WO2018168085A1 - Motor control device and game machine - Google Patents

Motor control device and game machine Download PDF

Info

Publication number
WO2018168085A1
WO2018168085A1 PCT/JP2017/041875 JP2017041875W WO2018168085A1 WO 2018168085 A1 WO2018168085 A1 WO 2018168085A1 JP 2017041875 W JP2017041875 W JP 2017041875W WO 2018168085 A1 WO2018168085 A1 WO 2018168085A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
drive signal
stop
control device
unit
Prior art date
Application number
PCT/JP2017/041875
Other languages
French (fr)
Japanese (ja)
Inventor
昌樹 水谷
啓之 伊夫伎
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2018168085A1 publication Critical patent/WO2018168085A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F5/00Roulette games
    • A63F5/04Disc roulettes; Dial roulettes; Teetotums; Dice-tops
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • H02P3/10Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor by reversal of supply connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/29Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation

Definitions

  • the present invention relates to a motor control device for controlling a DC motor and a gaming machine having such a motor control device.
  • game machines such as a spinning machine or a ball game machine have been devised to produce effects that appeal to the player's visual, auditory, or sensation.
  • the gaming machine may be provided with a movable body, for example, a movable accessory or a rotating reel.
  • a movable body for example, a movable accessory or a rotating reel.
  • Such moving range and moving speed of the movable body are set in advance according to the effects. Therefore, generally, the amount of rotation per step is determined, and the movable body is driven by a stepping motor that can control the amount of rotation in units of steps.
  • the host control device corresponds to the amount of movement by which the movable body moves to the designated position according to the state of the game.
  • a processor unit for production hereinafter simply referred to as a production CPU
  • main control device corresponds to the amount of movement by which the movable body moves to the designated position according to the state of the game.
  • the stepping motor rotates by the number of steps, and as a result, the movable body moves to the designated position.
  • a stepping motor is used to drive a rotating reel (also referred to as a drum) of a spinning-reel game machine that requires precise control of rotation and stop (see, for example, Patent Document 1).
  • the rotating reel is required to stop at a specified time after it is instructed to stop. This is because if the time required to stop as the rotation speed increases, the player feels that the rotating reel is performing a slow operation, and the player's interest may be lost.
  • an object of the present invention is to provide a motor control device capable of stopping a rotating DC motor in a specified required time.
  • a motor control device for controlling a DC motor.
  • the motor control device generates a drive signal corresponding to the rotational torque generated by the DC motor, outputs a drive signal, and outputs a detection signal every time the DC motor rotates by a predetermined rotation angle.
  • a sensor interface unit that receives a detection signal from the rotation angle sensor, a speed measurement unit that measures the rotational speed of the DC motor based on the received detection signal, and a stop required based on the specified stop required time and rotation speed
  • a brake value calculation unit that calculates a brake value of a drive signal for stopping the DC motor in time, and a stop unit that outputs a drive signal having the brake value over the required stop time to the drive signal generation unit.
  • This motor control device calculates the braking rotation amount of the DC motor from the state where the DC motor is rotating at the rotation speed to the stop based on the measured rotation speed and brake value of the DC motor. Based on the amount calculation unit, the stop position where the movable body driven by the DC motor stops, the current position of the movable body, and the braking rotation amount, output of a drive signal having a brake value is started from the current position of the movable body It is preferable to further include a brake start position determination unit that calculates the idling rotation amount by which the DC motor rotates until this time. In this case, it is preferable that the stop unit causes the drive signal generation unit to start outputting a drive signal having a brake value when the rotation amount of the DC motor from the current position of the movable body reaches the idle rotation amount. .
  • the brake start position determination unit is closest to the position of the movable body when the DC motor is rotated by the braking rotation amount from the current position of the movable body among the plurality of candidates for the stop position of the movable body. It is preferable to set the candidate as a stop position.
  • the motor control device has a communication unit that receives a control command including a required stop time from the host control device.
  • a gaming machine main body a rotating reel that is rotatably arranged in the gaming machine main body, a DC motor that drives the rotating reel, and a detection each time the DC motor rotates by a predetermined rotation angle.
  • a gaming machine having a rotation angle sensor that outputs a signal and a motor control device that controls a DC motor is provided.
  • the motor control device generates a drive signal corresponding to the rotational torque generated by the DC motor, outputs the drive signal, and a sensor interface unit receives the detection signal from the rotation angle sensor.
  • a speed measuring unit that measures the rotational speed of the DC motor based on the received detection signal, and a drive signal brake for stopping the DC motor within the required stop time based on the specified stop required time and rotational speed
  • a brake value calculation unit that calculates a value, and a stop unit that causes the drive signal generation unit to output a drive signal having the brake value over the required stop time.
  • the motor control device has an effect that the rotating DC motor can be stopped in a specified required time.
  • FIG. 1 is a schematic configuration diagram of a motor control device according to one embodiment of the present invention.
  • FIG. 2 is a circuit diagram of the motor drive circuit.
  • FIG. 3 is a diagram illustrating an example of a table representing the relationship between the drive signal applied to each switch of the motor drive circuit and the rotation direction of the DC motor.
  • FIG. 4 is a diagram illustrating an example of the format of the control command.
  • FIG. 5 is a functional block diagram of the control circuit.
  • FIG. 6 is a diagram illustrating an example of a relationship between a stop position of a rotary reel, which is an example of a movable body driven by a DC motor, a braking rotation amount, and a brake start timing.
  • FIG. 1 is a schematic configuration diagram of a motor control device according to one embodiment of the present invention.
  • FIG. 2 is a circuit diagram of the motor drive circuit.
  • FIG. 3 is a diagram illustrating an example of a table representing the relationship between the drive signal applied to each switch of the motor drive
  • FIG. 7 is a timing chart showing an example of the relationship between the time change of the position of the movable body and the time change of the rotational speed of the DC motor and the drive signal.
  • FIG. 8 is an operation flowchart of the motor control process.
  • FIG. 9 is a schematic perspective view of a rotating game machine including a motor control device according to an embodiment or a modification of the present invention.
  • FIG. 10 is a schematic internal configuration diagram of the spinning machine including the motor control device according to the embodiment or the modification of the present invention.
  • This motor control device is mounted on, for example, a spinning machine, and controls a DC motor that drives a rotating reel, which is an example of a movable body, included in the spinning machine.
  • the motor control device receives a control command for stopping the DC motor from the host control device, the motor control device stops the rotating DC motor for a specified required time.
  • FIG. 1 is a schematic configuration diagram of a motor control device according to one embodiment of the present invention.
  • the motor control device 1 includes a communication circuit 11, a register 12, a control circuit 13, a drive signal generation circuit 14, and a sensor interface circuit 15.
  • Each of these units included in the motor control device 1 may be mounted on a circuit board (not shown) as a separate circuit, or may be mounted on the circuit board as an integrated circuit in which these units are integrated. May be.
  • the motor control device 1 controls the DC motor 2 according to the control command received from the host control device. Specifically, the motor control device 1 rotates the DC motor 2 at the target rotational speed designated by the control command.
  • the motor control device 1 is generated by a pulse width modulation (PWM) method, and a motor drive circuit 3 that supplies power to the DC motor 2 with a drive signal for switching on / off of power supply to the DC motor 2.
  • PWM pulse width modulation
  • the drive signal has a value (in this embodiment, a duty ratio) corresponding to the magnitude of the rotational torque generated by the DC motor 2. As the duty ratio of the drive signal increases, the power supplied to the DC motor 2 also increases, and the rotational torque generated by the DC motor 2 also increases.
  • the motor control device 1 receives from the rotary encoder 4 a detection signal indicating that the rotating shaft (not shown) of the DC motor 2 has rotated a predetermined angle every time the rotary shaft rotates. Based on the signal, the rotational speed of the DC motor 2 is calculated.
  • the motor control device 1 receives the control command for stopping the DC motor 2, the drive signal for stopping the DC motor 2 for a specified required time based on the rotational speed of the DC motor 2 at that time or the like.
  • the brake value that is the value of B, the brake start position where the DC motor 2 starts to be braked, and the like are calculated, and the DC motor 2 is stopped according to the brake value and the brake start position.
  • FIG. 2 is a circuit diagram of the motor drive circuit 3.
  • the motor drive circuit 3 has four switches TR1 to TR4. Each switch may be a transistor or a field effect transistor, for example. Among these, two switches TR1 and TR3 are connected in series between the power supply and the ground. Similarly, two switches TR2 and TR4 are connected in series between the power supply and ground.
  • the positive terminal of the DC motor 2 is connected between the switches TR1 and TR3, while the negative terminal of the DC motor 2 is connected between the switches TR2 and TR4.
  • the switch terminals of the switches TR1 to TR4 (for example, if the switches TR1 to TR4 are transistors are equivalent to base terminals, and if the switches TR1 to TR4 are field effect transistors are equivalent to gate terminals) are respectively driven. Connected to the signal generation circuit 14.
  • the drive signal from the drive signal generation circuit 14 is input to the switch terminals of the switches TR1 to TR4.
  • FIG. 3 is a diagram illustrating an example of a table representing the relationship between the drive signal applied to each switch and the rotation direction of the DC motor 2.
  • the pulse width corresponding to the rotational speed of the DC motor 2 set according to the PWM method is set on the switch terminal of the switch TR1 and the switch terminal of the switch TR4.
  • a drive signal including a periodic pulse is applied.
  • no drive signal is applied to the switch terminal of the switch TR2 and the switch terminal of the switch TR3.
  • the DC motor 2 is at a speed corresponding to the pulse width.
  • Rotate forward When the DC motor 2 is rotated forward, a drive signal may be applied to one of the switches TR1 and TR4 and the other is always on.
  • the drive signal generation circuit 14 when the DC motor 2 is braked while the DC motor 2 is rotating forward, the drive signal generation circuit 14 outputs a drive signal for rotating the DC motor 2 to the motor drive circuit 3. . Conversely, when the DC motor 2 is braked when the DC motor 2 is rotating in reverse, the drive signal generation circuit 14 outputs a drive signal for causing the DC motor 2 to rotate forward to the motor drive circuit 3.
  • the rotary encoder 4 is an example of a rotation angle sensor, and can be, for example, an optical rotary encoder.
  • the rotary encoder 4 is, for example, disposed so as to be opposed to a disk attached to the rotating shaft of the DC motor 2 and having a plurality of slits along a circumferential direction around the rotating shaft.
  • a light source and a light receiving element Each time any slit is positioned between the light source and the light receiving element, the light from the light source reaches the light receiving element, whereby the rotary encoder 4 outputs a pulsed detection signal.
  • the rotary encoder 4 outputs a detection signal every time the DC motor 2 rotates by a predetermined sampling angle. For example, by providing 50 slits in the disk along the circumferential direction around the rotation axis of the DC motor 2, the rotary encoder 4 has 50 pieces while the rotation shaft of the DC motor 2 makes one rotation. The detection signal is output.
  • the communication circuit 11 connects the motor control device 1 to a host control device.
  • the host control device is, for example, a main control circuit or an effect CPU of a gaming machine on which the motor control device 1 is mounted.
  • the communication circuit 11 receives a control command having a plurality of bits that are serially transmitted from the host controller.
  • the communication circuit 11 may also receive a clock signal for synchronizing with each of a plurality of bits included in the control command from the host control device in order to analyze the control command.
  • the control command is an operation of the DC motor 2 such as an instruction to start or stop the rotation of the DC motor 2, a target rotation speed of the DC motor 2, or a time required for the DC motor 2 to stop after rotating.
  • the operation information for specifying in the following, for the sake of convenience, in the state where the DC motor 2 is rotating, the required time from when the brake is applied to the DC motor 2 until it stops is simply referred to as the required stop time.
  • the clock signal can be, for example, a signal having a rectangular pulse for every predetermined number of bits in the control command.
  • FIG. 4 is a diagram showing an example of the format of the control command.
  • the control command 400 including the operation information includes a START flag 401, a device address 402, a rotation stop flag 403, control data 404, and an END flag 405 in order from the top.
  • the control command 400 may include a 1-bit spacer having a value of, for example, “0” between adjacent flags, addresses, and data.
  • the START flag 401 is a bit string indicating the head of the control command 400, and in the present embodiment, nine bits having a value of “1” are consecutive bit strings.
  • the START flag 401 may be a bit string that does not match any other bit string in the control command 400.
  • the device address 402 is identification information for specifying the motor control device to be controlled by the control command 400, and is represented by a bit string having an 8-bit length in this embodiment.
  • the device address 402 is determined by the communication circuit 11 as to whether or not it matches the identification address separately received from the host control device. If they match, it is determined that the motor control device 1 is the control target of the control command 400.
  • the rotation stop flag 403 is a 1-bit flag indicating whether the DC motor 2 is to be rotated or stopped. In this embodiment, if the rotation stop flag 403 is “0”, the control command instructs to rotate the DC motor 2 regardless of the current state of the DC motor 2, and the rotation stop flag 403 is “1”. If so, the control command instructs the DC motor 2 to stop.
  • the control data 404 includes operation information of the DC motor 2 controlled by the motor control device 1. For example, when the rotation stop flag has a value indicating that the DC motor 2 is rotated, the control data 404 includes a rotation direction flag indicating the rotation direction of the DC motor 2 and speed data indicating the target rotation speed of the DC motor 2. Including. On the other hand, when the rotation stop flag has a value indicating that the DC motor 2 is to be stopped, the control data 404 includes stop required time data indicating the stop required time.
  • the rotation direction flag is, for example, a 1-bit flag. If the rotation direction flag is “0”, the motor control device 1 causes the DC motor 2 to rotate forward, while the rotation direction flag is “1”. For example, the motor control device 1 reversely rotates the DC motor 2.
  • the speed data is, for example, a 4-bit long bit string and takes any value from “0” to “15”.
  • the value of the speed data and the target rotational speed are in a one-to-one correspondence, and the motor control device 1 refers to a reference table that represents the correspondence relationship between the value of the speed data and the rotational speed, for example.
  • the target rotational speed corresponding to the value is determined.
  • the motor control device 1 rotates the DC motor 2 at the target rotation speed. For example, the larger the value of the speed data, the faster the target rotation speed.
  • the stop required time data is, for example, a 4-bit long bit string and takes any value from '0' to '15'.
  • the value of the required stop time data and the required stop time have a one-to-one correspondence, and the motor control device 1 refers to, for example, a reference table representing the correspondence between the value of the required stop time data and the actual required stop time.
  • the required stop time corresponding to the value of the required stop time data is determined.
  • the motor control device 1 stops the DC motor 2 within the required stop time. For example, the longer the required stop time, the longer the required stop time. Therefore, the host control device can adjust the stop required time by changing the value of the stop required time data of the control command.
  • the END flag 405 is a bit string indicating the end of the control command 400.
  • the END flag 405 may be a bit string that does not match the START flag and other bit strings included in the control command.
  • the required stop time may be notified in advance to the motor control device 1 separately from the control command for stopping the DC motor 2.
  • the stop required time may be included in a control command including various setting information notified from the host control device to the motor control device 1.
  • the host control device does not need to notify the required stop time each time the DC motor 2 is stopped, so that the control of the motor control device 1 and the DC motor 2 is simplified.
  • the required stop time may be stored in advance in the register 12 included in the motor control device 1.
  • the communication circuit 11 sends an instruction completion signal indicating that the control set has been executed. You may output to a high-order control apparatus.
  • the command completion signal can be a single pulse signal, for example.
  • the register 12 stores control data included in the control command for the DC motor 2 written by the communication circuit 11 and various information necessary for rotating or stopping the DC motor 2.
  • the register 12 includes, for example, a volatile readable / writable memory circuit and a nonvolatile read-only memory circuit.
  • the register 12 may erase the control data when the control data included in the control command is read by the control circuit 13.
  • the control circuit 13 includes, for example, a processor and a nonvolatile memory circuit. Then, the control circuit 13 refers to the control data read from the register 12 and determines the rotation direction of the DC motor 2. The control circuit 13 determines the duty ratio of the drive signal based on the control data and the detection signal from the rotary encoder 4. Then, the control circuit 13 notifies the drive signal generation circuit 14 of the rotation direction and the duty ratio.
  • the control circuit 13 In order to determine the duty ratio of the drive signal, the control circuit 13 refers to a speed table that represents a correspondence relationship between the value of the speed data and the duty ratio that is stored in advance in the memory circuit. The corresponding duty ratio is set as the duty ratio corresponding to the target rotation speed.
  • the control circuit 13 stops the DC motor 2 for the designated stop time. Details of the process for stopping the DC motor 2 will be described later.
  • the drive signal generation circuit 14 includes, for example, a variable pulse generation circuit that can change the width of an output pulse, and a periodic pulse signal that is a drive signal generated by the variable pulse generation circuit. And a switch circuit for switching whether to output to the switch. Then, the drive signal generation circuit 14 generates a drive signal for driving the DC motor 2 according to the PWM method in accordance with the duty ratio notified from the control circuit 13, and sends the drive signal to any switch of the motor drive circuit 3. Output. Note that the length of one cycle of the drive signal is, for example, 50 ⁇ sec. For example, when the rotation direction notified from the control circuit 13 is normal rotation, the drive signal generation circuit 14 outputs periodic pulse signals to the switches TR1 and TR4 of the motor drive circuit 3. On the other hand, when the rotation direction notified from the control circuit 13 is reverse, the drive signal generation circuit 14 outputs periodic pulse signals to the switches TR2 and TR3 of the motor drive circuit 3.
  • the sensor interface circuit 15 has an interface circuit that receives a detection signal from the rotary encoder 4.
  • the sensor interface circuit 15 outputs the detection signal to the control circuit 13 every time it receives the detection signal.
  • FIG. 5 is a functional block diagram of the control circuit 13 relating to the stop processing of the DC motor 2.
  • the control circuit 13 includes a speed measurement unit 21, a duty ratio calculation unit 22, a rotation amount calculation unit 23, a brake start position determination unit 24, and a brake start determination unit 25.
  • These units included in the control circuit 13 are mounted on the control circuit 13 as individual arithmetic circuits, for example. Alternatively, each of these units included in the control circuit 13 may be a functional module based on a program executed on the control circuit.
  • the speed measurement unit 21 Based on the detection signal from the rotary encoder 4, the speed measurement unit 21 measures the rotational speed of the DC motor 2 at the start of the stop process (hereinafter referred to as a brake start speed for convenience). For example, when the stop process is started, the speed measurement unit 21 counts the number of detection signals received during a certain period, and the rotation amount obtained by multiplying the number of detection signals by the sampling angle of the rotary encoder 4. The brake start speed is calculated by dividing by a certain period. The speed measuring unit 21 stores the calculated brake start speed in the register 12.
  • the duty ratio calculation unit 22 is an example of a brake value calculation unit, and calculates a duty ratio of a drive signal when the DC motor 2 is braked based on the required stop time and the brake start speed.
  • the duty ratio corresponds to an example of a brake value, and the DC motor 2 can be stopped in a shorter time as the duty ratio is higher.
  • the duty ratio when the brake is applied which is calculated by the duty ratio calculation unit 22, is referred to as a brake value.
  • the duty ratio calculation unit 22 calculates the brake value Vpwm [%] according to the following equation.
  • Kt is a torque constant of the DC motor 2 and a movable body (for example, a rotating reel) driven by the DC motor 2
  • Ke is a counter electromotive force constant of the DC motor 2.
  • Rm is a winding resistance of the DC motor 2
  • Vm is a drive voltage applied to the DC motor 2.
  • Tlt is the friction torque
  • d ⁇ ve is the reverse rotation speed when the DC motor 2 is continuously braked.
  • the friction torque Tlt is calculated according to the following equation and stored in the register 12 when the motor control device 1 performs an initialization operation, for example.
  • d ⁇ e is a rotational speed (final speed) that finally reaches and becomes constant when the DC motor 2 is driven at a constant duty ratio during the initialization operation, and during the initialization operation, It is measured by the speed measuring unit 21.
  • the duty ratio calculation unit 22 calculates the reverse rotation arrival speed d ⁇ ve according to the following equation.
  • d ⁇ bs is a brake start speed.
  • Tdn is the time required for stoppage.
  • is a time constant.
  • is measured during the initialization operation as the time required for the DC motor 2 to reach a rotational speed that is 63% of the final arrival speed d ⁇ e when the final arrival speed d ⁇ e is measured in the initialization operation. And stored in the register 12.
  • the duty ratio calculation unit 22 notifies the calculated brake value Vpwm to the rotation amount calculation unit 23 and also notifies the brake start determination unit 25 via the rotation amount calculation unit 23 and the brake start position determination unit 24.
  • the rotation amount calculation unit 23 calculates the total amount of rotation angle of the DC motor 2 during the period from when the DC motor 2 starts to be braked until the DC motor 2 stops (hereinafter referred to as braking (Referred to as rotation amount).
  • the rotation amount calculation unit 23 calculates the braking rotation amount ⁇ dn according to the following equation.
  • the rotation amount calculation unit 23 notifies the braking start position determination unit 24 of the braking rotation amount ⁇ dn.
  • the brake start position determination unit 24 determines a brake start timing, which is a timing at which braking starts on the DC motor 2, based on the braking rotation amount ⁇ dn and the current position and stop position of the movable body driven by the DC motor 2.
  • the movable body driven by the DC motor 2 is a rotary reel, and the surface of the rotary reel is divided into a plurality of partial areas along the rotation direction, and one symbol is represented for each partial area.
  • the brake start position is set so that the rotating reel stops in this way.
  • FIG. 6 is a diagram illustrating an example of a relationship between a stop position of a rotary reel, which is an example of a movable body driven by the DC motor 2, and a braking rotation amount ⁇ dn and a brake start position.
  • each of the three rotary reels 601 to 603 has a plurality of symbols 611 along the direction of rotation.
  • Each rotating reel rotates on the same rotating shaft. In FIG. 6, it is assumed that each rotary reel rotates so that the symbol 611 moves from top to bottom.
  • each rotating reel When each rotating reel stops, each rotating reel is driven so that any symbol stops at a stop position 612 common to each rotating reel. Therefore, for example, in order for the symbol 611a of the rightmost rotary reel 603 to stop at the stop position 612, a position (brake start position) preceding the stop position 612 by a rotation amount corresponding to the braking rotation amount ⁇ dn indicated by the arrow 613.
  • the brake may be started at the timing when the symbol 611a reaches 614.
  • the rotary reel 603 rotates until the symbol 611 a reaches the brake start position 614.
  • the rotating reel 603 is required to run idle by the amount of rotation indicated by the arrow 615.
  • the brake start position determination unit 24 calculates the difference in the current position from the stop position of the movable body driven by the DC motor 2, and sets the position obtained by subtracting the braking rotation amount from the difference as the brake start position.
  • the current position of the movable body can also be determined by adding, for example, the total amount of rotation from the start of rotation of the DC motor 2 to the current position at the initial position of the movable body.
  • the fact that the movable body has reached a predetermined position is detected by a proximity sensor (not shown) or an optical sensor that detects light reflected by a mirror provided on the movable body, and the movable body detects the predetermined position. It is determined by the total rotation amount of the DC motor 2 from when the position is reached (for example, when the movable body is a rotating reel, when a specific symbol appearing on the rotating reel reaches a predetermined position).
  • the total rotation amount is calculated by the total number of detection signals received from the rotary encoder 4 after the reference start timing (in the above example, the rotation start timing of the DC motor 2 or the timing when the movable body reaches a predetermined position). Is done.
  • the stop position is set according to the width of the symbol in the rotation direction. That is, when any of the symbols is located at the stop position 612, the stop position is a candidate. For example, when the surface of the rotating reel is equally divided into 12 areas along the rotating direction of the rotating reel, and one symbol is represented in each area, the rotation amount (rotating angle) is 30 ° every 30 °. There are stop position candidates. Therefore, the brake start position determination unit 24 may set the stop position candidate closest to the position obtained by adding the braking rotation amount to the current position of the movable body as the actual stop position.
  • the actual stop position is set so that the rotation amount from the current position of the movable body to the actual stop position is larger than the braking rotation amount.
  • the brake start position determination unit 24 next to the candidate of the stop position closest to the position obtained by adding the braking rotation amount to the current position of the movable body in order to secure a margin for the time required for the calculation during the stop process may be set as the actual stop position.
  • the brake start position determination unit 24 notifies the brake start determination unit 25 of the idling rotation amount that is the rotation amount from the current position of the movable body to the brake start position.
  • the brake start determination unit 25 is an example of a stop unit, determines the rotation amount of the DC motor 2 from the current position of the movable body based on the number of detection signals received from the rotary encoder 4, and determines the rotation amount as the idling rotation amount. Compare with Then, when the rotation amount reaches the idling rotation amount, the brake start determination unit 25 causes the drive signal generation circuit 14 to perform a rotation corresponding to the calculated brake value Vpwm with the rotation opposite to the current rotation direction. The output of the drive signal having the ratio is started. Then, the brake start determination unit 25 causes the drive signal generation circuit 14 to continue outputting the drive signal for the designated stop required time, thereby stopping the DC motor 2 and the movable body driven by the DC motor 2.
  • the control circuit 13 causes the drive signal generation circuit 14 to output a drive signal for maintaining the DC motor 2 in a stationary state. Also good.
  • FIG. 7 is a timing chart showing an example of the relationship between the time change of the position of the movable body and the time change of the rotational speed of the DC motor 2 and the drive signal.
  • the horizontal axis represents the position of the movable body, and in the second and bottom charts of FIG. 7, the horizontal axis represents time.
  • a broken line 701 represents a change over time in the rotational speed of the DC motor 2
  • a broken line 702 represents a change over time in the duty ratio of the drive signal output from the drive signal generation circuit 14.
  • the DC motor 2 rotates at a constant rotational speed (brake start speed) before starting the brake.
  • a drive signal having a duty ratio corresponding to the rotation speed is output.
  • FIG. 8 is an operation flowchart of a stop process executed by the motor control device 1. This stop process is executed each time the motor control device 1 receives a control command for stopping the rotation of the DC motor 2 from the host control device.
  • the speed measuring unit 21 measures the brake start speed based on the detection signal from the rotary encoder 4 (step S101). Further, the duty ratio calculation unit 22 calculates the brake value Vpwm based on the designated required stop time and brake start speed (step S102). Then, the rotation amount calculation unit 23 calculates the braking rotation amount d ⁇ n based on the calculated brake value Vpwm (step S103).
  • the brake start position determination unit 24 sets the candidate closest to the position where the DC motor 2 is rotated from the current position by the braking rotation amount d ⁇ n from the plurality of stop position candidates (step S104). Then, the brake start position determination unit 24 calculates the brake start position by subtracting the braking rotation amount d ⁇ n from the remaining rotation amount obtained by subtracting the current position from the stop position, and runs idle from the current position to the brake start position. A rotation amount is calculated (step S105).
  • the brake start determination unit 25 determines whether or not the rotation amount of the DC motor 2 from the current position has reached the idling rotation amount (step S106). If the rotation amount does not reach the idling rotation amount (No at Step S106), the brake start determination unit 25 updates the rotation amount based on the detection signal received from the rotary encoder 4 (Step S107). And the brake start determination part 25 repeats the process after step S106.
  • step S106 if the rotation amount has reached the idling rotation amount (step S106—Yes), the brake start determination unit 25 will send the drive signal generation circuit 14 of the DC motor 2 so far over the designated stop required time.
  • a drive signal opposite to the rotation direction and having a duty ratio corresponding to the brake value Vpwm is output to the motor drive circuit 3 that drives the DC motor 2 (step S108). Then, the control circuit 13 ends the stop process.
  • this motor control device calculates a brake value for stopping the DC motor in the specified required stop time according to the rotational speed of the DC motor. For this reason, the motor control device can stop the DC motor from rotating in the designated stop required time. Therefore, this motor control device can stop the movable body driven by the DC motor within the required stop time regardless of the rotational speed of the DC motor. As a result, this motor control device can suppress the feeling of the player when the movable body performs a slow operation by increasing the time required for the DC motor and the movable body to stop.
  • the brake start determination unit 25 calculates the brake value to the drive signal generation circuit 14 when the brake value is calculated.
  • the output of a drive signal having a duty ratio corresponding to may be started immediately.
  • the rotation amount calculation unit 23 and the brake start position determination unit 24 may be omitted.
  • the motor driving circuit 3 may be a circuit of a system for driving the DC motor 2 by pulse height modulation.
  • the control circuit 13 designates the pulse height to the drive signal generation circuit 14 so that a voltage having a pulse height corresponding to the target rotational speed or the brake value is applied to the DC motor 2.
  • a drive signal may be generated.
  • the motor control device may be mounted on a gaming machine such as a ball game machine or a spinning game machine.
  • FIG. 9 is a schematic perspective view of the spinning machine 100 including the motor control device according to the above-described embodiment or modification.
  • FIG. 10 is a schematic internal configuration diagram of the swing game machine 100.
  • the spinning machine 100 includes a main body housing 101 that is a main body of the gaming machine, a drum unit 102, a start lever 103, and stop buttons 104a to 104c.
  • the spinning machine 100 has a main body housing 101 with a control circuit 110 for controlling each part of the spinning machine 100 and three rotary reels 102a to 102c included in the drum unit 102.
  • Motor control devices 111-1 to 111-3 are included.
  • the motor control devices 111-1 to 111-3 can be the motor control devices according to the above-described embodiment or modification.
  • the spinning machine 100 temporarily stores medals according to control signals from a power supply circuit (not shown) that supplies power to each part of the spinning machine 100 and the control circuit, and discharges medals.
  • a medal storage and discharge mechanism (not shown).
  • An opening 105a is formed at the upper center of the front surface of the main body casing 101, and a part of the drum unit 102 is visible through the opening 105a.
  • a medal slot 105c for inserting medals is formed on the upper surface of the lower frame 105b of the opening 105a.
  • the drum unit 102 has three rotating reels 102a to 102c.
  • the rotating reels 102a to 102c are individually rotatable around a rotation axis (not shown) that is substantially parallel and substantially horizontal to the front surface of the main body housing 101, respectively.
  • the surfaces of the rotating reels 102a to 102c are each divided into a plurality of regions having substantially the same width along the rotation direction, and various symbols are drawn for each region, and some of the symbols are opened in the openings 105a. It is visible to the player via Further, each of the rotating reels 102a to 102c incorporates a direct current motor (not shown) and a motor drive circuit (not shown), and outputs a drive signal output from the corresponding motor control device 111-1 to 111-3. Accordingly, the rotating reel is rotated by the rotation of the DC motor.
  • the start lever 103 is provided on the left side of the front surface of the frame 105b of the main body housing 101. Further, stop buttons 104a to 104c are provided in the approximate center of the front surface of the frame 122. The stop buttons 104a to 104c correspond to the rotating reels 102a to 102c, respectively.
  • a medal discharge port 105d for discharging medals is formed at the lower part of the front surface of the main body casing 101.
  • a medal tray 105e for preventing the discharged medal from falling is attached below the medal discharge port 105d.
  • a signal indicating that the start lever 103 has been operated is transmitted to the control circuit 110.
  • the control circuit 110 transmits a control command for rotating the corresponding DC motor to the motor control devices 111-1 to 111-3.
  • the motor control devices 111-1 to 111-3 start the rotation of the rotary reels 102a to 102c.
  • the control circuit 110 outputs a signal indicating that the button has been pressed.
  • the rotation of the rotating reel corresponding to the pressed button is stopped.
  • the control circuit 110 stops the rotating reels of the rotating reels 102a to 102c, for which the corresponding stop button has not been pressed until the predetermined period elapses after the rotation starts, after the predetermined period elapses.
  • the control circuit 110 transmits a control command for stopping the DC motor that drives the rotating reel to the motor control device corresponding to the rotating reel whose rotation is stopped among the motor control devices 111-1 to 111-3. To do.
  • the motor control device that has received the control command stops the corresponding DC motor at the required stop time specified by the control command, and accordingly stops any of the symbols on the rotating reel at a predetermined stop position. .
  • the control circuit 110 discharges a predetermined number of medals corresponding to the symbol through the medal discharge port 105d.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Slot Machines And Peripheral Devices (AREA)
  • Stopping Of Electric Motors (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

A motor control device 1 has: a drive signal generation unit 14 that generates a drive signal in accordance with the rotational torque generated by a DC motor 2 and outputs the drive signal; a sensor interface unit 15 that receives a detection signal from a rotational angle sensor 4 for outputting the detection signal every time the DC motor 2 rotates by a predetermined rotational angle; a speed measuring unit 21 that measures the rotational speed of the DC motor 2 on the basis of the received detection signal; a brake value calculation unit 22 that calculates a brake value of the drive signal on the basis of a specified stop required time and the rotational speed, said brake value being used for stopping the DC motor 2 within a stop required time; and a stopping unit 25 that makes the drive signal generation unit 14 output the drive signal having the brake value over the stop required time.

Description

モータ制御装置及び遊技機Motor control device and game machine
 本発明は、直流モータを制御するためのモータ制御装置及びそのようなモータ制御装置を有する遊技機に関する。 The present invention relates to a motor control device for controlling a DC motor and a gaming machine having such a motor control device.
 回胴遊技機または弾球遊技機などの遊技機には、遊技者の興趣を高めるために、遊技者の視覚、聴覚または感覚に訴える演出を行うための工夫が凝らされている。特に、遊技者の視覚に訴える演出を行うために、遊技機には、可動体、例えば、可動役物あるいは回転リールが設けられることがある。このような可動体の移動範囲及び移動速度は演出に応じて予め設定されている。そのため、一般的に、1ステップ当たりの回転量が決まっており、かつ、ステップ単位で回転量を制御できるステッピングモータによって可動体は駆動される。そして上位制御装置(例えば、演出用のプロセッサユニット(以下、単に演出用CPUと呼ぶ)あるいは主制御装置)が、遊技の状態に応じて可動体が指定された位置へ移動する移動量に相当するステップ数だけステッピングモータを回転させる命令を、ステッピングモータの制御回路へ送信することで、ステッピングモータがそのステップ数だけ回転し、その結果として可動体が指定された位置へ移動する。特に、回転及び停止を厳密に制御することが要求される、回胴遊技機の回転リール(あるいはドラムとも呼ばれる)を駆動するために、ステッピングモータが用いられる(例えば、特許文献1を参照)。 In order to enhance the player's interest, game machines such as a spinning machine or a ball game machine have been devised to produce effects that appeal to the player's visual, auditory, or sensation. In particular, in order to produce an effect appealing to the player's vision, the gaming machine may be provided with a movable body, for example, a movable accessory or a rotating reel. Such moving range and moving speed of the movable body are set in advance according to the effects. Therefore, generally, the amount of rotation per step is determined, and the movable body is driven by a stepping motor that can control the amount of rotation in units of steps. The host control device (for example, a processor unit for production (hereinafter simply referred to as a production CPU) or a main control device) corresponds to the amount of movement by which the movable body moves to the designated position according to the state of the game. By transmitting a command to rotate the stepping motor by the number of steps to the control circuit of the stepping motor, the stepping motor rotates by the number of steps, and as a result, the movable body moves to the designated position. In particular, a stepping motor is used to drive a rotating reel (also referred to as a drum) of a spinning-reel game machine that requires precise control of rotation and stop (see, for example, Patent Document 1).
特開2016-185414号公報JP 2016-185414 A
 また近年、遊技者の興趣を高めるために、回転リールの回転速度を速くすることも検討されている。回転リールの回転速度を速くするためには、ステッピングモータよりも高いトルクを得ることが可能で、より高速に回転させることが容易な直流モータを、回転リールを駆動するために用いることが好ましい。 In recent years, in order to increase the interest of the player, it has been studied to increase the rotation speed of the rotating reel. In order to increase the rotation speed of the rotating reel, it is preferable to use a DC motor that can obtain a higher torque than the stepping motor and can be rotated at a higher speed to drive the rotating reel.
 しかし、直流モータを用いて回転リールの回転速度を速くする場合でも、回転リールは、停止することが指示されてから、指定された所要時間で停止することが要求される。回転速度が速くなるにつれて停止するまでの所要時間が長くなると、遊技者は、回転リールが緩慢な動作をしているように感じ、遊技者の興趣が削がれるおそれがあるためである。 However, even when the rotational speed of the rotating reel is increased using a DC motor, the rotating reel is required to stop at a specified time after it is instructed to stop. This is because if the time required to stop as the rotation speed increases, the player feels that the rotating reel is performing a slow operation, and the player's interest may be lost.
 そこで、本発明は、回転中の直流モータを指定された所要時間で停止させることが可能なモータ制御装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a motor control device capable of stopping a rotating DC motor in a specified required time.
 本発明の一つの形態として、直流モータを制御するモータ制御装置が提供される。このモータ制御装置は、直流モータが生じる回転トルクに応じた駆動信号を生成し、その駆動信号を出力する駆動信号生成部と、直流モータが所定の回転角度だけ回転する度に検知信号を出力する回転角センサから検知信号を受信するセンサインターフェース部と、受信した検知信号に基づいて直流モータの回転速度を計測する速度計測部と、指定された停止所要時間と回転速度とに基づいて、停止所要時間で直流モータを停止させるための駆動信号のブレーキ値を算出するブレーキ値算出部と、停止所要時間にわたってそのブレーキ値を持つ駆動信号を駆動信号生成部に出力させる停止部とを有する。 As one form of the present invention, a motor control device for controlling a DC motor is provided. The motor control device generates a drive signal corresponding to the rotational torque generated by the DC motor, outputs a drive signal, and outputs a detection signal every time the DC motor rotates by a predetermined rotation angle. A sensor interface unit that receives a detection signal from the rotation angle sensor, a speed measurement unit that measures the rotational speed of the DC motor based on the received detection signal, and a stop required based on the specified stop required time and rotation speed A brake value calculation unit that calculates a brake value of a drive signal for stopping the DC motor in time, and a stop unit that outputs a drive signal having the brake value over the required stop time to the drive signal generation unit.
 このモータ制御装置は、計測された直流モータの回転速度とブレーキ値とに基づいて、直流モータがその回転速度で回転している状態から停止するまでの直流モータの制動回転量を算出する制動回転量算出部と、直流モータが駆動する可動体が停止する停止位置と、可動体の現在位置と、制動回転量とに基づいて、可動体の現在位置からブレーキ値を持つ駆動信号の出力を開始するまでに直流モータが回転する空走回転量を算出するブレーキ開始位置決定部とをさらに有することが好ましい。この場合において、停止部は、可動体の現在位置からの直流モータの回転量が空走回転量に達したときに、ブレーキ値を持つ駆動信号の出力を駆動信号生成部に開始させることが好ましい。 This motor control device calculates the braking rotation amount of the DC motor from the state where the DC motor is rotating at the rotation speed to the stop based on the measured rotation speed and brake value of the DC motor. Based on the amount calculation unit, the stop position where the movable body driven by the DC motor stops, the current position of the movable body, and the braking rotation amount, output of a drive signal having a brake value is started from the current position of the movable body It is preferable to further include a brake start position determination unit that calculates the idling rotation amount by which the DC motor rotates until this time. In this case, it is preferable that the stop unit causes the drive signal generation unit to start outputting a drive signal having a brake value when the rotation amount of the DC motor from the current position of the movable body reaches the idle rotation amount. .
 またこのモータ制御装置において、ブレーキ開始位置決定部は、可動体の停止位置の複数の候補のうち、可動体の現在位置から制動回転量だけ直流モータが回転したときの可動体の位置に最も近い候補を停止位置とすることが好ましい。 Further, in this motor control device, the brake start position determination unit is closest to the position of the movable body when the DC motor is rotated by the braking rotation amount from the current position of the movable body among the plurality of candidates for the stop position of the movable body. It is preferable to set the candidate as a stop position.
 さらに、このモータ制御装置は、停止所要時間を含む制御コマンドを上位制御装置から受信する通信部を有することが好ましい。 Furthermore, it is preferable that the motor control device has a communication unit that receives a control command including a required stop time from the host control device.
 本発明の他の形態として、遊技機本体と、遊技機本体内に回転可能に配置される回転リールと、回転リールを駆動する直流モータと、直流モータが所定の回転角度だけ回転する度に検知信号を出力する回転角センサと、直流モータを制御するモータ制御装置とを有する遊技機が提供される。この遊技機において、モータ制御装置は、直流モータが生じる回転トルクに応じた駆動信号を生成し、その駆動信号を出力する駆動信号生成部と、回転角センサから検知信号を受信するセンサインターフェース部と、受信した検知信号に基づいて直流モータの回転速度を計測する速度計測部と、指定された停止所要時間と回転速度とに基づいて、停止所要時間で直流モータを停止させるための駆動信号のブレーキ値を算出するブレーキ値算出部と、停止所要時間にわたってそのブレーキ値を持つ駆動信号を駆動信号生成部に出力させる停止部とを有する。 As another aspect of the present invention, a gaming machine main body, a rotating reel that is rotatably arranged in the gaming machine main body, a DC motor that drives the rotating reel, and a detection each time the DC motor rotates by a predetermined rotation angle. A gaming machine having a rotation angle sensor that outputs a signal and a motor control device that controls a DC motor is provided. In this gaming machine, the motor control device generates a drive signal corresponding to the rotational torque generated by the DC motor, outputs the drive signal, and a sensor interface unit receives the detection signal from the rotation angle sensor. , A speed measuring unit that measures the rotational speed of the DC motor based on the received detection signal, and a drive signal brake for stopping the DC motor within the required stop time based on the specified stop required time and rotational speed A brake value calculation unit that calculates a value, and a stop unit that causes the drive signal generation unit to output a drive signal having the brake value over the required stop time.
 本発明に係るモータ制御装置は、回転中の直流モータを指定された所要時間で停止させることができるという効果を奏する。 The motor control device according to the present invention has an effect that the rotating DC motor can be stopped in a specified required time.
図1は、本発明の一つの実施形態に係るモータ制御装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a motor control device according to one embodiment of the present invention. 図2は、モータ駆動回路の回路図である。FIG. 2 is a circuit diagram of the motor drive circuit. 図3は、モータ駆動回路の各スイッチに印加される駆動信号と直流モータの回転方向との関係を表すテーブルの一例を示す図である。FIG. 3 is a diagram illustrating an example of a table representing the relationship between the drive signal applied to each switch of the motor drive circuit and the rotation direction of the DC motor. 図4は、制御コマンドのフォーマットの一例を示す図である。FIG. 4 is a diagram illustrating an example of the format of the control command. 図5は、制御回路の機能ブロック図である。FIG. 5 is a functional block diagram of the control circuit. 図6は、直流モータにより駆動される可動体の一例である回転リールの停止位置と、制動回転量及びブレーキ開始タイミングの関係の一例を示す図である。FIG. 6 is a diagram illustrating an example of a relationship between a stop position of a rotary reel, which is an example of a movable body driven by a DC motor, a braking rotation amount, and a brake start timing. 図7は、可動体の位置の時間変化と、直流モータの回転速度及び駆動信号の時間変化との関係の一例を表すタイミングチャートである。FIG. 7 is a timing chart showing an example of the relationship between the time change of the position of the movable body and the time change of the rotational speed of the DC motor and the drive signal. 図8は、モータ制御処理の動作フローチャートである。FIG. 8 is an operation flowchart of the motor control process. 図9は、本発明の実施形態または変形例に係るモータ制御装置を備えた回胴遊技機の概略斜視図である。FIG. 9 is a schematic perspective view of a rotating game machine including a motor control device according to an embodiment or a modification of the present invention. 図10は、本発明の実施形態または変形例に係るモータ制御装置を備えた回胴遊技機の概略内部構成図である。FIG. 10 is a schematic internal configuration diagram of the spinning machine including the motor control device according to the embodiment or the modification of the present invention.
 以下、本発明の一つの実施形態によるモータ制御装置を、図を参照しつつ説明する。このモータ制御装置は、例えば、回胴遊技機に実装され、回胴遊技機が有する、可動体の一例である回転リールを駆動する直流モータを制御する。そしてこのモータ制御装置は、上位制御装置から、直流モータを停止する制御コマンドを受信すると、回転中の直流モータを、指定された所要時間で停止させる。 Hereinafter, a motor control device according to an embodiment of the present invention will be described with reference to the drawings. This motor control device is mounted on, for example, a spinning machine, and controls a DC motor that drives a rotating reel, which is an example of a movable body, included in the spinning machine. When the motor control device receives a control command for stopping the DC motor from the host control device, the motor control device stops the rotating DC motor for a specified required time.
 図1は、本発明の一つの実施形態に係るモータ制御装置の概略構成図である。図1に示されるように、モータ制御装置1は、通信回路11と、レジスタ12と、制御回路13と、駆動信号生成回路14と、センサインターフェース回路15とを有する。
 モータ制御装置1が有するこれらの各部は、それぞれ、別個の回路として回路基板(図示せず)上に実装されてもよく、あるいは、これらの各部が集積された集積回路として回路基板上に実装されてもよい。
FIG. 1 is a schematic configuration diagram of a motor control device according to one embodiment of the present invention. As shown in FIG. 1, the motor control device 1 includes a communication circuit 11, a register 12, a control circuit 13, a drive signal generation circuit 14, and a sensor interface circuit 15.
Each of these units included in the motor control device 1 may be mounted on a circuit board (not shown) as a separate circuit, or may be mounted on the circuit board as an integrated circuit in which these units are integrated. May be.
 モータ制御装置1は、上位制御装置から受信した制御コマンドに従って、直流モータ2を制御する。具体的には、モータ制御装置1は、その制御コマンドで指定された目標回転速度で直流モータ2を回転させる。本実施形態では、モータ制御装置1は、パルス幅変調(PWM)方式により生成され、直流モータ2に対する電力の供給のオン/オフを切り替える駆動信号を、直流モータ2へ電力供給するモータ駆動回路3へ出力することで、直流モータ2の回転速度を制御する。すなわち、駆動信号は、直流モータ2が生じる回転トルクの大きさに応じた値(本実施形態では、デューティ比)を持つ。駆動信号のデューティ比が大きいほど、直流モータ2へ供給される電力も増加し、直流モータ2が生じる回転トルクも大きくなり、その結果として、直流モータ2の回転速度も速くなる。そしてモータ制御装置1は、ロータリーエンコーダ4から、直流モータ2の回転軸(図示せず)が所定の角度回転する度に、その所定の角度回転したことを示す検知信号を受信して、その検知信号に基づいて直流モータ2の回転速度を算出する。そしてモータ制御装置1は、直流モータ2を停止させる制御コマンドを受信すると、その時点での直流モータ2の回転速度などに基づいて、指定された所要時間で直流モータ2を停止させるための駆動信号の値であるブレーキ値、直流モータ2にブレーキをかけ始めるブレーキ開始位置などを算出し、そのブレーキ値及びブレーキ開始位置に従って直流モータ2を停止させる。 The motor control device 1 controls the DC motor 2 according to the control command received from the host control device. Specifically, the motor control device 1 rotates the DC motor 2 at the target rotational speed designated by the control command. In the present embodiment, the motor control device 1 is generated by a pulse width modulation (PWM) method, and a motor drive circuit 3 that supplies power to the DC motor 2 with a drive signal for switching on / off of power supply to the DC motor 2. To control the rotational speed of the DC motor 2. That is, the drive signal has a value (in this embodiment, a duty ratio) corresponding to the magnitude of the rotational torque generated by the DC motor 2. As the duty ratio of the drive signal increases, the power supplied to the DC motor 2 also increases, and the rotational torque generated by the DC motor 2 also increases. As a result, the rotational speed of the DC motor 2 also increases. The motor control device 1 receives from the rotary encoder 4 a detection signal indicating that the rotating shaft (not shown) of the DC motor 2 has rotated a predetermined angle every time the rotary shaft rotates. Based on the signal, the rotational speed of the DC motor 2 is calculated. When the motor control device 1 receives the control command for stopping the DC motor 2, the drive signal for stopping the DC motor 2 for a specified required time based on the rotational speed of the DC motor 2 at that time or the like. The brake value that is the value of B, the brake start position where the DC motor 2 starts to be braked, and the like are calculated, and the DC motor 2 is stopped according to the brake value and the brake start position.
 図2は、モータ駆動回路3の回路図である。モータ駆動回路3は、4個のスイッチTR1~TR4を有する。なお、各スイッチは、例えば、トランジスタまたは電界効果トランジスタとすることができる。このうち、二つのスイッチTR1及びTR3が、電源とグラウンドとの間に直列に接続される。同様に、二つのスイッチTR2及びTR4が、電源とグラウンドとの間に直列に接続される。そして直流モータ2の正極側端子は、スイッチTR1とTR3の間に接続され、一方、直流モータ2の負極側端子は、スイッチTR2とTR4の間に接続される。そして各スイッチTR1~TR4のスイッチ端子(例えば、スイッチTR1~TR4がトランジスタであれば、ベース端子に相当し、スイッチTR1~TR4が電界効果トランジスタであれば、ゲート端子に相当)は、それぞれ、駆動信号生成回路14に接続される。そして駆動信号生成回路14からの駆動信号は、各スイッチTR1~TR4のスイッチ端子に入力される。 FIG. 2 is a circuit diagram of the motor drive circuit 3. The motor drive circuit 3 has four switches TR1 to TR4. Each switch may be a transistor or a field effect transistor, for example. Among these, two switches TR1 and TR3 are connected in series between the power supply and the ground. Similarly, two switches TR2 and TR4 are connected in series between the power supply and ground. The positive terminal of the DC motor 2 is connected between the switches TR1 and TR3, while the negative terminal of the DC motor 2 is connected between the switches TR2 and TR4. The switch terminals of the switches TR1 to TR4 (for example, if the switches TR1 to TR4 are transistors are equivalent to base terminals, and if the switches TR1 to TR4 are field effect transistors are equivalent to gate terminals) are respectively driven. Connected to the signal generation circuit 14. The drive signal from the drive signal generation circuit 14 is input to the switch terminals of the switches TR1 to TR4.
 図3は、各スイッチに印加される駆動信号と直流モータ2の回転方向との関係を表すテーブルの一例を示す図である。
 テーブル300に示されるように、直流モータ2を正転させる場合、スイッチTR1のスイッチ端子とスイッチTR4のスイッチ端子とに、PWM方式に従って設定された、直流モータ2の回転速度に応じたパルス幅を持つ、周期的なパルスを含む駆動信号が印加される。一方、スイッチTR2のスイッチ端子及びスイッチTR3のスイッチ端子には駆動信号が印加されない。これにより、直流モータ2には、スイッチTR1とスイッチTR4とにパルスが印加されている間のみ、正極側端子に電源電圧が印加されるので、直流モータ2は、そのパルス幅に応じた速度で正転する。
 なお、直流モータ2を正転させる場合、スイッチTR1とTR4のうちの何れか一方に駆動信号を印加し、他方を常時オンとしてもよい。
FIG. 3 is a diagram illustrating an example of a table representing the relationship between the drive signal applied to each switch and the rotation direction of the DC motor 2.
As shown in the table 300, when the DC motor 2 is rotated forward, the pulse width corresponding to the rotational speed of the DC motor 2 set according to the PWM method is set on the switch terminal of the switch TR1 and the switch terminal of the switch TR4. A drive signal including a periodic pulse is applied. On the other hand, no drive signal is applied to the switch terminal of the switch TR2 and the switch terminal of the switch TR3. Thus, since the power supply voltage is applied to the positive terminal only while the pulse is applied to the switch TR1 and the switch TR4, the DC motor 2 is at a speed corresponding to the pulse width. Rotate forward.
When the DC motor 2 is rotated forward, a drive signal may be applied to one of the switches TR1 and TR4 and the other is always on.
 一方、直流モータ2を逆転させる場合、スイッチTR2のスイッチ端子とスイッチTR3のスイッチ端子とに、PWM方式に従って設定された、直流モータ2の回転速度に応じた周期的なパルスを持つ駆動信号が印加される。一方、スイッチTR1のスイッチ端子及びスイッチTR4のスイッチ端子には駆動信号が印加されない。これにより、直流モータ2には、スイッチTR2とスイッチTR3とにパルスが印加されている間のみ、負極側端子に電源電圧が印加されるので、直流モータ2は、そのパルス幅に応じた速度で逆転する。
 なお、直流モータ2を逆転させる場合、スイッチTR2とTR3のうちの何れか一方に駆動信号を印加し、他方を常時オンとしてもよい。
On the other hand, when the DC motor 2 is reversed, a drive signal having a periodic pulse according to the rotational speed of the DC motor 2 set according to the PWM method is applied to the switch terminal of the switch TR2 and the switch terminal of the switch TR3. Is done. On the other hand, no drive signal is applied to the switch terminal of the switch TR1 and the switch terminal of the switch TR4. As a result, since the power supply voltage is applied to the negative terminal only while the pulses are applied to the switch TR2 and the switch TR3, the DC motor 2 is at a speed corresponding to the pulse width. Reverse.
When the DC motor 2 is reversely rotated, a drive signal may be applied to one of the switches TR2 and TR3, and the other may be always on.
 本実施形態では、直流モータ2が正転しているときに直流モータ2にブレーキをかける場合には、駆動信号生成回路14は、直流モータ2を逆転させる駆動信号をモータ駆動回路3へ出力する。逆に、直流モータ2が逆転しているときに直流モータ2にブレーキをかける場合には、駆動信号生成回路14は、直流モータ2を正転させる駆動信号をモータ駆動回路3へ出力する。 In the present embodiment, when the DC motor 2 is braked while the DC motor 2 is rotating forward, the drive signal generation circuit 14 outputs a drive signal for rotating the DC motor 2 to the motor drive circuit 3. . Conversely, when the DC motor 2 is braked when the DC motor 2 is rotating in reverse, the drive signal generation circuit 14 outputs a drive signal for causing the DC motor 2 to rotate forward to the motor drive circuit 3.
 また、直流モータ2の静止状態を維持する場合、スイッチTR3のスイッチ端子とスイッチTR4のスイッチ端子とがオンにされ、スイッチTR1のスイッチ端子とスイッチTR2のスイッチ端子とがオフにされる。 Further, when the DC motor 2 is kept stationary, the switch terminal of the switch TR3 and the switch terminal of the switch TR4 are turned on, and the switch terminal of the switch TR1 and the switch terminal of the switch TR2 are turned off.
 さらに、直流モータ2を駆動しない場合には、各スイッチのスイッチ端子はオフにされる。 Furthermore, when the DC motor 2 is not driven, the switch terminal of each switch is turned off.
 ロータリーエンコーダ4は、回転角センサの一例であり、例えば、光学式のロータリーエンコーダとすることができる。そしてロータリーエンコーダ4は、例えば、直流モータ2の回転軸に取り付けられた、その回転軸を中心とする円周方向に沿って複数のスリットを有する円盤と、その円盤を挟んで対向するように配置された光源と受光素子とを有する。そして光源と受光素子との間に何れかのスリットが位置する度に、光源からの光が受光素子に達することで、ロータリーエンコーダ4は、パルス状の検知信号を出力する。これにより、ロータリーエンコーダ4は、直流モータ2が所定のサンプリング角度回転する度に検知信号を出力する。例えば、直流モータ2の回転軸を中心とする円周方向に沿って、円盤に50個のスリットが設けられることで、ロータリーエンコーダ4は、直流モータ2の回転軸が1回転する間に50個の検知信号を出力する。 The rotary encoder 4 is an example of a rotation angle sensor, and can be, for example, an optical rotary encoder. The rotary encoder 4 is, for example, disposed so as to be opposed to a disk attached to the rotating shaft of the DC motor 2 and having a plurality of slits along a circumferential direction around the rotating shaft. A light source and a light receiving element. Each time any slit is positioned between the light source and the light receiving element, the light from the light source reaches the light receiving element, whereby the rotary encoder 4 outputs a pulsed detection signal. Thereby, the rotary encoder 4 outputs a detection signal every time the DC motor 2 rotates by a predetermined sampling angle. For example, by providing 50 slits in the disk along the circumferential direction around the rotation axis of the DC motor 2, the rotary encoder 4 has 50 pieces while the rotation shaft of the DC motor 2 makes one rotation. The detection signal is output.
 以下、モータ制御装置1の各部について説明する。 Hereinafter, each part of the motor control device 1 will be described.
 通信回路11は、例えば、モータ制御装置1を上位制御装置と接続する。上位制御装置は、例えば、モータ制御装置1が実装された遊技機の主制御回路または演出用CPUである。そして通信回路11は、上位制御装置から、シリアル伝送される複数のビットを持つ制御コマンドを受信する。なお、通信回路11は、制御コマンドを解析するために、制御コマンドに含まれる複数のビットのそれぞれと同期を取るためのクロック信号も、上位制御装置から受信してもよい。
 制御コマンドは、例えば、直流モータ2の回転開始あるいは停止の指示、直流モータ2の目標回転速度、あるいは、直流モータ2が回転している状態から停止するまでの所要時間といった、直流モータ2の動作を特定するための動作情報などを含む。なお、以下では、便宜上、直流モータ2が回転している状態において、直流モータ2にブレーキをかけ始めてから停止するまでの所要時間を単に停止所要時間と呼ぶ。
 クロック信号は、例えば、制御コマンド中の所定数のビットごとに、矩形状のパルスを持つ信号とすることができる。
For example, the communication circuit 11 connects the motor control device 1 to a host control device. The host control device is, for example, a main control circuit or an effect CPU of a gaming machine on which the motor control device 1 is mounted. The communication circuit 11 receives a control command having a plurality of bits that are serially transmitted from the host controller. Note that the communication circuit 11 may also receive a clock signal for synchronizing with each of a plurality of bits included in the control command from the host control device in order to analyze the control command.
The control command is an operation of the DC motor 2 such as an instruction to start or stop the rotation of the DC motor 2, a target rotation speed of the DC motor 2, or a time required for the DC motor 2 to stop after rotating. The operation information for specifying In the following, for the sake of convenience, in the state where the DC motor 2 is rotating, the required time from when the brake is applied to the DC motor 2 until it stops is simply referred to as the required stop time.
The clock signal can be, for example, a signal having a rectangular pulse for every predetermined number of bits in the control command.
 図4は、制御コマンドのフォーマットの一例を示す図である。図4に示されるように、動作情報を含む制御コマンド400は、先頭から順に、STARTフラグ401と、デバイスアドレス402と、回転停止フラグ403と、制御データ404と、ENDフラグ405とを有する。さらに、制御コマンド400は、隣接するフラグ、アドレス及びデータ間に、例えば'0'の値を持つ1ビットのスペーサを含んでもよい。 FIG. 4 is a diagram showing an example of the format of the control command. As shown in FIG. 4, the control command 400 including the operation information includes a START flag 401, a device address 402, a rotation stop flag 403, control data 404, and an END flag 405 in order from the top. Further, the control command 400 may include a 1-bit spacer having a value of, for example, “0” between adjacent flags, addresses, and data.
 STARTフラグ401は、制御コマンド400の先頭であることを表すビット列であり、本実施形態では、'1'の値を持つ9個のビットが連続したビット列である。なお、STARTフラグ401は、制御コマンド400内の任意の他の何れのビット列とも一致しないビット列であればよい。
 デバイスアドレス402は、制御コマンド400が制御対象とするモータ制御装置を特定するための識別情報であり、本実施形態では、8ビット長のビット列で表される。デバイスアドレス402は、通信回路11により、上位制御装置から別途受信する識別アドレスと一致するか否か判定され、一致する場合、モータ制御装置1が制御コマンド400の制御対象であると判定される。
The START flag 401 is a bit string indicating the head of the control command 400, and in the present embodiment, nine bits having a value of “1” are consecutive bit strings. The START flag 401 may be a bit string that does not match any other bit string in the control command 400.
The device address 402 is identification information for specifying the motor control device to be controlled by the control command 400, and is represented by a bit string having an 8-bit length in this embodiment. The device address 402 is determined by the communication circuit 11 as to whether or not it matches the identification address separately received from the host control device. If they match, it is determined that the motor control device 1 is the control target of the control command 400.
 回転停止フラグ403は、直流モータ2を回転させるか停止させるかを表す1ビットのフラグである。本実施形態では、回転停止フラグ403が'0'であれば、制御コマンドは直流モータ2の現在の状態にかかわらず、直流モータ2を回転させることを指示し、回転停止フラグ403が'1'であれば、制御コマンドは、直流モータ2を停止させることを指示する。 The rotation stop flag 403 is a 1-bit flag indicating whether the DC motor 2 is to be rotated or stopped. In this embodiment, if the rotation stop flag 403 is “0”, the control command instructs to rotate the DC motor 2 regardless of the current state of the DC motor 2, and the rotation stop flag 403 is “1”. If so, the control command instructs the DC motor 2 to stop.
 制御データ404は、モータ制御装置1が制御する直流モータ2の動作情報を含む。例えば、回転停止フラグが直流モータ2を回転させることを指示する値を有する場合、制御データ404は、直流モータ2の回転方向を表す回転方向フラグと、直流モータ2の目標回転速度を表す速度データとを含む。一方、回転停止フラグが直流モータ2を停止させることを指示する値を有する場合、制御データ404は、停止所要時間を表す停止所要時間データを含む。 The control data 404 includes operation information of the DC motor 2 controlled by the motor control device 1. For example, when the rotation stop flag has a value indicating that the DC motor 2 is rotated, the control data 404 includes a rotation direction flag indicating the rotation direction of the DC motor 2 and speed data indicating the target rotation speed of the DC motor 2. Including. On the other hand, when the rotation stop flag has a value indicating that the DC motor 2 is to be stopped, the control data 404 includes stop required time data indicating the stop required time.
 回転方向フラグは、例えば、1ビットのフラグであり、回転方向フラグが'0'であれば、モータ制御装置1は、直流モータ2を正転させ、一方、回転方向フラグが'1'であれば、モータ制御装置1は、直流モータ2を逆転させる。 The rotation direction flag is, for example, a 1-bit flag. If the rotation direction flag is “0”, the motor control device 1 causes the DC motor 2 to rotate forward, while the rotation direction flag is “1”. For example, the motor control device 1 reversely rotates the DC motor 2.
 速度データは、例えば、4ビット長のビット列であり、'0'~'15'の何れかの値となる。そして速度データの値と目標回転速度とは1対1に対応し、モータ制御装置1は、例えば、速度データの値と回転速度との対応関係を表す参照テーブルを参照することで、速度データの値に対応する目標回転速度を決定する。そしてモータ制御装置1は、その目標回転速度で直流モータ2を回転させる。例えば、速度データの値が大きいほど、目標回転速度も速くなる。 The speed data is, for example, a 4-bit long bit string and takes any value from “0” to “15”. The value of the speed data and the target rotational speed are in a one-to-one correspondence, and the motor control device 1 refers to a reference table that represents the correspondence relationship between the value of the speed data and the rotational speed, for example. The target rotational speed corresponding to the value is determined. The motor control device 1 rotates the DC motor 2 at the target rotation speed. For example, the larger the value of the speed data, the faster the target rotation speed.
 停止所要時間データは、例えば、4ビット長のビット列であり、'0'~'15'の何れかの値となる。そして停止所要時間データの値と停止所要時間とは1対1に対応し、モータ制御装置1は、例えば、停止所要時間データの値と実際の停止所要時間との対応関係を表す参照テーブルを参照することで、停止所要時間データの値に対応する停止所要時間を決定する。そしてモータ制御装置1は、その停止所要時間で直流モータ2を停止させる。例えば、停止所要時間データの値が大きいほど、停止所要時間も長くなる。したがって、上位制御装置は、制御コマンドの停止所要時間データの値を変更することで、停止所要時間を調節できる。 The stop required time data is, for example, a 4-bit long bit string and takes any value from '0' to '15'. The value of the required stop time data and the required stop time have a one-to-one correspondence, and the motor control device 1 refers to, for example, a reference table representing the correspondence between the value of the required stop time data and the actual required stop time. Thus, the required stop time corresponding to the value of the required stop time data is determined. Then, the motor control device 1 stops the DC motor 2 within the required stop time. For example, the longer the required stop time, the longer the required stop time. Therefore, the host control device can adjust the stop required time by changing the value of the stop required time data of the control command.
 ENDフラグ405は、制御コマンド400の終端であることを表すビット列である。ENDフラグ405は、制御コマンドに含まれる、STARTフラグ及び他のビット列と一致しないビット列であればよい。 The END flag 405 is a bit string indicating the end of the control command 400. The END flag 405 may be a bit string that does not match the START flag and other bit strings included in the control command.
 なお、停止所要時間は、直流モータ2を停止させる制御コマンドとは別個に、モータ制御装置1へ予め通知されてもよい。例えば、上位制御装置からモータ制御装置1へ通知される、各種の設定情報を含む制御コマンドに、停止所要時間が含まれてもよい。この場合には、上位制御装置は、直流モータ2を停止させる度に停止所要時間を通知しなくても済むので、モータ制御装置1及び直流モータ2の制御が簡単化される。あるいは、停止所要時間は、モータ制御装置1が有するレジスタ12に予め記憶されていてもよい。 Note that the required stop time may be notified in advance to the motor control device 1 separately from the control command for stopping the DC motor 2. For example, the stop required time may be included in a control command including various setting information notified from the host control device to the motor control device 1. In this case, the host control device does not need to notify the required stop time each time the DC motor 2 is stopped, so that the control of the motor control device 1 and the DC motor 2 is simplified. Alternatively, the required stop time may be stored in advance in the register 12 included in the motor control device 1.
 さらに、通信回路11は、モータ制御装置1が制御する直流モータ2について、レジスタ12に記憶されている制御コマンドが一つ実行されると、その制御セットが実行されたことを示す命令完了信号を上位制御装置へ出力してもよい。命令完了信号は、例えば、単パルス信号とすることができる。 Further, when one control command stored in the register 12 is executed for the DC motor 2 controlled by the motor control device 1, the communication circuit 11 sends an instruction completion signal indicating that the control set has been executed. You may output to a high-order control apparatus. The command completion signal can be a single pulse signal, for example.
 レジスタ12は、通信回路11により書き込まれた、直流モータ2の制御コマンドに含まれる制御データ、及び、直流モータ2を回転または停止させるために必要な各種の情報を記憶する。そのために、レジスタ12は、例えば、揮発性の読み書き可能なメモリ回路と、不揮発性の読み出し専用のメモリ回路とを有する。
 なお、レジスタ12は、制御コマンドに含まれる制御データが制御回路13により読み出されるとその制御データを消去してもよい。
The register 12 stores control data included in the control command for the DC motor 2 written by the communication circuit 11 and various information necessary for rotating or stopping the DC motor 2. For this purpose, the register 12 includes, for example, a volatile readable / writable memory circuit and a nonvolatile read-only memory circuit.
The register 12 may erase the control data when the control data included in the control command is read by the control circuit 13.
 制御回路13は、例えば、プロセッサ及び不揮発性のメモリ回路を有する。そして制御回路13は、レジスタ12から読み出した制御データを参照して、直流モータ2の回転方向を決定する。また制御回路13は、制御データ及びロータリーエンコーダ4からの検知信号に基づいて、駆動信号のデューティ比を決定する。そして制御回路13は、回転方向及びデューティ比を駆動信号生成回路14へ通知する。 The control circuit 13 includes, for example, a processor and a nonvolatile memory circuit. Then, the control circuit 13 refers to the control data read from the register 12 and determines the rotation direction of the DC motor 2. The control circuit 13 determines the duty ratio of the drive signal based on the control data and the detection signal from the rotary encoder 4. Then, the control circuit 13 notifies the drive signal generation circuit 14 of the rotation direction and the duty ratio.
 駆動信号のデューティ比を決定するために、制御回路13は、メモリ回路に予め記憶されている、速度データの値とデューティ比との対応関係を表した速度テーブルを参照することにより、速度データに対応するデューティ比を、目標回転速度に対応するデューティ比とする。 In order to determine the duty ratio of the drive signal, the control circuit 13 refers to a speed table that represents a correspondence relationship between the value of the speed data and the duty ratio that is stored in advance in the memory circuit. The corresponding duty ratio is set as the duty ratio corresponding to the target rotation speed.
 また制御回路13は、モータ制御装置1が直流モータ2を停止させる制御コマンドを受信すると、指定された停止所要時間で直流モータ2を停止させる。なお、直流モータ2を停止させる処理の詳細については後述する。 Further, when the motor control device 1 receives the control command for stopping the DC motor 2, the control circuit 13 stops the DC motor 2 for the designated stop time. Details of the process for stopping the DC motor 2 will be described later.
 駆動信号生成回路14は、例えば、出力するパルスの幅を変更可能な可変パルス生成回路と、可変パルス生成回路により生成された、駆動信号である周期的なパルス信号を、モータ駆動回路3の何れのスイッチへ出力するかを切り替えるスイッチ回路とを有する。そして駆動信号生成回路14は、制御回路13から通知されたデューティ比に従って、直流モータ2を駆動するための駆動信号をPWM方式に従って生成し、その駆動信号をモータ駆動回路3の何れかのスイッチへ出力する。なお、駆動信号の1周期の長さは、例えば、50μ秒である。例えば、制御回路13から通知された回転方向が正転である場合、駆動信号生成回路14は、モータ駆動回路3のスイッチTR1とTR4へ周期的なパルス信号を出力する。一方、制御回路13から通知された回転方向が逆転である場合、駆動信号生成回路14は、モータ駆動回路3のスイッチTR2とTR3へ周期的なパルス信号を出力する。 The drive signal generation circuit 14 includes, for example, a variable pulse generation circuit that can change the width of an output pulse, and a periodic pulse signal that is a drive signal generated by the variable pulse generation circuit. And a switch circuit for switching whether to output to the switch. Then, the drive signal generation circuit 14 generates a drive signal for driving the DC motor 2 according to the PWM method in accordance with the duty ratio notified from the control circuit 13, and sends the drive signal to any switch of the motor drive circuit 3. Output. Note that the length of one cycle of the drive signal is, for example, 50 μsec. For example, when the rotation direction notified from the control circuit 13 is normal rotation, the drive signal generation circuit 14 outputs periodic pulse signals to the switches TR1 and TR4 of the motor drive circuit 3. On the other hand, when the rotation direction notified from the control circuit 13 is reverse, the drive signal generation circuit 14 outputs periodic pulse signals to the switches TR2 and TR3 of the motor drive circuit 3.
 センサインターフェース回路15は、ロータリーエンコーダ4からの検知信号を受信するインターフェース回路を有する。そしてセンサインターフェース回路15は、検知信号を受信する度に、その検知信号を制御回路13へ出力する。 The sensor interface circuit 15 has an interface circuit that receives a detection signal from the rotary encoder 4. The sensor interface circuit 15 outputs the detection signal to the control circuit 13 every time it receives the detection signal.
 図5は、直流モータ2の停止処理に関する、制御回路13の機能ブロック図である。制御回路13は、速度計測部21と、デューティ比算出部22と、回転量算出部23と、ブレーキ開始位置決定部24と、ブレーキ開始判定部25とを有する。制御回路13が有するこれらの各部は、例えば、個別の演算回路として制御回路13に実装される。あるいは、制御回路13が有するこれらの各部は、制御回路上で実行されるプログラムによる機能モジュールであってもよい。 FIG. 5 is a functional block diagram of the control circuit 13 relating to the stop processing of the DC motor 2. The control circuit 13 includes a speed measurement unit 21, a duty ratio calculation unit 22, a rotation amount calculation unit 23, a brake start position determination unit 24, and a brake start determination unit 25. These units included in the control circuit 13 are mounted on the control circuit 13 as individual arithmetic circuits, for example. Alternatively, each of these units included in the control circuit 13 may be a functional module based on a program executed on the control circuit.
 速度計測部21は、ロータリーエンコーダ4からの検知信号に基づいて、停止処理開始時の直流モータ2の回転速度(以下、便宜上、ブレーキ開始速度と呼ぶ)を計測する。例えば、速度計測部21は、停止処理が開始されると、一定期間中に受信した検知信号の数をカウントし、その検知信号の数に、ロータリーエンコーダ4のサンプリング角度を乗じて得られる回転量をその一定期間で除することでブレーキ開始速度を算出する。
 速度計測部21は、算出したブレーキ開始速度をレジスタ12に保存する。
Based on the detection signal from the rotary encoder 4, the speed measurement unit 21 measures the rotational speed of the DC motor 2 at the start of the stop process (hereinafter referred to as a brake start speed for convenience). For example, when the stop process is started, the speed measurement unit 21 counts the number of detection signals received during a certain period, and the rotation amount obtained by multiplying the number of detection signals by the sampling angle of the rotary encoder 4. The brake start speed is calculated by dividing by a certain period.
The speed measuring unit 21 stores the calculated brake start speed in the register 12.
 デューティ比算出部22は、ブレーキ値算出部の一例であり、停止所要時間及びブレーキ開始速度に基づいて、直流モータ2にブレーキをかける際の駆動信号のデューティ比を算出する。このデューティ比は、ブレーキ値の一例に相当し、デューティ比が高いほど、短時間で直流モータ2を停止することができる。以下では、デューティ比算出部22により算出される、ブレーキをかける際のデューティ比をブレーキ値と呼ぶ。
 本実施形態では、デューティ比算出部22は、次式に従ってブレーキ値Vpwm[%]を算出する。
Figure JPOXMLDOC01-appb-M000001
ここで、Ktは、直流モータ2及び直流モータ2により駆動される可動体(例えば、回転リール)のトルク定数であり、Keは、直流モータ2の逆起電力定数である。Rmは、直流モータ2の巻線抵抗であり、Vmは、直流モータ2に印加される駆動電圧である。Kt、Ke、Rm、Vmのそれぞれの値は、予めレジスタ12に記憶される。また、Tltは、摩擦トルクであり、dθveは、直流モータ2にブレーキをかけ続けたときの逆転到達速度である。摩擦トルクTltは、例えば、モータ制御装置1が初期化動作を実行する際に、次式に従って算出され、レジスタ12に記憶される。
Figure JPOXMLDOC01-appb-M000002
ここで、dθeは、初期化動作の際に一定のデューティ比で直流モータ2を駆動した場合において最終的に到達し、一定となる回転速度(最終速度)であり、初期化動作の際に、速度計測部21により測定される。
The duty ratio calculation unit 22 is an example of a brake value calculation unit, and calculates a duty ratio of a drive signal when the DC motor 2 is braked based on the required stop time and the brake start speed. The duty ratio corresponds to an example of a brake value, and the DC motor 2 can be stopped in a shorter time as the duty ratio is higher. Hereinafter, the duty ratio when the brake is applied, which is calculated by the duty ratio calculation unit 22, is referred to as a brake value.
In the present embodiment, the duty ratio calculation unit 22 calculates the brake value Vpwm [%] according to the following equation.
Figure JPOXMLDOC01-appb-M000001
Here, Kt is a torque constant of the DC motor 2 and a movable body (for example, a rotating reel) driven by the DC motor 2, and Ke is a counter electromotive force constant of the DC motor 2. Rm is a winding resistance of the DC motor 2, and Vm is a drive voltage applied to the DC motor 2. Each value of Kt, Ke, Rm, and Vm is stored in the register 12 in advance. Tlt is the friction torque, and dθve is the reverse rotation speed when the DC motor 2 is continuously braked. The friction torque Tlt is calculated according to the following equation and stored in the register 12 when the motor control device 1 performs an initialization operation, for example.
Figure JPOXMLDOC01-appb-M000002
Here, dθe is a rotational speed (final speed) that finally reaches and becomes constant when the DC motor 2 is driven at a constant duty ratio during the initialization operation, and during the initialization operation, It is measured by the speed measuring unit 21.
 また、デューティ比算出部22は、逆転到達速度dθveを次式に従って算出する。
Figure JPOXMLDOC01-appb-M000003
ここでdθbsは、ブレーキ開始速度である。またtdnは、停止所要時間である。そしてτは、時定数である。τは、初期化動作において最終到達速度dθeを計測する際に、直流モータ2が静止した状態から最終到達速度dθeの63%の回転速度に達するまでに要する時間として、初期化動作の際に測定され、レジスタ12に記憶される。
Also, the duty ratio calculation unit 22 calculates the reverse rotation arrival speed dθve according to the following equation.
Figure JPOXMLDOC01-appb-M000003
Here, dθbs is a brake start speed. Tdn is the time required for stoppage. Τ is a time constant. τ is measured during the initialization operation as the time required for the DC motor 2 to reach a rotational speed that is 63% of the final arrival speed dθe when the final arrival speed dθe is measured in the initialization operation. And stored in the register 12.
 デューティ比算出部22は、算出したブレーキ値Vpwmを回転量算出部23へ通知するとともに、回転量算出部23及びブレーキ開始位置決定部24を介してブレーキ開始判定部25へ通知する。 The duty ratio calculation unit 22 notifies the calculated brake value Vpwm to the rotation amount calculation unit 23 and also notifies the brake start determination unit 25 via the rotation amount calculation unit 23 and the brake start position determination unit 24.
 回転量算出部23は、算出されたブレーキ値Vpwmに基づいて、直流モータ2にブレーキをかけ始めてから直流モータ2が停止するまでの期間における直流モータ2の回転角の総量(以下、便宜上、制動回転量と呼ぶ)を算出する。本実施形態では、回転量算出部23は、次式に従って制動回転量θdnを算出する。
Figure JPOXMLDOC01-appb-M000004
 回転量算出部23は、制動回転量θdnをブレーキ開始位置決定部24へ通知する。
Based on the calculated brake value Vpwm, the rotation amount calculation unit 23 calculates the total amount of rotation angle of the DC motor 2 during the period from when the DC motor 2 starts to be braked until the DC motor 2 stops (hereinafter referred to as braking (Referred to as rotation amount). In the present embodiment, the rotation amount calculation unit 23 calculates the braking rotation amount θdn according to the following equation.
Figure JPOXMLDOC01-appb-M000004
The rotation amount calculation unit 23 notifies the braking start position determination unit 24 of the braking rotation amount θdn.
 ブレーキ開始位置決定部24は、直流モータ2にブレーキをかけ始めるタイミングであるブレーキ開始タイミングを、制動回転量θdnと直流モータ2が駆動する可動体の現在位置及び停止位置に基づいて決定する。 The brake start position determination unit 24 determines a brake start timing, which is a timing at which braking starts on the DC motor 2, based on the braking rotation amount θdn and the current position and stop position of the movable body driven by the DC motor 2.
 例えば、直流モータ2が駆動する可動体が回転リールであり、回転リールの表面がその回転方向に沿って複数の部分領域に分割され、部分領域ごとに一つの図柄が表されているとする。このような場合、回転リールに表された複数の図柄の何れかが所定の位置で停止することが要求される。したがって、そのように回転リールが停止するように、ブレーキ開始位置は設定される。 For example, it is assumed that the movable body driven by the DC motor 2 is a rotary reel, and the surface of the rotary reel is divided into a plurality of partial areas along the rotation direction, and one symbol is represented for each partial area. In such a case, it is required that any of a plurality of symbols displayed on the rotating reel stops at a predetermined position. Therefore, the brake start position is set so that the rotating reel stops in this way.
 図6は、直流モータ2により駆動される可動体の一例である回転リールの停止位置と、制動回転量θdn及びブレーキ開始位置の関係の一例を示す図である。この例では、3個の回転リール601~603のそれぞれには、その回転方向に沿って複数の図柄611が表されている。そして各回転リールは、同じ回転軸で回転している。なお、図6では、図柄611が上から下へ移動するように、各回転リールは回転するものとする。 FIG. 6 is a diagram illustrating an example of a relationship between a stop position of a rotary reel, which is an example of a movable body driven by the DC motor 2, and a braking rotation amount θdn and a brake start position. In this example, each of the three rotary reels 601 to 603 has a plurality of symbols 611 along the direction of rotation. Each rotating reel rotates on the same rotating shaft. In FIG. 6, it is assumed that each rotary reel rotates so that the symbol 611 moves from top to bottom.
 各回転リールが停止する際には、各回転リールに共通する停止位置612にて、何れかの図柄が停止するよう、各回転リールは駆動される。したがって、例えば、右端の回転リール603の図柄611aが停止位置612に停止するためには、停止位置612から矢印613で示される制動回転量θdnに相当する回転量だけ前の位置(ブレーキ開始位置)614に図柄611aが達したタイミングでブレーキをかけ始めればよい。しかし、図6に示されるように、図柄611aの現在位置が、ブレーキ開始位置614よりも手前に位置していると、回転リール603は、図柄611aがブレーキ開始位置614に達するまで、現在の回転速度を維持したまま回転する(以下、このように、ブレーキ開始前に現在の回転速度を維持したまま回転することを空走すると呼ぶ)ことが求められる。例えば、図6では、矢印615で示される回転量だけ、回転リール603が空走することが求められる。 When each rotating reel stops, each rotating reel is driven so that any symbol stops at a stop position 612 common to each rotating reel. Therefore, for example, in order for the symbol 611a of the rightmost rotary reel 603 to stop at the stop position 612, a position (brake start position) preceding the stop position 612 by a rotation amount corresponding to the braking rotation amount θdn indicated by the arrow 613. The brake may be started at the timing when the symbol 611a reaches 614. However, as shown in FIG. 6, when the current position of the symbol 611 a is positioned in front of the brake start position 614, the rotary reel 603 rotates until the symbol 611 a reaches the brake start position 614. It is required to rotate while maintaining the speed (hereinafter, the rotation while maintaining the current rotation speed before the start of braking is referred to as idling). For example, in FIG. 6, the rotating reel 603 is required to run idle by the amount of rotation indicated by the arrow 615.
 そこで、ブレーキ開始位置決定部24は、直流モータ2が駆動する可動体の停止位置から現在位置の差を算出し、その差から制動回転量を減じて得られる位置をブレーキ開始位置とする。 Therefore, the brake start position determination unit 24 calculates the difference in the current position from the stop position of the movable body driven by the DC motor 2, and sets the position obtained by subtracting the braking rotation amount from the difference as the brake start position.
 なお、可動体の現在位置は、例えば、可動体の初期位置に、直流モータ2が回転を開始してから現時点までの総回転量を加えることでもとめられる。あるいは、可動体が所定の位置に達したことを、近接センサ(図示せず)あるいは可動体に設けられたミラーにより反射された光を検知する光センサなどにより検知し、可動体がその所定の位置に達したとき(例えば、可動体が回転リールである場合、その回転リールに表れた特定の図柄が所定の位置となったとき)から現時点までの直流モータ2の総回転量によりもとめられる。なお、総回転量は、基準となる開始タイミング(上記の例では、直流モータ2の回転開始タイミングあるいは可動体が所定位置に達したタイミング)以降にロータリーエンコーダ4から受信した検知信号の総数により算出される。 Note that the current position of the movable body can also be determined by adding, for example, the total amount of rotation from the start of rotation of the DC motor 2 to the current position at the initial position of the movable body. Alternatively, the fact that the movable body has reached a predetermined position is detected by a proximity sensor (not shown) or an optical sensor that detects light reflected by a mirror provided on the movable body, and the movable body detects the predetermined position. It is determined by the total rotation amount of the DC motor 2 from when the position is reached (for example, when the movable body is a rotating reel, when a specific symbol appearing on the rotating reel reaches a predetermined position). The total rotation amount is calculated by the total number of detection signals received from the rotary encoder 4 after the reference start timing (in the above example, the rotation start timing of the DC motor 2 or the timing when the movable body reaches a predetermined position). Is done.
 また、可動体が、図6に示されるように、回転方向に沿って複数の図柄が表された回転リールである場合、停止位置は、回転方向における図柄の幅に応じて設定される。すなわち、何れかの図柄が停止位置612に位置するときが停止位置の候補となる。例えば、回転リールの回転方向に沿って、回転リールの表面が12個の領域に等分されており、各領域に一つの図柄が表されている場合、回転量(回転角)30°ごとに、停止位置の候補が存在する。そこで、ブレーキ開始位置決定部24は、可動体の現在位置に制動回転量を加えた位置から最も近い停止位置の候補を、実際の停止位置とすればよい。ただし、可動体の現在位置から実際の停止位置までの回転量が、制動回転量よりも多くなるように、実際の停止位置が設定されることが好ましい。なお、ブレーキ開始位置決定部24は、停止処理中の演算に要する時間についての余裕を確保するために、可動体の現在位置に制動回転量を加えた位置から最も近い停止位置の候補の次、またはさらにその次の停止位置の候補を、実際の停止位置としてもよい。 Further, when the movable body is a rotating reel in which a plurality of symbols are represented along the rotation direction as shown in FIG. 6, the stop position is set according to the width of the symbol in the rotation direction. That is, when any of the symbols is located at the stop position 612, the stop position is a candidate. For example, when the surface of the rotating reel is equally divided into 12 areas along the rotating direction of the rotating reel, and one symbol is represented in each area, the rotation amount (rotating angle) is 30 ° every 30 °. There are stop position candidates. Therefore, the brake start position determination unit 24 may set the stop position candidate closest to the position obtained by adding the braking rotation amount to the current position of the movable body as the actual stop position. However, it is preferable that the actual stop position is set so that the rotation amount from the current position of the movable body to the actual stop position is larger than the braking rotation amount. In addition, the brake start position determination unit 24 next to the candidate of the stop position closest to the position obtained by adding the braking rotation amount to the current position of the movable body in order to secure a margin for the time required for the calculation during the stop process, Alternatively, the next stop position candidate may be set as the actual stop position.
 ブレーキ開始位置決定部24は、可動体の現在位置からブレーキ開始位置までの回転量である空走回転量をブレーキ開始判定部25へ通知する。 The brake start position determination unit 24 notifies the brake start determination unit 25 of the idling rotation amount that is the rotation amount from the current position of the movable body to the brake start position.
 ブレーキ開始判定部25は、停止部の一例であり、可動体の現在位置からの直流モータ2の回転量を、ロータリーエンコーダ4から受信した検知信号の数により求め、その回転量を空走回転量と比較する。そしてブレーキ開始判定部25は、その回転量が空走回転量に達すると、駆動信号生成回路14に、現在の回転方向と逆向きの回転で、かつ、算出されたブレーキ値Vpwmに相当するデューティ比を持つ駆動信号の出力を開始させる。そしてブレーキ開始判定部25は、駆動信号生成回路14に、指定された停止所要時間にわたってその駆動信号の出力を継続させることで、直流モータ2及び直流モータ2が駆動する可動体を停止させる。 The brake start determination unit 25 is an example of a stop unit, determines the rotation amount of the DC motor 2 from the current position of the movable body based on the number of detection signals received from the rotary encoder 4, and determines the rotation amount as the idling rotation amount. Compare with Then, when the rotation amount reaches the idling rotation amount, the brake start determination unit 25 causes the drive signal generation circuit 14 to perform a rotation corresponding to the calculated brake value Vpwm with the rotation opposite to the current rotation direction. The output of the drive signal having the ratio is started. Then, the brake start determination unit 25 causes the drive signal generation circuit 14 to continue outputting the drive signal for the designated stop required time, thereby stopping the DC motor 2 and the movable body driven by the DC motor 2.
 なお、指定された停止所要時間が経過し、直流モータ2の回転速度がゼロとなると、制御回路13は、駆動信号生成回路14に、直流モータ2が静止状態を維持する駆動信号を出力させてもよい。 When the specified stop required time has elapsed and the rotational speed of the DC motor 2 becomes zero, the control circuit 13 causes the drive signal generation circuit 14 to output a drive signal for maintaining the DC motor 2 in a stationary state. Also good.
 図7は、可動体の位置の時間変化と、直流モータ2の回転速度及び駆動信号の時間変化との関係の一例を表すタイミングチャートである。図7の一番上のチャートでは、横軸は可動体の位置を表し、図7の上から2番目及び一番下のチャートでは、横軸は時間を表す。そして折れ線701は、直流モータ2の回転速度の時間変化を表し、折れ線702は、駆動信号生成回路14から出力される駆動信号のデューティ比の時間変化を表す。 FIG. 7 is a timing chart showing an example of the relationship between the time change of the position of the movable body and the time change of the rotational speed of the DC motor 2 and the drive signal. In the top chart of FIG. 7, the horizontal axis represents the position of the movable body, and in the second and bottom charts of FIG. 7, the horizontal axis represents time. A broken line 701 represents a change over time in the rotational speed of the DC motor 2, and a broken line 702 represents a change over time in the duty ratio of the drive signal output from the drive signal generation circuit 14.
 可動体の現在位置及び対応する時刻t1からブレーキ開始位置及び対応する時刻t2までは、折れ線701に示されるように、直流モータ2は、ブレーキ開始前の一定の回転速度(ブレーキ開始速度)で回転を継続する。また時刻t1から時刻t2までの間、折れ線702に示されるように、その回転速度に対応するデューティ比を持つ駆動信号が出力される。 From the current position of the movable body and the corresponding time t1 to the brake start position and the corresponding time t2, as indicated by the broken line 701, the DC motor 2 rotates at a constant rotational speed (brake start speed) before starting the brake. Continue. Further, from time t1 to time t2, as indicated by the broken line 702, a drive signal having a duty ratio corresponding to the rotation speed is output.
 可動体がブレーキ開始位置に達した時刻t2以降、算出されたブレーキ値に相当するデューティ比を持ち、逆回転となる駆動信号が出力される。そのため、時刻t2以降、直流モータ2の回転速度は低下し、時刻t2から指定された停止所要時間が経過した時刻t3において、直流モータ2の回転速度はゼロとなる。 After time t2 when the movable body reaches the brake start position, a drive signal having a duty ratio corresponding to the calculated brake value and reverse rotation is output. Therefore, after time t2, the rotational speed of the DC motor 2 decreases, and the rotational speed of the DC motor 2 becomes zero at time t3 when the required stop time has elapsed from time t2.
 図8は、モータ制御装置1により実行される停止処理の動作フローチャートである。この停止処理は、モータ制御装置1が上位制御装置から、直流モータ2の回転を停止させる制御コマンドを受け取る度に実行される。 FIG. 8 is an operation flowchart of a stop process executed by the motor control device 1. This stop process is executed each time the motor control device 1 receives a control command for stopping the rotation of the DC motor 2 from the host control device.
 速度計測部21は、ロータリーエンコーダ4からの検知信号に基づいて、ブレーキ開始速度を計測する(ステップS101)。また、デューティ比算出部22は、指定された停止所要時間及びブレーキ開始速度に基づいてブレーキ値Vpwmを算出する(ステップS102)。そして回転量算出部23は、算出されたブレーキ値Vpwmに基づいて制動回転量dθnを算出する(ステップS103)。 The speed measuring unit 21 measures the brake start speed based on the detection signal from the rotary encoder 4 (step S101). Further, the duty ratio calculation unit 22 calculates the brake value Vpwm based on the designated required stop time and brake start speed (step S102). Then, the rotation amount calculation unit 23 calculates the braking rotation amount dθn based on the calculated brake value Vpwm (step S103).
 ブレーキ開始位置決定部24は、複数の停止位置の候補のなかから、現在位置から制動回転量dθnだけ直流モータ2を回転させた位置に最も近い候補を停止位置に設定する(ステップS104)。そしてブレーキ開始位置決定部24は、停止位置から現在位置を減じて得られる残回転量から制動回転量dθnを減じることでブレーキ開始位置を算出し、かつ、現在位置からブレーキ開始位置までの空走回転量を算出する(ステップS105)。 The brake start position determination unit 24 sets the candidate closest to the position where the DC motor 2 is rotated from the current position by the braking rotation amount dθn from the plurality of stop position candidates (step S104). Then, the brake start position determination unit 24 calculates the brake start position by subtracting the braking rotation amount dθn from the remaining rotation amount obtained by subtracting the current position from the stop position, and runs idle from the current position to the brake start position. A rotation amount is calculated (step S105).
 ブレーキ開始判定部25は、現在位置からの直流モータ2の回転量が空走回転量に達したか否か判定する(ステップS106)。その回転量が空走回転量に達していなければ(ステップS106-No)、ブレーキ開始判定部25は、ロータリーエンコーダ4から受信した検知信号に基づいてその回転量を更新する(ステップS107)。そしてブレーキ開始判定部25は、ステップS106以降の処理を繰り返す。 The brake start determination unit 25 determines whether or not the rotation amount of the DC motor 2 from the current position has reached the idling rotation amount (step S106). If the rotation amount does not reach the idling rotation amount (No at Step S106), the brake start determination unit 25 updates the rotation amount based on the detection signal received from the rotary encoder 4 (Step S107). And the brake start determination part 25 repeats the process after step S106.
 一方、回転量が空走回転量に達していれば(ステップS106-Yes)、ブレーキ開始判定部25は、指定された停止所要時間にわたって、駆動信号生成回路14に、それまでの直流モータ2の回転方向とは逆向き、かつ、ブレーキ値Vpwmに相当するデューティ比を持つ駆動信号を直流モータ2を駆動するモータ駆動回路3へ出力させる(ステップS108)。そして制御回路13は、停止処理を終了する。 On the other hand, if the rotation amount has reached the idling rotation amount (step S106—Yes), the brake start determination unit 25 will send the drive signal generation circuit 14 of the DC motor 2 so far over the designated stop required time. A drive signal opposite to the rotation direction and having a duty ratio corresponding to the brake value Vpwm is output to the motor drive circuit 3 that drives the DC motor 2 (step S108). Then, the control circuit 13 ends the stop process.
 以上に説明してきたように、このモータ制御装置は、直流モータの回転速度に応じて、指定された停止所要時間で直流モータを停止させるためのブレーキ値を算出する。そのため、このモータ制御装置は、指定された停止所要時間で、直流モータを回転している状態から停止させることができる。そのため、このモータ制御装置は、直流モータの回転速度によらず、直流モータが駆動する可動体をその停止所要時間で停止させられる。その結果として、このモータ制御装置は、直流モータ及び可動体が停止するまでに要する時間が長くなることで、可動体が緩慢な動作をすると遊技者が感じることを抑制できる。 As described above, this motor control device calculates a brake value for stopping the DC motor in the specified required stop time according to the rotational speed of the DC motor. For this reason, the motor control device can stop the DC motor from rotating in the designated stop required time. Therefore, this motor control device can stop the movable body driven by the DC motor within the required stop time regardless of the rotational speed of the DC motor. As a result, this motor control device can suppress the feeling of the player when the movable body performs a slow operation by increasing the time required for the DC motor and the movable body to stop.
 なお、変形例によれば、直流モータが駆動する可動体の停止位置に制限が無い場合には、ブレーキ開始判定部25は、ブレーキ値が算出されると、駆動信号生成回路14にそのブレーキ値に相当するデューティ比を持つ駆動信号の出力を直ちに開始させてもよい。この場合には、回転量算出部23及びブレーキ開始位置決定部24は省略されてもよい。 According to the modified example, when the stop position of the movable body driven by the DC motor is not limited, the brake start determination unit 25 calculates the brake value to the drive signal generation circuit 14 when the brake value is calculated. The output of a drive signal having a duty ratio corresponding to may be started immediately. In this case, the rotation amount calculation unit 23 and the brake start position determination unit 24 may be omitted.
 また他の変形例によれば、モータ駆動回路3は、パルス高さ変調により、直流モータ2を駆動する方式の回路であってもよい。この場合には、制御回路13は、目標回転速度あるいはブレーキ値に応じたパルス高さを持つ電圧が直流モータ2に印加されるように、駆動信号生成回路14に、そのパルス高さを指定する駆動信号を生成させればよい。 According to another modification, the motor driving circuit 3 may be a circuit of a system for driving the DC motor 2 by pulse height modulation. In this case, the control circuit 13 designates the pulse height to the drive signal generation circuit 14 so that a voltage having a pulse height corresponding to the target rotational speed or the brake value is applied to the DC motor 2. A drive signal may be generated.
 上記の実施形態または変形例によるモータ制御装置は、弾球遊技機または回胴遊技機といった遊技機に搭載されてもよい。
 図9は、上記の実施形態または変形例によるモータ制御装置を備えた回胴遊技機100の概略斜視図である。また図10は、回胴遊技機100の概略内部構成図である。図9に示すように、回胴遊技機100は、遊技機本体である本体筐体101と、ドラムユニット102と、スタートレバー103と、ストップボタン104a~104cとを有する。
The motor control device according to the above-described embodiment or modification may be mounted on a gaming machine such as a ball game machine or a spinning game machine.
FIG. 9 is a schematic perspective view of the spinning machine 100 including the motor control device according to the above-described embodiment or modification. FIG. 10 is a schematic internal configuration diagram of the swing game machine 100. As shown in FIG. 9, the spinning machine 100 includes a main body housing 101 that is a main body of the gaming machine, a drum unit 102, a start lever 103, and stop buttons 104a to 104c.
 さらに、回胴遊技機100は、本体筐体101内に、回胴遊技機100の各部を制御する制御回路110、及び、ドラムユニット102が有する3個の回転リール102a~102cを駆動する3個のモータ制御装置111-1~111-3を有する。なお、モータ制御装置111-1~111-3は、上記の実施形態または変形例によるモータ制御装置とすることができる。さらに、回胴遊技機100は、回胴遊技機100の各部に電力を供給する電源回路(図示せず)及び制御回路からの制御信号に応じてメダルを一時貯留し、かつメダルを排出するためのメダル貯留及び排出機構(図示せず)を有する。 Further, the spinning machine 100 has a main body housing 101 with a control circuit 110 for controlling each part of the spinning machine 100 and three rotary reels 102a to 102c included in the drum unit 102. Motor control devices 111-1 to 111-3 are included. The motor control devices 111-1 to 111-3 can be the motor control devices according to the above-described embodiment or modification. Furthermore, the spinning machine 100 temporarily stores medals according to control signals from a power supply circuit (not shown) that supplies power to each part of the spinning machine 100 and the control circuit, and discharges medals. A medal storage and discharge mechanism (not shown).
 本体筐体101の前面の中央上部には開口105aが形成されており、その開口105aを通じて、ドラムユニット102の一部が視認可能になっている。また開口105aの下側の枠105bの上面には、メダルを投入するためのメダル投入口105cが形成されている。 An opening 105a is formed at the upper center of the front surface of the main body casing 101, and a part of the drum unit 102 is visible through the opening 105a. A medal slot 105c for inserting medals is formed on the upper surface of the lower frame 105b of the opening 105a.
 ドラムユニット102は、3個の回転リール102a~102cを有する。回転リール102a~102cは、それぞれ、本体筐体101の前面に対して略平行かつ略水平な回転軸(図示せず)を回転中心として、それぞれ、別個に回転可能となっている。回転リール102a~102cの表面は、それぞれ、回転方向に沿って複数の略同一幅を持つ領域に区切られ、領域ごとに様々な図柄が描かれており、それら図柄のうちの一部が開口105aを介して遊技者に視認可能となっている。さらに、回転リール102a~102cは、それぞれ、直流モータ(図示せず)及びモータ駆動回路(図示せず)を内蔵し、対応するモータ制御装置111-1~111-3から出力される駆動信号に応じて直流モータが回転することで、その回転リールも回転する。 The drum unit 102 has three rotating reels 102a to 102c. The rotating reels 102a to 102c are individually rotatable around a rotation axis (not shown) that is substantially parallel and substantially horizontal to the front surface of the main body housing 101, respectively. The surfaces of the rotating reels 102a to 102c are each divided into a plurality of regions having substantially the same width along the rotation direction, and various symbols are drawn for each region, and some of the symbols are opened in the openings 105a. It is visible to the player via Further, each of the rotating reels 102a to 102c incorporates a direct current motor (not shown) and a motor drive circuit (not shown), and outputs a drive signal output from the corresponding motor control device 111-1 to 111-3. Accordingly, the rotating reel is rotated by the rotation of the DC motor.
 スタートレバー103は、本体筐体101の枠105bの前面に向かって左側に設けられている。また、枠122の前面略中央には、ストップボタン104a~104cが設けられている。ストップボタン104a~104cは、それぞれ、回転リール102a~102cに対応する。 The start lever 103 is provided on the left side of the front surface of the frame 105b of the main body housing 101. Further, stop buttons 104a to 104c are provided in the approximate center of the front surface of the frame 122. The stop buttons 104a to 104c correspond to the rotating reels 102a to 102c, respectively.
 本体筐体101の前面の下部には、メダルを排出するためのメダル排出口105dが形成されている。そしてメダル排出口105dの下方には、排出されたメダルが落下することを防止するためのメダル受け皿105eが取り付けられている。 A medal discharge port 105d for discharging medals is formed at the lower part of the front surface of the main body casing 101. A medal tray 105e for preventing the discharged medal from falling is attached below the medal discharge port 105d.
 メダルがメダル投入口105cに投入された後に、スタートレバー103が操作されると、スタートレバー103が操作されたことを示す信号が制御回路110へ伝達される。そして制御回路110は、モータ制御装置111-1~111-3へ、対応する直流モータを回転させる制御コマンドを送信する。そしてモータ制御装置111-1~111-3は、回転リール102a~102cの回転を開始させる。 When the start lever 103 is operated after the medal has been inserted into the medal insertion slot 105c, a signal indicating that the start lever 103 has been operated is transmitted to the control circuit 110. Then, the control circuit 110 transmits a control command for rotating the corresponding DC motor to the motor control devices 111-1 to 111-3. Then, the motor control devices 111-1 to 111-3 start the rotation of the rotary reels 102a to 102c.
 その後、本体筐体101の枠105bの前面略中央に設けられたストップボタン104a~104cの何れかが押下されると、制御回路110は、その押下されたボタンから押下されたことを示す信号を受信し、その押下されたボタンに対応する回転リールの回転を停止させる。あるいは、制御回路110は、回転リール102a~102cのうち、回転を開始してから所定期間が経過するまでに、対応するストップボタンが押下されなかった回転リールを、その所定期間経過後に停止させる。その際、制御回路110は、モータ制御装置111-1~111-3のうち、回転を停止させる回転リールに対応するモータ制御装置へ、その回転リールを駆動する直流モータを停止させる制御コマンドを送信する。そしてその制御コマンドを受信したモータ制御装置は、制御コマンドで指定された停止所要時間にて、対応する直流モータを停止させ、それに伴い、回転リールを何れかの図柄を所定の停止位置に停止させる。 Thereafter, when any of the stop buttons 104a to 104c provided in the front center of the frame 105b of the main body housing 101 is pressed, the control circuit 110 outputs a signal indicating that the button has been pressed. The rotation of the rotating reel corresponding to the pressed button is stopped. Alternatively, the control circuit 110 stops the rotating reels of the rotating reels 102a to 102c, for which the corresponding stop button has not been pressed until the predetermined period elapses after the rotation starts, after the predetermined period elapses. At that time, the control circuit 110 transmits a control command for stopping the DC motor that drives the rotating reel to the motor control device corresponding to the rotating reel whose rotation is stopped among the motor control devices 111-1 to 111-3. To do. Then, the motor control device that has received the control command stops the corresponding DC motor at the required stop time specified by the control command, and accordingly stops any of the symbols on the rotating reel at a predetermined stop position. .
 そして全ての回転リールが停止した時点で、同一の図柄が全ての回転リールにわたって一列に並んでいると、制御回路110は、その図柄に応じた所定枚数のメダルをメダル排出口105dを通じて排出する。 When all the rotating reels are stopped and the same symbol is arranged in a line across all the rotating reels, the control circuit 110 discharges a predetermined number of medals corresponding to the symbol through the medal discharge port 105d.
 このように、当業者は、本発明の範囲内で、実施される形態に合わせて様々な変更を行うことができる。 Thus, those skilled in the art can make various changes in accordance with the embodiment to be implemented within the scope of the present invention.
 1  モータ制御装置
 2  直流モータ
 3  モータ駆動回路
 4  ロータリーエンコーダ
 11  通信回路
 12  レジスタ
 13  制御回路
 14  駆動信号生成回路
 15  センサインターフェース回路
 21  速度計測部
 22  デューティ比算出部
 23  回転量算出部
 24  ブレーキ開始位置決定部
 25  ブレーキ開始判定部
 100  回胴遊技機
 101  本体筐体
 102  ドラムユニット
 102a~102c  回転リール
 103  スタートレバー
 104a~104c  ストップボタン
 110  制御回路
 111-1~111-3  モータ制御装置
DESCRIPTION OF SYMBOLS 1 Motor controller 2 DC motor 3 Motor drive circuit 4 Rotary encoder 11 Communication circuit 12 Register 13 Control circuit 14 Drive signal generation circuit 15 Sensor interface circuit 21 Speed measurement part 22 Duty ratio calculation part 23 Rotation amount calculation part 24 Brake start position determination Unit 25 Brake start determining unit 100 Cylinder gaming machine 101 Main body housing 102 Drum unit 102a to 102c Rotating reel 103 Start lever 104a to 104c Stop button 110 Control circuit 111-1 to 111-3 Motor controller

Claims (5)

  1.  直流モータを制御するモータ制御装置であって、
     前記直流モータが生じる回転トルクに応じた駆動信号を生成し、該駆動信号を出力する駆動信号生成部と、
     前記直流モータが所定の回転角度だけ回転する度に検知信号を出力する回転角センサから該検知信号を受信するセンサインターフェース部と、
     受信した前記検知信号に基づいて前記直流モータの回転速度を計測する速度計測部と、
     指定された停止所要時間と前記回転速度とに基づいて、前記停止所要時間で前記直流モータを停止させるための前記駆動信号のブレーキ値を算出するブレーキ値算出部と、
     前記停止所要時間にわたって前記ブレーキ値を持つ前記駆動信号を前記駆動信号生成部に出力させる停止部と、
    を有するモータ制御装置。
    A motor control device for controlling a DC motor,
    A drive signal generating unit that generates a drive signal corresponding to the rotational torque generated by the DC motor and outputs the drive signal;
    A sensor interface unit that receives the detection signal from a rotation angle sensor that outputs a detection signal each time the DC motor rotates by a predetermined rotation angle;
    A speed measuring unit that measures the rotational speed of the DC motor based on the received detection signal;
    A brake value calculation unit that calculates a brake value of the drive signal for stopping the DC motor at the stop required time based on the specified stop required time and the rotation speed;
    A stop unit that causes the drive signal generation unit to output the drive signal having the brake value over the stop required time;
    A motor control device.
  2.  前記直流モータの回転速度と、前記ブレーキ値とに基づいて、前記直流モータが前記回転速度で回転している状態から停止するまでの前記直流モータの制動回転量を算出する制動回転量算出部と、
     前記直流モータが駆動する可動体が停止する停止位置と、前記可動体の現在位置と、前記制動回転量とに基づいて、前記可動体の現在位置から前記ブレーキ値を持つ前記駆動信号の出力を開始するまでに前記直流モータが回転する空走回転量を算出するブレーキ開始位置決定部とをさらに有し、
     前記停止部は、前記可動体の現在位置からの前記直流モータの回転量が前記空走回転量に達したときに、前記ブレーキ値を持つ前記駆動信号の出力を前記駆動信号生成部に開始させる、請求項1に記載のモータ制御装置。
    A braking rotation amount calculation unit that calculates a braking rotation amount of the DC motor from the state in which the DC motor is rotating at the rotation speed until it stops, based on the rotation speed of the DC motor and the brake value; ,
    Based on the stop position at which the movable body driven by the DC motor stops, the current position of the movable body, and the braking rotation amount, the output of the drive signal having the brake value from the current position of the movable body is output. A brake start position determination unit that calculates an idling rotation amount that the DC motor rotates before starting,
    The stop unit causes the drive signal generation unit to start outputting the drive signal having the brake value when the rotation amount of the DC motor from the current position of the movable body reaches the idle rotation amount. The motor control device according to claim 1.
  3.  前記ブレーキ開始位置決定部は、前記可動体の停止位置の複数の候補のうち、前記可動体の現在位置から前記制動回転量だけ前記直流モータが回転したときの前記可動体の位置に最も近い候補を前記停止位置とする、請求項2に記載のモータ制御装置。 The brake start position determination unit is a candidate closest to the position of the movable body when the DC motor is rotated by the braking rotation amount from the current position of the movable body among a plurality of candidates of the stop position of the movable body The motor control device according to claim 2, wherein the stop position is set as the stop position.
  4.  前記停止所要時間を含む制御コマンドを上位制御装置から受信する通信部をさらに有する、請求項1~3の何れか一項に記載のモータ制御装置。 The motor control device according to any one of claims 1 to 3, further comprising a communication unit that receives a control command including the required stop time from a host control device.
  5.  遊技機本体と、
     前記遊技機本体内に回転可能に配置される回転リールと、
     前記回転リールを駆動する直流モータと、
     前記直流モータが所定の回転角度だけ回転する度に検知信号を出力する回転角センサと、
     前記直流モータを制御するモータ制御装置と、
    を有し、
     前記モータ制御装置は、
      前記直流モータが生じる回転トルクに応じた駆動信号を生成し、該駆動信号を出力する駆動信号生成部と、
      前記回転角センサから前記検知信号を受信するセンサインターフェース部と、
      受信した前記検知信号に基づいて前記直流モータの回転速度を計測する速度計測部と、
      指定された停止所要時間と前記回転速度とに基づいて、前記停止所要時間で前記直流モータを停止させるための前記駆動信号のブレーキ値を算出するブレーキ値算出部と、
      前記停止所要時間にわたって前記ブレーキ値を持つ前記駆動信号を前記駆動信号生成部に出力させる停止部と、
    を有する遊技機。
    A gaming machine body,
    A rotating reel rotatably disposed in the gaming machine body;
    A DC motor for driving the rotating reel;
    A rotation angle sensor that outputs a detection signal each time the DC motor rotates by a predetermined rotation angle;
    A motor control device for controlling the DC motor;
    Have
    The motor control device
    A drive signal generating unit that generates a drive signal corresponding to the rotational torque generated by the DC motor and outputs the drive signal;
    A sensor interface unit that receives the detection signal from the rotation angle sensor;
    A speed measuring unit that measures the rotational speed of the DC motor based on the received detection signal;
    A brake value calculation unit that calculates a brake value of the drive signal for stopping the DC motor at the stop required time based on the specified stop required time and the rotation speed;
    A stop unit that causes the drive signal generation unit to output the drive signal having the brake value over the stop required time;
    A gaming machine having.
PCT/JP2017/041875 2017-03-15 2017-11-21 Motor control device and game machine WO2018168085A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-050504 2017-03-15
JP2017050504A JP6699607B2 (en) 2017-03-15 2017-03-15 Motor controller

Publications (1)

Publication Number Publication Date
WO2018168085A1 true WO2018168085A1 (en) 2018-09-20

Family

ID=63522925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041875 WO2018168085A1 (en) 2017-03-15 2017-11-21 Motor control device and game machine

Country Status (2)

Country Link
JP (1) JP6699607B2 (en)
WO (1) WO2018168085A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7238582B2 (en) * 2019-04-26 2023-03-14 オムロン株式会社 Motor control device and reel game machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0522978A (en) * 1991-07-15 1993-01-29 Pfu Ltd Control method of dc servo motor
JPH11164589A (en) * 1997-11-28 1999-06-18 Toshiba Fa Syst Eng Corp Inverter device
JP2004275536A (en) * 2003-03-17 2004-10-07 Samii Kk Rotary drum type game machine
JP2014073024A (en) * 2012-09-28 2014-04-21 Omron Corp Dc motor control device and game machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0522978A (en) * 1991-07-15 1993-01-29 Pfu Ltd Control method of dc servo motor
JPH11164589A (en) * 1997-11-28 1999-06-18 Toshiba Fa Syst Eng Corp Inverter device
JP2004275536A (en) * 2003-03-17 2004-10-07 Samii Kk Rotary drum type game machine
JP2014073024A (en) * 2012-09-28 2014-04-21 Omron Corp Dc motor control device and game machine

Also Published As

Publication number Publication date
JP6699607B2 (en) 2020-05-27
JP2018157631A (en) 2018-10-04

Similar Documents

Publication Publication Date Title
JP6020011B2 (en) DC motor control device and game machine
JP6863255B2 (en) Motor control device and spinning machine
JP6561291B2 (en) Game machine
JP6079454B2 (en) Drive control device
WO2018168085A1 (en) Motor control device and game machine
JP2013106745A (en) Pachinko game machine
JP6683158B2 (en) Amusement machine
JP4901783B2 (en) Pachinko machine
JP6111874B2 (en) Drive control device and drive control system
JP2015119871A (en) Game machine
JP2018000499A (en) Game machine
JP6852533B2 (en) Game machine
JP6879026B2 (en) Motor control device
JP6892736B2 (en) Drive equipment control device
JP2005094910A (en) Motor stop control unit
JP6863256B2 (en) Motor control device and spinning machine
JP2018007520A (en) Motor controller and game machine
WO2017141549A1 (en) Driving-device control apparatus and game machine
JP2020182537A (en) Motor control device and rotary drum game machine
EP3214752B1 (en) Dc motor control device and game machine
JP2014236809A (en) Game machine
US10372094B2 (en) Motor control device and game machine
JP2019010481A (en) Game machine
JP6485497B2 (en) Game machine
JP2018014839A (en) Motor control device and game machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901029

Country of ref document: EP

Kind code of ref document: A1