WO2018166247A1 - 一种风电用高强高韧球墨铸铁的研制方法 - Google Patents

一种风电用高强高韧球墨铸铁的研制方法 Download PDF

Info

Publication number
WO2018166247A1
WO2018166247A1 PCT/CN2017/115296 CN2017115296W WO2018166247A1 WO 2018166247 A1 WO2018166247 A1 WO 2018166247A1 CN 2017115296 W CN2017115296 W CN 2017115296W WO 2018166247 A1 WO2018166247 A1 WO 2018166247A1
Authority
WO
WIPO (PCT)
Prior art keywords
strength
iron
inoculant
wind power
furnace
Prior art date
Application number
PCT/CN2017/115296
Other languages
English (en)
French (fr)
Inventor
杨金德
姜广杰
周张松
张亚军
许玉松
陈立新
潘冶
Original Assignee
江苏宏德特种部件股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏宏德特种部件股份有限公司 filed Critical 江苏宏德特种部件股份有限公司
Publication of WO2018166247A1 publication Critical patent/WO2018166247A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/08Making cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/10Making spheroidal graphite cast-iron
    • C21C1/105Nodularising additive agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the field of metallurgy, and particularly relates to a method for developing high-strength and high-tough ductile iron for wind power.
  • the present invention provides a method for developing high strength and high tenacity ductile iron for wind power.
  • a method for developing high-strength and high-tough ductile iron for wind power comprising the following steps:
  • Step 2 sequentially adding in a pit of the spheroidizing bag: 1% spheroidal graphite cast spheroidizing agent, 0.2%-0.4% high calcium strontium inoculant, 30-60 g/t Sb and pressure iron;
  • Step 3 The molten iron is poured into another pit from the furnace, and 0.1-0.2% of the inoculation inoculant is added during the pouring, and the pouring temperature is 1340 ° C - 1380 ° C.
  • the spheroidal graphite caster is composed of the following weight percentage components: Si: 40% - 50%, Ca: 0.9% - 1.3%, Ba: 1% - 1.5%, Mg: 5.8% - 6.2%, Re : 0.8% - 1.0%, Al ⁇ 1.2%, the balance is Fe and inevitable trace elements, and the particle size is 5-30 mm.
  • the high calcium barium inoculant consists of the following weight percentage components: Si: 72% - 75%, Ca: 1% - 2%, Ba: 2% - 2.5%, Al ⁇ 2%, balance is Fe And inevitable trace elements with a particle size of 3-8mm.
  • the flow inoculant consists of the following weight percentage components: Si: 70% - 76%, Ca: 0.75% - 1.25%, Re: 1.5% - 4%, Al: 0.75% - 1.25%, balance
  • the particle size is 0.1-1 mm.
  • the present invention eliminates the tendency of high-silicon-induced broken pieces of graphite by controlling the spheroidizing agent and trace elements.
  • the shape of the graphite was good, and no obvious fragmented graphite appeared even on the thick section of the modulus of 5.
  • Prerequisites for good bulk mechanical properties Increase the strength by maintaining a low temperature impact of -20 ° C greater than 12 J and an elongation greater than 18%.
  • the mechanical properties of the cast-coated test piece next to the cube reached the performance of QT420-18, and the low-temperature impact of the V-notch at -20 °C hit 13J.
  • Figure 1 is a drawing process diagram of a cubic test piece in the present invention
  • FIG. 1 Schematic diagram of cube test block cutting
  • Figure 3 is a schematic view showing the manner of placing the alloy in the spheroidized bag of the present invention.
  • FIG. 4 is a schematic view showing the relative ratio of gold of QT400-18 and QT420-18 in the present invention
  • Figure 5 is a QT420-18 body metallographic phase (100 times) in the present invention.
  • Figure 6 is a SEM analysis (200 times) of the QT420-18 impact fracture at -20 ° C in the present invention
  • Figure 7 is a SEM analysis (200 times) of a QT400-18 impact fracture at -20 °C in the present invention.
  • a cubic test piece having a wall thickness of 300 mm and a cast test piece having a thickness of 70 mm are currently cast, and the cubic modulus is 5 cm.
  • the casting process is as shown in Figure 1.
  • the ceramic tube bottom injection process is used, and the ceramic tube has a diameter of 30 mm.
  • the same cube test piece was cast with the existing QT400-18 molten iron while pouring the QT420-18.
  • a method for developing high-strength and high-tough ductile iron for wind power includes the following steps:
  • Step 2 sequentially adding in a pit of the spheroidizing bag: 1% spheroidal graphite cast spheroidizing agent, 0.2%-0.4% high calcium strontium inoculant, 30-60 g/t Sb and pressure iron;
  • Step 3 The molten iron is poured into another pit from the furnace, and 0.1%-0.2% of the inoculation inoculant is added during pouring, and the pouring temperature is 1340 ° C -1380 ° C.
  • the spheroidal graphite caster is composed of the following weight percentage components: Si: 40% - 50%, Ca: 0.9% - 1.3%, Ba: 1% - 1.5%, Mg: 5.8% - 6.2%, Re: 0.8% -1.0%, Al ⁇ 1.2%, the balance is Fe and inevitable trace elements, and the particle size is 5-30 mm.
  • the high calcium barium inoculant is composed of the following weight percentage components: Si: 72% - 75%, Ca: 1% - 2%, Ba: 2% - 2.5%, Al ⁇ 2%, balance is Fe and inevitable Trace elements with a particle size of 3-8 mm.
  • the flow inoculant consists of the following weight percentage components: Si: 70% - 76%, Ca: 0.75% - 1.25%, Re: 1.5% - 4%, Al: 0.75% - 1.25%, balance is Fe and Inevitable trace elements with a particle size of 0.1-1 mm.
  • the spheroidized molten iron is smelted.
  • the composition of the molten iron before and after spheroidization is as shown in Table 1.
  • the spheroidization process is completed, and the sulfur and magnesium of the molten iron are in the desired range.
  • a 300 mm cube test piece was poured, and after cooling for 1.5 days, it was taken out.
  • the thickness of the cast test block is 70mm, and a test bar, a metallographic phase, and three sets of impacts are respectively tested on the cast test block (the V-notch impact performance of -20 ° C, -30 ° C, and room temperature are respectively tested).
  • the mechanical properties are shown in Table 2 below.
  • the tensile strength of QT420-18 is increased by 32Mpa, the yield ratio is increased to 0.683, and the material utilization rate is improved. At the same time, it also meets the low temperature impact performance of wind power castings. Even at -30 °C, its low temperature impact is still greater than 12J.
  • the metallographic photographs are compared as shown in Fig. 4.
  • the graphite spheres obtained by the metallographic phase are relatively round and uniform, but the number of graphite spheres is significantly different.
  • the number of graphite balls of QT400-18 is 180/mm 2
  • the number of graphite balls of QT420-18 is 230/mm 2 . This is mainly due to the efficient breeding caused by high Si.
  • a piece of thickness 30 mm was removed from the middle of the cube block for mechanical performance testing.
  • Three metal phases, three test bars and six sets of impact cutting were taken in the middle piece, and the distribution of graphite morphology and mechanical properties on the section was observed.
  • the cutting method is shown in Fig. 2.
  • the mechanical properties are shown in Table 3 below. Compared with QT400-18, the tensile strength of QT420-18 is increased by about 30Mpa and the hardness is increased by 15HB. At the same time, the yield ratio has also increased from 0.64 to 0.67, which is of great help to reduce casting thickness and improve material utilization.
  • the low temperature impact properties of QT420-18 are reduced from -20 ° C to -30 ° C. The low temperature impact value of -20 ° C meets the requirements, and the low temperature impact value of -30 ° C is slightly lower than the required 12 J.
  • the metallographic cross-section of the QT420-18 is shown in Figure 5. From the center to the surface, the graphite morphology gradually deteriorates.
  • the graphite of B is not uniform in size, and a small amount of large balls appear, and in the place where the graphite balls are sparse, a small amount of inclusions appear.
  • a small amount of broken graphite appeared in the place of C, and the tensile strength was reduced, but its influence on the low-temperature impact property was small. This is mainly due to the "re-glow phenomenon" when the molten iron is cooled and the addition of a small amount of antimony.
  • Figures 6 and 7 are SEM photographs of the low temperature impact fractures of the middle and edges of QT420-18 and QT400-18 at -30 °C. It can be seen from the figure that there are more dimples in the middle and edge fractures of QT400-18, and there are obvious tearing edges around it.
  • the base is stretched into dimples when fractured, and the dimples are evenly distributed around the graphite balls.
  • the shape is relatively regular, and the existence of these dimples is the fundamental guarantee for higher impact toughness.
  • the edge of QT420-18 is due to the deterioration of graphite morphology. In addition to the dimples, some river patterns appear, and there are obvious cleavage steps, indicating a quasi-cleavage fracture.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

一种风电用高强高韧球墨铸铁的研制方法,包括如下步骤:步骤一、熔炼炉料配比,具体为:生铁:废钢:回炉料=40%-60%:15%-30%:15%-30%,同时在炉中加入一定量的75硅铁;步骤二、在球化包的一个坑中依次加入:1%的球墨铸铁球化剂、0.2%-0.4%高钙钡孕育剂、30-60g/t的Sb和压铁;步骤三、铁水从炉中倒入另外一个坑中,浇注时加入0.1%-0.2%的随流孕育剂,浇注温度为1350℃。通过对球化剂和微量元素的控制,消除高硅带来的碎块状石墨的倾向,保证良好的力学性能。

Description

一种风电用高强高韧球墨铸铁的研制方法 技术领域
本发明属于冶金领域,具体涉及一种风电用高强高韧球墨铸铁的研制方法。
背景技术
随着现代装备向轻量化、节能、高效的方向发展,人们对球铁的强度和使用性能的要求也不断提高。因此,铸造和冶金工作者通常采用铸造合金化,抑或通过热处理工艺来达到提高球铁机械性能的目的。但是,前者因在球铁铸造过程中需添加昂贵的合金元素(如Ti、Cu等),使球铁件的生产成本大大增加,这极大地削弱了球铁件廉价的市场优势;后者耗时、耗能的弊端使球铁生产失去了市场开发的竞争力。而且,球铁较合金钢韧性差,目前球铁强化手段对冲击韧性的提高非常有限。
2004年ISO1083/JS球墨铸铁标准公布后,又补充了一个ISO1083/JS/500-10的球墨铸铁标准,把伸长率从原来的7%提高到10%。2012年3月,德国和欧洲的球墨铸铁标准DIN-EN1563在修改时又增加了3个牌号分别是EN-GJS-450-18、EN-GJS-500-14、EN-GJS-600-10,即大幅提高了铁素体、珠光体混合基体球墨铸铁的屈服强度和伸长率,而且这些级别都可在铸态获得,不需要任何热处理。他们走的是提高成分中的w(si)量、来强化铁素体技术路线。
为了符合风电铸件的工作环境,达到风电低温冲击的力学性能,过高的硅显然是不合适的。与此同时过高的硅对于厚大的风电铸件还是不利的,它会促进铁素体和石墨的形成,从而加剧铸件内部石墨形态恶化。
球墨铸铁自上世纪四十年代问世并投入生产以来,以其耐磨、减振和生产成本低廉等优点得到了迅猛的发展。迄今为止,球铁在汽车、矿山、船舶、注 塑机、机床等众多领域得到广泛应用。随着人们对可持续、可再生能源的认识,风力发电成为人们关注的焦点。与此同时风电厂商对风电铸件的要求也进一步的提高,不在拘泥于原有牌号EN-GJS-400-18U-LT。
发明内容
发明目的:为了解决现有技术的不足,本发明提供了一种风电用高强高韧球墨铸铁的研制方法。
技术方案:一种风电用高强高韧球墨铸铁的研制方法,包括如下步骤:
步骤一、熔炼炉料配比,具体为:生铁:废钢:回炉料=40%-60%:15%-30%:15%-30%,同时在炉中加入一定量的75硅铁,使原铁水的硅达到1.8%;
步骤二、在球化包的一个坑中依次加入:1%的球墨铸铁球化剂、0.2%-0.4%高钙钡孕育剂、30-60g/t的Sb和压铁;
步骤三、铁水从炉中倒入另外一个坑中,浇注时加入0.1-0.2%的随流孕育剂,浇注温度为1340℃-1380℃。
作为优化:所述球墨铸铁球化剂由以下重量百分比成分组成:Si:40%-50%,Ca:0.9%-1.3%,Ba:1%-1.5%,Mg:5.8%-6.2%,Re:0.8%-1.0%,Al<1.2%,余量为Fe以及不可避免的微量元素,粒度为5-30mm。
作为优化:所述高钙钡孕育剂由以下重量百分比成分组成:Si:72%-75%,Ca:1%-2%,Ba:2%-2.5%,Al<2%,余量为Fe以及不可避免的微量元素,粒度为3-8mm。
作为优化:所述随流孕育剂由以下重量百分比成分组成:Si:70%-76%,Ca:0.75%-1.25%,Re:1.5%-4%,Al:0.75%-1.25%,余量为Fe以及不可避免的微量元素,粒度为0.1-1mm。
有益效果:本发明通过对球化剂和微量元素的控制,消除高硅带来的碎块状石墨的倾向。石墨形态良好,即使在模数5的厚大断面上也没有出现明显的碎块状石墨。为好的本体力学性能提供了先决条件。保持-20℃低温冲击大于12J和延伸率大于18%的前提下,提高强度。立方体旁的附铸试块力学性能达到了QT420-18的性能,且-20℃的V缺口低温冲击打到13J。
附图说明
图1是本发明中立方体试块铸造工艺图;
图2立方体试块切割示意图
图3是本发明中球化包中合金的放置方式示意图;
图4是本发明中QT400-18与QT420-18的金相对比示意图;
图5是本发明中QT420-18本体金相(100倍);
图6是本发明中-20℃时QT420-18冲击断口SEM分析(200倍);
图7是本发明中-20℃时QT400-18冲击断口SEM分析(200倍)。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
具体实施例
现有浇注壁厚300mm的立方体试块和一个厚度70mm的附铸试块,立方体模数5cm。铸造工艺如下图1,采用陶瓷管底注工艺,陶瓷管直径30mm。为了说明此配方的优越性,在浇注QT420-18的同时,用现有QT400-18的铁水浇注一个同样的立方体试块。
如图2所示,一种风电用高强高韧球墨铸铁的研制方法,包括如下步骤:
步骤一、熔炼炉料配比,具体为:生铁:废钢:回炉料=40%-60%:15%-30%:15%-30%,同时在炉中加入一定量的75硅铁;
步骤二、在球化包的一个坑中依次加入:1%的球墨铸铁球化剂、0.2%-0.4%高钙钡孕育剂、30-60g/t的Sb和压铁;
步骤三、铁水从炉中倒入另外一个坑中,浇注时加入0.1%-0.2%的随流孕育剂,浇注温度为1340℃-1380℃。
所述球墨铸铁球化剂由以下重量百分比成分组成:Si:40%-50%,Ca:0.9%-1.3%,Ba:1%-1.5%,Mg:5.8%-6.2%,Re:0.8%-1.0%,Al<1.2%,余量为Fe以及不可避免的微量元素,粒度为5-30mm。
所述高钙钡孕育剂由以下重量百分比成分组成:Si:72%-75%,Ca:1%-2%,Ba:2%-2.5%,Al<2%,余量为Fe以及不可避免的微量元素,粒度为3-8mm。
所述随流孕育剂由以下重量百分比成分组成:Si:70%-76%,Ca:0.75%-1.25%,Re:1.5%-4%,Al:0.75%-1.25%,余量为Fe以及不可避免的微量元素,粒度为0.1-1mm。
本专利中立方体旁的附铸试块力学性能达到了QT420-18的性能,且-20℃的V缺口低温冲击打到13J。石墨形态良好,即使在模数5的厚大断面上也没有出现明显的碎块状石墨。为好的本体力学性能提供了先决条件。
1、熔炼结果
按照上述配方熔炼球化的铁水,球化前后铁水成分如下表1,球化过程爆发完好,最终铁水的硫和镁都在期望的范围内。然后浇注300mm立方体试块,等冷却1.5天后,取出。
表1 球化前后铁水成分
Figure PCTCN2017115296-appb-000001
Figure PCTCN2017115296-appb-000002
2、附铸试块力学性能
本附铸试块厚度70mm,在附铸试块上取一根试棒、一个金相、三组冲击(分别测试-20℃、-30℃、室温的V缺口冲击性能)。力学性能如下表2,QT420-18的抗拉强度提高了32Mpa,屈强比提高至0.683,材料利用率提高。同时还满足风电铸件的低温冲击性能,即使-30℃时,其低温冲击仍然大于12J。
表2 附铸试块力学性能
Figure PCTCN2017115296-appb-000003
金相照片对比如图4,由金相可得两者石墨球都比较圆整、均匀,但是石墨球个数有明显差异。QT400-18的石墨球数为180个/mm2,而QT420-18的石墨球数为230个/mm2。这主要是因为高Si引起的高效孕育引起的。
3、本体理化性能
将立方体试块从中间取下一块厚度为30mm的一片做力学性能测试。在中间一片中取3个金相、3根试棒、6组冲击切割,观察石墨形态和力学性能在断面上的分布情况,切割方式如下图2。
力学性能如下表3,与QT400-18相比,QT420-18的抗拉强度提高了30Mpa左右,硬度提高了15HB。与此同时屈强比也从原来的0.64提高到了0.67,这对减少铸件厚度,提高材料利用率有很大的帮助。QT420-18的低温冲击性能,从-20℃至-30℃有所降低。-20℃的低温冲击值满足要求,-30℃的低温冲击值稍低于要求的12J。
表3 300mm立方体试块本体力学性能
Figure PCTCN2017115296-appb-000004
Figure PCTCN2017115296-appb-000005
QT420-18的本体断面金相如图5所示,从中心到表面,石墨形态渐渐变差。B的石墨大小不均匀,出现少量大球,而且在石墨球稀疏的地方,出现了少量夹杂物。C的地方出现了少量的碎块状石墨,抗拉强度有所降低,但其对低温冲击性能的影响较小。这主要是由于铁水冷却时候的“再辉现象”和加入少量锑元素引起的。
4、断口SEM分析
图6和图7为QT420-18和QT400-18在-30℃时,中间和边缘的低温冲击断口的SEM照片。从图中可以看出QT400-18的中间和边缘断口均存在较多韧窝,而且周围有明显的撕裂棱说明断裂时基体被拉伸成韧窝,在石墨球周围,韧窝分布较均匀,形状较规则,这些韧窝的存在是较高冲击韧性的根本保证。而QT420-18的边缘由于石墨形态的变差,除了韧窝,还出现了一部分的河流花样,并且有明显的解理台阶,说明是一种准解理断裂。这种现象是由于QT420-18过高的硅量使材料的韧脆转变温度提高,铸造手册记载,硅每增加0.1%,韧脆转变温度提高5.5℃-6℃。从而使材料在-30℃的情况下,已经进入准解理阶段。
本发明不局限于上述最佳实施方式,任何人在本发明的启示下都可得出其他各种形式的产品,但不论在其形状或结构上作任何变化,凡是具有与本申请相同或相近似的技术方案,均落在本发明的保护范围之内。

Claims (4)

  1. 一种风电用高强高韧球墨铸铁的研制方法,其特征在于:包括如下步骤:
    步骤一、熔炼炉料配比,具体为:生铁:废钢:回炉料=40%-60%:15%-30%:15%-30%,同时在炉中加入一定量的75硅铁;
    步骤二、在球化包的一个坑中依次加入:1%的球墨铸铁球化剂、0.2%-0.4%高钙钡孕育剂、30-60g/t的Sb和压铁;
    步骤三、铁水从炉中倒入另外一个坑中,浇注时加入0.1%-0.2%的随流孕育剂,浇注温度为1340℃-1380℃。
  2. 根据权利要求1所述的风电用高强高韧球墨铸铁的研制方法,其特征在于:所述球墨铸铁球化剂由以下重量百分比成分组成:Si:40%-50%,Ca:0.9%-1.3%,Ba:1%-1.5%,Mg:5.8%-6.2%,Re:0.8%-1.0%,Al<1.2%,余量为Fe以及不可避免的微量元素,粒度为5-30mm。
  3. 根据权利要求1所述的风电用高强高韧球墨铸铁的研制方法,其特征在于:所述高钙钡孕育剂由以下重量百分比成分组成:Si:72%-75%,Ca:1%-2%,Ba:2%-2.5%,Al<2%,余量为Fe以及不可避免的微量元素,粒度为3-8mm。
  4. 根据权利要求1所述的风电用高强高韧球墨铸铁的研制方法,其特征在于:所述随流孕育剂由以下重量百分比成分组成:Si:70%-76%,Ca:0.75%-1.25%,Re:1.5%-4%,Al:0.75%-1.25%,余量为Fe以及不可避免的微量元素,粒度为0.1-1mm。
PCT/CN2017/115296 2017-03-15 2017-12-08 一种风电用高强高韧球墨铸铁的研制方法 WO2018166247A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710152436.6A CN107142416B (zh) 2017-03-15 2017-03-15 一种风电用高强高韧球墨铸铁的研制方法
CN201710152436.6 2017-03-15

Publications (1)

Publication Number Publication Date
WO2018166247A1 true WO2018166247A1 (zh) 2018-09-20

Family

ID=59783821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115296 WO2018166247A1 (zh) 2017-03-15 2017-12-08 一种风电用高强高韧球墨铸铁的研制方法

Country Status (2)

Country Link
CN (1) CN107142416B (zh)
WO (1) WO2018166247A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107142416B (zh) * 2017-03-15 2018-08-21 江苏宏德特种部件股份有限公司 一种风电用高强高韧球墨铸铁的研制方法
CN108277425A (zh) * 2018-03-12 2018-07-13 江苏吉鑫风能科技股份有限公司 一种高硅固溶球墨铸铁及其制备方法
CN111036859B (zh) * 2019-12-19 2021-07-09 唐山钢铁集团有限责任公司 高强球墨铸铁轧辊的球化孕育处理方法
CN111876658B (zh) * 2020-09-04 2021-11-12 浙江坤博精工科技股份有限公司 一种工业机器人机械臂的铸造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015027648A1 (zh) * 2013-08-28 2015-03-05 Yu Pei 一种球墨铸铁基础桩管及其制备工艺
CN104988381A (zh) * 2015-07-17 2015-10-21 江苏吉鑫风能科技股份有限公司 一种大断面铸态铁素体球墨铸铁及其制备方法
CN106191640A (zh) * 2015-04-29 2016-12-07 共享装备有限公司 一种球墨铸铁材料及其制备方法
CN107142416A (zh) * 2017-03-15 2017-09-08 南通宏德机电有限公司 一种风电用高强高韧球墨铸铁的研制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102260819A (zh) * 2011-08-12 2011-11-30 南通宏德机电有限公司 一种铸态厚大断面珠光体基球墨铸铁材料
CN103014219B (zh) * 2012-11-13 2014-10-15 南通宏德机电有限公司 铸态厚断面铁素体基球墨铸铁件石墨球和基体组织的控制方法
KR20140110618A (ko) * 2013-03-08 2014-09-17 엘지전자 주식회사 클러치용 포크 및 그의 제조방법
CN104328239B (zh) * 2014-11-28 2016-05-25 南通宏德机电有限公司 一种大断面球墨铸铁的组织均匀性与性能的提升方法
CN105220060B (zh) * 2015-11-06 2017-05-24 河南理工大学 一种高强度球墨铸铁及其生产方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015027648A1 (zh) * 2013-08-28 2015-03-05 Yu Pei 一种球墨铸铁基础桩管及其制备工艺
CN106191640A (zh) * 2015-04-29 2016-12-07 共享装备有限公司 一种球墨铸铁材料及其制备方法
CN104988381A (zh) * 2015-07-17 2015-10-21 江苏吉鑫风能科技股份有限公司 一种大断面铸态铁素体球墨铸铁及其制备方法
CN107142416A (zh) * 2017-03-15 2017-09-08 南通宏德机电有限公司 一种风电用高强高韧球墨铸铁的研制方法

Also Published As

Publication number Publication date
CN107142416A (zh) 2017-09-08
CN107142416B (zh) 2018-08-21

Similar Documents

Publication Publication Date Title
WO2018166247A1 (zh) 一种风电用高强高韧球墨铸铁的研制方法
CN106191640B (zh) 一种球墨铸铁材料及其制备方法
CN106811676A (zh) 一种高强度高韧性铸态qt700‑10及其生产方法
CN103194660B (zh) 一种低温铁素体球墨铸铁材料的制造方法
CN105886692B (zh) ‑70℃超低温高韧性球墨铸铁的生产工艺
CN104328239B (zh) 一种大断面球墨铸铁的组织均匀性与性能的提升方法
CN103898396B (zh) 兆瓦级风电高强高韧-30℃低温球墨铸铁件的制备方法
CN101418414B (zh) Qt600-3球铁铸件及其制造方法
WO2018166248A1 (zh) 一种球墨铸铁的球化孕育处理工艺
WO2019120122A1 (zh) -40℃低温高强高韧球墨铸铁及其制备方法和铁路机车零部件
CN103805731B (zh) 一种球墨铸铁的孕育方法
CN110129661A (zh) 高强度低温高韧性球墨铸铁的生产工艺
CN105441782A (zh) 一种球铁铸件及其制造方法
CN105401064A (zh) 一种中硅钼球墨铸铁及其生产方法
CN105861915A (zh) 铁素体球墨铸铁及其制备方法
CN110295312A (zh) 一种低温球墨铸铁及其生产工艺和应用
CN107723581A (zh) 耐腐蚀球墨铸铁及其铸造方法
CN108707813A (zh) 铸态高强度球铁及其制造工艺
CN112680650A (zh) 一种高强度球墨铸铁及其制备方法
CN102400032A (zh) 一种大断面球墨铸铁
CN107619988A (zh) 薄壁铁素体球墨铸铁用孕育剂及其制备方法
CN101407887A (zh) 一种用于制造风能设备的铸件
CN105803300B (zh) 一种抗零下40℃低温冲击cadi球墨铸铁的制备方法
CN104388810B (zh) 一种铸态球墨铸铁的制备方法及其球墨铸铁
CN102534090B (zh) -60℃低温冲击球墨铸铁的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17900969

Country of ref document: EP

Kind code of ref document: A1