WO2018166194A1 - 光场显示装置 - Google Patents

光场显示装置 Download PDF

Info

Publication number
WO2018166194A1
WO2018166194A1 PCT/CN2017/105991 CN2017105991W WO2018166194A1 WO 2018166194 A1 WO2018166194 A1 WO 2018166194A1 CN 2017105991 W CN2017105991 W CN 2017105991W WO 2018166194 A1 WO2018166194 A1 WO 2018166194A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens array
imaging module
liquid crystal
imaging
light field
Prior art date
Application number
PCT/CN2017/105991
Other languages
English (en)
French (fr)
Inventor
张洪术
徐晓玲
王延峰
邱云
王丹
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/780,323 priority Critical patent/US11503273B2/en
Publication of WO2018166194A1 publication Critical patent/WO2018166194A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/322Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using varifocal lenses or mirrors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/144Beam splitting or combining systems operating by reflection only using partially transparent surfaces without spectral selectivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/10Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images using integral imaging methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/307Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using fly-eye lenses, e.g. arrangements of circular lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/346Image reproducers using prisms or semi-transparent mirrors

Definitions

  • the present disclosure relates to the field of light field display technology, and in particular to a light field display device.
  • the light field display technology is a technique for reproducing the original object by recording the three-dimensional position information of the object information in the propagation process, and has one degree of freedom compared with the conventional two-dimensional conventional imaging method, so that it can be acquired during the image reconstruction process. More rich image information.
  • 3D display due to the realism and depth information brought by 3D display, more and more people are researching it and enriching our lives. Its real space three-dimensional display, that is, the observer does not have to use any tools to look at the real scene, around which you can see the three-dimensional information of each side of the object. Combining the advantages of both, there has been a 3D light field display technology.
  • the 3D light field display technology is divided into two stages of recording and reproduction.
  • the three-dimensional data recording stage the three-dimensional information of the object is collected by a CCD (Charge-coupled Device) through a plurality of microlenses.
  • a plurality of microlenses are composed of a plurality of identical lenslets, which are called unit lenses, and an image array recorded by these unit lenses is a unit image.
  • the unit image is recorded and stored by the CCD.
  • the unit image array is displayed on the spatial light modulator or LCD, and the light emitted by the unit image is superimposed in the space through the microlens to reproduce the light field of the original object, and the three-dimensional image of the original object can be seen.
  • a light field display device includes a multi-component image module, each set of the image forming module includes a liquid crystal lens array and a display screen, and the liquid crystal lens array is disposed on the display screen The light exiting side, wherein the images of the plurality of component image modules are parallel to each other.
  • the multi-component image module includes a first imaging module and a second imaging module, and the first imaging module and the second imaging module are parallel Settings.
  • the multi-component image module includes a first imaging module and a second imaging module, and the first imaging module and the second imaging module are pre-formed. Set the angle setting.
  • the light field display device further includes: a transflective film, wherein
  • the transflective film is used to make the imaging of the first imaging module and the imaging of the second imaging module parallel to each other.
  • the first imaging module and the second imaging module are vertically disposed, and the transflective film and the first imaging module are respectively The second imaging modality forms a 45 degree angle.
  • imaging of the first imaging module is formed before or after imaging of the second imaging module.
  • the light field display device further includes: a PBS polarization beam splitting prism, wherein
  • the PBS polarizing beam splitting prism is configured to make imaging of the first imaging module and imaging of the second imaging module parallel to each other.
  • the first liquid crystal lens array of the first imaging module and the second liquid crystal lens array of the second imaging module have the same number of focal lengths.
  • the first liquid crystal lens array of the first imaging module has a focal length that is related to a display performance of the first display of the first imaging module
  • the first The number of focal lengths of the second liquid crystal lens array of the second imaging module is related to the display performance of the second display screen of the second imaging module
  • the first liquid crystal lens array and the second liquid crystal lens array have The number is related to the number of depths of the image to be displayed.
  • the liquid crystal lens array has a plurality of focal lengths, and the plurality of focal lengths are equally distributed.
  • Figure 1 shows a schematic diagram of a light field display in the prior art.
  • FIG. 2 shows a schematic diagram of a first light field display device in an exemplary embodiment of the present disclosure.
  • FIG. 3 shows a schematic diagram of a second light field display device in an exemplary embodiment of the present disclosure.
  • FIG. 4 shows a schematic diagram of a third light field display device in an exemplary embodiment of the present disclosure.
  • FIG. 5 shows a schematic diagram of a fourth light field display device in an exemplary embodiment of the present disclosure.
  • FIG. 6 shows a schematic diagram of a fifth light field display device in an exemplary embodiment of the present disclosure.
  • FIG. 7 shows a schematic diagram of a sixth light field display device in an exemplary embodiment of the present disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • the example embodiments can be embodied in a variety of forms, and should not be construed as being limited to the examples set forth herein; the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
  • numerous specific details are set forth However, one skilled in the art will appreciate that one or more of the specific details may be omitted or other methods, components, devices, steps, etc. may be employed.
  • the embodiment of the present disclosure first provides a light field display device, which may include a multi-component image module, and each set of the image forming module includes a liquid crystal lens array (hereinafter referred to as LC lens). Array) and a display.
  • the liquid crystal lens array can be disposed on the light exiting side of the display screen.
  • the images of the multi-component image modules are parallel to each other.
  • the multi-component image module can reduce the refresh frequency requirement of the display screen and the liquid crystal lens array, thereby reducing the response time requirement.
  • the display screen may include any display screen such as a liquid crystal display (LCD), an organic light-emitting diode (OLED) display, and the like.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • a liquid crystal display LCD is exemplified, but it is not intended to limit the purpose of the present disclosure.
  • a liquid crystal lens can be provided in the display device.
  • the liquid crystal lens comprises a plurality of liquid crystal repeating units, each liquid crystal repeating unit is equivalent to a columnar lens.
  • each liquid crystal repeating unit focuses the light in different directions, thereby allowing entry. The light in the left and right eyes of the user is different.
  • the liquid crystal lens includes an upper substrate and a lower substrate disposed opposite to each other, and a liquid crystal layer filled between the upper substrate and the lower substrate; an upper electrode is disposed on the upper substrate, and a plurality of strip electrodes parallel to each other are disposed on the lower substrate .
  • the strip electrode is charged and an electric field is formed between the upper electrode and each strip electrode, in each liquid crystal repeating unit, the tilt angle of the liquid crystal molecules in the liquid crystal layer close to the lower substrate is gradually decreased from the central region to the edge region.
  • the refractive index of the liquid crystal layer close to the lower substrate is gradually reduced from the central region to the edge region.
  • the change in the refractive index causes the light to be focused to a predetermined direction as it passes through the liquid crystal layer near the lower substrate portion, and the 3D display can be realized by the optical action of the plurality of liquid crystal repeating units in the liquid crystal lens.
  • the liquid crystal lens array in the embodiment of the present invention can replace the original lenticular lens product on the one hand.
  • the advantage of this is that the LCD screen can freely switch between the 2D plane and the 3D effect, and the user does not need to wear glasses when viewing, thereby getting rid of the inconvenience of wearing the glasses. At the same time, it maintains high-definition, realistic stereoscopic image quality.
  • LC lens technology breaks the distance limit of naked-eye 3D displays.
  • the traditional naked-eye 3D has a limitation that needs to be viewed at a fixed distance, and the lens technology of the LC lens adjusts the distance generated by the 3D image, so that the user can freely select the appropriate distance for viewing.
  • the liquid crystal lens array can achieve fast zoom by adjusting the magnitude of the driving voltage.
  • the liquid crystal lens array in the embodiment of the present invention may be any one of a curved electrode, a hole electrode, or a polymer structure.
  • the curved electrode may further comprise a curved box and a flat box.
  • the hole type electrode may further include two types of electrodes built in and external electrodes. Any liquid crystal lens of the prior art may be selected in the present disclosure, which is not limited thereto.
  • Figure 1 shows a schematic diagram of a light field display in the prior art.
  • the light field display scheme is: adding a liquid crystal lens (LC lens) array on the liquid crystal display (LCD), and changing the imaging position on the liquid crystal display by adjusting the focal length of the liquid crystal lens array.
  • LC lens liquid crystal lens
  • the liquid crystal lens array and the liquid crystal display have a very high refresh rate, and the liquid crystal lens focal length and the liquid crystal display screen match, the images of different depths of field can be displayed "simultaneously”.
  • the light field display scheme requires the LC lens array to have 5 focal lengths, such as f11, f12, f13, f14, and f15 in FIG.
  • Five virtual images are respectively generated at the five focal lengths, which are virtual image 1, virtual image 2, virtual image 3, virtual image 4, and virtual image 5.
  • the normal display refresh rate is 60 Hz
  • the embodiments of FIG. 1 are exemplified, but the disclosure is not limited thereto.
  • the image of the depth of field is displayed by the light field.
  • the image of the actual light field display may have any depth of field, which is not limited in the present disclosure.
  • the multi-component image module may include a first imaging module and a second imaging module.
  • first imaging module eg, LC lens array and LCD combination 1
  • second imaging Modules such as LC lens array and LCD combination 2 can be placed in parallel. This will be exemplified below by means of FIG. 2.
  • FIG. 2 shows a schematic diagram of a first light field display device in an exemplary embodiment of the present disclosure.
  • the light field display device includes an LC lens array and an LCD combination 1 and an LC lens array and LCD combination 2.
  • the principle of 3D display is: the LC lens array with variable focal length is placed in front of the LCD, and the focal length of the LCD screen and the LC lens array are adjusted in "1 frame" time, respectively, at 1/6, 2/6, 3/6, 4 /6, 5/6, 6/6 frames display different pictures and focal lengths to form a vertical depth of field image.
  • the human eye can focus on any depth of field to observe the image and produce a three-dimensional effect.
  • the LC lens array in the LC lens array and LCD combination 1 has two focal lengths, respectively f21 and f22, so that two virtual images can be generated at the corresponding positions: virtual image 1 and virtual image 2,
  • the virtual image 1 and the virtual image 2 in 2 correspond to the positions of the virtual image 1 and the virtual image 2 of FIG. 1, respectively, but the disclosure is not limited thereto;
  • the LC lens array in the LC lens array and the LCD combination 2 also has two focal lengths, respectively F23, f24, so that two virtual images can be generated at the corresponding position: virtual image 3, virtual image 4, here assume that virtual image 3 and virtual image 4 respectively correspond to the positions of virtual image 4 and virtual image 5 in FIG. 1, but the disclosure is not limited thereto;
  • the distance between the LC lens array and the LCD combination 1, the LC lens array, and the LCD combination 2 is H21.
  • the plurality of focal lengths of the liquid crystal lens array may not be equally distributed.
  • the adjustment of the focal length is related to the actual content of the currently captured image, and the depth of field of the image cannot exceed the upper limit of the performance of the display (for example, less than or equal to 6 depth of field).
  • the focal lengths of the liquid crystal lens arrays in the LC lens array and LCD combination 1 and LC lens array and LCD combination 2 can also be adjusted such that f21 ⁇ f23 ⁇ f11, f22 ⁇ f24 ⁇ f12, f22 ⁇ 2*f21 , f24 ⁇ 2*f23.
  • the set 1 and the combination 2 may have a set fixed distance H21, but the specific distance value is related to the focal length range of the liquid crystal lens array, the depth of field of the captured image, and the like.
  • the first liquid crystal lens array of the first imaging module (eg, LC lens array and LCD combination 1) and the second imaging module (eg, LC lens array and LCD combination 2) of The second liquid crystal lens array has an equal number of focal lengths.
  • the LC lens array and the LCD combination 1 have two focal lengths (f21 and f22) capable of two virtual images (virtual image 1 and virtual image 2); at the same time, for example, the LC lens array and the LCD combination 2 also have two focal lengths (f23 and f24). It can also be two virtual images (virtual image 3 and virtual image 4).
  • the present disclosure is not limited thereto.
  • the first liquid crystal lens array of the first imaging module and the second liquid crystal lens array of the second imaging module may have a focal length. not equal. The following is exemplified by the embodiment of FIG. 3.
  • FIG. 3 shows a schematic diagram of a second light field display device in an exemplary embodiment of the present disclosure.
  • the light field display device comprises: an LC lens array and an LCD combination 1, the LC lens array having a focal length f31, generating a virtual image 1 at a corresponding position; an LC lens array and an LCD combination 2, the LC lens array having The three focal lengths are f32, f33, and f34, respectively, and virtual image 2, virtual image 3, and virtual image 4 are generated at corresponding positions.
  • the LC lens array and the LCD combination 2 can be disposed at the position of the virtual image 2 of FIG. 1, and the virtual image 2, the virtual image 3, and the virtual image 4 generated by the image can correspond to the virtual image 3, the virtual image 4, and the virtual image 5 of FIG. 1, respectively.
  • the LC lens array and the LCD combination 1 have a focal length (f31) capable of forming a virtual image (virtual image 1); and the LC lens array and LCD combination 2 have three focal lengths (f32, f33, and f34). , can be into three virtual images (virtual image 2, virtual image 3 and virtual image 4).
  • the LC lens array and the LCD combination 2 may also be disposed at the virtual image 4 of FIG. 1, at which time, the LC lens array and the LCD combination 1 generate a virtual image 1 and a virtual image 2, a virtual image 3; and the LC lens The array and LCD combination 2 generates a virtual image 4.
  • the LC lens array and the LCD combination 1 have three focal lengths and can be three virtual images; and the LC lens array and the LCD combination 2 have a focal length and can be a virtual image.
  • the first liquid crystal lens array of the first imaging module has a focal length and a display performance of the first display of the first imaging module (for example, a refresh frequency or Response time) related.
  • the second liquid crystal lens array of the second imaging module has a focal length that is related to a display performance of the second display of the second imaging module.
  • the sum of the number of focal lengths of the first liquid crystal lens array and the second liquid crystal lens array is also dependent on the desired display
  • the upper limit of the number of depths of the image for example, to display a 6-depth image, the sum of the number of focal lengths of the first liquid crystal lens array and the second liquid crystal array is greater than or equal to four.
  • the multi-component image module may include a first imaging module, a second imaging module, and a third imaging module.
  • the first imaging module (such as LC lens array and LCD combination 1)
  • the second imaging module (such as LC lens array and LCD combination 2)
  • the third imaging module (such as LC lens array and LCD combination) 3) Can be set in parallel. This will be exemplified below by means of FIG.
  • FIG. 4 shows a schematic diagram of a third light field display device in an exemplary embodiment of the present disclosure.
  • the light field display device comprises: an LC lens array and an LCD combination 1 having a focal length f41 capable of generating a virtual image 1 at a corresponding position; an LC lens array and an LCD combination 2 having a focal length f42, capable of A virtual image 2 is generated at a corresponding position; an LC lens array and an LCD combination 3 having a focal length f43 capable of generating a virtual image 3 at a corresponding position.
  • the present disclosure is not limited to this.
  • the light field display device uses a triple LC lens array + LCD combination, and causes the LC lens array + LCD combination 2 to be in the position of the second virtual image of FIG. 1, LC lens frame rate + LCD
  • the combination 3 can be in the position of the fourth virtual image of FIG. 1, assuming that 6 depths of field are realized, the combination 1, the combination 2, and the combination 3 only need one focal length of the respective LC lens array, and the 60 Hz light field image is required to be 60 Hz.
  • *2 120Hz, response time requirement ⁇ 8.3ms.
  • combination 2 and combination 3 may actually be located at any one of the first to fifth virtual images in FIG.
  • the light field display device may have more than two arbitrary components.
  • the number of specific imaging modules can be reasonably selected according to the upper limit of the number of depths of the image to be displayed in the actual application scenario and the refresh frequency performance of the display screen and the liquid crystal lens array, for example, When the image displayed includes 8 depth images, the two component image modules, the three component image modules, or the four component image modules may be selected, and the setting positions of the imaging modules may be flexibly configured according to the response time requirements. This disclosure does not limit this.
  • the multi-component image module may include a first imaging module and a second imaging module.
  • the first imaging module (such as the LC lens array and the LCD combination 1) and the second imaging module (such as the LC lens array and the LCD combination 2) may have a preset angle setting.
  • the light field display device may further include a transflective film.
  • the transflective film can be used to image the imaging of the first imaging module (eg, LC lens array and LCD combination 1) and the imaging of the second imaging module (eg, LC lens array and LCD combination 2) .
  • the light field display device may further include a PBS polarizing beam splitting prism. That is, the transflective film can be replaced by a PBS (Polarization Beam Splitter) polarizing beam splitting prism, and the polarizer direction of the display screen of the first imaging module and the display screen of the second imaging module is adjusted to respectively emit P waves and S wave.
  • a PBS Polarization Beam Splitter
  • the PBS polarizing beam splitting prism can be used to make the imaging of the first imaging module (for example, the LC lens array and the LCD combination 1) and the imaging of the second imaging module (the LC lens array and the LCD combination 2) parallel to each other.
  • the PBS polarizing beam splitting prism can split the incident unpolarized light into two vertical linear polarized lights, wherein the P polarized light passes completely, and the S polarized light is reflected at an angle of 45 degrees, and the outgoing direction is at an angle of 90 degrees with the P light.
  • the polarizing beam splitting prism is formed by gluing a pair of high-precision right-angle prisms, and a beveled edge of one of the prisms is plated with a polarizing beam splitting dielectric film.
  • the preset angle may be 90 degrees, that is, the first imaging module (eg, LC lens array and LCD combination 1) and the second imaging module (eg, LC lens array and LCD combination) 2) Set vertically to each other. This will be exemplified below by means of FIG.
  • FIG. 5 shows a schematic diagram of a fourth light field display device in an exemplary embodiment of the present disclosure.
  • the light field display device may include: an LC lens array and an LCD combination 1.
  • the LC lens array and LCD combination 1 are placed perpendicular to each other between the LC lens array and the LCD combination 2. It also has a transflective film at an angle of 45 degrees to the LC lens array and LCD combination 1, LC lens array and LCD combination, respectively, by adjusting the LC lens array and the LCD combination 1, the LC lens array and the LCD combination 2
  • the transflective film can be used to form an image of the LC lens array and LCD combination 2 after imaging of the LC lens array and LCD combination 1.
  • FIG. 6 shows a schematic diagram of a fifth light field display device in an exemplary embodiment of the present disclosure.
  • the transflective film can be used to combine the LC lens array and the LCD by adjusting the distance between the LC lens array and the LCD combination 1, the LC lens array, and the LCD combination 2.
  • the imaging is formed prior to imaging of the LC lens array and LCD combination 1.
  • the imaging of the LC lens array and the LCD combination 1 can also be achieved by setting the arrangement of the transflective film and adjusting the distance between the LC lens array and the LCD combination 1, the LC lens array and the LCD combination 2. Formed before or after imaging of the LC lens array and LCD combination 1.
  • FIG. 7 shows a schematic diagram of a sixth light field display device in an exemplary embodiment of the present disclosure.
  • the LC lens array and the LCD combination 1, the LC lens array, and the LCD combination 2 are not vertically placed. But the same can be achieved by setting the angle between the transflective film and the LC lens array and LCD combination 1, the LC lens array and the LCD combination 2, and the LC lens array and LCD combination 1, the LC lens array and the LCD combination 2 The distance between the LC lens array and the LCD combination 2 is formed after the imaging of the LC lens array and LCD combination 1.
  • the two combinations (the LC lens array and the LCD combination 1, the LC lens array and the LCD combination 2) are separated in space by a half mirror, the LC lens array and the LCD.
  • the combination 2 and the two virtual images formed by it do not pass through the LC lens array and the LCD combination 1 on the optical path, so that there is no interference with each other, and crosstalk can be reduced.
  • the angle between the transflective film and the combination 1 and the combination 2 may vary with the angle between the combination 1 and the combination 2, as long as the real image and the virtual image generated by the combination 1 and the combination 2 can be made. Parallel can be.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

一种光场显示装置。光场显示装置包括多组成像模组,每组成像模组包括一液晶透镜阵列和一显示屏,液晶透镜阵列设置于显示屏的出光侧,其中,多组成像模组的成像彼此平行。光场显示装置降低了显示屏和液晶透镜阵列的刷新频率要求,从而降低响应时间要求。

Description

光场显示装置
交叉引用
本申请要求于2017年3月17日提交的申请号为201710162118.8、名称为“光场显示装置”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及光场显示技术领域,具体而言,涉及一种光场显示装置。
背景技术
光场显示技术是通过记录物体信息在传播过程中的三维位置信息再现出原物体的技术,相比只记录二维的传统成像方式多出1个自由度,因而在图像重建过程中,能够获取更加丰富的图像信息。现阶段由于3D显示带来的真实感和深度信息,使得越来越多的人对其进行研究,更加丰富了我们的生活。其真实的空间三维显示,即观察者不必借助任何工具就如同看真实景物一般,围绕着它可以看到物体各个侧面的三维信息。结合两者的优点,因此出现了3D光场显示技术。
3D光场显示技术分为记录和再现两个阶段,在三维数据记录阶段,物体的三维信息通过多个微透镜被CCD(Charge-coupled Device,电荷耦合元件)采集到。多个微透镜由许多完全相同的小透镜组成,这些小透镜称为单元透镜,通过这些单元透镜记录下来的图像阵列,即为单元图像。单元图像被CCD记录和存储。在三维信息显示阶段,单元图像阵列在空间光调制器或LCD上显示,单元图像发出的光经过微透镜在空间中叠加,再现出原物体的光场,即可看到原物体的三维图像。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开的目的在于提供一种光场显示装置,进而至少在一定程度上克服由于相关技术的限制和缺陷而导致的一个或者多个问题。
本公开的其他特性和优点将通过下面的详细描述变得清晰,或者部分地通过本公开的实践而习得。
根据本公开的一个方面,提供一种光场显示装置,包括多组成像模组,每组所述成像模组包括一液晶透镜阵列和一显示屏,所述液晶透镜阵列设置于所述显示屏的出光侧,其中,所述多组成像模组的成像彼此平行。
在本公开的一种示例性实施例中,所述多组成像模组包括一第一成像模组和一第二成像模组,所述第一成像模组和所述第二成像模组平行设置。
在本公开的一种示例性实施例中,所述多组成像模组包括一第一成像模组和一第二成像模组,所述第一成像模组和所述第二成像模组成预设夹角设置。
在本公开的一种示例性实施例中,所述光场显示装置还包括:半透半反膜,其中,
所述半透半反膜用于使所述第一成像模组的成像与所述第二成像模组的成像彼此平行。
在本公开的一种示例性实施例中,所述第一成像模组和所述第二成像模组垂直设置,且所述半透半反膜分别与所述第一成像模组和所述第二成像模组成45度角。
在本公开的一种示例性实施例中,所述第一成像模组的成像形成于所述第二成像模组的成像之前或者之后。
在本公开的一种示例性实施例中,所述光场显示装置还包括:PBS偏振分光棱镜,其中,
所述PBS偏振分光棱镜用于使所述第一成像模组的成像与所述第二成像模组的成像彼此平行。
在本公开的一种示例性实施例中,所述第一成像模组的第一液晶透镜阵列和所述第二成像模组的第二液晶透镜阵列所具有的焦距数量相等。
在本公开的一种示例性实施例中,所述第一成像模组的第一液晶透镜阵列具有的焦距数量与所述第一成像模组的第一显示屏的显示性能相关,所述第二成像模组的第二液晶透镜阵列所具有的焦距数量与所述第二成像模组的第二显示屏的显示性能相关,所述第一液晶透镜阵列和所述第二液晶透镜阵列所具有的数量与所要显示的图像的景深数量相关。
在本公开的一种示例性实施例中,所述液晶透镜阵列具有多个焦距,且所述多个焦距之间成等差分布。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出现有技术中一种光场显示的示意图。
图2示出本公开示例性实施例中第一种光场显示装置的示意图。
图3示出本公开示例性实施例中第二种光场显示装置的示意图。
图4示出本公开示例性实施例中第三种光场显示装置的示意图。
图5示出本公开示例性实施例中第四种光场显示装置的示意图。
图6示出本公开示例性实施例中第五种光场显示装置的示意图。
图7示出本公开示例性实施例中第六种光场显示装置的示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本公开的实施方式的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而省略所述特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。
需要指出的是,在附图中,为了图示的清晰可能会夸大层和区域的尺寸。而且可以理解,当元件或层被称为在另一元件或层“上”时,它可以直接在其他元件上,或者可以存在中间的层。另外,可以理解,当元件或层被称为在另一元件或层“下”时,它可以直接在其他元件下,或者可以存在一个以上的中间的层或元件。另外,还可以理解,当层或元件被称为在两层或两个元件“之间”时,它可以为两层或两个元件之间唯一的层,或还可以存在一个以上的中间层或元件。通篇相似的参考标记指示相似的元件。
本公开实施例首先提供了一种光场显示装置,该光场显示装置可以包括多组成像模组,每组所述成像模组包括一液晶透镜阵列(Liquid Crystal lens Array,以下简称为LC lens阵列)和一显示屏。其中,该液晶透镜阵列可以设置于该显示屏的出光侧。其中,该多组成像模组的成像彼此之间是相互平行的。通过该多组成像模组可以降低显示屏和液晶透镜阵列的刷新频率要求,从而降低响应时间要求。
在示例性实施例中,该显示屏可以包括液晶显示屏(LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏等任意的显示屏,本公开对此不作限定。在下面的实施例中,均以液晶显示屏(LCD)为例进行举例说明,但其不是用于限定本公开的目的。
为达到3D显示的目的,可以在显示装置中设置液晶透镜。该液晶透镜包括多个液晶重复单元,每个液晶重复单元相当于一个柱状的透镜,在呈现同一画面的光线经过液晶透镜时,每个液晶重复单元使光线向不同的方向聚焦,从而可使得进入用户左眼和右眼的光线不同。
具体地,液晶透镜包括相对设置的上基板和下基板,以及填充在上基板和下基板之间的液晶层;在上基板设有上电极,下基板上设有多个相互平行的条状电极。在条状电极充电而在上电极与各条状电极之间构成电场时,在每个液晶重复单元中,靠近下基板的液晶层中的液晶分子的倾斜角度从中央区域到边缘区域逐渐减小,从而使得靠近下基板的液晶层的折射率从中央区域到边缘区域逐渐变小。该折射率的变化使得光线在透过该靠近下基板部分的液晶层时被聚焦至预定的方向,通过上述液晶透镜中的多个液晶重复单元的光学作用,即可实现3D显示。
本发明实施例中的液晶透镜阵列,一方面,可以取代原本柱状透镜式的产品。这样的好处在液晶屏幕可自由切换2D平面和3D效果,且用户观看时不用带眼镜,从而摆脱了佩戴眼镜的不便性。同时保有高精细,真实感十足的立体影像质量。另一方面,LC lens技术突破了裸眼3D显示器的距离限制。传统裸眼3D会有需要在固定距离观看的限制,而透过LC lens的透镜技术,调节3D影像生成的距离,让用户可以自由选择合适的距离观赏。
在示例性实施例中,所述液晶透镜阵列可通过调节驱动电压的大小来实现快速变焦。
本发明实施例中的液晶透镜阵列,可以是曲面电极、孔型电极、或者聚合物结构等中的任意一种。其中曲面电极又可以包括曲面盒和平面盒。孔型电极又可以包括电极内置、电极外置两种类型。本公开中可以选用现有技术中的任意一种液晶透镜,对此不作限定。
图1示出现有技术中一种光场显示的示意图。
现有技术中的光场显示方案为:在液晶显示屏(LCD)上增加一层液晶透镜(LC lens)阵列,通过调整液晶透镜阵列的焦距改变液晶显示屏上成像位置。当液晶透镜阵列和液晶显示屏刷新率非常高,且液晶透镜焦距和液晶显示屏画面匹配时,即可“同时”显示不同景深的图像。
参考图1,具有一组LC lens阵列和LCD,若要显示6景深图像,该光场显示方案需要LC lens阵列具有5个焦距,例如图1中的f11、f12、f13、f14、f15,在该5个焦距处分别生成五个虚像,分别为虚像1、虚像2、虚像3、虚像4、虚像5。
假设普通显示屏刷新频率为60Hz,原1帧画面需要分成6帧显示,即需要60Hz*6=360Hz刷新频率,那么LC lens阵列和LCD均需要360Hz刷新率,响应时间要求<2.7ms,这对于现有液晶来说非常困难。
在下面的实施例中,均是参考上述图1的实施例进行举例说明,但本公开并不限定于此。图2-图7的实施例中均是以光场显示6景深图像,但实际进行光场显示的图像可以是具有任意景深的,本公开对此不作限定。
在示例性实施例中,该多组成像模组可以包括一第一成像模组和一第二成像模组。其中,该第一成像模组(例如LC lens阵列和LCD组合1)和该第二成像 模组(例如LC lens阵列和LCD组合2)可以平行设置。下面通过图2对其进行示例说明。
图2示出本公开示例性实施例中第一种光场显示装置的示意图。
如图2所示,该光场显示装置包括LC lens阵列和LCD组合1与LC lens阵列和LCD组合2。其3D显示原理为:LCD前放置可变焦距的LC lens阵列,在“1帧”的时间里,调节LCD画面和LC lens阵列焦距,分别在1/6、2/6、3/6、4/6、5/6、6/6帧显示不同的画面和焦距,形成纵向景深图像。人眼可以聚焦任意景深观察到图像,产生立体感。
在图2的实施例中,LC lens阵列和LCD组合1中的LC lens阵列具有两个焦距,分别为f21、f22,从而可以在相应位置生成两个虚像:虚像1和虚像2,这里假设图2中的虚像1和虚像2分别对应图1的虚像1和虚像2的位置,但本公开并不限定于此;LC lens阵列和LCD组合2中的LC lens阵列也具有两个焦距,分别为f23、f24,从而可以在相应位置生成两个虚像:虚像3,虚像4,这里假设虚像3和虚像4分别对应图1中的虚像4和虚像5的位置,但本公开并不限定于此;且LC lens阵列和LCD组合1、LC lens阵列和LCD组合2之间的距离为H21。
在图1示出的光场显示方案中,可以调节其LC lens阵列的5个焦距呈等差分布,例如假设f11=f12-f11=f13-f12=f14-f13=f15-f14。与此对应的,在图2所示的实施例中,可以调节图2中的H21=f13,即LC lens阵列和LCD组合2处于图1所示的虚像3的位置处,但本公开不限定于此,在其他的实施例中,液晶透镜阵列的多个焦距之间也可以不呈等差分布。焦距的调节和当前拍摄的图像实际内容有关,且图像的景深个数不能超过显示屏的性能上限(例如小于等于6景深)。
在图2所示的实施例中,还可以调节LC lens阵列和LCD组合1和LC lens阵列和LCD组合2中的液晶透镜阵列的焦距,使得f21=f23=f11,f22=f24=f12,f22=2*f21,f24=2*f23,但本公开并不限定于此。在其他实施例中,也可以调节LC lens阵列和LCD组合1和LC lens阵列和LCD组合2中的液晶透镜阵列的焦距,使得f21≠f23≠f11,f22≠f24≠f12,f22≠2*f21,f24≠2*f23。
整个显示器做好之后,组合1和组合2之间可以具有设定的固定距离H21,但具体的距离值和液晶透镜阵列的焦距范围、拍摄图像的景深距离等有关。
在图2所示的实施例中,使用LC lens阵列和LCD组合1与LC lens阵列和LCD组合2两个组合,若显示6景深图像,LC lens阵列和LCD组合1与LC lens阵列和LCD组合2均仅需LC lens阵列具有2个焦距,显示60Hz的光场图像需要60Hz*3=180Hz,响应时间要求<5.5ms,这对于现有液晶非常容易实现,响应时间要求降低了50%。
在图2所示的实施例中,该第一成像模组(例如LC lens阵列和LCD组合1)的该第一液晶透镜阵列和该第二成像模组(例如LC lens阵列和LCD组合2)的 该第二液晶透镜阵列所具有的焦距数量相等。例如LC lens阵列和LCD组合1具有两个焦距(f21和f22),能够成两个虚像(虚像1和虚像2);同时例如LC lens阵列和LCD组合2也具有两个焦距(f23和f24),也能够成两个虚像(虚像3和虚像4)。
但本公开不限定于此,在其他示例性实施例中,该第一成像模组的该第一液晶透镜阵列和该第二成像模组的该第二液晶透镜阵列所具有的焦距数量也可以不相等。下面通过图3的实施例进行举例说明。
图3示出本公开示例性实施例中第二种光场显示装置的示意图。
如图3所示,该光场显示装置包括:LC lens阵列和LCD组合1,其LC lens阵列具有一个焦距f31,在相应位置生成虚像1;LC lens阵列和LCD组合2,其LC lens阵列具有3个焦距,分别是f32、f33、f34,在相应位置分别生成虚像2,虚像3和虚像4。
其中该LC lens阵列和LCD组合2可以设置于图1的虚像2的位置,其生成的虚像2、虚像3和虚像4分别可以对应图1的虚像3,虚像4和虚像5的位置,LC lens阵列和LCD组合1与LC lens阵列和LCD组合2之间的距离为H31,即H31=f12。但本公开并不限定于此。
在图3所示的实施例中,假设f31=f11=f32,f33=f12,f34=f13,即f32、f33、f34可以呈等差分布,但本公开并不限定于此。
在图3的实施例中,LC lens阵列和LCD组合1具有一个焦距(f31),能够成一个虚像(虚像1);而LC lens阵列和LCD组合2具有三个焦距(f32、f33和f34),能够成三个虚像(虚像2、虚像3和虚像4)。例如,使用LC lens阵列和LCD组合1与LC lens阵列和LCD组合2两个组合,若显示6景深图像,LC lens阵列和LCD组合1仅需LC lens阵列具有1个焦距,显示60Hz的光场图像需要60Hz*2=120Hz;LC lens阵列和LCD组合2需LC lens阵列具有3个焦距,显示60Hz的光场图像需要60Hz*4=240Hz。
在其他示例性实施例中,还可以将LC lens阵列和LCD组合2设置于图1的虚像4处,此时,LC lens阵列和LCD组合1生成虚像1和虚像2,虚像3;而LC lens阵列和LCD组合2生成虚像4。此时,LC lens阵列和LCD组合1具有三个焦距,能够成三个虚像;而LC lens阵列和LCD组合2具有一个焦距,能够成一个虚像。
由上述实施例可知,本公开实施例中所述第一成像模组的第一液晶透镜阵列所具有的焦距数量与所述第一成像模组的第一显示屏的显示性能(例如刷新频率或者响应时间)相关。类似的,所述第二成像模组的第二液晶透镜阵列所具有的焦距数量与所述第二成像模组的第二显示屏的显示性能相关。此外,所述第一液晶透镜阵列和所述第二液晶透镜阵列所具有的焦距数量之和还取决于所要显示的 图像的景深数量上限,例如,要显示6景深图像,所述第一液晶透镜阵列和所述第二液晶阵列所具有的焦距数量之和要大于等于4。
在示例性实施例中,该多组成像模组可以包括一第一成像模组、一第二成像模组和一第三成像模组。其中,该第一成像模组(例如LC lens阵列和LCD组合1)、该第二成像模组(例如LC lens阵列和LCD组合2)和该第三成像模组(例如LC lens阵列和LCD组合3)可以平行设置。下面通过图4对其进行示例说明。
图4示出本公开示例性实施例中第三种光场显示装置的示意图。
如图4所示,该光场显示装置包括:LC lens阵列和LCD组合1,其具有一个焦距f41,能够在相应位置生成虚像1;LC lens阵列和LCD组合2,其具有一个焦距f42,能够在相应位置生成虚像2;LC lens阵列和LCD组合3,其具有一个焦距f43,能够在相应位置生成虚像3。
其中LC lens阵列和LCD组合1可以设置于图1的虚像2的位置处,即LC lens阵列和LCD组合1、LC lens阵列和LCD组合2之间的距离H41=f12;LC lens阵列和LCD组合3可以设置于图1的虚像4处,即LC lens阵列和LCD组合2、LC lens阵列和LCD组合3之间的距离H42=f12。但本公开并不限定于此。
继续参考图4,可以分别调节LC lens阵列和LCD组合1、LC lens阵列和LCD组合2和LC lens阵列和LCD组合3的液晶透镜阵列的焦距,使得f41=f42=f43,但本公开并不限定于此。
在图4的实施例中,该光场显示装置使用了三LC lens阵列+LCD组合,并且使得LC lens阵列+LCD组合2处于图1的第二个虚像的位置上,LC lens帧率+LCD组合3可处于图1的第四个虚像的位置上,假设实现6景深,组合1、组合2、组合3仅需各自的LC lens阵列具有1个焦距,此时显示60Hz的光场图像需要60Hz*2=120Hz,响应时间要求<8.3ms。
在其他实施例中,组合2和组合3实际上可以位于图1中的第一至第五个虚像的任意一个位置上。
需要说明的是,虽然上述图2-图4的实施例中仅图示了两组或者三组成像模组的具体实例,但实际上,该光场显示装置可以具有两个以上的任意多组成像模组,具体的成像模组数量可以根据实际的应用场景中需要显示的图像的景深的数量的上限和显示屏、液晶透镜阵列的刷新频率性能等多方面综合考虑后进行合理的选择,例如在显示的图像中包括8景深的图像时,可以选择二组成像模组、三组成像模组或者四组成像模组,且各成像模组的设置位置也可以根据响应时间的要求进行灵活配置,本公开对此不作限定。
在示例性实施例中,该多组成像模组可以包括一第一成像模组和一第二成像模组。其中,该第一成像模组(例如LC lens阵列和LCD组合1)和该第二成像模组(例如LC lens阵列和LCD组合2)之间可以具有预设夹角设置。
在示例性实施例中,该光场显示装置还可以包括半透半反膜。
其中该半透半反膜可以用于使该第一成像模组(例如LC lens阵列和LCD组合1)的成像和该第二成像模组(例如LC lens阵列和LCD组合2)的成像彼此平行。
在示例性实施例中,该光场显示装置还可以包括PBS偏振分光棱镜。即所述半透半反膜可以采用PBS(Polarization Beam Splitter)偏振分光棱镜替代,调整第一成像模组的显示屏和第二成像模组的显示屏的偏光片方向,分别出射P波和S波。
其中该PBS偏振分光棱镜可以用于使该第一成像模组(例如LC lens阵列和LCD组合1)的成像与该第二成像模组(LC lens阵列和LCD组合2)的成像彼此平行。
其中,所述PBS偏振分光棱镜能把入射的非偏振光分成两束垂直的线偏光,其中P偏光完全通过,而S偏光以45度角被反射,出射方向与P光成90度角。所述偏振分光棱镜由一对高精度直角棱镜胶合而成,其中一个棱镜的斜边上镀有偏振分光介质膜。
在示例性实施例中,所述预设夹角可以是90度,即该第一成像模组(例如LC lens阵列和LCD组合1)和该第二成像模组(例如LC lens阵列和LCD组合2)相互垂直设置。下面通过图5对其进行举例说明。
图5示出本公开示例性实施例中第四种光场显示装置的示意图。
如图5所示,该光场显示装置可以包括:LC lens阵列和LCD组合1,两个虚像的焦距分别为f51和f52,这里假设f52=2*f51;LC lens阵列和LCD组合2,两个虚像的焦距分别为f53和f54,这里假设f54=2*f53=f52=2*f51。
在图5所示的实施例中,LC lens阵列和LCD组合1与LC lens阵列和LCD组合2之间相互垂直放置。其还具有分别与LC lens阵列和LCD组合1、LC lens阵列和LCD组合2成45度角的半透半反膜,通过调节LC lens阵列和LCD组合1、LC lens阵列和LCD组合2之间的距离,该半透半反膜可以用于将LC lens阵列和LCD组合2的成像形成于LC lens阵列和LCD组合1的成像之后。
图6示出本公开示例性实施例中第五种光场显示装置的示意图。
图6与图5的区别之处在于,通过调节LC lens阵列和LCD组合1、LC lens阵列和LCD组合2之间的距离,该半透半反膜可以用于将LC lens阵列和LCD组合2的成像形成于LC lens阵列和LCD组合1的成像之前。
在其他实施例中,通过设置该半透半反膜的设置及调节LC lens阵列和LCD组合1、LC lens阵列和LCD组合2之间的距离,也可以使得LC lens阵列和LCD组合1的成像形成于LC lens阵列和LCD组合1的成像之前或者之后。
图7示出本公开示例性实施例中第六种光场显示装置的示意图。
图7与图5的区别之处在于,LC lens阵列和LCD组合1、LC lens阵列和LCD组合2之间不是垂直放置的。但同样可以通过设置半透半反膜与LC lens阵列和LCD组合1、LC lens阵列和LCD组合2之间的夹角关系,以及LC lens阵列和LCD组合1、LC lens阵列和LCD组合2之间的距离,将LC lens阵列和LCD组合2的成像形成于LC lens阵列和LCD组合1的成像之后。
上述图5至图7的实施例中,采用半透半反镜将两个组合(LC lens阵列和LCD组合1、LC lens阵列和LCD组合2)在空间中分隔开,LC lens阵列和LCD组合2和它所成的两个虚像在光路上不经过LC lens阵列和LCD组合1,使得相互无干扰,能够降低串扰(crosstalk)。
其中,该半透半反膜与组合1和组合2之间的夹角可以随着组合1和组合2之间的夹角变化而变化,只要能够使得组合1和组合2所生成的实像和虚像平行即可。
需要说明的是,虽然在上述图2-图7的实施例中,均是以各成像模组的液晶透镜阵列的多个焦距之间成等差分布进行举例说明的,但在其他实施例中,具有各成像模组的液晶透镜阵列的多个焦距之间也可以不成等差分布。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (10)

  1. 一种光场显示装置,包括多组成像模组,每组所述成像模组包括一液晶透镜阵列和一显示屏,所述液晶透镜阵列设置于所述显示屏的出光侧,其中,所述多组成像模组的成像彼此平行。
  2. 根据权利要求1所述的光场显示装置,所述多组成像模组包括一第一成像模组和一第二成像模组,所述第一成像模组和所述第二成像模组平行设置。
  3. 根据权利要求1所述的光场显示装置,所述多组成像模组包括一第一成像模组和一第二成像模组,所述第一成像模组和所述第二成像模组成预设夹角设置。
  4. 根据权利要求3所述的光场显示装置,所述光场显示装置还包括:半透半反膜,其中,
    所述半透半反膜用于使所述第一成像模组的成像与所述第二成像模组的成像彼此平行。
  5. 根据权利要求4所述的光场显示装置,所述第一成像模组和所述第二成像模组垂直设置,且所述半透半反膜分别与所述第一成像模组和所述第二成像模组成45度角。
  6. 根据权利要求4所述的光场显示装置,所述第一成像模组的成像形成于所述第二成像模组的成像之前或者之后。
  7. 根据权利要求3所述的光场显示装置,所述光场显示装置还包括:PBS偏振分光棱镜,其中,
    所述PBS偏振分光棱镜用于使所述第一成像模组的成像与所述第二成像模组的成像彼此平行。
  8. 根据权利要求2至7任一所述的光场显示装置,所述第一成像模组的第一液晶透镜阵列和所述第二成像模组的第二液晶透镜阵列所具有的焦距数量相等。
  9. 根据权利要求2至7任一所述的光场显示装置,所述第一成像模组的第一液晶透镜阵列具有的焦距数量与所述第一成像模组的第一显示屏的显示性能相关,所述第二成像模组的第二液晶透镜阵列所具有的焦距数量与所述第二成像模组的第二显示屏的显示性能相关,所述第一液晶透镜阵列和所述第二液晶透镜阵列所具有的数量与所要显示的图像的景深数量相关。
  10. 根据权利要求1所述的光场显示装置,所述液晶透镜阵列具有多个焦距,且所述多个焦距之间成等差分布。
PCT/CN2017/105991 2017-03-17 2017-10-13 光场显示装置 WO2018166194A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/780,323 US11503273B2 (en) 2017-03-17 2017-10-13 Light field display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710162118.8A CN106647094B (zh) 2017-03-17 2017-03-17 光场显示装置
CN201710162118.8 2017-03-17

Publications (1)

Publication Number Publication Date
WO2018166194A1 true WO2018166194A1 (zh) 2018-09-20

Family

ID=58848313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/105991 WO2018166194A1 (zh) 2017-03-17 2017-10-13 光场显示装置

Country Status (3)

Country Link
US (1) US11503273B2 (zh)
CN (1) CN106647094B (zh)
WO (1) WO2018166194A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106647094B (zh) * 2017-03-17 2019-01-15 京东方科技集团股份有限公司 光场显示装置
CN107367845B (zh) * 2017-08-31 2020-04-14 京东方科技集团股份有限公司 显示系统和显示方法
TWI663430B (zh) * 2017-11-27 2019-06-21 點晶科技股份有限公司 多功能透鏡裝置
WO2019127383A1 (zh) * 2017-12-29 2019-07-04 张家港康得新光电材料有限公司 光场显示系统
TWI660202B (zh) * 2018-01-24 2019-05-21 友達光電股份有限公司 裸眼式立體顯示器以及立體影像的顯示方法
CN116338954A (zh) * 2021-12-23 2023-06-27 中强光电股份有限公司 光场显示器的控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101395928A (zh) * 2006-03-03 2009-03-25 皇家飞利浦电子股份有限公司 使用可控液晶透镜阵列用于3d/2d模式切换的自动立体显示设备
US20120307357A1 (en) * 2011-06-01 2012-12-06 Samsung Electronics Co., Ltd. Multi-view 3d image display apparatus and method
CN105204174A (zh) * 2015-10-30 2015-12-30 成都工业学院 一种基于双显示屏的集成成像3d显示装置及方法
CN105911708A (zh) * 2016-06-16 2016-08-31 成都工业学院 一种基于双显示屏的集成成像双视3d显示系统
CN205787364U (zh) * 2016-03-23 2016-12-07 北京三星通信技术研究有限公司 近眼显示设备
CN106647094A (zh) * 2017-03-17 2017-05-10 京东方科技集团股份有限公司 光场显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2941653C (en) * 2014-03-05 2021-08-24 Arizona Board Of Regents On Behalf Of The University Of Arizona Wearable 3d augmented reality display
KR102530558B1 (ko) * 2016-03-16 2023-05-09 삼성전자주식회사 투시형 디스플레이 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101395928A (zh) * 2006-03-03 2009-03-25 皇家飞利浦电子股份有限公司 使用可控液晶透镜阵列用于3d/2d模式切换的自动立体显示设备
US20120307357A1 (en) * 2011-06-01 2012-12-06 Samsung Electronics Co., Ltd. Multi-view 3d image display apparatus and method
CN105204174A (zh) * 2015-10-30 2015-12-30 成都工业学院 一种基于双显示屏的集成成像3d显示装置及方法
CN205787364U (zh) * 2016-03-23 2016-12-07 北京三星通信技术研究有限公司 近眼显示设备
CN105911708A (zh) * 2016-06-16 2016-08-31 成都工业学院 一种基于双显示屏的集成成像双视3d显示系统
CN106647094A (zh) * 2017-03-17 2017-05-10 京东方科技集团股份有限公司 光场显示装置

Also Published As

Publication number Publication date
CN106647094A (zh) 2017-05-10
US11503273B2 (en) 2022-11-15
CN106647094B (zh) 2019-01-15
US20210168350A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
WO2018166194A1 (zh) 光场显示装置
US9772500B2 (en) Double-layered liquid crystal lens and 3D display apparatus
JPH07101259B2 (ja) 立体映像表示装置
KR102134904B1 (ko) 3차원 표시 장치 및 3차원 표시 장치용 액정 렌즈부
WO2019041812A1 (zh) 显示系统和显示方法
KR102446443B1 (ko) 홀로그래픽 영상 디스플레이 장치 및 이의 제어 방법
KR20120032197A (ko) 3차원 표시 장치
KR102420041B1 (ko) 디스플레이 장치 및 그 제어방법
US20150091886A1 (en) System and method for two-dimensional (2d) and three-dimensional (3d) display
US20200160772A1 (en) Devices showing improved resolution via signal modulations
US20180252934A1 (en) Floating hologram apparatus
CN103226247B (zh) 一种立体显示装置及立体显示方法
JP3658311B2 (ja) 三次元表示方法および装置
US10715792B2 (en) Display device and method of controlling the same
CN108388018B (zh) 裸眼式立体显示器以及立体影像的显示方法
TWI481903B (zh) 液晶透鏡裝置與應用該液晶透鏡裝置之立體顯示器
KR20120069369A (ko) 입체영상표시장치
JP3324694B2 (ja) 三次元表示方法および装置
KR20060058406A (ko) 3차원 표시 장치
CN117518520A (zh) 显示装置
RU183810U1 (ru) Устройство для создания динамичных голографических изображений в пространстве
Ezhov Distant binocular filters for full-resolution autostereoscopic viewing and for single-aperture stereo glasses
JP3479631B2 (ja) 三次元表示装置
KR20230155299A (ko) 몰입감 있는 영상을 제공하는 디스플레이 장치
KR20140003145A (ko) 입체 영상 표시 장치 및 그 구동 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17900661

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/03/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17900661

Country of ref document: EP

Kind code of ref document: A1