WO2018168320A1 - 入力装置とその制御方法及びプログラム - Google Patents

入力装置とその制御方法及びプログラム Download PDF

Info

Publication number
WO2018168320A1
WO2018168320A1 PCT/JP2018/005456 JP2018005456W WO2018168320A1 WO 2018168320 A1 WO2018168320 A1 WO 2018168320A1 JP 2018005456 W JP2018005456 W JP 2018005456W WO 2018168320 A1 WO2018168320 A1 WO 2018168320A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
row
column
value
pattern
Prior art date
Application number
PCT/JP2018/005456
Other languages
English (en)
French (fr)
Inventor
政史 高木
波多野 直行
和人 大下
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to JP2019505794A priority Critical patent/JP6705052B2/ja
Publication of WO2018168320A1 publication Critical patent/WO2018168320A1/ja
Priority to US16/535,368 priority patent/US10671230B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04162Control or interface arrangements specially adapted for digitisers for exchanging data with external devices, e.g. smart pens, via the digitiser sensing hardware
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04186Touch location disambiguation

Definitions

  • the present invention relates to an input device such as a touch pad or a touch sensor used for inputting information in a device such as a computer or a smartphone, and in particular, according to a change in capacitance caused by the proximity of an object such as a finger or a pen.
  • the present invention relates to an input device for inputting information.
  • a capacitive type sensor As an input interface for smartphones and the like, devices such as touch pads and touch panels equipped with sensors for detecting the contact position of an object such as a finger or a pen are widely used.
  • sensors that detect the contact position of an object, such as a resistive film type and an optical type.
  • a capacitive type sensor is relatively simple and can be downsized in recent years. It is used as an input interface for mobile devices.
  • the self-capacitance type sensor detects a change in capacitance (self-capacitance) between the detection electrode and the object (ground). Therefore, in order to detect the self-capacitance at a plurality of positions, the same number of detection electrodes is required.
  • the mutual capacitance type sensor detects a change in electrostatic capacitance (mutual capacitance) between the drive electrode and the detection electrode due to the proximity of an object, the mutual capacitance at a plurality of positions can be detected by one detection electrode. . Therefore, the mutual capacitance type sensor is more suitable for multipoint detection than the self-capacitance type sensor.
  • the mutual capacitance type sensor when the finger approaches the portion where the mutual capacitance is formed (intersection portion between the drive electrode and the detection electrode), the mutual capacitance decreases.
  • the mutual capacitance formed between the drive electrode and the detection electrode is very small, and the change is further small, so that it easily changes according to the temperature. Therefore, in a general mutual capacitance type sensor, a reference value for obtaining a change in mutual capacitance is appropriately updated at a predetermined timing. That is, when the state where the finger or the like is not in contact continues, the mutual capacitance value of the detection result is set as a new reference value, and thereafter, the value obtained by subtracting the mutual capacitance value of the detection result from the reference value is the mutual capacitance value. Used as data indicating change.
  • the mutual capacitance decreases when an object (human body) having a large capacitive coupling is close to the ground. However, when a conductor having a small capacitive coupling to the ground, such as a coin, is close to the ground. Conversely, the mutual capacitance increases. If the mutual capacitance is increased, it is not considered as the proximity of the object. However, if the reference value is updated in this state, if the mutual capacitance is reduced by removing coins, etc., the reduction in the mutual capacitance is Will be erroneously detected as a result of proximity.
  • Patent Document 1 In order to quickly reset a reference value that causes such erroneous detection, the apparatus described in Patent Document 1 below integrates this amount of change when the amount of change in mutual capacitance is equal to or greater than a predetermined threshold.
  • the value is stored in the storage unit, and the floating conductor monitoring state for monitoring the floating conductor having the floating potential is set.
  • the mutual capacitance change amount and the integrated value stored in the storage section substantially coincide with each other in the positive and negative directions with respect to the reference value, the remeasured mutual capacitance is reset as the reference value. If the finger is not recognized after the finger is recognized in the floating conductor monitoring state, it is presumed that no conductor such as a coin exists, and therefore the floating conductor monitoring state is canceled.
  • touchpads such as notebook PCs in recent years have NFC (Near Field Communication) reader / writer functions.
  • NFC Near Field Communication
  • the IC card data can be read and written by holding the IC card over the operation surface.
  • a loop antenna for wireless communication with a reader / writer is embedded in an IC card.
  • the loop antenna comes close along the drive electrode and the detection electrode, so that the mutual capacitance changes.
  • the mutual capacitance increases as in the case where a coin or the like is placed on the operation surface. Therefore, when the reference value is updated while the IC card is placed on the operation surface, if the IC card is removed from the operation surface, the same erroneous detection as that of the above-described coin or the like occurs.
  • the IC card is formed of a thin insulator
  • the IC card passes through the IC card.
  • a change in mutual capacitance due to a nearby finger is detected.
  • the finger is recognized for a moment, and the floating state monitoring state is released. Accordingly, the decrease in mutual capacitance when the IC card is removed remains erroneously detected as being due to the proximity of the object.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an input that can appropriately eliminate an abnormality in a reference value caused by a conductor such as a loop antenna of an IC card approaching along a drive electrode and a detection electrode.
  • An apparatus, a control method thereof, and a program are provided.
  • a first aspect of the present invention relates to an input device that inputs information according to a change in electrostatic capacitance accompanying the proximity of an object.
  • the input device includes a plurality of drive electrodes to which a drive voltage is applied and a plurality of detection electrodes, and a sensor in which a plurality of capacitive coupling portions are formed between the plurality of detection electrodes and the plurality of drive electrodes.
  • a capacitance detection unit that detects capacitance of a plurality of capacitive coupling units formed between the plurality of drive electrodes and the plurality of detection electrodes, and detected by the capacitance detection unit.
  • One detection data indicating a difference between a capacitance value of the one capacitive coupling unit and a reference value of the capacitance set for the one capacitive coupling unit is calculated for each of the plurality of capacitive coupling units.
  • Each row corresponds to a plurality of the capacitive coupling portions in one detection electrode
  • each column corresponds to a plurality of the capacitive coupling portions in one drive electrode, so as to correspond to the arrangement of the capacitive coupling portions.
  • the detection data is arranged in The reference of the plurality of capacitive coupling units based on the capacitance values of the plurality of capacitive coupling units detected by the capacitance detection unit;
  • a specification that specifies, as target data, the detection data indicating that an object is close to the capacitive coupling unit from among the two-dimensional data generated by the reference value update unit that updates the value and the two-dimensional data generation unit And at least one of a target row selected based on a row of the two-dimensional data to which the target data belongs and a target column selected based on a column of the two-dimensional data to which the target data belongs.
  • a determination unit configured to determine whether or not the first pattern indicating that the capacitive coupling unit having the larger capacitance value is continuous is applied.
  • the reference value update unit updates the reference value when it is determined that at least one or both of the target row and the target column are applicable to the first pattern.
  • the capacitance is likely to increase.
  • the reference value of the one capacitive coupling unit is updated in a state where the capacitance is increased in the one capacitive coupling unit, and the conductor is removed after the update, in the one capacitive coupling unit, the updated capacitive coupling unit
  • the capacitance decreases with respect to the reference value. Due to the decrease in capacitance, the detection data indicating that an object is close is obtained in the one capacitive coupling portion. This detection data is specified as the target data.
  • the capacitance tends to decrease due to the proximity of the conductor.
  • the reference value of the other capacitive coupling unit is updated in the reduced capacitance state, and the conductor is removed after the update, the other capacitive coupling unit has a static value with respect to the updated reference value. Electric capacity increases. Therefore, the target row selected based on the row of the two-dimensional data to which the target data belongs and the target column selected based on the column of the two-dimensional data to which the target data belongs are based on the reference value. It becomes easy to apply to the first pattern indicating that the capacitive coupling portion having the large capacitance value is continuous.
  • the reference value is updated because there is a possibility that the reference value is abnormal due to the proximity of the conductor. Thereby, the abnormality of the reference value is eliminated.
  • the determination unit when determining the first pattern for the target row, has the capacitance value that approximates the reference value for at least one adjacent row adjacent to the target row.
  • the reference value update unit includes: a first condition in which the target row applies to the first pattern and the adjacent row applies to the second pattern; and the target column applies to the first pattern and the adjacent row. The reference value may be updated when a column satisfies at least one or both of the second conditions that apply to the second pattern.
  • the conductor such as a loop antenna of an IC card
  • the capacitance of the detection electrode adjacent to the one detection electrode In the coupling portion and the capacitive coupling portion of the drive electrode adjacent to the one drive electrode, the difference in the capacitance value with respect to the reference value tends to be small. Therefore, the adjacent row adjacent to the target row and the adjacent column adjacent to the target column indicate that the capacitive coupling unit having the capacitance value approximate to the reference value is continuous. This is easy to apply to the second pattern. Accordingly, the first condition in which the target row applies to the first pattern and the adjacent row applies to the second pattern, the target column applies to the first pattern, and the adjacent column applies to the second pattern.
  • the determination unit calculates one first evaluation value for each detection data of the target row, When calculating one first evaluation value for one detection data of the target row, a series of the detection data including the one detection data in the target row and a column in the one detection data Based on at least one of the detection data adjacent in the direction, the degree that the capacitance value of the target row exceeds the reference value, and the capacitance value of the adjacent row approximates the reference value If the first evaluation value that represents a threshold value is consecutive in the series of the first evaluation values calculated for the target row, the first condition value that represents both of the degree to which the target row is calculated is the first condition Full Strike may be determined.
  • the determination unit calculates one second evaluation value for each detection data of the target column when determining the first pattern and the second pattern for the target column and the adjacent column, When calculating one second evaluation value for one detection data of the target column, a series of the detection data including the one detection data in the target column, and a row for the one detection data. Based on at least one of the detection data adjacent in the direction, the degree that the capacitance value of the target column exceeds the reference value, and the capacitance value of the adjacent column approximates the reference value If the second evaluation value that represents both of the degree to be performed is calculated, and the second evaluation value that reaches a threshold value continues in the series of the second evaluation values calculated for the target column, the second condition Full Strike may be determined.
  • the determination unit performs the determination of the first pattern and the second pattern for the target row and the adjacent row, for each detection data of the target row, the target row evaluation value and the adjacent row evaluation value
  • the one detection data is included in the target row.
  • the target row evaluation value representing the degree to which the capacitance value of the target row exceeds the reference value
  • the adjacent row evaluation value representing the degree to which the capacitance value of the adjacent row approximates the reference value
  • the first evaluation calculated for the target row is calculated.
  • the first evaluation value group including the target row evaluation value reaching the threshold value and the adjacent row evaluation value reaching the threshold value continues, it is determined that the first condition is satisfied. You can do it.
  • the determination unit performs the determination of the first pattern and the second pattern for the target column and the adjacent column, for each detection data of the target column, the target column evaluation value and the adjacent column evaluation value And calculating one second evaluation value group for one detection data in the target column, the one detection data is included in the target column.
  • the target column evaluation value representing the degree to which the capacitance value of the target column exceeds the reference value is calculated, and adjacent to the one detection data in the row direction.
  • the adjacent column evaluation value representing the degree to which the capacitance value of the adjacent column approximates the reference value is calculated, and the second evaluation calculated for the target column is calculated.
  • the second evaluation value group including the target column evaluation value that reaches a threshold and the adjacent column evaluation value that reaches the threshold continues, it is determined that the second condition is satisfied. You can do it.
  • the target row evaluation value reaching the threshold value and the adjacent row evaluation value reaching the threshold value are included. It is determined whether or not the first condition is satisfied depending on whether or not the first evaluation value group is continuous. Therefore, it becomes easy to accurately determine whether the target row applies to the first pattern and whether the adjacent row applies to the second pattern based on an independent evaluation value.
  • the target column evaluation value that reaches a threshold value and the adjacent column evaluation value that reaches a threshold value are determined. Whether or not the second evaluation value group is included determines whether or not the second condition is satisfied. Therefore, it becomes easy to accurately determine that the target column applies to the first pattern and that the adjacent column applies to the second pattern based on independent evaluation values.
  • the determination unit calculates one target row evaluation value for each detection data of the target row, and one detection data in the target row
  • the capacitance value of the target row becomes the reference value.
  • the target row evaluation value representing a degree of excess is calculated, and in the series of target row evaluation values calculated for the target row, if the target row evaluation value that reaches a threshold value continues, the target row is You may determine with one pattern.
  • the determination unit calculates one target column evaluation value for each detection data of the target column, and one detection data in the target column
  • the capacitance value of the target column determines the reference value.
  • the target column evaluation value representing the degree of excess is calculated. In the series of target column evaluation values calculated for the target column, if the target column evaluation value that reaches a threshold value is continuous, the target column is You may determine with one pattern.
  • the target column is changed to the first pattern depending on whether or not the target column evaluation values that reach a threshold value are continuous. It is determined whether this is the case.
  • the capacitance value is determined from a plurality of adjacent rows including the row of the two-dimensional data to which the target data belongs.
  • One detection data indicating relatively large may be selected for each column, and the first pattern may be determined using the selected detection data series as the target row.
  • the capacitance value is determined from a plurality of adjacent columns including the column of the two-dimensional data to which the target data belongs.
  • One detection data indicating relatively large may be selected for each row, and the first pattern may be determined using the selected detection data series as the target column.
  • the first pattern indicating that the capacitive coupling portion having the capacitance value larger than the reference value is continuous appears easily.
  • the selected detection data series is easily applied to the first pattern. Therefore, by determining the first pattern using the selected detection data series as the target row, abnormality of the reference value due to the proximity of the conductor is appropriately determined.
  • the conductor is close to one of the drive electrodes and the drive electrode adjacent thereto, not only the column to which the target data belongs but also the column adjacent to the target data is larger than the reference value.
  • the first pattern indicating that the capacitive coupling portion having a capacitance value is continuous is likely to appear.
  • the selected detection data series is easily applied to the first pattern. Therefore, by determining the first pattern using the selected detection data series as the target column, abnormality of the reference value due to the proximity of the conductor is appropriately determined.
  • the second aspect of the present invention relates to a method for controlling an input device that inputs information according to a change in capacitance accompanying the proximity of an object.
  • the input device includes a plurality of drive electrodes to which a drive voltage is applied and a plurality of detection electrodes, and a plurality of capacitive coupling portions formed between the plurality of detection electrodes and the plurality of drive electrodes.
  • a capacitance detection unit that detects capacitances of the plurality of capacitive coupling portions formed between the plurality of drive electrodes and the plurality of detection electrodes.
  • the control method of the input device is configured to calculate a difference between a capacitance value of one capacitance coupling unit detected by the capacitance detection unit and a reference value of a capacitance set for the one capacitance coupling unit.
  • One detection data shown is calculated for each of the plurality of capacitive coupling portions, each row corresponds to a plurality of the capacitive coupling portions in one detection electrode, and each column includes a plurality of the plurality of the capacitive coupling portions in one driving electrode.
  • the capacitive coupling unit having the capacitance value approximate to the reference value for at least one adjacent row adjacent to the target row is provided.
  • the second pattern indicating that it is continuous, and determining the first pattern for the target column, for at least one adjacent column adjacent to the target column
  • Determining whether the second pattern is true Updating the reference value includes a first condition in which the target row applies to the first pattern and the adjacent row applies to the second pattern, and the target column applies to the first pattern, and Updating the reference value when the adjacent column satisfies at least one or both of the second condition that applies to the second pattern.
  • a third aspect of the present invention relates to a program for causing a computer to execute the input device control method according to the second aspect.
  • an input device that can appropriately eliminate an abnormality in a reference value caused by a conductor such as a loop antenna of an IC card approaching along a drive electrode or a detection electrode, and a control method and program thereof.
  • FIG. 1 It is a figure which shows an example of a structure of the input device which concerns on embodiment of this invention. It is a figure for demonstrating the change of the mutual capacitance by the proximity
  • FIG. 9A shows the calculation result when applicable to a 1st pattern and a 2nd pattern.
  • FIG. 9A shows the calculation result when applicable to a 1st pattern and a 2nd pattern.
  • FIG. 9A shows the calculation result when applicable to a 1st pattern and a 2nd pattern.
  • FIG. 9A shows the calculation result when applicable to a 1st pattern and a 2nd pattern.
  • FIG. 9A shows the calculation result when the difference of an electrostatic capacitance value and a reference value is large in an adjacent row is shown.
  • FIG. 5 is a diagram illustrating a first evaluation value series and a second evaluation value series calculated based on the example of the two-dimensional data in FIG. 4, and shows a calculation result of the first evaluation value series.
  • FIG. 5 is a diagram showing a series of first evaluation values and a series of second evaluation values calculated based on the example of the two-dimensional data in FIG. 4, and shows a calculation result of a series of second evaluation values.
  • generation of two-dimensional data, and identification of object data It is a flowchart for demonstrating an example of the operation
  • movement regarding the update of the reference value in 1st Embodiment It is a figure for demonstrating the calculation method of the 1st evaluation value group used for determination of a row direction in 2nd Embodiment, Comprising: One detection data in an object line and its surrounding detection data are shown.
  • FIG. 1 is a diagram illustrating an example of a configuration of an input device according to an embodiment of the present invention.
  • the input device shown in FIG. 1 includes a sensor unit 10 including an electrostatic sensor 11, a processing unit 20, a storage unit 30, and an interface unit 40.
  • the input device inputs information according to a change in capacitance of the electrostatic sensor 11 at the proximity position by bringing an object such as a finger or a pen close to the electrostatic sensor 11.
  • “proximity” in this specification means being near, and does not limit the presence or absence of contact.
  • the sensor unit 10 is a device that detects the proximity of an object such as a finger or a pen at a plurality of detection positions on the operation surface. In the example of FIG. 1, the electrostatic sensor 11, the drive unit 13, A capacity detector 14 is included.
  • the electrostatic sensor 11 detects a change in capacitance accompanying the proximity of an object at a plurality of detection positions.
  • the electrostatic sensor 11 includes a plurality of drive electrodes Ed and a plurality of detection electrodes Es. Between the plurality of drive electrodes Ed and the plurality of detection electrodes Es, a plurality of capacitive coupling portions 12 whose electrostatic capacitances change according to the proximity of the object are formed.
  • the plurality of drive electrodes Ed extend in the Y direction (vertical direction in FIG. 1) and are arranged in parallel in the X direction (lateral direction in FIG. 1).
  • the plurality of detection electrodes Es extend in the X direction and are arranged in parallel in the Y direction.
  • the plurality of drive electrodes Ed and the plurality of detection electrodes Es intersect in a grid pattern, and the capacitive coupling portion 12 is formed at each intersection position.
  • the drive electrode Ed and the detection electrode Es are drawn in a simple band shape, but for example, a plurality of rhombus electrodes may be cascade-connected, or other shapes may be used.
  • the driving unit 13 applies a driving voltage to each of the plurality of driving electrodes Ed in the electrostatic sensor 11 according to the control of the sensor control unit 21 described later of the processing unit 20. For example, the drive unit 13 sequentially selects one drive electrode Ed from the plurality of drive electrodes Ed, and applies a pulse voltage with a predetermined amplitude to the selected one drive electrode Ed.
  • the electrostatic capacitance detection unit 14 detects the electrostatic capacitance of each capacitive coupling unit 12 based on the electric charge entering and exiting each capacitive coupling unit 12 by applying a driving voltage to each driving electrode Ed.
  • the capacitance detection unit 14 includes a charge amplifier that supplies charges to the capacitive coupling unit 12 of the detection electrode Es so that the detection electrode Es is maintained at a constant voltage when a drive voltage is applied to the drive electrode Ed. .
  • a signal output from the charge amplifier according to the electric charge supplied to the capacitive coupling unit 12 is a signal corresponding to the capacitance of the capacitive coupling unit 12.
  • the capacitance detection unit 14 may connect a plurality of detection electrodes Es to each charge amplifier via a multiplexer. By using the multiplexer, each of the plurality of detection electrodes Es can be sequentially selected and connected to the charge amplifier, and the capacitance can be detected.
  • the sensor unit 10 converts the capacitance detection result signal output from the capacitance detection unit 14 into a digital value in an analog-digital converter (not shown).
  • the sensor unit 10 outputs the detection result of the capacitance of each capacitance coupling unit 12 to the processing unit 20 as a digital capacitance value S.
  • the processing unit 20 is a circuit that controls the overall operation of the input device, and includes, for example, a computer that performs processing according to an instruction code of a program and a dedicated logic circuit.
  • the processing of the processing unit 20 may be performed entirely based on a computer program, or part or all of the processing may be performed by a logic circuit.
  • the processing unit 20 includes a sensor control unit 21, a two-dimensional data generation unit 22, a reference value update unit 23, a specification unit 24, a determination unit 25, and a coordinate calculation unit 26.
  • the sensor control unit 21 controls the detection timing in the sensor unit 10. Specifically, the sensor control unit 21 performs selection of the drive electrode Ed and generation of the drive voltage in the drive unit 13 and selection and detection operation of the detection electrode Es in the capacitance detection unit 14 at appropriate timing. As such, these circuits are controlled.
  • the two-dimensional data generation unit 22 includes the capacitance value S of one capacitance coupling unit 12 detected by the capacitance detection unit 14 and the reference value B of the capacitance set for the one capacitance coupling unit 12.
  • One detection data D indicating the difference “B ⁇ S” is calculated for each of the plurality of capacitive coupling units 12.
  • the reference value B is a capacitance value of the capacitive coupling unit 12 when an object such as a finger is not in proximity to the capacitive coupling unit 12, and is set for each capacitive coupling unit 12.
  • the two-dimensional data generation unit 22 stores the group of detection data D calculated for each of the plurality of capacitive coupling units 12 in the storage unit 30 as two-dimensional data 33 in a matrix format.
  • Each row of the two-dimensional data 33 corresponds to a plurality of capacitive coupling portions 12 in one detection electrode Es, and each column of the two-dimensional data 33 corresponds to a plurality of capacitive coupling portions 12 in one drive electrode Ed.
  • Each detection data D of the two-dimensional data 33 is arranged so as to correspond to the matrix arrangement of the capacitive coupling portions 12 on the operation surface of the electrostatic sensor 11.
  • the storage unit 30 stores a reference value B of the capacitance in each capacitive coupling unit 12 as a reference value matrix 31.
  • the two-dimensional data generation unit 22 stores the capacitance value of each capacitance coupling unit 12 detected by the capacitance detection unit 14 in the storage unit 30 as the capacitance value matrix 32.
  • the two-dimensional data generation unit 22 performs a matrix calculation that subtracts the capacitance value matrix 32 from the reference value matrix 31 and stores the calculation result in the storage unit 30 as two-dimensional data 33 (detection data matrix).
  • the reference value update unit 23 updates the reference value B in the plurality of capacitance coupling units 12 based on the capacitance values S of the plurality of capacitance coupling units 12 detected by the capacitance detection unit 14. For example, the reference value updating unit 23 updates the reference value B when it is determined that a state in which no object is in proximity to the electrostatic sensor 11 has continued for a predetermined time based on a processing result of the specifying unit 24 described later.
  • the reference value B of one capacitive coupling unit 12 may be the latest capacitance value S detected for the one capacitive coupling unit 12 or detected for a certain period of time for the one capacitive coupling unit 12. The average of the capacitance values S may be used.
  • the reference value update unit 23 also updates the reference value B when a determination result indicating that the reference value B is abnormal is obtained in the determination unit 25 described later.
  • the identifying unit 24 identifies, as “target data”, the detection data D indicating that an object such as a finger has approached the capacitive coupling unit 12 from the two-dimensional data 33 generated by the two-dimensional data generating unit 22. For example, when the detection data D has reached a predetermined threshold value (when the difference “B ⁇ S” obtained by subtracting the capacitance value S from the reference value B exceeds the threshold value), the specifying unit 24 Identified as target data. The specifying unit 24 also specifies the detection data D as target data even when the capacitance value S greatly decreases due to an abnormality in a reference value B described later.
  • the specifying unit 24 determines the presence / absence of the proximity of the object for each detection data D constituting the two-dimensional data 33, and the determination result is expressed by binary data (such as “1” and “0”). A proximity determination matrix is generated.
  • the coordinate calculation unit 26 calculates the coordinates of the position where the object is close based on the proximity determination matrix generated by the specifying unit 24. For example, the coordinate calculation unit 26 specifies an area where individual objects are close based on the proximity determination matrix, and determines one point in the area based on the peak value of the detection data D in the specified area, etc. Calculate as the coordinates of.
  • the determination unit 25 determines whether or not the row and the column of the two-dimensional data 33 corresponding to the target data are applicable to a predetermined pattern when an abnormality of the reference value B occurs. As will be described later, the abnormality of the reference value B determined by the determination unit 25 is performed by updating the reference value B in a state where a conductor such as a loop antenna of the IC card is close to the drive electrode Ed and the detection electrode Es. This is an abnormality that occurs when (Pattern determination for rows of two-dimensional data 33) When determining the row of the two-dimensional data 33, the determination unit 25 selects the row of the two-dimensional data 33 to which the target data specified by the specifying unit 24 belongs as the “target row”.
  • the determination unit 25 determines whether or not the selected target line applies to the “first pattern”, and determines whether or not the line adjacent to the target line (adjacent line) applies to the “second pattern”.
  • the “first pattern” is a pattern indicating that the capacitive coupling portion 12 having a capacitance value S (S> B) larger than the reference value B is continuous.
  • the “second pattern” is a pattern indicating that the capacitive coupling unit 12 having a capacitance value S (S ⁇ B) that approximates the reference value B continues.
  • the determination unit 25 When determining the first pattern and the second pattern for the target row and its adjacent rows, the determination unit 25 specifically calculates one first evaluation value H1 for each detection data D of the target row.
  • the first evaluation value H1 is a value that represents both the degree to which the capacitance value S of the target row exceeds the reference value B and the degree to which the capacitance value S of the adjacent row approximates the reference value B. .
  • the determination unit 25 calculates one first evaluation value H1 for one detection data D of the target row, the determination unit 25 includes a series of detection data including the one detection data D in the target row, and the one detection A first evaluation value H1 is calculated based on at least one detection data D adjacent to the data D in the column direction.
  • the first evaluation value H1 is expressed by the following equation, for example.
  • H1 H11 + H12
  • H11 a “target row evaluation value” that represents the degree to which the capacitance value S of the target row exceeds the reference value B.
  • the target row evaluation value H11 calculated for one detection data D (i, j) of the target row is expressed by the following equation, for example.
  • H11 ⁇ ⁇ D (i ⁇ 1, j) + ⁇ ⁇ D (i, j) + ⁇ ⁇ D (i + 1, j) (2)
  • i is an integer representing the order of the rows of the two-dimensional data 33
  • j is an integer representing the order of the columns of the two-dimensional data 33.
  • D (i, j) indicates the detection data D of i rows and j columns in the two-dimensional data 33.
  • ⁇ and “ ⁇ ” indicate weighting factors. For example, the value of the weighting factor ⁇ is set to “ ⁇ 1” and the value of the weighting factor ⁇ is set to “ ⁇ 2”.
  • the detection data D is a value calculated by “B ⁇ S”, and becomes a negative value when the capacitance value S exceeds the reference value B. Therefore, when the weighting factors ⁇ and ⁇ are set to negative values, the target row evaluation value H11 increases in the positive direction as the degree of the capacitance value S exceeding the reference value B increases.
  • H12 in Equation (1) is an “adjacent row evaluation value” representing the degree to which the capacitance value S of the adjacent row approximates the reference value B.
  • the adjacent row evaluation value H12 calculated for one detection data D (i, j) of the target row is expressed by the following equation, for example.
  • Equation (3) is a weighting coefficient, and is set to “ ⁇ 2”, for example.
  • the weight coefficient ⁇ is set to a negative value, the sign of the adjacent row evaluation value H12 is negative.
  • the adjacent row evaluation value H12 decreases as the absolute value of the detection data D (i, j-1) and D (i, j + 1) adjacent in the column direction of the detection data D (i, j) decreases (the electrostatic value of the adjacent row). As the capacitance value S approximates the reference value B), it approaches zero.
  • the first evaluation value H1 which is the sum of the target row evaluation value H11 and the adjacent row evaluation value H12, is the detection data D (i, j) and the target data D (i ⁇ 1, j), D ( In i + 1, j), the capacitance value S increases in the positive direction as it becomes larger than the reference value B.
  • the first evaluation value H1 is obtained by setting the capacitance value S to the reference value B in the detection data D (i, j ⁇ 1) and D (i, j + 1) adjacent in the column direction of the detection data D (i, j). As it approaches, it increases in the positive direction.
  • the determination unit 25 calculates the first evaluation value H1 described above for each detection data D in the target row, and determines the series of the first evaluation values H1 obtained as a result. That is, in the series of first evaluation values H1, when the first evaluation value H1 reaching a predetermined threshold continues for a predetermined number or more, the determination unit 25 applies the target row to the first pattern, and the adjacent row Is determined to apply to the second pattern.
  • the case where the target row applies to the first pattern and the adjacent row applies to the second pattern is referred to as a “first condition”.
  • the reference value update unit 23 regards that the reference value B is abnormal and executes an update process for the reference value B.
  • the determining unit 25 selects the column of the two-dimensional data 33 to which the target data specified by the specifying unit 24 belongs as the “target column”. The determination unit 25 determines whether or not the selected target column applies to the first pattern, and determines whether or not the column adjacent to the target column (adjacent column) applies to the second pattern.
  • the determination unit 25 When determining the first pattern and the second pattern for the target column and its adjacent columns, the determination unit 25 specifically calculates one second evaluation value H2 for each detection data D of the target column.
  • the second evaluation value H2 is a value that represents both the degree to which the capacitance value S of the target column exceeds the reference value B and the degree to which the capacitance value S of the adjacent column approximates the reference value B. .
  • the determination unit 25 calculates one second evaluation value H2 for one detection data D in the target column, a series of detection data including the one detection data D in the target column, and the one detection A second evaluation value H2 is calculated based on at least one detection data D adjacent to the data D in the row direction.
  • the second evaluation value H2 is represented by the following equation, for example.
  • H2 H21 + H22 (4)
  • H21 is a “target column evaluation value” that represents the degree to which the capacitance value S of the target column exceeds the reference value B.
  • the target column evaluation value H21 calculated for one detection data D (i, j) of the target column is expressed by the following equation, for example.
  • H22 in Equation (4) is an “adjacent column evaluation value” representing the degree to which the capacitance value S of the adjacent column approximates the reference value B.
  • the adjacent column evaluation value H22 calculated for one detection data D (i, j) of the target column is expressed by the following equation, for example.
  • Equation (6) is a weighting coefficient, and is set to the same value “ ⁇ 2” as the weighting coefficient ⁇ , for example.
  • the weight coefficient ⁇ is set to a negative value, the sign of the adjacent column evaluation value H22 is negative.
  • the adjacent column evaluation value H22 becomes smaller as the absolute value of the detection data D (i ⁇ 1, j) and D (i + 1, j) adjacent in the row direction of the detection data D (i, j) decreases (the electrostatic capacity of the adjacent column). As the capacitance value S approximates the reference value B), it approaches zero.
  • the second evaluation value H2 which is the sum of the target column evaluation value H21 and the adjacent column evaluation value H22, is the detection data D (i, j) and the target data D (i, j-1) and D (before and after the detection data D (i, j).
  • the capacitance value S increases in the positive direction as it becomes larger than the reference value B.
  • the second evaluation value H2 is obtained by setting the capacitance value S to the reference value B in the detection data D (i ⁇ 1, j) and D (i + 1, j) adjacent to the detection data D (i, j) in the row direction. As it approaches, it increases in the positive direction.
  • the determination unit 25 calculates the above-described second evaluation value H2 for each detection data D in the target column, and performs determination on the series of second evaluation values H2 obtained as a result. That is, in the series of first evaluation values H1, when the second evaluation value H2 that reaches a predetermined threshold continues for a predetermined number or more, the determination unit 25 applies the target column to the first pattern, and the adjacent column Is determined to apply to the second pattern.
  • the target column applies to the first pattern and the adjacent column applies to the second pattern is referred to as a “second condition”.
  • the storage unit 30 stores constant data and variable data (reference value matrix 31, capacitance value matrix 32, two-dimensional data 33) used for processing in the processing unit 20.
  • the processing unit 20 includes a computer
  • the storage unit 30 may store a program PRG executed on the computer.
  • the storage unit 30 includes, for example, a volatile memory such as DRAM or SRAM, and a nonvolatile memory such as flash memory.
  • the interface unit 40 is a circuit for exchanging data between the input device and another control device (such as a control IC for an information device equipped with the input device).
  • the processing unit 20 outputs information stored in the storage unit 30 (such as a calculation result of object coordinates) from the interface unit 40 to a control device (not shown).
  • the program PRG stored in the storage unit 30 may be written in advance in a ROM or the like of the storage unit 30, or may be saved in the storage unit 30 as downloaded from the host device (not shown) via the interface unit 40. Alternatively, data read from a medium such as an optical disk or a USB memory by a reading device (not shown) may be written in the storage unit 30.
  • FIG. 2 is a diagram for explaining a change in electrostatic capacitance (hereinafter sometimes referred to as “mutual capacitance”) between the drive electrode Ed and the detection electrode Es due to the proximity of an object.
  • mutual capacitance electrostatic capacitance
  • the electrostatic capacitance detection unit 14 detects the mutual capacitance based on the charge Qx supplied to the detection electrode Es with the application of the drive voltage Vd.
  • the object 1 such as a finger has a relatively large capacitive coupling with respect to the ground, and the electrostatic capacity thereof is sufficiently larger than the mutual capacitance, so that it can be regarded as being grounded as shown in FIG. 2B. Therefore, when the object 1 approaches between the drive electrode Ed and the detection electrode Es, a part of the electric force lines Fx passing between these electrodes is shielded by the object 1. Therefore, when the object 1 that can be regarded as a ground is close, the mutual capacitance is relatively reduced.
  • FIG. 3 is a diagram showing that the pattern of the detection data D is different when the grounded loop-shaped conductor is close and when the loop antenna of the IC card is close.
  • 3A shows an example of the two-dimensional data 33 when a grounded loop conductor is placed on the electrostatic sensor 11
  • FIG. 3B shows an example of the two-dimensional data 33 when the IC card is placed on the electrostatic sensor 11. Show.
  • the number of drive electrodes Ed is 27, and the number of detection electrodes Es is 16.
  • “Y0” to “Y15” in the leftmost column indicate each row of the two-dimensional data 33
  • “X0” to “X26” in the uppermost row indicate each column of the two-dimensional data 33.
  • Each numerical value in the column indicates the value of the detection data D, but in order to make it easy to see the entire numerical value, a portion where the value is “0” is blank. Since the detection data D has a value “B ⁇ S” obtained by subtracting the capacitance value S from the reference value B, a positive value indicates that the capacitance value S is smaller than the reference value BS, that is, the proximity of an object. Indicates that the mutual capacitance is reduced.
  • the two-dimensional data 33 when the grounded loop-shaped conductor is placed on the electrostatic sensor 11 has a relatively large positive value for the detection data D at a position close to the conductor.
  • the loop antenna of the IC card is covered with an insulator, it is insulated from the ground unlike a grounded loop conductor.
  • the size of the loop antenna is relatively small, capacitive coupling to the ground is relatively weak. Because of such a difference, the two-dimensional data 33 when the IC card is placed on the electrostatic sensor 11 shows a pattern of detection data D different from FIG. 3A.
  • the detection data D is negative at the four corners of the rectangular area circumscribing the outer shape of the loop antenna, and the capacitance value S is larger than the reference value B.
  • the detection data D at a position close to the conductor of the loop antenna has a positive value, but its absolute value is smaller than that of the grounded loop conductor. Therefore, the position close to the conductor of the loop antenna is not determined as the position close to the object. If the IC card is left on the electrostatic sensor 11, the state in which it is determined that the object is not in proximity to the electrostatic sensor 11 continues. Therefore, the reference value update unit 23 performs the update process of the reference value B. .
  • FIG. 4 is a diagram illustrating an example of the two-dimensional data 33 when the IC card is removed after updating the reference value B with the IC card placed.
  • the upper part of FIG. 4 shows the two-dimensional data 33 after the reference value B is updated in the state of FIG. 3B where the IC card is placed.
  • each capacitance value S becomes equal to the reference value B, so that each detection data D of the two-dimensional data 33 once becomes zero.
  • two-dimensional data 33 is obtained that is substantially equal to the inverted version of the detection data D in FIG. 3B.
  • the detection data D at the four corners of the rectangular area, which was a negative value in FIG.
  • the two-dimensional data 33 in the lower stage of FIG. 4 determines that the object is close to the four corners of the rectangular range.
  • FIG. 5 is a diagram for explaining a parasitic capacitor formed between an object close to the electrostatic sensor and each electrode of the electrostatic sensor.
  • FIG. 5A shows a case where an object 1 such as a finger having strong capacitive coupling with the ground approaches the electrostatic sensor 11, and
  • FIG. 5B shows that a conductive object 1 having weak capacitive coupling with the ground approaches the electrostatic sensor 11. Show the case.
  • “Cfg” indicates a capacitor formed between the object 1 and the ground
  • “Cm” indicates a capacitor formed between the drive electrode Ed and the detection electrode Es
  • “Cfd” indicates drive.
  • a capacitor formed between the electrode Ed and the object 1 is indicated, “Cfs” indicates a capacitor formed between the detection electrode Es and the object 1, and “Cbd” is indicated between the drive electrode Ed and the ground.
  • a capacitor to be formed is shown, and “Cbs” denotes a capacitor formed between the detection electrode Es and the ground.
  • the electrostatic capacitance detector 14 detects the electrostatic capacitance (mutual capacitance) between the drive electrode Ed and the detection electrode Es based on the charge Qx supplied to the detection electrode Es maintained at a constant potential.
  • This charge Qx is mainly affected by the capacitors Cm, Cfs, Cfd, and Cfg.
  • the charge Qx is not significantly affected by the capacitors Cfs, Cfd, and Cfg, and is approximately proportional to the capacitance of the capacitor Cm.
  • the capacitance of the capacitor Cm is reduced by the proximity of an object that can be regarded as ground.
  • Cds Cm + (Cfs ⁇ Cfd) / Cfg (7)
  • Cm Cfs ⁇ Cfd
  • Cfg Cfg
  • FIG. 6 is a diagram for explaining that each electrode of the electrostatic sensor 11 and the loop antenna cause capacitive coupling.
  • FIG. 6A shows an example of the loop antenna AT built in the IC card 90
  • FIG. 6B shows an example of a region where capacitive coupling is formed between the detection electrode Es and the drive electrode Ed and the loop antenna AT.
  • an elliptical loop antenna AT is embedded in the IC card 90, and an IC chip 91 is connected to the loop antenna AT.
  • the loop antenna AT and the electrodes (Es, Ed) are close to each other in a state where they are close to each other (regions indicated by dotted lines). Occurs.
  • Capacitors Cfs1 and Cfs2 are formed in regions where the detection electrodes Es1 and Es2 and the loop antenna AT are close to each other.
  • Capacitors Cfd1 and Cfd2 are formed in regions where the drive electrodes Ed1 and Ed2 and the loop antenna AT are close to each other.
  • the capacitance of these capacitors increases, the numerator of the two items on the right side of Equation (7) increases, and thus the capacitance Cds increases. Accordingly, the capacitance Cds is increased at four positions where the two detection electrodes Es1, Es2 and the two drive electrodes Ed1, Ed2 intersect. As shown in the lower part of FIG. 4, the reason why the detection data D becomes large at the four corners of the rectangular range circumscribing the outer shape of the loop antenna AT is as described above.
  • the pattern of the detection data D appearing in the two-dimensional data 33 is used to determine the abnormality of the reference value B described above.
  • the detection data D (3,1), D (3,13), D (22,1) and D (22,13) surrounded by a thick square are: Has a positive value that exceeds a predetermined threshold. Therefore, the specifying unit 24 specifies these detection data D as target data.
  • the target data indicates the proximity of an object.
  • the two-dimensional data 33 shows two features related to the target data.
  • the first feature is that negative value detection data D continues in the row or column to which the target data belongs. Since the negative detection data D indicates that the capacitance value S is greater than the reference value B, the continuous negative detection data D indicates that the capacitance value S (S It indicates that the capacitive coupling part 12 having> B) is continuous.
  • the pattern of the detection data D corresponding to the first feature is the “first pattern”.
  • the second feature is that detection data D close to zero is continuous in a row adjacent to a row to which the target data belongs or a column adjacent to a column to which the target data belongs. Since the detection data D close to zero indicates that the capacitance value S approximates the reference value B, the continuous detection data D close to zero indicates that the capacitance value S approximates the reference value B. It shows that the capacitive coupling unit 12 having (S ⁇ B) continues.
  • the pattern of the detection data D corresponding to the second feature is the “second pattern”.
  • the determination method of the first pattern and the second pattern by the determination unit 25 will be specifically described with reference to FIGS.
  • the determination unit 25 selects the row of the two-dimensional data 33 to which the target data belongs as the target row.
  • the target row for the target data D (3, 1) and D (22, 1) is “Y1”
  • the target data D (3, 13) and D is “Y13”.
  • the determination unit 25 selects the column of the two-dimensional data 33 to which the target data belongs as the target column.
  • the target column for the target data D (3, 1) and D (3, 13) is “X3”
  • the target data D (22, 1) and D is “X22”.
  • the determination unit 25 calculates the first evaluation value H1 represented by the equations (1) to (3) for each detection data D of the selected target row.
  • FIG. 7 is a diagram for explaining a method of calculating the first evaluation value H1.
  • FIG. 7A shows one detection data D (i, j) and surrounding detection data D in the target row indicated by the arrows
  • FIG. 7B shows the contents of the calculation for these detection data D.
  • the determination unit 25 uses “ ⁇ 1” as a weighting factor for detection data D (i ⁇ 1, j), D (i, j), and D (i + 1, j) that are continuous in the target row. Multiply by "-2" and "-1".
  • the determination unit 25 converts the detection data D (i, j ⁇ 1) and detection data D (i, j ⁇ 1) and D (i, j + 1) adjacent to the detection data D (i, j) into absolute values and uses “ ⁇ 2” as a weighting coefficient. ].
  • the determination unit 25 calculates the first evaluation value H1 by adding these calculation results for each detection data D.
  • the determination unit 25 calculates the second evaluation value H2 represented by the equations (4) to (6) for each detection data D in the selected target column.
  • FIG. 8 is a diagram for explaining a method of calculating the second evaluation value H2.
  • FIG. 8A shows one detection data D (i, j) and its surrounding detection data D in the target column indicated by the arrows
  • FIG. 8B shows the contents of calculation for these detection data D.
  • the determination unit 25 uses “ ⁇ 1” as a weighting factor for detection data D (i, j ⁇ 1), D (i, j), and D (i, j + 1) continuous in the target column. Multiply by "-2" and "-1".
  • the determination unit 25 converts the detection data D (i, j) and detection data D (i ⁇ 1, j) and D (i + 1, j) adjacent to the detection data D (i, j) into absolute values and uses “ ⁇ 2” as a weighting coefficient. ].
  • the determination unit 25 calculates the second evaluation value H2 by adding up these calculation results for each detection data D.
  • FIG. 9 is a diagram illustrating an example of a calculation result of the first evaluation value H1.
  • FIG. 9A shows a calculation result when the target row and the adjacent row are applied to the first pattern and the second pattern.
  • 9B and 9C show calculation results when the difference between the capacitance value S and the reference value B is large in adjacent rows.
  • FIG. 9D shows a calculation result when the capacitance value S larger than the reference value B is not continuous in the target row. Comparing these calculation results, in the case of FIG. 9B and FIG. 9C in which the adjacent row does not apply to the second pattern, or in the case of FIG. 9D in which the target row does not apply to the first pattern, the first row is compared to the case of FIG. 9A.
  • the evaluation value H1 is clearly small.
  • the target row satisfies the “first condition” that applies to the first pattern and the adjacent row applies to the second pattern.
  • the target column applies to the first pattern and the adjacent column satisfies the “second condition” that applies to the second pattern can be determined based on the second evaluation value H2.
  • FIG. 10 is a diagram showing a series of first evaluation values H1 and a series of second evaluation values H2 calculated based on the example of the two-dimensional data 33 in the lower part of FIG. 10A shows the calculation result of the series of the first evaluation values H1, and FIG. 10B shows the calculation result of the series of the second evaluation values H2.
  • the value enclosed by a thick square indicates an evaluation value of “60” or more.
  • evaluation values having a value of “60” or more are continuous. Accordingly, the determination unit 25 determines that the “first condition” is satisfied when a predetermined number or more of the series of the first evaluation values H1 that have reached the predetermined threshold value continues. In addition, the determination unit 25 determines that the “second condition” is satisfied when a predetermined threshold value in the series of the second evaluation values H2 continues for a predetermined number or more.
  • FIG. 11 is a flowchart for explaining an example of operations related to generation of the two-dimensional data 33 and identification of target data.
  • the processing unit 20 of the input device repeatedly executes the process shown in FIG. 11 at a predetermined cycle.
  • the sensor control unit 21 controls the drive unit 13 and the capacitance detection unit 14 of the sensor unit 10 to detect the capacitance values S of the plurality of capacitive coupling units 12 formed in the electrostatic sensor 11, respectively.
  • the two-dimensional data generation unit 22 generates detection data D indicating the difference (B ⁇ S) between the detected capacitance value S and the reference value B of capacitance for each capacitive coupling unit 12 of the electrostatic sensor 11. Calculation is performed to generate two-dimensional data 33 in a matrix format having the detection data D of each capacitive coupling unit 12 as an element (ST100).
  • the identifying unit 24 identifies, as target data, detection data D indicating that an object has approached the capacitive coupling unit 12 from the generated two-dimensional data 33 (ST105).
  • the coordinate calculation unit 26 calculates the coordinates of the proximity position of the object based on the specified target data (ST115).
  • FIG. 12 is a flowchart for explaining an example of the operation relating to the update of the reference value B.
  • the processing unit 20 of the input device repeatedly executes the process shown in FIG. 12 at a predetermined timing.
  • the reference value update unit 23 is not operated on the electrostatic sensor 11 based on the target data periodically specified by the specifying unit 24, the coordinates of the proximity position of the object calculated by the coordinate calculation unit 26, and the like. Monitor no-operation status.
  • the no-operation state is, for example, a state in which no object is in close proximity or a state in which an adjacent object does not move.
  • Reference value updating unit 23 determines whether or not the no-operation state has continued for a predetermined time or more (ST200).
  • the reference value update unit 23 determines whether one or more target data is specified in the specifying unit 24 (whether an object is close to the electrostatic sensor 11). (ST205). When the target data is not specified by the specifying unit 24 (when an object is not in proximity to the electrostatic sensor 11), the reference value update unit 23 executes the update process of the reference value B (ST240).
  • the determination unit 25 selects one target data from the list (ST210), and uses the first evaluation value H1 for each detection data D of the target row to which the selected target data belongs. Calculate (ST215).
  • the determining unit 25 determines whether or not a predetermined number or more of the first evaluation values H1 reaching a predetermined threshold value are continuous in the series of the first evaluation values H1 calculated for the target row (ST220).
  • the reference value update unit 23 performs the update process of the reference value B in order to satisfy the first condition (ST240).
  • the determination unit 25 detects each of the target columns to which the target data selected in step ST210 belongs.
  • a second evaluation value H2 is calculated for data D (ST225).
  • Determining unit 25 determines whether or not the second evaluation value H2 reaching a predetermined threshold value continues for a predetermined number or more in the series of second evaluation values H2 calculated for the target column (ST230). When the second evaluation value H2 that reaches the threshold value continues for a predetermined number or more, the reference value update unit 23 performs the update process of the reference value B in order to satisfy the second condition (ST240).
  • the determination unit 25 determines that there is other target data (ST235). The process after step ST210 is repeated for the target data. When the processes of steps ST210 to ST230 have been performed for all target data specified by the specifying unit 24, the determination unit 25 ends the determination process for the current two-dimensional data 33.
  • the capacitance is likely to increase.
  • the reference value B of the one capacitive coupling unit 12 is updated in a state where the capacitance is increased in the one capacitive coupling unit 12, and the conductor is removed from the electrostatic sensor 11 after the update, the one capacitive coupling is performed. In the part 12, the capacitance decreases with respect to the updated reference value B.
  • detection data D indicating that an object has approached is obtained in the one capacitive coupling portion.
  • This detection data D is specified as target data.
  • the capacitance is likely to decrease due to the proximity of a conductor such as a loop antenna.
  • the reference value B of the other capacitive coupling unit 12 is updated, and when the conductor is removed from the electrostatic sensor 11 after the update, the other capacitive coupling unit 12 has the updated reference value. The capacitance increases with respect to B.
  • the target row selected based on the row of the two-dimensional data 33 to which the target data belongs and the target column selected based on the column of the two-dimensional data 33 to which the target data belongs have a capacitance larger than the reference value B.
  • the reference value B is updated because there is a possibility that the reference value B is abnormal due to the proximity of a conductor such as a loop antenna.
  • the presence or absence of abnormality of the reference value B is determined based on the pattern of the detection data D of the two-dimensional data 33 without using the information of the capacitance value S before the reference value B is updated as in the conventional apparatus. Can be judged. Therefore, for example, even when a conductor such as a loop antenna that has been close before the power is turned on is removed after the power is turned on, the abnormality of the reference value B can be determined appropriately and quickly resolved.
  • a linear conductor such as a loop antenna of an IC card is adjacent along one drive electrode Ed and one detection electrode Es, it is adjacent to the one detection electrode Es.
  • the difference in the capacitance value S with respect to the reference value B tends to be small. Therefore, an adjacent row adjacent to the target row or an adjacent column adjacent to the target column indicates that the capacitive coupling unit 12 having the capacitance value S approximate to the reference value B is “second pattern” It becomes easy to apply to.
  • the “condition” is satisfied, there is a higher possibility that the reference value B is abnormal due to the proximity of a conductor such as a loop antenna. Accordingly, by updating the reference value B when the “first condition” and the “second condition” are satisfied, the abnormality of the reference value B can be solved more appropriately.
  • the “first condition” is satisfied depending on whether or not a predetermined number or more of the first evaluation values H1 reaching the threshold value continue. It is determined whether or not.
  • the series of the second evaluation values H2 calculated for the target column whether or not the “second condition” is satisfied is determined based on whether or not a predetermined number or more of the second evaluation values H2 reaching the threshold value continue. . Therefore, since the first pattern and the second pattern can be determined based on one evaluation value (H1, H2) in the pattern determination of the target row and the pattern determination of the target row, calculations related to the determination can be simplified.
  • the input device according to the second embodiment is obtained by changing the processing of the determination unit 25 in the input device according to the first embodiment described above, and other configurations are the same as those of the input device according to the first embodiment. It is. Below, it demonstrates centering around difference with the input device which concerns on 1st Embodiment.
  • this first evaluation value group includes the target row evaluation value H11 (formula (2)) and the adjacent row evaluation value H12 (formula (3)) already described. That is, the determination unit 25 does not calculate the first evaluation value H1 (formula (1)) by adding the target row evaluation value H11 and the adjacent row evaluation value H12, but the target row evaluation value H11 and the adjacent row evaluation.
  • the value H12 is calculated independently.
  • the determination unit 25 includes a target row evaluation value H11 that reaches a predetermined threshold in a series of first evaluation value groups (target row evaluation value H11 and adjacent row evaluation value H12) calculated for each detection data D of the target row.
  • a first evaluation value group including the adjacent row evaluation value H12 that reaches a predetermined threshold is specified, and the number of consecutive specified first evaluation value groups is counted.
  • the target row evaluation value H11 that reaches a predetermined threshold is, for example, a target row evaluation that is larger than a predetermined positive threshold when “ ⁇ ⁇ 0” and “ ⁇ ⁇ 0” in Expression (2).
  • the value is H11.
  • the determination unit 25 determines that the “first condition” is satisfied.
  • the determination unit 25 determines the first pattern and the second pattern for the target column and the adjacent column
  • the determination unit 25 calculates one second evaluation value group for each detection data D of the target column.
  • the second evaluation value group includes the target column evaluation value H21 (expression (5)) and the adjacent row evaluation value H22 (expression (6)) that have already been described.
  • the determination unit 25 does not calculate the second evaluation value H2 (formula (4)) by adding the target column evaluation value H21 and the adjacent column evaluation value H22, but the target column evaluation value H21 and the adjacent column evaluation.
  • the value H22 is calculated independently.
  • the determination unit 25 includes the target column evaluation value H21 that reaches a predetermined threshold value.
  • the second evaluation value group including the adjacent column evaluation value H22 that reaches a predetermined threshold is specified, and the number of consecutive specified second evaluation value groups is counted.
  • the target column evaluation value H21 that reaches a predetermined threshold is, for example, a target column evaluation that is larger than a predetermined positive threshold when “ ⁇ ⁇ 0” and “ ⁇ ⁇ 0” in Equation (5).
  • the value is H21.
  • the determination unit 25 determines that the “second condition” is satisfied.
  • FIG. 13 is a diagram for explaining a method of calculating the first evaluation value group (target row evaluation value H11, adjacent row evaluation value H12) used for determination in the row direction.
  • FIG. 13A shows one detection data D (i, j) and surrounding detection data D in the target row indicated by an arrow.
  • FIG. 13B shows the contents of the calculation for each detection data D when calculating the target row evaluation value H11
  • FIG. 13C shows the contents of the calculation for each detection data D when calculating the adjacent row evaluation value H12.
  • the determination unit 25 uses “ ⁇ 1” as a weighting factor for detection data D (i ⁇ 1, j), D (i, j), and D (i + 1, j) continuous in the target row.
  • the target row evaluation value H11 is calculated by multiplying “ ⁇ 2” and “ ⁇ 1” and adding these calculation results.
  • the determination unit 25 converts the detection data D (i, j) and the detection data D (i, j ⁇ 1) and D (i, j + 1) adjacent in the column direction into absolute values, and adds them together.
  • An adjacent row evaluation value H12 is calculated.
  • FIG. 14 is a diagram for explaining a method of calculating the second evaluation value group (target column evaluation value H21, adjacent column evaluation value H22) used for determining the column direction.
  • FIG. 14A shows one detection data D (i, j) and its surrounding detection data D in the target column indicated by the arrows.
  • FIG. 14B shows the contents of the calculation for each detection data D when calculating the target column evaluation value H21
  • FIG. 14C shows the contents of the calculation for each detection data D when calculating the adjacent column evaluation value H22.
  • the determination unit 25 uses “ ⁇ 1” as a weighting factor for detection data D (i, j ⁇ 1), D (i, j), and D (i, j + 1) continuous in the target column.
  • the target column evaluation value H21 is calculated by multiplying “ ⁇ 2” and “ ⁇ 1” and adding these calculation results.
  • the determination unit 25 converts the detection data D (i, j) and the detection data D (i ⁇ 1, j) and D (i + 1, j) adjacent in the row direction into absolute values and adds them together.
  • the adjacent column evaluation value H22 is calculated.
  • FIG. 15 is a flowchart for explaining an example of an operation related to the update of the reference value B in the second embodiment.
  • the flowchart shown in FIG. 15 is obtained by changing steps ST215 to ST230 in the flowchart shown in FIG. 12 to steps ST215A to ST230A, and other steps are the same as the flowchart shown in FIG. Only differences from the flowchart shown in FIG. 12 will be described below.
  • the determination unit 25 selects one target data in step ST210, the first evaluation value group (target row evaluation value H11 and adjacent row evaluation value H12) for each detection data D of the target row to which the selected target data belongs. Is calculated (ST215A).
  • the determination unit 25 identifies and identifies the first evaluation value group in which the target row evaluation value H11 and the adjacent row evaluation value H12 each reach a predetermined threshold in the calculated first evaluation value group series. It is determined whether or not a predetermined number or more of first evaluation value groups are continuous (ST220A).
  • the reference value update unit 23 executes the update process of the reference value B (ST240).
  • the determination unit 25 selects in step ST210.
  • the second evaluation value group (target column evaluation value H21 and adjacent column evaluation value H22) is calculated for each detection data D in the target column to which the target data belongs (ST225A).
  • the determination unit 25 identifies and identifies the second evaluation value group in which the target column evaluation value H21 and the adjacent column evaluation value H22 each reach a predetermined threshold in the calculated second evaluation value group series. It is determined whether or not the second evaluation value group continues for a predetermined number or more (ST230A). If the specified second evaluation value group continues for a predetermined number or more, the reference value update unit 23 executes the update process of the reference value B (ST240).
  • the determination unit 25 determines other target data. If there is (ST235), the process from step ST210 is repeated on the other target data.
  • the target row evaluation value H11 that reaches the predetermined threshold and the predetermined threshold are reached in the series of the first evaluation value groups calculated for the target row and the target column. Whether or not the “first condition” is satisfied is determined based on whether or not a predetermined number or more of the first evaluation value groups including the adjacent row evaluation value H12 are continuous. Further, in the second evaluation value group sequence calculated for the target column and the adjacent column, the second evaluation value group 21 includes a target column evaluation value H21 that reaches a predetermined threshold value and an adjacent column evaluation value H22 that reaches a predetermined threshold value. Whether or not the “second condition” is satisfied is determined based on whether or not a predetermined number or more of the evaluation value groups are continuous.
  • the input device according to the third embodiment is obtained by changing the processing of the determination unit 25 in the input device according to the first embodiment described above, and other configurations are the same as those of the input device according to the first embodiment. Below, it demonstrates centering on difference with the input device which concerns on 1st Embodiment.
  • the determination unit 25 when the determination unit 25 determines the first pattern for the target row, the determination unit 25 obtains one target row evaluation value H11 (formula (2)) for each detection data D of the target row. calculate. That is, the determination unit 25 in the present embodiment does not calculate the first evaluation value H1 (formula (1)) by adding the target row evaluation value H11 and the adjacent row evaluation value H12, but the first evaluation value H1. A simpler target row evaluation value H11 is calculated.
  • the determination unit 25 determines whether or not the target row evaluation values H11 that reach a predetermined threshold continue for a predetermined number or more in the series of target row evaluation values H11 calculated for the target row.
  • the target row evaluation value H11 that reaches a predetermined threshold is, for example, a target row evaluation that is larger than a predetermined positive threshold when “ ⁇ ⁇ 0” and “ ⁇ ⁇ 0” in Expression (2).
  • the value is H11.
  • the determination unit 25 determines that the target row applies to the first pattern.
  • the determination unit 25 calculates one target column evaluation value H21 (formula (5)) for each detection data D of the target column. That is, the determination unit 25 in the present embodiment does not calculate the second evaluation value H2 (formula (4)) by adding the target column evaluation value H21 and the adjacent column evaluation value H22, but instead of calculating the second evaluation value H2. A simpler target column evaluation value H21 is calculated.
  • the determination unit 25 determines whether or not the target column evaluation value H21 that reaches a predetermined threshold continues for a predetermined number or more in the series of target column evaluation values H21 calculated for the target column.
  • the target column evaluation value H21 that reaches a predetermined threshold is, for example, a target column evaluation that is larger than a predetermined positive threshold when “ ⁇ ⁇ 0” and “ ⁇ ⁇ 0” in Equation (5).
  • the value is H21. If the target column evaluation value H21 that reaches the predetermined threshold continues for a predetermined number or more, the determination unit 25 determines that the target column applies to the first pattern.
  • FIG. 16 is a flowchart for explaining an example of the operation relating to the update of the reference value B in the third embodiment.
  • the flowchart shown in FIG. 16 is obtained by changing steps ST215 to ST230 in the flowchart shown in FIG. 12 to steps ST215B to ST230B, and the other steps are the same as the flowchart shown in FIG. Only differences from the flowchart shown in FIG. 12 will be described below.
  • the determination unit 25 calculates a target row evaluation value H11 for each detection data D of the target row to which the selected target data belongs (ST215B).
  • the determining unit 25 determines whether or not a predetermined number or more of target row evaluation values H11 reaching a predetermined threshold value are continuous in the calculated series of target row evaluation values H11 (ST220B).
  • the reference value update unit 23 executes the update process of the reference value B (ST240).
  • the determination unit 25 selects the target column to which the target data selected in step ST210 belongs. For each detection data D, target column evaluation value H21 is calculated (ST225B). The determination unit 25 determines whether or not the target column evaluation values H21 that have reached a predetermined threshold value continue in a predetermined number or more in the calculated sequence of target column evaluation values H21 (ST230B). When the target column evaluation values H21 that have reached the predetermined threshold value continue for a predetermined number or more, the reference value update unit 23 executes the update process of the reference value B (ST240).
  • the determination unit 25 determines that there is other target data (ST235), other The process after step ST210 is repeated for the target data.
  • the target row evaluation values H11 calculated for the target row whether or not the target row evaluation values H11 that reach a predetermined threshold continue for a predetermined number or more, It is determined whether the target row is applicable to the first pattern. Further, in the series of target column evaluation values H21 calculated for the target column, whether or not the target column applies to the first pattern depending on whether or not the target column evaluation values H21 reaching a predetermined threshold value continue for a predetermined number or more. Is determined. Therefore, it can be determined by a simple calculation that the target row or the target column applies to the first pattern. ⁇ Fourth Embodiment> Next, a fourth embodiment of the present invention will be described.
  • the input device according to the fourth embodiment is obtained by changing the method of selecting a target row and target column in the determination unit 25 of the input device according to the first to third embodiments described above, and has other configurations. Is the same as that of the input device according to the first to third embodiments. Hereinafter, differences from the input device according to these embodiments will be mainly described.
  • the determination unit 25 in each embodiment described above selects a row to which the target data belongs as a target row, and selects a column to which the target data belongs as a target column.
  • the determination unit 25 according to the present embodiment selects a target row from a plurality of adjacent rows including the row to which the target data belongs, and selects a target column from a plurality of adjacent columns including the column to which the target data belongs. select.
  • the determination unit 25 determines the first pattern for the target row
  • the capacitance value S is relatively large from among a plurality of adjacent rows including the row of the two-dimensional data 33 to which the target data belongs. Is selected for each column, and the first pattern is determined using the selected series of detection data D as a target row.
  • the determination unit 25 determines the first pattern for the target column
  • the capacitance value S is relatively large from among a plurality of adjacent columns including the column of the two-dimensional data 33 to which the target data belongs. Is detected for each row, and the first pattern is determined using the selected series of detected data D as a target column.
  • FIG. 17 is a diagram for explaining a method of selecting a target row in the fourth embodiment.
  • detection data D (1, 12) surrounded by a thick square is target data
  • a series of detection data D surrounded by a circle is a target row.
  • the determination unit 25 selects each detection data D in the target row in a range including the row Y12 to which the detection data D (1, 12) belongs and the rows Y11 and Y13 adjacent thereto. That is, the determination unit 25 selects detection data D having the smallest value for each column in the range of rows Y11 to Y13 (detection data D having a relatively large capacitance value S) as detection data D for the target row. .
  • the values of the detection data D (4,11), D (4,12), D (4,13) in the range of the rows Y11 to Y13 are “ ⁇ 14”, “ ⁇ 1”, “12”, respectively.
  • the determination unit 25 selects the detection data D (4, 11) having the smallest value among these as detection data for the target row.
  • the target column is also selected from a plurality of adjacent columns in the same manner as the target row, so that the linear conductor is connected to one drive electrode Ed and the drive electrode Ed adjacent thereto.
  • the abnormality of the reference value B when approaching along can be determined appropriately.
  • the reference value is updated when at least one of the “first condition” in the row direction and the “second condition” in the column direction for one target data is satisfied.
  • the reference value may be updated when both the “first condition” and the “second condition” are satisfied.
  • the calculation method of the first evaluation value H1 (target row evaluation value H11 and adjacent row evaluation value H12) and the second evaluation value H2 (target column evaluation value H21 and adjacent column evaluation value H22) in each embodiment described above are as follows. It is an example and the present invention is not limited to this example. Detection data and weighting factors used for calculation of each evaluation value may be arbitrarily set according to the abnormal state of the reference value.
  • the input device described above may be realized by a memory that stores a program and a processor that is connected to the memory and executes the program stored in the memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Position Input By Displaying (AREA)

Abstract

入力装置によれば、2次元データ(検出データ行列)の中で物体の近接を示す検出データが対象データとして特定され、対象データが属する2次元データの行が対象行として選択され、対象データが属する2次元データの列が対象列として選択される。ループアンテナ等の導体を静電センサ(11)に近接させた状態で基準値の更新が行なわれ、その後、静電センサ(11)から導体が取り除かれた場合、対象行や対象列は、基準値より大きい静電容量値を持つ容量結合部(12)が連続していることを示す「第1パターン」に当てはまり易くなる。従って、対象行及び対象列の少なくとも一方が第1パターンに当てはまる場合に、基準値の更新が行われる。

Description

入力装置とその制御方法及びプログラム
 本発明は、コンピュータやスマートフォン等の機器において情報の入力に用いられるタッチパッドやタッチセンサなどの入力装置に係り、特に、指やペンなどの物体が近接することによる静電容量の変化に応じた情報を入力する入力装置に関するものである。
 スマートフォンなど入力インターフェースとして、指やペンなどの物体の接触位置を検出するセンサを備えたタッチパッドやタッチパネルなどの装置が広く普及している。物体の接触位置を検出するセンサには、抵抗膜方式や光学方式など種々のタイプが存在するが、静電容量方式のセンサは比較的構成が簡易で小型化が可能であることから、近年多くのモバイル機器の入力インターフェースに採用されている。
 静電容量式のセンサには、主に自己容量型センサと相互容量型センサがある。自己容量型センサは、検出電極と物体(グランド)との間の静電容量(自己容量)の変化を検出する。そのため、複数の位置で自己容量を検出するためには、それと同じ数の検出電極が必要となる。一方、相互容量型のセンサは、物体の近接に伴う駆動電極と検出電極と間の静電容量(相互容量)の変化を検出するため、1つの検出電極で複数の位置の相互容量を検出できる。従って、相互容量型センサは自己容量型センサに比べて多点検出に適している。
 相互容量型センサにおいて相互容量が形成された部分(駆動電極と検出電極との交差部分)に指が近づくと、相互容量は小さくなる。一般に、駆動電極と検出電極との間に形成される相互容量は非常に小さく、その変化は更に小さいため、温度などに応じて変化し易い。そこで、一般的な相互容量型センサでは、相互容量の変化を求めるための基準値が所定のタイミングで適宜更新される。すなわち、指などが接触していない状態が続くと、検出結果の相互容量値が新たな基準値として設定され、それ以降は、検出結果の相互容量値を基準値から減算した値が相互容量の変化を示すデータとして使用される。
 相互容量型センサでは、グランドに対して大きな容量結合を持った物体(人体)が近接した場合に相互容量の減少を生じるが、例えばコインなどのようにグランドとの容量結合が小さい導体が近接すると、相互容量が逆に大きくなる。相互容量が大きくなるだけでは物体の近接と見なされないが、この状態で上述した基準値の更新が行われた場合、コイン等を取り除くことで相互容量が減少すると、この相互容量の減少が物体の近接によるものとして誤検出されてしまう。
 このような誤検出を生じる基準値を速やかに再設定するため、下記の特許文献1に記載される装置では、相互容量の変化量が所定のしきい値以上の場合に、この変化量が積算値として記憶部に記憶され、浮遊電位の浮遊導体を監視するための浮遊導体監視状態となる。そして、相互容量の変化量と記憶部に記憶された積算値とが基準値に対して正負逆向きで略一致する場合、再測定された相互容量が基準値として設定し直される。浮遊導体監視状態において指を認識した後に指を非認識した場合は、コイン等の導体が存在しないと推定されるため、浮遊導体監視状態が解除される。
特開2014-203205号公報
 ところで、近年のノートブック型PCなどのタッチパッドには、NFC(Near Field Communication)のリーダー・ライター機能を搭載したものがある。このようなタッチパッドでは、操作面にICカードをかざすことで、ICカードのデータの読み取りや書き込みを行うことができる。
 通常、ICカードには、リーダー・ライターと無線通信を行うためのループアンテナが埋め込まれている。ICカードがタッチパッドの操作面に載置されると、ループアンテナが駆動電極及び検出電極に沿って近接するため、相互容量の変化が生じる。このとき、ICカードのループアンテナはグランドとの容量結合が小さいため、コイン等が操作面に置かれる場合と同様に相互容量が増大する。従って、ICカードが操作面に載置された状態で基準値の更新が行われた場合、ICカードを操作面から取り除くと、上述したコイン等と同様な誤検出が発生する。
 仮に、特許文献1の装置の操作面に予めICカードを置いた状態で装置の電源をオフからオンにした場合、ICカードを操作面に置くときに生じる相互容量の変化(増大)が装置に検出されていないため、浮遊状態監視状態に移行しない。従って、タッチパッドの電源をオンした後でICカードを操作面から取り除いても、そのとき浮遊状態監視状態でないため、相互容量の減少が物体の近接によるものとして誤検出されたままとなる。
 また、ICカードは薄い絶縁体で形成されていることから、特許文献1の装置においてICカードを操作面に載置した状態で、ICカードを取り除くために指を近づけると、ICカードを介して近接した指による相互容量の変化が検出される。その結果、ICカードを操作面から取り除くときに指が一瞬認識されてしまい、浮遊状態監視状態が解除される。従って、ICカードを取り除いたときの相互容量の減少が物体の近接によるものとして誤検出されたままとなる。
 本発明はかかる事情に鑑みてなされたものであり、その目的は、ICカードのループアンテナのような導体が駆動電極及び検出電極に沿って近接することによる基準値の異常を適切に解消できる入力装置とその制御方法及びプログラムを提供することにある。
 本発明の第1の観点は、物体の近接に伴う静電容量の変化に応じた情報を入力する入力装置に関する。この入力装置は、駆動電圧が印加される複数の駆動電極と、複数の検出電極とを含み、前記複数の検出電極と前記複数の駆動電極との間に複数の容量結合部が形成されたセンサ部と、前記複数の駆動電極と前記複数の検出電極との間に形成される複数の前記容量結合部の静電容量を検出する静電容量検出部と、前記静電容量検出部において検出された1つの前記容量結合部の静電容量値と当該1つの容量結合部について設定された静電容量の基準値との差を示す1つの検出データを、前記複数の容量結合部の各々について算出し、各行が1つの前記検出電極における複数の前記容量結合部に対応するとともに、各列が1つの前記駆動電極における複数の前記容量結合部に対応し、前記容量結合部の配置と対応するように前記検出データが配列された2次元データを生成する2次元データ生成部と、前記静電容量検出部において検出された前記複数の容量結合部の前記静電容量値に基づいて、前記複数の容量結合部の前記基準値を更新する基準値更新部と、前記2次元データ生成部により生成された前記2次元データの中から、前記容量結合部に物体が近接したことを示す前記検出データを対象データとして特定する特定部と、前記対象データが属する前記2次元データの行に基づいて選択した対象行、及び、前記対象データが属する前記2次元データの列に基づいて選択した対象列の少なくとも一方について、前記基準値より大きい前記静電容量値を持つ前記容量結合部が連続していることを示す第1パターンに当てはまるか否かを判定する判定部とを有する。前記基準値更新部は、前記対象行及び前記対象列の少なくとも一方若しくは両方が前記第1パターンに当てはまると判定された場合、前記基準値の更新を行う。
 この構成によれば、ICカードのループアンテナのようにグランドとの容量結合の弱い導体が1つの前記駆動電極と1つの前記検出電極とに沿って近接した場合、前記1つの駆動電極と前記1つの検出電極とによって形成される1つの前記容量結合部では、静電容量が増大し易くなる。前記1つの容量結合部において静電容量が増大した状態で前記1つの容量結合部の基準値が更新され、その更新後に前記導体が取り除かれると、前記1つの容量結合部では、更新後の前記基準値に対して静電容量が減少する。この静電容量の減少により、前記1つの容量結合部では、物体が近接したことを示す前記検出データが得られる。この検出データは、前記対象データとして特定される。
 また、前記1つの検出電極や前記1つの駆動電極に形成される他の前記容量結合部では、前記導体が近接することによって静電容量が減少し易くなる。この静電容量の減少状態において前記他の容量結合部の基準値がそれぞれ更新され、その更新後に前記導体が取り除かれると、前記他の容量結合部では、更新後の前記基準値に対して静電容量が増大する。従って、前記対象データが属する前記2次元データの行に基づいて選択された前記対象行や、前記対象データが属する前記2次元データの列に基づいて選択された前記対象列は、前記基準値より大きい前記静電容量値を持つ前記容量結合部が連続していることを示す前記第1パターンに当てはまり易くなる。
 前記対象行及び前記対象列の少なくとも一方若しくは両方が前記第1パターンに当てはまる場合、前記導体の近接による前記基準値の異常が生じていた可能性があるため、前記基準値の更新が行われる。これにより、前記基準値の異常が解消される。
 好適に、前記判定部は、前記対象行について前記第1パターンの判定を行う場合、前記対象行に隣接する少なくとも1つの隣接行について、前記基準値に近似する前記静電容量値を持った前記容量結合部が連続していることを示す第2パターンに当てはまるか否かの判定を行い、前記対象列について前記第1パターンの判定を行う場合、前記対象列に隣接する少なくとも1つの隣接列について、前記第2パターンに当てはまるか否かの判定を行ってよい。前記基準値更新部は、前記対象行が前記第1パターンに当てはまり、かつ、前記隣接行が前記第2パターンに当てはまる第1条件と、前記対象列が前記第1パターンに当てはまり、かつ、前記隣接列が前記第2パターンに当てはまる第2条件との少なくとも一方若しくは両方を満たす場合に、前記基準値の更新を行ってよい。
 この構成によれば、ICカードのループアンテナのような前記導体が1つの前記駆動電極と1つの前記検出電極とに沿って近接した場合、前記1つの検出電極に隣接する前記検出電極の前記容量結合部や、前記1つの駆動電極に隣接する前記駆動電極の前記容量結合部では、前記基準値に対する前記静電容量値の差が小さくなり易い。そのため、前記対象行に隣接する前記隣接行や、前記対象列に隣接する前記隣接列は、前記基準値に近似する前記静電容量値を持った前記容量結合部が連続していることを示す前記第2パターンに当てはまり易くなる。従って、前記対象行が前記第1パターンに当てはまり、かつ、前記隣接行が前記第2パターンに当てはまる第1条件や、前記対象列が前記第1パターンに当てはまり、かつ、前記隣接列が前記第2パターンに当てはまる第2条件を満たす場合、前記導体の近接による前記基準値の異常が生じていた可能性がより高くなる。従って、前記第1条件や前記第2条件を満たす場合に前記基準値の更新を行うことで、より適切に前記基準値の異常が解消される。
 好適に、前記判定部は、前記対象行及び前記隣接行について前記第1パターン及び前記第2パターンの判定を行う場合、前記対象行の前記検出データごとに1つの第1評価値を算出し、前記対象行の1つの前記検出データについて1つの前記第1評価値を算出する場合、前記対象行の中で当該1つの検出データを含んだ一連の前記検出データと、当該1つの検出データに列方向で隣接する少なくとも1つの前記検出データとに基づいて、前記対象行の前記静電容量値が前記基準値を超過する度合い、及び、前記隣接行の前記静電容量値が前記基準値に近似する度合いの両方を表す前記第1評価値を算出し、前記対象行について算出した前記第1評価値の系列において、しきい値に達する前記第1評価値が連続するならば、前記第1条件を満たすと判定してよい。
 好適に、前記判定部は、前記対象列及び前記隣接列について前記第1パターン及び前記第2パターンの判定を行う場合、前記対象列の前記検出データごとに1つの第2評価値を算出し、前記対象列の1つの前記検出データについて1つの前記第2評価値を算出する場合、前記対象列の中で当該1つの検出データを含んだ一連の前記検出データと、当該1つの検出データに行方向で隣接する少なくとも1つの前記検出データとに基づいて、前記対象列の前記静電容量値が前記基準値を超過する度合い、及び、前記隣接列の前記静電容量値が前記基準値に近似する度合いの両方を表す前記第2評価値を算出し、前記対象列について算出した前記第2評価値の系列において、しきい値に達する前記第2評価値が連続するならば、前記第2条件を満たすと判定してよい。
 この構成によれば、前記対象行について算出した前記第1評価値の系列において、しきい値に達する前記第1評価値が連続するか否かにより、前記第1条件を満たすか否かが判定される。そのため、前記対象行及び前記隣接行についての前記第1パターン及び前記第2パターンの判定が簡易になる。
 また、この構成によれば、前記対象列について算出した前記第2評価値の系列において、しきい値に達する前記第2評価値が連続するか否かにより、前記第2条件を満たすか否かが判定される。そのため、前記対象列及び前記隣接列についての前記第1パターン及び前記第2パターンの判定が簡易になる。
 好適に、前記判定部は、前記対象行及び前記隣接行について前記第1パターン及び前記第2パターンの判定を行う場合、前記対象行の前記検出データごとに、対象行評価値及び隣接行評価値を含んだ1つの第1評価値群を算出し、前記対象行における1つの前記検出データについて1つの前記第1評価値群を算出する場合、前記対象行の中で当該1つの検出データを含んだ一連の前記検出データに基づいて、前記対象行の前記静電容量値が前記基準値を超過する度合いを表す前記対象行評価値を算出するとともに、当該1つの検出データに列方向で隣接する少なくとも1つの前記検出データに基づいて、前記隣接行の前記静電容量値が前記基準値に近似する度合いを表す前記隣接行評価値を算出し、前記対象行について算出した前記第1評価値群の系列において、しきい値に達する前記対象行評価値としきい値に達する前記隣接行評価値とを含んだ前記第1評価値群が連続するならば、前記第1条件を満たすと判定してよい。
 好適に、前記判定部は、前記対象列及び前記隣接列について前記第1パターン及び前記第2パターンの判定を行う場合、前記対象列の前記検出データごとに、対象列評価値及び隣接列評価値を含んだ1つの第2評価値群を算出し、前記対象列における1つの前記検出データについて1つの前記第2評価値群を算出する場合、前記対象列の中で当該1つの検出データを含んだ一連の前記検出データに基づいて、前記対象列の前記静電容量値が前記基準値を超過する度合いを表す前記対象列評価値を算出するとともに、当該1つの検出データに行方向で隣接する少なくとも1つの前記検出データに基づいて、前記隣接列の前記静電容量値が前記基準値に近似する度合いを表す前記隣接列評価値を算出し、前記対象列について算出した前記第2評価値群の系列において、しきい値に達する前記対象列評価値としきい値に達する前記隣接列評価値とを含んだ前記第2評価値群が連続するならば、前記第2条件を満たすと判定してよい。
 この構成によれば、前記対象行及び前記隣接行について算出した前記第1評価値群の系列において、しきい値に達する前記対象行評価値としきい値に達する前記隣接行評価値とを含んだ前記第1評価値群が連続するか否かにより、前記第1条件を満たすか否かが判定される。そのため、前記対象行が前記第1パターンに当てはまることと、前記隣接行が前記第2パターンに当てはまることとを、独立の評価値に基づいて正確に判定し易くなる。
 また、この構成によれば、前記対象列及び前記隣接列について算出した前記第2評価値群の系列において、しきい値に達する前記対象列評価値としきい値に達する前記隣接列評価値とを含んだ前記第2評価値群が連続するか否かにより、前記第2条件を満たすか否かが判定される。そのため、前記対象列が前記第1パターンに当てはまることと、前記隣接列が前記第2パターンに当てはまることとを、独立の評価値に基づいて正確に判定し易くなる。
 好適に、前記判定部は、前記対象行について前記第1パターンの判定を行う場合、前記対象行の前記検出データごとに1つの対象行評価値を算出し、前記対象行における1つの前記検出データについて1つの前記対象行評価値を算出する場合、前記対象行の中で当該1つの検出データを含んだ一連の前記検出データに基づいて、前記対象行の前記静電容量値が前記基準値を超過する度合いを表す前記対象行評価値を算出し、前記対象行について算出した前記対象行評価値の系列において、しきい値に達する前記対象行評価値が連続するならば、前記対象行が第1パターンに当てはまると判定してよい。
 好適に、前記判定部は、前記対象列について前記第1パターンの判定を行う場合、前記対象列の前記検出データごとに1つの対象列評価値を算出し、前記対象列における1つの前記検出データについて1つの前記対象列評価値を算出する場合、前記対象列の中で当該1つの検出データを含んだ一連の前記検出データに基づいて、前記対象列の前記静電容量値が前記基準値を超過する度合いを表す前記対象列評価値を算出し、前記対象列について算出した前記対象列評価値の系列において、しきい値に達する前記対象列評価値が連続するならば、前記対象列が第1パターンに当てはまると判定してよい。
 この構成によれば、前記対象行について算出した前記対象行評価値の系列において、しきい値に達する前記対象行評価値が連続するか否かにより、前記対象行が前記第1パターンに当てはまるか否かが判定される。
 また、この構成によれば、前記対象列について算出した前記対象列評価値の系列において、しきい値に達する前記対象列評価値が連続するか否かにより、前記対象列が前記第1パターンに当てはまるか否かが判定される。
 好適に、前記判定部は、前記対象行について前記第1パターンの判定を行う場合、前記対象データが属する前記2次元データの行を含む複数の隣接する行の中から、前記静電容量値が相対的に大きいことを示す1つの前記検出データを列ごとに選択し、当該選択した検出データの系列を前記対象行として前記第1パターンの判定を行ってよい。
 好適に、前記判定部は、前記対象列について前記第1パターンの判定を行う場合、前記対象データが属する前記2次元データの列を含む複数の隣接する列の中から、前記静電容量値が相対的に大きいことを示す1つの前記検出データを行ごとに選択し、当該選択した検出データの系列を前記対象列として前記第1パターンの判定を行ってよい。
 ICカードのループアンテナのような前記導体が1つの前記検出電極とこれに隣接する前記検出電極に沿って近接した場合、前記対象データが属する行だけではなく、これに隣接する行においても、前記基準値より大きい前記静電容量値を持つ前記容量結合部が連続していることを示す前記第1パターンが現れ易くなる。このような場合、前記対象データが属する行を含む複数の隣接する行の中から、前記静電容量値が相対的に大きいことを示す1つの前記検出データを列ごとに選択することにより、当該選択した検出データの系列は前記第1パターンに当てはまり易くなる。従って、前記選択した検出データの系列を前記対象行として前記第1パターンの判定を行うことにより、前記導体の近接による前記基準値の異常が適切に判定される。
 同様に、前記導体が1つの前記駆動電極とこれに隣接する前記駆動電極に沿って近接した場合、前記対象データが属する列だけではなく、これに隣接する列においても、前記基準値より大きい前記静電容量値を持つ前記容量結合部が連続していることを示す前記第1パターンが現れ易くなる。このような場合、前記対象データが属する列を含む複数の隣接する列の中から、前記静電容量値が相対的に大きいことを示す1つの前記検出データを行ごとに選択することにより、当該選択した検出データの系列は前記第1パターンに当てはまり易くなる。従って、前記選択した検出データの系列を前記対象列として前記第1パターンの判定を行うことにより、前記導体の近接による前記基準値の異常が適切に判定される。
 本発明の第2の観点は、物体の近接に伴う静電容量の変化に応じた情報を入力する入力装置の制御方法に関する。前記入力装置は、駆動電圧が印加される複数の駆動電極と、複数の検出電極とを含み、前記複数の検出電極と前記複数の駆動電極との間に複数の容量結合部が形成されたセンサ部と、前記複数の駆動電極と前記複数の検出電極との間に形成される複数の前記容量結合部の静電容量を検出する静電容量検出部とを含む。この入力装置の制御方法は、前記静電容量検出部において検出された1つの前記容量結合部の静電容量値と当該1つの容量結合部について設定された静電容量の基準値との差を示す1つの検出データを、前記複数の容量結合部の各々について算出し、各行が1つの前記検出電極における複数の前記容量結合部に対応するとともに、各列が1つの前記駆動電極における複数の前記容量結合部に対応し、前記容量結合部の配置と対応するように前記検出データが配列された2次元データを生成することと、前記静電容量検出部において検出された前記複数の容量結合部の前記静電容量値に基づいて、前記複数の容量結合部の前記基準値を更新することと、生成された前記2次元データの中から、前記容量結合部に物体が近接したことを示す前記検出データを対象データとして特定することと、前記対象データが属する前記2次元データの行に基づいて選択した対象行、及び、前記対象データが属する前記2次元データの列に基づいて選択した対象列の少なくとも一方について、前記基準値より大きい前記静電容量値を持つ前記容量結合部が連続していることを示す第1パターンに当てはまるか否かを判定することとを有する。前記基準値を更新することは、前記対象行及び前記対象列の少なくとも一方若しくは両方が前記第1パターンに当てはまると判定された場合に前記基準値の更新を行うことを含む。
 好適に、前記対象行について前記第1パターンの判定を行う場合に、前記対象行に隣接する少なくとも1つの隣接行について、前記基準値に近似する前記静電容量値を持った前記容量結合部が連続していることを示す第2パターンに当てはまるか否かを判定することと、前記対象列について前記第1パターンの判定を行う場合に、前記対象列に隣接する少なくとも1つの隣接列について、前記第2パターンに当てはまるか否かを判定することとを有する。前記基準値を更新することは、前記対象行が前記第1パターンに当てはまり、かつ、前記隣接行が前記第2パターンに当てはまる第1条件と、前記対象列が前記第1パターンに当てはまり、かつ、前記隣接列が前記第2パターンに当てはまる第2条件との少なくとも一方若しくは両方を満たす場合に前記基準値の更新を行うことを含む。
 本発明の第3の観点は、上記第2の観点に係る入力装置の制御方法をコンピュータにおいて実行させるためのプログラムに関する。
 本発明によれば、ICカードのループアンテナのような導体が駆動電極や検出電極に沿って近接することによる基準値の異常を適切に解消できる入力装置とその制御方法及びプログラムを提供できる。
本発明の実施形態に係る入力装置の構成の一例を示す図である。 物体の近接による相互容量の変化を説明するための図であって、物体近接していない状態を示す。 物体の近接による相互容量の変化を説明するための図であって、物体が近接した状態を示す。 接地されたループ状導体が近接した場合とICカードのループアンテナが近接した場合とで検出データのパターンが異なることを示す図であって、接地されたループ状導体を静電センサに置いた場合の2次元データの例を示す。 接地されたループ状導体が近接した場合とICカードのループアンテナが近接した場合とで検出データのパターンが異なることを示す図であって、ICカードを静電センサに置いた場合の2次元データの例を示す。 ICカードを置いた状態で基準値を更新した後、ICカードを取り除いたときの2次元データの例を示す図である。 静電センサに近接した物体と静電センサの各電極との間に形成される寄生キャパシタを説明するための図であって、グランドとの容量結合が強い指などの物体が静電センサに近づいた場合を示す。 静電センサに近接した物体と静電センサの各電極との間に形成される寄生キャパシタを説明するための図であって、はグランドとの容量結合が弱い導電性の物体が静電センサに近づいた場合を示す。 静電センサの各電極とループアンテナとが容量結合を生じることを説明するための図であって、ICカードに内蔵されたループアンテナの例を示す。 静電センサの各電極とループアンテナとが容量結合を生じることを説明するための図であって、検出電極及び駆動電極とループアンテナとの間で容量結合が形成される領域の例を示す。 第1の実施形態において行方向の判定に用いられる第1評価値の算出方法を説明するための図であって、対象行における1つの検出データとその周囲の検出データを示す。 第1の実施形態において行方向の判定に用いられる第1評価値の算出方法を説明するための図であって、各検出データに対する演算の内容を示す。 第1の実施形態において列方向の判定に用いられる第2評価値の算出方法を説明するための図であって、対象列における1つの検出データとその周囲の検出データを示す。 第1の実施形態において列方向の判定に用いられる第2評価値の算出方法を説明するための図であって、各検出データに対する演算の内容を示す。 第1評価値の算出結果の例を示す図であって、図9Aは第1パターン及び第2パターンに当てはまる場合の算出結果を示す。 第1評価値の算出結果の例を示す図であって、隣接行において静電容量値と基準値との差が大きい場合の算出結果を示す。 第1評価値の算出結果の例を示す図であって、隣接行において静電容量値と基準値との差が大きい場合の算出結果を示す。 第1評価値の算出結果の例を示す図であって、対象行において基準値より大きい静電容量値が連続していない場合の算出結果を示す。 図4の2次元データの例に基づいて算出された第1評価値の系列及び第2評価値の系列を示す図であって、第1評価値の系列の算出結果を示す。 図4の2次元データの例に基づいて算出された第1評価値の系列及び第2評価値の系列を示す図であって、第2評価値の系列の算出結果を示す。 2次元データの生成と対象データの特定に関する動作の一例を説明するためのフローチャートである。 第1の実施形態における基準値の更新に関する動作の一例を説明するためのフローチャートである。 第2の実施形態において行方向の判定に用いられる第1評価値群の算出方法を説明するための図であって、対象行における1つの検出データとその周囲の検出データを示す。 第2の実施形態において行方向の判定に用いられる第1評価値群の算出方法を説明するための図であって、対象行評価値を算出する場合の各検出データに対する演算の内容を示す。 第2の実施形態において行方向の判定に用いられる第1評価値群の算出方法を説明するための図であって、隣接行評価値を算出する場合の各検出データに対する演算の内容を示す。 第2の実施形態において列方向の判定に用いられる第2評価値群の算出方法を説明するための図であって、対象列における1つの検出データとその周囲の検出データを示す。 第2の実施形態において列方向の判定に用いられる第2評価値群の算出方法を説明するための図であって、対象列評価値を算出する場合の各検出データに対する演算の内容を示す。 第2の実施形態において列方向の判定に用いられる第2評価値群の算出方法を説明するための図であって、隣接列評価値を算出する場合の各検出データに対する演算の内容を示す。 第2の実施形態における基準値の更新に関する動作の一例を説明するためのフローチャートである。 第3の実施形態における基準値の更新に関する動作の一例を説明するための図である。 第4の実施形態における対象行の選択方法を説明するための図である。
<第1の実施形態>
 以下、本発明の実施形態に係る入力装置について図面を参照しながら説明する。
 図1は、本発明の実施形態に係る入力装置の構成の一例を示す図である。図1に示す入力装置は、静電センサ11を含んだセンサ部10と、処理部20と、記憶部30と、インターフェース部40を有する。
 本実施形態に係る入力装置は、静電センサ11に指やペンなどの物体を近接させることによって、その近接位置における静電センサ11の静電容量の変化に応じた情報を入力する。なお、本明細書における「近接」は近くにあることを意味しており、接触の有無を限定しない。
[センサ部10]
 センサ部10は、操作面上の複数の検出位置において、指やペンなどの物体の近接をそれぞれ検出する装置であり、図1の例において、静電センサ11と、駆動部13と、静電容量検出部14を含む。
 静電センサ11は、複数の検出位置において物体の近接に伴う静電容量の変化を検出する。静電センサ11は、複数の駆動電極Edと複数の検出電極Esとを含む。複数の駆動電極Edと複数の検出電極Esとの間には、物体の近接に応じて静電容量が変化する複数の容量結合部12が形成される。
 複数の駆動電極Edは、それぞれY方向(図1では縦方向)に延びており、X方向(図1では横方向)において平行に並んでいる。複数の検出電極Esは、それぞれX方向に延びており、Y方向において平行に並んでいる。複数の駆動電極Edと複数の検出電極Esとが格子状に交差しており、その各交差位置に容量結合部12が形成される。なお、図1の例において駆動電極Ed及び検出電極Esは単純な帯状に描かれているが、例えば複数のひし形電極を従属接続したものなどでもよく、他の形状でもよい。
 駆動部13は、処理部20の後述するセンサ制御部21の制御に従って、静電センサ11における複数の駆動電極Edの各々に駆動電圧を印加する。例えば駆動部13は、複数の駆動電極Edから順に1つの駆動電極Edを選択し、選択した1つの駆動電極Edに所定の振幅のパルス電圧を印加する。
 静電容量検出部14は、各駆動電極Edへの駆動電圧の印加によって各容量結合部12に出入りする電荷に基づいて、各容量結合部12の静電容量を検出する。例えば静電容量検出部14は、駆動電極Edへの駆動電圧の印加時に検出電極Esが一定の電圧に保たれるように、検出電極Esの容量結合部12へ電荷を供給するチャージアンプを含む。容量結合部12に供給した電荷に応じてチャージアンプが出力する信号は、容量結合部12の静電容量に応じた信号となる。複数のチャージアンプを設けることにより、複数の検出電極Esにおける静電容量の検出を並行して行うことができる。また、静電容量検出部14は、各チャージアンプにマルチプレクサを介して複数の検出電極Esを接続してもよい。マルチプレクサを用いることにより、複数の検出電極Esの各々を順に選択してチャージアンプに接続し、静電容量の検出を行うことができる。
 センサ部10は、静電容量検出部14において出力される静電容量の検出結果の信号を図示しないアナログ-デジタル変換器においてデジタル値に変換する。センサ部10は、各容量結合部12の静電容量の検出結果を、デジタルの静電容量値Sとして処理部20に出力する。
[処理部20]
 処理部20は、入力装置の全体的な動作を制御する回路であり、例えばプログラムの命令コードに従って処理を行うコンピュータや、専用のロジック回路を含んで構成される。処理部20の処理は、全てをコンピュータのプログラムに基づいて行なってもよいし、その一部若しくは全部をロジック回路で行なってもよい。
 図1の例において、処理部20は、センサ制御部21と、2次元データ生成部22と、基準値更新部23と、特定部24と、判定部25と、座標演算部26とを有する。
 センサ制御部21は、センサ部10における検出のタイミングを制御する。具体的には、センサ制御部21は、駆動部13における駆動電極Edの選択と駆動電圧の発生、並びに、静電容量検出部14における検出電極Esの選択と検出動作が適切なタイミングで行われるように、これらの回路を制御する。
 2次元データ生成部22は、静電容量検出部14において検出された1つの容量結合部12の静電容量値Sと当該1つの容量結合部12について設定された静電容量の基準値Bとの差「B-S」を示す1つの検出データDを、複数の容量結合部12の各々について算出する。基準値Bは、容量結合部12に指などの物体が近接していないときの容量結合部12の静電容量値であり、容量結合部12ごとに設定される。
 2次元データ生成部22は、複数の容量結合部12の各々について算出した一群の検出データDを、行列形式の2次元データ33として記憶部30に保存する。2次元データ33の各行は1つの検出電極Esにおける複数の容量結合部12に対応し、2次元データ33の各列は1つの駆動電極Edにおける複数の容量結合部12に対応する。2次元データ33の各検出データDは、静電センサ11の操作面における容量結合部12の行列状の配置と対応するように配列される。
 例えば図1に示すように、記憶部30には、各容量結合部12における静電容量の基準値Bが基準値行列31として記憶されている。2次元データ生成部22は、静電容量検出部14において検出された各容量結合部12の静電容量値を、静電容量値行列32として記憶部30に保存する。2次元データ生成部22は、この静電容量値行列32を基準値行列31から減算する行列演算を行い、演算結果を2次元データ33(検出データの行列)として記憶部30に保存する。
 基準値更新部23は、静電容量検出部14において検出された複数の容量結合部12の静電容量値Sに基づいて、複数の容量結合部12における基準値Bを更新する。例えば基準値更新部23は、後述する特定部24の処理結果などに基づいて、静電センサ11に物体が近接していない状態が一定時間続いたと判定した場合に基準値Bの更新を行う。1つの容量結合部12の基準値Bは、当該1つの容量結合部12について検出された最新の静電容量値Sでもよいし、当該1つの容量結合部12について一定期間に渡って検出された静電容量値Sの平均でもよい。
 また、基準値更新部23は、後述する判定部25において基準値Bに異常があることを示す判定結果が得られた場合にも基準値Bの更新を行う。
 特定部24は、2次元データ生成部22により生成された2次元データ33の中から、容量結合部12に指などの物体が近接したことを示す検出データDを「対象データ」として特定する。例えば特定部24は、検出データDが所定のしきい値に達している場合(静電容量値Sを基準値Bから引いた差「B-S」がしきい値を超える場合)、これを対象データとして特定する。なお特定部24は、後述する基準値Bの異常によって静電容量値Sが大きく減少した場合も、その検出データDを対象データとして特定する。
 また、特定部24は、2次元データ33を構成する各検出データDについて、物体の近接の有無を判定し、その判定結果を二値のデータ(「1」と「0」など)で表した近接判定行列を生成する。
 座標演算部26は、特定部24において生成された近接判定行列に基づいて、物体が近接した位置の座標を演算する。例えば座標演算部26は、近接判定行列に基づいて、個々の物体が近接した領域を特定し、特定した領域内における検出データDのピーク値などに基づいて、領域内の一点を物体の近接位置の座標として計算する。
 判定部25は、対象データに対応する2次元データ33の行と列について、基準値Bの異常が生じている場合の所定のパターンに当てはまるか否かの判定を行う。判定部25が判定する基準値Bの異常は、後述するように、ICカードのループアンテナのような導体が駆動電極Ed及び検出電極Esに沿って近接した状態で基準値Bの更新が行われた場合に生じる異常である。
(2次元データ33の行についてのパターン判定)
 判定部25は、2次元データ33の行についての判定を行う場合、特定部24で特定された対象データが属する2次元データ33の行を「対象行」として選択する。判定部25は、選択した対象行について「第1パターン」に当てはまるか否かを判定するとともに、対象行に隣接する行(隣接行)について「第2パターン」に当てはまるか否かを判定する。「第1パターン」は、基準値Bより大きい静電容量値S(S>B)を持った容量結合部12が連続することを表すパターンである。「第2パターン」は、基準値Bに近似する静電容量値S(S≒B)を持った容量結合部12が連続することを示すパターンである。
 判定部25は、対象行とその隣接行について第1パターン及び第2パターンの判定を行う場合、具体的には、対象行の検出データDごとに1つの第1評価値H1を算出する。この第1評価値H1は、対象行の静電容量値Sが基準値Bを超過する度合い、及び、隣接行の静電容量値Sが基準値Bに近似する度合いの両方を表す値である。判定部25は、対象行の1つの検出データDについて1つの第1評価値H1を算出する場合、対象行の中で当該1つの検出データDを含んだ一連の検出データと、当該1つの検出データDに列方向で隣接する少なくとも1つの検出データDとに基づいて第1評価値H1を算出する。
 本実施形態において、第1評価値H1は例えば次の式で表される。
 H1=H11+H12 … (1)
 式(1)における「H11」は、対象行の静電容量値Sが基準値Bを超過する度合いを表す「対象行評価値」である。対象行の1つの検出データD(i,j)について算出される対象行評価値H11は、例えば次の式で表される。
 H11=α・D(i-1,j)+β・D(i,j)+α・D(i+1,j) …(2)
 ただし、「i」は2次元データ33の行の順番を表す整数であり、「j」は2次元データ33の列の順番を表す整数である。「D(i,j)」は、2次元データ33におけるi行j列の検出データDを示す。「α」及び「β」は、重み係数を示す。例えば、重み係数αの値は「-1」、重み係数βの値は「-2」に設定される。検出データDは「B-S」により算出される値であり、静電容量値Sが基準値Bを超過するとマイナスの値になる。従って、重み係数α、βが負の値に設定される場合、静電容量値Sが基準値Bを超過する度合いが大きくなるほど、対象行評価値H11は正の方向に増大する。
 式(1)における「H12」は、隣接行の静電容量値Sが基準値Bに近似する度合いを表す「隣接行評価値」である。対象行の1つの検出データD(i,j)について算出される隣接行評価値H12は、例えば次の式で表される。
 H12=γ・|D(i,j-1)|+γ・|D(i,j+1)| …(3)
 式(3)における「γ」は重み係数であり、例えば「-2」に設定される。重み係数γが負の値に設定される場合、隣接行評価値H12の符号は負である。隣接行評価値H12は、検出データD(i,j)の列方向に隣接する検出データD(i,j-1)、D(i,j+1)の絶対値が小さくなるほど(隣接行の静電容量値Sが基準値Bに近似するほど)ゼロに近づく。
 従って、対象行評価値H11と隣接行評価値H12との和である第1評価値H1は、検出データD(i,j)とその前後の対象データD(i-1,j)、D(i+1,j)において静電容量値Sが基準値Bより大きくなるほど正の方向に増大する。また、第1評価値H1は、検出データD(i,j)の列方向に隣接する検出データD(i,j-1)、D(i,j+1)において静電容量値Sが基準値Bに近づくほど正の方向に増大する。
 判定部25は、上述した第1評価値H1を対象行の各検出データDについて算出し、その結果として得られる第1評価値H1の系列について判定を行う。すなわち、判定部25は、第1評価値H1の系列において、所定のしきい値に達する第1評価値H1が所定の個数以上連続した場合、対象行が第1パターンに当てはまり、かつ、隣接行が第2パターンに当てはまると判定する。以下、対象行が第1パターンに当てはまり、かつ、隣接行が第2パターンに当てはまることを「第1条件」と呼ぶ。
 基準値更新部23は、判定部25において「第1条件」を満たしたと判定された場合、基準値Bに異常が生じているとみなして、基準値Bの更新処理を実行する。
(2次元データ33の列についてのパターン判定)
 他方、判定部25は、2次元データ33の列についての判定を行う場合、特定部24で特定された対象データが属する2次元データ33の列を「対象列」として選択する。判定部25は、選択した対象列について第1パターンに当てはまるか否かを判定するとともに、対象列に隣接する列(隣接列)について第2パターンに当てはまるか否かを判定する。
 判定部25は、対象列とその隣接列について第1パターン及び第2パターンの判定を行う場合、具体的には、対象列の検出データDごとに1つの第2評価値H2を算出する。この第2評価値H2は、対象列の静電容量値Sが基準値Bを超過する度合い、及び、隣接列の静電容量値Sが基準値Bに近似する度合いの両方を表す値である。判定部25は、対象列の1つの検出データDについて1つの第2評価値H2を算出する場合、対象列の中で当該1つの検出データDを含んだ一連の検出データと、当該1つの検出データDに行方向で隣接する少なくとも1つの検出データDとに基づいて第2評価値H2を算出する。
 本実施形態において、第2評価値H2は例えば次の式で表される。
 H2=H21+H22 … (4)
 式(4)における「H21」は、対象列の静電容量値Sが基準値Bを超過する度合いを表す「対象列評価値」である。対象列の1つの検出データD(i,j)について算出される対象列評価値H21は、例えば次の式で表される。
 H21=ν・D(i,j-1)+η・D(i,j)+ν・D(i,j+1) …(5)
 ただし、式(3)における「ν」及び「η」は重み係数を示す。例えば、重み係数νは重み係数αと同じ値「-1」に設定され、重み係数ηは重み係数βと同じ値「-2」に設定される。重み係数ν、ηが負の値に設定される場合、静電容量値Sが基準値Bを超過する度合いが大きくなるほど、対象列評価値H21は正の方向に増大する。
 式(4)における「H22」は、隣接列の静電容量値Sが基準値Bに近似する度合いを表す「隣接列評価値」である。対象列の1つの検出データD(i,j)について算出される隣接列評価値H22は、例えば次の式で表される。
 H22=κ・|D(i-1,j)|+κ・|D(i+1,j)| …(6)
 式(6)における「κ」は重み係数であり、例えば重み係数γと同じ値「-2」に設定される。重み係数κが負の値に設定される場合、隣接列評価値H22の符号は負である。隣接列評価値H22は、検出データD(i,j)の行方向に隣接する検出データD(i-1,j)、D(i+1,j)の絶対値が小さくなるほど(隣接列の静電容量値Sが基準値Bに近似するほど)ゼロに近づく。
 従って、対象列評価値H21と隣接列評価値H22との和である第2評価値H2は、検出データD(i,j)とその前後の対象データD(i,j-1)、D(i,j+1)において静電容量値Sが基準値Bより大きくなるほど正の方向に増大する。また、第2評価値H2は、検出データD(i,j)の行方向に隣接する検出データD(i-1,j)、D(i+1,j)において静電容量値Sが基準値Bに近づくほど正の方向に増大する。
 判定部25は、上述した第2評価値H2を対象列の各検出データDについて算出し、その結果として得られる第2評価値H2の系列について判定を行う。すなわち、判定部25は、第1評価値H1の系列において、所定のしきい値に達する第2評価値H2が所定の個数以上連続した場合、対象列が第1パターンに当てはまり、かつ、隣接列が第2パターンに当てはまると判定する。以下、対象列が第1パターンに当てはまり、かつ、隣接列が第2パターンに当てはまることを「第2条件」と呼ぶ。
 基準値更新部23は、判定部25において「第2条件」を満たしたと判定された場合、基準値Bに異常が生じているとみなして、基準値Bの更新処理を実行する。
[記憶部30]
 記憶部30は、処理部20において処理に使用される定数データや変数データ(基準値行列31、静電容量値行列32、2次元データ33)を記憶する。処理部20がコンピュータを含む場合、記憶部30はそのコンピュータにおいて実行されるプログラムPRGを記憶してもよい。記憶部30は、例えば、DRAMやSRAMなどの揮発性メモリ、フラッシュメモリなどの不揮発性メモリを含んで構成される。
[インターフェース部40]
 インターフェース部40は、入力装置と他の制御装置(入力装置を搭載する情報機器のコントロール用ICなど)との間でデータをやり取りするための回路である。処理部20は、記憶部30に記憶される情報(物体の座標の演算結果など)をインターフェース部40から図示しない制御装置へ出力する。
 記憶部30に格納するプログラムPRGは、記憶部30のROMなどに予め書き込まれてもよいし、図示しない上位装置からインターフェース部40を介してダウンロードしたものを記憶部30に保存してもよいし、図示しない読み取り装置等によって光ディスクやUSBメモリなどの媒体から読み出したものを記憶部30に書き込んでもよい。
 ここで、図2~図6を参照して、ICカードのループアンテナが静電センサ11に載置された状態で基準値Bの更新が行われた場合に生じる基準値Bの異常について説明する。
 図2は、物体の近接による駆動電極Edと検出電極Esとの間の静電容量(以下、「相互容量」と記す場合がある。)の変化を説明するための図である。駆動電極Edに駆動電圧Vdが印加されると、図2Aに示すように、駆動電極Edと検出電極Esとの間には電界が生じる。静電容量検出部14は、駆動電圧Vdの印加に伴って検出電極Esに供給される電荷Qxに基づいて相互容量を検出する。
 指などの物体1は、グランドに対して比較的大きな容量結合を持っており、その静電容量は相互容量に比べて十分に大きいため、図2Bに示すように接地しているとみなせる。従って、物体1が駆動電極Edと検出電極Esとの間に近づくと、これらの電極の間を渡る電気力線Fxの一部が物体1によって遮蔽される。そのため、接地とみなせる物体1が近接した場合、相互容量は相対的に減少する。
 図3は、接地されたループ状の導体が近接した場合とICカードのループアンテナが近接した場合とで検出データDのパターンが異なることを示す図である。図3Aは接地されたループ状導体を静電センサ11に置いた場合の2次元データ33の例を示し、図3BはICカードを静電センサ11に置いた場合の2次元データ33の例を示す。
 図3の例において、駆動電極Edの本数は27であり、検出電極Esの本数は16である。左端の列の「Y0」~「Y15」は2次元データ33の各行を示し、上端の行の「X0」~「X26」は2次元データ33の各列を示す。欄内の個々の数値は検出データDの値を示しているが、全体の数値を見やすくするために、値が「0」の箇所を空欄にしている。検出データDは、基準値Bから静電容量値Sを引いた「B-S」の値を持つため、正の値は静電容量値Sが基準値BSより小さいこと、すなわち、物体の近接によって相互容量が減少していることを示す。
 接地されたループ状の導体を静電センサ11に置いた場合の2次元データ33は、図3Aに示すように、導体に近接した位置の検出データDがいずれも比較的大きな正の値となる。他方、ICカードのループアンテナは、絶縁物で覆われているため、接地されたループ状の導体とは異なり、グランドから絶縁されている。また、ループアンテナのサイズは比較的小さいため、グランドに対する容量結合が比較的弱い。このような違いがあることから、ICカードを静電センサ11に置いた場合の2次元データ33は、図3Aとは異なる検出データDのパターンを示す。
 図3Bをみると、ループアンテナの外形に外接する矩形の範囲の四隅において検出データDが負の値となっており、静電容量値Sが基準値Bよりも大きくなっている。また、ループアンテナの導体に近接した位置の検出データDは正の値となるが、その絶対値は接地されたループ状導体の場合より小さい。そのため、ループアンテナの導体に近接した位置は、物体が近接した位置とは判定されない。ICカードを静電センサ11に置いたまま放置すると、静電センサ11に物体が近接していないと判定される状態が続くため、基準値更新部23において基準値Bの更新処理が実行される。
 図4は、ICカードを置いた状態で基準値Bを更新した後、ICカードを取り除いたときの2次元データ33の例を示す図である。図4の上段は、ICカードを置いた図3Bの状態で基準値Bの更新を行った後の2次元データ33を示す。基準値Bの更新により、各静電容量値Sは基準値Bと等しくなるため、2次元データ33の各検出データDは一旦ゼロになる。この状態でICカードを静電センサ11から取り除くと、図4の下段に示すように、図3Bの各検出データDの符号を反転させたものに略等しい2次元データ33が得られる。図3Bにおいて負の値であった矩形領域の四隅の検出データDは、図4の下段の2次元データ33において正の値となる。大きな正の値の検出データDは物体の近接を示すため、図4の下段の2次元データ33では、矩形の範囲の四隅に物体が近接していると判定されてしまう。
 図5は、静電センサに近接した物体と静電センサの各電極との間に形成される寄生キャパシタを説明するための図である。図5Aはグランドとの容量結合が強い指などの物体1が静電センサ11に近づいた場合を示し、図5Bはグランドとの容量結合が弱い導電性の物体1が静電センサ11に近づいた場合を示す。各図において、「Cfg」は物体1とグランドとの間に形成されるキャパシタを示し、「Cm」は駆動電極Edと検出電極Esとの間に形成されるキャパシタを示し、「Cfd」は駆動電極Edと物体1との間に形成されるキャパシタを示し、「Cfs」は検出電極Esと物体1との間に形成されるキャパシタを示し、「Cbd」は駆動電極Edとグランドとの間に形成されるキャパシタを示し、「Cbs」は検出電極Esとグランドとの間に形成されるキャパシタを示す。
 静電容量検出部14は、一定電位に保たれた検出電極Esに供給される電荷Qxに基づいて、駆動電極Edと検出電極Esとの間の静電容量(相互容量)を検出する。この電荷Qxは、主にキャパシタCm、Cfs,Cfd,Cfgの影響を受ける。図5Aの場合、物体1が接地しているとみなせるため、検出電極Esが一定電位とすると、キャパシタCfsの電荷量は殆ど変化しない。従って電荷QxはキャパシタCfs,Cfd,Cfgの影響をあまり受けず、概ねキャパシタCmの静電容量に比例する。図2Bにおいて説明したように、このキャパシタCmの静電容量は、接地とみなせる物体が近接することにより減少する。
 一方、図5Bの場合、キャパシタCfgの静電容量が比較的小さいため、物体1の電位が変動する。従って、電荷QxはキャパシタCfs,Cfd,Cfgの影響も受ける。キャパシタCfd,Cfsの静電容量がキャパシタCfgに比べて十分に小さいものとすると、駆動電極Edと検出電極Esとの間の静電容量Cdsは次の式で表される。
 Cds=Cm+(Cfs・Cfd)/Cfg …(7)
 ただし、「Cm」,「Cfs」,「Cfd」,「Cfg」は、それぞれ同一符号のキャパシタの静電容量を示す。式(7)から分かるように、接地しているとみなせない物体1が近接した場合における駆動電極Edと検出電極Esとの間の静電容量Cdsは、キャパシタCmの静電容量よりも大きくなる。
 図6は、静電センサ11の各電極とループアンテナとが容量結合を生じることを説明するための図である。図6AはICカード90に内蔵されたループアンテナATの例を示し、図6Bは検出電極Es及び駆動電極EdとループアンテナATとの間で容量結合が形成される領域の例を示す。
 図6Aに示すように、ICカード90の内部には楕円状のループアンテナATが埋め込まれており、ループアンテナATにはICチップ91が接続されている。ICカード90を静電センサ11の操作面に載置すると、図6Bに示すように、ループアンテナATと電極(Es,Ed)とが互いに平行に近い状態で近接する領域(点線で示す領域)が生じる。検出電極Es1,Es2とループアンテナATとが近接する領域には、キャパシタCfs1,Cfs2がそれぞれ形成される。駆動電極Ed1,Ed2とループアンテナATとが近接する領域には、キャパシタCfd1,Cfd2がそれぞれ形成される。これらのキャパシタの静電容量が大きくなると、式(7)の右辺2項目の分子が大きくなるため、静電容量Cdsが大きくなる。従って、2つの検出電極Es1,Es2と2つの駆動電極Ed1,Ed2とが交差する4つの位置において、それぞれ静電容量Cdsが大きくなる。図4の下段に示すように、ループアンテナATの外形に外接する矩形の範囲の四隅において検出データDが大きくなるのは、このような理由による。
 本実施形態に係る入力装置では、上述した基準値Bの異常を判定するため、2次元データ33に現れる検出データDのパターンを利用する。図4Bの下段に示す2次元データ33の例において、太い四角で囲った検出データD(3,1)、D(3,13)、D(22,1)及びD(22,13)は、所定のしきい値を超える正の値を持つ。そのため、特定部24は、これらの検出データDを対象データとして特定する。通常、対象データは物体の近接を示すものである。しかしながら、上述した基準値Bの異常が生じている場合、2次元データ33には、対象データに関連した2つの特徴が表れる。
 第1の特徴は、対象データが属する行や列において、負の値の検出データDが連続することである。負の値の検出データDは、静電容量値Sが基準値Bより大きいことを示すため、負の値の検出データDが連続することは、基準値Bより大きい静電容量値S(S>B)を持った容量結合部12が連続することを示す。この第1の特徴に該当する検出データDのパターンが「第1パターン」である。
 第2の特徴は、対象データが属する行に隣接する行や、対象データが属する列に隣接する列において、ゼロに近い検出データDが連続することである。ゼロに近い検出データDは、静電容量値Sが基準値Bに近似していることを示すため、ゼロに近い検出データDが連続することは、基準値Bに近似する静電容量値S(S≒B)を持った容量結合部12が連続することを示す。この第2の特徴に該当する検出データDのパターンが「第2パターン」である。
 判定部25による第1パターン及び第2パターンの判定方法について、図7~図10を参照して具体的に説明する。
 判定部25は、行方向における第1パターン及び第2パターンの判定を行う場合、対象データが属する2次元データ33の行を対象行として選択する。図4の下段に示す2次元データ33の場合、対象データD(3,1)及びD(22,1)についての対象行は「Y1」であり、対象データD(3,13)及びD(22,13)についての対象行は「Y13」である。
 判定部25は、列方向における第1パターン及び第2パターンの判定を行う場合、対象データが属する2次元データ33の列を対象列として選択する。図4の下段に示す2次元データ33の場合、対象データD(3,1)及びD(3,13)についての対象列は「X3」であり、対象データD(22,1)及びD(22,13)についての対象列は「X22」である。
 判定部25は、選択した対象行の各検出データDについて、式(1)~(3)で表される第1評価値H1を算出する。図7は、第1評価値H1の算出方法について説明するための図である。図7Aは、矢印で示した対象行における1つの検出データD(i,j)とその周囲の検出データDを示し、図7Bはこれらの検出データDに対する演算の内容を示す。図7Bに示すように、判定部25は、対象行において連続する検出データD(i-1,j)、D(i,j)、D(i+1,j)に重み係数として「-1」、「-2」、「-1」を乗じる。また判定部25は、検出データD(i,j)と列方向に隣接する検出データD(i,j-1)、D(i,j+1)を絶対値に変換し、重み係数として「-2」を乗じる。判定部25は、各検出データDに対するこれらの演算結果を足し合わせることにより第1評価値H1を算出する。
 判定部25は、選択した対象列の各検出データDについて、式(4)~(6)で表される第2評価値H2を算出する。図8は、第2評価値H2の算出方法について説明するための図である。図8Aは、矢印で示した対象列における1つの検出データD(i,j)とその周囲の検出データDを示し、図8Bはこれらの検出データDに対する演算の内容を示す。図8Bに示すように、判定部25は、対象列において連続する検出データD(i,j-1)、D(i,j)、D(i,j+1)に重み係数として「-1」、「-2」、「-1」を乗じる。また判定部25は、検出データD(i,j)と行方向に隣接する検出データD(i-1,j)、D(i+1,j)を絶対値に変換し、重み係数として「-2」を乗じる。判定部25は、各検出データDに対するこれらの演算結果を足し合わせることにより第2評価値H2を算出する。
 図9は、第1評価値H1の算出結果の例を示す図である。図9Aは、対象行及び隣接行が第1パターン及び第2パターンに当てはまる場合の算出結果を示す。図9B及び図9Cは、隣接行において静電容量値Sと基準値Bとの差が大きい場合の算出結果を示す。図9Dは、対象行において基準値Bより大きい静電容量値Sが連続していない場合の算出結果を示す。これらの算出結果を比較すると、隣接行が第2パターンに当てはまらない図9B及び図9Cの場合や、対象行が第1パターンに当てはまらない図9Dの場合は、図9Aの場合に比べて第1評価値H1が明確に小さくなっている。従って、対象行が第1パターンに当てはまり、かつ、隣接行が第2パターンに当てはまる「第1条件」を満たしているか否かを、第1評価値H1に基づいて判定可能である。同様に、対象列が第1パターンに当てはまり、かつ、隣接列が第2パターンに当てはまる「第2条件」を満たしているか否かは、第2評価値H2に基づいて判定可能である。
 図10は、図4の下段における2次元データ33の例に基づいて算出された第1評価値H1の系列及び第2評価値H2の系列を示す図である。図10Aは第1評価値H1の系列の算出結果を示し、図10Bは第2評価値H2の系列の算出結果を示す。各図において太い四角で囲ったものは、値が「60」以上の評価値を示している。第1パターン及び第2パターンの特徴が強く表れている位置で、値が「60」以上の評価値が連続している。従って、判定部25は、第1評価値H1の系列において所定のしきい値に達したものが所定数以上連続している場合、「第1条件」を満たしていると判定する。また、判定部25は、第2評価値H2の系列において所定のしきい値に達したものが所定数以上連続している場合、「第2条件」を満たしていると判定する。
 次に、本実施形態に係る入力装置の動作について、図11及び図12のフローチャートを参照して説明する。
 図11は、2次元データ33の生成と対象データの特定に関する動作の一例を説明するためのフローチャートである。入力装置の処理部20は、図11に示す処理を所定の周期で繰り返し実行する。
 センサ制御部21は、センサ部10の駆動部13や静電容量検出部14を制御し、静電センサ11に形成された複数の容量結合部12の静電容量値Sをそれぞれ検出する。2次元データ生成部22は、静電センサ11の各容量結合部12について、検出された静電容量値Sと静電容量の基準値Bとの差(B-S)を示す検出データDを算出し、各容量結合部12の検出データDを要素とする行列形式の2次元データ33を生成する(ST100)。
 特定部24は、生成された2次元データ33の中から、容量結合部12に物体が近接したことを示す検出データDを対象データとして特定する(ST105)。
 物体が近接したことを示す対象データが特定部24において特定された場合(ST110)、座標演算部26は、特定された対象データに基づいて物体の近接位置の座標を算出する(ST115)。
 図12は、基準値Bの更新に関する動作の一例を説明するためのフローチャートである。入力装置の処理部20は、図12に示す処理を所定のタイミングで繰り返し実行する。
 基準値更新部23は、特定部24において周期的に特定される対象データや、座標演算部26において算出される物体の近接位置の座標などに基づいて、静電センサ11に対する操作がなされていない無操作状態を監視する。無操作状態は、例えば物体が何も近接していない状態や、近接している物体が移動しない状態である。基準値更新部23は、無操作状態が所定時間以上継続したか否かを判定する(ST200)。
 無操作状態が所定時間以上継続した場合(ST200)、基準値更新部23は、特定部24において1以上の対象データが特定されているか否か(静電センサ11に物体が近接しているか否か)を判定する(ST205)。特定部24において対象データが特定されていない場合(静電センサ11に物体が近接していない場合)、基準値更新部23は、基準値Bの更新処理を実行する(ST240)。
 1以上の対象データが特定されている場合、判定部25はその中から1つの対象データを選択し(ST210)、選択した対象データが属する対象行の各検出データDについて第1評価値H1を算出する(ST215)。
 判定部25は、対象行について算出した第1評価値H1の系列において、所定のしきい値に達する第1評価値H1が所定個数以上連続しているか否かを判定する(ST220)。しきい値に達する第1評価値H1が所定個数以上連続している場合、第1条件を満たすため、基準値更新部23は基準値Bの更新処理を実行する(ST240)。
 第1評価値H1の系列においてしきい値に達する第1評価値H1が所定個数以上連続していない場合(ST220)、判定部25は、ステップST210で選択した対象データが属する対象列の各検出データDについて第2評価値H2を算出する(ST225)。
 判定部25は、対象列について算出した第2評価値H2の系列において、所定のしきい値に達する第2評価値H2が所定個数以上連続しているか否かを判定する(ST230)。しきい値に達する第2評価値H2が所定個数以上連続している場合、第2条件を満たすため、基準値更新部23は基準値Bの更新処理を実行する(ST240)。
 第2評価値H2の系列においてしきい値に達する第2評価値H2が所定個数以上連続していない場合(ST230)、判定部25は、他の対象データがあるならば(ST235)、当該他の対象データについてステップST210以降の処理を繰り返す。特定部24で特定された全ての対象データについてステップST210~ST230の処理が行われた場合、判定部25は現在の2次元データ33についての判定処理を終了する。
 以上説明したように、本実施形態によれば、ICカードのループアンテナのようにグランドとの容量結合の弱い導体が1つの駆動電極Edと1つの検出電極Esとに沿って近接した場合、当該1つの駆動電極Edと当該1つの検出電極Esとによって形成される1つの容量結合部12では、静電容量が増大し易くなる。当該1つの容量結合部12において静電容量が増大した状態で当該1つの容量結合部12の基準値Bが更新され、その更新後に導体が静電センサ11から取り除かれると、当該1つの容量結合部12では、更新後の基準値Bに対して静電容量が減少する。この静電容量の減少により、当該1つの容量結合部では、物体が近接したことを示す検出データDが得られる。この検出データDは、対象データとして特定される。また、当該1つの検出電極Esや当該1つの駆動電極Edに形成される他の容量結合部12では、ループアンテナ等の導体が近接することによって静電容量が減少し易くなる。この静電容量の減少状態において他の容量結合部12の基準値Bがそれぞれ更新され、その更新後に導体が静電センサ11から取り除かれると、他の容量結合部12では、更新後の基準値Bに対して静電容量が増大する。従って、対象データが属する2次元データ33の行に基づいて選択された対象行や、対象データが属する2次元データ33の列に基づいて選択された対象列は、基準値Bより大きい静電容量値を持つ容量結合部12が連続していることを示す「第1パターン」に当てはまり易くなる。対象行及び対象列の少なくとも一方が第1パターンに当てはまる場合、ループアンテナ等の導体の近接による基準値Bの異常が生じていた可能性があるため、基準値Bの更新が行われる。そのため、従来の装置のように基準値Bが更新される前の静電容量値Sの情報を用いることなく、2次元データ33の検出データDのパターンに基づいて基準値Bの異常の有無を判定できる。従って、例えば電源をオンする前に近接していたループアンテナ等の導体が電源のオンの後に取り除かれた場合でも、基準値Bの異常を適切に判定して速やかに解消できる。
 また、本実施形態によれば、ICカードのループアンテナのような線状の導体が1つの駆動電極Edと1つの検出電極Esとに沿って近接した場合、当該1つの検出電極Esに隣接する検出電極Esの容量結合部12や、当該1つの駆動電極Edに隣接する駆動電極Edの容量結合部12では、基準値Bに対する静電容量値Sの差が小さくなり易い。そのため、対象行に隣接した隣接行や、対象列に隣接した隣接列は、基準値Bに近似する静電容量値Sを持った容量結合部12が連続していることを示す「第2パターン」に当てはまり易くなる。従って、対象行が第1パターンに当てはまり、かつ、隣接行が第2パターンに当てはまる「第1条件」や、対象列が第1パターンに当てはまり、かつ、隣接列が第2パターンに当てはまる「第2条件」を満たす場合、ループアンテナ等の導体の近接による基準値Bの異常が生じていた可能性がより高くなる。従って、「第1条件」や「第2条件」を満たす場合に基準値Bの更新を行うことで、より適切に基準値Bの異常を解消できる。
 更に、本実施形態によれば、対象行について算出した第1評価値H1の系列において、しきい値に達する第1評価値H1が所定個数以上連続するか否かにより「第1条件」を満たすか否かが判定される。また、対象列について算出した第2評価値H2の系列において、しきい値に達する第2評価値H2が所定個数以上連続するか否かにより「第2条件」を満たすか否かが判定される。従って、対象行のパターン判定や対象行のパターン判定において、第1パターン及び第2パターンを1つの評価値(H1、H2)に基づいて判定できるため、判定に関わる演算を簡易化できる。
<第2の実施形態>
 次に、本発明の第2の実施形態について説明する。第2の実施形態に係る入力装置は、上述した第1の実施形態に係る入力装置における判定部25の処理を変更したものであり、他の構成は第1の実施形態に係る入力装置と同様である。以下では、第1の実施形態に係る入力装置との相違点を中心に説明する。
 第2の実施形態に係る入力装置において、判定部25は、対象行及び隣接行について第1パターン及び第2パターンの判定を行う場合に、対象行の検出データDごとに1つの第1評価値群を算出する。この第1評価値群は、既に説明した対象行評価値H11(式(2))と隣接行評価値H12(式(3))とを含む。すなわち、判定部25は、対象行評価値H11と隣接行評価値H12とを足し合わせて第1評価値H1(式(1))を算出するのではなく、対象行評価値H11と隣接行評価値H12とをそれぞれ独立に算出する。
 判定部25は、対象行の各検出データDについて算出した第1評価値群(対象行評価値H11及び隣接行評価値H12)の系列において、所定のしきい値に達する対象行評価値H11と所定のしきい値に達する隣接行評価値H12とを含んだ第1評価値群を特定し、当該特定した第1評価値群が連続する個数を数える。所定のしきい値に達する対象行評価値H11とは、例えば、式(2)において「α<0」かつ「β<0」とした場合に、所定の正のしきい値より大きい対象行評価値H11である。また、所定のしきい値に達する隣接行評価値H12とは、例えば、式(3)において「γ=1」とした場合に、所定の正のしきい値より小さい隣接行評価値H12である。このような対象行評価値H11及び隣接行評価値H12を含む第1評価値群が所定個数以上連続する場合、判定部25は「第1条件」を満たしていると判定する。
 また、判定部25は、対象列及び隣接列について第1パターン及び第2パターンの判定を行う場合、対象列の検出データDごとに1つの第2評価値群を算出する。この第2評価値群は、既に説明した対象列評価値H21(式(5))と隣接行評価値H22(式(6))とを含む。すなわち、判定部25は、対象列評価値H21と隣接列評価値H22とを足し合わせて第2評価値H2(式(4))を算出するのではなく、対象列評価値H21と隣接列評価値H22とをそれぞれ独立に算出する。
 判定部25は、対象列の各検出データDについて算出した第2評価値群(対象列評価値H21及び隣接列評価値H22)の系列において、所定のしきい値に達する対象列評価値H21と所定のしきい値に達する隣接列評価値H22とを含んだ第2評価値群を特定し、当該特定した第2評価値群が連続する個数を数える。所定のしきい値に達する対象列評価値H21とは、例えば、式(5)において「ν<0」かつ「η<0」とした場合に、所定の正のしきい値より大きい対象列評価値H21である。また、所定のしきい値に達する隣接列評価値H22とは、例えば、式(6)において「κ=1」とした場合に、所定の正のしきい値より小さい隣接列評価値H22である。このような対象列評価値H21及び隣接列評価値H22を含む第2評価値群が所定個数以上連続する場合、判定部25は「第2条件」を満たしていると判定する。
 図13は、行方向の判定に用いられる第1評価値群(対象行評価値H11、隣接行評価値H12)の算出方法を説明するための図である。図13Aは、矢印で示した対象行における1つの検出データD(i,j)とその周囲の検出データDを示す。図13Bは対象行評価値H11を算出する場合の各検出データDに対する演算の内容を示し、図13Cは隣接行評価値H12を算出する場合の各検出データDに対する演算の内容を示す。図13Bに示すように、判定部25は、対象行において連続する検出データD(i-1,j)、D(i,j)、D(i+1,j)に重み係数として「-1」、「-2」、「-1」を乗じ、これらの演算結果を足し合わせることにより対象行評価値H11を算出する。また判定部25は、検出データD(i,j)と列方向に隣接する検出データD(i,j-1)、D(i,j+1)をそれぞれ絶対値に変換して足し合わせることにより、隣接行評価値H12を算出する。
 図14は、列方向の判定に用いられる第2評価値群(対象列評価値H21、隣接列評価値H22)の算出方法を説明するための図である。図14Aは、矢印で示した対象列における1つの検出データD(i,j)とその周囲の検出データDを示す。図14Bは対象列評価値H21を算出する場合の各検出データDに対する演算の内容を示し、図14Cは隣接列評価値H22を算出する場合の各検出データDに対する演算の内容を示す。図14Bに示すように、判定部25は、対象列において連続する検出データD(i,j-1)、D(i,j)、D(i,j+1)に重み係数として「-1」、「-2」、「-1」を乗じ、これらの演算結果を足し合わせることにより対象列評価値H21を算出する。また判定部25は、検出データD(i,j)と行方向に隣接する検出データD(i-1,j)、D(i+1,j)をそれぞれ絶対値に変換して足し合わせることにより、隣接列評価値H22を算出する。
 図15は、第2の実施形態における基準値Bの更新に関する動作の一例を説明するためのフローチャートである。図15に示すフローチャートは、図12に示すフローチャートにおけるステップST215~ST230をステップST215A~ST230Aに変更したものであり、他のステップは図12に示すフローチャートと同じである。以下、図12に示すフローチャートとの相違点のみ説明する。
 判定部25は、ステップST210において1つの対象データを選択すると、この選択した対象データが属する対象行の各検出データDについて、第1評価値群(対象行評価値H11及び隣接行評価値H12)を算出する(ST215A)。判定部25は、算出した第1評価値群の系列において、対象行評価値H11及び隣接行評価値H12がそれぞれ所定のしきい値に達している第1評価値群を特定し、当該特定した第1評価値群が所定個数以上連続しているか否かを判定する(ST220A)。当該特定した第1評価値群が所定個数以上連続している場合、基準値更新部23は基準値Bの更新処理を実行する(ST240)。
 第1評価値群の系列においてしきい値に達する評価値(H11,H12)を含んだ第1評価値群が所定個数以上連続していない場合(ST220A)、判定部25は、ステップST210において選択した対象データが属する対象列の各検出データDについて、第2評価値群(対象列評価値H21及び隣接列評価値H22)を算出する(ST225A)。判定部25は、算出した第2評価値群の系列において、対象列評価値H21及び隣接列評価値H22がそれぞれ所定のしきい値に達している第2評価値群を特定し、当該特定した第2評価値群が所定個数以上連続しているか否かを判定する(ST230A)。当該特定した第2評価値群が所定個数以上連続している場合、基準値更新部23は基準値Bの更新処理を実行する(ST240)。
 第2評価値群の系列においてしきい値に達する評価値(H21,H22)を含んだ第2評価値群が所定個数以上連続していない場合(ST230A)、判定部25は、他の対象データがあるならば(ST235)、当該他の対象データについてステップST210以降の処理を繰り返す。
 以上説明したように、本実施形態によれば、対象行及び対象列について算出した第1評価値群の系列において、所定のしきい値に達する対象行評価値H11と所定のしきい値に達する隣接行評価値H12とを含んだ第1評価値群が所定個数以上連続するか否かにより、「第1条件」を満たすか否かが判定される。また、対象列及び隣接列について算出した第2評価値群の系列において、所定のしきい値に達する対象列評価値H21と所定のしきい値に達する隣接列評価値H22とを含んだ第2評価値群が所定個数以上連続するか否かにより、「第2条件」を満たすか否かが判定される。従って、対象行や対象列が第1パターンに当てはまることと、隣接行や隣接列が第2パターンに当てはまることとを、それぞれ独立の評価値に基づいて正確に判定できる。
<第3の実施形態>
 次に、本発明の第3の実施形態について説明する。第3の実施形態に係る入力装置は、上述した第1の実施形態に係る入力装置における判定部25の処理を変更したものであり、他の構成は第1の実施形態に係る入力装置と同様である、以下では、第1の実施形態に係る入力装置との相違点を中心に説明する。
 第3の実施形態に係る入力装置において、判定部25は、対象行について第1パターンの判定を行う場合、対象行の検出データDごとに1つの対象行評価値H11(式(2))を算出する。すなわち、本実施形態における判定部25は、対象行評価値H11と隣接行評価値H12とを足し合わせて第1評価値H1(式(1))を算出するのではなく、第1評価値H1より簡易な対象行評価値H11を算出する。
 判定部25は、対象行について算出した対象行評価値H11の系列において、所定のしきい値に達する対象行評価値H11が所定個数以上連続するか否かを判定する。所定のしきい値に達する対象行評価値H11とは、例えば、式(2)において「α<0」かつ「β<0」とした場合に、所定の正のしきい値より大きい対象行評価値H11である。所定のしきい値に達する対象行評価値H11が所定個数以上連続する場合、判定部25は、対象行が第1パターンに当てはまると判定する。
 また、判定部25は、対象列について第2パターンの判定を行う場合、対象列の検出データDごとに1つの対象列評価値H21(式(5))を算出する。すなわち、本実施形態における判定部25は、対象列評価値H21と隣接列評価値H22とを足し合わせて第2評価値H2(式(4))を算出するのではなく、第2評価値H2より簡易な対象列評価値H21を算出する。
 判定部25は、対象列について算出した対象列評価値H21の系列において、所定のしきい値に達する対象列評価値H21が所定個数以上連続するか否かを判定する。所定のしきい値に達する対象列評価値H21とは、例えば、式(5)において「ν<0」かつ「η<0」とした場合に、所定の正のしきい値より大きい対象列評価値H21である。所定のしきい値に達する対象列評価値H21が所定個数以上連続する場合、判定部25は、対象列が第1パターンに当てはまると判定する。
 図16は、第3の実施形態における基準値Bの更新に関する動作の一例を説明するためのフローチャートである。図16に示すフローチャートは、図12に示すフローチャートにおけるステップST215~ST230をステップST215B~ST230Bに変更したものであり、他のステップは図12に示すフローチャートと同じである。以下、図12に示すフローチャートとの相違点のみ説明する。
 判定部25は、ステップST210において1つの対象データを選択すると、この選択した対象データが属する対象行の各検出データDについて、対象行評価値H11を算出する(ST215B)。判定部25は、算出した対象行評価値H11の系列において、所定のしきい値に達している対象行評価値H11が所定個数以上連続しているか否かを判定する(ST220B)。所定のしきい値に達している対象行評価値H11が所定個数以上連続している場合、基準値更新部23は基準値Bの更新処理を実行する(ST240)。
 対象行評価値H11の系列において所定のしきい値に達する対象行評価値H11が所定個数以上連続していない場合(ST220B)、判定部25は、ステップST210において選択した対象データが属する対象列の各検出データDについて、対象列評価値H21を算出する(ST225B)。判定部25は、算出した対象列評価値H21の系列において、所定のしきい値に達している対象列評価値H21が所定個数以上連続しているか否かを判定する(ST230B)。所定のしきい値に達している対象列評価値H21が所定個数以上連続している場合、基準値更新部23は基準値Bの更新処理を実行する(ST240)。
 対象列評価値H21の系列においてしきい値に達する対象列評価値H21が所定個数以上連続していない場合(ST230B)、判定部25は、他の対象データがある場合には(ST235)、他の対象データについてステップST210以降の処理を繰り返す。
 以上説明したように、本実施形態によれば、対象行について算出した対象行評価値H11の系列において、所定のしきい値に達する対象行評価値H11が所定個数以上連続するか否かにより、対象行が第1パターンに当てはまるか否かが判定される。また、対象列について算出した対象列評価値H21の系列において、所定のしきい値に達する対象列評価値H21が所定個数以上連続するか否かにより、対象列が第1パターンに当てはまるか否かが判定される。従って、対象行や対象列が第1パターンに当てはまることを簡易な演算で判定できる。
<第4の実施形態>
 次に、本発明の第4の実施形態について説明する。第4の実施形態に係る入力装置は、上述した第1~第3の実施形態に係る入力装置の判定部25において、対象行及び対象列の選択の方法を変更したものであり、他の構成は第1~第3の実施形態に係る入力装置と同様である、以下では、これらの実施形態に係る入力装置との相違点を中心に説明する。
 上述した各実施形態における判定部25は、対象データが属する行を対象行として選択し、対象データが属する列を対象列として選択する。一方、本実施形態における判定部25は、対象データが属する行を含む複数の隣接する行の中から対象行を選択し、対象データが属する列を含む複数の隣接する列の中から対象列を選択する。
 すなわち判定部25は、対象行について第1パターンの判定を行う場合、対象データが属する2次元データ33の行を含む複数の隣接する行の中から、静電容量値Sが相対的に大きいことを示す1つの検出データDを列ごとに選択し、当該選択した検出データDの系列を対象行として第1パターンの判定を行う。
 また判定部25は、対象列について第1パターンの判定を行う場合、対象データが属する2次元データ33の列を含む複数の隣接する列の中から、静電容量値Sが相対的に大きいことを示す1つの検出データDを行ごとに選択し、当該選択した検出データDの系列を対象列として第1パターンの判定を行う。
 図17は、第4の実施形態における対象行の選択方法を説明するための図である。図17において、太い四角で囲んだ検出データD(1,12)が対象データであり、丸で囲んだ検出データDの系列が対象行である。判定部25は、検出データD(1,12)が属する行Y12と、これに隣接する行Y11及びY13とからなる範囲において、対象行の各検出データDを選択する。すなわち、判定部25は、行Y11~Y13の範囲において列ごとに最も値が小さい検出データD(静電容量値Sが相対的に大きい検出データD)を、対象行の検出データDとして選択する。例えば列X4において、行Y11~Y13の範囲における検出データD(4,11)、D(4,12)、D(4,13)の値はそれぞれ「-14」、「-1」、「12」である。判定部25は、これらの中で最も値が小さい検出データD(4,11)を対象行の検出データとして選択する。
 ICカードのループアンテナのような線状の導体が1つの検出電極Esとこれに隣接する検出電極Esに沿って近接した場合(検出電極Esに対してやや傾いた状態で近接した場合など)、対象データが属する行だけではなく、これに隣接する行においても、基準値Bより大きい静電容量値Sを持つ容量結合部12が連続していることを示す第1パターンが現れ易くなる。このような場合でも、本実施系形態によれば、対象データが属する行を含む複数の隣接する行の中から、静電容量値Sが相対的に大きいことを示す1つの検出データDを列ごとに選択することにより、当該選択した検出データDの系列は第1パターンに当てはまり易くなる。従って、この検出データDの系列を対象行として第1パターンの判定を行うことにより、線状の導体の近接による基準値Bの異常を適切に判定できる。また、本実施形態によれば、対象列についても対象行と同様に、複数の隣接する列の中から選択するため、線状の導体が1つの駆動電極Edとこれに隣接する駆動電極Edに沿って近接する場合の基準値Bの異常を適切に判定できる。
 以上、本発明の幾つかの実施形態について説明したが、本発明は上述した実施形態にのみ限定されるものではなく、種々のバリエーションを含んでいる。
 上述した第1~第3の実施形態では、1つの対象データに関する行方向の「第1条件」及び列方向の「第2条件」の少なくとも一方を満たす場合に基準値が更新されるが、本発明の他の実施形態では、「第1条件」及び「第2条件」の両方を満たす場合に基準値が更新されてもよい。
 上述した各実施形態における第1評価値H1(対象行評価値H11及び隣接行評価値H12)の算出方法や第2評価値H2(対象列評価値H21及び隣接列評価値H22)の算出方法は一例であり、本発明はこの例に限定されない。各評価値の算出に使用する検出データや重み係数は、基準値の異常の状態等に応じて任意に設定してよい。
 なお、上記した入力装置は、プログラムを記憶したメモリーと、該メモリーに接続され、該メモリーに記憶されたプログラムを実行するプロセッサーによって実現されてもよい。
 本出願は2017年3月15日に出願した日本国特許出願第2017-049586号に基づくものであり、その全内容は参照することによりここに組み込まれる。
 10…センサ部、11…静電センサ、12…容量結合部、13…駆動部、14…静電容量検出部、20…処理部、21…センサ制御部、22…2次元データ生成部、23…基準値更新部、24…特定部、25…判定部、26…座標演算部、30…記憶部、31…基準値行列、32…静電容量値行列、33…2次元データ、40…インターフェース部、90…ICカード、91…ICチップ、Ed…駆動電極、Es…検出電極、AT…ループアンテナ、PRG…プログラム、D…検出データ、S…静電容量値、B…基準値、H1…第1評価値、H2…第2評価値、H11…対象行評価値、H12…隣接行評価値、H21…対象列評価値、H22…隣接列評価値

Claims (9)

  1.  物体の近接に伴う静電容量の変化に応じた情報を入力する入力装置であって、
     駆動電圧が印加される複数の駆動電極と、複数の検出電極とを含み、前記複数の検出電極と前記複数の駆動電極との間に複数の容量結合部が形成されたセンサ部と、
     前記複数の駆動電極と前記複数の検出電極との間に形成される複数の前記容量結合部の静電容量を検出する静電容量検出部と、
     前記静電容量検出部において検出された1つの前記容量結合部の静電容量値と当該1つの容量結合部について設定された静電容量の基準値との差を示す1つの検出データを、前記複数の容量結合部の各々について算出し、各行が1つの前記検出電極における複数の前記容量結合部に対応するとともに、各列が1つの前記駆動電極における複数の前記容量結合部に対応し、前記容量結合部の配置と対応するように前記検出データが配列された2次元データを生成する2次元データ生成部と、
     前記静電容量検出部において検出された前記複数の容量結合部の前記静電容量値に基づいて、前記複数の容量結合部の前記基準値を更新する基準値更新部と、
     前記2次元データ生成部により生成された前記2次元データの中から、前記容量結合部に物体が近接したことを示す前記検出データを対象データとして特定する特定部と、
     前記対象データが属する前記2次元データの行に基づいて選択した対象行、及び、前記対象データが属する前記2次元データの列に基づいて選択した対象列の少なくとも一方について、前記基準値より大きい前記静電容量値を持つ前記容量結合部が連続していることを示す第1パターンに当てはまるか否かを判定する判定部とを有し、
     前記基準値更新部は、前記対象行及び前記対象列の少なくとも一方若しくは両方が前記第1パターンに当てはまると判定された場合、前記基準値の更新を行う、
     入力装置。
  2.  前記判定部は、
      前記対象行について前記第1パターンの判定を行う場合、前記対象行に隣接する少なくとも1つの隣接行について、前記基準値に近似する前記静電容量値を持った前記容量結合部が連続していることを示す第2パターンに当てはまるか否かの判定を行い、
      前記対象列について前記第1パターンの判定を行う場合、前記対象列に隣接する少なくとも1つの隣接列について、前記第2パターンに当てはまるか否かの判定を行い、
     前記基準値更新部は、前記対象行が前記第1パターンに当てはまり、かつ、前記隣接行が前記第2パターンに当てはまる第1条件と、前記対象列が前記第1パターンに当てはまり、かつ、前記隣接列が前記第2パターンに当てはまる第2条件との少なくとも一方若しくは両方を満たす場合に、前記基準値の更新を行う、
     請求項1に記載の入力装置。
  3.  前記判定部は、
      前記対象行及び前記隣接行について前記第1パターン及び前記第2パターンの判定を行う場合、前記対象行の前記検出データごとに1つの第1評価値を算出し、
      前記対象行の1つの前記検出データについて1つの前記第1評価値を算出する場合、前記対象行の中で当該1つの検出データを含んだ一連の前記検出データと、当該1つの検出データに列方向で隣接する少なくとも1つの前記検出データとに基づいて、前記対象行の前記静電容量値が前記基準値を超過する度合い、及び、前記隣接行の前記静電容量値が前記基準値に近似する度合いの両方を表す前記第1評価値を算出し、
      前記対象行について算出した前記第1評価値の系列において、しきい値に達する前記第1評価値が連続するならば、前記第1条件を満たすと判定し、
     前記判定部は、
      前記対象列及び前記隣接列について前記第1パターン及び前記第2パターンの判定を行う場合、前記対象列の前記検出データごとに1つの第2評価値を算出し、
      前記対象列の1つの前記検出データについて1つの前記第2評価値を算出する場合、前記対象列の中で当該1つの検出データを含んだ一連の前記検出データと、当該1つの検出データに行方向で隣接する少なくとも1つの前記検出データとに基づいて、前記対象列の前記静電容量値が前記基準値を超過する度合い、及び、前記隣接列の前記静電容量値が前記基準値に近似する度合いの両方を表す前記第2評価値を算出し、
      前記対象列について算出した前記第2評価値の系列において、しきい値に達する前記第2評価値が連続するならば、前記第2条件を満たすと判定する、
     請求項2に記載の入力装置。
  4.  前記判定部は、
      前記対象行及び前記隣接行について前記第1パターン及び前記第2パターンの判定を行う場合、前記対象行の前記検出データごとに、対象行評価値及び隣接行評価値を含んだ1つの第1評価値群を算出し、
      前記対象行における1つの前記検出データについて1つの前記第1評価値群を算出する場合、前記対象行の中で当該1つの検出データを含んだ一連の前記検出データに基づいて、前記対象行の前記静電容量値が前記基準値を超過する度合いを表す前記対象行評価値を算出するとともに、当該1つの検出データに列方向で隣接する少なくとも1つの前記検出データに基づいて、前記隣接行の前記静電容量値が前記基準値に近似する度合いを表す前記隣接行評価値を算出し、
      前記対象行について算出した前記第1評価値群の系列において、しきい値に達する前記対象行評価値としきい値に達する前記隣接行評価値とを含んだ前記第1評価値群が連続するならば、前記第1条件を満たすと判定し、
     前記判定部は、
      前記対象列及び前記隣接列について前記第1パターン及び前記第2パターンの判定を行う場合、前記対象列の前記検出データごとに、対象列評価値及び隣接列評価値を含んだ1つの第2評価値群を算出し、
      前記対象列における1つの前記検出データについて1つの前記第2評価値群を算出する場合、前記対象列の中で当該1つの検出データを含んだ一連の前記検出データに基づいて、前記対象列の前記静電容量値が前記基準値を超過する度合いを表す前記対象列評価値を算出するとともに、当該1つの検出データに行方向で隣接する少なくとも1つの前記検出データに基づいて、前記隣接列の前記静電容量値が前記基準値に近似する度合いを表す前記隣接列評価値を算出し、
      前記対象列について算出した前記第2評価値群の系列において、しきい値に達する前記対象列評価値としきい値に達する前記隣接列評価値とを含んだ前記第2評価値群が連続するならば、前記第2条件を満たすと判定する、
     請求項2に記載の入力装置。
  5.  前記判定部は、
      前記対象行について前記第1パターンの判定を行う場合、前記対象行の前記検出データごとに1つの対象行評価値を算出し、
      前記対象行における1つの前記検出データについて1つの前記対象行評価値を算出する場合、前記対象行の中で当該1つの検出データを含んだ一連の前記検出データに基づいて、前記対象行の前記静電容量値が前記基準値を超過する度合いを表す前記対象行評価値を算出し、
      前記対象行について算出した前記対象行評価値の系列において、しきい値に達する前記対象行評価値が連続するならば、前記対象行が第1パターンに当てはまると判定し、
     前記判定部は、
      前記対象列について前記第1パターンの判定を行う場合、前記対象列の前記検出データごとに1つの対象列評価値を算出し、
      前記対象列における1つの前記検出データについて1つの前記対象列評価値を算出する場合、前記対象列の中で当該1つの検出データを含んだ一連の前記検出データに基づいて、前記対象列の前記静電容量値が前記基準値を超過する度合いを表す前記対象列評価値を算出し、
      前記対象列について算出した前記対象列評価値の系列において、しきい値に達する前記対象列評価値が連続するならば、前記対象列が第1パターンに当てはまると判定する、
     請求項1に記載の入力装置。
  6.  前記判定部は、
      前記対象行について前記第1パターンの判定を行う場合、前記対象データが属する前記2次元データの行を含む複数の隣接する行の中から、前記静電容量値が相対的に大きいことを示す1つの前記検出データを列ごとに選択し、当該選択した検出データの系列を前記対象行として前記第1パターンの判定を行い、
      前記対象列について前記第1パターンの判定を行う場合、前記対象データが属する前記2次元データの列を含む複数の隣接する列の中から、前記静電容量値が相対的に大きいことを示す1つの前記検出データを行ごとに選択し、当該選択した検出データの系列を前記対象列として前記第1パターンの判定を行う、
     請求項1乃至5のいずれか一項に記載の入力装置。
  7.  物体の近接に伴う静電容量の変化に応じた情報を入力する入力装置の制御方法であって、
     前記入力装置は、
     駆動電圧が印加される複数の駆動電極と、複数の検出電極とを含み、前記複数の検出電極と前記複数の駆動電極との間に複数の容量結合部が形成されたセンサ部と、
     前記複数の駆動電極と前記複数の検出電極との間に形成される複数の前記容量結合部の静電容量を検出する静電容量検出部とを含み、
     前記静電容量検出部において検出された1つの前記容量結合部の静電容量値と当該1つの容量結合部について設定された静電容量の基準値との差を示す1つの検出データを、前記複数の容量結合部の各々について算出し、各行が1つの前記検出電極における複数の前記検出データに対応するとともに、各列が1つの前記駆動電極における複数の前記検出データに対応した2次元データを生成することと、
     前記静電容量検出部において検出された前記複数の容量結合部の前記静電容量値に基づいて、前記複数の容量結合部の前記基準値を更新することと、
     生成された前記2次元データの中から、前記容量結合部に物体が近接したことを示す前記検出データを対象データとして特定することと、
     前記対象データが属する前記2次元データの行に基づいて選択した対象行、及び、前記対象データが属する前記2次元データの列に基づいて選択した対象列の少なくとも一方について、前記基準値より大きい前記静電容量値を持つ前記容量結合部が連続していることを示す第1パターンに当てはまるか否かを判定することとを有し、
     前記基準値を更新することは、前記対象行及び前記対象列の少なくとも一方若しくは両方が前記第1パターンに当てはまると判定された場合に前記基準値の更新を行うことを含む、
     入力装置の制御方法。
  8.  前記対象行について前記第1パターンの判定を行う場合に、前記対象行に隣接する少なくとも1つの隣接行について、前記基準値に近似する前記静電容量値を持った前記容量結合部が連続していることを示す第2パターンに当てはまるか否かを判定することと、
     前記対象列について前記第1パターンの判定を行う場合に、前記対象列に隣接する少なくとも1つの隣接列について、前記第2パターンに当てはまるか否かを判定することとを有し、
     前記基準値を更新することは、前記対象行が前記第1パターンに当てはまり、かつ、前記隣接行が前記第2パターンに当てはまる第1条件と、前記対象列が前記第1パターンに当てはまり、かつ、前記隣接列が前記第2パターンに当てはまる第2条件との少なくとも一方若しくは両方を満たす場合に前記基準値の更新を行うことを含む、
     請求項7に記載の入力装置の制御方法。
  9.  請求項7又は8に記載の入力装置の制御方法をコンピュータに実行させるためのプログラム。
PCT/JP2018/005456 2017-03-15 2018-02-16 入力装置とその制御方法及びプログラム WO2018168320A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019505794A JP6705052B2 (ja) 2017-03-15 2018-02-16 入力装置とその制御方法及びプログラム
US16/535,368 US10671230B2 (en) 2017-03-15 2019-08-08 Input device and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017049586 2017-03-15
JP2017-049586 2017-03-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/535,368 Continuation US10671230B2 (en) 2017-03-15 2019-08-08 Input device and control method thereof

Publications (1)

Publication Number Publication Date
WO2018168320A1 true WO2018168320A1 (ja) 2018-09-20

Family

ID=63523087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005456 WO2018168320A1 (ja) 2017-03-15 2018-02-16 入力装置とその制御方法及びプログラム

Country Status (4)

Country Link
US (1) US10671230B2 (ja)
JP (1) JP6705052B2 (ja)
TW (1) TWI660299B (ja)
WO (1) WO2018168320A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020107933A (ja) * 2018-12-26 2020-07-09 株式会社ユーシン 近接センサ
EP3929707A4 (en) * 2019-02-19 2022-05-04 Samsung Electronics Co., Ltd. TOUCH CIRCUIT FOR PROCESSING DATA ASSOCIATED WITH A TOUCH CONTACT, ELECTRONIC DEVICE COMPRISING THE TOUCH CIRCUIT AND ASSOCIATED OPERATING METHOD

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012150747A (ja) * 2011-01-21 2012-08-09 Mitsubishi Electric Corp タッチパネル装置
JP2014182471A (ja) * 2013-03-18 2014-09-29 Alps Electric Co Ltd 静電容量式タッチパッド
JP2014203205A (ja) * 2013-04-03 2014-10-27 アルプス電気株式会社 静電容量検出装置
JP2016095648A (ja) * 2014-11-13 2016-05-26 アルプス電気株式会社 入力装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5892514B2 (ja) * 2012-08-08 2016-03-23 アルプス電気株式会社 入力装置
JP2018005456A (ja) 2016-06-30 2018-01-11 富士通株式会社 イメージ配信プログラム、イメージ配信装置およびイメージ配信方法
KR20180013559A (ko) * 2016-07-29 2018-02-07 엘에스오토모티브 주식회사 정전용량 스위치 유니트 및 이의 제어 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012150747A (ja) * 2011-01-21 2012-08-09 Mitsubishi Electric Corp タッチパネル装置
JP2014182471A (ja) * 2013-03-18 2014-09-29 Alps Electric Co Ltd 静電容量式タッチパッド
JP2014203205A (ja) * 2013-04-03 2014-10-27 アルプス電気株式会社 静電容量検出装置
JP2016095648A (ja) * 2014-11-13 2016-05-26 アルプス電気株式会社 入力装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020107933A (ja) * 2018-12-26 2020-07-09 株式会社ユーシン 近接センサ
JP7299697B2 (ja) 2018-12-26 2023-06-28 株式会社ユーシン 近接センサ
EP3929707A4 (en) * 2019-02-19 2022-05-04 Samsung Electronics Co., Ltd. TOUCH CIRCUIT FOR PROCESSING DATA ASSOCIATED WITH A TOUCH CONTACT, ELECTRONIC DEVICE COMPRISING THE TOUCH CIRCUIT AND ASSOCIATED OPERATING METHOD
US11669202B2 (en) 2019-02-19 2023-06-06 Samsung Electronics Co., Ltd. Touch circuit for processing touch-associated data, electronic device comprising touch circuit, and method for operating same

Also Published As

Publication number Publication date
JP6705052B2 (ja) 2020-06-03
US10671230B2 (en) 2020-06-02
US20190361570A1 (en) 2019-11-28
JPWO2018168320A1 (ja) 2019-06-27
TWI660299B (zh) 2019-05-21
TW201843576A (zh) 2018-12-16

Similar Documents

Publication Publication Date Title
KR102363713B1 (ko) 수분 관리
CN106155409B (zh) 用于模式变化的电容性度量处理
JP2010128647A (ja) 表示装置
US10061437B2 (en) Active canceling of display noise in simultaneous display and touch sensing using an impulse response
KR20180027603A (ko) 공통-모드 소거를 위한 액티브 매트릭스 용량성 센서
US20160147373A1 (en) Input device, and control method and program therefor
CN107037938A (zh) 减轻电容感测中的干扰
WO2017131891A2 (en) Mitigating common mode display noise using hybrid estimation approach
US20170090641A1 (en) Sensing frame averaging for cancelling display noise in simultaneous display and touch sensing
WO2018168320A1 (ja) 入力装置とその制御方法及びプログラム
CN106598366B (zh) 输入装置、传感器控制方法、电子设备及其控制方法
CN106095298B (zh) 用于电容性输入装置的混合检测
WO2017172169A1 (en) Combining trans-capacitance data with absolute-capacitance data for touch force estimates
WO2017172159A1 (en) Per-finger force detection using segmented sensor electrodes
US10126867B2 (en) Matched filter for a first order sigma delta capacitance measurement system and a method to determine the same
US10073564B2 (en) Input device, control method of input device, and program
WO2016106148A1 (en) Method and system for dual node sensing
US20160190987A1 (en) Switched-capacitor harmonic-reject mixer
US9990088B2 (en) Input device, method of controlling the same, and program
CN107272970A (zh) 电容性侧面位置外推
US10338718B2 (en) Likelihood detection of pressing finger in two-finger touch
JP5997842B2 (ja) タッチパネルシステム及び電子情報機器
JP6061426B2 (ja) 入力装置及びその情報入力方法
WO2015182036A1 (ja) タッチセンサシステム用識別体およびタッチセンサシステム
JP6219264B2 (ja) 入力装置とその制御方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18766708

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019505794

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18766708

Country of ref document: EP

Kind code of ref document: A1