WO2018168194A1 - Microwave heating device and method for controlling microwave heating device - Google Patents

Microwave heating device and method for controlling microwave heating device Download PDF

Info

Publication number
WO2018168194A1
WO2018168194A1 PCT/JP2018/001548 JP2018001548W WO2018168194A1 WO 2018168194 A1 WO2018168194 A1 WO 2018168194A1 JP 2018001548 W JP2018001548 W JP 2018001548W WO 2018168194 A1 WO2018168194 A1 WO 2018168194A1
Authority
WO
WIPO (PCT)
Prior art keywords
intensity
antenna
plate
microwave
mounting table
Prior art date
Application number
PCT/JP2018/001548
Other languages
French (fr)
Japanese (ja)
Inventor
雅之 細田
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Publication of WO2018168194A1 publication Critical patent/WO2018168194A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas

Definitions

  • the present invention relates to a microwave heating apparatus and a method for controlling the microwave heating apparatus.
  • a microwave oven configured to supply microwaves output from a microwave generation source to a heating chamber via a reflector, and to cook foods installed in the heating chamber.
  • Variable means that can support and change the angle of the reflector, sensor means for detecting the microwave reflected by the food in the heating chamber, and the weight of the food in the heating chamber in response to the output of the sensor means Calculating means for calculating.
  • Storage means that stores the relationship between food weight, reflector angle and microwave supply efficiency in advance, and the reflector angle that can supply microwaves most efficiently to the calculated weight of food.
  • a control means for controlling the variable means so that the reflector is set at the read angle see, for example, Patent Document 1).
  • the conventional microwave oven controls the angle of the reflector based on the relationship between the angle of the reflector and the supply efficiency of the microwave to the food.
  • an object of the present invention is to provide a microwave heating apparatus and a method for controlling the microwave heating apparatus that improve the efficiency of energy supply to the heating object.
  • a microwave heating apparatus includes a heating chamber, a mounting table disposed in the heating chamber, on which a heating target is mounted, and a dielectric disposed below the mounting table in the heating chamber.
  • a body-made plate-like member, an antenna for radiating microwaves disposed under the plate-like member in the heating chamber, a first moving mechanism for moving the plate-like member up and down, and the antenna Based on the intensity measured by the intensity measuring unit that measures the intensity of the reflected wave of the microwave and the intensity measuring unit, the movement control of the first moving mechanism is performed, and the first position where the intensity is equal to or less than a predetermined intensity is set. And a control unit that moves the plate-like member.
  • FIG. 1 is a diagram illustrating a microwave heating apparatus 100 according to a first embodiment. It is a characteristic view which shows the intensity
  • FIG. 1 is a diagram illustrating a microwave heating apparatus 100 according to the first embodiment.
  • the internal structure of the microwave heating apparatus 100 is shown transparently.
  • an XYZ coordinate system is defined as shown.
  • the microwave heating apparatus 100 is installed with the lid 111 of the housing 110 facing upward as illustrated, the Z-axis positive direction is up and the Z-axis negative direction is down.
  • the microwave heating apparatus 100 is a microwave oven that heats food or drink using microwaves.
  • the microwave heating apparatus 100 includes a housing 110, a base 120, a mounting table 130, a plate 140, an antenna 150, a reflector 160, driving mechanisms 171, 172, 173, and 174, a high frequency generator 180, a power meter 181 and a control unit. 190 is included.
  • the housing 110 is a cylindrical metal member and has a lid 111 on the top.
  • the inside of the housing 110 is a heating chamber.
  • a mounting table 130, a plate 140, an antenna 150, and a reflecting plate 160 are arranged inside the housing 110.
  • a base 120 is disposed under the housing 110. The housing 110 and the base 120 are fixed.
  • the casing 110 is provided to heat the object to be heated 10 such as food or drink, and has a structure for sealing the microwave so as not to leak the microwave radiated from the antenna 150 to the outside. Yes.
  • the heating object 10 can be taken in and out of the heating chamber with the lid 111 opened.
  • the base 120 is a metal or resin casing that is fixed to the lower side of the casing 110 and holds the casing 110.
  • Drive mechanisms 171, 172, 173, 174, a high frequency generator 180, a power meter 181, and a control unit 190 are disposed inside the base 120. Electric power is supplied to the drive mechanisms 171, 172, 173, 174 and the control unit 190 through a power cord (not shown).
  • the mounting table 130 is a dielectric (for example, ceramic) table on which the object to be heated 10 is placed, and has a disk shape that matches the shape of the heating chamber of the housing 110.
  • the mounting table 130 has a stay 131 connected to the lower surface.
  • the stay 131 extends downward from the lower surface of the mounting table 130.
  • the stay 131 is held by a drive mechanism 171.
  • the drive mechanism 171 moves the stay 131 in the vertical direction
  • the mounting table 130 is moved in the vertical direction.
  • one stay 131 is shown, but a plurality of stays 131 may be provided. Further, the mounting table 130 does not rotate in the XY plan view.
  • the plate 140 is arranged below the mounting table 130 inside the heating chamber.
  • the plate 140 is a disk-shaped member made of a dielectric material, and is a member having a lens effect for reducing the microwaves radiated from the antenna 150.
  • the plate 140 is an example of a plate member made of a dielectric.
  • the dielectric constant of the plate 140 is higher than the dielectric constant of the mounting table 130.
  • the plate 140 is arranged in parallel with the disk-shaped mounting table 130 in a state where the center is aligned in the XY plan view.
  • the plate 140 has a stay 141 connected to the lower surface.
  • the stay 141 is a rod-like member and extends downward from the lower surface of the plate 140.
  • the stay 141 is held by a drive mechanism 172, and the plate 140 is moved in the vertical direction by the drive mechanism 172 moving the stay 141 in the vertical direction.
  • one stay 141 is shown, but a plurality of stays 141 may be provided.
  • the antenna 150 is disposed below the plate 140 inside the heating chamber.
  • the antenna 150 is, for example, a rectangular or circular patch antenna in the XY plan view.
  • the antenna 150 is connected to the high frequency generator 180 and radiates the microwave input from the high frequency generator 180 in the Z-axis direction.
  • the microwave radiated from the antenna 150 is transmitted to the heating object 10 through the plate 140 and the mounting table 130.
  • the antenna 150 has a stay 151 connected to the lower surface.
  • the stay 151 is a rod-shaped member and extends downward from the lower surface of the antenna 150.
  • the stay 151 is held by a drive mechanism 173, and when the drive mechanism 173 moves the stay 151 in the vertical direction, the antenna 150 is moved in the vertical direction.
  • one stay 151 is shown, but a plurality of stays 151 may be provided.
  • the reflection plate 160 is provided at the lower end of the housing 110 and raises the microwave reflected by the inner wall of the housing 110 (the inner wall of the heating chamber) and / or the microwave radiated downward from the antenna 150. By reflecting in the direction, it is provided to efficiently irradiate the object to be heated 10 with microwaves.
  • the reflector 160 has a stay 161 connected to the lower surface.
  • the stay 161 is a rod-shaped member, and extends downward from the lower surface of the reflecting plate 160.
  • the stay 161 is held by a drive mechanism 174. When the drive mechanism 174 moves the stay 161 in the vertical direction, the reflecting plate 160 is moved in the vertical direction.
  • one stay 161 is shown, but a plurality of stays 161 may be provided.
  • the driving mechanisms 171, 172, 173, and 174 are actuators that move the mounting table 130, the plate 140, the antenna 150, and the reflecting plate 160 in the vertical direction, respectively.
  • the drive mechanism 172 is an example of a first moving mechanism.
  • the drive mechanisms 171 and 173 are an example of a second moving mechanism.
  • the drive mechanism 174 is an example of a third movement mechanism.
  • the driving mechanisms 171, 172, 173, and 174 may be of any type as long as they are actuators that move the mounting table 130, the plate 140, the antenna 150, and the reflection plate 160 in the vertical direction.
  • the frequency at which the impedance is matched as viewed from the antenna 150 is changed.
  • the intensity of the reflected microwave wave output from the antenna 150 changes.
  • the frequency at which the impedance viewed from the antenna 150 is matched changes depending on the type of the heating object 10.
  • the position of the mounting table 130, the plate 140, the antenna 150, and the reflecting plate 160 is set so that the intensity of the reflected wave is reduced in a state where the heating target 10 is placed on the mounting table 130. After the adjustment, the heat treatment of the heating object 10 is performed.
  • the high frequency generator 180 is a high frequency source that generates a microwave, and outputs the microwave to the antenna 150.
  • the frequency of the microwave generated by the high-frequency generator 180 is as follows: 2.45 GHz. In Japan, it may be between 2.4 GHz and 2.5 GHz (ISM (Industry Science Medical) band).
  • the high frequency generator 180 and the antenna 150 are connected by, for example, a coaxial cable.
  • the high-frequency generator 180 for example, GaN-HEMT (High Electron Mobility)
  • GaN-HEMT High Electron Mobility
  • a transistor including a solid-state oscillation element realized by a transistor (high electron mobility transistor) as a microwave generation source can be used.
  • the power meter 181 is an example of an intensity measurement unit that measures the intensity of the reflected wave of the microwave received by the antenna 150.
  • the power meter 181 and the antenna 150 are connected by, for example, a coaxial cable.
  • the power meter 181 is connected to the control unit 190 and outputs a signal representing the intensity of the reflected wave to the control unit 190.
  • the control unit 190 performs drive control (movement control) of the drive mechanisms 171, 172, 173, and 174 and drive control of the high-frequency generator 180.
  • the control unit 190 causes the high-frequency generator 180 to output a microwave at a predetermined low output before performing the heat treatment of the heating object 10, and the intensity of the reflected wave measured by the power meter 181 is less than or equal to a predetermined value.
  • drive control (movement control) of the drive mechanisms 171, 172, 173, and 174 is performed, and the positions of the mounting table 130, the plate 140, the antenna 150, and the reflection plate 160 are set to optimum positions.
  • the high frequency generator 180 is driven by the output.
  • control part 190 drives the high frequency generator 180 only when the lid
  • FIG. 2 is a characteristic diagram showing the intensity of the reflected wave of the microwave when the position of the antenna 150 and the position of the heating object 10 are changed.
  • the horizontal axis indicates the frequency
  • the vertical axis indicates the intensity of the reflected wave by the S11 parameter (dB).
  • FIG. 2A shows the distance between the antenna 150 and the mounting table 130 in a state where the heating object 10 is placed on the mounting table 130 and the positions of the mounting table 130, the plate 140, and the reflection plate 160 are fixed.
  • the simulation result of the frequency characteristic of S11 parameter at the time of changing d1 is shown.
  • the frequency at which the intensity of the reflected wave decreases as the distance d1 decreases is 2.4 GHz. Tended to be lower before and after the 2.5 GHz band (ISM band). In the band where the intensity of the reflected wave is low, the value of the S11 parameter is about ⁇ 10 dB or less. In such a band, there is little reflection and impedance matching is achieved. From this, it was confirmed that when the antenna 150 was brought close to the mounting table 130 (moved upward), the band where the intensity of the reflected wave was low decreased.
  • FIG. 2B shows a case where the distance d2 between the mounting table 130 and the heating object 10 is changed with the positions of the mounting table 130, the plate 140, the antenna 150, and the reflection plate 160 fixed.
  • the simulation result of the frequency characteristic of S11 parameter is shown.
  • Changing the distance d2 is changing the gap of the gap between the mounting table 130 and the heating target 10.
  • the plate 140 is moved upward. It was confirmed that the band where the intensity of the reflected wave is low becomes higher. In addition, when the position of the plate 140 is fixed and the antenna 150 is brought closer to the plate 140, the band where the intensity of the reflected wave is low decreases, and when the antenna 150 is moved away from the plate 140, the band where the intensity of the reflected wave is low tends to increase. It could be confirmed.
  • the microwave heating apparatus 100 the efficiency of energy supply to the heating object 10 is improved by controlling the positions of the mounting table 130, the plate 140, the antenna 150, and the reflector 160.
  • FIG. 3 is a flowchart illustrating processing executed by the control unit 190 of the microwave heating apparatus 100 according to the first embodiment.
  • the control unit 190 When the switch for starting the heating process of the microwave heating apparatus 100 is operated, the control unit 190 repeatedly executes the process shown in FIG. 3 at a predetermined control cycle.
  • the control unit 190 causes the high frequency generator 180 to output a microwave at a predetermined low output (step S1).
  • the predetermined low output is, for example, about 1/10 of the output during the heat treatment.
  • the control unit 190 acquires the intensity of the reflected wave measured by the power meter 181 (step S2).
  • the control unit 190 determines whether or not the intensity of the reflected wave is 50% or more of the intensity of the microwave output from the antenna 150 (step S3).
  • control unit 190 determines that the intensity of the reflected wave is 50% or more (S3: YES)
  • the control unit 190 causes the high-frequency generator 180 to stop outputting the microwave (step S4).
  • the high-frequency generator 180 is stopped in step S4 because the microwave is output at a predetermined low output in a state where the intensity of the reflected wave is relatively high, ie, 50% or more, while the mounting table 130 and the plate 140 are output in a later step S5. This is to avoid changing the position of the antenna 150 or the reflector 160.
  • the control unit 190 performs drive control (movement control) of the drive mechanisms 171, 172, 173, or 174, and changes each position of the mounting table 130, the plate 140, the antenna 150, or the reflection plate 160 (step S5).
  • step S5 the flow returns to step S1.
  • control unit 190 first drives only the drive mechanism 172 to move only the position of the plate 140.
  • the moving direction (upward or downward) and the moving distance may be determined in advance.
  • the mounting table 130, the plate 140, the antenna 150, and the reflecting plate 160 are placed at a preset initial position before the start of the process shown in FIG.
  • step S3 If the control unit 190 determines in step S3 that the intensity of the reflected wave is not 50% or more (S3: NO), the intensity of the reflected wave is 10% or more of the intensity of the microwave output from the antenna 150. Whether or not (step S6).
  • step S5 the control unit 190 performs drive control (movement control) of the drive mechanisms 171, 172, 173, or 174 in a state where the microwave is output from the antenna 150 at a predetermined low output, Each position of the mounting table 130, the plate 140, the antenna 150, or the reflection plate 160 is changed.
  • the mounting table 130 is in a state where the microwave is output from the antenna 150 at a predetermined low output.
  • the position of the plate 140, the antenna 150, or the reflection plate 160 is changed.
  • control unit 190 first drives only the driving mechanism 172 to move only the position of the plate 140, thereby minimizing the intensity of the reflected wave.
  • the plate 140 may be moved to the position.
  • Driving control movement control of the driving mechanisms 171, 173, or 174 may be performed to change the positions of the mounting table 130, the antenna 150, or the reflecting plate 160.
  • step S5 any one of the drive mechanisms 171, 173, and 174 is moved so that the intensity of the reflected wave is increased.
  • the position where it becomes the minimum We will look for the position where it becomes the minimum. For this reason, the order in which the drive mechanisms 171, 173, and 174 are moved one by one, the direction of movement, and the movement distance may be determined in advance.
  • control unit 190 determines that the intensity of the reflected wave is not 10% or more (S6: NO)
  • the control unit 190 causes the high-frequency generator 180 to output a microwave over the time set by the user's operation with the output for heating. (Step S7). Thereby, the heat processing of the heating target object 10 are performed.
  • steps S3 and S6 are merely examples, and may be appropriately set to optimum values according to the size of the microwave heating apparatus 100, the output of the microwave, or the like.
  • the microwave heating apparatus 100 performs drive control (movement control) of the drive mechanisms 171, 173, or 174 before performing the heat treatment of the heating object 10, and places the mounting table 130, the plate 140, and the antenna. 150 or the position of the reflector 160 is changed.
  • the impedance viewed from the antenna 150 becomes more matched, and the intensity of the reflected wave of the microwave can be reduced.
  • the plate 140 is disposed between the antenna 150 and the mounting table 130, and the microwave radiated from the antenna 150 is transmitted through the plate 140 and radiated to the heating object 10 placed on the mounting table 130.
  • the plate 140 Since the plate 140 has a dielectric constant larger than that of the mounting table 130, the impedance viewed from the antenna 150 changes greatly when the position is moved. Such a plate 140 has an effect as a radio wave lens for adjusting the wavelength and phase of the microwave.
  • the microwave heating device 100 that improves the efficiency of energy supply to the object to be heated, and the control of the microwave heating device 100 A method can be provided. Further, if the position of the mounting table 130, the antenna 150, or the reflection plate 160 is changed in addition to the plate 140, the intensity of the reflected wave of the microwave can be further reduced.
  • the heat treatment can be performed with the energy supply efficiency optimized.
  • FIG. 4 is a diagram illustrating the microwave heating apparatus 200 according to the second embodiment.
  • the internal configuration of the microwave heating apparatus 200 is transparently shown, and an XYZ coordinate system is defined.
  • the microwave heating apparatus 200 has a configuration in which a temperature sensor 201 is added to the microwave heating apparatus 100 of Embodiment 1 and the control unit 190 is replaced with a control unit 290. For this reason, the same code
  • the temperature sensor 201 is provided on the lower surface of the lid 111 and measures the temperature of the heating object 10. This is for monitoring whether the heating object 10 is heated by the microwave.
  • a sensor including a thermocouple or a resistance temperature detector may be used as the temperature sensor 201.
  • the temperature sensor 201 is connected to the control unit 290, and a signal indicating temperature is input to the control unit 290.
  • the temperature sensor 201 is an example of a first temperature sensor.
  • the control unit 290 performs drive control (movement control) of the drive mechanisms 171, 172, 173, and 174 and drive control of the high-frequency generator 180. Before performing the heat treatment, the control unit 290 is configured so that the intensity of the reflected wave of the microwave is equal to or lower than a predetermined value and the change in temperature detected by the temperature sensor 201 is equal to or higher than the predetermined value.
  • Drive control (movement control) of the drive mechanisms 171, 172, 173, 174 is performed, and the positions of the mounting table 130, the plate 140, the antenna 150, and the reflection plate 160 are set to optimum positions.
  • the mounting table 130, the plate 140, the antenna 150, and the reflecting plate 160 are adjusted so that the intensity of the reflected wave is equal to or lower than a predetermined value and the change in temperature detected by the temperature sensor 201 is equal to or higher than the predetermined value.
  • the high frequency generator 180 is driven with an output for heat treatment to heat the heating object 10.
  • FIG. 5 is a flowchart illustrating a process executed by the control unit 290 of the microwave heating apparatus 200 according to the second embodiment.
  • the flowchart shown in FIG. 5 is obtained by adding steps S26A and S26B to the flowchart shown in FIG. For this reason, it demonstrates centering around difference here.
  • the process of step S26A is performed after step S6.
  • control unit 290 determines in step S6 that the intensity of the reflected wave is not 10% or more (S6: NO), the control unit 290 acquires temperature data measured by the temperature sensor 201 (step S26A).
  • control unit 290 determines whether or not the change in temperature is equal to or lower than a predetermined temperature using the temperature data acquired in step S26A (step S26B).
  • the temperature change is acquired by the temperature acquired in the previous step S26A and the current (current control cycle) step S26A. It is the difference from temperature.
  • step S26B when the intensity of the reflected wave of the microwave is less than 10%, the intensity of the reflected wave is low in a state where the heating object 10 is irradiated with a predetermined low output microwave. However, it is the process performed in order to determine whether it is the state which cannot heat the heating target object 10 efficiently.
  • control unit 290 determines that the temperature change is equal to or lower than the predetermined temperature (S26B: YES)
  • the control unit 290 advances the flow to step S4. Even if the intensity of the reflected wave is low, the state in which the object to be heated 10 is not efficiently heated is a state in which the efficiency of energy supply to the object to be heated 10 is not improved, and therefore the output of the microwave Is stopped, and the position control in step S5 is performed again.
  • step S7 If the controller 290 determines that the change in temperature is not less than or equal to the predetermined temperature (S26B: NO), the flow proceeds to step S7. Since the intensity of the reflected wave is low and the heating object 10 can be efficiently heated, the heating object 10 is heated by switching to the output for the heating process.
  • the microwave heating apparatus 200 reduces the intensity of the reflected wave of the microwave and confirms that the energy supply efficiency to the heating object 10 is in a good state before performing the heat treatment. It can be carried out.
  • microwave heating apparatus 200 that improves the efficiency of energy supply to the heating object 10 and a method for controlling the microwave heating apparatus 200.
  • the position control in step S5 may be performed again.
  • the state in which the heating chamber, the mounting table 130, or the antenna 150, which is a part other than the heating object 10 that is originally desired to be heated, is heated is not a state in which the energy supply efficiency to the heating object 10 is good. is there.
  • the temperature sensor that measures the temperature of the heating chamber, the mounting table 130, or the antenna 150 in this way is an example of a second temperature sensor.
  • a heating chamber A heating chamber; A mounting table disposed in the heating chamber and on which a heating object is mounted; A dielectric plate-like member disposed under the mounting table in the heating chamber; An antenna disposed under the plate-like member in the heating chamber and radiating microwaves; A first moving mechanism for moving the plate-like member up and down; An intensity measuring unit that measures the intensity of the reflected wave of the microwave via the antenna; A control unit that controls the movement of the first moving mechanism based on the intensity measured by the intensity measuring unit and moves the plate-like member to a first position where the intensity is equal to or less than a predetermined intensity. Heating device.
  • (Appendix 2) A first temperature measuring unit for measuring the temperature of the heating object; Based on the intensity measured by the intensity measurement unit and the temperature measured by the first temperature measurement unit, the control unit decreases the intensity and increases the temperature of the heating object.
  • the microwave heating apparatus according to appendix 1, which performs movement control of the first movement mechanism.
  • (Appendix 3) A second temperature measuring unit that is disposed in the heating chamber and measures the temperature of the heating chamber, the mounting table, or the antenna; The controller controls the movement of the first moving mechanism so that the temperature of the heating chamber, the mounting table, or the antenna is equal to or lower than a predetermined temperature based on the temperature measured by the second temperature measuring unit.
  • the microwave heating apparatus according to Supplementary Note 1 or 2, wherein: (Appendix 4) A second moving mechanism for moving the mounting table or the antenna up and down, In addition to the first movement mechanism, the control unit performs movement control of the second movement mechanism based on the intensity measured by the intensity measurement unit, and a first position where the intensity is equal to or less than the predetermined intensity; The microwave heating device according to any one of appendices 1 to 3, wherein the plate member and the mounting table or the antenna are respectively moved to a second position. (Appendix 5) The microwave heating device according to any one of appendices 1 to 4, wherein a dielectric constant of the plate member is higher than a dielectric constant of the mounting table.
  • Appendix 6 A reflector that is disposed under the antenna in the heating chamber and reflects microwaves; A third moving mechanism for moving the reflecting portion up and down; Based on the intensity measured by the intensity measurement unit and the temperature measured by the first temperature measurement unit, the control unit decreases the intensity and increases the temperature of the heating object.
  • the microwave heating apparatus according to any one of appendices 1 to 5, which performs movement control of the third movement mechanism.
  • a heating chamber A mounting table disposed in the heating chamber and on which a heating object is mounted; A dielectric plate-like member disposed under the mounting table in the heating chamber; An antenna for radiating microwaves, and a first moving mechanism for moving the plate member up and down, disposed under the plate member in the heating chamber;
  • a method for controlling a microwave heating apparatus comprising: an intensity measurement unit that measures the intensity of a reflected wave of microwaves via the antenna; A method for controlling a microwave heating apparatus, wherein movement control of the first moving mechanism is performed based on an intensity measured by the intensity measuring unit, and the plate member is moved to a first position where the intensity is equal to or less than a predetermined intensity.

Abstract

[Problem] To provide: a microwave heating device in which the efficiency of supplying energy to an object to be heated is improved; and a method for controlling the microwave heating device. [Solution] This microwave heating device comprises: a heating chamber; a placement table which is provided in the heating chamber and on which an object to be heated is placed; a plate-shaped member which is made of a dielectric body and which is provided under the placement table in the heating chamber; an antenna which is provided under the plate-shaped member in the heating chamber and which radiates microwaves; a first moving mechanism which vertically moves the plate-shaped member; an intensity measurement unit which measures the intensity of reflection waves of the microwaves via the antenna; and a control unit which controls movement of the first moving mechanism on the basis of the intensity measured by the intensity measurement unit, and moves the plate-shaped member to a first position in which the intensity is equal to or less than a predetermined intensity.

Description

マイクロ波加熱装置、及び、マイクロ波加熱装置の制御方法Microwave heating apparatus and method for controlling microwave heating apparatus
 本発明は、マイクロ波加熱装置、及び、マイクロ波加熱装置の制御方法に関する。 The present invention relates to a microwave heating apparatus and a method for controlling the microwave heating apparatus.
 従来より、マイクロ波発生源の出力するマイクロ波を反射板を介して加熱庫に供給し、加熱庫に設置した食品を加熱調理するように構成した電子レンジがある。反射板を支持してその角度を変化させることが可能な可変手段と、加熱庫内の食品が反射するマイクロ波を検出するセンサー手段と、センサー手段の出力を受けて加熱庫内の食品重量を算出する算出手段とを備える。食品重量と反射板の角度とマイクロ波の食品への供給効率の関係を予め格納した記憶手段と、算出された重量の食品に対して最も効率よくマイクロ波を供給し得る反射板の角度を記憶手段から読出し、その読出した角度に反射板が設定されるよう可変手段を制御する制御手段とを備える(例えば、特許文献1参照)。 Conventionally, there has been a microwave oven configured to supply microwaves output from a microwave generation source to a heating chamber via a reflector, and to cook foods installed in the heating chamber. Variable means that can support and change the angle of the reflector, sensor means for detecting the microwave reflected by the food in the heating chamber, and the weight of the food in the heating chamber in response to the output of the sensor means Calculating means for calculating. Storage means that stores the relationship between food weight, reflector angle and microwave supply efficiency in advance, and the reflector angle that can supply microwaves most efficiently to the calculated weight of food. And a control means for controlling the variable means so that the reflector is set at the read angle (see, for example, Patent Document 1).
特開平06-251866号公報Japanese Patent Laid-Open No. 06-251866
 ところで、従来の電子レンジ(マイクロ波加熱装置の一例)は、反射板の角度とマイクロ波の食品への供給効率との関係に基づいて反射板の角度を制御するが、このような手法では、マイクロ波加熱装置としてのエネルギの供給効率に限界があった。 By the way, the conventional microwave oven (an example of a microwave heating apparatus) controls the angle of the reflector based on the relationship between the angle of the reflector and the supply efficiency of the microwave to the food. There was a limit to energy supply efficiency as a microwave heating device.
 そこで、加熱対象物へのエネルギの供給効率を改善したマイクロ波加熱装置、及び、マイクロ波加熱装置の制御方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a microwave heating apparatus and a method for controlling the microwave heating apparatus that improve the efficiency of energy supply to the heating object.
 本発明の実施の形態のマイクロ波加熱装置は、加熱室と、前記加熱室内に配置され、加熱対象物が載置される載置台と、前記加熱室内で前記載置台の下に配置される誘電体製の板状部材と、前記加熱室内で前記板状部材の下に配置され、マイクロ波を放射するアンテナと、前記板状部材を上下に移動させる第1移動機構と、前記アンテナを介してマイクロ波の反射波の強度を測定する強度測定部と、前記強度測定部によって測定される強度に基づいて前記第1移動機構の移動制御を行い、前記強度が所定強度以下になる第1位置に前記板状部材を移動させる制御部とを含む。 A microwave heating apparatus according to an embodiment of the present invention includes a heating chamber, a mounting table disposed in the heating chamber, on which a heating target is mounted, and a dielectric disposed below the mounting table in the heating chamber. A body-made plate-like member, an antenna for radiating microwaves disposed under the plate-like member in the heating chamber, a first moving mechanism for moving the plate-like member up and down, and the antenna Based on the intensity measured by the intensity measuring unit that measures the intensity of the reflected wave of the microwave and the intensity measuring unit, the movement control of the first moving mechanism is performed, and the first position where the intensity is equal to or less than a predetermined intensity is set. And a control unit that moves the plate-like member.
 加熱対象物へのエネルギの供給効率を改善したマイクロ波加熱装置、及び、マイクロ波加熱装置の制御方法を提供することができる。 It is possible to provide a microwave heating apparatus that improves the efficiency of energy supply to the object to be heated, and a method for controlling the microwave heating apparatus.
実施の形態1のマイクロ波加熱装置100を示す図である。1 is a diagram illustrating a microwave heating apparatus 100 according to a first embodiment. アンテナ150の位置と加熱対象物10の位置を変更した場合におけるマイクロ波の反射波の強度を示す特性図である。It is a characteristic view which shows the intensity | strength of the reflected wave of a microwave when the position of the antenna 150 and the position of the heating target object 10 are changed. 実施の形態1のマイクロ波加熱装置100の制御部190が実行する処理を表すフローチャートを示す図である。It is a figure which shows the flowchart showing the process which the control part 190 of the microwave heating apparatus 100 of Embodiment 1 performs. 実施の形態2のマイクロ波加熱装置200を示す図である。It is a figure which shows the microwave heating apparatus 200 of Embodiment 2. FIG. 実施の形態2のマイクロ波加熱装置200の制御部290が実行する処理を表すフローチャートを示す図である。It is a figure which shows the flowchart showing the process which the control part 290 of the microwave heating apparatus 200 of Embodiment 2 performs.
 以下、本発明のマイクロ波加熱装置、及び、マイクロ波加熱装置の制御方法を適用した実施の形態について説明する。 Hereinafter, embodiments in which the microwave heating device and the control method of the microwave heating device of the present invention are applied will be described.
 <実施の形態1>
 図1は、実施の形態1のマイクロ波加熱装置100を示す図である。図1には、マイクロ波加熱装置100の内部構成を透過的に示す。図1には、図示するようにXYZ座標系を定義する。また、マイクロ波加熱装置100は、図示するように筐体110の蓋111を上に向けた状態で設置されるため、Z軸正方向が上であり、Z軸負方向が下である。
<Embodiment 1>
FIG. 1 is a diagram illustrating a microwave heating apparatus 100 according to the first embodiment. In FIG. 1, the internal structure of the microwave heating apparatus 100 is shown transparently. In FIG. 1, an XYZ coordinate system is defined as shown. Moreover, since the microwave heating apparatus 100 is installed with the lid 111 of the housing 110 facing upward as illustrated, the Z-axis positive direction is up and the Z-axis negative direction is down.
 マイクロ波加熱装置100は、マイクロ波を用いて食品又は飲み物等を加熱する電子レンジである。マイクロ波加熱装置100は、筐体110、基部120、載置台130、プレート140、アンテナ150、反射板160、駆動機構171、172、173、174、高周波発生器180、パワーメータ181、及び制御部190を含む。 The microwave heating apparatus 100 is a microwave oven that heats food or drink using microwaves. The microwave heating apparatus 100 includes a housing 110, a base 120, a mounting table 130, a plate 140, an antenna 150, a reflector 160, driving mechanisms 171, 172, 173, and 174, a high frequency generator 180, a power meter 181 and a control unit. 190 is included.
 筐体110は、円筒状の金属製の部材であり、上部に蓋111を有する。筐体110の内部は、加熱室である。筐体110の内部には、載置台130、プレート140、アンテナ150、及び反射板160が配置される。また、筐体110の下には基部120が配置される。筐体110と基部120は固定されている。 The housing 110 is a cylindrical metal member and has a lid 111 on the top. The inside of the housing 110 is a heating chamber. Inside the housing 110, a mounting table 130, a plate 140, an antenna 150, and a reflecting plate 160 are arranged. A base 120 is disposed under the housing 110. The housing 110 and the base 120 are fixed.
 筐体110は、食品又は飲み物等の加熱対象物10を加熱するために設けられており、アンテナ150から放射されるマイクロ波を外部に漏洩しないように、マイクロ波を封止する構造になっている。蓋111を開けた状態で加熱対象物10を加熱室に出し入れすることができる。 The casing 110 is provided to heat the object to be heated 10 such as food or drink, and has a structure for sealing the microwave so as not to leak the microwave radiated from the antenna 150 to the outside. Yes. The heating object 10 can be taken in and out of the heating chamber with the lid 111 opened.
 基部120は、筐体110の下側に固定され、筐体110を保持する金属製又は樹脂製の筐体である。基部120の内部には、駆動機構171、172、173、174、高周波発生器180、パワーメータ181、及び制御部190が配置される。駆動機構171、172、173、174、及び制御部190には、図示しない電源コード等を通じて電力が供給される。 The base 120 is a metal or resin casing that is fixed to the lower side of the casing 110 and holds the casing 110. Drive mechanisms 171, 172, 173, 174, a high frequency generator 180, a power meter 181, and a control unit 190 are disposed inside the base 120. Electric power is supplied to the drive mechanisms 171, 172, 173, 174 and the control unit 190 through a power cord (not shown).
 載置台130は、加熱対象物10を載せる誘電体製(例えばセラミック製)の台であり、筐体110の加熱室の形状に合わせた円板状の形状を有する。載置台130は、下面に接続されるステー131を有する。 The mounting table 130 is a dielectric (for example, ceramic) table on which the object to be heated 10 is placed, and has a disk shape that matches the shape of the heating chamber of the housing 110. The mounting table 130 has a stay 131 connected to the lower surface.
 ステー131は、載置台130の下面から下方向に伸延している。ステー131は、駆動機構171によって保持されており、駆動機構171がステー131を上下方向に移動させることによって、載置台130が上下方向に移動される。なお、図1では説明の便宜上、1本のステー131を示すが、ステー131は複数本あってもよい。また、載置台130はXY平面視で回転しない。 The stay 131 extends downward from the lower surface of the mounting table 130. The stay 131 is held by a drive mechanism 171. When the drive mechanism 171 moves the stay 131 in the vertical direction, the mounting table 130 is moved in the vertical direction. In FIG. 1, for convenience of explanation, one stay 131 is shown, but a plurality of stays 131 may be provided. Further, the mounting table 130 does not rotate in the XY plan view.
 プレート140は、加熱室の内部で載置台130の下側に配置される。プレート140は、円板状の誘電体製の部材であり、アンテナ150が放射するマイクロ波を絞るレンズ効果を有する部材である。プレート140は、誘電体製の板状部材の一例である。プレート140の誘電率は、載置台130の誘電率よりも高い。プレート140は、円板状の載置台130とXY平面視で中心を合わせた状態で平行に配置される。 The plate 140 is arranged below the mounting table 130 inside the heating chamber. The plate 140 is a disk-shaped member made of a dielectric material, and is a member having a lens effect for reducing the microwaves radiated from the antenna 150. The plate 140 is an example of a plate member made of a dielectric. The dielectric constant of the plate 140 is higher than the dielectric constant of the mounting table 130. The plate 140 is arranged in parallel with the disk-shaped mounting table 130 in a state where the center is aligned in the XY plan view.
 プレート140は、下面に接続されるステー141を有する。ステー141は、棒状の
部材であり、プレート140の下面から下方向に伸延している。ステー141は、駆動機構172によって保持されており、駆動機構172がステー141を上下方向に移動させることによって、プレート140が上下方向に移動される。なお、図1では説明の便宜上、1本のステー141を示すが、ステー141は複数本あってもよい。
The plate 140 has a stay 141 connected to the lower surface. The stay 141 is a rod-like member and extends downward from the lower surface of the plate 140. The stay 141 is held by a drive mechanism 172, and the plate 140 is moved in the vertical direction by the drive mechanism 172 moving the stay 141 in the vertical direction. In FIG. 1, for convenience of explanation, one stay 141 is shown, but a plurality of stays 141 may be provided.
 アンテナ150は、加熱室の内部でプレート140の下側に配置される。アンテナ150は、例えば、XY平面視で矩形又は円形のパッチアンテナである。アンテナ150は、高周波発生器180に接続されており、高周波発生器180から入力されるマイクロ波をZ軸方向に放射する。アンテナ150から放射されるマイクロ波は、プレート140及び載置台130を透過して加熱対象物10に放射される。 The antenna 150 is disposed below the plate 140 inside the heating chamber. The antenna 150 is, for example, a rectangular or circular patch antenna in the XY plan view. The antenna 150 is connected to the high frequency generator 180 and radiates the microwave input from the high frequency generator 180 in the Z-axis direction. The microwave radiated from the antenna 150 is transmitted to the heating object 10 through the plate 140 and the mounting table 130.
 アンテナ150は、下面に接続されるステー151を有する。ステー151は、棒状の部材であり、アンテナ150の下面から下方向に伸延している。ステー151は、駆動機構173によって保持されており、駆動機構173がステー151を上下方向に移動させることによって、アンテナ150が上下方向に移動される。なお、図1では説明の便宜上、1本のステー151を示すが、ステー151は複数本あってもよい。 The antenna 150 has a stay 151 connected to the lower surface. The stay 151 is a rod-shaped member and extends downward from the lower surface of the antenna 150. The stay 151 is held by a drive mechanism 173, and when the drive mechanism 173 moves the stay 151 in the vertical direction, the antenna 150 is moved in the vertical direction. In FIG. 1, for convenience of explanation, one stay 151 is shown, but a plurality of stays 151 may be provided.
 反射板160は、筐体110の下端に設けられており、筐体110の内壁(加熱室の内壁)で反射されるマイクロ波、及び/又は、アンテナ150から下方に放射されるマイクロ波を上方向に反射することにより、マイクロ波を効率的に加熱対象物10に照射するために設けられている。 The reflection plate 160 is provided at the lower end of the housing 110 and raises the microwave reflected by the inner wall of the housing 110 (the inner wall of the heating chamber) and / or the microwave radiated downward from the antenna 150. By reflecting in the direction, it is provided to efficiently irradiate the object to be heated 10 with microwaves.
 反射板160は、下面に接続されるステー161を有する。ステー161は、棒状の部材であり、反射板160の下面から下方向に伸延している。ステー161は、駆動機構174によって保持されており、駆動機構174がステー161を上下方向に移動させることによって、反射板160が上下方向に移動される。なお、図1では説明の便宜上、1本のステー161を示すが、ステー161は複数本あってもよい。 The reflector 160 has a stay 161 connected to the lower surface. The stay 161 is a rod-shaped member, and extends downward from the lower surface of the reflecting plate 160. The stay 161 is held by a drive mechanism 174. When the drive mechanism 174 moves the stay 161 in the vertical direction, the reflecting plate 160 is moved in the vertical direction. In FIG. 1, for convenience of explanation, one stay 161 is shown, but a plurality of stays 161 may be provided.
 駆動機構171、172、173、174は、それぞれ、載置台130、プレート140、アンテナ150、反射板160を上下方向に移動させるアクチュエータである。駆動機構172は、第1移動機構の一例である。駆動機構171、173は、第2移動機構の一例である。駆動機構174は、第3移動機構の一例である。 The driving mechanisms 171, 172, 173, and 174 are actuators that move the mounting table 130, the plate 140, the antenna 150, and the reflecting plate 160 in the vertical direction, respectively. The drive mechanism 172 is an example of a first moving mechanism. The drive mechanisms 171 and 173 are an example of a second moving mechanism. The drive mechanism 174 is an example of a third movement mechanism.
 駆動機構171、172、173、174は、載置台130、プレート140、アンテナ150、反射板160を上下方向に移動させるアクチュエータであれば、どのような形式のものであってもよい。 The driving mechanisms 171, 172, 173, and 174 may be of any type as long as they are actuators that move the mounting table 130, the plate 140, the antenna 150, and the reflection plate 160 in the vertical direction.
 ここで、載置台130、プレート140、アンテナ150、反射板160の位置が変わると、アンテナ150から見て、インピーダンスが整合する周波数が変化する。換言すれば、載置台130、プレート140、アンテナ150、反射板160の位置が変わると、アンテナ150から出力されるマイクロ波の反射波の強度が変わる。また、加熱対象物10の種類によって、アンテナ150から見たインピーダンスが整合する周波数が変化する。 Here, when the positions of the mounting table 130, the plate 140, the antenna 150, and the reflection plate 160 are changed, the frequency at which the impedance is matched as viewed from the antenna 150 is changed. In other words, when the positions of the mounting table 130, the plate 140, the antenna 150, and the reflection plate 160 change, the intensity of the reflected microwave wave output from the antenna 150 changes. Further, the frequency at which the impedance viewed from the antenna 150 is matched changes depending on the type of the heating object 10.
 このため、マイクロ波加熱装置100では、載置台130に加熱対象物10が置かれた状態で、反射波の強度が小さくなるように載置台130、プレート140、アンテナ150、反射板160の位置を調整した上で、加熱対象物10の加熱処理を行う。 For this reason, in the microwave heating apparatus 100, the position of the mounting table 130, the plate 140, the antenna 150, and the reflecting plate 160 is set so that the intensity of the reflected wave is reduced in a state where the heating target 10 is placed on the mounting table 130. After the adjustment, the heat treatment of the heating object 10 is performed.
 高周波発生器180は、マイクロ波を発生する高周波源であり、マイクロ波をアンテナ150に出力する。高周波発生器180が発生するマイクロ波の周波数は、一例として、
2.45GHzである。日本国内では、2.4GHzから2.5GHzの間(ISM(Industry Science Medical)帯)であればよい。高周波発生器180とアンテナ150は、例えば、同軸ケーブルで接続されている。
The high frequency generator 180 is a high frequency source that generates a microwave, and outputs the microwave to the antenna 150. As an example, the frequency of the microwave generated by the high-frequency generator 180 is as follows:
2.45 GHz. In Japan, it may be between 2.4 GHz and 2.5 GHz (ISM (Industry Science Medical) band). The high frequency generator 180 and the antenna 150 are connected by, for example, a coaxial cable.
 高周波発生器180としては、例えば、GaN-HEMT(High Electron Mobility
 Transistor:高電子移動度トランジスタ)によって実現される固体発振素子をマイクロ波発生源として含むものを用いることができる。
As the high-frequency generator 180, for example, GaN-HEMT (High Electron Mobility)
A transistor including a solid-state oscillation element realized by a transistor (high electron mobility transistor) as a microwave generation source can be used.
 パワーメータ181は、アンテナ150によって受信されるマイクロ波の反射波の強度を測定する強度測定部の一例である。パワーメータ181とアンテナ150は、例えば、同軸ケーブルで接続されている。また、パワーメータ181は、制御部190に接続されており、反射波の強度を表す信号を制御部190に出力する。 The power meter 181 is an example of an intensity measurement unit that measures the intensity of the reflected wave of the microwave received by the antenna 150. The power meter 181 and the antenna 150 are connected by, for example, a coaxial cable. The power meter 181 is connected to the control unit 190 and outputs a signal representing the intensity of the reflected wave to the control unit 190.
 制御部190は、駆動機構171、172、173、174の駆動制御(移動制御)と、高周波発生器180の駆動制御とを行う。制御部190は、加熱対象物10の加熱処理を行う前に、高周波発生器180に所定の低出力でマイクロ波を出力させて、パワーメータ181によって測定される反射波の強度が所定値以下になるように、駆動機構171、172、173、174の駆動制御(移動制御)を行い、載置台130、プレート140、アンテナ150、反射板160の各位置を最適な位置に設定する。 The control unit 190 performs drive control (movement control) of the drive mechanisms 171, 172, 173, and 174 and drive control of the high-frequency generator 180. The control unit 190 causes the high-frequency generator 180 to output a microwave at a predetermined low output before performing the heat treatment of the heating object 10, and the intensity of the reflected wave measured by the power meter 181 is less than or equal to a predetermined value. Thus, drive control (movement control) of the drive mechanisms 171, 172, 173, and 174 is performed, and the positions of the mounting table 130, the plate 140, the antenna 150, and the reflection plate 160 are set to optimum positions.
 そして、反射波の強度が所定値以下になるように載置台130、プレート140、アンテナ150、反射板160の各位置を設定した状態で、加熱対象物10の加熱処理を行うべく加熱処理用の出力で高周波発生器180を駆動する。 And in the state which set each position of the mounting base 130, the plate 140, the antenna 150, and the reflecting plate 160 so that the intensity | strength of a reflected wave may become below a predetermined value, it is for heat processing to perform the heat processing of the heating target object 10. The high frequency generator 180 is driven by the output.
 なお、制御部190は、蓋111が閉じられている場合にのみ高周波発生器180を駆動するため、蓋111の開閉状態を検出するセンサを設け、センサによって蓋111が閉じられていることが検出される場合にのみ、高周波発生器180を駆動するようにすればよい。 In addition, since the control part 190 drives the high frequency generator 180 only when the lid | cover 111 is closed, the sensor which detects the opening / closing state of the lid | cover 111 is provided, and it detects that the lid | cover 111 is closed by the sensor. Only in such a case, the high frequency generator 180 may be driven.
 図2は、アンテナ150の位置と加熱対象物10の位置を変更した場合におけるマイクロ波の反射波の強度を示す特性図である。図2において、横軸は周波数を示し、縦軸は反射波の強度をS11パラメータ(dB)で示す。 FIG. 2 is a characteristic diagram showing the intensity of the reflected wave of the microwave when the position of the antenna 150 and the position of the heating object 10 are changed. In FIG. 2, the horizontal axis indicates the frequency, and the vertical axis indicates the intensity of the reflected wave by the S11 parameter (dB).
 図2(A)は、載置台130の上に加熱対象物10を置き、載置台130、プレート140、及び反射板160の位置を固定した状態で、アンテナ150と載置台130との間の距離d1を変化させた場合のS11パラメータの周波数特性のシミュレーション結果を示す。 FIG. 2A shows the distance between the antenna 150 and the mounting table 130 in a state where the heating object 10 is placed on the mounting table 130 and the positions of the mounting table 130, the plate 140, and the reflection plate 160 are fixed. The simulation result of the frequency characteristic of S11 parameter at the time of changing d1 is shown.
 図2(A)に示すように、距離d1を3.0mmから10mmまで1.4mm間隔で振ったところ、距離d1が短くなるに連れて、反射波の強度が低くなる周波数が、2.4GHzから2.5GHzの帯域(ISM帯)の前後で低くなる傾向があった。反射波の強度が低い帯域では、S11パラメータの値が約-10dB以下である。このような帯域では、反射が少なくインピーダンスの整合が取れている。このことから、アンテナ150を載置台130に近づけると(上に移動させると)反射波の強度が低い帯域が低下することを確認できた。 As shown in FIG. 2A, when the distance d1 is swung from 3.0 mm to 10 mm at intervals of 1.4 mm, the frequency at which the intensity of the reflected wave decreases as the distance d1 decreases is 2.4 GHz. Tended to be lower before and after the 2.5 GHz band (ISM band). In the band where the intensity of the reflected wave is low, the value of the S11 parameter is about −10 dB or less. In such a band, there is little reflection and impedance matching is achieved. From this, it was confirmed that when the antenna 150 was brought close to the mounting table 130 (moved upward), the band where the intensity of the reflected wave was low decreased.
 また、図2(B)は、載置台130、プレート140、アンテナ150、及び反射板160の位置を固定した状態で、載置台130と加熱対象物10の間の距離d2を変化させた場合のS11パラメータの周波数特性のシミュレーション結果を示す。距離d2を変化させることは、載置台130と加熱対象物10との間の隙間の間隔を変化させることであ
る。
FIG. 2B shows a case where the distance d2 between the mounting table 130 and the heating object 10 is changed with the positions of the mounting table 130, the plate 140, the antenna 150, and the reflection plate 160 fixed. The simulation result of the frequency characteristic of S11 parameter is shown. Changing the distance d2 is changing the gap of the gap between the mounting table 130 and the heating target 10.
 図2(B)に示すように、距離d2を0mm、3mm、9mmの3点に振ったところ、距離d2が短くなるに連れて、反射波の強度が低くなる周波数が、2.4GHzから2.5GHzの帯域の前後で高くなる傾向があった。このことから、加熱対象物10の位置の変化によって反射波の強度が低い帯域が変化することを確認できた。 As shown in FIG. 2 (B), when the distance d2 is swung to three points of 0 mm, 3 mm, and 9 mm, the frequency at which the intensity of the reflected wave decreases as the distance d2 becomes shorter is from 2.4 GHz to 2 mm. There was a tendency to be high before and after the band of 5 GHz. From this, it has confirmed that the zone | band where the intensity | strength of a reflected wave was low changed with the change of the position of the heating target object 10. FIG.
 ここでは、アンテナ150の位置と、載置台130に対する加熱対象物10の位置とを変化させた場合のシミュレーション結果について説明したが、載置台130とアンテナ150を固定してプレート140を上に移動すると、反射波の強度が低い帯域が高くなる傾向が確認できた。また、プレート140の位置を固定して、アンテナ150をプレート140に近づけると反射波の強度が低い帯域が低下し、アンテナ150をプレート140から遠ざけると反射波の強度が低い帯域が高くなる傾向が確認できた。 Here, although the simulation result when changing the position of the antenna 150 and the position of the heating target 10 with respect to the mounting table 130 has been described, when the mounting table 130 and the antenna 150 are fixed, the plate 140 is moved upward. It was confirmed that the band where the intensity of the reflected wave is low becomes higher. In addition, when the position of the plate 140 is fixed and the antenna 150 is brought closer to the plate 140, the band where the intensity of the reflected wave is low decreases, and when the antenna 150 is moved away from the plate 140, the band where the intensity of the reflected wave is low tends to increase. It could be confirmed.
 このような結果から、載置台130、プレート140、及び反射板160の位置を移動させた場合にも、反射波の強度が低い帯域が変化するものと考えられる。このため、マイクロ波加熱装置100では、載置台130、プレート140、アンテナ150、反射板160の位置を制御することにより、加熱対象物10へのエネルギの供給効率を改善する。 From such a result, it is considered that even when the positions of the mounting table 130, the plate 140, and the reflecting plate 160 are moved, the band where the intensity of the reflected wave is low changes. For this reason, in the microwave heating apparatus 100, the efficiency of energy supply to the heating object 10 is improved by controlling the positions of the mounting table 130, the plate 140, the antenna 150, and the reflector 160.
 図3は、実施の形態1のマイクロ波加熱装置100の制御部190が実行する処理を表すフローチャートを示す図である。制御部190は、マイクロ波加熱装置100の加熱処理をスタートさせるスイッチが操作されると、図3に示す処理を所定の制御周期で繰り返し実行する。 FIG. 3 is a flowchart illustrating processing executed by the control unit 190 of the microwave heating apparatus 100 according to the first embodiment. When the switch for starting the heating process of the microwave heating apparatus 100 is operated, the control unit 190 repeatedly executes the process shown in FIG. 3 at a predetermined control cycle.
 制御部190は、高周波発生器180に所定の低出力でマイクロ波を出力させる(ステップS1)。所定の低出力は、例えば、加熱処理時の出力の1/10程度である。 The control unit 190 causes the high frequency generator 180 to output a microwave at a predetermined low output (step S1). The predetermined low output is, for example, about 1/10 of the output during the heat treatment.
 制御部190は、パワーメータ181によって測定される反射波の強度を取得する(ステップS2)。 The control unit 190 acquires the intensity of the reflected wave measured by the power meter 181 (step S2).
 制御部190は、反射波の強度がアンテナ150から出力するマイクロ波の強度の50%以上であるかどうかを判定する(ステップS3)。 The control unit 190 determines whether or not the intensity of the reflected wave is 50% or more of the intensity of the microwave output from the antenna 150 (step S3).
 制御部190は、反射波の強度が50%以上である(S3:YES)と判定すると、高周波発生器180にマイクロ波の出力を停止させる(ステップS4)。ステップS4で高周波発生器180を停止させるのは、反射波の強度が50%以上と比較的大きい状態で所定の低出力でマイクロ波を出力しながら、後のステップS5で載置台130、プレート140、アンテナ150、又は反射板160の位置を変更することを避けるためである。 If the control unit 190 determines that the intensity of the reflected wave is 50% or more (S3: YES), the control unit 190 causes the high-frequency generator 180 to stop outputting the microwave (step S4). The high-frequency generator 180 is stopped in step S4 because the microwave is output at a predetermined low output in a state where the intensity of the reflected wave is relatively high, ie, 50% or more, while the mounting table 130 and the plate 140 are output in a later step S5. This is to avoid changing the position of the antenna 150 or the reflector 160.
 制御部190は、駆動機構171、172、173、又は174の駆動制御(移動制御)を行い、載置台130、プレート140、アンテナ150、又は反射板160の各位置を変更する(ステップS5)。ステップS5の処理が終わると、フローはステップS1にリターンする。 The control unit 190 performs drive control (movement control) of the drive mechanisms 171, 172, 173, or 174, and changes each position of the mounting table 130, the plate 140, the antenna 150, or the reflection plate 160 (step S5). When the process of step S5 ends, the flow returns to step S1.
 ここで、制御部190は、まず駆動機構172のみを駆動してプレート140の位置のみを移動する。プレート140の位置を移動する際には、移動する方向(上方向又は下方向)と移動距離とを予め決めておけばよい。なお、載置台130、プレート140、アンテナ150、及び反射板160は、図3に示す処理の開始前は、予め設定された初期位置に置かれる。 Here, the control unit 190 first drives only the drive mechanism 172 to move only the position of the plate 140. When moving the position of the plate 140, the moving direction (upward or downward) and the moving distance may be determined in advance. The mounting table 130, the plate 140, the antenna 150, and the reflecting plate 160 are placed at a preset initial position before the start of the process shown in FIG.
 また、制御部190は、ステップS3において、反射波の強度が50%以上ではない(S3:NO)と判定すると、反射波の強度がアンテナ150から出力するマイクロ波の強度の10%以上であるかどうかを判定する(ステップS6)。 If the control unit 190 determines in step S3 that the intensity of the reflected wave is not 50% or more (S3: NO), the intensity of the reflected wave is 10% or more of the intensity of the microwave output from the antenna 150. Whether or not (step S6).
 制御部190は、反射波の強度が10%以上である(S6:YES)と判定すると、フローをステップS5に進行させる。この結果、制御部190は、ステップS5において、所定の低出力でマイクロ波がアンテナ150から出力されている状態で、駆動機構171、172、173、又は174の駆動制御(移動制御)を行い、載置台130、プレート140、アンテナ150、又は反射板160の各位置を変更する。 If the control part 190 determines with the intensity | strength of a reflected wave being 10% or more (S6: YES), a flow will be advanced to step S5. As a result, in step S5, the control unit 190 performs drive control (movement control) of the drive mechanisms 171, 172, 173, or 174 in a state where the microwave is output from the antenna 150 at a predetermined low output, Each position of the mounting table 130, the plate 140, the antenna 150, or the reflection plate 160 is changed.
 反射波の強度が50%未満で10%以上であれば、反射波の強度が比較的低い状態であるため、所定の低出力でマイクロ波がアンテナ150から出力されている状態で、載置台130、プレート140、アンテナ150、又は反射板160の位置を変更することとしたものである。 If the intensity of the reflected wave is less than 50% and 10% or more, the intensity of the reflected wave is relatively low. Therefore, the mounting table 130 is in a state where the microwave is output from the antenna 150 at a predetermined low output. The position of the plate 140, the antenna 150, or the reflection plate 160 is changed.
 ここで、制御部190は、フローがステップS6を経てステップS5に進行した場合には、まず駆動機構172のみを駆動してプレート140の位置のみを移動させて、反射波の強度が最小になる位置にプレート140を移動させればよい。 Here, when the flow proceeds to step S5 through step S6, the control unit 190 first drives only the driving mechanism 172 to move only the position of the plate 140, thereby minimizing the intensity of the reflected wave. The plate 140 may be moved to the position.
 また、フローがステップS6を経てステップS5に進行する前に、ステップS1からS5の処理を繰り返している間に反射波の強度が最小になる位置にプレート140を既に移動させている場合には、駆動機構171、173、又は174の駆動制御(移動制御)を行い、載置台130、アンテナ150、又は反射板160の各位置を変更すればよい。 Also, if the plate 140 has already been moved to a position where the intensity of the reflected wave is minimized while the processing of steps S1 to S5 is repeated before the flow proceeds to step S5 via step S6, Driving control (movement control) of the driving mechanisms 171, 173, or 174 may be performed to change the positions of the mounting table 130, the antenna 150, or the reflecting plate 160.
 この場合には、ステップS1、S2、S3、S6、及びS5のループを繰り返しながら、ステップS5において駆動機構171、173、及び174のうちのいずれか1つを移動させて、反射波の強度が最小になる位置を探ることになる。このため、駆動機構171、173、及び174を1つずつ移動させる順番と、移動の方向及び移動距離を予め決定しておけばよい。 In this case, while repeating the loop of steps S1, S2, S3, S6, and S5, in step S5, any one of the drive mechanisms 171, 173, and 174 is moved so that the intensity of the reflected wave is increased. We will look for the position where it becomes the minimum. For this reason, the order in which the drive mechanisms 171, 173, and 174 are moved one by one, the direction of movement, and the movement distance may be determined in advance.
 制御部190は、反射波の強度が10%以上ではない(S6:NO)と判定すると、加熱用の出力で、利用者の操作によって設定された時間にわたって高周波発生器180にマイクロ波を出力させる(ステップS7)。これにより、加熱対象物10の加熱処理が行われる。 If the control unit 190 determines that the intensity of the reflected wave is not 10% or more (S6: NO), the control unit 190 causes the high-frequency generator 180 to output a microwave over the time set by the user's operation with the output for heating. (Step S7). Thereby, the heat processing of the heating target object 10 are performed.
 上述のように、図3に示す一連の処理が行われる。なお、ステップS3、S6の数値は一例であり、マイクロ波加熱装置100のサイズ、又は、マイクロ波の出力等に応じて、適宜最適な値に設定すればよい。 As described above, a series of processing shown in FIG. 3 is performed. Note that the numerical values in steps S3 and S6 are merely examples, and may be appropriately set to optimum values according to the size of the microwave heating apparatus 100, the output of the microwave, or the like.
 以上のように、マイクロ波加熱装置100は、加熱対象物10の加熱処理を行う前に、駆動機構171、173、又は174の駆動制御(移動制御)を行い、載置台130、プレート140、アンテナ150、又は反射板160の位置を変更する。 As described above, the microwave heating apparatus 100 performs drive control (movement control) of the drive mechanisms 171, 173, or 174 before performing the heat treatment of the heating object 10, and places the mounting table 130, the plate 140, and the antenna. 150 or the position of the reflector 160 is changed.
 載置台130、プレート140、アンテナ150、又は反射板160の位置を変更すると、アンテナ150から見たインピーダンスがより整合された状態になり、マイクロ波の反射波の強度を低減することができる。 When the position of the mounting table 130, the plate 140, the antenna 150, or the reflector 160 is changed, the impedance viewed from the antenna 150 becomes more matched, and the intensity of the reflected wave of the microwave can be reduced.
 従って、加熱対象物10へのエネルギの供給効率を改善したマイクロ波加熱装置100、及び、マイクロ波加熱装置100の制御方法を提供することができる。 Therefore, it is possible to provide a microwave heating apparatus 100 with improved energy supply efficiency to the heating object 10 and a method for controlling the microwave heating apparatus 100.
 特に、プレート140の位置を移動させることによって、加熱対象物10へのエネルギの供給効率を大幅に改善することができる。プレート140は、アンテナ150と載置台130との間に配置されており、アンテナ150から放射されるマイクロ波は、プレート140を透過して載置台130に置かれる加熱対象物10に放射される。 Particularly, by moving the position of the plate 140, the energy supply efficiency to the heating object 10 can be greatly improved. The plate 140 is disposed between the antenna 150 and the mounting table 130, and the microwave radiated from the antenna 150 is transmitted through the plate 140 and radiated to the heating object 10 placed on the mounting table 130.
 プレート140は、載置台130よりも大きい誘電率を有するため、位置を移動させた場合にアンテナ150から見たインピーダンスが大きく変化する。このようなプレート140は、マイクロ波の波長及び位相等を調整する電波レンズとしての効果を有する。 Since the plate 140 has a dielectric constant larger than that of the mounting table 130, the impedance viewed from the antenna 150 changes greatly when the position is moved. Such a plate 140 has an effect as a radio wave lens for adjusting the wavelength and phase of the microwave.
 従って、プレート140の位置を移動させてマイクロ波の反射波の強度を低減することによって、加熱対象物へのエネルギの供給効率を改善したマイクロ波加熱装置100、及び、マイクロ波加熱装置100の制御方法を提供することができる。また、プレート140に加えて、載置台130、アンテナ150、又は反射板160の位置を変更すれば、マイクロ波の反射波の強度をさらに低減することができる。 Therefore, by moving the position of the plate 140 to reduce the intensity of the reflected wave of the microwave, the microwave heating device 100 that improves the efficiency of energy supply to the object to be heated, and the control of the microwave heating device 100 A method can be provided. Further, if the position of the mounting table 130, the antenna 150, or the reflection plate 160 is changed in addition to the plate 140, the intensity of the reflected wave of the microwave can be further reduced.
 以上のように、プレート140の位置を変更することにより、又は、プレート140に加えて、載置台130、アンテナ150、又は反射板160の位置を変更することにより、加熱対象物10の誘電率等に応じて、エネルギの供給効率を最適化した状態で、加熱処理を行うことができる。 As described above, by changing the position of the plate 140, or by changing the position of the mounting table 130, the antenna 150, or the reflector 160 in addition to the plate 140, the dielectric constant of the heating object 10, etc. Accordingly, the heat treatment can be performed with the energy supply efficiency optimized.
 <実施の形態2>
 図4は、実施の形態2のマイクロ波加熱装置200を示す図である。図4には、実施の形態1の図1と同様に、マイクロ波加熱装置200の内部構成を透過的に示し、XYZ座標系を定義する。
<Embodiment 2>
FIG. 4 is a diagram illustrating the microwave heating apparatus 200 according to the second embodiment. In FIG. 4, similarly to FIG. 1 of the first embodiment, the internal configuration of the microwave heating apparatus 200 is transparently shown, and an XYZ coordinate system is defined.
 マイクロ波加熱装置200は、実施の形態1のマイクロ波加熱装置100に温度センサ201を追加し、制御部190を制御部290に置き換えた構成を有する。このため、同様の構成要素には同一符号を付し、その説明を省略する。 The microwave heating apparatus 200 has a configuration in which a temperature sensor 201 is added to the microwave heating apparatus 100 of Embodiment 1 and the control unit 190 is replaced with a control unit 290. For this reason, the same code | symbol is attached | subjected to the same component and the description is abbreviate | omitted.
 温度センサ201は、蓋111の下面に設けられており、加熱対象物10の温度を測定する。マイクロ波によって加熱対象物10が加熱されているかどうかを監視するためである。温度センサ201は、例えば、熱電対又は測温抵抗体等を含むセンサを用いればよい。温度センサ201は、制御部290に接続されており、制御部290には温度を表す信号が入力される。温度センサ201は、第1温度センサの一例である。 The temperature sensor 201 is provided on the lower surface of the lid 111 and measures the temperature of the heating object 10. This is for monitoring whether the heating object 10 is heated by the microwave. As the temperature sensor 201, for example, a sensor including a thermocouple or a resistance temperature detector may be used. The temperature sensor 201 is connected to the control unit 290, and a signal indicating temperature is input to the control unit 290. The temperature sensor 201 is an example of a first temperature sensor.
 制御部290は、駆動機構171、172、173、174の駆動制御(移動制御)と、高周波発生器180の駆動制御とを行う。制御部290は、加熱処理を行う前に、マイクロ波の反射波の強度が所定値以下になるように、かつ、温度センサ201によって検出される温度の変化分が所定値以上になるように、駆動機構171、172、173、174の駆動制御(移動制御)を行い、載置台130、プレート140、アンテナ150、反射板160の各位置を最適な位置に設定する。 The control unit 290 performs drive control (movement control) of the drive mechanisms 171, 172, 173, and 174 and drive control of the high-frequency generator 180. Before performing the heat treatment, the control unit 290 is configured so that the intensity of the reflected wave of the microwave is equal to or lower than a predetermined value and the change in temperature detected by the temperature sensor 201 is equal to or higher than the predetermined value. Drive control (movement control) of the drive mechanisms 171, 172, 173, 174 is performed, and the positions of the mounting table 130, the plate 140, the antenna 150, and the reflection plate 160 are set to optimum positions.
 そして、反射波の強度が所定値以下になるように、かつ、温度センサ201によって検出される温度の変化分が所定値以上になるように載置台130、プレート140、アンテナ150、反射板160の各位置を設定した状態で、加熱対象物10を加熱すべく加熱処理用の出力で高周波発生器180を駆動する。 The mounting table 130, the plate 140, the antenna 150, and the reflecting plate 160 are adjusted so that the intensity of the reflected wave is equal to or lower than a predetermined value and the change in temperature detected by the temperature sensor 201 is equal to or higher than the predetermined value. In a state where each position is set, the high frequency generator 180 is driven with an output for heat treatment to heat the heating object 10.
 図5は、実施の形態2のマイクロ波加熱装置200の制御部290が実行する処理を表すフローチャートを示す図である。図5に示すフローチャートは、図3に示すフローチャートにステップS26A、S26Bの処理を追加したものである。このため、ここでは相
違点を中心に説明する。ステップS26Aの処理は、ステップS6の後に行われる。
FIG. 5 is a flowchart illustrating a process executed by the control unit 290 of the microwave heating apparatus 200 according to the second embodiment. The flowchart shown in FIG. 5 is obtained by adding steps S26A and S26B to the flowchart shown in FIG. For this reason, it demonstrates centering around difference here. The process of step S26A is performed after step S6.
 制御部290は、ステップS6において反射波の強度が10%以上ではない(S6:NO)と判定すると、温度センサ201によって測定される温度のデータを取得する(ステップS26A)。 If the control unit 290 determines in step S6 that the intensity of the reflected wave is not 10% or more (S6: NO), the control unit 290 acquires temperature data measured by the temperature sensor 201 (step S26A).
 次いで、制御部290は、ステップS26Aで取得した温度のデータを用いて、温度の変化分が所定温度以下であるかどうかを判定する(ステップS26B)。 Next, the control unit 290 determines whether or not the change in temperature is equal to or lower than a predetermined temperature using the temperature data acquired in step S26A (step S26B).
 温度の変化分は、所定の制御周期で図5に示す処理を繰り返し実行する際に、前回のステップS26Aの処理で取得した温度と、今回(現在の制御周期)のステップS26Aの処理で取得した温度との差分である。 When the processing shown in FIG. 5 is repeatedly executed in a predetermined control cycle, the temperature change is acquired by the temperature acquired in the previous step S26A and the current (current control cycle) step S26A. It is the difference from temperature.
 ステップS26Bの判定処理は、マイクロ波の反射波の強度が10%未満になったときに、所定の低出力のマイクロ波を加熱対象物10に照射した状態で、反射波の強度が低くなっていても加熱対象物10を効率良く加熱できていないような状態であるかどうかを判定するために行う処理である。 In the determination processing in step S26B, when the intensity of the reflected wave of the microwave is less than 10%, the intensity of the reflected wave is low in a state where the heating object 10 is irradiated with a predetermined low output microwave. However, it is the process performed in order to determine whether it is the state which cannot heat the heating target object 10 efficiently.
 制御部290は、温度の変化分が所定温度以下である(S26B:YES)と判定すると、フローをステップS4に進行させる。反射波の強度が低くなっていても加熱対象物10を効率良く加熱できていないような状態は、加熱対象物10へのエネルギの供給効率が改善されていない状態であるため、マイクロ波の出力を停止して、ステップS5の位置制御をやり直すためである。 When the control unit 290 determines that the temperature change is equal to or lower than the predetermined temperature (S26B: YES), the control unit 290 advances the flow to step S4. Even if the intensity of the reflected wave is low, the state in which the object to be heated 10 is not efficiently heated is a state in which the efficiency of energy supply to the object to be heated 10 is not improved, and therefore the output of the microwave Is stopped, and the position control in step S5 is performed again.
 制御部290は、温度の変化分が所定温度以下ではない(S26B:NO)と判定すると、フローをステップS7に進行させる。反射波の強度が低く、かつ、加熱対象物10を効率良く加熱できる状態になっているため、加熱処理用の出力に切り替えて加熱対象物10の加熱処理を行うこととしたものである。 If the controller 290 determines that the change in temperature is not less than or equal to the predetermined temperature (S26B: NO), the flow proceeds to step S7. Since the intensity of the reflected wave is low and the heating object 10 can be efficiently heated, the heating object 10 is heated by switching to the output for the heating process.
 以上のように、マイクロ波加熱装置200は、マイクロ波の反射波の強度を低減し、かつ、加熱対象物10へのエネルギの供給効率が良好な状態であることを確認してから加熱処理を行うことができる。 As described above, the microwave heating apparatus 200 reduces the intensity of the reflected wave of the microwave and confirms that the energy supply efficiency to the heating object 10 is in a good state before performing the heat treatment. It can be carried out.
 従って、加熱対象物10へのエネルギの供給効率を改善したマイクロ波加熱装置200、及び、マイクロ波加熱装置200の制御方法を提供することができる。 Therefore, it is possible to provide a microwave heating apparatus 200 that improves the efficiency of energy supply to the heating object 10 and a method for controlling the microwave heating apparatus 200.
 なお、ここでは、温度センサ201で加熱対象物10の温度を検出し、加熱対象物10へのエネルギの供給効率が良好な状態であることを確認する形態について説明した。 In addition, the form which detects the temperature of the heating target object 10 with the temperature sensor 201, and confirms that the supply efficiency of the energy to the heating target object 10 is a favorable state was demonstrated here.
 しかしながら、温度センサ201の位置及び/又は構成を変更して、又は、温度センサ201とは別の温度センサを用いて、加熱室、載置台130、又はアンテナ150の温度を測定し、加熱室、載置台130、又はアンテナ150の温度の変化分が所定温度以上の場合には、ステップS5の位置制御をやり直すようにしてもよい。本来加熱したい加熱対象物10以外の部分である加熱室、載置台130、又はアンテナ150が加熱されているような状態は、加熱対象物10へのエネルギの供給効率が良好な状態ではないからである。なお、このように加熱室、載置台130、又はアンテナ150の温度を測定する温度センサは、第2温度センサの一例である。 However, by changing the position and / or configuration of the temperature sensor 201 or using a temperature sensor different from the temperature sensor 201, the temperature of the heating chamber, the mounting table 130, or the antenna 150 is measured, When the change in temperature of the mounting table 130 or the antenna 150 is equal to or higher than the predetermined temperature, the position control in step S5 may be performed again. The state in which the heating chamber, the mounting table 130, or the antenna 150, which is a part other than the heating object 10 that is originally desired to be heated, is heated is not a state in which the energy supply efficiency to the heating object 10 is good. is there. Note that the temperature sensor that measures the temperature of the heating chamber, the mounting table 130, or the antenna 150 in this way is an example of a second temperature sensor.
 以上、本発明の例示的な実施の形態のマイクロ波加熱装置、及び、マイクロ波加熱装置の制御方法について説明したが、本発明は、具体的に開示された実施の形態に限定される
ものではなく、請求の範囲から逸脱することなく、種々の変形や変更が可能である。以上の実施の形態に関し、さらに以下の付記を開示する。
(付記1)
 加熱室と、
 前記加熱室内に配置され、加熱対象物が載置される載置台と、
 前記加熱室内で前記載置台の下に配置される誘電体製の板状部材と、
 前記加熱室内で前記板状部材の下に配置され、マイクロ波を放射するアンテナと、
 前記板状部材を上下に移動させる第1移動機構と、
 前記アンテナを介してマイクロ波の反射波の強度を測定する強度測定部と、
 前記強度測定部によって測定される強度に基づいて前記第1移動機構の移動制御を行い、前記強度が所定強度以下になる第1位置に前記板状部材を移動させる制御部と
 を含む、マイクロ波加熱装置。
(付記2)
 前記加熱対象物の温度を測定する第1温度測定部をさらに含み、
 前記制御部は、前記強度測定部によって測定される前記強度と、前記第1温度測定部によって測定される温度とに基づいて、前記強度が低くなり、かつ、前記加熱対象物の温度が上昇するように、前記第1移動機構の移動制御を行う、付記1記載のマイクロ波加熱装置。
(付記3)
 前記加熱室内に配置され、前記加熱室、前記載置台、又は前記アンテナの温度を測定する第2温度測定部をさらに含み、
 前記制御部は、前記第2温度測定部によって測定される温度に基づいて、前記加熱室、前記載置台、又は前記アンテナの温度が所定温度以下になるように、前記第1移動機構の移動制御を行う、付記1又は2記載のマイクロ波加熱装置。
(付記4)
 前記載置台又は前記アンテナを上下に移動させる第2移動機構をさらに含み、
 前記制御部は、前記第1移動機構に加えて、前記強度測定部によって測定される強度に基づいて前記第2移動機構の移動制御を行い、前記強度が前記所定強度以下になる第1位置と第2位置とに前記板状部材と前記載置台又は前記アンテナとをそれぞれ移動させる、付記1乃至3のいずれか一項記載のマイクロ波加熱装置。
(付記5)
 前記板状部材の誘電率は、前記載置台の誘電率よりも高い、付記1乃至4のいずれか一項記載のマイクロ波加熱装置。
(付記6)
 前記加熱室内で前記アンテナの下に配置され、マイクロ波を反射する反射部と、
 前記反射部を上下に移動させる第3移動機構と
 をさらに含み、
 前記制御部は、前記強度測定部によって測定される前記強度と、前記第1温度測定部によって測定される温度とに基づいて、前記強度が低くなり、かつ、前記加熱対象物の温度が上昇するように、前記第3移動機構の移動制御を行う、付記1乃至5のいずれか一項記載のマイクロ波加熱装置。
(付記7)
 加熱室と、
 前記加熱室内に配置され、加熱対象物が載置される載置台と、
 前記加熱室内で前記載置台の下に配置される誘電体製の板状部材と、
 前記加熱室内で前記板状部材の下に配置され、マイクロ波を放射するアンテナと
 前記板状部材を上下に移動させる第1移動機構と、
 前記アンテナを介してマイクロ波の反射波の強度を測定する強度測定部と
 を含むマイクロ波加熱装置の制御方法であって、
 前記強度測定部によって測定される強度に基づいて前記第1移動機構の移動制御を行い
、前記強度が所定強度以下になる第1位置に前記板状部材を移動させる、マイクロ波加熱装置の制御方法。
The microwave heating apparatus and the method for controlling the microwave heating apparatus according to the exemplary embodiments of the present invention have been described above, but the present invention is not limited to the specifically disclosed embodiments. Various modifications and changes can be made without departing from the scope of the claims. Regarding the above embodiment, the following additional notes are disclosed.
(Appendix 1)
A heating chamber;
A mounting table disposed in the heating chamber and on which a heating object is mounted;
A dielectric plate-like member disposed under the mounting table in the heating chamber;
An antenna disposed under the plate-like member in the heating chamber and radiating microwaves;
A first moving mechanism for moving the plate-like member up and down;
An intensity measuring unit that measures the intensity of the reflected wave of the microwave via the antenna;
A control unit that controls the movement of the first moving mechanism based on the intensity measured by the intensity measuring unit and moves the plate-like member to a first position where the intensity is equal to or less than a predetermined intensity. Heating device.
(Appendix 2)
A first temperature measuring unit for measuring the temperature of the heating object;
Based on the intensity measured by the intensity measurement unit and the temperature measured by the first temperature measurement unit, the control unit decreases the intensity and increases the temperature of the heating object. As described above, the microwave heating apparatus according to appendix 1, which performs movement control of the first movement mechanism.
(Appendix 3)
A second temperature measuring unit that is disposed in the heating chamber and measures the temperature of the heating chamber, the mounting table, or the antenna;
The controller controls the movement of the first moving mechanism so that the temperature of the heating chamber, the mounting table, or the antenna is equal to or lower than a predetermined temperature based on the temperature measured by the second temperature measuring unit. The microwave heating apparatus according to Supplementary Note 1 or 2, wherein:
(Appendix 4)
A second moving mechanism for moving the mounting table or the antenna up and down,
In addition to the first movement mechanism, the control unit performs movement control of the second movement mechanism based on the intensity measured by the intensity measurement unit, and a first position where the intensity is equal to or less than the predetermined intensity; The microwave heating device according to any one of appendices 1 to 3, wherein the plate member and the mounting table or the antenna are respectively moved to a second position.
(Appendix 5)
The microwave heating device according to any one of appendices 1 to 4, wherein a dielectric constant of the plate member is higher than a dielectric constant of the mounting table.
(Appendix 6)
A reflector that is disposed under the antenna in the heating chamber and reflects microwaves;
A third moving mechanism for moving the reflecting portion up and down;
Based on the intensity measured by the intensity measurement unit and the temperature measured by the first temperature measurement unit, the control unit decreases the intensity and increases the temperature of the heating object. As described above, the microwave heating apparatus according to any one of appendices 1 to 5, which performs movement control of the third movement mechanism.
(Appendix 7)
A heating chamber;
A mounting table disposed in the heating chamber and on which a heating object is mounted;
A dielectric plate-like member disposed under the mounting table in the heating chamber;
An antenna for radiating microwaves, and a first moving mechanism for moving the plate member up and down, disposed under the plate member in the heating chamber;
A method for controlling a microwave heating apparatus, comprising: an intensity measurement unit that measures the intensity of a reflected wave of microwaves via the antenna;
A method for controlling a microwave heating apparatus, wherein movement control of the first moving mechanism is performed based on an intensity measured by the intensity measuring unit, and the plate member is moved to a first position where the intensity is equal to or less than a predetermined intensity. .
 100 マイクロ波加熱装置
 110 筐体
 120 基部
 130 載置台
 140 プレート
 150 アンテナ
 160 反射板
 171、172、173、174 駆動機構
 180 高周波発生器
 181 パワーメータ
 190 制御部
 200 マイクロ波加熱装置
 201 温度センサ
 290 制御部
DESCRIPTION OF SYMBOLS 100 Microwave heating apparatus 110 Case 120 Base 130 Mounting stand 140 Plate 150 Antenna 160 Reflecting plate 171, 172, 173, 174 Drive mechanism 180 High frequency generator 181 Power meter 190 Control part 200 Microwave heating apparatus 201 Temperature sensor 290 Control part

Claims (7)

  1.  加熱室と、
     前記加熱室内に配置され、加熱対象物が載置される載置台と、
     前記加熱室内で前記載置台の下に配置される誘電体製の板状部材と、
     前記加熱室内で前記板状部材の下に配置され、マイクロ波を放射するアンテナと、
     前記板状部材を上下に移動させる第1移動機構と、
     前記アンテナを介してマイクロ波の反射波の強度を測定する強度測定部と、
     前記強度測定部によって測定される強度に基づいて前記第1移動機構の移動制御を行い、前記強度が所定強度以下になる第1位置に前記板状部材を移動させる制御部と
     を含む、マイクロ波加熱装置。
    A heating chamber;
    A mounting table disposed in the heating chamber and on which a heating object is mounted;
    A dielectric plate-like member disposed under the mounting table in the heating chamber;
    An antenna disposed under the plate-like member in the heating chamber and radiating microwaves;
    A first moving mechanism for moving the plate-like member up and down;
    An intensity measuring unit that measures the intensity of the reflected wave of the microwave via the antenna;
    A control unit that controls the movement of the first moving mechanism based on the intensity measured by the intensity measuring unit and moves the plate-like member to a first position where the intensity is equal to or less than a predetermined intensity. Heating device.
  2.  前記加熱対象物の温度を測定する第1温度測定部をさらに含み、
     前記制御部は、前記強度測定部によって測定される前記強度と、前記第1温度測定部によって測定される温度とに基づいて、前記強度が低くなり、かつ、前記加熱対象物の温度が上昇するように、前記第1移動機構の移動制御を行う、請求項1記載のマイクロ波加熱装置。
    A first temperature measuring unit for measuring the temperature of the heating object;
    Based on the intensity measured by the intensity measurement unit and the temperature measured by the first temperature measurement unit, the control unit decreases the intensity and increases the temperature of the heating object. The microwave heating apparatus according to claim 1, wherein the movement control of the first moving mechanism is performed.
  3.  前記加熱室内に配置され、前記加熱室、前記載置台、又は前記アンテナの温度を測定する第2温度測定部をさらに含み、
     前記制御部は、前記第2温度測定部によって測定される温度に基づいて、前記加熱室、前記載置台、又は前記アンテナの温度が所定温度以下になるように、前記第1移動機構の移動制御を行う、請求項1又は2記載のマイクロ波加熱装置。
    A second temperature measuring unit that is disposed in the heating chamber and measures the temperature of the heating chamber, the mounting table, or the antenna;
    The controller controls the movement of the first moving mechanism so that the temperature of the heating chamber, the mounting table, or the antenna is equal to or lower than a predetermined temperature based on the temperature measured by the second temperature measuring unit. The microwave heating apparatus of Claim 1 or 2 which performs.
  4.  前記載置台又は前記アンテナを上下に移動させる第2移動機構をさらに含み、
     前記制御部は、前記第1移動機構に加えて、前記強度測定部によって測定される強度に基づいて前記第2移動機構の移動制御を行い、前記強度が前記所定強度以下になる第1位置と第2位置とに前記板状部材と前記載置台又は前記アンテナとをそれぞれ移動させる、請求項1乃至3のいずれか一項記載のマイクロ波加熱装置。
    A second moving mechanism for moving the mounting table or the antenna up and down,
    In addition to the first movement mechanism, the control unit performs movement control of the second movement mechanism based on the intensity measured by the intensity measurement unit, and a first position where the intensity is equal to or less than the predetermined intensity; The microwave heating device according to any one of claims 1 to 3, wherein the plate member and the mounting table or the antenna are moved to a second position, respectively.
  5.  前記板状部材の誘電率は、前記載置台の誘電率よりも高い、請求項1乃至4のいずれか一項記載のマイクロ波加熱装置。 The microwave heating device according to any one of claims 1 to 4, wherein a dielectric constant of the plate member is higher than a dielectric constant of the mounting table.
  6.  前記加熱室内で前記アンテナの下に配置され、マイクロ波を反射する反射部と、
     前記反射部を上下に移動させる第3移動機構と
     をさらに含み、
     前記制御部は、前記強度測定部によって測定される前記強度と、前記第1温度測定部によって測定される温度とに基づいて、前記強度が低くなり、かつ、前記加熱対象物の温度が上昇するように、前記第3移動機構の移動制御を行う、請求項1乃至5のいずれか一項記載のマイクロ波加熱装置。
    A reflector that is disposed under the antenna in the heating chamber and reflects microwaves;
    A third moving mechanism for moving the reflecting portion up and down;
    Based on the intensity measured by the intensity measurement unit and the temperature measured by the first temperature measurement unit, the control unit decreases the intensity and increases the temperature of the heating object. As described above, the microwave heating apparatus according to claim 1, wherein the movement control of the third moving mechanism is performed.
  7.  加熱室と、
     前記加熱室内に配置され、加熱対象物が載置される載置台と、
     前記加熱室内で前記載置台の下に配置される誘電体製の板状部材と、
     前記加熱室内で前記板状部材の下に配置され、マイクロ波を放射するアンテナと
     前記板状部材を上下に移動させる第1移動機構と、
     前記アンテナを介してマイクロ波の反射波の強度を測定する強度測定部と
     を含むマイクロ波加熱装置の制御方法であって、
     前記強度測定部によって測定される強度に基づいて前記第1移動機構の移動制御を行い
    、前記強度が所定強度以下になる第1位置に前記板状部材を移動させる、マイクロ波加熱装置の制御方法。
    A heating chamber;
    A mounting table disposed in the heating chamber and on which a heating object is mounted;
    A dielectric plate-like member disposed under the mounting table in the heating chamber;
    An antenna for radiating microwaves, and a first moving mechanism for moving the plate member up and down, disposed under the plate member in the heating chamber;
    A method for controlling a microwave heating apparatus, comprising: an intensity measurement unit that measures the intensity of a reflected wave of microwaves via the antenna;
    A method for controlling a microwave heating apparatus, wherein movement control of the first moving mechanism is performed based on an intensity measured by the intensity measuring unit, and the plate member is moved to a first position where the intensity is equal to or less than a predetermined intensity. .
PCT/JP2018/001548 2017-03-13 2018-01-19 Microwave heating device and method for controlling microwave heating device WO2018168194A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017047699A JP6809307B2 (en) 2017-03-13 2017-03-13 Microwave heating device and control method of microwave heating device
JP2017-047699 2017-03-13

Publications (1)

Publication Number Publication Date
WO2018168194A1 true WO2018168194A1 (en) 2018-09-20

Family

ID=63523439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001548 WO2018168194A1 (en) 2017-03-13 2018-01-19 Microwave heating device and method for controlling microwave heating device

Country Status (2)

Country Link
JP (1) JP6809307B2 (en)
WO (1) WO2018168194A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102188673B1 (en) * 2019-08-19 2020-12-08 알에프에이치아이씨 주식회사 Microwave heating device with frequency conversion
JP2022162186A (en) * 2021-04-12 2022-10-24 パナソニックIpマネジメント株式会社 Radio frequency heating apparatus
WO2024009965A1 (en) * 2022-07-05 2024-01-11 株式会社ダイレクト・アール・エフ Heating cooker

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199274A (en) * 1996-01-23 1997-07-31 New Japan Radio Co Ltd Microwave thawing heating device
JPH11354267A (en) * 1998-06-10 1999-12-24 Matsushita Electric Ind Co Ltd High frequency heating apparatus
JP2015041561A (en) * 2013-08-23 2015-03-02 株式会社東芝 Microwave heating device
JP2016170971A (en) * 2015-03-12 2016-09-23 富士通株式会社 Microwave heating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199274A (en) * 1996-01-23 1997-07-31 New Japan Radio Co Ltd Microwave thawing heating device
JPH11354267A (en) * 1998-06-10 1999-12-24 Matsushita Electric Ind Co Ltd High frequency heating apparatus
JP2015041561A (en) * 2013-08-23 2015-03-02 株式会社東芝 Microwave heating device
JP2016170971A (en) * 2015-03-12 2016-09-23 富士通株式会社 Microwave heating device

Also Published As

Publication number Publication date
JP2018152245A (en) 2018-09-27
JP6809307B2 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
EP2499880B1 (en) Device and method for heating using rf energy
CN107249229B (en) Microwave processing apparatus, method, and machine-readable storage medium
CN108567111B (en) System for cooking at least one food product
WO2018168194A1 (en) Microwave heating device and method for controlling microwave heating device
EP2469975B1 (en) Control of microwave source efficiency in a microwave heating apparatus
CN105165118A (en) Preferentially directing electromagnetic energy towards colder regions of object being heated by microwave oven
TWI535337B (en) High frequency heating device
EP3437433A1 (en) Microwave heating device and method for operating a microwave heating device
CN106255246B (en) The electrical control method of electric power heating equipment
JP6348765B2 (en) Microwave heat treatment apparatus and microwave heat treatment method
JP2016213099A (en) Heating cooker
JP2018078034A (en) Heating cooker
EP3481149B1 (en) High-frequency heating device
JP2017053533A (en) Heating cooker
US20210321497A1 (en) Oven including plural antennas and method for controlling the same
KR20140012856A (en) Cooking apparatus using microwaves
JP5028821B2 (en) Microwave heating device
WO2013136187A2 (en) Rf activation of uv lamp for water disinfection
KR101885654B1 (en) Cooking apparatus using microwaves
JP2019003868A (en) Microwave heating device
JP2020202333A (en) Microwave supply mechanism, plasma processing apparatus, and plasma processing method
KR102134683B1 (en) Cooking apparatus using radio frequency heating
KR102134684B1 (en) Cooking apparatus using radio frequency heating
EP4326002A1 (en) High-frequency heating apparatus
KR20090087569A (en) Microwave range and control method of the same of

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18768681

Country of ref document: EP

Kind code of ref document: A1