WO2018166121A1 - 光源系统及光源稳定性监测方法以及投影设备 - Google Patents

光源系统及光源稳定性监测方法以及投影设备 Download PDF

Info

Publication number
WO2018166121A1
WO2018166121A1 PCT/CN2017/091682 CN2017091682W WO2018166121A1 WO 2018166121 A1 WO2018166121 A1 WO 2018166121A1 CN 2017091682 W CN2017091682 W CN 2017091682W WO 2018166121 A1 WO2018166121 A1 WO 2018166121A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
color wheel
brightness
source system
Prior art date
Application number
PCT/CN2017/091682
Other languages
English (en)
French (fr)
Inventor
戴达炎
杜鹏
李屹
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710159318.8A external-priority patent/CN108628068B/zh
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2018166121A1 publication Critical patent/WO2018166121A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the present invention relates to the field of optics, and in particular to a light source system and a method for monitoring light source stability and a projection device.
  • Laser phosphor technology which uses a laser beam to excite phosphors to produce fluorescence, usually using a blue laser as the excitation light.
  • the photon energy will change negatively with the wavelength. The shorter the wavelength, the larger the photon energy. Therefore, when the phosphor is excited by the short-wavelength blue laser, the higher-energy blue laser photon will be phosphor.
  • the material absorbs and releases long-length fluorescent photons with lower energy.
  • Laser fluorescence produces high brightness and can be used as a light source for many applications such as illumination, display or projection.
  • the brightness of the phosphor excited by the laser is related to a number of factors, such as the power of the excitation light, the spot energy distribution of the excitation light, the temperature of the phosphor material, and the like.
  • the brightness stability and consistency of the light source are very important. Therefore, it is necessary to detect the fluorescence brightness so that the output brightness of the light source is stable.
  • the conventional laser phosphor light source detects the output brightness of the light source after the fluorescent light is reflected. Since the setting of the sensor will affect the output of the light source beam, the detection structure of the light source structure is complicated.
  • the technical problem to be solved by the present invention is to provide a fluorescence detection method for a light source system and a light source system, which is not only simple and effective but also low in cost and has a good user experience.
  • the present invention adopts a technical solution to provide a light source system, the light source system comprising: a light source for emitting excitation light; and a color wheel assembly including light transmission in turn on an excitation light propagation path And a non-transmissive portion; the sensor is located on the propagation path of the excitation light through the light transmitting portion, for detecting the light beam transmitted through the light transmitting portion, and detecting the amplitude of the light beam brightness signal by the sensor to determine the stability of the fluorescent brightness.
  • the color wheel assembly includes a color wheel and a driving device for driving the rotation of the color wheel
  • the color wheel includes a color wheel substrate coated with a phosphor
  • the color wheel substrate serves as the non-light transmitting portion.
  • the light transmitting portion is a light transmitting hole provided on the color wheel substrate.
  • the light transmission hole is a through hole that is recessed from the edge of the color wheel toward the center of the color wheel.
  • a transparent filling material is disposed in the light transmission hole for adjusting the balance of the color wheel.
  • the plurality of light transmission holes are evenly distributed on the color wheel substrate.
  • a side of the color wheel substrate facing away from the light source is provided with a heat dissipation structure.
  • the color wheel comprises a plurality of partitions respectively covered with different phosphors, and each of the partitions is provided with a light transmission hole.
  • a plurality of the light-transmitting holes are respectively filled with filters of different light transmittances such that the brightness after the different fluorescent transmission filters are the same.
  • another technical solution adopted by the present invention is to provide a projection apparatus including the light source system of any of the foregoing.
  • another technical solution adopted by the present invention is to provide a method for monitoring the stability of a light source, which comprises the following steps:
  • the stability of the brightness of the light source is determined based on the generated brightness monitoring signal.
  • the method for determining the stability of the light source is:
  • the brightness monitoring value fluctuates by more than two percent, it is determined that the brightness of the light source is unstable, otherwise the light source is determined to be stable.
  • the phosphor partition on the color wheel is sequentially placed on the optical path of the excitation light, and the initial stable brightness value is set to a set value, and it is determined whether different peaks of the brightness monitoring signal match the set value, if not If it matches, it is determined that the brightness of the light source is unstable, otherwise the light source is determined to be stable.
  • different phosphor partitions on the color wheel are sequentially placed on the optical path of the excitation light, and the excitation light is transmitted and filtered through filters of different transmittances to obtain a brightness monitoring signal with the same brightness and passed through
  • the brightness monitoring value float determines the stability of the light source.
  • the invention has the beneficial effects that the present invention provides a light source system, a light source stability monitoring method of the light source system, and a projection device using the light source system, which are arranged to be fixed on the color wheel assembly, different from the prior art.
  • the frequency is in the light transmitting portion and the non-light transmitting portion on the excitation light propagation path, so that the sensor can detect the brightness from the transmission direction, thereby detecting the stability of the light source system, the system is simple and low in cost, and has a good user experience.
  • FIG. 1 is a schematic structural view of a first embodiment of a light source system of the present invention
  • FIG. 2 is a schematic structural view of a color wheel assembly according to a first embodiment of the light source system of the present invention
  • Figure 3 is a brightness monitoring signal generated by the sensor when the light source is stable
  • Figure 4 is a brightness monitoring signal generated by the sensor in the case of unstable light source
  • FIG. 5 is a schematic structural view of a color wheel assembly of a second embodiment of the light source system of the present invention.
  • FIG. 6 is a schematic structural view of a third embodiment of a light source system of the present invention.
  • Figure 7 is a schematic structural view of a fourth embodiment of the light source system of the present invention.
  • FIG. 8 is a schematic structural view of a color wheel assembly of a fourth embodiment of the light source system of the present invention.
  • FIG. 9 is a schematic structural view of a color wheel assembly of a fifth embodiment of the light source system of the present invention.
  • Figure 11 is a brightness monitoring signal generated by a sensor in the case where the light source is stable in the sixth embodiment.
  • FIG. 1 is a schematic structural diagram of a light source system according to a first embodiment of the present invention.
  • the light source system of the present embodiment includes a light source 101, a light homogenizing device 102, a beam splitting lens 103, a collecting lens 104, a color wheel assembly and a sensor 107.
  • the light source 101 is configured to emit excitation light, and the excitation light is homogenized by the homogenizing device 102, and then reflected by the spectroscopic lens 103.
  • the color wheel assembly includes a color wheel 105 and a drive unit 106 that drives the color wheel 105 to rotate.
  • the color wheel 105 includes a color wheel substrate, and the surface of the color wheel substrate is coated with a phosphor 1051 or a phosphor 1051 to form a phosphor sheet fixed on the color wheel substrate, and the reflected light is concentrated on the surface of the color wheel 105 through the collecting lens 104.
  • the powder layer is excited and the phosphor is generated by the laser, and the fluorescent laser is distributed in the form of light.
  • the color wheel substrate is provided with a light transmission hole, wherein the color wheel substrate serves as a non-light transmitting portion of the color wheel, and the light transmission hole forms a light transmitting portion of the color wheel.
  • a plurality of light transmission holes are disposed on the color wheel substrate, and the plurality of light transmission holes are uniformly distributed on the excitation light path of the color wheel substrate, that is, after the light wheel is rotated, the excitation is performed.
  • the transmitted light of the light transmitted through the phosphor is just able to pass through the light transmission hole.
  • the spot is the position of the optical path of the excitation light.
  • four light-transmissive holes are preferred. Of course, in other alternative embodiments, other numbers may be used. In fact, it is also possible to provide only one light-transmitting hole.
  • the sensor 107 can receive the brightness monitoring signal only when the color wheel is turned to the position of the through hole in the figure. Therefore, the sensor detects a signal of a certain frequency, and compares the amplitude of the brightness monitoring signal to determine the stability and consistency of the brightness.
  • the sensor 107 is a brightness sensor.
  • the method for monitoring light source stability includes:
  • the driving device drives the color wheel to rotate, so that the light transmitting portion and the non-light transmitting portion are alternately placed on the optical path of the excitation light; in the embodiment, the color wheel is rotated at a constant speed, so that the light transmitting hole is rotated at a fixed frequency to the excitation. On the path of light.
  • the stability of the brightness of the light source is determined based on the generated brightness monitoring signal.
  • FIG. 3 and FIG. 4 are monitoring signals generated and generated according to the sensor. If the brightness monitoring value floats less than two percent, as shown in FIG. 3, it is determined that the brightness of the light source is stable; if the brightness monitoring value is more than two percent, such as As shown in Fig. 4, it is determined that the brightness of the light source is unstable, and further investigation is required.
  • the color wheel assembly includes a color wheel substrate 405 and a drive unit 406.
  • the color wheel substrate 405 is coated with a phosphor 4051 and processed with a light transmitting portion.
  • the light transmitting hole is a through hole that is recessed from the edge of the color wheel toward the inside of the color wheel.
  • the through hole is disposed on the path of the excitation light, and functions in the same manner as in the first embodiment, so that the light is transmitted and can be detected by the sensor and the stability of the light source is determined.
  • the light source system includes a light source 801, a light homogenizing device 802, a beam splitting lens 803, a collecting lens 804, a color wheel assembly and a sensor 807.
  • the color wheel assembly includes a color wheel 805 and a drive 806.
  • the transparent portion is further filled with a transparent filling material 808 for adjusting the balance of the color wheel to prevent the color wheel from shifting at a high speed and affecting the reliability of the product.
  • the light transmitting portion may be a light transmitting hole as in the first embodiment, or may be a through hole as in the second embodiment.
  • the filling material 808 is preferably glass, and the color wheel substrate is made of a metal material, since the density of the glass and the color wheel substrate is the most similar, and the light can be best transmitted. In this way, the balance of the color wheel can be ensured to ensure the reliability of the product.
  • the present embodiment is substantially the same as the above embodiment, and the light source system includes a light source 1001, a light homogenizing device 1002, a beam splitting lens 1003, a collecting lens 1004, a color wheel assembly and a sensor 1007.
  • the color wheel assembly includes a color wheel 1005 and a drive unit 1006.
  • the color wheel 1005 is further provided with a heat dissipation structure 1009 facing away from the light source 1001 side.
  • the light transmitting portion may be a light transmitting hole as in the first embodiment, or may be a through hole as in the second embodiment.
  • the heat dissipation structure is a blade-like structure uniformly distributed on the circumferential side of the light transmitting portion.
  • the heat dissipation structure 1009 may be a fan blade, an annular blade, a columnar blade, and a sheet blade. As shown in FIG. 8, it is a heat dissipation structure of a sector structure.
  • the heat dissipation structure can eliminate the generated heat in time and improve the reliability of the product.
  • the color wheel 1105 includes a plurality of partitions respectively coated with different phosphors, and each of the partitions is provided with a light transmission hole.
  • different phosphors on the color wheel are sequentially placed on the optical path of the excitation light, and the initial stable brightness value is set to a set value, and it is determined whether different peaks of the brightness monitoring signal match the set value. If it matches, it is determined that the brightness of the light source is stable, and if it does not match, it is determined that the brightness of the light source is unstable. As shown in FIG.
  • the ratio is matched, as shown in FIG. 10, it is not only possible to judge the brightness stability of the light source is good, but also to determine the color coordinate consistency of the light source.
  • the partitioning manner of the fluorescent region is not limited thereto, and the number of partitions and the type of fluorescence are not limited thereto, and the monitoring method is the same.
  • the embodiment is further improved on the basis of the fifth embodiment. Since the brightness of different phosphors after transmission is different, the peak value of the brightness monitoring signal value is large, and in order to simplify the brightness monitor to judge the brightness of different phosphors, in the present embodiment, filters of different light transmittances are respectively disposed on the light transmitting portions of different sections. The brightness of the various fluorescent transmission filters is the same, so that the peak value of the brightness detection signal monitored by the sensor is the same. Taking the color wheel in the fifth embodiment as an example, back detection in the R, G, B, and Y fluorescent regions. The through-hole regions are respectively filled with filters corresponding to wavelength transmittances of 50%, 10%, 100%, and 10%, and the brightness monitoring values monitored by the sensor are as shown in FIG.
  • the brightness monitoring value floats less than 2%, it is determined that the brightness of the light source is stable; if the brightness monitoring value is more than two percent, it is determined that the brightness of the light source is unstable, and further investigation is needed.
  • the light source system of the present invention and the light source stability monitoring method of the light source system and the projection apparatus using the same which are disposed on the color wheel assembly at a fixed frequency on the excitation light propagation path
  • the non-transmissive portion enables the sensor to detect the brightness from the projection direction, thereby detecting the stability of the light source system, the system is simple and low in cost, and has a good user experience.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Astronomy & Astrophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种光源系统及光源稳定性监测方法以及投影设备。该光源系统包括光源(101),用于发出激发光;色轮组件,包括轮流处于激发光传播路径上的透光部和非透光部;传感器(107),位于激发光经透光部的传播路径上,用于检测通过透光部透射的光束,通过传感器(107)检测光束亮度信号的幅度判断荧光亮度的稳定性。投影设备成本低、效率高,具有良好的用户体验。

Description

光源系统及光源稳定性监测方法以及投影设备 技术领域
本发明涉及光学领域,尤其是涉及一种光源系统及光源稳定性监测方法以及投影设备。
背景技术
目前,激光荧光粉技术发展迅速,并得到了广泛的应用。激光荧光粉技术,即用激光光束激发荧光粉产生荧光,通常使用蓝激光作为激发光。在可见光范围内,光子的能量会与波长成负相关变化,波长越短,光子能量越大,因此,当用短波长的蓝激光激发荧光粉时,能量较高的蓝激光光子会被荧光粉材料吸收,并释放出能量较低的长彼长荧光光子。
技术问题
激光荧光可以产生高效的亮度,其作为光源可用于照明、显示或投影等众多领域。而荧光粉受激光激发的亮度与多个因素有关,如激发光的功率、激发光的光斑能量分布、荧光粉材料的温度等等。而在照明或投影的应用中,光源亮度稳定性及一致性十分重要,因此,必然需要对荧光亮度进行检测,以使得光源输出亮度稳定。传统激光荧光粉光源在荧光被反射后的光路进行检测光源输出亮度,由于设置传感器将会影响光源光束的输出,并会使得光源结构检测结构复杂。
因此,实有必要提供一种新的光源系统及光源系统的荧光检测方法以解决上述问题。
技术解决方案
本发明主要解决的技术问题是提供一种光源系统及光源系统的荧光检测方法,不仅简单有效而且成本低,具有良好的用户体验。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种光源系统,所述光源系统包括:光源,用于发出激发光;色轮组件,包括轮流处于激发光传播路径上的透光部和非透光部;传感器,位于激发光经透光部的传播路径上,用于检测通过透光部透射的光束,通过所述传感器检测光束亮度信号的幅度判断荧光亮度的稳定性。
优选的,所述色轮组件包括色轮和驱动所述色轮旋转的驱动装置,所述色轮包括表面涂覆荧光粉的色轮基板,所述色轮基板作为所述非透光部,所述透光部为设置在所述色轮基板上的透光孔。
优选的,所述透光孔为自色轮边缘向色轮中央凹陷的通孔。
优选的,所述透光孔内设置有透明的填充材料,用于调节所述色轮的平衡。
优选的,所述透光孔为多个,均匀分布在所述色轮基板上。
优选的,所述色轮基板上背离所述光源的一侧设置有散热结构。
优选的,所述色轮包括分别覆设不同荧光粉的若干分区,每个分区分别设置一个透光孔。
优选的,多个所述透光孔中分别填充有不同透光率的滤光片,以使得不同荧光透射滤光片后的亮度相同。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种投影设备,该投影设备包括前文所述的任一项的光源系统。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种光源稳定性监测方法,其特征在于,包括如下步骤:
产生激发光;
通过驱动装置驱动色轮转动,使得透光部和非透光部轮流置于激发光的光路上;
利用传感器检测透光部透过的光束并生成亮度监测信号;
根据生成的亮度监测信号判定光源亮度的稳定性。
优选的,所述光源稳定性的判定方法为:
若亮度监测值浮动大于百分之二,则判定光源亮度不稳定,反之则判定光源稳定。
优选的,所述色轮上的荧光粉分区依次置于激发光的光路上,将初始的稳定亮度值设置为设定值,判定亮度监测信号的不同峰值是否与设定值相匹配,若不匹配,则判定光源亮度不稳定,反之则判定光源稳定。
优选的,所述色轮上不同荧光粉分区依次置于激发光的光路上,并使得激发光透射后经过不同透过率的滤光片滤光,以得到亮度相同的亮度监测信号,并通过亮度监测值浮动判定光源稳定性。
有益效果
本发明的有益效果是:区别于现有技术的情况,本发明提供一种光源系统以及该光源系统的光源稳定性监测方法以及采用该光源系统的投影设备,其在色轮组件上设置以固定频率处于激发光传播路径上透光部和非透光部,使得传感器能够从透射方向检测亮度,从而检测光源系统的稳定性,系统简单而且成本低,具有良好的用户体验。
附图说明
图1是本发明光源系统的第一种实施方式的结构示意图;
图2是本发明光源系统的第一种实施方式的色轮组件结构示意图;
图3是光源稳定情况下传感器生成的亮度监测信号;
图4是光源不稳定情况下传感器生成的亮度监测信号;
图5是本发明光源系统的第二种实施方式的色轮组件结构示意图;
图6是本发明光源系统的第三种实施方式的结构示意图;
图7是本发明光源系统的第四种实施方式的结构示意图;
图8是本发明光源系统的第四种实施方式的色轮组件结构示意图;
图9是本发明光源系统的第五种实施方式的色轮组件结构示意图;
图10是第五种实施方式光源稳定情况下传感器生成的亮度监测信号;
图11是第六种实施方式光源稳定情况下传感器生成的亮度监测信号。
本发明的最佳实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例一
请参阅图1,是本发明第一种实施例提供的一种光源系统的结构示意图。本实施例的光源系统包括光源101,匀光器件102,分光镜片103,收集透镜104,色轮组件和传感器107。
其中,光源101用于发出激发光,激发光经过匀光器件102均匀化后,经分光镜片103反射。
参照图1和图2所示,色轮组件包括色轮105和驱动装置106,驱动装置驱动色轮105旋转。其中,色轮105包括色轮基板,色轮基板的表面涂覆荧光粉1051或者荧光粉1051形成荧光粉片固定在在色轮基板上,反射光线经收集透镜104汇聚于色轮105表面的荧光粉层,并激发荧光粉产生受激光,荧光的受激光以郎伯光的形式分布。
色轮基板上设置有透光孔,其中,色轮基板作为色轮的非透光部,透光孔形成色轮的透光部。如图2所示,在本实施方式中,色轮基板上设置有多个透光孔,且多个透光孔均匀分布在色轮基板的激发光路径上,即使得光轮旋转后,激发光透过荧光粉的透射光刚好能够穿过透光孔。如图2所示,光斑处为激发光的光路所在位置。在本实施方式中,优选为4个透光孔,当然,在可选择的其他实施方式中,也可以为其他数量,事实上,仅设置一个透光孔也是可以实施的。
约有 1%的激发光会透过荧光粉层,并通过透光孔被传感器检测到,并进一步可以用于监测光源系统的稳定性。由于色轮105是处于以恒定速率高速转动状态的,只有在色轮转至图中通孔的位置时,传感器107才能接收到亮度监测信号。因此传感器检测到的是一定频率的信号,通过比较亮度监测信号的幅度来判断亮度的稳定性和一致性。具体的,传感器107为亮度传感器。
具体的,光源稳定性监测方法包括:
产生激发光;
通过驱动装置驱动色轮转动,使得透光部和非透光部轮流置于激发光的光路上;在本实施方式中,即为使色轮匀速旋转,使得透光孔以固定频率转动到激发光的路径上。
利用传感器监测透光部透过的光束并生成亮度监测信号;
根据生成的亮度监测信号判定光源亮度的稳定性。
图3和图4为根据传感器检测并生成的监测信号,若亮度监测值浮动小于百分之二,如图3所示,则判定光源亮度稳定;若亮度监测值浮动大于百分之二,如图4所示,则判定光源亮度不稳定,需要进一步排查原因。
实施例二
本实施方式与上一种实施方式大致相同,区别仅在于色轮组件的结构。如图5所示,色轮组件包括色轮基板405和驱动装置406。
其中色轮基板405上涂覆有荧光粉4051,并加工有透光部,在本实施方式中,透光孔为自色轮边缘向色轮内部凹陷的通孔。该通孔设置在激发光的路径上,其作用与实施例一相同,使得光透过并能够被传感器检测并判定光源的稳定性。
实施例三
如图6所示,本实施方式与上两种实施方式大致相同,光源系统包括光源801,匀光器件802,分光镜片803,收集透镜804,色轮组件和传感器807。色轮组件包括色轮805和驱动装置806。
区别在于,本实施方式中,透光部内进一步填充有透明的填充材料808,用于调节色轮的平衡,以避免色轮高速转动时产生偏移而影响产品的可靠性。在本实施方式中,透光部即可以为如实施例一中的透光孔,也可以为如实施例二中的通孔。具体在本实施方式中,填充材料808优选为玻璃,色轮基板为金属材料,由于玻璃与色轮基板的密度最相似,并且可以最好地透射光线。这样,可以保证色轮的平衡,保证产品的可靠性。
实施例四
如图7、图8所示,本实施方式与上面实施方式大致相同,光源系统包括光源1001,匀光器件1002,分光镜片1003,收集透镜1004,色轮组件和传感器1007。色轮组件包括色轮1005和驱动装置1006。
区别在于,本实施方式中,色轮1005上进一步设置有背离光源1001一侧的散热结构1009。在本实施方式中,透光部即可以为如实施例一中的透光孔,也可以为如实施例二中的通孔。散热结构为均匀分布在透光部的周侧的叶片状结构,具体的,散热结构1009可以为扇形叶片、环形叶片、柱状叶片和片状叶片。如图8所示,为扇形结构的散热结构。散热结构的设置,可以及时排除产生的热量,提高产品的可靠性。
实施例五
本实施方式与前述实施方式大致相同,区别在于色轮的结构。如图9所示, 色轮1105包括分别涂覆不同荧光粉的若干分区,每个分区分别设置一个透光孔。在判定光源稳定性时,将色轮上不同荧光粉依次置于激发光的光路上,将初始的稳定亮度值设置为设定值,判定亮度监测信号的不同峰值是否与设定值相匹配,若匹配,则判定光源亮度稳定,若不匹配,则判定光源亮度不稳定。如图9所示,以各分区荧光粉激发效率之比为R:G:B:Y=2:10:10:1为例,此时亮度监测信号值的峰值之间的比例应该与激发率之比相匹配,如图10所示,则不仅可以判断光源亮度稳定性较好,还可以判断光源出光的色坐标一致性。当然,上述仅为距离说明,事实上,荧光区的分区方式并不限于此,其分区数量和荧光种类也不限于此,其监测方法与之相同。
实施例六
本实施方式是在实施例五的基础上做了进一步改进,由于不同荧光粉透射后的亮度不同,导致亮度监测信号值的峰值差异较大,为了简化亮度监测器对不同荧光粉亮度的判断,在本实施方式中,在不同分区的透光部上分别设置不同透光率的滤光片。使得各种荧光透射滤光片后的亮度相同,进而使传感器监测到的亮度检测信号的值峰值相同,以实施例五中的色轮为例,在R、G、B、Y荧光区背测通孔区分别填充对应波长透过率为50%、10%、100%、10%的滤光片,传感器监测的亮度监测值如图11所示。此时,则可以按照实施例一中的方式判定。若亮度监测值浮动小于百分之二,则判定光源亮度稳定;若亮度监测值浮动大于百分之二,则判定光源亮度不稳定,需要进一步排查原因。
区别于现有技术的情况,本发明光源系统以及该光源系统的光源稳定性监测方法以及采用该光源系统的投影设备,其在色轮组件上设置以固定频率处于激发光传播路径上透光部和非透光部,使得传感器能够从投射方向检测亮度,从而检测光源系统的稳定性,系统简单而且成本低,具有良好的用户体验。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (13)

1.一种光源系统,其特征在于,所述光源系统包括:
光源,用于发出激发光;
色轮组件,包括轮流处于激发光传播路径上的透光部和非透光部;
传感器,位于所述激发光经透光部的传播路径上,用于检测通过所述透光部透射的光束亮度,通过所述传感器检测的光束亮度信号的幅度判断荧光亮度的稳定性。
2.根据权利要求1所述的光源系统,其特征在于,所述色轮组件包括色轮和驱动所述色轮旋转的驱动装置,所述色轮包括表面覆设荧光粉的色轮基板,所述色轮基板作为所述非透光部,所述透光部为设置在所述色轮基板上的透光孔。
3.根据权利要求2所述的光源系统,其特征在于,所述透光孔为自所述色轮边缘向色轮中央凹陷的通孔。
4.根据权利要求2所述的光源系统,其特征在于,所述透光孔内设置有透明的填充材料,用于调节所述色轮的平衡。
5.根据权利要求2所述的光源系统,其特征在于,所述透光孔为多个,多个所述透光孔均匀分布在所述色轮基板上。
6.根据权利要求2所述的光源系统,其特征在于,所述色轮基板上背离所述光源的一侧设置有散热结构。
7. 根据权利要求5所述的光源系统,其特征在于,所述色轮包括分别覆设不同荧光粉的若干分区,每个分区分别设置一个所述透光孔。
8. 根据权利要求7所述的光源系统,其特征在于,多个所述透光孔中分别填充有不同透光率的滤光片,以使得不同荧光透射滤光片后的亮度相同。
9.一种投影设备,其特征在于,包括如权利要求1到8任意一项所述的光源系统。
10.一种光源稳定性监测方法,其特征在于,包括如下步骤:
产生激发光;
通过驱动装置驱动色轮转动,使得透光部和非透光部轮流置于激发光的光路上;
利用传感器检测透光部透过的光束并生成亮度监测信号;
根据生成的亮度监测信号判定光源亮度的稳定性。
11.根据权利要求10所述的光源稳定性监测方法,其特征在于,所述光源稳定性的判定方法为:
若亮度监测值浮动大于百分之二,则判定光源亮度不稳定,反之则判定光源稳定。
12.根据权利要求10所述的光源稳定性监测方法,其特征在于,所述色轮上的荧光粉分区依次置于激发光的光路上,将初始的稳定亮度值设置为设定值,判定亮度监测信号的不同峰值是否与设定值相匹配,若不匹配,则判定光源亮度不稳定,反之则判定光源稳定。
13.根据权利要求10所述的光源稳定性监测方法,其特征在于,所述色轮上不同荧光粉分区依次置于激发光的光路上,并使得激发光透射后经过不同透过率的滤光片滤光,以得到亮度相同的亮度监测信号,并通过亮度监测值浮动判定光源稳定性。
PCT/CN2017/091682 2017-03-17 2017-07-04 光源系统及光源稳定性监测方法以及投影设备 WO2018166121A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710159318.8 2017-03-17
CN201710159318.8A CN108628068B (zh) 2017-03-17 光源系统及光源稳定性监测方法以及投影设备

Publications (1)

Publication Number Publication Date
WO2018166121A1 true WO2018166121A1 (zh) 2018-09-20

Family

ID=63522809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091682 WO2018166121A1 (zh) 2017-03-17 2017-07-04 光源系统及光源稳定性监测方法以及投影设备

Country Status (1)

Country Link
WO (1) WO2018166121A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749182A (zh) * 2011-04-20 2012-10-24 致茂电子股份有限公司 一种发光元件测试系统及其方法
CN104216208A (zh) * 2013-05-30 2014-12-17 卡西欧计算机株式会社 光学轮装置以及投影装置
CN204214544U (zh) * 2014-10-30 2015-03-18 杭州远方光电信息股份有限公司 一种基于滤光单元的光辐射测量装置
CN104880890A (zh) * 2014-02-27 2015-09-02 中强光电股份有限公司 投影装置及其亮度调校方法
CN105351887A (zh) * 2015-11-27 2016-02-24 海信集团有限公司 一种波长转换装置的动平衡调节方法
US20160139401A1 (en) * 2014-11-14 2016-05-19 Taiwan Color Optics, Inc. Glass phosphor color wheel and methods for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749182A (zh) * 2011-04-20 2012-10-24 致茂电子股份有限公司 一种发光元件测试系统及其方法
CN104216208A (zh) * 2013-05-30 2014-12-17 卡西欧计算机株式会社 光学轮装置以及投影装置
CN104880890A (zh) * 2014-02-27 2015-09-02 中强光电股份有限公司 投影装置及其亮度调校方法
CN204214544U (zh) * 2014-10-30 2015-03-18 杭州远方光电信息股份有限公司 一种基于滤光单元的光辐射测量装置
US20160139401A1 (en) * 2014-11-14 2016-05-19 Taiwan Color Optics, Inc. Glass phosphor color wheel and methods for producing the same
CN105351887A (zh) * 2015-11-27 2016-02-24 海信集团有限公司 一种波长转换装置的动平衡调节方法

Also Published As

Publication number Publication date
CN108628068A (zh) 2018-10-09

Similar Documents

Publication Publication Date Title
WO2013159376A1 (zh) 背光模组及液晶显示装置
WO2017215348A1 (zh) 投影光源系统的出光均匀性调节装置及投影设备
WO2012111893A1 (en) Lighting apparatus and display device including the same
KR20030020912A (ko) 조명 시스템 및 디스플레이 장치
WO2013108990A1 (en) Display screen of image display system and method for manufacturing the same
EP2207993A1 (en) Led illumination system
JP2006526886A (ja) カラーled付きライトボックス用の測光/比色分析パラメータのフィードバック制御装置
JP6974171B2 (ja) 低減された結露を有する冷却された光電子増倍管ベースの光検出器ならびに関連する装置および方法
WO2018196299A1 (zh) 一种显示器的色度学计算方法及色度计算方法
WO2014146537A1 (zh) 色轮组件及相关发光装置
WO2017173681A1 (zh) 一种量子点光源及量子点背光模组
WO2017193416A1 (zh) 液晶显示面板及液晶显示器
WO2016192128A1 (zh) 一种显示面板及液晶显示装置
WO2017177488A1 (zh) 双面液晶显示装置及其背光模组
WO2013185364A1 (zh) 面光源及显示装置
WO2018010487A1 (zh) 光源及投影仪
CN105628344A (zh) 背光模组及其透光均匀性检测系统及其led混珠搭配方法
WO2014194863A1 (zh) 色轮组件及其相关光源系统
WO2019148661A1 (zh) 一种液晶显示面板及其制作方法、液晶显示装置
WO2018166121A1 (zh) 光源系统及光源稳定性监测方法以及投影设备
WO2017114303A1 (zh) 色轮模组、光源模组和投影系统
WO2018192208A1 (zh) Led灯源、灯条及显示装置
WO2017118300A1 (zh) 一种光源装置及照明装置
WO2018095019A1 (zh) 光源系统、投影系统及照明装置
WO2017015983A1 (zh) 液晶显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17900323

Country of ref document: EP

Kind code of ref document: A1