WO2018168157A1 - 情報処理装置および情報処理方法 - Google Patents
情報処理装置および情報処理方法 Download PDFInfo
- Publication number
- WO2018168157A1 WO2018168157A1 PCT/JP2017/047029 JP2017047029W WO2018168157A1 WO 2018168157 A1 WO2018168157 A1 WO 2018168157A1 JP 2017047029 W JP2017047029 W JP 2017047029W WO 2018168157 A1 WO2018168157 A1 WO 2018168157A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- evaluation
- user
- learning
- acquisition device
- Prior art date
Links
- 230000010365 information processing Effects 0.000 title claims abstract description 53
- 238000003672 processing method Methods 0.000 title claims description 20
- 238000011156 evaluation Methods 0.000 claims abstract description 337
- 238000012545 processing Methods 0.000 claims abstract description 49
- 230000006399 behavior Effects 0.000 claims description 27
- 230000036772 blood pressure Effects 0.000 claims description 3
- 230000036760 body temperature Effects 0.000 claims description 3
- 230000035900 sweating Effects 0.000 claims description 3
- 238000004891 communication Methods 0.000 description 60
- 238000000034 method Methods 0.000 description 24
- 238000010586 diagram Methods 0.000 description 22
- 238000001514 detection method Methods 0.000 description 18
- 238000003384 imaging method Methods 0.000 description 18
- 230000008569 process Effects 0.000 description 9
- 230000006870 function Effects 0.000 description 8
- 238000012544 monitoring process Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000013475 authorization Methods 0.000 description 3
- 238000010411 cooking Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011089 mechanical engineering Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
- G06Q50/20—Education
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B5/00—Electrically-operated educational appliances
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B5/00—Electrically-operated educational appliances
- G09B5/08—Electrically-operated educational appliances providing for individual presentation of information to a plurality of student stations
- G09B5/12—Electrically-operated educational appliances providing for individual presentation of information to a plurality of student stations different stations being capable of presenting different information simultaneously
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B7/00—Electrically-operated teaching apparatus or devices working with questions and answers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/104—Peer-to-peer [P2P] networks
Definitions
- This disclosure relates to an information processing apparatus and an information processing method.
- the level of learning is evaluated based on a curriculum or syllabus established by a school or a public institution equivalent to the school.
- a learner hereinafter also referred to as a user
- Patent Document 1 discloses a system that evaluates the learning level of a learner (particularly, a healthcare worker) using a simulator.
- the medical worker's ability to learn is evaluated by responding to various situations presented by the simulator.
- a simulator is prepared according to the content managed by a predetermined organization. Therefore, in the technique disclosed in Patent Document 1, the learner's learning is evaluated based on the contents managed by a predetermined organization. However, the evaluation of the learner's learning based on the content managed by the predetermined institution may be insufficient in the evaluation of the learner's learning.
- the present disclosure proposes an information processing apparatus and an information processing method capable of appropriately evaluating a user's learning based on a wide range of information.
- evaluation information acquired by the acquisition device for evaluating the user's learning is acquired from the first P2P database, and the learning performed by the user is evaluated based on the evaluation information.
- An information processing apparatus including a processing unit is provided.
- the computer is caused to acquire evaluation information acquired by the acquisition device for evaluating the user's learning from the first P2P database, and the user performs based on the evaluation information.
- an information processing method for evaluating learning is provided.
- the user's learning is evaluated based on a wide range of information.
- FIG. 1 is a diagram schematically illustrating a block chain system according to an embodiment of the present disclosure.
- FIG. 2 is a diagram schematically illustrating a block chain system according to an embodiment of the present disclosure.
- FIG. 3 is a diagram schematically illustrating a block chain system according to an embodiment of the present disclosure.
- FIG. 4 is a diagram schematically illustrating a configuration of a learning evaluation system according to an embodiment of the present disclosure.
- FIG. 5 is a block diagram illustrating an example of a functional configuration of the evaluation device according to the embodiment of the present disclosure.
- FIG. 6 is a block diagram illustrating an example of a functional configuration of an acquisition device according to an embodiment of the present disclosure.
- FIG. 7 is a block diagram illustrating an example of a functional configuration of a server according to an embodiment of the present disclosure.
- FIG. 8 is a diagram illustrating an example of an information processing method according to an embodiment of the present disclosure.
- FIG. 9 is a diagram illustrating an example of an information processing method according to an embodiment of the present disclosure.
- FIG. 10 is a diagram illustrating an example of an evaluation table referred to in information processing according to the embodiment of the present disclosure.
- FIG. 11 is a diagram illustrating an example of information registered in the block chain in the embodiment of the present disclosure.
- FIG. 12 is a diagram illustrating an example of a hardware configuration of the evaluation device according to the embodiment of the present disclosure.
- a distributed peer-to-peer database distributed in a peer-to-peer network is used.
- the peer-to-peer network is sometimes called a peer-to-peer distributed file system.
- the peer-to-peer network may be referred to as “P2P network” and the peer-to-peer database may be referred to as “P2P database”.
- P2P network block chain data distributed in a P2P network may be used. Therefore, first, the block chain system will be described.
- the block chain data according to the present embodiment is data in which a plurality of blocks are included in a chain as if they were a chain.
- one or more target data can be stored as a transaction.
- block chain data used for exchanging virtual currency data such as Bitcoin
- the block chain data used for exchanging virtual currency data includes, for example, a hash of the previous block and a special value called a nonce.
- the hash of the immediately preceding block is used to determine whether the block is a “correct block” that is correctly connected to the immediately preceding block.
- the nonce is used to prevent spoofing in authentication using a hash, and tampering is prevented by using the nonce. Examples of the nonce include data indicating a character string, a numeric string, or a combination thereof.
- the data of each transaction is given an electronic signature using an encryption key or encrypted using an encryption key.
- the data of each transaction is made public and shared throughout the P2P network. Depending on the block chain system, the entire P2P network may not always hold the same record.
- FIG. 2 is a diagram illustrating a state in which target data is registered by the user A in the block chain system.
- User A digitally signs the target data to be registered in the block chain data using user A's private key. Then, the user A broadcasts a transaction including the target data with the electronic signature on the network. This ensures that the owner of the target data is the user A.
- FIG. 3 is a diagram showing how the target data is transferred from the user A to the user B in the block chain system.
- User A uses the user A's private key for the transaction and performs an electronic signature, and includes the public key of user B in the transaction. This indicates that the target data has been transferred from the user A to the user B. Further, the user B may acquire the public key of the user A from the user A and acquire the electronically signed or encrypted target data when the target data is traded.
- other target data different from the virtual currency is used for the blockchain data used for the exchange of existing virtual currency data, such as Bitcoin blockchain data.
- the other target data different from the virtual currency in the present embodiment is information on the learning unit certified by the user's learning and / or evaluation information used for certification of the learning unit.
- the blockchain data is used for managing information related to the learning unit authorized by user learning, which will be described later, and / or evaluation information used for authorization of the learning unit, so that the information is not tampered with. Is kept on the network. Further, by using the block chain data, a third party who wants to use the information included in the block chain can access the information included in the block chain by having a predetermined authority.
- FIG. 4 is a diagram showing a configuration of the learning evaluation system of the present embodiment.
- the learning evaluation system of this embodiment includes an evaluation device 100, an acquisition device 200, and a server 300.
- the evaluation device 100, the acquisition device 200, and the server 300 are an example of an information processing apparatus that performs information processing according to the present embodiment.
- the evaluation device 100 is a device used by a user for learning. For example, the user learns by reading a book (for example, a textbook) or watching a video using the evaluation device 100. Moreover, the evaluation device 100 evaluates the user's learning based on the evaluation information for evaluating the user's learning acquired by each device constituting the learning evaluation system.
- the evaluation device 100 may be a laptop personal computer, for example.
- the evaluation device 100 acquires information on content such as a book or video used for learning as evaluation information used for user learning.
- the evaluation information regarding the content acquired by the evaluation device 100 includes, for example, information such as the content type (text data, image data, audio data), the content creator, the content data amount, and information regarding the content file name.
- the evaluation device 100 acquires information on the user's behavior as evaluation information used for user learning based on information from the imaging unit or the microphone.
- the information regarding the user's action acquired from the imaging unit may include information regarding the user's line of sight.
- the information regarding the user's behavior acquired from the imaging unit may include information regarding the presence of the user.
- the information regarding the presence of the user may be information indicating that the user exists around the evaluation device 100 by performing face recognition, for example.
- the information regarding a user's utterance may be contained in the information regarding the user's action acquired from a microphone.
- the acquisition device 200 is a device that acquires evaluation information used for evaluation of user learning.
- the acquisition device 200 acquires evaluation information using a built-in sensor or the like.
- the evaluation information acquired by the acquisition device 200 includes, for example, information such as information related to user behavior, biological information of the user, and information related to the usage status of the acquisition device 200.
- the acquisition device 200 may be connected to the evaluation device 100 in a wired or wireless manner. For example, the acquisition device 200 may start acquiring evaluation information based on an instruction from the evaluation device 100.
- the evaluation device 100 may transmit an instruction to acquire evaluation information to the acquisition device 200 when learning of the user is started in the evaluation device 100.
- the acquisition device 200 is changed in position such as a fixed device that is unlikely to be changed such as a television and a refrigerator, and a position such as a mobile phone and a wearable device. Including a portable device.
- the acquisition device 200 mentioned above is an example, and is not restricted to these.
- the acquisition device 200 may include a ceiling light, a microwave oven, an audio device, and the like.
- the server 300 provides the evaluation device 100 with content used for user learning.
- the content used for learning may be text data, image data, or audio data.
- the content used for learning may be text data of textbooks, or video data or audio data of lectures.
- the server 300 acquires information about content used for learning as evaluation information.
- the information related to the content acquired by the server 300 includes information such as content type (text data, image data, audio data), content creator, content data amount, content file name, and the like.
- the server 300 is an example of the acquisition device 200 in that the evaluation information is acquired.
- the evaluation device 100 evaluates the learning performed by the user based on the evaluation information acquired from each device constituting the system. For example, based on the information regarding the user's behavior acquired from the evaluation device 100 and / or the acquisition device 200, evaluation for learning performed by the user is performed.
- the learning performed by the user is evaluated based on the evaluation information acquired from the server 300.
- the learning performed by the user is evaluated based on information on the data amount of content acquired from the server 300.
- the user by evaluating the learning performed by the user based on the information regarding the data amount of the content used for learning, for example, based on the amount of content insufficient for the recognition of the learning unit, the user It is possible to prevent learning units from being certified. Therefore, the learning unit is prevented from being certified when the user does not make sufficient efforts to acquire the learning unit.
- the learner's learning is evaluated based on a wide range of information acquired by the evaluation device 100, the acquisition device 200, and the server 300. Therefore, in the learning evaluation system of this embodiment, when the user makes sufficient efforts to acquire the learning unit, the learning unit is appropriately recognized.
- the learning evaluation system of the present embodiment by using an information processing apparatus having a general configuration such as the evaluation device 100, the acquisition device 200, and the server 300, the user's learning is evaluated with a simple configuration. .
- evaluation information acquired by each device constituting the system is registered in a block chain which is an example of a P2P database by each device. That is, the evaluation device 100, each acquisition device 200, and the server 300 register the acquired evaluation information in the first block chain indicated by “FBC” in FIG. And the evaluation device 100 performs evaluation with respect to a user's learning based on the evaluation information registered into each 1st block chain.
- the evaluation device 100 was used for information about the learning unit and / or for the recognition of the learning unit.
- the evaluation information is registered in the second block chain indicated by “SBC” in FIG.
- the blockchain data is used to manage the information related to the learning unit certified by the user's learning and / or the evaluation information used for the certification of the learning unit, so that the information is not tampered with. Retained on the network. Further, by using the block chain data, a third party who wants to use the information included in the block chain can access the information included in the block chain by having a predetermined authority.
- FIG. 5 is a diagram illustrating an example of the configuration of the evaluation device 100 according to the present embodiment.
- the evaluation device 100 includes, for example, a processing unit 102, a first communication unit 104, a second communication unit 106, an operation unit 108, a display unit 110, a storage unit 112, an imaging unit 114, and a microphone 116.
- the processing unit 102 includes a detection unit 118, an evaluation unit 120, and a registration unit 122.
- the processing unit 102 processes signals from each component of the evaluation device 100. For example, the processing unit 102 performs a decoding process on a signal transmitted from the first communication unit 104 or the second communication unit 106 and extracts data. The processing unit 102 may process the signal from the operation unit 108 and give an instruction to an application executed in the processing unit 102. The processing unit 102 may process data acquired from the imaging unit 114 or the microphone 116.
- the first communication unit 104 is a communication unit that communicates with an external device by wired communication or wireless communication.
- the communication system mentioned above is an example, and the communication system of the 1st communication part 104 is not restricted to this.
- the second communication unit 106 is a communication unit that communicates with an external device by short-range wireless communication.
- the second communication unit 106 may perform communication using a communication method (for example, Bluetooth (registered trademark)) defined by the IEEE 802 Committee.
- the second communication unit 106 may perform communication using a communication method such as Wi-Fi.
- the communication system mentioned above is an example, and the communication system of the 2nd communication part 106 is not restricted to this.
- the operation unit 108 receives a user operation on the evaluation device 100. For example, the user performs an operation on an application executed on the evaluation device 100 by operating the operation unit 108. In addition, the user sets various functions of the evaluation device 100 by operating the operation unit 108.
- the display unit 110 is used to display an image.
- the display unit 110 displays an image related to content processed by the evaluation device 100.
- the display unit 110 may display an image based on content acquired from the server 300.
- the display unit 110 may display an electronic book acquired from the server 300.
- the storage unit 112 stores programs such as applications and operating systems executed by the evaluation device 100.
- the imaging unit 114 is used to capture an image.
- the imaging unit 114 is used to photograph a user.
- the imaging unit 114 may image the eyes of the user.
- the processing unit 102 may detect the user by performing face recognition based on the image data from the imaging unit 114. Further, the processing unit 102 may detect the user's line of sight based on the image data from the imaging unit 114. Note that since the imaging unit 114 is used to acquire evaluation information, it may be understood as an example of the acquisition device 200.
- the microphone 116 acquires audio data from sounds around the evaluation device 100.
- the detection unit 118 detects the acquisition device 200 connected to the evaluation device 100. For example, the detection unit 118 detects the acquisition device 200 connected to the evaluation device 100 based on the identification information transmitted from the acquisition device 200. The detecting unit 118 detects that the user is learning (hereinafter also referred to as a learning event). For example, the detection unit 118 detects a learning event based on information from the evaluation device 100.
- the detection unit 118 detects a learning event based on whether text data, audio data, or moving image data is displayed or reproduced on the evaluation device 100. For example, the detection unit 118 learns text data, audio data, or video data based on identification information (for example, the creator of the file, the name of the file) by analyzing the file header of each data. It may be recognized that the content is related to. The detecting unit 118 analyzes the header of each file to determine whether the content of each file is related to a topic related to a predetermined learning (for example, a subject included in a school curriculum or syllabus). May be.
- a predetermined learning for example, a subject included in a school curriculum or syllabus
- the detection unit 118 may detect a learning event by analyzing text data, image data, or audio data acquired from the evaluation device 100. For example, the detection unit 118 converts the acquired text data into vector data using a vector space model. The detecting unit 118 converts the acquired voice data into text data, and converts the converted text data into vector data. And the detection part 118 may determine whether the learning currently performed by the user is related with the topic regarding predetermined learning using the acquired vector data. And when it determines with a user's learning being related with the topic regarding predetermined
- the topic may be a topic specified by a curriculum or syllabus of a predetermined institution such as a school, or may be a topic registered in advance by a user. Further, topics may be classified into a large classification and a small classification.
- the major classification of topics may include foreign languages, mathematics, chemistry, physics, geology, history, programming, cooking, engine control, mechanical engineering, meteorology, astronomy, animation, and the like.
- the topic minor classification may include, for example, passive, preposition usage, current completion, speaking, listening, etc., when the topic major classification is English.
- the evaluation unit 120 evaluates the user's learning based on the evaluation information acquired by the evaluation device 100, the acquisition device 200, and the server 300. For example, the evaluation unit 120 evaluates the user's learning based on an evaluation table described later with reference to FIG. Moreover, the evaluation part 120 recognizes the learning unit by user learning based on the evaluation result. Further, the evaluation unit 120 may calculate the reliability of the evaluation information based on a predetermined algorithm.
- the trustworthiness of the evaluation information means the trustworthiness of the evaluation information used for the evaluation of the user's learning.
- the reliability of the evaluation information may be calculated based on the type or characteristic of the evaluation information. Further, the reliability of the evaluation information may be calculated based on the type or characteristic of the acquisition device 200 that acquired the evaluation information. Further, the reliability of the evaluation information may be calculated based on the type or characteristic of the first block chain in which the evaluation information is registered.
- the registration unit 122 registers the evaluation information acquired by the evaluation device 100 in the first block chain. For example, the registration unit 122 registers evaluation information such as information about the content being learned and information about the user's behavior in the first block chain.
- the registration unit 122 registers information about the recognized learning unit in the second block chain.
- the information related to the learning unit includes, for example, information related to the topic, information related to the acquisition device 200, information related to the reliability of the evaluation information, information related to the user's understanding, information related to the learning time, learning Any one of the information regarding the method is included.
- the information related to the user's degree of understanding may be calculated based on the score of the test given by the server 300 for the recognition of the learning unit.
- the information on the learning method may include information indicating reading, taking a lecture, watching a video, talking, and the like.
- FIG. 6 is a diagram illustrating an example of the configuration of the acquisition device 200 of the present embodiment.
- the acquisition device 200 includes, for example, a processing unit 202, a communication unit 204, a sensor 206, and a position information acquisition unit 208.
- the processing unit 202 includes a registration unit 210.
- the processing unit 202 processes a signal from each component of the acquisition device 200.
- the processing unit 202 encodes information transmitted from the communication unit 204.
- the processing unit 202 processes information acquired from the sensor 206.
- the sensor 206 detects the movement of acquisition device 200.
- the sensor 206 includes an acceleration sensor, a gyro sensor, an atmospheric pressure sensor, a geomagnetic sensor, and the like.
- the acceleration sensor detects acceleration with respect to the acquisition device 200.
- the gyro sensor detects angular acceleration and angular velocity with respect to the acquisition device 200.
- the atmospheric pressure sensor detects the atmospheric pressure, and the altitude of the acquisition device 200 is calculated based on the detected atmospheric pressure.
- the geomagnetic sensor detects geomagnetism, and the orientation of the acquisition device 200 is calculated based on the detected geomagnetism.
- the position information acquisition unit 208 acquires the position of the acquisition device 200.
- the position information acquisition unit 208 may acquire the position of the acquisition device 200 using, for example, GNSS (Global Navigation Satellite System). Further, the position information acquisition unit 208 may acquire the position of the acquisition device 200 based on information from the base station of the cellular communication network.
- GNSS Global Navigation Satellite System
- the registration unit 210 registers evaluation information acquired by the acquisition device 200 in the first block chain.
- the registration unit 210 registers evaluation information such as information related to user behavior, user biometric information, and information regarding the usage status of the acquisition device 200 in the first block chain.
- FIG. 7 is a diagram illustrating an example of the configuration of the server 300 according to the present embodiment.
- the server 300 includes, for example, a processing unit 302, a communication unit 304, and a storage unit 306.
- the processing unit 302 has a registration unit 308.
- the processing unit 302 processes signals from each component of the server 300. For example, the processing unit 302 encodes information transmitted from the communication unit 304. The processing unit 302 reads data from the storage unit 306 and performs processing on the read data.
- the communication unit 304 is a communication unit that communicates with an external device by wired communication or wireless communication.
- the communication unit 304 may perform communication using a communication method compliant with Ethernet (registered trademark).
- the storage unit 306 stores various data used by the processing unit 302.
- the storage unit 306 stores content used for user learning.
- the content used for learning may be text data of a textbook, or video data or audio data of a lecture.
- the registration unit 308 registers the evaluation information acquired by the server 300 in the first block chain.
- the registration unit 308 registers evaluation information such as information about content used for user learning in the first block chain.
- FIG. 8 is a diagram illustrating an example of an information processing method executed in the learning evaluation system of the present embodiment.
- FIG. 8 shows an information processing method related to registration of evaluation information in the first block chain, which is performed by the evaluation device 100, the acquisition device 200, and the server 300.
- each device acquires evaluation information.
- the acquisition device 200 may start acquiring evaluation information based on an instruction from the evaluation device 100.
- the evaluation device 100 may acquire, for example, information on content displayed or reproduced on the evaluation device 100 or information on user behavior as evaluation information.
- the information related to the content may include, for example, information related to the content type, the content creator, the content data amount, the content file name, and the like.
- the information regarding a user's action may also contain the information regarding a user's eyes
- the acquisition device 200 acquires, as evaluation information, information on the user's behavior, the user's biological information, or information on the usage status of the acquisition device 200.
- the information related to the user behavior may include position information.
- the information regarding the user's behavior includes information indicating the user's exercise state (for example, information indicating that the user is walking, running, or the user is lying on a bed). Good.
- the user's exercise state may be determined by performing pattern matching using information acquired from the sensor 206.
- the user's biological information may include information on heart rate, blood pressure, sweating, body temperature, brain waves, and the like.
- the information on the usage status of the acquisition device 200 may include, for example, information indicating that the acquisition device 200 is turned on / off and that the door of the acquisition device 200 is opened. Further, the information on the usage status of the acquisition device 200 indicates that the acquisition device 200 is playing / displaying content different from the content used for user learning and that the acquisition device 200 is being operated. Information etc. may be included.
- the server 300 acquires information about content provided to the evaluation device 100 as evaluation information.
- the information related to the content may include content type, content creator, content data amount, content file name information, and the like.
- each device registers the acquired evaluation information in the first block chain of each device.
- the registration to the first block chain may be performed every predetermined time or in real time. By performing registration in the first block chain every predetermined time, the processing burden on each device is reduced. In addition, by performing registration in the first block chain in real time, the user's learning is evaluated in real time.
- a first block chain for each device is set.
- the first block chain may be one block chain. That is, each device may register the evaluation information in one first block chain for registering the evaluation information.
- FIG. 9 is a diagram illustrating an example of an information processing method executed in the learning evaluation system of the present embodiment.
- FIG. 9 shows an information processing method related to evaluation of user learning and information processing related to registration of information related to a learning unit in the second block chain, which is performed by the evaluation device 100.
- the detection unit 118 detects the acquisition device 200. For example, the detection unit 118 detects the acquisition device 200 connected to the evaluation device 100 based on the identification information transmitted from the acquisition device 200.
- the detection unit 118 detects a learning event.
- the detection unit 118 may detect the learning event by analyzing the header information of the content file used by the user for learning.
- the detection unit 118 may detect a learning event by analyzing content using a vector space model. At this time, the detection unit 118 may determine a related topic regarding the learning event.
- the topic may be a topic specified by a curriculum or syllabus of a predetermined institution such as a school, or may be a topic registered in advance by a user. Further, topics may be classified into a large classification and a small classification.
- the major classification of topics may include foreign languages, mathematics, chemistry, physics, geology, history, programming, cooking, engine control, mechanical engineering, meteorology, astronomy, animation, and the like.
- the topic minor classification may include, for example, passive, preposition usage, current completion, speaking, listening, etc., when the topic major classification is English.
- evaluation part 120 acquires evaluation information from each 1st block chain.
- the evaluation information acquired from each first block chain acquires, as evaluation information, information related to user behavior, user biometric information, information related to content, and information related to usage status of the acquisition device 200. To do.
- the evaluation unit 120 may acquire information other than the information described above as evaluation information.
- the evaluation unit 120 may acquire information on the type or characteristics of the acquisition device 200 as evaluation information.
- the type of the acquisition device 200 may include information indicating a portable device or a fixed device and information regarding the name of the acquisition device 200.
- a mobile device such as a mobile phone may be lent to others by the user
- the evaluation information acquired from the mobile device may not be appropriate for monitoring the user's behavior.
- fixed devices such as refrigerators are less likely to be lent to others and may be appropriate for monitoring user behavior.
- the level of whether or not it is appropriate for evaluating user learning may vary. Therefore, the information regarding the type of the acquisition device 200 is used as the evaluation information, so that the user's learning is more appropriately evaluated.
- the evaluation unit 120 may acquire information on the first block chain as evaluation information.
- the information regarding the first block chain may include information regarding the type or characteristic of the first block chain.
- the information regarding the type or characteristic of the first block chain may include the number of blocks included in the first block chain related to the learning event to be evaluated (for example, video viewing of a predetermined lecture).
- the first block chain may include a first block chain that is operated privately by the user and a first block chain that is operated by a business operator or the like. Since the first blockchain that the user operates privately may be tampered with by the user, the evaluation information obtained from the private first blockchain is not appropriate for monitoring the user's behavior there is a possibility. On the other hand, since the first blockchain operated by a business operator is unlikely to be tampered with by the user, the evaluation information acquired from the private first blockchain is appropriate for monitoring the user's behavior. There is a possibility. Thus, depending on the type or characteristic of the first block chain, the level of whether or not it is appropriate for evaluating user learning may vary. Therefore, the information regarding the first block chain is used as the evaluation information, so that the user's learning is more appropriately evaluated.
- the evaluation unit 120 evaluates the learning performed by the user based on the acquired evaluation information.
- the evaluation unit 120 may perform an evaluation on learning based on an evaluation table for performing the evaluation.
- FIG. 10 is a diagram illustrating an example of an evaluation table used by the evaluation unit 120 to perform evaluation on learning.
- an evaluation condition and a device condition corresponding to each learning method may be set in the evaluation table.
- the evaluation condition means a condition used for recognition of a learning unit acquired from the evaluation information.
- the device condition is a condition related to a device used for acquiring evaluation information used for authorization of learning units.
- the evaluation for learning performed by the evaluation unit 120 will be described using the example of FIG.
- the evaluation conditions are “the video that has been viewed is a video related to a predetermined topic”, “the viewing of other videos is not detected”, and “the movement of the user is It may be “not detected” or “include the first public blockchain”.
- the device condition may be that the wearable device and the server 300 are connected, or that the evaluation information from the wearable device and the server 300 is acquired.
- the video being viewed is a video related to a predetermined topic” and “the viewing of other videos is not detected” are contents acquired by the evaluation device 100 and the server 300. It may be determined based on the information regarding. Specifically, the evaluation unit 120 compares the information regarding the content acquired from the evaluation device 100 with the information regarding the content acquired from the server 300, so that “viewing of other videos is not detected”. May be determined. In addition, the evaluation unit 120 determines that a plurality of contents are displayed or reproduced on the evaluation device 100 based on information about the content acquired from the evaluation device 100, thereby detecting “viewing of other videos. It may be determined that “it is not done”.
- the user's movement not being detected may be determined based on information regarding the user's behavior acquired by a wearable device that is an example of the acquisition device 200.
- “including the public first block chain” may be determined based on information regarding the first block chain in which the acquired evaluation information is registered.
- the evaluation conditions are “read book is a book related to a predetermined topic”, “user movement is not detected”, “fixed device use is detected” It may be that the user's line of sight is facing the evaluation device 100.
- the device condition may be that the wearable device, the imaging device, and the plurality of fixed devices are connected, or that the evaluation information from the wearable device, the imaging device, and the plurality of fixed devices is acquired. .
- the read book is a book related to a predetermined topic may be determined based on information about the content acquired by the evaluation device 100.
- the user's movement not being detected may be determined based on information about the user's behavior acquired by a wearable device that is an example of the acquisition device 200.
- the use of the fixed device is not detected may be determined based on information on the usage status of the acquisition device 200 acquired by a fixed device such as a refrigerator that is an example of the acquisition device 200.
- the user's line of sight is facing the evaluation device 100 may be evaluated based on information on the user's line of sight acquired by the imaging unit 114 of the evaluation device 100.
- the evaluation conditions are “the lecture attended is a lecture on a predetermined topic”, “no user movement detected”, “use of the acquisition device 200” May not be detected ".
- the device condition may be that the smartphone and the wearable device are connected, or that the evaluation information from the smartphone and the wearable device is acquired.
- the lecture taken is a lecture on a predetermined topic may be determined by the detection unit 118 analyzing the speech data of the lecture using a space vector model.
- the user's movement not being detected may be determined based on information about the user's behavior acquired by a wearable device that is an example of the acquisition device 200.
- the use of the acquisition device 200 is not detected may be determined based on information regarding the usage status of the acquisition device 200 acquired by a smartphone that is an example of the acquisition device 200.
- the learning unit is certified in S210 based on the evaluation information determination result using the evaluation table in S208. For example, when the evaluation condition and the device condition shown in FIG. 10 are satisfied by the evaluation information acquired from each first block chain, the evaluation unit 120 recognizes the learning unit.
- FIG. 11 is an example of information regarding learning units registered in the second block chain in S210.
- the information related to the recognized learning unit as shown in FIG. 11 is replaced with the transaction information of the existing block chain such as Bitcoin or the information of the existing block chain such as Bitcoin. Registered along with transaction information.
- a user ID for example, a user ID, a topic (major classification and small classification), an acquisition device 200 used for evaluation, reliability of evaluation information, user understanding, Information regarding the learning time and the learning method may be registered in the second block chain.
- the major classification of topics may include foreign languages, mathematics, chemistry, physics, geology, history, programming, cooking, engine control, mechanical engineering, meteorology, astronomy, animation, and the like.
- the topic minor classification may include, for example, passive, preposition usage, current completion, speaking, listening, etc., when the topic major classification is English. In this way, learning is managed in more detail by classifying topics into major categories and minor categories.
- the device used is information about the device used for learning. That is, it is information relating to the device from which the evaluation information used by the evaluation device 100 for evaluation is acquired.
- a wearable device and a refrigerator are shown as the acquisition device 200 used for the evaluation of the user's learning.
- the devices used may include the imaging unit 114 of the evaluation device 100 and the like.
- the reliability of the evaluation information includes information on the reliability of the evaluation information used for evaluation of the user's learning.
- the evaluation information acquired from the mobile device may not be appropriate for monitoring the user's behavior.
- fixed devices such as refrigerators are less likely to be lent to others and may be appropriate for monitoring user behavior. Therefore, the reliability of the evaluation information acquired by the mobile device may be set low, and the reliability of the evaluation information acquired by the fixed device may be set low. That is, the reliability of the evaluation information may be calculated based on the type or characteristic of the acquisition device 200 that acquired the evaluation information. Note that the type or characteristic of the acquisition device 200 that acquired the evaluation information may be determined based on information indicating that the acquisition device 200 is a portable device or that the acquisition device 200 is a fixed device. .
- evaluation information for example, information related to user behavior or user biological information
- evaluation information acquired by the wearable device is appropriate for monitoring the user behavior because the wearable device may be lent to others. It may not be.
- evaluation information for example, information indicating the presence of the user or information relating to the user's line of sight
- the reliability of the evaluation information acquired by the imaging unit 114 of the evaluation device 100 that is being learned may be set high. That is, the reliability of the evaluation information may be calculated based on the type or characteristic of the evaluation information.
- the reliability as the evaluation information since the first block chain that is privately operated by the user may be altered by the user, the reliability as the evaluation information may be set low. On the other hand, since the first block chain operated by the business operator or the like is unlikely to be falsified by the user, the reliability as the evaluation information may be set high. That is, the reliability of the evaluation information may be calculated based on the type or characteristic of the first block chain in which the evaluation information is registered. As described above, the level of reliability of the first block chain varies greatly depending on the operating entity of the first block chain. Therefore, the evaluation unit 120 may set the reliability as the evaluation information based on the information regarding the operating entity of the first blockchain.
- the evaluation unit 120 sets the reliability as evaluation information based on information related to the number of blocks included in the first block chain related to the learning event to be evaluated (for example, video viewing of a predetermined lecture). May be. Specifically, the reliability of the evaluation information acquired from the first block chain may be set higher as the number of blocks included in the first block chain is larger. Note that the type or characteristic of the first block chain may be determined based on information regarding the operating entity of the first block chain or information regarding the number of blocks included in the first block chain.
- the evaluation unit 120 may quantify the reliability of the evaluation information based on a predetermined algorithm. And the information regarding the reliability of the digitized evaluation information may be registered in the second block chain. In FIG. 11, the reliability of the evaluation information is indicated as 80 in the numerical setting between 0 and 100. As described above, by calculating the reliability of the evaluation information, information for ensuring the evaluation of the user learning by the evaluation unit 120 is provided.
- the degree of understanding may be determined based on the number of tests performed on the user.
- the degree of understanding of the user is indicated as 75 in the numerical setting between 0 and 100.
- FIG. 11 shows 10 hours as the time until the learning unit is acquired.
- FIG. 11 shows video viewing.
- information related to the learning unit is managed by the second block chain, so that the learning performed by the user in a state where the information is not falsified and in a state where the information can be easily used by a third party is managed. .
- FIG. 12 is a block diagram for explaining a hardware configuration of the evaluation device 100 (for example, a laptop personal computer) according to the embodiment of the present disclosure.
- the evaluation device 100 mainly includes a CPU 901, a ROM 903, and a RAM 905.
- the evaluation device 100 further includes a host bus 907, a bridge 909, an external bus 911, an interface 913, an input device 915, an output device 917, a storage device 919, a drive 921, and a second communication device. 923 and a first communication device 925.
- the CPU 901 functions as a central processing device and control device, and controls all or a part of the operation in the evaluation device 100 in accordance with various programs recorded in the ROM 903, RAM 905, storage device 919, or removable recording medium 927. .
- the CPU 901 may have the function of the processing unit 102.
- the ROM 903 stores programs used by the CPU 901, calculation parameters, and the like.
- the RAM 905 primarily stores programs used by the CPU 901, parameters that change as appropriate during execution of the programs, and the like. These are connected to each other by a host bus 907 constituted by an internal bus such as a CPU bus.
- the host bus 907 is connected to an external bus 911 such as a PCI (Peripheral Component Interconnect / Interface) bus via a bridge 909.
- PCI Peripheral Component Interconnect / Interface
- the input device 915 is an operation means operated by the user, such as an electrostatic or pressure-sensitive touch panel, buttons, switches, and jog dial. Furthermore, the input device 915 includes an input control circuit that generates an input signal based on information input by a user using the above-described operation means and outputs the input signal to the CPU 901, for example. The user can input various data and instruct processing operations to the evaluation device 100 by operating the input device 915. Note that the input device 915 may have the function of the operation unit 108.
- the output device 917 is a device that can notify the user of the acquired information visually or audibly.
- liquid crystal display devices there are liquid crystal display devices, EL display devices, display devices such as lamps, and sound output devices such as speakers and headphones.
- the output device 917 outputs, for example, results obtained by various processes performed by the evaluation device 100.
- the display device displays results obtained by various processes performed by the evaluation device 100 as text or images.
- the audio output device converts an audio signal composed of reproduced audio data, acoustic data, and the like into an analog signal and outputs the analog signal.
- the display device of the output device 917 may have the function of the display unit 110.
- the storage device 919 is a device for storing data used in the evaluation device 100.
- the storage device 919 includes, for example, a magnetic storage device such as an HDD (Hard Disk Drive), a semiconductor storage device, an optical storage device, or a magneto-optical storage device.
- the storage device 919 stores programs executed by the CPU 901, various data, various data acquired from the outside, and the like.
- the drive 921 is a reader / writer for a recording medium, and is built in or externally attached to the evaluation device 100.
- the drive 921 reads information recorded on a removable recording medium 927 such as a mounted magnetic disk, optical disk, magneto-optical disk, or semiconductor memory, and outputs the information to the RAM 905.
- the drive 921 can also write a record to a removable recording medium 927 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory that is mounted.
- the removable recording medium 927 is, for example, a DVD medium, an HD-DVD medium, a Blu-ray (registered trademark) medium, or the like.
- the removable recording medium 927 may be a CompactFlash (registered trademark) (CompactFlash: CF), a flash memory, an SD memory card (Secure Digital memory card), or the like. Further, the removable recording medium 927 may be, for example, an IC card (Integrated Circuit card) on which a non-contact IC chip is mounted, an electronic device, or the like.
- CompactFlash registered trademark
- SD memory card Secure Digital memory card
- the second communication device 923 is used to exchange data with the external connection device by establishing communication with the external connection device 929.
- Examples of the second communication device 923 include an IEEE 802.11 port and an IEEE 802.15 port.
- the first communication device 925 is a communication interface configured by a communication device for connecting to the communication network 931, for example.
- the first communication device 925 is, for example, a wired or wireless LAN (Local Area Network) or a communication card for WUSB (Wireless USB).
- the first communication device 925 may be a router for optical communication, a router for ADSL (Asymmetric Digital Subscriber Line), or a modem for various communication.
- the first communication device 925 can transmit and receive signals and the like according to a predetermined protocol such as TCP / IP, for example, with the Internet or other communication devices.
- the communication network 931 connected to the first communication device 925 is configured by a wired or wirelessly connected network, for example, the Internet, a home LAN, infrared communication, radio wave communication, satellite communication, or the like. Also good.
- the evaluation unit 120 performed an evaluation on the user's learning based on the evaluation table shown in FIG.
- the evaluation unit 120 may evaluate the user's learning using the reliability of the evaluation information described above.
- the evaluation unit 120 may use evaluation information having a numerical value exceeding a predetermined value in the reliability of the evaluation information for evaluation of the user's learning. Therefore, the evaluation unit 120 may not recognize the learning unit based on the evaluation information having a numerical value equal to or less than a predetermined value.
- the evaluation device 100 certifies the learning unit for the user's learning.
- authorization of the user's learning and the learning unit may be performed by the server 300. That is, the server 300 may have the function of the evaluation unit 120 of the evaluation device 100. Further, the server 300 may register information regarding the recognized learning unit in the second block chain. That is, the server 300 may have the function of the registration unit 122 of the evaluation device 100.
- each device constituting the learning evaluation system of the present embodiment registers the evaluation information in the first block chain.
- the evaluation information may be managed by other methods.
- each device that configures the learning evaluation system stores evaluation information in the storage unit of each device, and transmits the evaluation information to the evaluation device 100 when a user's learning is performed by the evaluation device 100. Good.
- each device constituting the learning evaluation system may transmit evaluation information to the server 300, and the server 300 may store and manage the received evaluation information in the storage unit 306. At this time, the server 300 may transmit the evaluation information to the evaluation device 100 when the evaluation device 100 performs learning for the user. Further, the server 300 may evaluate the user's learning instead of the evaluation device 100.
- information about learning units is registered in blockchain data.
- the information regarding the learning unit may be registered in a system other than the block chain.
- the information regarding the learning unit may be managed by a server group that constructs a cloud system.
- the information regarding a learning unit may be managed by the existing P2P network.
- information processing in the evaluation device 100 of the present embodiment may be performed by an information processing apparatus such as a tablet computer, a desktop computer, a PDA, or an in-vehicle device.
- the server 300 may not be connected to other devices by wire, and may be a portable computer.
- a computer program for causing the processing unit 102 of the evaluation device 100, the processing unit 202 of the acquisition device 200, and the processing unit 302 of the server 300 to perform the operations described above with reference to FIGS. 8 and 9 is provided. Also good.
- a storage medium storing such a program may be provided.
- the evaluation performed on the learning performed by the user is performed based on the evaluation information acquired from each device configuring the system. Therefore, in the learning evaluation system of this embodiment, the learner's learning is evaluated based on a wide range of information acquired by the evaluation device 100, the acquisition device 200, and the server 300. As described above, the learning performed by the user is evaluated based on the evaluation information acquired from each device, thereby preventing the learning unit from being recognized by the user when the user is not concentrated on the learning. be able to. Further, it is possible to prevent the learning unit from being certified by the user based on an amount of content that is insufficient for the certification of the learning unit.
- the learning unit is prevented from being certified when the user does not make sufficient efforts to acquire the learning unit. Further, in the learning evaluation system of the present embodiment, by using an information processing apparatus having a general configuration such as the evaluation device 100, the acquisition device 200, and the server 300, the user's learning is evaluated with a simple configuration. .
- evaluation information acquired by each device configuring the system is registered in the block chain by each device. Furthermore, the information regarding the learning unit certified by the user's learning and / or the evaluation information used for the certification of the learning unit is registered in the block chain. By registering each piece of information in the block chain in this way, each piece of information is held on the network without being tampered with. Further, by using the block chain, a third party who wants to use the information included in the block chain can access the information included in the block chain by having a predetermined authority.
- the processing unit calculates the reliability of the evaluation information, The information processing apparatus according to (1) or (2), wherein the evaluation with respect to learning performed by a user is performed using the reliability of the evaluation information.
- the processing unit calculates the reliability of the evaluation information based on any of the type or characteristic of the evaluation information, the type or characteristic of the acquisition device, or the type or characteristic of the first P2P database. ).
- the information processing apparatus according to (3) wherein the processing unit performs the evaluation on learning performed by a user based on evaluation information having a reliability of the evaluation information exceeding a predetermined value.
- the type or characteristic of the acquisition device is determined based on information indicating that the acquisition device is a portable device or that the acquisition device is a fixed device. .
- the first P2P database is a first blockchain;
- the type or characteristic of the first P2P database is determined based on information on the number of blocks included in the first block chain and information on an operating entity of the first block chain.
- the evaluation information includes any one of the information related to the user's behavior, the user's biological information, the information related to the usage status of the acquisition device, and the information related to the content, and any one of the above (1) to (7)
- the information related to the user's behavior includes any one of information indicating the presence of the user, information regarding the user's line of sight, information regarding the user's utterance, and information indicating the user's exercise state. Processing equipment.
- the information processing apparatus wherein the biological information of the user includes information on the user's heart rate, blood pressure, sweating amount, body temperature, and electroencephalogram.
- Information regarding the usage status of the acquisition device includes information indicating that the acquisition device is turned on or off, and content that is different from content used for user learning in the acquisition device is played / displayed.
- the information processing apparatus including any one of information indicating that the acquisition device is operated and information indicating that the acquisition device is operated.
- the information regarding the content includes the information regarding the type of the content, the creator of the content, the data amount of the content, and the file name of the content.
- the processing unit recognizes a learning unit based on the result of the evaluation,
- the information processing apparatus according to any one of (1) to (12), wherein information related to the recognized learning unit is registered in a second P2P database.
- the information related to the learning unit includes any one of information related to a topic related to learning performed by the user, information related to the acquisition device used for evaluation of the user's learning, and information related to the reliability of the evaluation information. ).
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Educational Administration (AREA)
- Educational Technology (AREA)
- General Physics & Mathematics (AREA)
- Tourism & Hospitality (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Economics (AREA)
- General Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- General Business, Economics & Management (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Electrically Operated Instructional Devices (AREA)
Abstract
取得デバイスによって取得される、ユーザの学習に対する評価を行うための評価情報を第1のP2Pデータベースから取得し、前記評価情報に基づいて、ユーザが行った学習に対する評価を行う処理部を備える、情報処理装置。
Description
本開示は、情報処理装置および情報処理方法に関する。
一般的に、学習の習得度は、学校または学校に準ずる公的な機関が定めるカリキュラムまたはシラバスに基づいて評価される。例えば、学習者(以下では、ユーザとも呼ばれる)は、カリキュラムまたはシラバスによって定められる10時間の講義を受けた後にテストを受験し、当該テストの点数に基づいて学習者の学習に対する習得度が評価される。
しかしながら、近年、上述したようなテスト以外の方法によって学習の習得度を評価するシステムが開発されている。
特許文献1では、シミュレータを用いて学習者(特に、医療従事者)の学習度を評価するシステムが開示されている。特許文献1に開示されているシステムでは、医療従事者がシミュレータから提示される様々な状況に対応することによって、医療従事者の学習に対する習得度が評価される。
特許文献1に開示されている技術では、上述したように、所定の機関が管理する内容に応じてシミュレータが用意される。したがって、特許文献1に開示されている技術では、所定の機関が管理する内容に基づいて学習者の学習が評価される。しかしながら、所定の機関が管理する内容に基づく学習者の学習の評価は、学習者の学習の評価において不十分である可能性がある。
そこで本開示では、ユーザの学習に対する評価を、幅広い情報に基づいて適切に行うことが可能な、情報処理装置および情報処理方法が提案される。
本開示によれば、取得デバイスによって取得される、ユーザの学習に対する評価を行うための評価情報を第1のP2Pデータベースから取得し、前記評価情報に基づいて、ユーザが行った学習に対する評価を行う処理部を備える、情報処理装置が提供される。
また、本開示によれば、コンピュータに、取得デバイスによって取得される、ユーザの学習に対する評価を行うための評価情報を第1のP2Pデータベースから取得させ、前記評価情報に基づいて、ユーザが行った学習に対する評価を行わせる、情報処理方法が提供される。
本開示によれば、幅広い情報に基づいてユーザの学習に対する評価が行われる。
なお、上記の効果は必ずしも限定されず、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
なお、説明は以下の順序で行う。
0.ピアツーピアデータベースの概要
1.学習評価システムの概要
2.学習評価システムを構成する装置の構成
3.学習評価システムにおける情報処理方法
4.評価デバイスのハードウェア構成
5.補足事項
6.むすび
0.ピアツーピアデータベースの概要
1.学習評価システムの概要
2.学習評価システムを構成する装置の構成
3.学習評価システムにおける情報処理方法
4.評価デバイスのハードウェア構成
5.補足事項
6.むすび
<0.ピアツーピアデータベースの概要>
本実施形態に係る学習管理システムでは、ピアツーピアネットワークに流通している分散型のピアツーピアデータベースが利用される。なお、ピアツーピアネットワークは、ピアツーピア型分散ファイルシステムとよばれる場合もある。以下では、ピアツーピアネットワークを「P2Pネットワーク」、ピアツーピアデータベースを「P2Pデータベース」と示す場合がある。P2Pデータベースの例として、P2Pネットワークに流通しているブロックチェーンデータが利用される場合がある。よって最初に、ブロックチェーンシステムについて説明する。
本実施形態に係る学習管理システムでは、ピアツーピアネットワークに流通している分散型のピアツーピアデータベースが利用される。なお、ピアツーピアネットワークは、ピアツーピア型分散ファイルシステムとよばれる場合もある。以下では、ピアツーピアネットワークを「P2Pネットワーク」、ピアツーピアデータベースを「P2Pデータベース」と示す場合がある。P2Pデータベースの例として、P2Pネットワークに流通しているブロックチェーンデータが利用される場合がある。よって最初に、ブロックチェーンシステムについて説明する。
図1に示すように、本実施形態に係るブロックチェーンデータは、複数のブロックがあたかも鎖のように連なって含まれるデータである。それぞれのブロックには、1または2以上の対象データが、トランザクション(取引)として格納されうる。
本実施形態に係るブロックチェーンデータとしては、例えば、Bitcoinなどの仮想通貨のデータのやり取りに用いられるブロックチェーンデータが挙げられる。仮想通貨のデータのやり取りに用いられるブロックチェーンデータには、例えば、直前のブロックのハッシュと、ナンスとよばれる特別な値が含まれる。直前のブロックのハッシュは、直前のブロックから正しく連なる、「正しいブロック」であるか否かを判定するために用いられる。ナンスは、ハッシュを用いた認証においてなりすましを防ぐために用いられ、ナンスを用いることによって改ざんが防止される。ナンスとしては、例えば、文字列、数字列、あるいは、これらの組み合わせを示すデータが挙げられる。
また、ブロックチェーンデータでは、各トランザクションのデータは、暗号鍵を用いた電子署名が付与される、または暗号鍵を用いて暗号化される。また、各トランザクションのデータは公開され、P2Pネットワーク全体で共有される。なお、ブロックチェーンシステムによっては、P2Pネットワーク全体で必ずしも同一の記録を保持しない場合もある。
図2は、ブロックチェーンシステムにおいて、対象データがユーザAによって登録される様子を示す図である。ユーザAは、ブロックチェーンデータに登録する対象データを、ユーザAの秘密鍵を用いて電子署名する。そしてユーザAは、電子署名された対象データを含むトランザクションをネットワーク上にブロードキャストする。これによって、対象データの保有者がユーザAであることが担保される。
図3は、ブロックチェーンシステムにおいて、対象データがユーザAからユーザBに移行される様子を示す図である。ユーザAは、トランザクションにユーザAの秘密鍵を用いて電子署名を行い、またトランザクションにユーザBの公開鍵を含める。これにより、対象データがユーザAからユーザBに移行されたことが示される。また、ユーザBは、対象データの取引に際して、ユーザAからユーザAの公開鍵を取得し、電子署名された、または暗号化された対象データを取得してもよい。
また、ブロックチェーンシステムでは、例えばサイドチェイン技術を利用することによって、Bitcoinのブロックチェーンデータなどの、既存の仮想通貨のデータのやり取りに用いられるブロックチェーンデータに、仮想通貨とは異なる他の対象データを含めることが可能である。ここで、本実施形態において仮想通貨とは異なる他の対象データは、ユーザの学習によって認定される学習単位に関する情報および/または学習単位の認定のために用いられる評価情報である。
このように、後述するユーザの学習によって認定される学習単位に関する情報および/または学習単位の認定のために用いられる評価情報の管理にブロックチェーンデータが利用されることによって、改ざんされない状態で当該情報がネットワーク上に保持される。また、ブロックチェーンデータが利用されることによって、ブロックチェーンに含まれる情報を利用したい第三者は、所定の権限を有することにより、ブロックチェーンに含まれる情報にアクセスすることができる。
<1.学習評価システムの概要>
以上では、本開示の実施形態による学習評価システムに用いられるブロックチェーンシステムについて説明された。以下では、本開示の実施形態による学習評価システムの概要について説明される。
以上では、本開示の実施形態による学習評価システムに用いられるブロックチェーンシステムについて説明された。以下では、本開示の実施形態による学習評価システムの概要について説明される。
図4は、本実施形態の学習評価システムの構成を示す図である。本実施形態の学習評価システムは、評価デバイス100と、取得デバイス200と、サーバ300から構成される。なお、評価デバイス100、取得デバイス200およびサーバ300は、本実施形態の情報処理を実行する情報処理装置の一例である。
評価デバイス100は、ユーザが学習に用いる機器である。例えば、ユーザは、評価デバイス100を用いて本(例えば教科書)を読んだり、ビデオを視聴したりして、学習を行う。また、評価デバイス100は、学習評価システムを構成する各装置が取得する、ユーザの学習に対する評価を行うための評価情報に基づいて、ユーザの学習に対する評価を行う。なお、評価デバイス100は、例えばラップトップパソコンであってもよい。
例えば、評価デバイス100は、学習に用いられる本またはビデオのようなコンテンツに関する情報を、ユーザの学習に対するに用いられる評価情報として取得する。評価デバイス100が取得するコンテンツに関する評価情報は、例えば、コンテンツのタイプ(テキストデータ、画像データ、音声データ)、コンテンツの作成者、コンテンツのデータ量、コンテンツのファイル名に関する情報などの情報を含む。
また、評価デバイス100は、撮像部またはマイクロフォンからの情報に基づいて、ユーザの行動に関する情報をユーザの学習に対するに用いられる評価情報として取得する。ここで、撮像部から取得されるユーザの行動に関する情報には、ユーザの視線に関する情報が含まれてもよい。また、撮像部から取得されるユーザの行動に関する情報には、ユーザの存在に関する情報が含まれてもよい。ユーザの存在に関する情報は、例えば、顔認識が行われることによって、ユーザが評価デバイス100の周囲に存在することを示す情報であってもよい。また、マイクロフォンから取得されるユーザの行動に関する情報には、ユーザの発声に関する情報が含まれてもよい。
取得デバイス200は、ユーザの学習の評価に用いられる評価情報を取得するデバイスである。取得デバイス200は、内蔵されるセンサなどを用いて、評価情報を取得する。取得デバイス200が取得する評価情報は、例えば、ユーザの行動に関する情報、ユーザの生体情報、取得デバイス200の使用状況に関する情報などの情報を含む。また、取得デバイス200は、有線または無線で評価デバイス100と接続されてもよい。例えば、取得デバイス200は、評価デバイス100からの指示に基づいて、評価情報の取得を開始してもよい。評価デバイス100は、評価デバイス100においてユーザの学習が開始されたときに、評価情報を取得する指示を取得デバイス200に送信してもよい。
取得デバイス200は、図4に示されるように、テレビ、冷蔵庫などのように設置される位置が変更される可能性が低い固定デバイスと、携帯電話、ウェアラブルデバイスなどのような位置が変更される可能性が高い携帯デバイスとを含む。なお、上述した取得デバイス200は一例であり、これらに限られない。例えば、取得デバイス200は、シーリングライト、電子レンジ、オーディオ機器などを含んでもよい。
サーバ300は、ユーザの学習の用いられるコンテンツを評価デバイス100に提供する。学習に用いられるコンテンツは、テキストデータであってもよく、画像データであってもよく、音声データであってもよい。具体的には、学習に用いられるコンテンツは、教科書のテキストデータであってもよく、講義の動画データまたは音声データであってもよい。また、サーバ300は、学習に用いられるコンテンツに関する情報を評価情報として取得する。サーバ300が取得するコンテンツに関する情報は、例えば、コンテンツのタイプ(テキストデータ、画像データ、音声データ)、コンテンツの作成者、コンテンツのデータ量、コンテンツのファイル名に関する情報などの情報を含む。なお、サーバ300は、評価情報を取得する点において、取得デバイス200の一例である。
本実施形態の学習評価システムでは、システムを構成する各装置から取得される評価情報に基づいて、ユーザが行った学習に対する評価が評価デバイス100によって行われる。例えば、評価デバイス100および/または取得デバイス200から取得されるユーザの行動に関する情報に基づいて、ユーザが行った学習に対する評価が行われる。
このように、ユーザの行動に関する情報に基づいてユーザが行った学習に対する評価が行われることによって、例えば、ユーザが学習に集中していない場合に、ユーザに学習単位が認定されることを防ぐことができる。
また、本実施形態の学習評価システムでは、サーバ300から取得される評価情報に基づいて、ユーザが行った学習に対する評価が行われる。例えば、サーバ300から取得されるコンテンツのデータ量に関する情報に基づいて、ユーザが行った学習に対する評価が行われる。
このように、学習に用いられるコンテンツのデータ量に関する情報に基づいてユーザが行った学習に対する評価が行われることによって、例えば、学習単位の認定に対して不十分な量のコンテンツに基づいて、ユーザに学習単位が認定されることを防ぐことができる。したがって、ユーザが学習単位を取得するために十分な努力を行っていないときに、学習単位が認定されることが防がれる。
上述したように、本実施形態の学習評価システムでは、評価デバイス100、取得デバイス200およびサーバ300が取得する幅広い情報に基づいて、学習者の学習が評価される。したがって、本実施形態の学習評価システムでは、ユーザが学習単位を取得するために十分な努力を行ったときに、適切に学習単位が認定される。
また、本実施形態の学習評価システムでは、評価デバイス100、取得デバイス200およびサーバ300のような一般的な構成を有する情報処理装置を用いることによって、簡易な構成でユーザの学習に対する評価が行われる。
また、本実施形態の学習評価システムでは、システムを構成する各装置が取得する評価情報は、それぞれの装置によって、P2Pデータベースの一例であるブロックチェーンに登録される。つまり、評価デバイス100、各取得デバイス200およびサーバ300は、取得される評価情報を、図4において「FBC」で示される第1ブロックチェーンに登録する。そして、評価デバイス100は、それぞれの第1ブロックチェーンに登録されている評価情報に基づいて、ユーザの学習に対する評価を行う。
ユーザが行った学習が学習単位が認定されるために十分であると評価デバイス100によって評価される場合、評価デバイス100は、当該学習単位に関する情報および/または学習単位の認定のために用いられた評価情報を、図4において「SBC」で示される第2ブロックチェーンに登録する。
このように、ユーザの学習によって認定される学習単位に関する情報および/または学習単位の認定のために用いられた評価情報の管理にブロックチェーンデータが利用されることによって、改ざんされない状態で当該情報がネットワーク上に保持される。また、ブロックチェーンデータが利用されることによって、ブロックチェーンに含まれる情報を利用したい第三者は、所定の権限を有することにより、ブロックチェーンに含まれる情報にアクセスすることができる。
<2.学習評価システムを構成する装置の構成>
以上では、本開示の実施形態による学習評価システムの概要について説明された。以下では、本開示の実施形態による学習評価システムを構成する装置の構成について説明される。
以上では、本開示の実施形態による学習評価システムの概要について説明された。以下では、本開示の実施形態による学習評価システムを構成する装置の構成について説明される。
(2-1.評価デバイス100の構成)
図5は、本実施形態の評価デバイス100の構成の一例を示す図である。評価デバイス100は、例えば、処理部102と、第1通信部104と、第2通信部106と、操作部108と、表示部110と、記憶部112と、撮像部114と、マイクロフォン116とを備える。また、処理部102は、検出部118と、評価部120と、登録部122とを有する。
図5は、本実施形態の評価デバイス100の構成の一例を示す図である。評価デバイス100は、例えば、処理部102と、第1通信部104と、第2通信部106と、操作部108と、表示部110と、記憶部112と、撮像部114と、マイクロフォン116とを備える。また、処理部102は、検出部118と、評価部120と、登録部122とを有する。
処理部102は、評価デバイス100の各構成からの信号を処理する。例えば処理部102は、第1通信部104または第2通信部106から送られてくる信号の復号処理を行い、データを抽出する。また処理部102は、操作部108からの信号を処理して、処理部102において実行されるアプリケーションに対する指示を行ってもよい。また処理部102は、撮像部114またはマイクロフォン116から取得されるデータを処理してもよい。
第1通信部104は、有線通信または無線通信によって外部装置と通信を行う通信部であり、例えばEthernet(登録商標)に準拠する通信方式を用いて通信を行ってもよい。なお、上述した通信方式は一例であり、第1通信部104の通信方式は、これに限られない。
第2通信部106は、外部装置と近距離無線によって通信を行う通信部であり、例えばIEEE802委員会によって規定される通信方式(例えばBluetooth(登録商標))を用いて通信を行ってもよい。また第2通信部106は、Wi-Fiなどの通信方式を用いて通信を行ってもよい。なお、上述した通信方式は一例であり、第2通信部106の通信方式は、これに限られない。
操作部108は、ユーザの評価デバイス100に対する操作を受け付ける。ユーザは、操作部108を操作することによって、例えば評価デバイス100で実行されるアプリケーションに対する操作を行う。またユーザは、操作部108を操作することによって、評価デバイス100の各種機能を設定する。
表示部110は、画像を表示するために用いられる。例えば表示部110は、評価デバイス100で処理されるコンテンツに関する画像を表示する。また、表示部110は、サーバ300から取得されるコンテンツに基づく画像を表示してもよい。例えば、表示部110は、サーバ300から取得される電子ブックを表示してもよい。記憶部112は、評価デバイス100で実行されるアプリケーション、オペレーティングシステムなどのプログラムを記憶する。
撮像部114は、画像を撮像するために用いられる。例えば、撮像部114は、ユーザを撮影するために用いられる。特に、撮像部114は、ユーザの目を撮像してもよい。そして処理部102は、撮像部114からの画像データに基づいて顔認識を行うことによって、ユーザを検出してもよい。また、処理部102は、撮像部114からの画像データに基づいて、ユーザの視線を検出してもよい。なお、撮像部114は、評価情報を取得するために用いられるので、取得デバイス200の一例であると解されてもよい。マイクロフォン116は、評価デバイス100の周囲の音から音声データを取得する。
検出部118は、評価デバイス100に接続される取得デバイス200を検出する。例えば、検出部118は、取得デバイス200から送られてくる識別情報に基づいて、評価デバイス100に接続されている取得デバイス200を検出する。また、検出部118は、ユーザが学習を行っていること(以下では、学習イベントとも呼ばれる)を検出する。例えば、検出部118は、評価デバイス100からの情報に基づいて、学習イベントを検出する。
具体的には、検出部118は、評価デバイス100でテキストデータ、音声データまたは動画データが表示または再生されていることに基づいて、学習イベントを検出する。例えば、検出部118は、各データのファイルのヘッダを解析することによって、各ファイルに関する識別情報(例えば、ファイルの作成者、ファイルの名称)に基づいて、テキストデータ、音声データまたは動画データが学習に関するコンテンツであると認識してもよい。また、検出部118は、各ファイルのヘッダを解析することによって、各ファイルのコンテンツが、所定の学習に関するトピック(例えば、学校のカリキュラムまたはシラバスに含まれる科目)と関連するか否かを判定してもよい。
また、検出部118は、評価デバイス100から取得されるテキストデータ、画像データまたは音声データを解析して、学習イベントを検出してもよい。例えば、検出部118は、ベクトル空間モデルを用いて、取得されたテキストデータをベクトルデータに変換する。また、検出部118は、取得された音声データをテキストデータに変換し、変換されたテキストデータをベクトルデータに変換する。そして、検出部118は、取得されたベクトルデータを用いて、ユーザによって行われている学習が、所定の学習に関するトピックと関連するか否かを判定してもよい。そして、ユーザの学習が所定の学習に関するトピックと関連すると判定される場合、検出部118は、学習イベントを検出してもよい。
なお、トピックは、上述したように、学校などの所定の機関のカリキュラムまたはシラバスによって指定されているトピックであってもよく、ユーザが予め登録したトピックであってもよい。また、トピックは、大分類と小分類に分類されてもよい。例えば、トピックの大分類は、外国語、数学、化学、物理、地学、歴史、プログラミング、料理、エンジン制御、機械工学、気象学、天文学、アニメーションなどが含まれてもよい。また、トピックの小分類は、トピックの大分類が英語の場合、例えば、受動態、前置詞の用法、現在完了、スピーキング、リスニングなどが含まれてもよい。
評価部120は、評価デバイス100、取得デバイス200およびサーバ300が取得する評価情報に基づいて、ユーザの学習に対する評価を行う。例えば、評価部120は、図9を用いて後述される評価テーブルに基づいて、ユーザの学習に対する評価を行う。また、評価部120は、評価結果に基づいて、ユーザの学習による学習単位を認定する。また、評価部120は、所定のアルゴリズムに基づいて、評価情報の信用度を算出してもよい。
ここで、評価情報の信用度は、ユーザの学習に対する評価に用いられた評価情報の信用度を意味する。評価情報の信用度は、後述されるように、評価情報の種類または特性に基づいて算出されてもよい。また、評価情報の信用度は、評価情報を取得した取得デバイス200の種類または特性に基づいて算出されてもよい。また、評価情報の信用度は、評価情報が登録される第1ブロックチェーンの種類または特性に基づいて算出されてもよい。
登録部122は、評価デバイス100が取得する評価情報を第1ブロックチェーンに登録する。例えば、登録部122は、学習されているコンテンツに関する情報、ユーザの行動に関する情報などの評価情報を第1ブロックチェーンに登録する。
また、登録部122は、認定された学習単位に関する情報を第2ブロックチェーンに登録する。学習単位に関する情報には、図11を用いて後述されるように、例えば、トピックに関する情報、取得デバイス200に関する情報、評価情報の信用度に関する情報、ユーザの理解度に関する情報、学習時間に関する情報、学習方法に関する情報のいずれか1つが含まれる。
ここで、ユーザの理解度に関する情報は、学習単位の認定のためにサーバ300によって出題される試験の点数に基づいて算出されてもよい。また、学習方法に関する情報には、読書、講義の受講、ビデオの視聴、会話などを示す情報が含まれてもよい。
(2-2.取得デバイス200の構成)
以上では、本開示の実施形態による評価デバイス100の構成について説明された。以下では、本開示の実施形態による取得デバイス200の構成について説明される。
以上では、本開示の実施形態による評価デバイス100の構成について説明された。以下では、本開示の実施形態による取得デバイス200の構成について説明される。
図6は、本実施形態の取得デバイス200の構成の一例を示す図である。取得デバイス200は、例えば、処理部202と、通信部204と、センサ206と、位置情報取得部208とを備える。また処理部202は、登録部210を有する。
処理部202は、取得デバイス200の各構成からの信号を処理する。例えば処理部202は、通信部204から送信される情報の符号化を行う。また処理部202は、センサ206から取得される情報を処理する。
センサ206は、取得デバイス200の動きを検知する。例えば、センサ206は、加速度センサ、ジャイロセンサ、気圧センサ、地磁気センサなどから構成される。加速度センサは、取得デバイス200に対する加速度を検知する。ジャイロセンサは、取得デバイス200に対する角加速度および角速度を検知する。気圧センサは、気圧を検知し、検知された気圧に基づいて取得デバイス200の高度が算出される。地磁気センサは、地磁気を検知し、検知された地磁気に基づいて取得デバイス200の向きが算出される。
位置情報取得部208は、取得デバイス200の位置を取得する。位置情報取得部208は、例えばGNSS(Global Navigation Satellite System)を用いて取得デバイス200の位置を取得してもよい。また位置情報取得部208は、セルラ通信ネットワークの基地局からの情報に基づいて取得デバイス200の位置を取得してもよい。
登録部210は、取得デバイス200が取得する評価情報を第1ブロックチェーンに登録する。例えば、登録部210は、ユーザの行動に関する情報、ユーザの生体情報、取得デバイス200の使用状況に関する情報などの評価情報を第1ブロックチェーンに登録する。
(2-3.サーバ300の構成)
以上では、本開示の実施形態による取得デバイス200の構成について説明された。以下では、本開示の実施形態によるサーバ300の構成について説明される。
以上では、本開示の実施形態による取得デバイス200の構成について説明された。以下では、本開示の実施形態によるサーバ300の構成について説明される。
図7は、本実施形態のサーバ300の構成の一例を示す図である。サーバ300は、例えば、処理部302と、通信部304と、記憶部306とを備える。また処理部302は、登録部308を有する。
処理部302は、サーバ300の各構成からの信号を処理する。例えば処理部302は、通信部304から送信される情報の符号化を行う。また処理部302は、記憶部306からデータを読み出し、読み出されたデータに対する処理を行う。
通信部304は、有線通信または無線通信によって外部装置と通信を行う通信部であり、例えばEthernet(登録商標)に準拠する通信方式を用いて通信を行ってもよい。記憶部306は、処理部302によって使用される各種のデータを格納する。例えば、記憶部306は、ユーザの学習に用いられるコンテンツを記憶する。例えば、学習に用いられるコンテンツは、教科書のテキストデータであってもよく、講義の動画データまたは音声データであってもよい。
登録部308は、サーバ300が取得する評価情報を第1ブロックチェーンに登録する。例えば、登録部308は、ユーザの学習に用いられているコンテンツに関する情報などの評価情報を第1ブロックチェーンに登録する。
<3.学習評価システムにおける情報処理方法>
以上では、本開示の実施形態による学習評価システムを構成する各装置の構成について説明された。以下では、本開示の実施形態による学習評価システムにおける情報処理方法について説明される。
以上では、本開示の実施形態による学習評価システムを構成する各装置の構成について説明された。以下では、本開示の実施形態による学習評価システムにおける情報処理方法について説明される。
(3-1.第1ブロックチェーンへの評価情報の登録に関する情報処理方法)
図8は、本実施形態の学習評価システムにおいて実行される情報処理方法の一例を示す図である。特に、図8は、評価デバイス100、取得デバイス200およびサーバ300で行われる、第1ブロックチェーンへの評価情報の登録に関する情報処理方法を示す。
図8は、本実施形態の学習評価システムにおいて実行される情報処理方法の一例を示す図である。特に、図8は、評価デバイス100、取得デバイス200およびサーバ300で行われる、第1ブロックチェーンへの評価情報の登録に関する情報処理方法を示す。
最初に、S102において、取得デバイス200またはサーバ300は、評価デバイス100と接続される。次に、S104において、各装置は、評価情報を取得する。例えば、取得デバイス200は、評価デバイス100からの指示に基づいて、評価情報の取得を開始してもよい。また、評価デバイス100は、例えば、評価デバイス100で表示または再生されているコンテンツに関する情報またはユーザの行動に関する情報を評価情報として取得してもよい。また、コンテンツに関する情報は、例えば、コンテンツのタイプ、コンテンツの作成者、コンテンツのデータ量、コンテンツのファイル名に関する情報などを含んでもよい。また、ユーザの行動に関する情報は、ユーザの視線に関する情報、ユーザの存在に関する情報、ユーザの発声に関する情報を含んでもよい。
また、取得デバイス200は、ユーザの行動に関する情報、ユーザの生体情報または取得デバイス200の使用状況に関する情報を評価情報として取得する。ユーザの行動に関する情報には、取得デバイス200が携帯デバイスである場合、位置情報が含まれてもよい。また、ユーザの行動に関する情報には、ユーザの運動状態を示す情報(例えば、ユーザが歩いている、走っている、ユーザがベッドなどで横になっていることを示す情報)が含まれてもよい。なお、ユーザの運動状態は、センサ206から取得される情報を用いてパターンマッチングを行うことによって、判定されてもよい。
また、ユーザの生体情報には、心拍数、血圧、発汗量、体温、脳波などに関する情報が含まれてもよい。また、取得デバイス200の使用状況に関する情報には、例えば、取得デバイス200の電源がオン/オフになったこと、取得デバイス200の扉が開かれたこと、を示す情報が含まれてもよい。また、取得デバイス200の使用状況に関する情報には、取得デバイス200においてユーザの学習に用いられるコンテンツとは異なるコンテンツの再生/表示が行われていること、取得デバイス200が操作されていることを示す情報などが含まれてもよい。
また、サーバ300は、評価デバイス100に提供されるコンテンツに関する情報を評価情報として取得する。例えば、コンテンツに関する情報は、コンテンツのタイプ、コンテンツの作成者、コンテンツのデータ量、コンテンツのファイル名に関する情報などを含んでもよい。
そして、S106において、各装置は、取得された評価情報を各装置の第1ブロックチェーンに登録する。なお、第1ブロックチェーンへの登録は、所定の時間ごとに行われてもよく、リアルタイムに行われてもよい。第1ブロックチェーンへの登録が所定の時間ごとに行われることによって、各装置の処理負担は軽減される。また、第1ブロックチェーンへの登録がリアルタイムに行われることによって、ユーザの学習に対する評価がリアルタイムに行われる。
また、図4においては、各装置に対する第1ブロックチェーンが設定された。しかしながら、第1ブロックチェーンは、1つのブロックチェーンであってもよい。つまり、各装置は、評価情報が登録されるための1つの第1ブロックチェーンに評価情報を登録してもよい。
(3-2.第2ブロックチェーンへの登録に関する情報処理方法)
以上では、本開示の実施形態による評価デバイス100、取得デバイス200およびサーバ300で行われる、第1ブロックチェーンへの評価情報の登録に関する情報処理方法について説明された。以下では、本開示の実施形態による第2ブロックチェーンへの学習単位に関する情報の登録に関する情報処理方法について説明される。
以上では、本開示の実施形態による評価デバイス100、取得デバイス200およびサーバ300で行われる、第1ブロックチェーンへの評価情報の登録に関する情報処理方法について説明された。以下では、本開示の実施形態による第2ブロックチェーンへの学習単位に関する情報の登録に関する情報処理方法について説明される。
図9は、本実施形態の学習評価システムにおいて実行される情報処理方法の一例を示す図である。特に、図9は、評価デバイス100で行われる、ユーザの学習に対する評価に関する情報処理方法および第2ブロックチェーンへの学習単位に関する情報の登録に関する情報処理方法を示す。
S202において、検出部118は、取得デバイス200の検出を行う。例えば、検出部118は、取得デバイス200から送られてくる識別情報に基づいて、評価デバイス100に接続されている取得デバイス200を検出する。
次に、S204において、検出部118は、学習イベントの検出を行う。ここで、検出部118は、上述したように、ユーザが学習に用いているコンテンツのファイルのヘッダ情報を解析して学習イベントの検出を行ってもよい。また、検出部118は、ベクトル空間モデルを用いて、コンテンツを解析することによって、学習イベントを検出してもよい。また、このとき検出部118は、学習イベントに関して、関連するトピックを判定しても良い。
なお、トピックは、上述したように、学校などの所定の機関のカリキュラムまたはシラバスによって指定されているトピックであってもよく、ユーザが予め登録したトピックであってもよい。また、トピックは、大分類と小分類に分類されてもよい。例えば、トピックの大分類は、外国語、数学、化学、物理、地学、歴史、プログラミング、料理、エンジン制御、機械工学、気象学、天文学、アニメーションなどが含まれてもよい。また、トピックの小分類は、トピックの大分類が英語の場合、例えば、受動態、前置詞の用法、現在完了、スピーキング、リスニングなどが含まれてもよい。
そして、S206において、評価部120は、それぞれの第1ブロックチェーンから評価情報を取得する。ここで、それぞれの第1ブロックチェーンから取得される評価情報は、上述したように、ユーザの行動に関する情報、ユーザの生体情報、コンテンツに関する情報、取得デバイス200の使用状況に関する情報を評価情報として取得する。
また、評価部120は、上述した情報以外の情報を評価情報として取得してもよい。例えば、評価部120は、取得デバイス200の種類または特性に関する情報を評価情報として取得してもよい。取得デバイス200の種類は、携帯デバイスまたは固定デバイスを示す情報、取得デバイス200の名称に関する情報を含んでもよい。ここで、携帯電話などの携帯デバイスは、ユーザが他人に貸与する可能性があるため、携帯デバイスから取得される評価情報は、ユーザの行動を監視するために適切ではない可能性がある。一方、冷蔵庫などの固定デバイスは、他人に貸与される可能性が低いため、ユーザの行動を監視するために適切である可能性がある。このように、取得デバイス200の種類または特性によって、ユーザの学習を評価するために適切か否かのレベルが異なる可能性がある。したがって、取得デバイス200の種類に関する情報が評価情報として用いられることによって、ユーザの学習に対する評価がより適切に行われる。
また、評価部120は、第1ブロックチェーンに関する情報を評価情報として取得してもよい。例えば、第1ブロックチェーンに関する情報は、第1ブロックチェーンの種類または特性に関する情報を含んでもよい。また、第1ブロックチェーンの種類または特性に関する情報は、評価対象である学習イベント(例えば所定の講義のビデオ視聴)に関連する、第1ブロックチェーンに含まれるブロックの数を含んでもよい。
第1ブロックチェーンには、ユーザが私的に運用する第1ブロックチェーンと、事業者等によって運用される第1ブロックチェーンが含まれる可能性がある。ユーザが私的に運用する第1ブロックチェーンは、ユーザによって改ざんされる可能性があるため、私的な第1ブロックチェーンから取得される評価情報は、ユーザの行動を監視するために適切ではない可能性がある。一方、事業者等によって運用される第1ブロックチェーンは、ユーザによって改ざんされる可能性が低いため、私的な第1ブロックチェーンから取得される評価情報は、ユーザの行動を監視するために適切である可能性がある。このように、第1ブロックチェーンの種類または特性によって、ユーザの学習を評価するために適切か否かのレベルが異なる可能性がある。したがって、第1ブロックチェーンに関する情報が評価情報として用いられることによって、ユーザの学習に対する評価がより適切に行われる。
次にS208において、評価部120は、取得された評価情報に基づいて、ユーザによって行われた学習に対する評価を行う。例えば、評価部120は、評価を行うための評価テーブルに基づいて、学習に対する評価を行ってもよい。
図10は、評価部120が、学習に対する評価を行うために用いる評価テーブルの一例を示す図である。図10に示されるように、例えば、評価テーブルには、各学習方法に対応する評価条件と、デバイス条件が設定されてもよい。ここで、評価条件は、評価情報から取得される学習単位の認定に用いられる条件を意味する。また、デバイス条件は、学習単位の認定に用いられる評価情報を取得するために用いられるデバイスに関する条件である。
図10の例を用いて、評価部120が行う学習に対する評価について説明する。例えば、学習方法がビデオ視聴である場合、評価条件は、「視聴されたビデオが所定のトピックに関するビデオであること」、「他のビデオの視聴が検出されていないこと」、「ユーザの移動が検出されていないこと」、「公的な第1ブロックチェーンが含まれること」であってもよい。
また、デバイス条件は、ウェアラブルデバイスおよびサーバ300が接続されていること、またはウェアラブルデバイスおよびサーバ300からの評価情報が取得されていること、であってもよい。
上述した評価条件において、例えば、「視聴されたビデオが所定のトピックに関するビデオであること」および「他のビデオの視聴が検出されていないこと」は、評価デバイス100およびサーバ300によって取得されるコンテンツに関する情報に基づいて判定されてもよい。具体的には、評価部120は、評価デバイス100から取得されたコンテンツに関する情報と、サーバ300から取得されたコンテンツに関する情報を比較することによって、「他のビデオの視聴が検出されていないこと」を判定してもよい。また、評価部120は、評価デバイス100から取得されたコンテンツに関する情報に基づいて、複数のコンテンツが評価デバイス100において表示または再生されていることを判定することによって、「他のビデオの視聴が検出されていないこと」を判定してもよい。
また、「ユーザの移動が検出されていないこと」は、取得デバイス200の一例であるウェアラブルデバイスによって取得されるユーザの行動に関する情報に基づいて判定されてもよい。また、「公的な第1ブロックチェーンが含まれること」は、取得された評価情報が登録されていた第1ブロックチェーンに関する情報に基づいて判定されてもよい。
また、学習方法が読書である場合、評価条件は、「読まれた本が所定のトピックに関する本であること」、「ユーザの移動が検出されていないこと」、「固定デバイスの使用が検出されていないこと」、「ユーザの視線が評価デバイス100に向いていること」であってもよい。
また、デバイス条件は、ウェアラブルデバイス、撮像装置および複数の固定デバイスが接続されていること、またはウェアラブルデバイス、撮像装置および複数の固定デバイスからの評価情報が取得されていること、であってもよい。
上述した評価条件において、例えば、「読まれた本が所定のトピックに関する本であること」は、評価デバイス100によって取得されるコンテンツに関する情報に基づいて判定されてもよい。また、「ユーザの移動が検出されていないこと」は、取得デバイス200の一例であるウェアラブルデバイスによって取得されるユーザの行動に関する情報に基づいて判定されてもよい。また、「固定デバイスの使用が検出されていないこと」は、取得デバイス200の一例である冷蔵庫などの固定デバイスによって取得される取得デバイス200の使用状況に関する情報に基づいて判定されてもよい。また、「ユーザの視線が評価デバイス100に向いていること」は、評価デバイス100の撮像部114によって取得されるユーザの視線に関する情報に基づいて評価されてもよい。
また、学習方法が講義の受講である場合、評価条件は、「受講された講義が所定のトピックに関する講義であること」、「ユーザの移動が検出されていないこと」、「取得デバイス200の使用が検出されていないこと」であってもよい。
また、デバイス条件は、スマートフォンおよびウェアラブルデバイスが接続されていること、またはスマートフォンおよびウェアラブルデバイスからの評価情報が取得されていること、であってもよい。
上述した評価条件において、例えば、「受講された講義が所定のトピックに関する講義であること」は、検出部118が空間ベクトルモデルを用いて講義の音声データなどを解析することによって判定されてもよい。また、「ユーザの移動が検出されていないこと」は、取得デバイス200の一例であるウェアラブルデバイスによって取得されるユーザの行動に関する情報に基づいて判定されてもよい。また、「取得デバイス200の使用が検出されていないこと」は、取得デバイス200の一例であるスマートフォンによって取得される取得デバイス200の使用状況に関する情報に基づいて判定されてもよい。
図9に戻って、S208の評価テーブルを用いた評価情報の判定結果に基づいて、S210において学習単位が認定される。例えば、図10に示された評価条件およびデバイス条件が、各第1ブロックチェーンから取得された評価情報によって満たされる場合、評価部120は、学習単位を認定する。
そして、登録部122は、S210において認定された学習単位に関する情報を第2ブロックチェーンに登録する。図11は、S210において第2ブロックチェーンに登録される学習単位に関する情報の一例である。
本実施形態の学習評価システムでは、図11に示されるような認定された学習単位に関する情報が、Bitcoinのような既存のブロックチェーンの取引情報に代わって、またはBitcoinのような既存のブロックチェーンの取引情報に付随して登録される。
図11に示されるように、本実施形態の学習評価システムでは、例えば、ユーザID、トピック(大分類および小分類)、評価に用いられた取得デバイス200、評価情報の信用度、ユーザの理解度、学習時間、学習方法に関する情報が、第2ブロックチェーンに登録されてもよい。
上述したようにトピックの大分類は、外国語、数学、化学、物理、地学、歴史、プログラミング、料理、エンジン制御、機械工学、気象学、天文学、アニメーションなどが含まれてもよい。また、トピックの小分類は、トピックの大分類が英語の場合、例えば、受動態、前置詞の用法、現在完了、スピーキング、リスニングなどが含まれてもよい。このように、トピックが大分類と小分類に分類分けされることによって、より詳細に学習が管理される。
また、使用デバイスは、学習に対するに用いられたデバイスに関する情報である。つまり、評価デバイス100が評価に用いた評価情報を取得したデバイスに関する情報である。図10では、ユーザの学習に対する評価に用いられた取得デバイス200として、ウェアラブルデバイスおよび冷蔵庫が示される。なお、使用デバイスは、評価デバイス100の撮像部114などが含まれてもよい。
評価情報の信用度は、ユーザの学習に対する評価に用いられた評価情報の信用度に関する情報が含まれる。上述したように、携帯電話などの携帯デバイスは、ユーザが他人に貸与する可能性もあるため、携帯デバイスから取得される評価情報は、ユーザの行動を監視するために適切ではない可能性がある。一方、冷蔵庫などの固定デバイスは、他人に貸与される可能性が低いため、ユーザの行動を監視するために適切である可能性がある。したがって、携帯デバイスによって取得される評価情報の信用度は低く設定され、固定デバイスによって取得される評価情報の信用度は低く設定されてもよい。つまり、評価情報の信用度は、評価情報を取得した取得デバイス200の種類または特性に基づいて算出されてもよい。なお、評価情報を取得した取得デバイス200の種類または特性は、当該取得デバイス200が携帯デバイスであること、または当該取得デバイス200が固定デバイスであること、を示す情報に基づいて判定されてもよい。
また、ウェアラブルデバイスによって取得される評価情報(例えば、ユーザの行動に関する情報またはユーザの生体情報)は、当該ウェアラブルデバイスが他人に貸与される可能性があるため、ユーザの行動を監視するために適切ではない可能性がある。一方、学習が行われている評価デバイス100の撮像部114によって取得される評価情報(例えば、ユーザの存在を示す情報またはユーザの視線に関する情報)は、他人によって代替されない情報なので、ユーザの行動を監視するために適切である可能性がある。したがって、学習が行われている評価デバイス100の撮像部114によって取得される評価情報の信用度は高く設定されてもよい。つまり、評価情報の信用度は、評価情報の種類または特性に基づいて算出されてもよい。
また、上述したように、ユーザが私的に運用する第1ブロックチェーンは、ユーザによって改ざんされる可能性があるため、評価情報としての信用度は低く設定されてもよい。一方、事業者等によって運用される第1ブロックチェーンは、ユーザによって改ざんされる可能性が低いため、評価情報としての信用度は高く設定されてもよい。つまり、評価情報の信用度は、評価情報が登録される第1ブロックチェーンの種類または特性に基づいて算出されてもよい。なお、上述したように、第1ブロックチェーンの信頼度のレベルは、第1ブロックチェーンの運用主体によって、大きく異なる。したがって、評価部120は、第1ブロックチェーンの運用主体に関する情報に基づいて、評価情報としての信用度を設定してもよい。
また、評価部120は、評価対象である学習イベント(例えば所定の講義のビデオ視聴)に関連する、第1ブロックチェーンに含まれるブロックの数に関する情報に基づいて、評価情報としての信用度を設定してもよい。具体的には、第1ブロックチェーンに含まれるブロックの数が多いほど、当該第1ブロックチェーンから取得される評価情報の信用度は高く設定されてもよい。なお、第1ブロックチェーンの種類または特性は、第1ブロックチェーンの運用主体に関する情報または第1ブロックチェーンに含まれるブロックの数に関する情報に基づいて判定されてもよい。
以上のような評価情報の信用度の設定によって、評価部120は、所定のアルゴリズムに基づいて評価情報の信用度を数値化してもよい。そして、第2ブロックチェーンには、数値化された評価情報の信用度に関する情報が登録されてもよい。なお、図11では、0~100の間の数値設定において、評価情報の信用度は、80と示されている。上述したように、評価情報の信用度が算出されることによって、評価部120によるユーザの学習に対する評価を担保するための情報が提供される。
また、理解度は、ユーザに対して行われるテストの点数に基づいて判定されてもよい。なお、図11では、0~100の間の数値設定において、ユーザの理解度は、75と示されている。また、学習時間に関して、図11では、学習単位が取得されるまでの時間として、10時間が示されている。また、学習方法に関して、図11では、ビデオ視聴が示されている。
このように、学習単位に関する情報が第2ブロックチェーンで管理されることによって、情報の改ざんがされない状態で、および第三者が情報を利用しやすい状態でユーザが行った学習に関して管理が行われる。
<4.評価デバイスのハードウェア構成>
以上では、本実施形態による学習評価システムおよび学習評価システムにおいて実行される情報処理方法について説明された。以下では、評価デバイスのハードウェア構成について説明される。図12は、本開示の実施形態に係る評価デバイス100(例えばラップトップパソコン)のハードウェア構成を説明するためのブロック図である。
以上では、本実施形態による学習評価システムおよび学習評価システムにおいて実行される情報処理方法について説明された。以下では、評価デバイスのハードウェア構成について説明される。図12は、本開示の実施形態に係る評価デバイス100(例えばラップトップパソコン)のハードウェア構成を説明するためのブロック図である。
評価デバイス100は、主に、CPU901と、ROM903と、RAM905と、を備える。また、評価デバイス100は、更に、ホストバス907と、ブリッジ909と、外部バス911と、インターフェース913と、入力装置915と、出力装置917と、ストレージ装置919と、ドライブ921と、第2通信装置923と、第1通信装置925とを備える。
CPU901は、中心的な処理装置及び制御装置として機能し、ROM903、RAM905、ストレージ装置919、又はリムーバブル記録媒体927に記録された各種プログラムに従って、評価デバイス100内の動作全般又はその一部を制御する。なお、CPU901は、処理部102の機能を有してもよい。ROM903は、CPU901が使用するプログラムや演算パラメータ等を記憶する。RAM905は、CPU901が使用するプログラムや、プログラムの実行において適宜変化するパラメータ等を一次記憶する。これらはCPUバス等の内部バスにより構成されるホストバス907により相互に接続されている。
ホストバス907は、ブリッジ909を介して、PCI(Peripheral Component Interconnect/Interface)バスなどの外部バス911に接続されている。
入力装置915は、例えば静電式または感圧式のタッチパネル、ボタン、スイッチ及びジョグダイヤルなどユーザが操作する操作手段である。さらに、入力装置915は、例えば、上記の操作手段を用いてユーザにより入力された情報に基づいて入力信号を生成し、CPU901に出力する入力制御回路などから構成されている。ユーザは、この入力装置915を操作することにより、評価デバイス100に対して各種のデータを入力したり処理動作を指示したりすることができる。なお、入力装置915は、操作部108の機能を有してもよい。
出力装置917は、取得した情報をユーザに対して視覚的又は聴覚的に通知することが可能な装置で構成される。このような装置として、液晶ディスプレイ装置、ELディスプレイ装置及びランプなどの表示装置、またはスピーカ及びヘッドホンなどの音声出力装置などがある。出力装置917は、例えば、評価デバイス100が行った各種処理により得られた結果を出力する。具体的には、表示装置は、評価デバイス100が行った各種処理により得られた結果を、テキスト又はイメージで表示する。他方、音声出力装置は、再生された音声データや音響データ等からなるオーディオ信号をアナログ信号に変換して出力する。なお、出力装置917の表示装置は、表示部110の機能を有してもよい。
ストレージ装置919は、評価デバイス100において用いられるデータを格納するための装置である。ストレージ装置919は、例えば、HDD(Hard Disk Drive)等の磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス、又は光磁気記憶デバイス等により構成される。このストレージ装置919は、CPU901が実行するプログラムや各種データ、及び外部から取得した各種データなどを格納する。
ドライブ921は、記録媒体用リーダライタであり、評価デバイス100に内蔵、あるいは外付けされる。ドライブ921は、装着されている磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリ等のリムーバブル記録媒体927に記録されている情報を読み出して、RAM905に出力する。また、ドライブ921は、装着されている磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリ等のリムーバブル記録媒体927に記録を書き込むことも可能である。リムーバブル記録媒体927は、例えば、DVDメディア、HD-DVDメディア、Blu-ray(登録商標)メディア等である。また、リムーバブル記録媒体927は、コンパクトフラッシュ(登録商標)(CompactFlash:CF)、フラッシュメモリ、又は、SDメモリカード(Secure Digital memory card)等であってもよい。また、リムーバブル記録媒体927は、例えば、非接触型ICチップを搭載したICカード(Integrated Circuit card)又は電子機器等であってもよい。
第2通信装置923は、外部接続機器929と通信を確立することによって、外部接続機器との間でデータを交換するために用いられる。第2通信装置923の一例として、IEEE802.11ポート、IEEE802.15ポート等がある。この第2通信装置によって外部接続機器929と接続されることで、評価デバイス100は、外部接続機器929から直接各種データを取得したり、外部接続機器929に各種データを送信したりする。
第1通信装置925は、例えば、通信網931に接続するための通信デバイス等で構成された通信インターフェースである。第1通信装置925は、例えば、有線又は無線LAN(Local Area Network)、又はWUSB(Wireless USB)用の通信カード等である。また、第1通信装置925は、光通信用のルータ、ADSL(Asymmetric Digital Subscriber Line)用のルータ、又は、各種通信用のモデム等であってもよい。この第1通信装置925は、例えば、インターネットや他の通信機器との間で、例えばTCP/IP等の所定のプロトコルに則して信号等を送受信することができる。また、第1通信装置925に接続される通信網931は、有線又は無線によって接続されたネットワーク等により構成され、例えば、インターネット、家庭内LAN、赤外線通信、ラジオ波通信又は衛星通信等であってもよい。
<5.補足事項>
以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属する。
以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属する。
例えば、上述した例では、評価部120は、図10に示される評価テーブルに基づいて、ユーザの学習に対する評価を行った。しかしながら、評価部120は、上述した評価情報の信用度を用いて、ユーザの学習に対する評価を行ってもよい。例えば、評価部120は、評価情報の信用度において、所定の値を超える数値を有する評価情報を、ユーザの学習に対する評価に用いてもよい。したがって、評価部120は、所定の値以下の数値を有する評価情報に基づいて、学習単位を認定しなくてもよい。
また、ユーザの学習に対するおよび学習単位の認定は、評価デバイス100で行われた。しかしながらユーザの学習に対するおよび学習単位の認定は、サーバ300で行われてもよい。つまりサーバ300は、評価デバイス100の評価部120の機能を有してもよい。また、サーバ300は、認定された学習単位に関する情報を第2ブロックチェーンに登録してもよい。つまりサーバ300は、評価デバイス100の登録部122の機能を有してもよい。
また、上述した例では、本実施形態の学習評価システムを構成する各装置は、評価情報を第1ブロックチェーンに登録した。しかしながら、評価情報は、他の方法で管理されてもよい。例えば、学習評価システムを構成する各装置は、各装置の記憶部に評価情報を記憶し、評価デバイス100によってユーザの学習に対するが行われるときに、当該評価情報を評価デバイス100に送信してもよい。また、学習評価システムを構成する各装置は、評価情報をサーバ300に送信し、サーバ300は、受信した評価情報を記憶部306に記憶して管理してもよい。このとき、サーバ300は、評価デバイス100によってユーザの学習に対するが行われるときに、当該評価情報を評価デバイス100に送信してもよい。また、サーバ300は、評価デバイス100に代わって、ユーザの学習に対する評価を行ってもよい。
また、上述した例では、学習単位に関する情報が、ブロックチェーンデータに登録された。しかしながら、学習単位に関する情報は、ブロックチェーン以外のシステムに登録されてもよい。例えば、学習単位に関する情報は、クラウドシステムを構築するサーバ群によって管理されてもよい。また、学習単位に関する情報は、既存のP2Pネットワークによって管理されてもよい。
また、本実施形態の評価デバイス100における情報処理は、タブレットコンピュータ、デスクトップコンピュータ、PDA、車載デバイスなどの情報処理装置で行われてもよい。またサーバ300は、有線で他の装置と接続されていなくてもよく、持ち運び可能なコンピュータであってもよい。
また、評価デバイス100の処理部102、取得デバイス200の処理部202およびサーバ300の処理部302を、図8および図9を用いて上述したような動作を行わせるためのコンピュータプログラムが提供されてもよい。また、このようなプログラムが記憶された記憶媒体が提供されてもよい。
<6.むすび>
以上説明したように本開示の学習評価システムでは、システムを構成する各装置から取得される評価情報に基づいて、ユーザが行った学習に対する評価が行われる。したがって、本実施形態の学習評価システムでは、評価デバイス100、取得デバイス200およびサーバ300が取得する幅広い情報に基づいて、学習者の学習が評価される。このように、各装置から取得される評価情報に基づいてユーザが行った学習に対する評価が行われることによって、ユーザが学習に集中していない場合に、ユーザに学習単位が認定されることを防ぐことができる。また、学習単位の認定に対して不十分な量のコンテンツに基づいて、ユーザに学習単位が認定されることを防ぐことができる。したがって、ユーザが学習単位を取得するために十分な努力を行っていないときに、学習単位が認定されることが防がれる。また、本実施形態の学習評価システムでは、評価デバイス100、取得デバイス200およびサーバ300のような一般的な構成を有する情報処理装置を用いることによって、簡易な構成でユーザの学習に対する評価が行われる。
以上説明したように本開示の学習評価システムでは、システムを構成する各装置から取得される評価情報に基づいて、ユーザが行った学習に対する評価が行われる。したがって、本実施形態の学習評価システムでは、評価デバイス100、取得デバイス200およびサーバ300が取得する幅広い情報に基づいて、学習者の学習が評価される。このように、各装置から取得される評価情報に基づいてユーザが行った学習に対する評価が行われることによって、ユーザが学習に集中していない場合に、ユーザに学習単位が認定されることを防ぐことができる。また、学習単位の認定に対して不十分な量のコンテンツに基づいて、ユーザに学習単位が認定されることを防ぐことができる。したがって、ユーザが学習単位を取得するために十分な努力を行っていないときに、学習単位が認定されることが防がれる。また、本実施形態の学習評価システムでは、評価デバイス100、取得デバイス200およびサーバ300のような一般的な構成を有する情報処理装置を用いることによって、簡易な構成でユーザの学習に対する評価が行われる。
また、本開示の学習情報管理システムでは、システムを構成する各装置が取得する評価情報は、それぞれの装置によって、ブロックチェーンに登録される。さらに、ユーザの学習によって認定される学習単位に関する情報および/または学習単位の認定のために用いられた評価情報が、ブロックチェーンに登録される。このように各情報がブロックチェーンに登録されることによって、改ざんされない状態で各情報がネットワーク上に保持される。また、ブロックチェーンが利用されることによって、ブロックチェーンに含まれる情報を利用したい第三者は、所定の権限を有することにより、ブロックチェーンに含まれる情報にアクセスすることができる。
なお、以下のような構成も本開示の技術的範囲に属する。
(1)
取得デバイスによって取得される、ユーザの学習に対する評価を行うための評価情報を第1のP2Pデータベースから取得し、前記評価情報に基づいて、ユーザが行った学習に対する評価を行う処理部を備える、情報処理装置。
(2)
前記処理部は、それぞれの前記取得デバイスに対して設定される前記第1のP2Pデータベースから前記評価情報を取得する、前記(1)に記載の情報処理装置。
(3)
前記処理部は、前記評価情報の信用度を算出し、
前記評価情報の信用度を用いて、ユーザが行った学習に対する前記評価を行う、前記(1)または前記(2)に記載の情報処理装置。
(4)
前記処理部は、前記評価情報の種類または特性、前記取得デバイスの種類または特性、前記第1のP2Pデータベースの種類または特性のいずれかに基づいて、前記評価情報の信用度を算出する、前記(3)に記載の情報処理装置。
(5)
前記処理部は、所定の値を超える前記評価情報の信用度を有する評価情報に基づいて、ユーザが行った学習に対する前記評価を行う、前記(3)に記載の情報処理装置。
(6)
前記取得デバイスの種類または特性は、前記取得デバイスが携帯デバイスであること、または前記取得デバイスが固定デバイスであること、を示す情報に基づいて判定される、前記(4)に記載の情報処理装置。
(7)
前記第1のP2Pデータベースは、第1のブロックチェーンであり、
前記第1のP2Pデータベースの種類または特性は、前記第1のブロックチェーンに含まれるブロックの数に関する情報、前記第1のブロックチェーンの運用主体に関する情報に基づいて判定される、前記(4)に記載の情報処理装置。
(8)
前記評価情報は、ユーザの行動に関する情報、ユーザの生体情報、前記取得デバイスの使用状況に関する情報、コンテンツに関する情報、のいずれか1つを含む、前記(1)から前記(7)のいずれか1項に記載の情報処理装置。
(9)
前記ユーザの行動に関する情報は、ユーザの存在を示す情報、ユーザの視線に関する情報、ユーザの発声に関する情報、ユーザの運動状態を示す情報のいずれか1つを含む、前記(8)に記載の情報処理装置。
(10)
前記ユーザの生体情報は、ユーザの心拍数、血圧、発汗量、体温、脳波に関する情報を含む、前記(8)に記載の情報処理装置。
(11)
前記取得デバイスの使用状況に関する情報は、前記取得デバイスの電源がオンまたはオフになったことを示す情報、前記取得デバイスにおいてユーザの学習に用いられるコンテンツとは異なるコンテンツの再生/表示が行われていることを示す情報、前記取得デバイスが操作されていることを示す情報のいずれか1つが含まれる、前記(8)に記載の情報処理装置。
(12)
前記コンテンツに関する情報は、前記コンテンツのタイプ、前記コンテンツの作成者、前記コンテンツのデータ量、前記コンテンツのファイル名に関する情報を含む、前記(8)に記載の情報処理装置。
(13)
前記処理部は、前記評価の結果に基づいて、学習単位を認定し、
認定された前記学習単位に関する情報を第2のP2Pデータベースに登録する、前記(1)から前記(12)のいずれか1項に記載の情報処理装置。
(14)
前記学習単位に関する情報は、ユーザが行った学習に関するトピックに関する情報、ユーザの学習に対する評価に用いられた前記取得デバイスに関する情報、前記評価情報の信用度に関する情報のいずれか1つを含む、前記(13)に記載の情報処理装置。
(15)
コンピュータに、取得デバイスによって取得される、ユーザの学習に対する評価を行うための評価情報を第1のP2Pデータベースから取得させ、前記評価情報に基づいて、ユーザが行った学習に対する評価を行わせる、情報処理方法。
(1)
取得デバイスによって取得される、ユーザの学習に対する評価を行うための評価情報を第1のP2Pデータベースから取得し、前記評価情報に基づいて、ユーザが行った学習に対する評価を行う処理部を備える、情報処理装置。
(2)
前記処理部は、それぞれの前記取得デバイスに対して設定される前記第1のP2Pデータベースから前記評価情報を取得する、前記(1)に記載の情報処理装置。
(3)
前記処理部は、前記評価情報の信用度を算出し、
前記評価情報の信用度を用いて、ユーザが行った学習に対する前記評価を行う、前記(1)または前記(2)に記載の情報処理装置。
(4)
前記処理部は、前記評価情報の種類または特性、前記取得デバイスの種類または特性、前記第1のP2Pデータベースの種類または特性のいずれかに基づいて、前記評価情報の信用度を算出する、前記(3)に記載の情報処理装置。
(5)
前記処理部は、所定の値を超える前記評価情報の信用度を有する評価情報に基づいて、ユーザが行った学習に対する前記評価を行う、前記(3)に記載の情報処理装置。
(6)
前記取得デバイスの種類または特性は、前記取得デバイスが携帯デバイスであること、または前記取得デバイスが固定デバイスであること、を示す情報に基づいて判定される、前記(4)に記載の情報処理装置。
(7)
前記第1のP2Pデータベースは、第1のブロックチェーンであり、
前記第1のP2Pデータベースの種類または特性は、前記第1のブロックチェーンに含まれるブロックの数に関する情報、前記第1のブロックチェーンの運用主体に関する情報に基づいて判定される、前記(4)に記載の情報処理装置。
(8)
前記評価情報は、ユーザの行動に関する情報、ユーザの生体情報、前記取得デバイスの使用状況に関する情報、コンテンツに関する情報、のいずれか1つを含む、前記(1)から前記(7)のいずれか1項に記載の情報処理装置。
(9)
前記ユーザの行動に関する情報は、ユーザの存在を示す情報、ユーザの視線に関する情報、ユーザの発声に関する情報、ユーザの運動状態を示す情報のいずれか1つを含む、前記(8)に記載の情報処理装置。
(10)
前記ユーザの生体情報は、ユーザの心拍数、血圧、発汗量、体温、脳波に関する情報を含む、前記(8)に記載の情報処理装置。
(11)
前記取得デバイスの使用状況に関する情報は、前記取得デバイスの電源がオンまたはオフになったことを示す情報、前記取得デバイスにおいてユーザの学習に用いられるコンテンツとは異なるコンテンツの再生/表示が行われていることを示す情報、前記取得デバイスが操作されていることを示す情報のいずれか1つが含まれる、前記(8)に記載の情報処理装置。
(12)
前記コンテンツに関する情報は、前記コンテンツのタイプ、前記コンテンツの作成者、前記コンテンツのデータ量、前記コンテンツのファイル名に関する情報を含む、前記(8)に記載の情報処理装置。
(13)
前記処理部は、前記評価の結果に基づいて、学習単位を認定し、
認定された前記学習単位に関する情報を第2のP2Pデータベースに登録する、前記(1)から前記(12)のいずれか1項に記載の情報処理装置。
(14)
前記学習単位に関する情報は、ユーザが行った学習に関するトピックに関する情報、ユーザの学習に対する評価に用いられた前記取得デバイスに関する情報、前記評価情報の信用度に関する情報のいずれか1つを含む、前記(13)に記載の情報処理装置。
(15)
コンピュータに、取得デバイスによって取得される、ユーザの学習に対する評価を行うための評価情報を第1のP2Pデータベースから取得させ、前記評価情報に基づいて、ユーザが行った学習に対する評価を行わせる、情報処理方法。
100 評価デバイス
102 処理部
104 第1通信部
106 第2通信部
108 操作部
110 表示部
112 記憶部
114 撮像部
116 マイクロフォン
118 検出部
120 評価部
122 登録部
200 取得デバイス
202 処理部
204 通信部
206 センサ
208 位置情報取得部
210 登録部
300 サーバ
302 処理部
304 通信部
306 記憶部
308 登録部
102 処理部
104 第1通信部
106 第2通信部
108 操作部
110 表示部
112 記憶部
114 撮像部
116 マイクロフォン
118 検出部
120 評価部
122 登録部
200 取得デバイス
202 処理部
204 通信部
206 センサ
208 位置情報取得部
210 登録部
300 サーバ
302 処理部
304 通信部
306 記憶部
308 登録部
Claims (15)
- 取得デバイスによって取得される、ユーザの学習に対する評価を行うための評価情報を第1のP2Pデータベースから取得し、前記評価情報に基づいて、ユーザが行った学習に対する評価を行う処理部を備える、情報処理装置。
- 前記処理部は、それぞれの前記取得デバイスに対して設定される前記第1のP2Pデータベースから前記評価情報を取得する、請求項1に記載の情報処理装置。
- 前記処理部は、前記評価情報の信用度を算出し、
前記評価情報の信用度を用いて、ユーザが行った学習に対する前記評価を行う、請求項1に記載の情報処理装置。 - 前記処理部は、前記評価情報の種類または特性、前記取得デバイスの種類または特性、前記第1のP2Pデータベースの種類または特性のいずれかに基づいて、前記評価情報の信用度を算出する、請求項3に記載の情報処理装置。
- 前記処理部は、所定の値を超える前記評価情報の信用度を有する評価情報に基づいて、ユーザが行った学習に対する前記評価を行う、請求項3に記載の情報処理装置。
- 前記取得デバイスの種類または特性は、前記取得デバイスが携帯デバイスであること、または前記取得デバイスが固定デバイスであること、を示す情報に基づいて判定される、請求項4に記載の情報処理装置。
- 前記第1のP2Pデータベースは、第1のブロックチェーンであり、
前記第1のP2Pデータベースの種類または特性は、前記第1のブロックチェーンに含まれるブロックの数に関する情報、前記第1のブロックチェーンの運用主体に関する情報に基づいて判定される、請求項4に記載の情報処理装置。 - 前記評価情報は、ユーザの行動に関する情報、ユーザの生体情報、前記取得デバイスの使用状況に関する情報、コンテンツに関する情報、のいずれか1つを含む、請求項1に記載の情報処理装置。
- 前記ユーザの行動に関する情報は、ユーザの存在を示す情報、ユーザの視線に関する情報、ユーザの発声に関する情報、ユーザの運動状態を示す情報のいずれか1つを含む、請求項8に記載の情報処理装置。
- 前記ユーザの生体情報は、ユーザの心拍数、血圧、発汗量、体温、脳波に関する情報を含む、請求項8に記載の情報処理装置。
- 前記取得デバイスの使用状況に関する情報は、前記取得デバイスの電源がオンまたはオフになったことを示す情報、前記取得デバイスにおいてユーザの学習に用いられるコンテンツとは異なるコンテンツの再生/表示が行われていることを示す情報、前記取得デバイスが操作されていることを示す情報のいずれか1つが含まれる、請求項8に記載の情報処理装置。
- 前記コンテンツに関する情報は、前記コンテンツのタイプ、前記コンテンツの作成者、前記コンテンツのデータ量、前記コンテンツのファイル名に関する情報を含む、請求項8に記載の情報処理装置。
- 前記処理部は、前記評価の結果に基づいて、学習単位を認定し、
認定された前記学習単位に関する情報を第2のP2Pデータベースに登録する、請求項1に記載の情報処理装置。 - 前記学習単位に関する情報は、ユーザが行った学習に関するトピックに関する情報、ユーザの学習に対する評価に用いられた前記取得デバイスに関する情報、前記評価情報の信用度に関する情報のいずれか1つを含む、請求項13に記載の情報処理装置。
- コンピュータに、取得デバイスによって取得される、ユーザの学習に対する評価を行うための評価情報を第1のP2Pデータベースから取得させ、前記評価情報に基づいて、ユーザが行った学習に対する評価を行わせる、情報処理方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17900361.1A EP3598381A4 (en) | 2017-03-13 | 2017-12-27 | INFORMATION PROCESSING DEVICE AND PROCESSING PROCESS |
CN201780088131.1A CN110383327A (zh) | 2017-03-13 | 2017-12-27 | 信息处理装置和信息处理方法 |
US16/491,071 US11557214B2 (en) | 2017-03-13 | 2017-12-27 | Information processing apparatus and method for processing information |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017047239A JP7110550B2 (ja) | 2017-03-13 | 2017-03-13 | 情報処理装置および情報処理方法 |
JP2017-047239 | 2017-03-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018168157A1 true WO2018168157A1 (ja) | 2018-09-20 |
Family
ID=63523435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/047029 WO2018168157A1 (ja) | 2017-03-13 | 2017-12-27 | 情報処理装置および情報処理方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11557214B2 (ja) |
EP (1) | EP3598381A4 (ja) |
JP (1) | JP7110550B2 (ja) |
CN (1) | CN110383327A (ja) |
WO (1) | WO2018168157A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019054044A1 (ja) * | 2017-09-14 | 2019-03-21 | ソニー株式会社 | 情報処理装置、情報処理方法およびプログラム |
JP2022002351A (ja) * | 2018-09-20 | 2022-01-06 | ソニーグループ株式会社 | 情報処理装置、情報処理方法、およびプログラム |
US12099997B1 (en) | 2020-01-31 | 2024-09-24 | Steven Mark Hoffberg | Tokenized fungible liabilities |
US20230095596A1 (en) * | 2020-03-10 | 2023-03-30 | Nec Corporation | Group management apparatus, group management method, and computer readable medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005321768A (ja) * | 2004-04-06 | 2005-11-17 | Next Education Think Co Ltd | 学習システム、学習管理サーバ及びプログラム |
US20110189638A1 (en) | 2010-02-03 | 2011-08-04 | ImplementHIT | System and method for learning assessment |
JP2012133251A (ja) * | 2010-12-24 | 2012-07-12 | Nec Fielding Ltd | 学習システム、学習方法、学習用サーバ、及び学習サーバ用プログラム |
JP2012173333A (ja) * | 2011-02-17 | 2012-09-10 | Brother Ind Ltd | 配信システム、情報処理装置、情報処理プログラム、及び対話コンテンツ生成方法 |
JP2013242434A (ja) * | 2012-05-21 | 2013-12-05 | Sony Corp | 情報処理装置、情報処理方法および情報処理システム |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3772205B2 (ja) | 2002-02-06 | 2006-05-10 | 国立大学法人佐賀大学 | 教材学習システム |
CA2813817A1 (en) * | 2010-10-07 | 2013-04-11 | Clevru Corporation | Method, system and computer program for providing an intelligent collaborative content infrastructure |
US8869245B2 (en) * | 2011-03-09 | 2014-10-21 | Ebay Inc. | Device reputation |
JP5972707B2 (ja) * | 2012-08-09 | 2016-08-17 | 株式会社日立製作所 | 学習コンテンツの構造化装置及びそれを用いた学習コンテンツ選択支援システム並びに支援方法 |
US10013892B2 (en) * | 2013-10-07 | 2018-07-03 | Intel Corporation | Adaptive learning environment driven by real-time identification of engagement level |
US20160283920A1 (en) * | 2015-03-28 | 2016-09-29 | Justin Fisher | Authentication and verification of digital data utilizing blockchain technology |
JP2016224142A (ja) * | 2015-05-28 | 2016-12-28 | 富士通株式会社 | 評価方法、プログラム及び評価装置 |
JP6358658B2 (ja) * | 2015-11-09 | 2018-07-18 | 日本電信電話株式会社 | ブロックチェーン生成装置、ブロックチェーン生成方法、ブロックチェーン検証装置、ブロックチェーン検証方法およびプログラム |
US20170331896A1 (en) * | 2016-05-13 | 2017-11-16 | De La Rue International Limited | Methods and systems for processing assets |
-
2017
- 2017-03-13 JP JP2017047239A patent/JP7110550B2/ja active Active
- 2017-12-27 CN CN201780088131.1A patent/CN110383327A/zh active Pending
- 2017-12-27 EP EP17900361.1A patent/EP3598381A4/en not_active Ceased
- 2017-12-27 WO PCT/JP2017/047029 patent/WO2018168157A1/ja unknown
- 2017-12-27 US US16/491,071 patent/US11557214B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005321768A (ja) * | 2004-04-06 | 2005-11-17 | Next Education Think Co Ltd | 学習システム、学習管理サーバ及びプログラム |
US20110189638A1 (en) | 2010-02-03 | 2011-08-04 | ImplementHIT | System and method for learning assessment |
JP2012133251A (ja) * | 2010-12-24 | 2012-07-12 | Nec Fielding Ltd | 学習システム、学習方法、学習用サーバ、及び学習サーバ用プログラム |
JP2012173333A (ja) * | 2011-02-17 | 2012-09-10 | Brother Ind Ltd | 配信システム、情報処理装置、情報処理プログラム、及び対話コンテンツ生成方法 |
JP2013242434A (ja) * | 2012-05-21 | 2013-12-05 | Sony Corp | 情報処理装置、情報処理方法および情報処理システム |
Non-Patent Citations (5)
Title |
---|
"Learning achievement by blockchain and development on technology for opening activity record", SONY GLOBAL EDUCATION, INC., 22 February 2016 (2016-02-22), XP055622979, Retrieved from the Internet <URL:URL:https://www.sony.co.jp/Sonyinfo/News/Press/201602/16-0222/index.html> [retrieved on 20180205] * |
AUDREY, WATTERS: "The Blockchain for Education: An Introduction", THE BLOCKCHAIN FOR EDUCATION: AN INTRODUCTION, 7 April 2016 (2016-04-07), pages 1 - 12, XP055542182, Retrieved from the Internet <URL:http://hackeducation.com/2016/04/07/blockchain-education-guide> [retrieved on 20180202] * |
HAMAJI, YUKI: "A Grouping Method for Effective Learning Based on Operations of A Collaborative Learning System", RESEARCH REPORT OF INFORMATION PROCESSING SOCIETY OF JAPAN, 17 February 2007 (2007-02-17), pages 163 - 168, XP055620329, ISSN: 0919-6072 * |
See also references of EP3598381A4 |
SUZUKI, YUKO: "World where blockchain changes education and studying becomes virtual currency: report from greatest educational event in US 2016", VIRTUAL MONEY, 24 October 2016 (2016-10-24), pages 1 - 5, XP009516294, Retrieved from the Internet <URL:https://web.archive.org/web/20161106123218/http://virtualmoney.jp/I0001394> [retrieved on 20180205] * |
Also Published As
Publication number | Publication date |
---|---|
EP3598381A1 (en) | 2020-01-22 |
EP3598381A4 (en) | 2020-01-22 |
JP2018151828A (ja) | 2018-09-27 |
US20200013302A1 (en) | 2020-01-09 |
US11557214B2 (en) | 2023-01-17 |
CN110383327A (zh) | 2019-10-25 |
JP7110550B2 (ja) | 2022-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9946862B2 (en) | Electronic device generating notification based on context data in response to speech phrase from user | |
WO2018168157A1 (ja) | 情報処理装置および情報処理方法 | |
KR102180489B1 (ko) | 센서 신호들에 기초한 라이브니스 결정 | |
CN113767434A (zh) | 通过将视觉特征与声音标记相关来给视频加标记 | |
JP7005920B2 (ja) | 情報処理装置および情報処理方法 | |
US11734570B1 (en) | Training a network to inhibit performance of a secondary task | |
CN111104980B (zh) | 确定分类结果的方法、装置、设备及存储介质 | |
US11527251B1 (en) | Voice message capturing system | |
CN110597906B (zh) | 基于区块链的入学积分生成方法、装置、设备及存储介质 | |
US20180204480A1 (en) | Cognitive training system | |
US10691785B1 (en) | Authentication of a user device comprising spatial trigger challenges | |
CN109934191A (zh) | 信息处理方法和装置 | |
US20180026980A1 (en) | Mobile device, authentication device and authentication methods thereof | |
WO2018179690A1 (ja) | 情報処理装置および情報処理方法 | |
JP6981016B2 (ja) | 情報処理装置および情報処理方法 | |
JP2008072205A (ja) | サーバ装置及び端末装置及び行動記録システム及び行動記録方法 | |
JP2019087219A (ja) | セキュアなコンピュータベースの志願者評価を実施するためのシステムおよび方法 | |
EP3543868A1 (en) | Anonymous chat method and system incorporating machine-learning capabilities | |
JP2015069550A (ja) | 通信システム、情報処理装置、及び通信方法 | |
US11176375B2 (en) | Smart glasses lost object assistance | |
US20220272131A1 (en) | Method, electronic device and system for generating record of telemedicine service | |
CN112417323A (zh) | 基于兴趣点信息的到达行为检测方法、装置及计算机设备 | |
WO2017154354A1 (ja) | 情報処理装置、情報処理方法及びプログラム | |
WO2017219925A1 (zh) | 一种信息发送方法、装置及计算机存储介质 | |
KR20210020789A (ko) | 통합모드 변환이 가능한 표시장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17900361 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017900361 Country of ref document: EP Effective date: 20191014 |