division a Voronoi diagram in which the surface of the virtual opening 130 is divided into polygonal Voronoi regions defined by Voronoi boundaries is obtained. Each Voronoi region has one virtual circle 121 center. Further, by Voronoi division, a region occupied by the virtual circle 121 is expanded with a Voronoi boundary that divides the region between the adjacent virtual circles 121 as a boundary line.
  • the transducer array 20 in which the transducer elements 21 are arranged is obtained.
  • the shape of the signal electrode 22, that is, the shape of the transducer element 21 is determined by the Voronoi region delimited by the Voronoi boundary.
  • the transducer element 21 has a shape defined by Voronoi division with the center of a plurality of circles arranged adjacent to each other in a partial spherical shape.
  • the virtual circle 121 is not disposed by fine packing such as hexagonal packing, Arranged with fluctuations. For this reason, the virtual circle 121 is arranged with some roughness. Furthermore, the virtual circle 121 is expanded by performing the dividing step in this state, so that the transducer elements 21 are not randomly arranged at the center positions 27 but are arranged randomly.
  • the shape of the transducer element 21 is defined by Voronoi division, but is determined based on the center of the virtual circle 121 having the same diameter arranged adjacently.
  • the variation in the area of the transducer element 21 is small, and the variation in the distance between the gravity center positions 27 of the adjacent transducer elements 21 is small. .
  • the resources required for calculation are reduced.
  • the transducer elements can be arranged in a short time by reducing.
  • the photoacoustic measurement apparatus 1 is configured as described above, and irradiates the subject with irradiation light from the light irradiation unit 10.
  • the transducer array 20 detects a photoacoustic wave emitted from the subject and outputs a photoacoustic signal.
  • the signal processing unit 45 processes the photoacoustic signal to generate photoacoustic image data
  • the display unit 46 displays the photoacoustic image.
  • the beamform unit 44 controls the delay time of the photoacoustic signals from the plurality of transducer elements 21 to electronically deflect (steer) the focal position of the received beam from the geometric focal position. Can do.
  • the position detection unit 48 detects the position of the photoacoustic probe 2, thereby controlling the movement direction, movement amount, and movement speed of the mechanical scanning unit 47 via the control unit 41.
  • irradiation of irradiation light and photoacoustic waves at a desired position and timing are performed. Detection.
  • photoacoustic imaging can be performed combining the imaging by mechanical scanning and the imaging by an electronic focus.
  • the mechanical scanning unit 47 may be omitted, and the photoacoustic probe 2 may be manually moved and its position detected by the position detection unit 48.
  • the area distribution of the transducer elements 21 has the relationship shown in FIG. 8, and the distribution of the distance between adjacent elements has the relationship shown in FIG.
  • the transducer array 20 has an average area of the transducer elements 21 of 0.942 mm 2 , a standard deviation of 0.058 mm 2 , and a variation coefficient of 6.2%.
  • the transducer array 20 has an average distance between adjacent elements of the transducer element 21 of 2.47 mm, a standard deviation of 0.031 mm, and a variation coefficient of 1.3%.
  • the filling rate of the transducer array 20 is 98%.
  • the beam profile of the transducer array 20 was estimated by numerical simulation.
  • the beam profile is defined on the XY plane so that the Z-axis passes through the center of the array in the XYZ 3-axis orthogonal coordinate system, and the direction of the received beam when not deflected coincides with the direction of the Z-axis.
  • the receiving sensitivity in the range of ⁇ 3 mm square in the XY direction from the center of the array is shown.
  • focus movement amount the amount of movement of the focal position due to electronic deflection (hereinafter sometimes referred to as “focus movement amount”) is 0 mm, that is, the received beam is not deflected.
  • the beam profile of the transducer array 20 is shown.
  • FIG. 10 (a) shows a one-dimensional intensity distribution from the Y-axis direction passing through the center of the array.
  • the horizontal axis represents the distance (mm) from the X-axis array center
  • the vertical axis represents the intensity of reception sensitivity.
  • the amplitude of the intensity of the reception sensitivity is represented by a relative value where the reception sensitivity of the main response is 1.
  • FIG. 10B shows a two-dimensional intensity distribution of reception sensitivity from the Z-axis direction.
  • the horizontal axis indicates the distance (mm) from the X-axis array center
  • the vertical axis indicates the distance (mm) from the Y-axis array center
  • the intensity of reception sensitivity is the main response.
  • the logarithm (dB) of the ratio of the main lobe peak to the reception sensitivity is shown.
  • FIGS. 11A and 11B show a beam profile of the transducer array 20 when the amount of focal movement is 1 mm in the X-axis direction.
  • FIG. 11A shows a one-dimensional intensity distribution as in FIG.
  • FIG.11 (b) has shown two-dimensional intensity distribution similarly to FIG.10 (b).
  • transducer array 220 in which fan-shaped transducer elements 221 are regularly arranged without gaps.
  • the transducer array 220 has substantially the same opening area as the transducer array 20.
  • the transducer array 220 divides the ring portion excluding the center of the circle into nine rings, so that nine rings with different diameters are arranged on the outer circumference and inner circumference. Are arranged adjacent to each other. Furthermore, each of the rings is equally divided to form a fan-shaped element 221. There are 8, 16, 20, 24, 28, 32, 36, 44, and 48 elements 221 from the innermost ring to the outer ring, respectively, and 256 elements in the entire transducer array 220. 221. Further, in the transducer array 220, the ring width is set so that the areas of the elements 221 are the same.
  • the transducer array 220 is provided with a partial spherical surface 231 as shown in FIG.
  • the partial spherical surface 231 has a spherical crown shape in a sphere having a radius of 30 mm.
  • the transducer element 221 is arranged in a partial spherical shape on the concave surface portion on the partial spherical surface 231.
  • FIG. 13 (a) shows a one-dimensional intensity distribution with a focal shift amount of 0 mm, as in FIG. 10 (a).
  • FIG. 13B shows a two-dimensional intensity distribution in the case where the focal point movement amount is 0 mm, as in FIG.
  • FIG. 14A shows a one-dimensional intensity distribution when the focal amount is 1 mm
  • FIG. 14B shows a two-dimensional intensity distribution when the focal amount is 1 mm, as in FIG. 11B.
  • a transducer array 320 in which circular transducer elements 321 are arranged without gaps is given (see FIG. 7).
  • the transducer array 320 has substantially the same opening area as the transducer array 20.
  • a virtual circle is arranged in the adjacent circle arranging step described with reference to FIG. 7, and the position and shape of the virtual circle are directly used as the position and shape of the signal electrode without performing the dividing step. is there.
  • the circular transducer elements 321 are randomly arranged in a partial spherical shape.
  • the filling factor of the transducer array 320 is 83%.
  • FIG. 15A shows a one-dimensional intensity distribution in the case where the amount of focal movement is 0 mm
  • FIG. 15B shows a two-dimensional intensity distribution in the case where the focal point movement amount is 0 mm
  • FIG. 16A shows a one-dimensional intensity distribution in the case where the amount of focal movement is 1 mm
  • FIG. 11B shows a two-dimensional intensity distribution when the focal amount is 1 mm, as in FIG. 11B.
  • FIG. 17 shows the relationship between the focal shift amount and the unnecessary response level for the array 20 of the first embodiment, the array 220 of the reference example 1, the array 320 of the reference example 2, and the array 420 of the second embodiment described later. Is shown.
  • the unnecessary response level was calculated by regarding the response in the region separated by 0.8 mm or more from the focal point as the unnecessary response.
  • the array 320 is about 2 mm around the center of the array when the received beam is not deflected. It can be seen that an unnecessary response appears at the position of. From this, in the array 320 in which the circular elements 321 are randomly arranged, it is considered that unnecessary responses are increased due to the generation of grating lobes due to the gaps existing between the elements 321. On the other hand, as is apparent from the beam profiles of FIGS. 10A and 10B, in the array 20, since the elements 21 are arranged adjacent to each other without a gap, an unnecessary response at the time of non-deflection is observed. It can be seen that it is about the same as 220.
  • the unnecessary response level due to the grating lobe was greatly increased when the focal amount was deflected by 1 mm.
  • the unnecessary response level was increased at the time of non-deflection when the focal point movement amount was 0 mm.
  • the array 20 of the present embodiment has an unnecessary response level similar to that of the array 320 of Reference Example 2 when deflected, but has an unnecessary response level similar to that of the array 220 of Reference Example 1 when not deflected. ing.
  • the transducer array 20 has little unnecessary response when the received beam is not deflected, and can suitably perform photoacoustic imaging. Therefore, for example, when imaging in a wide range is required, imaging is performed by changing the position of the array 20 by moving the photoacoustic probe 2 by the mechanical scanning unit 47, and electronic deflection is performed in imaging in a narrow range. By doing so, photoacoustic imaging can be performed with high sensitivity.
  • Such narrow range imaging is preferably in the range of 0 to 0.4 mm from the array center, more preferably in the range of 0 to 0.3 mm from the array center, and still more preferably in the range of 0 to 0.2 mm from the array center. It is.
  • the transducer elements 21 are arranged adjacent to each other without a gap, so that the opening 30 of the photoacoustic probe 2 is covered with the transducer elements 21.
  • the photoacoustic wave generated from the subject is detected by the transducer element 21, thereby reducing the loss caused by receiving the photoacoustic wave at the portion of the opening 30 where the transducer element 21 is not provided.
  • by arranging the transducer elements 21 adjacent to each other without a gap it is possible to suppress an unnecessary response at the time of non-deflection caused by a grating lobe generated when a gap is present between the elements. it can.
  • the transducer array 20 has an undesired response at the time of deflection caused by grating lobes caused when the elements are regularly arranged, because the gravity center positions 27 of the transducer elements 21 are randomly arranged two-dimensionally. Can be suppressed. That is, the transducer array 20 achieves both improvement in sensitivity by increasing the filling factor of the transducer elements 21 and suppression of unnecessary responses due to grating lobes.
  • the gravity center positions 27 of the transducer elements 21 are randomly arranged two-dimensionally. Furthermore, the transducer array 20 has an unnecessary response level with respect to the main response of ⁇ 30 dB or less when the received beam is not deflected. Thereby, the transducer array 20 in which the transducer elements 21 are arranged adjacent to each other without a gap is obtained. Therefore, similarly to the above [1], the transducer array 20 can achieve both improvement in sensitivity by increasing the filling factor of the transducer elements 21 and suppression of unnecessary responses due to grating lobes.
  • the transducer elements 21 are arranged in a partial spherical shape. Thereby, the ultrasonic wave emitted from the vicinity of the geometric focus formed by the transducer element 21 can be efficiently detected. Moreover, the transducer array 20 can arrange
  • the transducer array 20 has a shape in which the transducer elements 21 are defined by Voronoi division with the center of a plurality of circles arranged adjacent to each other in a partial spherical shape.
  • the transducer elements 21 are randomly arranged in a spherical region, and variations in the area of the transducer element 21 and the distance between adjacent elements can be suppressed.
  • a transducer array according to the second embodiment will be described with reference to FIGS.
  • the second embodiment is also simply referred to as this embodiment.
  • the second embodiment is configured similarly except that the transducer array 20 is changed to the transducer array 420 in the photoacoustic measurement device 1 and the photoacoustic probe 2 according to the first embodiment. Therefore, description of the same components as those in the first embodiment will be omitted, and description will be made using the same symbols.
  • the transducer array 420 includes a plurality of transducer elements 421 capable of detecting ultrasonic waves.
  • the transducer element 421 has a layer structure similar to that of the transducer array 20 described with reference to FIG. 2, but the shape of the signal electrode 22 is different and the arrangement relationship of the elements 421 is also changed.
  • FIG. 18A is a diagram showing the positional relationship between the light irradiation unit 10 and the transducer array 420 in the opening 430 on the side in contact with the inspection object of the photoacoustic probe 2.
  • FIG. 18A shows the transducer elements 421 arranged in a partial spherical shape projected on a plane.
  • the area occupied by the transducer element 421 is shown as a white area.
  • region which parts other than the transducer element 421 and the light irradiation part 10 occupy is shown by the black area
  • the transducer array 420 As shown in FIG. 18A, a plurality of transducer elements 421 are randomly arranged in a two-dimensional manner with respect to the respective gravity center positions. Further, the transducer array 420 is provided with a partial spherical surface 431 as shown in FIG. Similar to the partial spherical surface 31, the partial spherical surface 431 has a spherical crown shape in a sphere having a radius of 30 mm. The transducer element 421 is disposed in a concave shape on the partial spherical surface 431 in a partial spherical shape. Further, the plurality of transducer elements 421 are arranged adjacent to each other without a gap.
  • the transducer elements 421 are arranged between the adjacent transducer elements 421 so that the sides of the signal electrodes 22 face each other. Further, the transducer element 421 has a polygonal shape.
  • the transducer array 420 has a variation in the position of the center of gravity and the shape and area of the transducer element 421 compared to the transducer array 20.
  • the ratio of the maximum area of the transducer array 420 to the minimum area of the transducer elements 421 included in the transducer array 420 (hereinafter sometimes referred to as “maximum / minimum area ratio”) is preferably 15 or less, more preferably 10 or less. More preferably, it is 5 or less. If the maximum / minimum area ratio is more than the upper limit of the above range, an unnecessary response equivalent to or higher than that of the transducer array 220 may occur during deflection.
  • a method for arranging the transducer elements 421 will be described.
  • the placement of the transducer elements 421 is obtained by a virtual point placement step for placing random points on the partial sphere, a division step for performing Voronoi division using the points arranged in the virtual point placement step as a mother point, and Voronoi division. And an extraction process for extracting a desired Voronoi diagram from the Voronoi diagram.
  • a desired number of points are set at random positions in a virtual opening having the same shape and area as the opening 430.
  • 256 virtual points are arranged in a partial spherical shape.
  • a Voronoi diagram is obtained by dividing the surface of the virtual opening into polygonal Voronoi regions by using Voronoi division, using the virtual points arranged in the virtual point arranging step as mother points. At this time, the division is performed on the surface of the partially spherical virtual opening.
  • the creation of a Voronoi diagram with the virtual point placement step and the division step as one set is repeated a plurality of times.
  • the maximum / minimum area ratio tends to be lower, and a desired Voronoi diagram with less unnecessary response tends to be obtained. Therefore, preferably 10 4 times, more preferably 10 6 times, Preferably 10 8 times. In the present embodiment, it was conducted 10 4 times the creation of Voronoi diagram.
  • a Voronoi diagram having the smallest maximum / minimum area ratio is extracted from the Voronoi diagram obtained in the dividing step.
  • the arrangement of the transducer elements 421 is determined by the Voronoi region of the extracted Voronoi diagram.
  • a transducer array 420 in which the transducer elements 421 are arranged is obtained.
  • the shape of the signal electrode 22, that is, the transducer element 421 is determined by the Voronoi region delimited by the Voronoi boundary. As described above, it can be said that the transducer element 421 has a shape defined by Voronoi division using a plurality of randomly arranged points as mother points.
  • the placement, shape, and area of the transducer elements 421 can be determined based on randomly placed virtual points.
  • the transducer array 420 which shows the unnecessary response level comparable as the transducer array 20 of 1st embodiment can be obtained.
  • the number of Voronoi diagram generations is about 10 20 times.
  • the transducer array 420 detects a photoacoustic wave emitted from the subject and outputs a photoacoustic signal. Further, by controlling the delay amount of the photoacoustic signal from the plurality of transducer elements 421, the focal position of the received beam can be electronically deflected (steered).
  • the area distribution of the transducer elements 421 is in the relationship shown in FIG. 19, and the distribution of the distance between adjacent elements is in the relationship shown in FIG.
  • the transducer array 420 has an average area of the transducer elements 421 of 1.023 mm 2 , a standard deviation of 0.478 mm 2 , and a coefficient of variation of 46.7%.
  • the transducer array 420 has an average distance between adjacent elements of the transducer element 421 of 1.963 mm, a standard deviation of 0.465 mm, and a variation coefficient of 23.7%.
  • the maximum and minimum area ratio of the transducer array 220 is 10.
  • the filling rate of the transducer array 220 is 99% or more.
  • FIG. 21 (a) shows a one-dimensional intensity distribution with a focal shift amount of 0 mm, as in FIG. 10 (a).
  • FIG. 21B shows a two-dimensional intensity distribution when the focal amount is 0 mm, as in FIG. 10B.
  • FIG. 22A shows a one-dimensional intensity distribution when the focal amount is 1 mm, as in FIG. 11A.
  • FIG. 22B shows a two-dimensional intensity distribution when the focal amount is 1 mm, as in FIG. 11B.
  • the elements 21 are arranged adjacent to each other without a gap. It turns out that it is comparable.
  • the array 420 of the present embodiment has an unnecessary response level comparable to that of the array 320 of Reference Example 2 when deflected, but is comparable to the array 220 of Reference Example 1 when not deflected. Unnecessary response level. That is, the array 420 of the present embodiment suppresses unnecessary responses at the time of deflection that occur in a regularly arranged array, and also suppresses unnecessary responses at the time of non-deflection that occur in an array having a gap between elements. .
  • the transducer array 420 is configured as described above to achieve both improvement in sensitivity by increasing the filling ratio of the transducer elements 421 and suppression of unnecessary responses due to grating lobes. Furthermore, since the transducer array 420 exhibits the same unnecessary response level as the array 20 of the first embodiment, the positions of the center of gravity are randomly arranged in a two-dimensional manner and are arranged adjacent to each other without a gap. It has been confirmed that the effect of the present invention is achieved by a transducer array including the transducer elements.
  • the four basic circles 111 are arranged at equal intervals and equidistant from the array center 110 with the array center 110 as the center.
  • the additional circles 112, 113, and 116 are arranged in a symmetrical positional relationship, and the virtual circle 121 also has four-time symmetry.
  • the arrangement of the virtual circle is not limited to this. For example, by arranging the basic circles 111 in an unequal positional relationship, the virtual circles may be arranged so as not to have symmetry.
  • the number of basic circles 111 is not limited to four, and an arbitrary number of one or more can be installed.
  • the number of the basic circles 111 is three or more.
  • the virtual circle is installed so that the peripheral portion of the array center 11 is opened so that the virtual circle does not overlap the array center 110. Since this is performed to provide the light irradiation unit 10 at the position of the array center 110, when the position of the light irradiation unit 10 is changed to a position other than the array center 110, the virtual position is set at the position of the array center 110.
  • a circle may be set up.
  • a virtual region may be installed by providing a predetermined region for providing the light irradiation unit 10 at an arbitrary position so that the region does not overlap with the virtual circle.
  • circular virtual circles are installed adjacent to each other.
  • the shape of the figure at the time of installation is not limited to a circle, and an ellipse or a polygon may be installed adjacent to each other. It is preferable to use a circular virtual circle from the viewpoint that calculation at the time of installation is easy and the distance between the center positions of adjacent figures after installation is uniform.
  • FIG. 23 shows a photoacoustic probe 2 including five light irradiation units 510a to 510e and a transducer array 520 in which a plurality of transducer elements 521 are arranged.
  • one light irradiation unit 510a is provided at the center of the transducer array 520, and four light irradiation units 510b to 510e are provided at equal positions around the transducer array 520.
  • the photoacoustic probe 2 includes two or more light irradiation units 510
  • the light irradiation units 510 corresponding to the number of the light irradiation units 510 are provided in advance in the adjacent circle arrangement step and the virtual point arrangement step. And a virtual circle and a virtual point are not arranged in this region.
  • a Voronoi region is created by excluding a region where the light irradiation unit 510 is provided. Thereby, arrangement
  • the transducer elements 21 are arranged in a partial spherical shape and the transducer array 20 is provided as the partial spherical surface 31 has been described.
  • the transducer elements 21 may be arranged in a planar shape, and the transducer array 20 may be a two-dimensional planar array.
  • the transducer array 20 in which the transducer elements 21 are arranged is configured by dividing the piezoelectric body 25 included in the piezoelectric composite 24 by the signal electrode 22 has been described.
  • the present invention is not limited to this, and the transducer array 20 may be configured by previously creating transducer elements each having a piezoelectric body and arranging the transducer elements. Further, the transducer array 20 may be configured by arranging the transducer elements 21 using cMUT (Capacitive Micromachined Ultrasonic Transducer).
  • cMUT Capacitive Micromachined Ultrasonic Transducer
  • a biological blood vessel has been described as an example of the inspection object.
  • the inspection object is not limited to this, and may be a living organ, tissue, cell, or the like. Alternatively, metal, resin, rubber, wood, glass, ceramic, and the like may be targeted.
  • the example in which the photoacoustic imaging is performed by detecting the photoacoustic signal using the photoacoustic probe 2 including the light irradiation unit 10 and the transducer array 20 has been described.
  • the application target of the transducer array 20 is not limited to this.
  • the transducer array 20 can be used for an ultrasonic transmitter that outputs ultrasonic waves from the transducer array 20. Further, it can be used in an ultrasonic diagnostic apparatus and an ultrasonic flaw detection test apparatus that transmit ultrasonic waves to an inspection object and detect a reflected wave reflected by the inspection object by the transducer array 20.
  • Photoacoustic measuring device Photoacoustic probe 10 Light irradiation part 20 Transducer array 21 Transducer element 22 Signal electrode 23 Common electrode 24 Piezoelectric composite 25 Piezoelectric body 26 Polymer body 27 Center of gravity position 30 Opening part 41 Control part 42 Preamplifier part 43 AD conversion Unit 44 beam form unit 45 signal processing unit 46 display unit 47 mechanical scanning unit 48 position detection unit

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

Provided is a transducer array which both improves sensitivity and suppresses unnecessary responses. In a transducer array (20) provided with a plurality of transducer elements (21) capable of detecting ultrasound waves, the positions of the centers of gravity of the plurality of transducer elements (21) are arranged at random in a two-dimensional shape, and the plurality of transducer element (21) are disposed adjacent to one another without a gap.

Description

トランスデューサアレイ、光音響プローブ、及び光音響計測装置Transducer array, photoacoustic probe, and photoacoustic measuring device
 本発明は、複数のトランスデューサ素子を備えるトランスデューサアレイ、並びにこれを備えた光音響プローブ及び光音響計測装置に関する。 The present invention relates to a transducer array including a plurality of transducer elements, and a photoacoustic probe and a photoacoustic measuring apparatus including the transducer array.
 光音響効果を利用して生体等の検査対象物の内部の撮像(光音響イメージング)を行う光音響計測装置が知られている。この撮像を行う際には、まず光音響計測装置が生体に対して所定の波長の光を照射する。すると、生体内部に含まれる物質が光エネルギーを吸収して、生体組織の熱膨張に伴い、弾性波である光音響波が発生する。そして、光音響計測装置が、この光音響波を超音波として検出する。さらに、検出した光音響信号に基づいて光音響計測装置が光音響画像を作成することで、光音響イメージングが行われる。 There is known a photoacoustic measuring apparatus that performs imaging (photoacoustic imaging) of an inside of an inspection target such as a living body using a photoacoustic effect. When performing this imaging, first, the photoacoustic measurement device irradiates a living body with light having a predetermined wavelength. Then, a substance contained in the living body absorbs light energy, and a photoacoustic wave, which is an elastic wave, is generated with the thermal expansion of the living tissue. And a photoacoustic measuring device detects this photoacoustic wave as an ultrasonic wave. Furthermore, photoacoustic imaging is performed by a photoacoustic measuring device creating a photoacoustic image based on the detected photoacoustic signal.
 超音波を検出可能なトランスデューサ素子(以降、「素子」と称する場合がある。)を複数配置することで構成されたトランスデューサアレイ(以降、「アレイ」と称する場合がある。)が、光音響イメージングに用いられている。トランスデューサアレイを用いることで、受信ビームを電子的に偏向(ステアリング)することができる。中でも、素子が二次元に配置されている場合には、三次元にわたって受信ビームをステアリングすることで、検査対象物の内部を三次元撮像することができる。 A transducer array (hereinafter sometimes referred to as “array”) configured by arranging a plurality of transducer elements (hereinafter sometimes referred to as “elements”) capable of detecting ultrasonic waves is a photoacoustic imaging. It is used for. By using the transducer array, the received beam can be deflected (steered) electronically. In particular, when the elements are arranged two-dimensionally, the inside of the inspection object can be three-dimensionally imaged by steering the reception beam over three dimensions.
 アレイの感度を向上させるために、トランスデューサアレイの開口立体角を大きくし、素子を密に配置することが行われている。これにより、S/N比を向上させることができ、結果として、より深部の検査が行えるようになる。アレイの感度をさらに向上させるためには、素子の電気的インピーダンスを、その素子に接続されるケーブルの電気的インピーダンスやプリアンプの入力インピーダンスと同程度かそれら以下とすることが望ましい。この場合には、素子のサイズをある程度大きくする必要がある。しかしながら、受信する超音波の波長λに対して素子のサイズがλ/2より大きくなると、素子の間隔をλ/2より小さくすることが困難となる。さらにこのとき、素子が等間隔に配列される場合には、グレーティングローブが発生することで不要応答が増加することになる。中でも、受信ビームをステアリングした際には、グレーティングローブの影響を大きく受けることになる。 In order to improve the sensitivity of the array, the solid aperture of the transducer array is increased and the elements are densely arranged. As a result, the S / N ratio can be improved, and as a result, deeper inspection can be performed. In order to further improve the sensitivity of the array, it is desirable that the electrical impedance of the element be equal to or less than the electrical impedance of the cable connected to the element and the input impedance of the preamplifier. In this case, it is necessary to increase the element size to some extent. However, when the element size is larger than λ / 2 with respect to the wavelength λ of the received ultrasonic wave, it is difficult to make the element interval smaller than λ / 2. Further, at this time, if the elements are arranged at equal intervals, a grating lobe is generated, thereby increasing an unnecessary response. In particular, when the reception beam is steered, it is greatly affected by the grating lobe.
 グレーティングローブの発生を抑えるために、素子を不等間隔に配置する試みがなされている。例えば、特許文献1では、対数渦巻線に沿って複数の素子をさまざまな半径において間隔をあけて配置したアレイが開示されている。 An attempt has been made to arrange the elements at unequal intervals in order to suppress the occurrence of grating lobes. For example, Patent Document 1 discloses an array in which a plurality of elements are arranged at various radii at intervals along a logarithmic spiral.
特開平10-93335号公報Japanese Patent Laid-Open No. 10-93335
 特許文献1の技術では、素子を所望の配置としたことで、トランスデューサアレイの開口面積に対する素子の占める面積、すなわち素子の充填率が低下しているため、トランスデューサアレイの感度が低下するという課題があった。すなわち、従来の技術では、グレーティングローブの発生を抑えて不要応答を抑圧しようとした場合には、トランスデューサアレイの感度が低下してしまい、感度の向上と不要応答の抑圧とを両立することが困難であった。 In the technique of Patent Document 1, since the elements are arranged in a desired manner, the area occupied by the elements with respect to the opening area of the transducer array, that is, the filling factor of the elements is reduced, so that the sensitivity of the transducer array is reduced. there were. In other words, in the conventional technique, when suppressing unwanted responses by suppressing the occurrence of grating lobes, the sensitivity of the transducer array decreases, making it difficult to achieve both improved sensitivity and suppression of unwanted responses. Met.
 本発明は、かかる背景技術に鑑みてなされたものであり、その目的は、感度の向上と、不要応答の抑圧とを両立するトランスデューサアレイ、並びにこれを備えた光音響プローブ及び光音響計測装置を提供することを目的とする。なお、この目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも本件の他の目的である。 The present invention has been made in view of the background art, and an object of the present invention is to provide a transducer array that achieves both improvement in sensitivity and suppression of unnecessary response, and a photoacoustic probe and a photoacoustic measurement apparatus including the transducer array. The purpose is to provide. The present invention is not limited to this purpose, and is a function and effect derived from each configuration shown in the embodiment for carrying out the invention described later, and has another function and effect that cannot be obtained by conventional techniques. is there.
 本発明は、以下に示す種々の具体的態様を提供する。
[1]超音波を検出可能な複数のトランスデューサ素子を備えるトランスデューサアレイであって、前記複数のトランスデューサ素子は、それぞれの重心位置が2次元状にランダムに配置されており、且つ前記複数のトランスデューサ素子は、隙間なく隣接して配置されていることを特徴とするトランスデューサアレイ。
The present invention provides various specific embodiments shown below.
[1] A transducer array including a plurality of transducer elements capable of detecting ultrasonic waves, each of the plurality of transducer elements being randomly arranged in a two-dimensional manner, and the plurality of transducer elements Are arranged adjacent to each other without a gap.
[2]超音波を検出可能な複数のトランスデューサ素子を備えるトランスデューサアレイであって、前記複数のトランスデューサ素子は、それぞれの重心位置が2次元状にランダムに配置されており、受信ビームの非偏向時において、主応答に対する不要応答レベルが-30dB以下であることを特徴とするトランスデューサアレイ。 [2] A transducer array including a plurality of transducer elements capable of detecting an ultrasonic wave, each of the plurality of transducer elements being randomly arranged in a two-dimensional manner, and when the received beam is not deflected The transducer array is characterized in that an unnecessary response level with respect to the main response is -30 dB or less.
[3]前記トランスデューサ素子は、部分球面状に配置されている、[1]又は[2]に記載のトランスデューサアレイ。
[4]前記トランスデューサ素子は、部分球面状に隣接して配置された複数の円の中心を母点としたボロノイ分割によって規定される形状を有する、[1]~[3]のいずれか1項に記載のトランスデューサアレイ。
[3] The transducer array according to [1] or [2], wherein the transducer elements are arranged in a partial spherical shape.
[4] The transducer element according to any one of [1] to [3], wherein the transducer element has a shape defined by Voronoi division with the center of a plurality of circles arranged adjacent to each other in a partial spherical shape. The transducer array described in 1.
[5]前記トランスデューサアレイの開口面積に対する、前記トランスデューサ素子の占める面積を示す充填率が、90%以上である、[1]~[4]のいずれか1項に記載のトランスデューサアレイ。
[6]前記複数のトランスデューサ素子の面積の変動係数が、50%以下である、[1]~[5]のいずれか1項に記載のトランスデューサアレイ。
[7]隣接する前記トランスデューサ素子の重心位置間の距離の変動係数が、25%以下である、[1]~[6]のいずれか1項に記載のトランスデューサアレイ。
[5] The transducer array according to any one of [1] to [4], wherein a filling factor indicating an area occupied by the transducer element with respect to an opening area of the transducer array is 90% or more.
[6] The transducer array according to any one of [1] to [5], wherein an area variation coefficient of the plurality of transducer elements is 50% or less.
[7] The transducer array according to any one of [1] to [6], wherein a variation coefficient of a distance between centroid positions of adjacent transducer elements is 25% or less.
[8][1]~[7]のいずれか1項に記載のトランスデューサアレイと、光源から発せられる光を被検体に照射する光照射部とを備え、前記トランスデューサアレイは、前記光の照射によって前記被検体内に生じた光音響波を検出して光音響信号を出力することを特徴とする光音響プローブ。 [8] A transducer array according to any one of [1] to [7], and a light irradiation unit that irradiates a subject with light emitted from a light source, the transducer array being irradiated with the light. A photoacoustic probe which detects a photoacoustic wave generated in the subject and outputs a photoacoustic signal.
[9][8]に記載の光音響プローブと、前記光音響信号を処理して、光音響画像データを生成する信号処理部とを備えることを特徴とする光音響計測装置。 [9] A photoacoustic measurement device comprising: the photoacoustic probe according to [8]; and a signal processing unit that processes the photoacoustic signal to generate photoacoustic image data.
 本発明によれば、感度の向上と、グレーティングローブに起因する不要応答の抑圧とを両立させたトランスデューサアレイ、並びにこれを備えた光音響プローブ及び光音響計測装置を提供することができる。 According to the present invention, it is possible to provide a transducer array that achieves both improvement in sensitivity and suppression of unnecessary response due to a grating lobe, and a photoacoustic probe and a photoacoustic measuring apparatus including the transducer array.
第一実施形態の光音響計測装置の構成を示すブロック図である。It is a block diagram which shows the structure of the photoacoustic measuring device of 1st embodiment. 第一実施形態のトランスデューサアレイの構造を示す部分斜視図である。It is a fragmentary perspective view which shows the structure of the transducer array of 1st embodiment. 第一実施形態におけるトランスデューサ素子の配置を説明するための模式図であり、(a)はトランスデューサアレイの平面図、(b)はトランスデューサアレイの側面図である。It is a schematic diagram for demonstrating arrangement | positioning of the transducer element in 1st embodiment, (a) is a top view of a transducer array, (b) is a side view of a transducer array. 第一実施形態におけるトランスデューサ素子の充填率を説明するための模式図である。It is a schematic diagram for demonstrating the filling factor of the transducer element in 1st embodiment. 第一実施形態におけるトランスデューサ素子の配置方法を説明するための模式図であり、(a)は8個の円を配置した場合を示す図であり、(b)は12個の円を配置した場合を示す図であり、(c)は16個の円を配置した場合を示す図である。It is a schematic diagram for demonstrating the arrangement | positioning method of the transducer element in 1st embodiment, (a) is a figure which shows the case where eight circles are arrange | positioned, (b) is the case where twelve circles are arranged (C) is a figure which shows the case where 16 circles are arrange | positioned. 第一実施形態におけるトランスデューサ素子の配置方法を説明するための模式図であり、(a)はトランスデューサアレイの平面図、(b)はトランスデューサアレイが設けられる部分球面の側面図である。It is a schematic diagram for demonstrating the arrangement method of the transducer element in 1st embodiment, (a) is a top view of a transducer array, (b) is a side view of the partial spherical surface in which a transducer array is provided. 第一実施形態におけるトランスデューサ素子の配置方法を説明するための模式図であり、トランスデューサアレイの平面図である。It is a schematic diagram for demonstrating the arrangement method of the transducer element in 1st embodiment, and is a top view of a transducer array. 第一実施形態のトランスデューサアレイの素子面積と素子数との関係を示すヒストグラムである。It is a histogram which shows the relationship between the element area of the transducer array of 1st embodiment, and the number of elements. 第一実施形態のトランスデューサアレイの隣接素子間距離と素子数との関係を示すヒストグラムである。It is a histogram which shows the relationship between the distance between adjacent elements of the transducer array of 1st embodiment, and the number of elements. 第一実施形態のトランスデューサアレイの焦点移動量が0mmの場合のビームプロファイルを示す図であり、(a)は1次元強度分布を示す図であり、(b)は2次元強度分布を示す図である。It is a figure which shows a beam profile in case the focal displacement of the transducer array of 1st embodiment is 0 mm, (a) is a figure which shows a one-dimensional intensity distribution, (b) is a figure which shows a two-dimensional intensity distribution. is there. 第一実施形態のトランスデューサアレイの焦点移動量が1mmの場合のビームプロファイルを示す図であり、(a)は1次元強度分布を示す図であり、(b)は2次元強度分布を示す図である。It is a figure which shows a beam profile in case the focal displacement of the transducer array of 1st embodiment is 1 mm, (a) is a figure which shows 1-dimensional intensity distribution, (b) is a figure which shows 2D intensity distribution. is there. 参考例1におけるトランスデューサ素子の配置を説明するための模式図であり、(a)はトランスデューサアレイの平面図、(b)はトランスデューサアレイの側面図である。It is a schematic diagram for demonstrating arrangement | positioning of the transducer element in the reference example 1, (a) is a top view of a transducer array, (b) is a side view of a transducer array. 参考例1のトランスデューサアレイの焦点移動量が0mmの場合のビームプロファイルを示す図であり、(a)は1次元強度分布を示す図であり、(b)は2次元強度分布を示す図である。It is a figure which shows a beam profile in case the amount of focal movements of the transducer array of the reference example 1 is 0 mm, (a) is a figure which shows a one-dimensional intensity distribution, (b) is a figure which shows a two-dimensional intensity distribution. . 参考例1のトランスデューサアレイの焦点移動量が1mmの場合のビームプロファイルを示す図であり、(a)は1次元強度分布を示す図であり、(b)は2次元強度分布を示す図である。It is a figure which shows the beam profile in case the amount of focal movements of the transducer array of the reference example 1 is 1 mm, (a) is a figure which shows a one-dimensional intensity distribution, (b) is a figure which shows a two-dimensional intensity distribution. . 参考例2のトランスデューサアレイの焦点移動量が0mmの場合のビームプロファイルを示す図であり、(a)は1次元強度分布を示す図であり、(b)は2次元強度分布を示す図である。It is a figure which shows a beam profile in case the amount of focal movements of the transducer array of the reference example 2 is 0 mm, (a) is a figure which shows a one-dimensional intensity distribution, (b) is a figure which shows a two-dimensional intensity distribution. . 参考例2のトランスデューサアレイの焦点移動量が1mmの場合のビームプロファイルを示す図であり、(a)は1次元強度分布を示す図であり、(b)は2次元強度分布を示す図である。It is a figure which shows the beam profile in case the amount of focal movements of the transducer array of the reference example 2 is 1 mm, (a) is a figure which shows a one-dimensional intensity distribution, (b) is a figure which shows a two-dimensional intensity distribution. . 焦点移動量と不要応答レベルとの関係を示すグラフである。It is a graph which shows the relationship between a focal moving amount | distance and an unnecessary response level. 第二実施形態におけるトランスデューサ素子の配置を説明するための模式図であり、(a)はトランスデューサアレイの平面図、(b)はトランスデューサアレイの側面図である。It is a schematic diagram for demonstrating arrangement | positioning of the transducer element in 2nd embodiment, (a) is a top view of a transducer array, (b) is a side view of a transducer array. 第二実施形態のトランスデューサアレイの素子面積と素子数との関係を示すヒストグラムである。It is a histogram which shows the relationship between the element area of the transducer array of 2nd embodiment, and the number of elements. 第二実施形態のトランスデューサアレイの隣接素子間距離と素子数との関係を示すヒストグラムである。It is a histogram which shows the relationship between the distance between adjacent elements of the transducer array of 2nd embodiment, and the number of elements. 第二実施形態のトランスデューサアレイの焦点移動量が0mmの場合のビームプロファイルを示す図であり、(a)は1次元強度分布を示す図であり、(b)は2次元強度分布を示す図である。It is a figure which shows a beam profile in case the focal displacement of the transducer array of 2nd embodiment is 0 mm, (a) is a figure which shows a one-dimensional intensity distribution, (b) is a figure which shows a two-dimensional intensity distribution. is there. 第二実施形態のトランスデューサアレイの焦点移動量が1mmの場合のビームプロファイルを示す図であり、(a)は1次元強度分布を示す図であり、(b)は2次元強度分布を示す図である。It is a figure which shows the beam profile in case the focal displacement of the transducer array of 2nd embodiment is 1 mm, (a) is a figure which shows 1-dimensional intensity distribution, (b) is a figure which shows 2D intensity distribution. is there. 変形例におけるトランスデューサ素子の配置を説明するための模式図であり、トランスデューサアレイの平面図である。It is a schematic diagram for demonstrating arrangement | positioning of the transducer element in a modification, and is a top view of a transducer array.
 以下、図面を参照して、本発明の一実施形態としてのトランスデューサアレイ、並びにこれを備えた光音響プローブ及び光音響計測装置について説明する。以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。本実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができる。また、必要に応じて取捨選択することができ、あるいは適宜組み合わせることができる。 Hereinafter, a transducer array, a photoacoustic probe and a photoacoustic measurement apparatus including the transducer array according to an embodiment of the present invention will be described with reference to the drawings. The embodiment described below is merely an example, and there is no intention of excluding various modifications and technical applications that are not explicitly described in the following embodiment. Each configuration of the present embodiment can be implemented with various modifications without departing from the spirit thereof. Further, they can be selected as necessary, or can be appropriately combined.
 以下の説明では、図面の寸法比率は、図示の比率に限定されるものではない。また、本明細書において、「~」を用いてその前後に数値又は物性値を挟んで表現する場合、その前後の数値又は物性値を含むものとして用いることとする。例えば「1~100」との数値範囲の表記は、その上限値「1」及び下限値「100」の双方を包含するものであり、「1以上100以下」を表す。他の数値範囲の表記も同様である。 In the following description, the dimensional ratios in the drawings are not limited to the illustrated ratios. Further, in this specification, when “˜” is used to express a numerical value or a physical property value before and after that, it is used as including the numerical value or physical property value before and after that. For example, the description of a numerical range of “1 to 100” includes both the upper limit value “1” and the lower limit value “100”, and represents “1 to 100”. The same applies to other numerical ranges.
[1.第一実施形態]
 第一実施形態に係る光音響計測装置、光音響プローブ、及びトランスデューサアレイについて、図1~図17を参照して説明する。以降、第一実施形態を、単に本実施形態ともいう。なお、本実施形態では、検査対象物が生体の血管である場合を例に挙げて説明する。
[1. First embodiment]
The photoacoustic measurement device, photoacoustic probe, and transducer array according to the first embodiment will be described with reference to FIGS. Hereinafter, the first embodiment is also simply referred to as this embodiment. In the present embodiment, a case where the inspection target is a blood vessel of a living body will be described as an example.
[1-1.構成]
<全体構成>
 図1に示すように、本実施形態の光音響計測装置1は、光音響プローブ2、制御部41、プリアンプ部42、AD変換部43、ビームフォーム部44、信号処理部45、表示部46、機械走査部47、及び位置検出部48を備えている。光音響プローブ2は、光照射部10、及びトランスデューサアレイ20を備えている。さらに、トランスデューサアレイ20は、超音波を検出可能な複数のトランスデューサ素子21を備えている。
[1-1. Constitution]
<Overall configuration>
As shown in FIG. 1, the photoacoustic measurement device 1 of the present embodiment includes a photoacoustic probe 2, a control unit 41, a preamplifier unit 42, an AD conversion unit 43, a beamform unit 44, a signal processing unit 45, a display unit 46, A mechanical scanning unit 47 and a position detection unit 48 are provided. The photoacoustic probe 2 includes a light irradiation unit 10 and a transducer array 20. Furthermore, the transducer array 20 includes a plurality of transducer elements 21 capable of detecting ultrasonic waves.
 制御部41、ビームフォーム部44、及び信号処理部45は、光音響計測装置1が備える図示しないCPU(Central Processing Unit)による演算処理によりプログラムを実行することで実現される機能部位である。CPUは、HDD(Hard Disk Drive)、SSD(Solid State Device)、RAM(Random Access Memory)、ROM(Read Only Memory)等のデータやプログラムを格納するデータ記憶装置に格納されたプログラムを読み出して実行することにより、制御部41、ビームフォーム部44、及び信号処理部45として機能する。なお、制御部41、ビームフォーム部44、及び信号処理部45における処理機能の実現手段はプログラムに限定されず、光音響計測装置1に搭載されるハードウェアにより実現されてもよい。例えば、制御部41、ビームフォーム部44、及び信号処理部45を、ROM、RAM、CPU等を内蔵したワンチップマイコンとして構成してもよいし、あるいは、DSP(Digital Signal Processor)、FPGA(Field-Programmable Gate Array)やASIC(Application Specific Integrated Circuit)等の電子回路として構成してもよい。 The control unit 41, the beamform unit 44, and the signal processing unit 45 are functional parts that are realized by executing a program through arithmetic processing by a CPU (Central Processing Unit) (not shown) included in the photoacoustic measurement apparatus 1. The CPU reads and executes programs stored in a data storage device that stores data and programs such as HDD (Hard Disk Drive), SSD (Solid State Device), RAM (Random Access Memory), and ROM (Read Only Memory). As a result, the control unit 41, the beamform unit 44, and the signal processing unit 45 function. The means for realizing the processing functions in the control unit 41, the beamform unit 44, and the signal processing unit 45 are not limited to programs, and may be realized by hardware mounted on the photoacoustic measurement apparatus 1. For example, the control unit 41, the beamform unit 44, and the signal processing unit 45 may be configured as a one-chip microcomputer incorporating a ROM, a RAM, a CPU, or the like, or a DSP (Digital Signal Processor), FPGA (Field It may be configured as an electronic circuit such as -Programmable (Gate Array) or ASIC (Application Specific Integrated Circuit).
 制御部41は、光照射部10、トランスデューサアレイ20、信号処理部45、及び機械走査部47を制御して、これらの動作が同期をとるための信号を出力する。例えば、制御部41は、光照射部10に照射光の出力タイミングを制御する出力タイミング信号を送信するとともに、トランスデューサアレイ20の光音響波の検出タイミングを制御する検出タイミング信号を送信する。このように、制御部41が光照射部10とトランスデューサアレイ20の動作タイミングを制御する信号を送信することで、光音響プローブ2は、照射光の出力と同期して光音響信号を検出することができる。 The control unit 41 controls the light irradiation unit 10, the transducer array 20, the signal processing unit 45, and the mechanical scanning unit 47, and outputs a signal for synchronizing these operations. For example, the control unit 41 transmits an output timing signal for controlling the output timing of the irradiation light to the light irradiation unit 10 and transmits a detection timing signal for controlling the detection timing of the photoacoustic wave of the transducer array 20. As described above, the control unit 41 transmits a signal for controlling the operation timing of the light irradiation unit 10 and the transducer array 20 so that the photoacoustic probe 2 detects the photoacoustic signal in synchronization with the output of the irradiation light. Can do.
 プリアンプ部42は、入力信号を増幅する増幅器である。プリアンプ部42は、後述するトランスデューサアレイ20の信号電極22に対応してそれぞれ設けられている(図2参照)。プリアンプ部42は、各信号電極22から入力された光音響信号を増幅し、増幅した増幅信号をAD変換部43に出力する。 The preamplifier unit 42 is an amplifier that amplifies an input signal. The preamplifier section 42 is provided corresponding to a signal electrode 22 of the transducer array 20 described later (see FIG. 2). The preamplifier unit 42 amplifies the photoacoustic signal input from each signal electrode 22 and outputs the amplified signal to the AD conversion unit 43.
 AD変換部43は、アナログ信号をデジタル信号に変換するAD変換器である。AD変換部43は、信号電極22及びプリアンプ部42に対応してそれぞれ設けられている。AD変換部43は、プリアンプ部42から入力されたアナログの光音響波信号の増幅信号を、デジタル化された信号に変換する。AD変換部43は、デジタル化された信号を、ビームフォーム部44に出力する。 The AD converter 43 is an AD converter that converts an analog signal into a digital signal. The AD conversion unit 43 is provided corresponding to the signal electrode 22 and the preamplifier unit 42, respectively. The AD conversion unit 43 converts the amplified signal of the analog photoacoustic wave signal input from the preamplifier unit 42 into a digitized signal. The AD conversion unit 43 outputs the digitized signal to the beam form unit 44.
 ビームフォーム部44は、信号電極22に対応する複数のAD変換部43から入力された個々の信号に対して、受信焦点と各信号電極22との位置関係に応じた遅延時間を与える遅延処理と、遅延処理によって位相を合わせた信号を加算する加算処理との整相加算処理を行う。ビームフォーム部44は、整相加算処理を行った信号を、信号処理部45に出力する。 The beamform unit 44 is a delay process that gives a delay time corresponding to the positional relationship between the reception focus and each signal electrode 22 to each signal input from the plurality of AD conversion units 43 corresponding to the signal electrode 22. Then, a phasing addition process is performed together with an addition process for adding signals whose phases are matched by the delay process. The beamform unit 44 outputs the signal subjected to the phasing addition processing to the signal processing unit 45.
 信号処理部45は、ビームフォーム部44から入力された信号を受信して、光音響画像データを生成する。信号処理部45は、入力された信号に、例えば、フィルタ処理、対数圧縮、包絡線検波等の処理を行う。そして、信号処理部45は、上記のような処理を行った信号に対して、画像生成に必要な処理を行い、光音響画像データを生成する。信号処理部45は、生成した光音響画像データを表示部46に出力する。 The signal processing unit 45 receives the signal input from the beamform unit 44 and generates photoacoustic image data. The signal processing unit 45 performs processes such as filter processing, logarithmic compression, and envelope detection on the input signal. And the signal processing part 45 performs a process required for image generation with respect to the signal which performed the above processes, and produces | generates photoacoustic image data. The signal processing unit 45 outputs the generated photoacoustic image data to the display unit 46.
 表示部46は、信号処理部45から入力された光音響画像データを受信して、光音響画像を表示する。表示部46は、CRT(Cathode Ray Tube)又はLCD(Liquid Crystal Display)等のディスプレイである。表示部46は、信号処理部45での処理に応じて、二次元の光音響画像を表示してもよく、三次元の光音響画像を表示してもよい。 The display unit 46 receives the photoacoustic image data input from the signal processing unit 45 and displays the photoacoustic image. The display unit 46 is a display such as a CRT (Cathode Ray Tube) or an LCD (Liquid Crystal Display). The display unit 46 may display a two-dimensional photoacoustic image or a three-dimensional photoacoustic image according to the processing in the signal processing unit 45.
 機械走査部47は、1次元方向、2次元方向、又は3次元方向に光音響プローブ2を移動させることで、被検体と、光照射部10及びトランスデューサアレイ20との位置を変化させるものである。機械走査部47としては、例えば、永久磁石ローター式誘導電動機を有し、互いに直角な3方向に光音響プローブ2を微動させる自動微動台が用いられる。機械走査部47によって、トランスデューサアレイ20が光音響波を検出する位置を機械的に走査することができる。機械走査部47の動作は、制御部41によって制御される。 The mechanical scanning unit 47 moves the photoacoustic probe 2 in a one-dimensional direction, a two-dimensional direction, or a three-dimensional direction, thereby changing the position of the subject, the light irradiation unit 10 and the transducer array 20. . As the mechanical scanning unit 47, for example, an automatic fine moving table that has a permanent magnet rotor induction motor and finely moves the photoacoustic probe 2 in three directions perpendicular to each other is used. The mechanical scanning unit 47 can mechanically scan the position where the transducer array 20 detects the photoacoustic wave. The operation of the mechanical scanning unit 47 is controlled by the control unit 41.
 位置検出部48は、光音響プローブ2の位置を検出する。位置検出部48としては、例えば、磁気式、赤外線式、超音波式、又は光学式等の位置センサが用いられる。位置検出部48によって、光音響プローブ2の移動量を検出して、被検体と光音響プローブ2との位置関係を調整することができる。位置検出部48により検出された光音響プローブ2の位置情報は、制御部41に出力される。 The position detection unit 48 detects the position of the photoacoustic probe 2. As the position detection unit 48, for example, a magnetic, infrared, ultrasonic, or optical position sensor is used. The position detection unit 48 can detect the amount of movement of the photoacoustic probe 2 and adjust the positional relationship between the subject and the photoacoustic probe 2. The position information of the photoacoustic probe 2 detected by the position detection unit 48 is output to the control unit 41.
 光音響プローブ2は、図示しない円筒形状の筐体を有している。光音響プローブ2は、筐体の上面に、制御部41及びプリアンプ部42と接続されるケーブルを有する。さらに、光音響プローブ2は、筐体の底面に、被検体と接する開口部30を有する(図3参照)。光照射部10及びトランスデューサアレイ20は、この開口部30に設けられている。光照射部10の光源から発せられた照射光の照射によって生体内に光音響波が生じ、この光音響波をトランスデューサアレイ20が検出して光音響信号を出力する。そして、光音響プローブ2から出力された光音響信号は、プリアンプ部42に入力される。 The photoacoustic probe 2 has a cylindrical housing (not shown). The photoacoustic probe 2 has a cable connected to the control unit 41 and the preamplifier unit 42 on the upper surface of the housing. Furthermore, the photoacoustic probe 2 has an opening 30 in contact with the subject on the bottom surface of the housing (see FIG. 3). The light irradiation unit 10 and the transducer array 20 are provided in the opening 30. A photoacoustic wave is generated in the living body by irradiation of irradiation light emitted from the light source of the light irradiation unit 10, and the transducer array 20 detects this photoacoustic wave and outputs a photoacoustic signal. Then, the photoacoustic signal output from the photoacoustic probe 2 is input to the preamplifier unit 42.
 光照射部10は、所定の波長の光を発する1以上の図示しない光源を有する。光源としては、検査対象物である被検体に照射光を発して、この照射光により光音響波を発生させるものを用いることができる。このような光源としては、例えば、固体レーザー、ガスレーザー、半導体レーザー、化学レーザー等のレーザーや、発光ダイオード等を用いることができる。中でも、指向性や収束性に優れ、高出力が得られる点からレーザーが好ましく用いられる。また、光源としては、1~100nsecのパルス幅を有するパルス光を出力するパルス光源が好ましい。光源の発する照射光の波長は、計測の対象となる被検体内の物質に伝播して、この物質の光吸収特性に応じて吸収されうる波長が選択される。例えば、生体内のヘモグロビンを対象として血管を撮像する場合には、近赤外波長域に属する波長が選択される。この場合、通常600~1000nm、好ましくは700~850nmの波長域である。 The light irradiation unit 10 has one or more light sources (not shown) that emit light of a predetermined wavelength. As the light source, a light source that emits irradiation light to an object to be inspected and generates a photoacoustic wave by the irradiation light can be used. As such a light source, for example, a laser such as a solid laser, a gas laser, a semiconductor laser, or a chemical laser, a light emitting diode, or the like can be used. Among these, a laser is preferably used because it is excellent in directivity and convergence and can provide a high output. The light source is preferably a pulsed light source that outputs pulsed light having a pulse width of 1 to 100 nsec. The wavelength of the irradiation light emitted from the light source propagates to the substance in the subject to be measured, and a wavelength that can be absorbed according to the light absorption characteristics of the substance is selected. For example, when a blood vessel is imaged for hemoglobin in a living body, a wavelength belonging to the near infrared wavelength region is selected. In this case, the wavelength range is usually 600 to 1000 nm, preferably 700 to 850 nm.
 光源から出力された照射光は、例えば光ファイバ、導光板、レンズ及びミラー等の図示しない導光手段を用いて開口部30まで導光されて、被検体に照射される。本実施形態では、光照射部10が、トランスデューサアレイ20と一体として設けられている場合を例に挙げて説明する。光照射部10による光の照射、及び照射の条件は、制御部41によって制御される。 The irradiation light output from the light source is guided to the opening 30 using a light guide means (not shown) such as an optical fiber, a light guide plate, a lens, and a mirror, and is irradiated on the subject. In the present embodiment, a case where the light irradiation unit 10 is provided integrally with the transducer array 20 will be described as an example. The light irradiation by the light irradiation unit 10 and the irradiation conditions are controlled by the control unit 41.
<トランスデューサアレイの構成>
(トランスデューサアレイ及びトランスデューサ素子の構造)
 トランスデューサアレイ20及びトランスデューサ素子21の構造を、図2を参照して説明する。図2は、開口部30に設けられた共通電極23及び圧電コンポジット24の一部分を示すものである。図2に示すように、トランスデューサアレイ20は、図示しない基板上に設けられた複数の信号電極22a,22bと、共通電極(グランド電極)23と、信号電極22a,22bと共通電極23とに挟まれた圧電コンポジット24とを有している。また、図2では、二つのトランスデューサ素子21a,21bを示している。なお、トランスデューサ素子21a,21bを区別しない場合には、「トランスデューサ素子21」として符号を付して説明する場合がある。また、信号電極22a,22bを区別しない場合には、「信号電極22」として符号を付して説明する場合がある。
<Configuration of transducer array>
(Structure of transducer array and transducer element)
The structure of the transducer array 20 and the transducer element 21 will be described with reference to FIG. FIG. 2 shows a part of the common electrode 23 and the piezoelectric composite 24 provided in the opening 30. As shown in FIG. 2, the transducer array 20 is sandwiched between a plurality of signal electrodes 22a and 22b, a common electrode (ground electrode) 23, a signal electrode 22a and 22b, and a common electrode 23 provided on a substrate (not shown). The piezoelectric composite 24 is provided. FIG. 2 shows two transducer elements 21a and 21b. In the case where the transducer elements 21a and 21b are not distinguished from each other, a description may be given with the reference numeral “transducer element 21”. Further, when the signal electrodes 22a and 22b are not distinguished from each other, there may be a case where a symbol is given as “signal electrode 22”.
 圧電コンポジット24は、高さ方向を揃えて2次元格子状に配列されている、略同じ高さの柱状の圧電体25と、圧電体25どうしの間及び圧電体25の周囲に、圧電体25と略同じ高さで充填されている高分子体26とからなっている。圧電体25は、断面四角形の四角柱状に形成されているが、形状はこれに限定されず、断面多角形の多角柱形状であってもよく、断面円形の円柱状であってもよい。製造効率の点から、四角柱状が好ましい。 The piezoelectric composite 24 is arranged in a two-dimensional lattice shape with the height direction aligned, and the columnar piezoelectric bodies 25 having substantially the same height, and between the piezoelectric bodies 25 and around the piezoelectric bodies 25. And a polymer body 26 filled at substantially the same height. The piezoelectric body 25 is formed in a quadrangular prism shape with a square cross section, but the shape is not limited to this, and may be a polygonal column shape with a polygonal cross section or a cylindrical shape with a circular cross section. From the viewpoint of production efficiency, a quadrangular prism shape is preferable.
 信号電極22と共通電極23は、圧電コンポジット24を挟んで対向して設けられている。信号電極22と共通電極23は、圧電体25が連続する方向と直交する面において、圧電体25の長手方向の一方の端部と他方の端部に面してそれぞれ設けられている。信号電極22は、図示しない信号線によってプリアンプ部42に電気的に接続されている。信号電極22から出力された光音響信号は、プリアンプ部42に入力される。共通電極23は、光音響波を受信する面に設けられる。共通電極23は、図示しないアース線によってアース接続される。共通電極23は、各トランスデューサ素子21に共通して設けられた接地用電極である。 The signal electrode 22 and the common electrode 23 are provided to face each other with the piezoelectric composite 24 interposed therebetween. The signal electrode 22 and the common electrode 23 are provided to face one end and the other end in the longitudinal direction of the piezoelectric body 25 on a plane orthogonal to the direction in which the piezoelectric bodies 25 are continuous. The signal electrode 22 is electrically connected to the preamplifier section 42 by a signal line (not shown). The photoacoustic signal output from the signal electrode 22 is input to the preamplifier unit 42. The common electrode 23 is provided on a surface that receives photoacoustic waves. The common electrode 23 is grounded by a ground wire (not shown). The common electrode 23 is a ground electrode provided in common to the transducer elements 21.
 信号電極22及び共通電極23は、導電性の金属又は合金が板状に形成された部材である。信号電極22及び共通電極23に用いられる金属としては、特に限定されないが、金、銀、銅、白金、アルミニウム、ニッケル等が挙げられる。信号電極22及び共通電極23を圧電コンポジット24上に形成する方法は特に限定されないが、メッキ、スパッタリング、エッチング、真空蒸着、スクリーン印刷等の方法で形成することができる。 The signal electrode 22 and the common electrode 23 are members in which a conductive metal or alloy is formed in a plate shape. Although it does not specifically limit as a metal used for the signal electrode 22 and the common electrode 23, Gold, silver, copper, platinum, aluminum, nickel etc. are mentioned. The method of forming the signal electrode 22 and the common electrode 23 on the piezoelectric composite 24 is not particularly limited, but can be formed by a method such as plating, sputtering, etching, vacuum deposition, or screen printing.
 圧電コンポジット24は、複合体を直交する3軸の方向で捉えた場合、圧電体25が1軸方向に接続しており、高分子体26が3軸いずれの方向にも接続している、1-3型の圧電コンポジットを使用している。なお、圧電コンポジット24としては、1-3型に限定されず、例えば0-3型、3-0型、3-1型、3-2型、3-3型の圧電コンポジットを使用してもよい。光音響波を受けることにより圧電体25に生じる変形を周囲の高分子体26が補うことによるアイソレーションの観点、及び圧電コンポジット24を部分球面状に変形させるためのフレキシブル性の観点から、1-3型の圧電コンポジットが好ましい。柱状の圧電体25長さと幅との比(長さ/幅)は、特に限定されないが、通常3~10、好ましくは4~6である。 The piezoelectric composite 24 has a piezoelectric body 25 connected in one axial direction and a polymer body 26 connected in any of the three axial directions when the composite is viewed in three orthogonal directions. -3 type piezoelectric composite is used. The piezoelectric composite 24 is not limited to the 1-3 type, and for example, a 0-3 type, 3-0 type, 3-1 type, 3-2 type, 3-3 type piezoelectric composite may be used. Good. From the viewpoint of isolation by the surrounding polymer body 26 compensating for the deformation generated in the piezoelectric body 25 by receiving the photoacoustic wave, and from the viewpoint of flexibility for deforming the piezoelectric composite 24 into a partial spherical shape, 1- A type 3 piezoelectric composite is preferred. The ratio (length / width) between the length and width of the columnar piezoelectric body 25 is not particularly limited, but is usually 3 to 10, preferably 4 to 6.
 圧電体25は、例えば、ダイシングマシーン等を用いて圧電材を格子状に切削して、柱状の圧電材の間に所定間隔の間隙を設けることで形成される。圧電材としては、外部から加えられた光音響波による圧力変位を受けて電圧を生じる、圧電効果を示す材料が用いられる。圧電体25に用いられる圧電材としては、特に限定されないが、例えば、チタン酸ジルコン酸鉛(PZT)、チタン酸バリウム、チタン酸鉛、及びニオブ酸鉛のセラミック等の圧電セラミック;ニオブ酸リチウム、亜鉛酸ニオブ酸チタン酸鉛(PZNT)、マグネシウム酸ニオブ酸チタン酸鉛(PMNT)等の単結晶等;ポリフッ化ビニリデン(PVDF)、ポリ尿素(PU)等の有機材料、等が挙げられる。なお、圧電材として有機材料を用いる場合には、特にコンポジット構造をとる必要がないことから、圧電コンポジット24に代えて圧電材の有機材料よりなる一体の板状圧電体を用いることができる。 The piezoelectric body 25 is formed by, for example, cutting a piezoelectric material into a lattice shape using a dicing machine or the like, and providing gaps at predetermined intervals between the columnar piezoelectric materials. As the piezoelectric material, a material exhibiting a piezoelectric effect that generates a voltage in response to pressure displacement caused by a photoacoustic wave applied from the outside is used. The piezoelectric material used for the piezoelectric body 25 is not particularly limited. For example, piezoelectric ceramics such as lead zirconate titanate (PZT), barium titanate, lead titanate, and lead niobate ceramics; lithium niobate; Examples thereof include single crystals such as zinc titanate niobate titanate (PZNT) and lead magnesium niobate titanate (PMNT); organic materials such as polyvinylidene fluoride (PVDF) and polyurea (PU). When an organic material is used as the piezoelectric material, it is not necessary to have a composite structure. Therefore, an integrated plate-like piezoelectric body made of an organic material of a piezoelectric material can be used instead of the piezoelectric composite 24.
 高分子体26は、格子状に切削された圧電体25の周囲に高分子材料が充填されることによって形成される。高分子体26に用いられる高分子材料としては、特に限定されないが、例えば、エポキシ樹脂、シリコーン樹脂、ポリエステル系樹脂、ポリエチレン樹脂、ポリスチレン樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリカーボネート樹脂、等の有機合成高分子が挙げられる。 The polymer body 26 is formed by filling a polymer material around the piezoelectric body 25 cut in a lattice shape. The polymer material used for the polymer body 26 is not particularly limited. For example, an organic synthetic resin such as an epoxy resin, a silicone resin, a polyester resin, a polyethylene resin, a polystyrene resin, a polyurethane resin, a polyamide resin, or a polycarbonate resin can be used. Molecule.
 圧電コンポジット24を挟んで信号電極22と共通電極23とが設けられることで、信号電極22と、これに対向する共通電極23と、信号電極22と共通電極23との間に位置する圧電体25とによって、トランスデューサ素子21が構成されている。言い換えれば、トランスデューサ素子21は、少なくとも、信号電極22、圧電体25、及び共通電極23をこの順で備えるものである。 By providing the signal electrode 22 and the common electrode 23 with the piezoelectric composite 24 interposed therebetween, the signal electrode 22, the common electrode 23 opposed to the signal electrode 22, and the piezoelectric body 25 positioned between the signal electrode 22 and the common electrode 23. Thus, the transducer element 21 is configured. In other words, the transducer element 21 includes at least the signal electrode 22, the piezoelectric body 25, and the common electrode 23 in this order.
 信号電極22によって圧電コンポジット24が分割されることで、信号電極22に対応する位置に配置される圧電体25が、各トランスデューサ素子21に含まれるようグルーピングされている。図2では、54個の圧電体25が、二つの信号電極22a,22bによって、24個と30個の二つにグルーピングされて、それぞれトランスデューサ素子21a,21bに含まれている。信号電極22の大きさ、形状を変更することで、トランスデューサ素子21を所望の大きさ、形状で作成することができる。このように、トランスデューサアレイ20は、トランスデューサ素子21がトランスデューサアレイ20に占める領域の設計自由度が高いものとなっている。 When the piezoelectric composite 24 is divided by the signal electrode 22, the piezoelectric bodies 25 arranged at positions corresponding to the signal electrode 22 are grouped so as to be included in each transducer element 21. In FIG. 2, 54 piezoelectric bodies 25 are grouped into 24 and 30 groups by two signal electrodes 22a and 22b, and are included in transducer elements 21a and 21b, respectively. By changing the size and shape of the signal electrode 22, the transducer element 21 can be formed in a desired size and shape. As described above, the transducer array 20 has a high degree of design freedom in the area occupied by the transducer elements 21 in the transducer array 20.
 なお、図2では、信号電極22が長方形の場合を例に挙げて説明したが、信号電極22の形状はこれに限定されず、例えば、多角形、円形、楕円形、星型、又は輪郭が曲線からなる不定形であってもよい。また、多角形の場合は、角に丸みを帯びたものであってもよい。また、図2では、信号電極22が圧電体25の格子状の配列に沿って、個々の圧電体25を覆うようにして配置されているが、信号電極22と圧電体25との対応関係はこれに限定されない。例えば、信号電極22は、圧電体25の格子状の配列に対して斜めに配置されていてもよい。また、圧電体25に対して、平面視で信号電極22の端部の境界線上に圧電体25が位置するようにして、信号電極22を配置してもよい。すなわち、信号電極22は、圧電体25の一部のみを覆うようにして配置されていてもよい。ただし、このように圧電体25の一部のみを覆うようにして信号電極22が配置されて、信号電極22の境界線上から信号電極22の外側に圧電体25が露出している場合には、この圧電体25は光音響波の検出に寄与することができない。このため、信号電極22の境界線が、隣接する圧電体25の間を通るようにして、信号電極22を配置することが好ましい。これによって、平面視で個々の圧電体25の全体を信号電極22で覆うようにして、信号電極22を配置することにより、光音響波の検出効率を向上させることができる。また、隣接する信号電極22a,22bの間の間隔は、隣接する圧電体25の間の距離、すなわち圧電体25の間に挟まれる高分子体26の厚みを超えないことが好ましい。 In FIG. 2, the case where the signal electrode 22 is rectangular has been described as an example. However, the shape of the signal electrode 22 is not limited to this, and for example, a polygon, a circle, an ellipse, a star, or a contour is used. It may be an irregular shape consisting of a curve. In the case of a polygon, the corner may be rounded. In FIG. 2, the signal electrodes 22 are arranged along the lattice-like arrangement of the piezoelectric bodies 25 so as to cover the individual piezoelectric bodies 25, but the correspondence relationship between the signal electrodes 22 and the piezoelectric bodies 25 is as follows. It is not limited to this. For example, the signal electrode 22 may be disposed obliquely with respect to the lattice-like arrangement of the piezoelectric bodies 25. Further, the signal electrode 22 may be arranged so that the piezoelectric body 25 is positioned on the boundary line of the end portion of the signal electrode 22 in a plan view with respect to the piezoelectric body 25. That is, the signal electrode 22 may be disposed so as to cover only a part of the piezoelectric body 25. However, when the signal electrode 22 is arranged so as to cover only a part of the piezoelectric body 25 and the piezoelectric body 25 is exposed to the outside of the signal electrode 22 from the boundary line of the signal electrode 22, The piezoelectric body 25 cannot contribute to detection of photoacoustic waves. For this reason, it is preferable to arrange the signal electrode 22 so that the boundary line of the signal electrode 22 passes between the adjacent piezoelectric bodies 25. Accordingly, the detection efficiency of the photoacoustic wave can be improved by arranging the signal electrode 22 so that the entire individual piezoelectric body 25 is covered with the signal electrode 22 in plan view. Further, the distance between the adjacent signal electrodes 22a and 22b preferably does not exceed the distance between the adjacent piezoelectric bodies 25, that is, the thickness of the polymer body 26 sandwiched between the piezoelectric bodies 25.
 トランスデューサアレイ20が備えるトランスデューサ素子21の個数は、通常、10~10000個、好ましくは20~1000個、より好ましくは100~500個である。本実施形態では、トランスデューサアレイ20がトランスデューサ素子21を256個備える場合を例に挙げて説明する。トランスデューサ素子21の数が増えることで、トランスデューサアレイ20の分解能が上がる傾向がある。一方、トランスデューサ素子21の数が増えることで、各トランスデューサ素子21で得られた光音響信号の増幅、遅延等の処理に必要な回路が増加し、また、計算処理の負荷が増す傾向にある。また、トランスデューサ素子21からの接続線の本数が増加することで、トランスデューサ素子21のケーブルが太くなり、取り回し易さが低下する。 The number of transducer elements 21 provided in the transducer array 20 is usually 10 to 10,000, preferably 20 to 1,000, and more preferably 100 to 500. In the present embodiment, a case where the transducer array 20 includes 256 transducer elements 21 will be described as an example. As the number of transducer elements 21 increases, the resolution of the transducer array 20 tends to increase. On the other hand, as the number of transducer elements 21 increases, the number of circuits necessary for processing such as amplification and delay of the photoacoustic signal obtained by each transducer element 21 increases, and the load of calculation processing tends to increase. Moreover, when the number of connection lines from the transducer element 21 increases, the cable of the transducer element 21 becomes thick, and the handling is reduced.
 トランスデューサ素子21の信号電極22側には、図示しないバッキング層が設けられている。バッキング層は、トランスデューサ素子21の超音波の受信方向の反対側に設けられて、超音波を吸収して減衰させることによりノイズを抑制するものである。バッキング層に用いられる材料としては、例えば、エポキシ樹脂、天然ゴム、合成ゴム等が挙げられる。さらに、バッキング層は、酸化チタン、酸化タングステン、フェライト等の粉末を含有していてもよい。 A backing layer (not shown) is provided on the signal electrode 22 side of the transducer element 21. The backing layer is provided on the side opposite to the ultrasonic wave receiving direction of the transducer element 21 and suppresses noise by absorbing and attenuating the ultrasonic wave. Examples of the material used for the backing layer include epoxy resin, natural rubber, and synthetic rubber. Furthermore, the backing layer may contain powders such as titanium oxide, tungsten oxide, and ferrite.
 トランスデューサ素子21の共通電極23側には、図示しない音響整合層が設けられている。音響整合層は、トランスデューサ素子21の超音波の受信方向側に設けられて、圧電コンポジット24と検査対象物との間の音響インピーダンスを整合させて、これらの境界面での反射を抑制するものである。音響整合層の音響インピーダンスは、圧電コンポジット24と検査対象物との間の音響インピーダンスに設定されることが好ましい。音響整合層に用いられる材料としては、例えば、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリドイミド、ポリエチレンテレフタレート、エポキシ樹脂、ウレタン樹脂等が挙げられる。圧電コンポジット24と生体との超音波の伝播効率を向上させるために、音響整合層は、樹脂粒子又は金属粒子を含有してもよい。 An acoustic matching layer (not shown) is provided on the common electrode 23 side of the transducer element 21. The acoustic matching layer is provided on the ultrasonic wave receiving direction side of the transducer element 21 to match the acoustic impedance between the piezoelectric composite 24 and the inspection object and suppress reflection at these boundary surfaces. is there. The acoustic impedance of the acoustic matching layer is preferably set to the acoustic impedance between the piezoelectric composite 24 and the inspection object. Examples of the material used for the acoustic matching layer include polyethylene, polypropylene, polycarbonate, polydimide, polyethylene terephthalate, epoxy resin, and urethane resin. In order to improve the propagation efficiency of ultrasonic waves between the piezoelectric composite 24 and the living body, the acoustic matching layer may contain resin particles or metal particles.
(トランスデューサ素子の配置)
 トランスデューサ素子21の配置について、図3,図4を参照して説明する。
 図3(a)は、光音響プローブ2の検査対象物と接する側の開口部30において、光照射部10及びトランスデューサアレイ20の配置関係を示す図である。図3(a)は、部分球面状に配置されたトランスデューサ素子21を、平面上に投射して描いたものである。なお、図3(a)では、トランスデューサ素子21の占める領域を白色の領域で示している。また、トランスデューサ素子21及び光照射部10以外の部分が占める領域を黒色の領域で示している。また、トランスデューサ素子21のそれぞれの重心位置27を点で示している。図3(b)は、部分球面状に設けられるトランスデューサアレイ20の構造を説明するための図である。
(Placement of transducer elements)
The arrangement of the transducer elements 21 will be described with reference to FIGS.
FIG. 3A is a diagram showing an arrangement relationship between the light irradiation unit 10 and the transducer array 20 in the opening 30 on the side of the photoacoustic probe 2 in contact with the inspection object. FIG. 3A shows the transducer elements 21 arranged in a partial spherical shape projected on a plane. In FIG. 3A, the area occupied by the transducer element 21 is indicated by a white area. Moreover, the area | region which parts other than the transducer element 21 and the light irradiation part 10 occupy is shown by the black area | region. Further, the center of gravity position 27 of each transducer element 21 is indicated by a point. FIG. 3B is a diagram for explaining the structure of the transducer array 20 provided in a partial spherical shape.
 図3(a)では、複数のトランスデューサ素子21を備えるトランスデューサアレイ20と、トランスデューサ素子21に囲まれて中心に配置された光照射部10との位置関係を示している。図3(a)に示すように、トランスデューサアレイ20では、複数のトランスデューサ素子21が、それぞれの重心位置27が2次元状にランダムに配置されている。さらに、複数のトランスデューサ素子21は、隙間なく隣接して配置されている。なお、本明細書において、トランスデューサ素子21の配置関係及び形状は、信号電極22の配置関係によって判断する。すなわち、トランスデューサ素子21の配置関係及び形状といった場合、信号電極22の配置関係及び形状をいう。 3A shows a positional relationship between the transducer array 20 including a plurality of transducer elements 21 and the light irradiation unit 10 disposed at the center surrounded by the transducer elements 21. FIG. As shown in FIG. 3A, in the transducer array 20, the plurality of transducer elements 21 are randomly arranged at their center positions 27 in a two-dimensional manner. Further, the plurality of transducer elements 21 are arranged adjacent to each other without a gap. In this specification, the arrangement relationship and shape of the transducer elements 21 are determined by the arrangement relationship of the signal electrodes 22. That is, the arrangement relationship and shape of the transducer elements 21 refer to the arrangement relationship and shape of the signal electrodes 22.
 本明細書において、ランダムとは、グレーティングローブの発生を抑えるようにトランスデューサ素子21が不規則に配置されていることをいう。さらに、トランスデューサアレイ20では、グレーティングローブの発生を抑えるトランスデューサ素子21の不規則な配置が、2次元状に広がっている。グレーティングローブが発生する規則的に配置されたアレイとしては、例えば、正方格子状、矩形格子状、六角格子状、斜方格子状、平行体格子状等の格子状に素子が配列された2次元アレイ、等間隔又は不等間隔で直線状に配列された素子を、平行で等間隔に並べた2次元アレイ、等間隔又は不等間隔で環状に配列された素子を、環の径を等間隔に変えて同心円状に配置した2次元アレイ等が挙げられる。なお、トランスデューサアレイ20の全体としてグレーティングローブの発生を抑えるものであればよく、トランスデューサアレイ20の一部に、数個のトランスデューサ素子21による規則的な配置が出現していてもよい。 In this specification, “random” means that the transducer elements 21 are irregularly arranged so as to suppress the generation of grating lobes. Furthermore, in the transducer array 20, the irregular arrangement of the transducer elements 21 that suppress the generation of grating lobes spreads in a two-dimensional manner. As a regularly arranged array in which grating lobes are generated, for example, a two-dimensional array in which elements are arranged in a lattice such as a square lattice, a rectangular lattice, a hexagonal lattice, an oblique lattice, or a parallel lattice. An array, a two-dimensional array in which elements arranged in a straight line at equal intervals or unequal intervals are arranged in parallel and at equal intervals, an element arranged in an annular shape at equal intervals or unequal intervals, and the ring diameters at equal intervals A two-dimensional array arranged concentrically instead of the above. Any transducer array 20 may be used as long as it suppresses the generation of grating lobes, and a regular arrangement of several transducer elements 21 may appear in a part of the transducer array 20.
 本明細書において、トランスデューサ素子21の重心位置27とは、トランスデューサ素子21の信号電極22の重心位置をいう。信号電極22の重心位置は、信号電極22の密度を均一とみなすことで、信号電極22の図心として算出される。重心位置の算出は、公知の手法により行うことができる。例えば、素子21の形状が円又は楕円形の場合、それらの中心が重心位置と算出される。また、トランスデューサ素子21の形状が三角形の場合、各頂点の三本の中線の交点が重心位置と算出される。また、トランスデューサ素子21の形状が四角形の場合、まず素子21を第一の対角線で分割して二つの三角形に分割して、分割された三角形それぞれの重心位置を求める。この手順を第一の対角線とは異なる第二の対角線についても行い、分割された三角形それぞれの重心位置を求める。そして、第一の対角線で分割された二つの三角形の重心位置を結ぶ線分と、第二の対角線で分割された二つの三角形の重心位置を結ぶ線分との交点が重心位置と算出される。また、トランスデューサ素子21の形状が多角形の場合、まず素子21を対角線で分割して複数の三角形に分割して、分割された三角形それぞれの重心位置を求める。次に、求められた三角形の重心位置を結んだ多角形を作成し、この多角形の重心位置を求める手順を繰り返すことで、重心位置が算出される。また、素子21の形状が、輪郭が曲線からなる不定形の場合、素子21の形状を輪郭に内接する多角形に近似して、この多角形の重心位置を算出することで求めることができる。 In this specification, the barycentric position 27 of the transducer element 21 refers to the barycentric position of the signal electrode 22 of the transducer element 21. The position of the center of gravity of the signal electrode 22 is calculated as the centroid of the signal electrode 22 by regarding the density of the signal electrode 22 as being uniform. The calculation of the position of the center of gravity can be performed by a known method. For example, when the shape of the element 21 is a circle or an ellipse, the center thereof is calculated as the barycentric position. When the shape of the transducer element 21 is a triangle, the intersection of the three middle lines of each vertex is calculated as the barycentric position. When the shape of the transducer element 21 is a quadrangle, first, the element 21 is divided by a first diagonal line and divided into two triangles, and the barycentric position of each of the divided triangles is obtained. This procedure is also performed for a second diagonal line different from the first diagonal line, and the barycentric position of each of the divided triangles is obtained. The intersection of the line segment connecting the centroid positions of the two triangles divided by the first diagonal line and the line segment connecting the centroid positions of the two triangles divided by the second diagonal line is calculated as the centroid position. . When the shape of the transducer element 21 is a polygon, the element 21 is first divided into diagonal lines and divided into a plurality of triangles, and the barycentric position of each of the divided triangles is obtained. Next, a polygon that connects the obtained centroid positions of triangles is created, and the centroid position is calculated by repeating the procedure for obtaining the centroid position of the polygon. Further, when the shape of the element 21 is an indefinite shape whose contour is a curve, the shape of the element 21 can be approximated to a polygon inscribed in the contour, and the center of gravity of the polygon can be calculated.
 本明細書において、隙間なく隣接して配置とは、隣り合うトランスデューサ素子21の信号電極22が接触している態様をいうものではなく、信号電極22が互いに接触しない程度に近接して配置されているものをいう。このように、信号電極22が実質的に隙間なく隣接して配置されている態様により、各トランスデューサ素子21からの光音響信号を独立して取り出すことができるようになっている。 In this specification, the term “adjacently arranged without a gap” does not mean an aspect in which the signal electrodes 22 of adjacent transducer elements 21 are in contact with each other, but are arranged so close that the signal electrodes 22 do not contact each other. Say what you are. As described above, the mode in which the signal electrodes 22 are arranged adjacent to each other with substantially no gap allows the photoacoustic signals from the transducer elements 21 to be extracted independently.
 トランスデューサ素子21は、隣り合うトランスデューサ素子21の間で、それぞれの信号電極22の辺と辺とが面するようにして配置されていることが好ましい。これにより、例えば信号電極22が点と点で面する場合や、信号電極22が点と面とで面する場合と比べて、隣り合うトランスデューサ素子21の間の隙間を減らすようにして、トランスデューサ素子21を配置することができる。このように配置されるトランスデューサ素子21の形状は、多角形であることが好ましい。トランスデューサアレイ20は、開口部30をトランスデューサ素子21で埋めるようにして配置されている。 The transducer elements 21 are preferably arranged between adjacent transducer elements 21 so that the sides of the signal electrodes 22 face each other. Thereby, for example, the gap between the adjacent transducer elements 21 is reduced as compared with the case where the signal electrode 22 faces point-to-point and the case where the signal electrode 22 faces point-to-face, so that the transducer element 21 can be arranged. The shape of the transducer element 21 arranged in this way is preferably a polygon. The transducer array 20 is arranged so that the opening 30 is filled with the transducer elements 21.
 ここで、複数のトランスデューサ素子21が隙間なく隣接して配置されているのは、本発明者らにより、ランダムに配置されたトランスデューサ素子21の間に隙間がある場合には、グレーティングローブが発生して、非偏向時の不要応答が増加することがあることを見出したためである。すなわち、ランダムに配置された複数のトランスデューサ素子21を、隙間なく隣接して配置することで、受信ビームの非偏向時に不要応答が増加することを抑えることができる。 Here, the reason why the plurality of transducer elements 21 are arranged adjacent to each other without a gap is that the inventors of the present invention generate a grating lobe when there is a gap between the randomly arranged transducer elements 21. This is because the unnecessary response at the time of non-deflection may be increased. That is, by arranging a plurality of randomly arranged transducer elements 21 adjacent to each other with no gap, it is possible to suppress an increase in unnecessary response when the received beam is not deflected.
 そこで、トランスデューサ素子21の配置は、トランスデューサアレイ20の主応答と不要応答との関係から規定することも可能である。この場合、トランスデューサアレイ20は、受信ビームの非偏向時において、主応答に対する不要応答のレベルが、好ましくは-30dB以下、より好ましくは-35dB以下、さらに好ましくは-40dB以下である。不要応答レベルが上記範囲内であることにより、隣接するトランスデューサ素子21の間の隙間に起因して生じる不要応答の影響を抑える程度に、トランスデューサ素子21が隙間なく隣接して配置されたトランスデューサアレイ20を提供することができる。 Therefore, the arrangement of the transducer elements 21 can be defined from the relationship between the main response of the transducer array 20 and the unnecessary response. In this case, when the receiving beam is not deflected, the transducer array 20 preferably has an unnecessary response level with respect to the main response of −30 dB or less, more preferably −35 dB or less, and further preferably −40 dB or less. When the unnecessary response level is within the above range, the transducer elements 20 are arranged adjacent to each other without a gap so as to suppress the influence of unnecessary responses caused by the gap between the adjacent transducer elements 21. Can be provided.
 不要応答レベルは、トランスデューサアレイ20のビームプロファイルから求められる。ビームプロファイルは、トランスデューサアレイ20によって形成される受信ビームについて、受信感度の強度分布を、アレイ中心からの距離との関係で示すものである。ビームプロファイルにおいて、焦点の方向に生じるメインローブに由来する受信感度のピークが、アレイ中心付近の領域に主応答として表れる。このとき、このメインローブに由来するピークが含まれる範囲よりも外側の領域に表れる受信感度の強度を、不要応答とみなす。そして、最も受信感度の強い主応答の受信感度のピーク強度に対する、不要応答に由来する受信感度の強度の中で最も強いピーク強度の比を求め、この比を対数で表すことで不要応答レベル(dB)が算出される。 The unnecessary response level is obtained from the beam profile of the transducer array 20. The beam profile indicates the intensity distribution of reception sensitivity with respect to the distance from the center of the array with respect to the reception beam formed by the transducer array 20. In the beam profile, a peak of reception sensitivity derived from the main lobe generated in the direction of the focus appears as a main response in a region near the array center. At this time, the intensity of the reception sensitivity that appears in a region outside the range including the peak derived from the main lobe is regarded as an unnecessary response. And the ratio of the strongest peak intensity in the intensity of the reception sensitivity derived from the unnecessary response to the peak intensity of the reception sensitivity of the main response with the strongest reception sensitivity is obtained, and the unnecessary response level ( dB) is calculated.
 光音響イメージングにおける点応答特性は、光吸収の無視できる媒質中に、無視できない光吸収率をもつ材料よりなる微小球を埋め込んだものを対象として測定する。この微小球に光パルスを照射して、発生した光音響波をトランスデューサアレイで受信して取り込み記録することで、点応答特性を測定する。さらに、微小球をトランスデューサアレイに対して相対的に移動して、光パルスの照射と光音響波の受信との操作を繰り返すことで、ビームプロファイルが得られる。このとき、受信ビームプロファイルに着目するときには、光源と微小球の相対的位置関係を一定として測定することが好ましい。また、微小球の半径は、着目する超音波波長の1/2以下が好ましい。なお、同様のビームプロファイルは、超音波の伝搬を数値計算シミュレーションすることによっても求めることもできる。数値計算シミュレーションを行う場合、一般的には、トランスデューサアレイを点受信素子の集合体とみなして数値計算を行う。この点受信素子の間隔は、着目する超音波波長の1/2以下に設定することが好ましい。この条件を満たすには、トランスデューサアレイが圧電コンポジットよりなる場合、それを構成する圧電柱の1つ1つをそれぞれ点受信素子に置き換えれば十分である。 The point response characteristics in photoacoustic imaging are measured for a medium in which microspheres made of a material having a light absorption rate that cannot be ignored are embedded in a medium where light absorption can be ignored. A point response characteristic is measured by irradiating the microsphere with a light pulse and receiving and recording the generated photoacoustic wave with a transducer array. Furthermore, a beam profile is obtained by moving the microsphere relative to the transducer array and repeating the operations of irradiation with light pulses and reception of photoacoustic waves. At this time, when paying attention to the received beam profile, it is preferable to measure with the relative positional relationship between the light source and the microsphere being constant. The radius of the microsphere is preferably 1/2 or less of the focused ultrasonic wavelength. A similar beam profile can also be obtained by numerical simulation of ultrasonic propagation. When performing a numerical calculation simulation, the numerical value calculation is generally performed by regarding the transducer array as an aggregate of point receiving elements. The interval between the point receiving elements is preferably set to ½ or less of the focused ultrasonic wavelength. In order to satisfy this condition, when the transducer array is made of a piezoelectric composite, it is sufficient to replace each of the piezoelectric columns constituting the transducer with a point receiving element.
 トランスデューサ素子21は、隣接するトランスデューサ素子21の間の隙間に起因して生じる不要応答の影響を抑えるものであれば、隣接するトランスデューサ素子21の間に間隔が空けられていてもよい。より具体的には、隣り合うトランスデューサ素子21の間の間隔は、トランスデューサ素子21が受信する光音響波の波長λに対して、好ましくは1/2λ以下、より好ましくは1/3λ以下、さらに好ましくは1/6λ以下である。 The transducer elements 21 may be spaced from each other as long as the effect of unnecessary response caused by the gap between the adjacent transducer elements 21 is suppressed. More specifically, the interval between adjacent transducer elements 21 is preferably 1 / 2λ or less, more preferably 1 / 3λ or less, further preferably, relative to the wavelength λ of the photoacoustic wave received by the transducer element 21. Is 1 / 6λ or less.
 トランスデューサ素子21の配置関係は、トランスデューサアレイ20の開口面積に対する、トランスデューサ素子21の占める合計面積を示す充填率によっても示すことができる。この充填率は、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上、特に好ましくは99%以上である。充填率が上記範囲内であることにより、隣接するトランスデューサ素子21の間の隙間に起因して生じる不要応答の影響を抑える程度に、トランスデューサ素子21が隙間なく隣接して配置されたトランスデューサアレイ20を提供することができる。なお、充填率の算出において、トランスデューサアレイ20の開口面積は、トランスデューサ素子21の占める面積と、隣接するトランスデューサ素子21によって挟まれた部分の面積とを足し合わせたものをいう。すなわち、図4に示される開口部30全体の中でも、光照射部10が配置される部分の面積、及び複数のトランスデューサ素子21からなる集合体の外側の斜線で示される領域102は、トランスデューサアレイ20の開口面積に含まれない。 The arrangement relationship of the transducer elements 21 can also be indicated by a filling rate indicating the total area occupied by the transducer elements 21 with respect to the opening area of the transducer array 20. This filling rate is preferably 90% or more, more preferably 95% or more, still more preferably 98% or more, and particularly preferably 99% or more. When the filling rate is within the above range, the transducer array 20 in which the transducer elements 21 are arranged adjacent to each other without a gap is suppressed to such an extent that the influence of an unnecessary response caused by the gap between the adjacent transducer elements 21 is suppressed. Can be provided. In calculating the filling rate, the opening area of the transducer array 20 is the sum of the area occupied by the transducer elements 21 and the area of the portion sandwiched between adjacent transducer elements 21. That is, in the entire opening 30 shown in FIG. 4, the area of the portion where the light irradiation unit 10 is arranged and the region 102 indicated by the oblique lines outside the assembly composed of the plurality of transducer elements 21 are the transducer array 20. Not included in the opening area.
 トランスデューサアレイ20は、トランスデューサ素子21の面積の変動係数が、好ましくは50%以下、より好ましくは30%以下、さらに好ましくは20%以下、特に好ましくは10%である。トランスデューサ素子21の面積の変動係数が上記範囲内にあることにより、各トランスデューサ素子21の特性が揃いやすくなる傾向にある。これにより、トランスデューサアレイ20に含まれるトランスデューサ素子21から得られる光音響信号の制御が容易となる。トランスデューサ素子21の面積の変動係数(%)は、トランスデューサ素子21の面積の標準偏差を、トランスデューサ素子21の平均値で除算して、100を乗算することで算出できる。 In the transducer array 20, the variation coefficient of the area of the transducer element 21 is preferably 50% or less, more preferably 30% or less, still more preferably 20% or less, and particularly preferably 10%. When the variation coefficient of the area of the transducer elements 21 is within the above range, the characteristics of the transducer elements 21 tend to be easily aligned. Thereby, control of the photoacoustic signal obtained from the transducer elements 21 included in the transducer array 20 is facilitated. The coefficient of variation (%) of the area of the transducer element 21 can be calculated by dividing the standard deviation of the area of the transducer element 21 by the average value of the transducer element 21 and multiplying by 100.
 トランスデューサアレイ20は、隣接するトランスデューサ素子21の重心位置27間の距離(以降、「隣接素子間距離」と称する場合がある。)の変動係数が、好ましくは25%以下、より好ましくは10%以下、さらに好ましくは5%以下、特に好ましくは2%以下である。トランスデューサ素子21の隣接素子間距離の変動係数が上記範囲内にあることにより、各トランスデューサ素子21が略均等な距離間隔で配置される傾向にある。これにより、トランスデューサアレイ20全体にトランスデューサ素子21を偏りが少なくなるように配置して、トランスデューサ素子21の間に生じる空隙を抑えることができる。トランスデューサ素子21の隣接素子間距離の変動係数(%)は、トランスデューサ素子21の隣接素子間距離の標準偏差を、トランスデューサ素子21の隣接素子間距離の平均値で除算して、100を乗算することで算出できる。 In the transducer array 20, the coefficient of variation of the distance between the gravity center positions 27 of the adjacent transducer elements 21 (hereinafter sometimes referred to as “distance between adjacent elements”) is preferably 25% or less, more preferably 10% or less. More preferably, it is 5% or less, particularly preferably 2% or less. When the variation coefficient of the distance between adjacent elements of the transducer element 21 is within the above range, the transducer elements 21 tend to be arranged at substantially equal distance intervals. As a result, the transducer elements 21 can be arranged in the entire transducer array 20 so as to reduce the bias, and a gap generated between the transducer elements 21 can be suppressed. The variation coefficient (%) of the distance between adjacent elements of the transducer element 21 is obtained by dividing the standard deviation of the distance between adjacent elements of the transducer element 21 by the average value of the distance between adjacent elements of the transducer element 21 and multiplying by 100. It can be calculated by
 隣接素子間距離について、図3(a)を参照して説明する。素子21aの隣接素子間距離といった場合、図3(a)に示すように、素子21aと隣接する、素子21b,21c,21d,21e,21f,21gとのそれぞれの重心位置27間の距離をいう。ここでは、素子21aと素子21fとの隣接素子間距離L1を図示しているが、素子21aと、素子21b,21c,21d,21e,21gそれぞれとの隣接素子間距離についても、素子21aの隣接素子間距離である。そして、上述した隣接するトランスデューサ素子21の隣接素子間距離の変動係数とは、トランスデューサアレイ20に含まれる全てのトランスデューサ素子21についての隣接素子間距離の変動係数を示すものである。 The distance between adjacent elements will be described with reference to FIG. In the case of the distance between adjacent elements of the element 21a, as shown in FIG. 3A, the distance between the gravity center positions 27 of the elements 21b, 21c, 21d, 21e, 21f, and 21g adjacent to the element 21a. . Here, illustrates the adjacent element distance L 1 between the element 21a and the element 21f, the element 21a, device 21b, 21c, 21d, 21e, 21g regard to adjacent elements the distance between each of the elements 21a This is the distance between adjacent elements. The variation coefficient of the distance between adjacent elements of the adjacent transducer elements 21 described above indicates a variation coefficient of the distance between adjacent elements for all the transducer elements 21 included in the transducer array 20.
 なお、トランスデューサ素子21の充填率、面積、及び隣接素子間距離を測定するにあたっては、トランスデューサアレイ20に含まれるトランスデューサ素子21の信号電極22の大きさを実測することにより測定することができる。このとき、必要に応じて、拡大鏡や顕微鏡を用いて観察して測定してもよい。 In measuring the filling factor, area, and distance between adjacent elements of the transducer element 21, it can be measured by actually measuring the size of the signal electrode 22 of the transducer element 21 included in the transducer array 20. At this time, it may be observed and measured using a magnifying glass or a microscope as necessary.
 図3(b)に示すように、トランスデューサアレイ20は、光音響プローブ2の開口部30において、部分球面31をなして設けられる。部分球面31は、半径30mmの球において、頂点が球の中心位置と一致して、頂角90度で母線の長さ30mmである円錐の底面によって切り取られた球欠の側面部分である球冠の形状を有する。部分球面31は、開口部30の口径が42.4mmであり、口径に対する焦点距離の比を表すFナンバーが0.8となっている。トランスデューサ素子21は、このような部分球面31上の凹面部に配置されている。 As shown in FIG. 3B, the transducer array 20 is provided with a partial spherical surface 31 in the opening 30 of the photoacoustic probe 2. The partial spherical surface 31 is a spherical crown which is a side surface portion of a spherical notch cut by a bottom surface of a cone having a vertex angle of 90 degrees and a generatrix length of 30 mm in a sphere having a radius of 30 mm and having a vertex angle of 90 degrees. It has the shape of The partial spherical surface 31 has a diameter of the opening 30 of 42.4 mm, and an F number representing a ratio of the focal length to the diameter is 0.8. The transducer element 21 is disposed on the concave portion on the partial spherical surface 31.
 トランスデューサアレイ20は、圧電コンポジット24が部分球面31を形成するように成形されている。このような部分球面状に成形された圧電コンポジット24は、例えば、板状の圧電コンポジット24を加熱して、予め加熱した球面凹状の金型と球面凸状とによって挟み込み、球殻型に湾曲させることで得ることができる。さらに、部分球面状に成形された圧電コンポジット24に、信号電極22及び共通電極23、並びに信号線及びアース線を設けることで、トランスデューサ素子21が得られる。トランスデューサ素子21は、共通電極23を凹面側に向けて、部分球面状に配置されている。 The transducer array 20 is formed so that the piezoelectric composite 24 forms a partial spherical surface 31. For example, the piezoelectric composite 24 formed into a partial spherical shape is heated by a plate-shaped piezoelectric composite 24 and sandwiched between a preliminarily heated spherical concave mold and a spherical convex shape, and is bent into a spherical shell shape. Can be obtained. Furthermore, the transducer element 21 is obtained by providing the signal electrode 22 and the common electrode 23 as well as the signal line and the ground line on the piezoelectric composite 24 formed into a partial spherical shape. The transducer element 21 is arranged in a partial spherical shape with the common electrode 23 facing the concave surface.
(トランスデューサ素子の配置方法)
 トランスデューサ素子21の配置方法について、図5~図7を参照して説明する。
 トランスデューサ素子21の配置は、部分球面状に複数の円を隣接して配置する隣接円配置工程と、隣接円配置工程で配置された複数の円に挟まれた領域を分割する分割工程とによって行うことができる。
(Method for arranging transducer elements)
A method for arranging the transducer elements 21 will be described with reference to FIGS.
The transducer elements 21 are arranged by an adjacent circle arranging step of arranging a plurality of circles adjacent to each other in a partial spherical shape and a dividing step of dividing an area sandwiched between the plurality of circles arranged in the adjacent circle arranging step. be able to.
 まず、隣接円配置工程について説明する。隣接円配置工程では、基本円に隣接するように追加円を設置することで行われる。以降、基本円と追加円とを区別しない場合、あわせて仮想円と称する場合がある。始めに、図5(a)に示すように、アレイ中心110の近くに4個の基本円111を設置する(ステップS1)。仮想円の設置は、図3(b)を参照して説明した部分球面31の表面に仮想円の外周が接するようにして行われる。このとき、各基本円111の中心間距離を、基本円の直径の2倍未満に設定する。これは、後述する追加円112を設置する際に、追加円112が中心110と重なる位置に設置されないようにするためである。なお、基本円111及び追加円112、並びに後述する追加円の直径は、同じ長さに設定する。これら仮想円の直径は、隣り合うトランスデューサ素子21どうしの重心位置27間の最小距離に相当するため、トランスデューサアレイ20の所望の性能に応じて適宜設定することができる。アレイ中心110は、トランスデューサアレイ20の中心に相当する位置である。 First, the adjacent circle placement process will be described. In the adjacent circle arrangement step, an additional circle is installed so as to be adjacent to the basic circle. Hereinafter, when the basic circle and the additional circle are not distinguished, they may be collectively referred to as a virtual circle. First, as shown in FIG. 5A, four basic circles 111 are installed near the array center 110 (step S1). The virtual circle is installed such that the outer circumference of the virtual circle is in contact with the surface of the partial spherical surface 31 described with reference to FIG. At this time, the center-to-center distance of each basic circle 111 is set to be less than twice the diameter of the basic circle. This is to prevent the additional circle 112 from being installed at a position overlapping the center 110 when the additional circle 112 described later is installed. The diameters of the basic circle 111 and the additional circle 112 and the additional circle described later are set to the same length. The diameters of these virtual circles correspond to the minimum distance between the gravity center positions 27 of the adjacent transducer elements 21 and can be appropriately set according to the desired performance of the transducer array 20. The array center 110 is a position corresponding to the center of the transducer array 20.
 次に、図5(a)に示すように、ステップS1で配置した基本円111のうちの少なくとも2個に接して、且つアレイ中心110からの距離が最小となるところに追加円112を設置する(ステップS2)。なお、ここでは、4個の追加円112を設置している。 Next, as shown in FIG. 5 (a), an additional circle 112 is placed at a position where the distance from the array center 110 is the smallest, in contact with at least two of the basic circles 111 arranged in step S1. (Step S2). Here, four additional circles 112 are provided.
 さらに、図5(b)に示すように、ステップS1で設置した基本円111に、ステップS2で設置した4個の追加円112を加えた8個の仮想円を基本円113として、ステップS2と同様に追加円114を設置する(ステップS3)。なお、ここでは、4個の追加円114を設置している。 Further, as shown in FIG. 5 (b), eight virtual circles obtained by adding the four additional circles 112 installed in step S2 to the basic circle 111 installed in step S1 are used as the basic circle 113, and step S2 and Similarly, an additional circle 114 is set (step S3). Here, four additional circles 114 are provided.
 以降同様にして、追加円を設置する。例として、図5(c)に示すように、基本円113に、ステップS3で設置した4つの追加円114を加えた12個の仮想円を基本円115として、ステップS2と同様に追加円116を設置する。なお、ここでは、4個の追加円116を設置している。 Thereafter, additional circles will be set in the same manner. As an example, as shown in FIG. 5C, 12 virtual circles obtained by adding the four additional circles 114 installed in step S3 to the basic circle 113 are used as the basic circle 115, and the additional circle 116 is added in the same manner as in step S2. Is installed. Here, four additional circles 116 are provided.
 このようにして、追加円の設置を繰り返すことで、多数の仮想円を隣接して部分球面状に配置することができる。図6(a)では、アレイ中心110の周囲に設置された基本円117に加えて、さらに4個の追加円118を設置するところを示している。図6(b)は、部分球面119をなして設置された基本円117及び追加円118を側面視で示している。部分球面119は、上述した部分球面31と同様の球冠の形状を有する。このようにして、トランスデューサアレイ20の設計に応じて所望の数の仮想円が設置されるまで、追加円の設置を繰り返す。図7に示すように、仮想円の設置は、設置する追加円が開口部30と同形状及び同面積となる仮想開口部130内に位置する限り行うことができる。本実施形態では、仮想開口部130に、256個の仮想円121を設置した。なお、図7では、仮想円121の占める領域を白色の領域で示している。仮想円121以外の部分が占める領域を黒色の領域で示している。 In this way, by repeating the installation of additional circles, a large number of virtual circles can be adjacently arranged in a partial spherical shape. FIG. 6A shows that four additional circles 118 are installed in addition to the basic circle 117 installed around the array center 110. FIG. 6B shows a basic circle 117 and an additional circle 118 installed in a partial spherical surface 119 in a side view. The partial spherical surface 119 has the same crown shape as the partial spherical surface 31 described above. In this way, the installation of additional circles is repeated until a desired number of virtual circles are installed according to the design of the transducer array 20. As shown in FIG. 7, the virtual circle can be installed as long as the additional circle to be installed is located within the virtual opening 130 having the same shape and the same area as the opening 30. In the present embodiment, 256 virtual circles 121 are installed in the virtual opening 130. In FIG. 7, the area occupied by the virtual circle 121 is indicated by a white area. A region occupied by a portion other than the virtual circle 121 is indicated by a black region.
 次に、分割工程について説明する。分割工程では、隣接円配置工程で配置された仮想円121に挟まれた領域を分割して、この分割された領域にまで仮想円121の占める領域を拡張する。仮想円121に挟まれた領域の分割は、この領域に隣接する仮想円121の中心から最も近い領域が、その仮想円121に組み込まれるようにして行う。このとき、部分球面に設置した仮想円121に対して、部分球面状の仮想開口部130の面上で分割を行っている。 Next, the division process will be described. In the dividing step, the region sandwiched between the virtual circles 121 arranged in the adjacent circle arranging step is divided, and the region occupied by the virtual circle 121 is expanded to this divided region. The area between the virtual circles 121 is divided such that the area closest to the center of the virtual circle 121 adjacent to this area is incorporated in the virtual circle 121. At this time, the virtual circle 121 installed on the partial spherical surface is divided on the surface of the partial spherical virtual opening 130.
 分割工程は、隣接円配置工程で配置された複数の仮想円121の中心を母点としたボロノイ分割によって行うことができる。ボロノイ分割とは、ある面上に複数の点(以下、「母点」と称する場合がある。)が配置されているとき、その面上の任意の点が最も近い母点に帰属するものとして面を分割することをいう。具体的には、ボロノイ分割は、近接する母点間を線分で結び、この母点間の線分の垂直二等分線を引き、この垂直二等分線を繋いだボロノイ境界を作成することで行われる。ボロノイ分割によって、仮想開口部130の面が、ボロノイ境界によって規定される多角形状のボロノイ領域に分割されたボロノイ図が得られる。このボロノイ領域は、それぞれ仮想円121の中心を一つずつ有している。また、ボロノイ分割によって、隣接する仮想円121との間の領域を区切るボロノイ境界を境界線として、仮想円121の占める領域が拡張される。 The division step can be performed by Voronoi division with the center of the plurality of virtual circles 121 arranged in the adjacent circle arrangement step as a generating point. Voronoi division means that when a plurality of points (hereinafter, sometimes referred to as “base points”) are arranged on a certain surface, any point on that surface belongs to the closest base point. This means dividing the surface. Specifically, the Voronoi division connects adjacent generating points with line segments, draws a vertical bisector between the generating points, and creates a Voronoi boundary connecting the vertical bisectors. Is done. By Voronoi division, a Voronoi diagram in which the surface of the virtual opening 130 is divided into polygonal Voronoi regions defined by Voronoi boundaries is obtained. Each Voronoi region has one virtual circle 121 center. Further, by Voronoi division, a region occupied by the virtual circle 121 is expanded with a Voronoi boundary that divides the region between the adjacent virtual circles 121 as a boundary line.
 このようにして、図3(a)に示すように、トランスデューサ素子21を配置したトランスデューサアレイ20が得られる。ボロノイ境界によって区切られるボロノイ領域によって、信号電極22の形状、すなわちトランスデューサ素子21の形状が決定されている。上記説明の通り、トランスデューサ素子21は、部分球面状に隣接して配置された複数の円の中心を母点としたボロノイ分割によって規定される形状を有するということができる。 Thus, as shown in FIG. 3A, the transducer array 20 in which the transducer elements 21 are arranged is obtained. The shape of the signal electrode 22, that is, the shape of the transducer element 21 is determined by the Voronoi region delimited by the Voronoi boundary. As described above, it can be said that the transducer element 21 has a shape defined by Voronoi division with the center of a plurality of circles arranged adjacent to each other in a partial spherical shape.
 隣接円配置工程により、部分球面上において、少なくとも2つの基本円111に隣接するように追加円112が設置されることから、仮想円121は六方充填のような細密充填で配置されずに、位置にゆらぎを持って配置される。このため、仮想円121は多少の粗密をもって配置されている。さらに、この状態で分割工程を経ることで仮想円121が拡張されることによって、トランスデューサ素子21は、それぞれの重心位置27が規則的な配置とはならず、ランダムに配置されることになる。また、トランスデューサ素子21の形状は、ボロノイ分割によって規定されるものであるが、隣接して配置された直径が同じ仮想円121の中心を基にして定められている。このため、完全にランダムに配置された点を母点としてボロノイ分割する場合と比べて、トランスデューサ素子21の面積のばらつきが小さく、隣接するトランスデューサ素子21の重心位置27間の距離のばらつきが小さくなる。また、母点をランダムに配置してボロノイ分割を行い、得られたボロノイ図の中からばらつきが少ないものを抽出する場合と比べて、本実施形態の配置方法によれば、計算に要するリソースを軽減して、短時間でトランスデューサ素子の配置を行うことが出来る。 Since the additional circle 112 is installed so as to be adjacent to at least two basic circles 111 on the partial spherical surface by the adjacent circle arrangement step, the virtual circle 121 is not disposed by fine packing such as hexagonal packing, Arranged with fluctuations. For this reason, the virtual circle 121 is arranged with some roughness. Furthermore, the virtual circle 121 is expanded by performing the dividing step in this state, so that the transducer elements 21 are not randomly arranged at the center positions 27 but are arranged randomly. The shape of the transducer element 21 is defined by Voronoi division, but is determined based on the center of the virtual circle 121 having the same diameter arranged adjacently. For this reason, as compared with the case where Voronoi division is performed using points arranged at random at random, the variation in the area of the transducer element 21 is small, and the variation in the distance between the gravity center positions 27 of the adjacent transducer elements 21 is small. . Compared to the case where Voronoi division is performed by randomly arranging generating points, and the one with less variation is extracted from the obtained Voronoi diagram, according to the arrangement method of this embodiment, the resources required for calculation are reduced. The transducer elements can be arranged in a short time by reducing.
[1-2.動作と特性]
 光音響計測装置1は、上述のように構成されており、光照射部10から被検体に照射光を照射する。トランスデューサアレイ20は、被検体から発せられた光音響波を検出して光音響信号を出力する。そして、信号処理部45が、光音響信号を処理することで光音響画像データを生成して、表示部46が光音響画像を表示する。このとき、ビームフォーム部44によって、複数のトランスデューサ素子21からの光音響信号の遅延時間を制御することで、受信ビームの焦点位置を、幾何学的焦点位置から電子的に偏向(ステアリング)させることができる。また、機械走査部47によって光音響プローブ2を移動させることで、照射光の照射位置と光音響波の検出位置とを機械的に走査することができる。このとき、位置検出部48によって光音響プローブ2の位置を検出することで、制御部41を介して機械走査部47による移動方向、移動量、及び移動速度が制御される。また、制御部41によって、光照射部10、トランスデューサアレイ20、信号処理部45、及び機械走査部47の動作を連携させることで、所望の位置及びタイミングでの照射光の照射と光音響波の検出とを行うことができる。これにより、光音響計測装置1では、機械的走査による撮像と、電子フォーカスによる撮像とを組み合わせて、光音響イメージングを行うことができる。また、機械走査部47を省略して、手動にて光音響プローブ2を移動し、その位置を位置検出部48によって検出することもできる。
[1-2. Operation and characteristics]
The photoacoustic measurement apparatus 1 is configured as described above, and irradiates the subject with irradiation light from the light irradiation unit 10. The transducer array 20 detects a photoacoustic wave emitted from the subject and outputs a photoacoustic signal. Then, the signal processing unit 45 processes the photoacoustic signal to generate photoacoustic image data, and the display unit 46 displays the photoacoustic image. At this time, the beamform unit 44 controls the delay time of the photoacoustic signals from the plurality of transducer elements 21 to electronically deflect (steer) the focal position of the received beam from the geometric focal position. Can do. Further, by moving the photoacoustic probe 2 by the mechanical scanning unit 47, it is possible to mechanically scan the irradiation position of the irradiation light and the detection position of the photoacoustic wave. At this time, the position detection unit 48 detects the position of the photoacoustic probe 2, thereby controlling the movement direction, movement amount, and movement speed of the mechanical scanning unit 47 via the control unit 41. In addition, by linking the operations of the light irradiation unit 10, the transducer array 20, the signal processing unit 45, and the mechanical scanning unit 47 by the control unit 41, irradiation of irradiation light and photoacoustic waves at a desired position and timing are performed. Detection. Thereby, in the photoacoustic measuring device 1, photoacoustic imaging can be performed combining the imaging by mechanical scanning and the imaging by an electronic focus. Alternatively, the mechanical scanning unit 47 may be omitted, and the photoacoustic probe 2 may be manually moved and its position detected by the position detection unit 48.
 本実施形態のトランスデューサアレイ20は、トランスデューサ素子21の面積の分布が図8に示す関係にあり、また、隣接素子間距離の分布が図9に示す関係にある。トランスデューサアレイ20は、トランスデューサ素子21の面積の平均が0.942mm2、標準偏差が0.058mm2であり、変動係数が6.2%である。また、トランスデューサアレイ20は、トランスデューサ素子21の隣接素子間距離の平均が2.47mm、標準偏差が0.031mmであり、変動係数が1.3%である。また、トランスデューサアレイ20の充填率は、98%である。 In the transducer array 20 of the present embodiment, the area distribution of the transducer elements 21 has the relationship shown in FIG. 8, and the distribution of the distance between adjacent elements has the relationship shown in FIG. The transducer array 20 has an average area of the transducer elements 21 of 0.942 mm 2 , a standard deviation of 0.058 mm 2 , and a variation coefficient of 6.2%. The transducer array 20 has an average distance between adjacent elements of the transducer element 21 of 2.47 mm, a standard deviation of 0.031 mm, and a variation coefficient of 1.3%. The filling rate of the transducer array 20 is 98%.
 トランスデューサアレイ20のビームプロファイルを数値計算シミュレーションにより推定した。本明細書では、ビームプロファイルは、XYZ3軸方向の直交座標系において、Z軸がアレイの中心を通り、非偏向時の受信ビームの向きがZ軸の向きと一致するようにしてXY平面上にトランスデューサアレイ20を置いた場合に、アレイの中心からXY方向に±3mm四方までの範囲の受信感度を示している。 The beam profile of the transducer array 20 was estimated by numerical simulation. In this specification, the beam profile is defined on the XY plane so that the Z-axis passes through the center of the array in the XYZ 3-axis orthogonal coordinate system, and the direction of the received beam when not deflected coincides with the direction of the Z-axis. When the transducer array 20 is placed, the receiving sensitivity in the range of ± 3 mm square in the XY direction from the center of the array is shown.
 図10(a),図10(b)は、電子的偏向による焦点位置の移動量(以降、「焦点移動量」と称する場合がある。)が0mm、すなわち受信ビームの偏向を行っていない場合のトランスデューサアレイ20のビームプロファイルを示している。 10A and 10B show a case where the amount of movement of the focal position due to electronic deflection (hereinafter sometimes referred to as “focus movement amount”) is 0 mm, that is, the received beam is not deflected. The beam profile of the transducer array 20 is shown.
 図10(a)は、アレイ中心を通るY軸方向からの1次元強度分布を示している。図10(a)では、横軸にX軸のアレイ中心からの距離(mm)を、縦軸に受信感度の強度を示している。図10(a)に示すように、X=0mmの位置に主応答であるメインローブのピークが表れている。なお、図10(a)では、受信感度の強度の振幅を、主応答の受信感度を1とした相対値で表している。 FIG. 10 (a) shows a one-dimensional intensity distribution from the Y-axis direction passing through the center of the array. In FIG. 10A, the horizontal axis represents the distance (mm) from the X-axis array center, and the vertical axis represents the intensity of reception sensitivity. As shown in FIG. 10A, a main lobe peak as a main response appears at a position of X = 0 mm. In FIG. 10A, the amplitude of the intensity of the reception sensitivity is represented by a relative value where the reception sensitivity of the main response is 1.
 図10(b)は、Z軸方向から受信感度の2次元強度分布を示している。図10(b)では、横軸にX軸のアレイ中心からの距離(mm)を、縦軸にY軸のアレイ中心からの距離(mm)を示し、受信感度の強度を、主応答であるメインローブのピークの受信感度に対する比の対数(dB)で示している。 FIG. 10B shows a two-dimensional intensity distribution of reception sensitivity from the Z-axis direction. In FIG. 10B, the horizontal axis indicates the distance (mm) from the X-axis array center, the vertical axis indicates the distance (mm) from the Y-axis array center, and the intensity of reception sensitivity is the main response. The logarithm (dB) of the ratio of the main lobe peak to the reception sensitivity is shown.
 次に、図11(a),図11(b)に、焦点移動量がX軸方向に1mmの場合のトランスデューサアレイ20のビームプロファイルを示す。図11(a)は、図10(a)と同様に、1次元強度分布を示している。また、図11(b)は、図10(b)と同様に、2次元強度分布を示している。 Next, FIGS. 11A and 11B show a beam profile of the transducer array 20 when the amount of focal movement is 1 mm in the X-axis direction. FIG. 11A shows a one-dimensional intensity distribution as in FIG. Moreover, FIG.11 (b) has shown two-dimensional intensity distribution similarly to FIG.10 (b).
 さらに、参考例1として、扇形形状のトランスデューサ素子221を隙間なく規則的に配列したトランスデューサアレイ220を挙げる。トランスデューサアレイ220は、トランスデューサアレイ20と略同じ開口面積を有している。 Furthermore, as reference example 1, there is a transducer array 220 in which fan-shaped transducer elements 221 are regularly arranged without gaps. The transducer array 220 has substantially the same opening area as the transducer array 20.
 トランスデューサアレイ220は、図12(a)に示すように、円の中心を除いた環の部分を、9個の環に分割することで、9個の径の異なる環がそれぞれの外周と内周とを隣接させて配置されている。さらに、それぞれ環を等分割することで、扇形状の素子221が形成されている。素子221の数は、一番内側の環から外側の環に向けて、それぞれ8,16,20,24,28,32,36,44,48個存在し、トランスデューサアレイ220全体で256個の素子221を有している。さらに、トランスデューサアレイ220では、素子221の面積が同じとなるように環の幅を設定している。トランスデューサアレイ220は、図12(b)に示すように、部分球面231をなして設けられる。部分球面231は、部分球面31と同様に、半径30mmの球における球冠の形状を有する。トランスデューサ素子221は、部分球面231上の凹面部に、部分球面状に配置されている。 As shown in FIG. 12 (a), the transducer array 220 divides the ring portion excluding the center of the circle into nine rings, so that nine rings with different diameters are arranged on the outer circumference and inner circumference. Are arranged adjacent to each other. Furthermore, each of the rings is equally divided to form a fan-shaped element 221. There are 8, 16, 20, 24, 28, 32, 36, 44, and 48 elements 221 from the innermost ring to the outer ring, respectively, and 256 elements in the entire transducer array 220. 221. Further, in the transducer array 220, the ring width is set so that the areas of the elements 221 are the same. The transducer array 220 is provided with a partial spherical surface 231 as shown in FIG. Similar to the partial spherical surface 31, the partial spherical surface 231 has a spherical crown shape in a sphere having a radius of 30 mm. The transducer element 221 is arranged in a partial spherical shape on the concave surface portion on the partial spherical surface 231.
 トランスデューサアレイ220のビームプロファイルを、図13(a),図13(b),図14(a),図14(b)に示す。図13(a)は、図10(a)と同様に、焦点移動量が0mmの1次元強度分布を示している。また、図13(b)は、図10(b)と同様に、焦点移動量が0mmの場合の2次元強度分布を示している。また、図14(a)は、図11(a)と同様に、焦点移動量が1mmの場合の1次元強度分布を示している。また、図14(b)は、図11(b)と同様に、焦点移動量が1mmの場合の2次元強度分布を示している。 The beam profile of the transducer array 220 is shown in FIGS. 13 (a), 13 (b), 14 (a), and 14 (b). FIG. 13 (a) shows a one-dimensional intensity distribution with a focal shift amount of 0 mm, as in FIG. 10 (a). FIG. 13B shows a two-dimensional intensity distribution in the case where the focal point movement amount is 0 mm, as in FIG. Further, FIG. 14A shows a one-dimensional intensity distribution when the focal amount is 1 mm, as in FIG. FIG. 14B shows a two-dimensional intensity distribution when the focal amount is 1 mm, as in FIG. 11B.
 またさらに、参考例2として、円形のトランスデューサ素子321を隙間なく配列したトランスデューサアレイ320を挙げる(図7参照)。トランスデューサアレイ320は、トランスデューサアレイ20と略同じ開口面積を有している。トランスデューサアレイ320は、図7を参照して説明した隣接円配置工程において仮想円を配置して、分割工程を行わずに、仮想円の位置及び形状をそのまま信号電極の位置及び形状としたものである。これにより、トランスデューサアレイ320は、円形のトランスデューサ素子321が部分球面状にランダムに配置されている。トランスデューサアレイ320の充填率は、83%である。 Furthermore, as Reference Example 2, a transducer array 320 in which circular transducer elements 321 are arranged without gaps is given (see FIG. 7). The transducer array 320 has substantially the same opening area as the transducer array 20. In the transducer array 320, a virtual circle is arranged in the adjacent circle arranging step described with reference to FIG. 7, and the position and shape of the virtual circle are directly used as the position and shape of the signal electrode without performing the dividing step. is there. Thus, in the transducer array 320, the circular transducer elements 321 are randomly arranged in a partial spherical shape. The filling factor of the transducer array 320 is 83%.
 トランスデューサアレイ320のビームプロファイルを、図15(a),図15(b),図16(a),図16(b)に示す。図15(a)は、図10(a)と同様に、焦点移動量が0mmの場合の1次元強度分布を示している。また、図15(b)は、図10(b)と同様に、焦点移動量が0mmの場合の2次元強度分布を示している。また、図16(a)は、図11(a)と同様に、焦点移動量が1mmの場合の1次元強度分布を示している。また、図16(b)は、図11(b)と同様に、焦点移動量が1mmの場合の2次元強度分布を示している。 The beam profile of the transducer array 320 is shown in FIGS. 15 (a), 15 (b), 16 (a), and 16 (b). FIG. 15A shows a one-dimensional intensity distribution in the case where the amount of focal movement is 0 mm, as in FIG. FIG. 15B shows a two-dimensional intensity distribution in the case where the focal point movement amount is 0 mm, as in FIG. FIG. 16A shows a one-dimensional intensity distribution in the case where the amount of focal movement is 1 mm, as in FIG. 11A. FIG. 16B shows a two-dimensional intensity distribution when the focal amount is 1 mm, as in FIG. 11B.
 図17は、第一実施形態のアレイ20、参考例1のアレイ220、参考例2のアレイ320、及び後述する第二実施形態のアレイ420について、それぞれの焦点移動量と不要応答レベルとの関係を示している。なお、ここでは、焦点から0.8mm以上離れた領域の応答を不要応答とみなして、不要応答レベルを算出した。 FIG. 17 shows the relationship between the focal shift amount and the unnecessary response level for the array 20 of the first embodiment, the array 220 of the reference example 1, the array 320 of the reference example 2, and the array 420 of the second embodiment described later. Is shown. In this case, the unnecessary response level was calculated by regarding the response in the region separated by 0.8 mm or more from the focal point as the unnecessary response.
 図13(a),図13(b)と、図15(a),図15(b)とのビームプロファイルの対比から、受信ビームの非偏向時に、アレイ320は、アレイ中心の周囲の2mm付近の位置に不要応答が表れていることが分かる。このことから、円形形状の素子321をランダムに配置したアレイ320では、素子321の間に存在する隙間に起因して、グレーティングローブが生じることで、不要応答が増加していると考えられる。一方で、図10(a),図10(b)のビームプロファイルから明らかなように、アレイ20では、素子21が隙間なく隣接して配置されているために、非偏向時の不要応答がアレイ220と同程度であることが分かる。 From the comparison of the beam profiles of FIGS. 13A and 13B with FIGS. 15A and 15B, the array 320 is about 2 mm around the center of the array when the received beam is not deflected. It can be seen that an unnecessary response appears at the position of. From this, in the array 320 in which the circular elements 321 are randomly arranged, it is considered that unnecessary responses are increased due to the generation of grating lobes due to the gaps existing between the elements 321. On the other hand, as is apparent from the beam profiles of FIGS. 10A and 10B, in the array 20, since the elements 21 are arranged adjacent to each other without a gap, an unnecessary response at the time of non-deflection is observed. It can be seen that it is about the same as 220.
 次に、図14(a),図14(b)と、図16(a),図16(b)とのビームプロファイルの対比から、受信ビームの偏向時に、アレイ220は、アレイ中心からX軸方向に-0.8mm付近の位置に不要応答が大きく表れていることが分かる。このことから、扇形形状の素子221を配置したアレイ220では、素子221の配置の規則性に起因して、グレーティングローブが生じることで不要応答が増加しているといえる。一方で、円形形状の素子321をランダムに配置したアレイ320では、アレイ中心からX軸方向に-1mm付近の不要応答が、アレイ220よりも抑えられている。同様に、図11(a),図11(b)のビームプロファイルから明らかなように、アレイ20では、アレイ中心からX軸方向に-1mm付近の不要応答が抑えられている。これは、アレイ20,320では、素子21,321がランダムに配置されていることで、グレーティングローブが抑制されたものと考えられる。 Next, from the comparison of the beam profiles of FIGS. 14 (a), 14 (b), 16 (a), and 16 (b), when the received beam is deflected, the array 220 is moved from the array center to the X axis. It can be seen that a large unnecessary response appears at a position near -0.8 mm in the direction. From this, it can be said that in the array 220 in which the fan-shaped elements 221 are arranged, unnecessary responses are increased due to the occurrence of grating lobes due to the regularity of the arrangement of the elements 221. On the other hand, in the array 320 in which the circular elements 321 are randomly arranged, an unnecessary response in the vicinity of −1 mm in the X-axis direction from the center of the array is suppressed as compared with the array 220. Similarly, as is apparent from the beam profiles of FIGS. 11A and 11B, in the array 20, an unnecessary response in the vicinity of −1 mm from the center of the array in the X-axis direction is suppressed. This is considered that the grating lobes are suppressed in the arrays 20 and 320 because the elements 21 and 321 are randomly arranged.
 さらに、図17に示されるように、参考例1のアレイ220では、焦点移動量が1mmの偏向時にグレーティングローブに起因する不要応答レベルが大きく増加していた。一方、参考例2のアレイ320では、偏向時の不要応答を抑圧できていたものの、焦点移動量が0mmの非偏向時にはかえって不要応答レベルが増加してしまっていた。これらに対して、本実施形態のアレイ20は、偏向時には参考例2のアレイ320と同程度の不要応答レベルでありながら、非偏向時には参考例1のアレイ220と同程度の不要応答レベルとなっている。すなわち、本実施形態のアレイ20は、規則的な配列のアレイに生じる偏向時の不要応答を抑圧するとともに、素子間に隙間があるアレイに生じる非偏向時の不要応答についても抑圧したものである。より具体的には、非偏向時における不要応答レベルは、アレイ20では0.0269(=-31.4dB)、アレイ320では0.0589(=-24.6dB)、アレイ220では0.0196(=-34.2dB)であった。 Furthermore, as shown in FIG. 17, in the array 220 of Reference Example 1, the unnecessary response level due to the grating lobe was greatly increased when the focal amount was deflected by 1 mm. On the other hand, in the array 320 of the reference example 2, although the unnecessary response at the time of deflection could be suppressed, the unnecessary response level was increased at the time of non-deflection when the focal point movement amount was 0 mm. On the other hand, the array 20 of the present embodiment has an unnecessary response level similar to that of the array 320 of Reference Example 2 when deflected, but has an unnecessary response level similar to that of the array 220 of Reference Example 1 when not deflected. ing. That is, the array 20 of the present embodiment suppresses unnecessary responses at the time of deflection that occur in an array having a regular array, and also suppresses unnecessary responses at the time of non-deflection that occur in an array having a gap between elements. . More specifically, the unnecessary response level at the time of non-deflection is 0.0269 (= −31.4 dB) in the array 20, 0.0589 (= −24.6 dB) in the array 320, and 0.0196 (in the array 220). = −34.2 dB).
 トランスデューサアレイ20は、受信ビームの非偏向時に不要応答が少なく、好適に光音響イメージングを行うことができる。このため、例えば、広い範囲の撮像が要求される場合では、機械走査部47によって光音響プローブ2を動かすことでアレイ20の位置を変えて撮像を行い、狭い範囲の撮像では、電子的偏向を行うことで高感度に光音響イメージングを行うことができる。このような狭い範囲の撮像とは、好ましくはアレイ中心から0~0.4mmの範囲、より好ましくはアレイ中心から0~0.3mmの範囲、さらに好ましくはアレイ中心から0~0.2mmの範囲である。 The transducer array 20 has little unnecessary response when the received beam is not deflected, and can suitably perform photoacoustic imaging. Therefore, for example, when imaging in a wide range is required, imaging is performed by changing the position of the array 20 by moving the photoacoustic probe 2 by the mechanical scanning unit 47, and electronic deflection is performed in imaging in a narrow range. By doing so, photoacoustic imaging can be performed with high sensitivity. Such narrow range imaging is preferably in the range of 0 to 0.4 mm from the array center, more preferably in the range of 0 to 0.3 mm from the array center, and still more preferably in the range of 0 to 0.2 mm from the array center. It is.
[1-3.作用及び効果]
 本実施形態に係るトランスデューサアレイ20、光音響プローブ2、及び光音響計測装置1は、上述のように構成されるため、以下のような作用及び効果を得ることができる。
[1-3. Action and effect]
Since the transducer array 20, the photoacoustic probe 2, and the photoacoustic measurement device 1 according to the present embodiment are configured as described above, the following operations and effects can be obtained.
[1]トランスデューサアレイ20は、トランスデューサ素子21が、隙間なく隣接して配置されていることにより、光音響プローブ2の開口部30がトランスデューサ素子21により覆われることになる。これによって、被検体から発生する光音響波をトランスデューサ素子21により検出することで、光音響波を開口部30のトランスデューサ素子21が設けられてない部分で受けることによるロスを軽減することにより、感度を向上させることができる。また、トランスデューサ素子21が、隙間なく隣接して配置されていることにより、素子間に隙間が存在するように配置された場合に生じるグレーティングローブに起因する非偏向時の不要応答を抑圧することができる。さらに、トランスデューサアレイ20は、トランスデューサ素子21の重心位置27が2次元状にランダムに配置されていることにより、素子が規則的に配置された場合に生じるグレーティングローブに起因する偏向時の不要応答を抑圧することができる。すなわち、トランスデューサアレイ20は、トランスデューサ素子21の充填率を上げることによる感度の向上と、グレーティングローブに起因する不要応答の抑圧とを両立したものである。 [1] In the transducer array 20, the transducer elements 21 are arranged adjacent to each other without a gap, so that the opening 30 of the photoacoustic probe 2 is covered with the transducer elements 21. As a result, the photoacoustic wave generated from the subject is detected by the transducer element 21, thereby reducing the loss caused by receiving the photoacoustic wave at the portion of the opening 30 where the transducer element 21 is not provided. Can be improved. Further, by arranging the transducer elements 21 adjacent to each other without a gap, it is possible to suppress an unnecessary response at the time of non-deflection caused by a grating lobe generated when a gap is present between the elements. it can. Further, the transducer array 20 has an undesired response at the time of deflection caused by grating lobes caused when the elements are regularly arranged, because the gravity center positions 27 of the transducer elements 21 are randomly arranged two-dimensionally. Can be suppressed. That is, the transducer array 20 achieves both improvement in sensitivity by increasing the filling factor of the transducer elements 21 and suppression of unnecessary responses due to grating lobes.
[2]また、トランスデューサアレイ20は、トランスデューサ素子21の重心位置27が2次元状にランダムに配置されている。さらに、トランスデューサアレイ20は、受信ビームの非偏向時において、主応答に対する不要応答レベルが-30dB以下である。これにより、トランスデューサ素子21が隙間なく隣接して配置された、トランスデューサアレイ20が得られる。よって、上記[1]と同様に、トランスデューサアレイ20は、トランスデューサ素子21の充填率を上げることによる感度の向上と、グレーティングローブに起因する不要応答の抑圧とを両立することができる。 [2] In the transducer array 20, the gravity center positions 27 of the transducer elements 21 are randomly arranged two-dimensionally. Furthermore, the transducer array 20 has an unnecessary response level with respect to the main response of −30 dB or less when the received beam is not deflected. Thereby, the transducer array 20 in which the transducer elements 21 are arranged adjacent to each other without a gap is obtained. Therefore, similarly to the above [1], the transducer array 20 can achieve both improvement in sensitivity by increasing the filling factor of the transducer elements 21 and suppression of unnecessary responses due to grating lobes.
[3]トランスデューサアレイ20は、トランスデューサ素子21が、部分球面状に配置されている。これにより、トランスデューサ素子21がなす幾何学的な焦点付近から発せられた超音波を効率的に検出することができる。また、トランスデューサアレイ20は、隣接円配置工程と分割工程とによって、トランスデューサ素子21を部分球面状に、ランダム且つ隙間なく隣接して配置することができる。 [3] In the transducer array 20, the transducer elements 21 are arranged in a partial spherical shape. Thereby, the ultrasonic wave emitted from the vicinity of the geometric focus formed by the transducer element 21 can be efficiently detected. Moreover, the transducer array 20 can arrange | position the transducer element 21 to a partial spherical surface at random and without a gap | interval by the adjacent circle arrangement | positioning process and a division | segmentation process.
[4]トランスデューサアレイ20は、トランスデューサ素子21が、部分球面状に隣接して配置された複数の円の中心を母点としたボロノイ分割によって規定される形状を有する。トランスデューサ素子21がこのような形状を有することにより、球面状の領域にトランスデューサ素子がランダムに配置されるとともに、トランスデューサ素子21の面積及び隣接素子間距離のばらつきを抑えることができる。 [4] The transducer array 20 has a shape in which the transducer elements 21 are defined by Voronoi division with the center of a plurality of circles arranged adjacent to each other in a partial spherical shape. When the transducer element 21 has such a shape, the transducer elements are randomly arranged in a spherical region, and variations in the area of the transducer element 21 and the distance between adjacent elements can be suppressed.
[2.第二実施形態]
 第二実施形態に係るトランスデューサアレイについて、図17~図20を参照して説明する。以降、第二実施形態を、単に本実施形態ともいう。第二実施形態は、第一実施形態に係る光音響計測装置1及び光音響プローブ2において、トランスデューサアレイ20をトランスデューサアレイ420に変更した以外は同様に構成されている。そこで、第一実施形態と同様のものについては説明を省略し、同符号を用いて説明する。
[2. Second embodiment]
A transducer array according to the second embodiment will be described with reference to FIGS. Hereinafter, the second embodiment is also simply referred to as this embodiment. The second embodiment is configured similarly except that the transducer array 20 is changed to the transducer array 420 in the photoacoustic measurement device 1 and the photoacoustic probe 2 according to the first embodiment. Therefore, description of the same components as those in the first embodiment will be omitted, and description will be made using the same symbols.
[2-1.構成]
<トランスデューサアレイの構成>
(トランスデューサアレイ及びトランスデューサ素子の構造)
 図18(a)に示すように、トランスデューサアレイ420は、超音波を検出可能な複数のトランスデューサ素子421を備えている。トランスデューサ素子421は、図2を参照して説明したトランスデューサアレイ20と同様の層構造となっているが、信号電極22の形状が異なり、素子421の配置関係も変化している。
[2-1. Constitution]
<Configuration of transducer array>
(Structure of transducer array and transducer element)
As shown in FIG. 18A, the transducer array 420 includes a plurality of transducer elements 421 capable of detecting ultrasonic waves. The transducer element 421 has a layer structure similar to that of the transducer array 20 described with reference to FIG. 2, but the shape of the signal electrode 22 is different and the arrangement relationship of the elements 421 is also changed.
(トランスデューサ素子の配置)
 図18(a)は、光音響プローブ2の検査対象物と接する側の開口部430において、光照射部10及びトランスデューサアレイ420の配置関係を示す図である。図18(a)は、部分球面状に配置されたトランスデューサ素子421を、平面上に投射して描いたものである。なお、図18(a)では、トランスデューサ素子421の占める領域を白色の領域で示している。また、トランスデューサ素子421及び光照射部10以外の部分が占める領域を黒色の領域で示している。
(Placement of transducer elements)
FIG. 18A is a diagram showing the positional relationship between the light irradiation unit 10 and the transducer array 420 in the opening 430 on the side in contact with the inspection object of the photoacoustic probe 2. FIG. 18A shows the transducer elements 421 arranged in a partial spherical shape projected on a plane. In FIG. 18A, the area occupied by the transducer element 421 is shown as a white area. Moreover, the area | region which parts other than the transducer element 421 and the light irradiation part 10 occupy is shown by the black area | region.
 トランスデューサアレイ420は、図18(a)に示すように、複数のトランスデューサ素子421が、それぞれの重心位置が2次元状にランダムに配置されている。また、トランスデューサアレイ420は、図18(b)に示すように、部分球面431をなして設けられる。部分球面431は、部分球面31と同様に、半径30mmの球における球冠の形状を有する。トランスデューサ素子421は、部分球面431上の凹面部に、部分球面状に配置されている。さらに、複数のトランスデューサ素子421は、隙間なく隣接して配置されている。また、トランスデューサ素子421は、隣り合うトランスデューサ素子421の間で、それぞれの信号電極22の辺と辺とが面するようにして配置されている。また、トランスデューサ素子421の形状は、多角形である。そして、トランスデューサアレイ420は、トランスデューサアレイ20と比べて、重心位置、並びにトランスデューサ素子421の形状及び面積のばらつきが増している。 In the transducer array 420, as shown in FIG. 18A, a plurality of transducer elements 421 are randomly arranged in a two-dimensional manner with respect to the respective gravity center positions. Further, the transducer array 420 is provided with a partial spherical surface 431 as shown in FIG. Similar to the partial spherical surface 31, the partial spherical surface 431 has a spherical crown shape in a sphere having a radius of 30 mm. The transducer element 421 is disposed in a concave shape on the partial spherical surface 431 in a partial spherical shape. Further, the plurality of transducer elements 421 are arranged adjacent to each other without a gap. Further, the transducer elements 421 are arranged between the adjacent transducer elements 421 so that the sides of the signal electrodes 22 face each other. Further, the transducer element 421 has a polygonal shape. The transducer array 420 has a variation in the position of the center of gravity and the shape and area of the transducer element 421 compared to the transducer array 20.
 トランスデューサアレイ420は、トランスデューサアレイ420に含まれるトランスデューサ素子421の最小面積に対する最大面積の比(以降、「最大最小面積比」と称する場合がある。)が、好ましくは15以下、より好ましくは10以下、更に好ましくは5以下である。最大最小面積比が上記範囲の上限よりも多すぎると、トランスデューサアレイ220と同程度かそれ以上の不要応答が偏向時に発生することがある。 The ratio of the maximum area of the transducer array 420 to the minimum area of the transducer elements 421 included in the transducer array 420 (hereinafter sometimes referred to as “maximum / minimum area ratio”) is preferably 15 or less, more preferably 10 or less. More preferably, it is 5 or less. If the maximum / minimum area ratio is more than the upper limit of the above range, an unnecessary response equivalent to or higher than that of the transducer array 220 may occur during deflection.
(トランスデューサ素子の配置方法)
 トランスデューサ素子421の配置方法について説明する。
 トランスデューサ素子421の配置は、部分球面上にランダムな点を配置する仮想点配置工程と、仮想点配置工程で配置された点を母点としたボロノイ分割を行う分割工程と、ボロノイ分割で得られたボロノイ図の中から所望のボロノイ図を抽出する抽出工程とによって行うことができる。
(Method for arranging transducer elements)
A method for arranging the transducer elements 421 will be described.
The placement of the transducer elements 421 is obtained by a virtual point placement step for placing random points on the partial sphere, a division step for performing Voronoi division using the points arranged in the virtual point placement step as a mother point, and Voronoi division. And an extraction process for extracting a desired Voronoi diagram from the Voronoi diagram.
 まず、仮想点配置工程では、所望の個数の点(仮想点)を、開口部430と同形状及び同面積となる仮想開口部内に無作為な位置に設置する。本実施形態では、256個の仮想点を部分球面状に設置している。 First, in the virtual point arrangement step, a desired number of points (virtual points) are set at random positions in a virtual opening having the same shape and area as the opening 430. In this embodiment, 256 virtual points are arranged in a partial spherical shape.
 次に、分割工程では、ボロノイ分割によって、仮想点配置工程で配置された仮想点を母点として、仮想開口部の面を多角形状のボロノイ領域に分割したボロノイ図を得る。このとき、部分球面状の仮想開口部の面上で分割を行っている。 Next, in the dividing step, a Voronoi diagram is obtained by dividing the surface of the virtual opening into polygonal Voronoi regions by using Voronoi division, using the virtual points arranged in the virtual point arranging step as mother points. At this time, the division is performed on the surface of the partially spherical virtual opening.
 さらに仮想点配置工程と分割工程とを1セットとするボロノイ図の作成を複数回繰り返す。ボロノイ図作成の回数を繰り返すほど、最大最小面積比が低くなり不要応答が抑えられた所望のボロノイ図が得られやすくなる傾向にあるため、好ましくは104回、より好ましくは106回、さらに好ましくは108回行う。本実施形態では、ボロノイ図の作成を104回行った。 Further, the creation of a Voronoi diagram with the virtual point placement step and the division step as one set is repeated a plurality of times. As the number of Voronoi diagram creations is repeated, the maximum / minimum area ratio tends to be lower, and a desired Voronoi diagram with less unnecessary response tends to be obtained. Therefore, preferably 10 4 times, more preferably 10 6 times, Preferably 10 8 times. In the present embodiment, it was conducted 10 4 times the creation of Voronoi diagram.
 続いて、抽出工程では、分割工程で得られたボロノイ図の中から、最大最小面積比が最も小さいボロノイ図を抽出する。抽出されたボロノイ図のボロノイ領域によって、トランスデューサ素子421の配置が決定される。 Subsequently, in the extraction process, a Voronoi diagram having the smallest maximum / minimum area ratio is extracted from the Voronoi diagram obtained in the dividing step. The arrangement of the transducer elements 421 is determined by the Voronoi region of the extracted Voronoi diagram.
 このようにして、図18(a)に示すように、トランスデューサ素子421を配置したトランスデューサアレイ420が得られる。ボロノイ境界によって区切られるボロノイ領域によって、信号電極22の形状、すなわちトランスデューサ素子421が決定されている。上記説明の通り、トランスデューサ素子421は、ランダムに配置された複数の点を母点としたボロノイ分割によって規定される形状を有するということができる。 Thus, as shown in FIG. 18A, a transducer array 420 in which the transducer elements 421 are arranged is obtained. The shape of the signal electrode 22, that is, the transducer element 421 is determined by the Voronoi region delimited by the Voronoi boundary. As described above, it can be said that the transducer element 421 has a shape defined by Voronoi division using a plurality of randomly arranged points as mother points.
 仮想点配置工程と分割工程とを複数行い、さらに抽出工程を行うことによって、ランダムに配置された仮想点を基にして、トランスデューサ素子421の配置、並びに形状及び面積を決定することができる。これにより、第一実施形態のトランスデューサアレイ20と同程度の不要応答レベルを示すトランスデューサアレイ420を得ることができる。なお、最大最小面積比がトランスデューサアレイ20と同程度になるトランスデューサ素子421を得るためには、ボロノイ図の作成回数が1020回程度を要する。 By performing a plurality of virtual point placement steps and division steps and further performing an extraction step, the placement, shape, and area of the transducer elements 421 can be determined based on randomly placed virtual points. Thereby, the transducer array 420 which shows the unnecessary response level comparable as the transducer array 20 of 1st embodiment can be obtained. In order to obtain a transducer element 421 having a maximum / minimum area ratio that is about the same as that of the transducer array 20, the number of Voronoi diagram generations is about 10 20 times.
[2-2.動作と特性]
 第二実施形態では、トランスデューサアレイ20と同様に、トランスデューサアレイ420が被検体から発せられた光音響波を検出して光音響信号を出力する。また、複数のトランスデューサ素子421からの光音響信号の遅延量を制御することで、受信ビームの焦点位置を電子的に偏向(ステアリング)させることができる。
[2-2. Operation and characteristics]
In the second embodiment, similar to the transducer array 20, the transducer array 420 detects a photoacoustic wave emitted from the subject and outputs a photoacoustic signal. Further, by controlling the delay amount of the photoacoustic signal from the plurality of transducer elements 421, the focal position of the received beam can be electronically deflected (steered).
 トランスデューサアレイ420は、トランスデューサ素子421の面積の分布が図19に示す関係にあり、また、隣接素子間距離の分布が図20に示す関係にある。トランスデューサアレイ420は、トランスデューサ素子421の面積の平均が1.023mm2、標準偏差が0.478mm2であり、変動係数が46.7%である。また、トランスデューサアレイ420は、トランスデューサ素子421の隣接素子間距離の平均が1.963mm、標準偏差が0.465mmであり、変動係数が23.7%である。また、トランスデューサアレイ220の最大最小面積比は、10である。また、トランスデューサアレイ220の充填率は、99%以上である。 In the transducer array 420, the area distribution of the transducer elements 421 is in the relationship shown in FIG. 19, and the distribution of the distance between adjacent elements is in the relationship shown in FIG. The transducer array 420 has an average area of the transducer elements 421 of 1.023 mm 2 , a standard deviation of 0.478 mm 2 , and a coefficient of variation of 46.7%. The transducer array 420 has an average distance between adjacent elements of the transducer element 421 of 1.963 mm, a standard deviation of 0.465 mm, and a variation coefficient of 23.7%. The maximum and minimum area ratio of the transducer array 220 is 10. The filling rate of the transducer array 220 is 99% or more.
 トランスデューサアレイ420のビームプロファイルを数値計算シミュレーションにより推定した。トランスデューサアレイ420のビームプロファイルを、図21(a),図21(b),図22(a),図22(b)に示す。図21(a)は、図10(a)と同様に、焦点移動量が0mmの1次元強度分布を示している。また、図21(b)は、図10(b)と同様に、焦点移動量が0mmの場合の2次元強度分布を示している。また、図22(a)は、図11(a)と同様に、焦点移動量が1mmの場合の1次元強度分布を示している。また、図22(b)は、図11(b)と同様に、焦点移動量が1mmの場合の2次元強度分布を示している。 The beam profile of the transducer array 420 was estimated by numerical simulation. The beam profile of the transducer array 420 is shown in FIGS. 21 (a), 21 (b), 22 (a), and 22 (b). FIG. 21 (a) shows a one-dimensional intensity distribution with a focal shift amount of 0 mm, as in FIG. 10 (a). FIG. 21B shows a two-dimensional intensity distribution when the focal amount is 0 mm, as in FIG. 10B. FIG. 22A shows a one-dimensional intensity distribution when the focal amount is 1 mm, as in FIG. 11A. FIG. 22B shows a two-dimensional intensity distribution when the focal amount is 1 mm, as in FIG. 11B.
 図21(a),図21(b)のビームプロファイルから明らかなように、アレイ420では素子21が隙間なく隣接して配置されているために、非偏向時の不要応答がアレイ20,220と同程度であることが分かる。 As is apparent from the beam profiles of FIGS. 21A and 21B, in the array 420, the elements 21 are arranged adjacent to each other without a gap. It turns out that it is comparable.
 また、図22(a),図22(b)のビームプロファイルから明らかなように、アレイ中心からX軸方向に-0.8mm付近の不要応答が抑えられており、アレイ20,320と同程度となっている。これは、アレイ420においても、素子421がランダムに配置されていることで、グレーティングローブが抑制されたものと考えられる。 Further, as is apparent from the beam profiles of FIGS. 22A and 22B, an unnecessary response in the vicinity of −0.8 mm from the center of the array in the X-axis direction is suppressed, which is about the same as the arrays 20 and 320. It has become. This is considered that the grating lobe is suppressed by the elements 421 being randomly arranged also in the array 420.
 さらに、図17に示されるように、本実施形態のアレイ420は、偏向時には参考例2のアレイ320と同程度の不要応答レベルでありながら、非偏向時には参考例1のアレイ220と同程度の不要応答レベルとなっている。すなわち、本実施形態のアレイ420は、規則的な配列のアレイに生じる偏向時の不要応答を抑圧するとともに、素子間に隙間があるアレイに生じる非偏向時の不要応答についても抑圧したものである。なお、アレイ420は、受信ビームの非偏向時において不要応答レベルが0.0196(=-34.2dB)であった。 Furthermore, as shown in FIG. 17, the array 420 of the present embodiment has an unnecessary response level comparable to that of the array 320 of Reference Example 2 when deflected, but is comparable to the array 220 of Reference Example 1 when not deflected. Unnecessary response level. That is, the array 420 of the present embodiment suppresses unnecessary responses at the time of deflection that occur in a regularly arranged array, and also suppresses unnecessary responses at the time of non-deflection that occur in an array having a gap between elements. . The array 420 had an unnecessary response level of 0.0196 (= −34.2 dB) when the received beam was not deflected.
 トランスデューサアレイ420は、上述のように構成されることで、トランスデューサ素子421の充填比率を上げることによる感度の向上と、グレーティングローブに起因する不要応答の抑圧とを両立したものである。さらには、トランスデューサアレイ420は第一実施形態のアレイ20と同様な不要応答レベルを示していることから、重心位置が2次元状にランダムに配置されており、且つ隙間なく隣接して配置されているトランスデューサ素子を備えるトランスデューサアレイによって、本発明の効果を奏することが確認された。 The transducer array 420 is configured as described above to achieve both improvement in sensitivity by increasing the filling ratio of the transducer elements 421 and suppression of unnecessary responses due to grating lobes. Furthermore, since the transducer array 420 exhibits the same unnecessary response level as the array 20 of the first embodiment, the positions of the center of gravity are randomly arranged in a two-dimensional manner and are arranged adjacent to each other without a gap. It has been confirmed that the effect of the present invention is achieved by a transducer array including the transducer elements.
[3.その他]
<トランスデューサ素子の配置>
 上記の実施形態では、隣接円配置工程において、4個の基本円111を、等間隔に、且つアレイ中心110を中心にしてアレイ中心110から等距離に設置した。このように、4個の基本円111が4回対象性を有しているため、追加円112,113,116が対称な位置関係で配置されて、仮想円121も4回対称性を有しているが、仮想円の配置はこれに限定されない。例えば、基本円111の配置を不均等な位置関係にすることで、仮想円が対称性を持たないように配置してもよい。
[3. Others]
<Placement of transducer elements>
In the above embodiment, in the adjacent circle arrangement step, the four basic circles 111 are arranged at equal intervals and equidistant from the array center 110 with the array center 110 as the center. As described above, since the four basic circles 111 have four-time objectivity, the additional circles 112, 113, and 116 are arranged in a symmetrical positional relationship, and the virtual circle 121 also has four-time symmetry. However, the arrangement of the virtual circle is not limited to this. For example, by arranging the basic circles 111 in an unequal positional relationship, the virtual circles may be arranged so as not to have symmetry.
 また、上記の実施形態では、基本円111を4個設置する場合について説明したが、基本円111の数は、4個に限定されず、1以上の任意の個数を設置することができる。但し、仮想円とアレイ中心とが重ならないようにして仮想円を設置する場合には、基本円111の数は3個以上で行うことが好ましい。 In the above embodiment, the case where four basic circles 111 are installed has been described. However, the number of basic circles 111 is not limited to four, and an arbitrary number of one or more can be installed. However, when the virtual circle is set so that the virtual circle and the array center do not overlap, it is preferable that the number of the basic circles 111 is three or more.
 また、上記の実施形態では、仮想円がアレイ中心110と重ならないように、アレイ中心11の周辺部を空けるようにして仮想円を設置した。これは、アレイ中心110の位置に光照射部10を設けるに行ったものであるため、光照射部10の位置をアレイ中心110以外の位置に変更する場合には、アレイ中心110の位置に仮想円を設置してもよい。この場合、任意の位置に光照射部10を設けるための所定の領域を設けて、この領域と仮想円とが重ならないようにして、仮想円を設置すればよい。 Further, in the above-described embodiment, the virtual circle is installed so that the peripheral portion of the array center 11 is opened so that the virtual circle does not overlap the array center 110. Since this is performed to provide the light irradiation unit 10 at the position of the array center 110, when the position of the light irradiation unit 10 is changed to a position other than the array center 110, the virtual position is set at the position of the array center 110. A circle may be set up. In this case, a virtual region may be installed by providing a predetermined region for providing the light irradiation unit 10 at an arbitrary position so that the region does not overlap with the virtual circle.
 また、上記の実施形態では、円形状の仮想円を互いに隣接して設置する場合を例に挙げて説明した。設置を行う際の図形の形状は円に限られず、楕円形又は多角形を隣接して設置してもよい。設置を行う際の計算が容易になる点、また設置した後の隣接する各図形の中心位置間の距離が均等になる点からは、円形状の仮想円を用いることが好ましい。 In the above embodiment, the case where circular virtual circles are installed adjacent to each other has been described as an example. The shape of the figure at the time of installation is not limited to a circle, and an ellipse or a polygon may be installed adjacent to each other. It is preferable to use a circular virtual circle from the viewpoint that calculation at the time of installation is easy and the distance between the center positions of adjacent figures after installation is uniform.
<光照射部の配置>
 上記の実施形態では、光音響プローブ2が開口部30に光照射部10を1個有する例を説明した。光照射部10は、トランスデューサアレイ20とともに一体として光音響プローブ2に設けられてもよく、トランスデューサアレイ20と別体に設けられていてもよい。また、光照射部10の個数はこれに限定されず、2以上であってもよい。一例として、図23に、5個の光照射部510a~510eと、トランスデューサ素子521が複数配置されたトランスデューサアレイ520とを備える光音響プローブ2を示す。ここでは、トランスデューサアレイ520の中心に1個の光照射部510aが設けられ、周囲の均等な位置に4個の光照射部510b~510eが設けられている。このように、光音響プローブ2が2個以上の光照射部510を備える場合には、隣接円配置工程及び仮想点配置工程において、予め光照射部510の数に応じた光照射部510が設けられる領域を設けて、この領域に仮想円及び仮想点を配置しないようにする。また、分割工程において、光照射部510が設けられる領域を除外してボロノイ領域を作成する。これにより、複数の光照射部510及びトランスデューサ素子521の配置を行うことができる。
<Arrangement of light irradiation part>
In the above embodiment, the example in which the photoacoustic probe 2 has one light irradiation unit 10 in the opening 30 has been described. The light irradiation unit 10 may be provided integrally with the transducer array 20 in the photoacoustic probe 2 or may be provided separately from the transducer array 20. Moreover, the number of the light irradiation parts 10 is not limited to this, Two or more may be sufficient. As an example, FIG. 23 shows a photoacoustic probe 2 including five light irradiation units 510a to 510e and a transducer array 520 in which a plurality of transducer elements 521 are arranged. Here, one light irradiation unit 510a is provided at the center of the transducer array 520, and four light irradiation units 510b to 510e are provided at equal positions around the transducer array 520. Thus, when the photoacoustic probe 2 includes two or more light irradiation units 510, the light irradiation units 510 corresponding to the number of the light irradiation units 510 are provided in advance in the adjacent circle arrangement step and the virtual point arrangement step. And a virtual circle and a virtual point are not arranged in this region. In the dividing step, a Voronoi region is created by excluding a region where the light irradiation unit 510 is provided. Thereby, arrangement | positioning of the some light irradiation part 510 and the transducer element 521 can be performed.
<トランスデューサアレイの形状>
 上記の実施形態では、トランスデューサ素子21が部分球面状に配置されて、トランスデューサアレイ20が部分球面31をなして設けられる例を説明した。トランスデューサ素子21が平面状に配置されて、トランスデューサアレイ20が2次元平面アレイであってもよい。
<Shape of transducer array>
In the above-described embodiment, the example in which the transducer elements 21 are arranged in a partial spherical shape and the transducer array 20 is provided as the partial spherical surface 31 has been described. The transducer elements 21 may be arranged in a planar shape, and the transducer array 20 may be a two-dimensional planar array.
<圧電体及びトランスデューサアレイの構成>
 上記の実施形態では、圧電コンポジット24に含まれる圧電体25を信号電極22によって分割することで、トランスデューサ素子21を配置したトランスデューサアレイ20を構成する例を説明した。これに限定されず、個々に圧電体を有するトランスデューサ素子を予め作成して、これを配置することでトランスデューサアレイ20を構成してもよい。また、cMUT(Capacitive Micromachined Ultrasonic Transducer)を用いたトランスデューサ素子21を配置することで、トランスデューサアレイ20を構成してもよい。
<Configuration of piezoelectric body and transducer array>
In the above-described embodiment, the example in which the transducer array 20 in which the transducer elements 21 are arranged is configured by dividing the piezoelectric body 25 included in the piezoelectric composite 24 by the signal electrode 22 has been described. However, the present invention is not limited to this, and the transducer array 20 may be configured by previously creating transducer elements each having a piezoelectric body and arranging the transducer elements. Further, the transducer array 20 may be configured by arranging the transducer elements 21 using cMUT (Capacitive Micromachined Ultrasonic Transducer).
<検査対象物>
 上記の実施形態では、検査対象物として、生体の血管を例に挙げて説明した。検査対象物はこれに限定されず、生体の臓器、組織、細胞等を対象としてもよい。又は、金属、樹脂、ゴム、木材、ガラス、セラミック等を対象としてもよい。
<Inspection object>
In the above-described embodiment, a biological blood vessel has been described as an example of the inspection object. The inspection object is not limited to this, and may be a living organ, tissue, cell, or the like. Alternatively, metal, resin, rubber, wood, glass, ceramic, and the like may be targeted.
<適用対象>
 上記の実施形態では、光照射部10及びトランスデューサアレイ20を備える光音響プローブ2を用いて、光音響信号を検出して光音響イメージングを行う例を説明した。トランスデューサアレイ20の適用対象はこれに限定されず、例えば、トランスデューサアレイ20から超音波を出力する、超音波送波器に用いることができる。また、検査対象物に対して超音波を送信するとともに、検査対象物で反射した反射波をトランスデューサアレイ20によって検出する、超音波診断装置及び超音波探傷試験装置に用いることができる。
<Applicable target>
In the above embodiment, the example in which the photoacoustic imaging is performed by detecting the photoacoustic signal using the photoacoustic probe 2 including the light irradiation unit 10 and the transducer array 20 has been described. The application target of the transducer array 20 is not limited to this. For example, the transducer array 20 can be used for an ultrasonic transmitter that outputs ultrasonic waves from the transducer array 20. Further, it can be used in an ultrasonic diagnostic apparatus and an ultrasonic flaw detection test apparatus that transmit ultrasonic waves to an inspection object and detect a reflected wave reflected by the inspection object by the transducer array 20.
 1 光音響計測装置
 2 光音響プローブ
10 光照射部
20 トランスデューサアレイ
21 トランスデューサ素子
22 信号電極
23 共通電極
24 圧電コンポジット
25 圧電体
26 高分子体
27 重心位置
30 開口部
41 制御部
42 プリアンプ部
43 AD変換部
44 ビームフォーム部
45 信号処理部
46 表示部
47 機械走査部
48 位置検出部
 
 
DESCRIPTION OF SYMBOLS 1 Photoacoustic measuring device 2 Photoacoustic probe 10 Light irradiation part 20 Transducer array 21 Transducer element 22 Signal electrode 23 Common electrode 24 Piezoelectric composite 25 Piezoelectric body 26 Polymer body 27 Center of gravity position 30 Opening part 41 Control part 42 Preamplifier part 43 AD conversion Unit 44 beam form unit 45 signal processing unit 46 display unit 47 mechanical scanning unit 48 position detection unit

Claims (9)

  1.  超音波を検出可能な複数のトランスデューサ素子を備えるトランスデューサアレイであって、
     前記複数のトランスデューサ素子は、それぞれの重心位置が2次元状にランダムに配置されており、且つ前記複数のトランスデューサ素子は、隙間なく隣接して配置されていることを特徴とするトランスデューサアレイ。
    A transducer array comprising a plurality of transducer elements capable of detecting ultrasound,
    The transducer array, wherein the plurality of transducer elements are randomly arranged in a two-dimensional center of gravity, and the plurality of transducer elements are arranged adjacent to each other without a gap.
  2.  超音波を検出可能な複数のトランスデューサ素子を備えるトランスデューサアレイであって、
     前記複数のトランスデューサ素子は、それぞれの重心位置が2次元状にランダムに配置されており、
     受信ビームの非偏向時において、主応答に対する不要応答レベルが-30dB以下である
    ことを特徴とするトランスデューサアレイ。
    A transducer array comprising a plurality of transducer elements capable of detecting ultrasound,
    The plurality of transducer elements, each center of gravity position is randomly arranged two-dimensionally,
    A transducer array, wherein an unnecessary response level with respect to a main response is −30 dB or less when a reception beam is not deflected.
  3.  前記トランスデューサ素子は、部分球面状に配置されている、
    請求項1又は2に記載のトランスデューサアレイ。
    The transducer elements are arranged in a partial spherical shape,
    The transducer array according to claim 1 or 2.
  4.  前記トランスデューサ素子は、部分球面状に隣接して配置された複数の円の中心を母点としたボロノイ分割によって規定される形状を有する、
    請求項1~3のいずれか1項に記載のトランスデューサアレイ。
    The transducer element has a shape defined by Voronoi division with the center of a plurality of circles arranged adjacent to each other in a partial spherical shape,
    The transducer array according to any one of claims 1 to 3.
  5.  前記トランスデューサアレイの開口面積に対する、前記トランスデューサ素子の占める面積を示す充填率が、90%以上である、
    請求項1~4のいずれか1項に記載のトランスデューサアレイ。
    The filling factor indicating the area occupied by the transducer elements with respect to the opening area of the transducer array is 90% or more.
    The transducer array according to any one of claims 1 to 4.
  6.  前記複数のトランスデューサ素子の面積の変動係数が、50%以下である、
    請求項1~5のいずれか1項に記載のトランスデューサアレイ。
    The variation coefficient of the area of the plurality of transducer elements is 50% or less.
    The transducer array according to any one of claims 1 to 5.
  7.  隣接する前記トランスデューサ素子の重心位置間の距離の変動係数が、25%以下である、
    請求項1~6のいずれか1項に記載のトランスデューサアレイ。
    The variation coefficient of the distance between the gravity center positions of the adjacent transducer elements is 25% or less.
    The transducer array according to any one of claims 1 to 6.
  8.  請求項1~7のいずれか1項に記載のトランスデューサアレイと、
     光源から発せられる光を被検体に照射する光照射部とを備え、
     前記トランスデューサアレイは、前記光の照射によって前記被検体内に生じた光音響波を検出して光音響信号を出力する
    ことを特徴とする光音響プローブ。
    A transducer array according to any one of claims 1 to 7;
    A light irradiation unit that irradiates a subject with light emitted from a light source;
    The photoacoustic probe, wherein the transducer array detects a photoacoustic wave generated in the subject by the light irradiation and outputs a photoacoustic signal.
  9.  請求項8に記載の光音響プローブと、
     前記光音響信号を処理して、光音響画像データを生成する信号処理部とを備える
    ことを特徴とする光音響計測装置。
     
    The photoacoustic probe according to claim 8,
    A photoacoustic measurement device comprising: a signal processing unit that processes the photoacoustic signal to generate photoacoustic image data.
PCT/JP2018/008480 2017-03-17 2018-03-06 Transducer array, photoacoustic probe, and photoacoustic measuring device WO2018168562A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019505900A JP7164078B2 (en) 2017-03-17 2018-03-06 Transducer array, photoacoustic probe, and photoacoustic measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-053502 2017-03-17
JP2017053502 2017-03-17

Publications (1)

Publication Number Publication Date
WO2018168562A1 true WO2018168562A1 (en) 2018-09-20

Family

ID=63522898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008480 WO2018168562A1 (en) 2017-03-17 2018-03-06 Transducer array, photoacoustic probe, and photoacoustic measuring device

Country Status (2)

Country Link
JP (1) JP7164078B2 (en)
WO (1) WO2018168562A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112206004A (en) * 2020-09-25 2021-01-12 飞依诺科技(苏州)有限公司 Ultrasonic probe and method of manufacturing the same
CN113228697A (en) * 2018-12-27 2021-08-06 Agc株式会社 Vibration device
US12002448B2 (en) * 2019-12-25 2024-06-04 Ultraleap Limited Acoustic transducer structures

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6135971A (en) * 1995-11-09 2000-10-24 Brigham And Women's Hospital Apparatus for deposition of ultrasound energy in body tissue
JP2005087577A (en) * 2003-09-19 2005-04-07 Fuji Photo Film Co Ltd Laminated structure body array, method of manufacturing the same, and method of manufacturing ultrasonic transducer array
WO2008050278A1 (en) * 2006-10-23 2008-05-02 Koninklijke Philips Electronics, N.V. Symmetric and preferentially steered random arrays for ultrasound therapy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6135971A (en) * 1995-11-09 2000-10-24 Brigham And Women's Hospital Apparatus for deposition of ultrasound energy in body tissue
JP2005087577A (en) * 2003-09-19 2005-04-07 Fuji Photo Film Co Ltd Laminated structure body array, method of manufacturing the same, and method of manufacturing ultrasonic transducer array
WO2008050278A1 (en) * 2006-10-23 2008-05-02 Koninklijke Philips Electronics, N.V. Symmetric and preferentially steered random arrays for ultrasound therapy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113228697A (en) * 2018-12-27 2021-08-06 Agc株式会社 Vibration device
CN113228697B (en) * 2018-12-27 2024-05-28 Agc株式会社 Vibration device
US12002448B2 (en) * 2019-12-25 2024-06-04 Ultraleap Limited Acoustic transducer structures
CN112206004A (en) * 2020-09-25 2021-01-12 飞依诺科技(苏州)有限公司 Ultrasonic probe and method of manufacturing the same
CN112206004B (en) * 2020-09-25 2023-08-25 飞依诺科技股份有限公司 Ultrasonic probe and method of manufacturing the same

Also Published As

Publication number Publication date
JP7164078B2 (en) 2022-11-01
JPWO2018168562A1 (en) 2020-01-23

Similar Documents

Publication Publication Date Title
CN102824190B (en) Two-dimensional annular phased array ultrasonic transducer structure
JP4909279B2 (en) Ultrasonic probe
US8986210B2 (en) Ultrasound imaging apparatus
RU2571330C2 (en) Device for data collection with help of acoustic waves
EP3294143B1 (en) Systems and methods for imaging biological tissue structures
US5706820A (en) Ultrasonic transducer with reduced elevation sidelobes and method for the manufacture thereof
WO2018168562A1 (en) Transducer array, photoacoustic probe, and photoacoustic measuring device
WO2007046180A1 (en) Ultrasonic transducer, ultrasonic probe and ultrasonic imaging device
US10898166B2 (en) Systems and methods for imaging biological tissue structures
JP2017047180A (en) Transducer array, and acoustic wave measurement apparatus including transducer array
US20210255322A1 (en) Ultrasound Imaging Probe with a Gradient Refractive Index Lens
JP2012223567A (en) Measuring apparatus
US20170067994A1 (en) Transducer array, and acoustic wave measurement apparatus
US10390793B2 (en) Backing element of ultrasonic probe, backing layer of ultrasonic probe, and manufacturing method thereof
Akhnak et al. 64 elements two-dimensional piezoelectric array for 3D imaging
US20130231569A1 (en) Medical ultrasound 2-d transducer array using fresnel lens approach
Silva et al. Linear arrays for vibro-acoustography: a numerical simulation study
JP5521224B2 (en) Ultrasonic probe, ultrasonic inspection apparatus and ultrasonic inspection method using the same
Bavaro et al. Element shape design of 2-D CMUT arrays for reducing grating lobes
CA2268415A1 (en) Single element ultrasonic collimating transducers and a method and apparatus utilizing ultrasonic transducers in 3d tomography
JP2016101288A (en) Acoustic wave probe and subject information acquisition device
JP4972678B2 (en) Ultrasonic measuring device, ultrasonic sensor and ultrasonic measuring method used therefor
Bouzari et al. Volumetric synthetic aperture imaging with a piezoelectric 2D row-column probe
Patricio Rodrigues et al. Development of a 2-D array ultrasonic transducer for 3-D imaging of objects immersed in water
JP5852420B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767117

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019505900

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18767117

Country of ref document: EP

Kind code of ref document: A1