WO2018166074A1 - 智能功率模块、空调器 - Google Patents

智能功率模块、空调器 Download PDF

Info

Publication number
WO2018166074A1
WO2018166074A1 PCT/CN2017/086425 CN2017086425W WO2018166074A1 WO 2018166074 A1 WO2018166074 A1 WO 2018166074A1 CN 2017086425 W CN2017086425 W CN 2017086425W WO 2018166074 A1 WO2018166074 A1 WO 2018166074A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
terminal
voltage value
power
resistor
Prior art date
Application number
PCT/CN2017/086425
Other languages
English (en)
French (fr)
Inventor
冯宇翔
高军胜
Original Assignee
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710147228.7A external-priority patent/CN106849631B/zh
Priority claimed from CN201710146987.1A external-priority patent/CN106911125A/zh
Priority claimed from CN201710147493.5A external-priority patent/CN106849632B/zh
Application filed by 广东美的制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2018166074A1 publication Critical patent/WO2018166074A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration

Definitions

  • the present invention relates to the field of power supply technologies, and in particular, to an intelligent power module and an air conditioner.
  • the Intelligent Power Module is a power-driven product that uses a power electronic device and an integrated circuit to output a preset voltage and a preset power.
  • the intelligent power module is used in conjunction with a Microcontroller Unit (MCU), that is, the intelligent power module receives the control signal of the MCU to drive the subsequent circuit operation, and on the other hand, feeds back the detection signal of the subsequent circuit to the MCU.
  • MCU Microcontroller Unit
  • the above intelligent power modules are widely used in the fields of inverters and various inverter power sources (such as frequency conversion speed regulation, metallurgical machinery, electric traction, servo drive, frequency conversion appliances, etc.) suitable for driving motors due to their high integration and high reliability. application.
  • fault detection circuits such as overvoltage, overcurrent and overheating are usually set in the intelligent power module.
  • the performance of the fault detection circuit will affect the operational reliability of the intelligent power module and subsequent circuits.
  • the following is an example in which the above intelligent power module is applied to an inverter air conditioner as an example.
  • the resistor 138 is part of the overcurrent fault detecting circuit, and the MCU detects the voltage change of the resistor 138 and controls the operating state of the smart power module 100:
  • the smart power module 100 When the voltage value of the resistor 138 is less than a certain voltage preset value, that is, the current flowing through the smart power module 100 is less than a certain preset current value, the smart power module 100 is in a safe working state, and the PIN1 to PIN6 pins of the MCU 200 are output.
  • the normal control signal controls the intelligent power module 100 to work normally.
  • the smart power module 100 When the voltage value of the resistor 138 is greater than a certain voltage preset value, that is, the current flowing through the smart power module 100 is greater than a certain preset current value, the smart power module 100 is stored. In the case where the overload operation is abnormally hot, at this time, the PIN1 to PIN6 pins of the MCU 200 simultaneously output a low level, and the intelligent power module 100 is controlled to stop operating.
  • the embodiment of the present invention provides an intelligent power module and an air conditioner to solve the problem that the preset power value or the preset current value of the smart power module in the prior art is set too low, resulting in the smart power module.
  • the present invention provides an intelligent power module including a power driving circuit, and further includes an adjusting circuit and a current sampling circuit;
  • the current sampling circuit is connected to the power driving circuit for collecting a real-time current value of the power driving circuit and converting it into a real-time voltage value;
  • the adjusting circuit is respectively connected to the current sampling circuit and the power driving circuit, configured to generate a preset voltage value, and compare the preset voltage value and the real-time voltage value to generate a switch control signal and send the power to the power Drive circuit.
  • the current sampling circuit includes a first resistor; a first end of the first resistor is connected to a U-phase low-voltage reference terminal of the power driving circuit through a first end of the current sampling circuit, and a V-phase is low.
  • the voltage reference terminal, the W-phase low voltage reference terminal and the input end of the adjusting circuit, the second end of the first resistor is connected to the common voltage terminal through the second end of the current sampling circuit.
  • the adjustment circuit has a first power terminal, a second power terminal, an input terminal, and an output terminal;
  • the first end of the current sampling circuit is connected to the input end of the adjusting circuit, and the second end of the current sampling circuit is connected to the common voltage end;
  • the first power end of the adjusting circuit is connected to the power supply, the second power end of the adjusting circuit is connected to the common voltage end, and the output end of the adjusting circuit is connected to the power driving circuit.
  • the adjustment circuit includes an adjustment unit and a comparison unit;
  • the adjusting unit is connected to the first power terminal and the second power terminal of the adjusting circuit, and is configured to output preset voltage values of different amplitudes to the comparing unit according to the temperature change;
  • the comparison unit is connected to the input end and the output end of the adjustment circuit for comparing the real-time voltage value received by the input end of the adjustment circuit and the preset voltage value to generate a switch control signal.
  • the adjusting unit includes a second resistor, a third resistor, and a fourth resistor;
  • the first end of the second resistor is connected to the first power end of the adjusting circuit, and the second end of the second resistor is connected to the first end of the third resistor;
  • the first end of the fourth resistor is connected to the second end of the third resistor, and the second end of the fourth resistor is connected to the second power end of the adjusting circuit.
  • the third resistor is a negative temperature coefficient thermistor; or the second resistor is a positive temperature coefficient thermistor; or the third resistor is a negative temperature coefficient thermistor and the The two resistors are positive temperature coefficient thermistors.
  • the comparison unit includes an operational amplifier; an inverting input end of the operational amplifier is connected to a first end of the current sampling circuit, and a non-inverting input end of the operational amplifier is connected to a third resistor in the adjusting unit The first end of the operational amplifier is connected to the output of the adjustment circuit.
  • the present invention provides an intelligent power module including a power driving circuit.
  • the power driving circuit connects a current sampling circuit disposed outside the smart power module through a low voltage reference port of the power driving circuit;
  • the adjusting circuit is respectively connected to the current sampling circuit and the power driving circuit, wherein the current sampling circuit is configured to collect a real-time current value of the power driving circuit and convert it into a real-time voltage value and output the signal to the adjusting circuit.
  • the adjustment circuit generates a preset voltage value, and compares the preset voltage value and the real-time voltage value to generate a switch control signal to be sent to the power drive circuit.
  • the adjustment circuit has a first power terminal, a second power terminal, an input terminal, and an output terminal;
  • the first end of the current sampling circuit is connected to the input end of the adjusting circuit, and the second end of the current sampling circuit is connected to the common voltage end;
  • the first power end of the adjusting circuit is connected to the power supply, the second power end of the adjusting circuit is connected to the common voltage end, and the output end of the adjusting circuit is connected to the power driving circuit.
  • the adjusting circuit includes an adjusting unit and a comparing unit
  • the adjusting unit is connected to the first power terminal and the second power terminal of the adjusting circuit, and is configured to output preset voltage values of different amplitudes to the comparing unit according to the temperature change;
  • the comparison unit is connected to the input end and the output end of the adjustment circuit for comparing the real-time voltage value received by the input end of the adjustment circuit and the preset voltage value to generate a switch control signal.
  • an embodiment of the present invention provides an air conditioner, comprising the intelligent power module of the first or second aspect.
  • the present invention provides an intelligent power module including a power driving circuit, an adjusting circuit, and a current sampling circuit;
  • the current sampling circuit is connected to the power driving circuit for collecting a real-time current value of the power driving circuit and converting it into a real-time voltage value;
  • the adjusting circuit is respectively connected to the current sampling circuit and the power driving circuit, configured to generate a preset voltage value according to the received control signal combination, and compare the preset voltage value and the real-time voltage value to generate a first A switch control signal is sent to the power drive circuit.
  • the current sampling circuit includes a first resistor; a first end of the first resistor is connected to the U-phase of the power driving circuit through a first end of the current sampling circuit
  • the voltage reference terminal, the V-phase low voltage reference terminal, the W-phase low voltage reference terminal, and the input end of the adjusting circuit, the second end of the first resistor is connected to the common voltage terminal through the second end of the current sampling circuit.
  • the adjustment circuit has a first power terminal, a second power terminal, a plurality of control terminals, an input terminal, and an output terminal;
  • the first end of the current sampling circuit is connected to the input end of the adjusting circuit, and the second end of the current sampling circuit is connected to the common voltage end;
  • Each of the control terminals of the adjustment circuit is connected to a control signal input terminal for receiving a control signal; a first power terminal of the adjustment circuit is connected to a power supply, and a second power terminal of the adjustment circuit is connected to the common voltage The output end of the adjusting circuit is connected to the power driving circuit; and the control signals respectively received by the plurality of control terminals form a control signal combination.
  • the adjustment circuit includes an adjustment unit and a comparison unit;
  • the adjusting unit is connected to the plurality of the control ends, the first power terminal and the second power terminal of the adjusting circuit, and is configured to output a preset voltage value of different amplitudes according to the control signals obtained by the plurality of the control terminals.
  • the comparison unit is connected to the input end and the output end of the adjustment circuit for comparing the real-time voltage value received by the input end of the adjustment circuit and the preset voltage value output by the adjustment unit to generate a first switch control signal.
  • the comparison unit includes a first operational amplifier; an inverting input end of the first operational amplifier is connected to a first end of the current sampling circuit, and a non-inverting input end of the first operational amplifier is connected to the An output of the adjustment unit; an output of the first operational amplifier is coupled to an output of the adjustment circuit.
  • the adjusting unit includes a plurality of variable resistance submodules and a proportional submodule;
  • each variable resistance sub-module is connected to a control end of the adjustment circuit, the input end of which is connected to the first power end of the adjustment circuit, and the first output end of which is connected to the first input end of the proportional sub-module, Its second output is connected to the second input of the proportional sub-module end;
  • the output end of the proportional sub-module is connected to the output end of the adjusting unit and the non-inverting input end of the first operational amplifier in the comparing unit; the second input end of the proportional sub-module is further connected to the common voltage end.
  • each of the variable resistance sub-modules includes a transfer switch and a second resistor; a control electrode of the transfer switch is connected to an input end of the variable resistance sub-module, and a first input end thereof is connected to the variable resistance sub-module The second input end is connected to the second output end of the variable resistance sub-module, the output end of which is connected to the first end of the second resistor; the second end of the second resistor is connected to the variable resistance a first output of the submodule;
  • the ratio sub-module includes a second operational amplifier, a third resistor, and a voltage inverter; an inverting input of the second operational amplifier is coupled to a first output of the variable resistance sub-module, the second operational amplifier a non-inverting input terminal is connected to the common voltage terminal, an output end of the second operational amplifier is connected to an input end of the voltage inverter; and a first end of the third resistor is connected to a reverse end of the second operational amplifier a phase input, a second end of the third resistor is coupled to an output of the second operational amplifier; an output of the voltage inverter is coupled to an output of the adjustment unit.
  • the embodiment of the present invention further provides a control method for the smart power module according to the first aspect, where the control method includes:
  • the actual working condition refers to that the smart power module and its subsequent circuits work differently.
  • the preset current value required in the case is
  • the invention provides an intelligent power module, including a power driving circuit, and an adjustment circuit;
  • the power driving circuit connects a current sampling circuit disposed outside the smart power module through a low voltage reference port of the power driving circuit;
  • the adjusting circuit is respectively connected to the current sampling circuit and the power driving circuit, wherein the current sampling circuit is configured to collect a real-time current value of the power driving circuit and convert it into a real-time voltage value and output the signal to the adjusting circuit.
  • the adjusting circuit generates a preset voltage value according to the received control signal combination, and compares the preset voltage value and the real-time voltage value to generate a first switch control signal and sends the signal to the power driving circuit.
  • the adjustment circuit has a first power terminal, a second power terminal, a plurality of control terminals, an input terminal, and an output terminal;
  • the first end of the current sampling circuit is connected to the input end of the adjusting circuit, and the second end of the current sampling circuit is connected to the common voltage end;
  • Each of the control terminals of the adjustment circuit is connected to a control signal input terminal for receiving a control signal; a first power terminal of the adjustment circuit is connected to a power supply, and a second power terminal of the adjustment circuit is connected to the common voltage The output end of the adjusting circuit is connected to the power driving circuit; and the control signals respectively received by the plurality of control terminals form a control signal combination.
  • the adjusting circuit includes an adjusting unit and a comparing unit
  • the adjusting unit is connected to the plurality of the control ends, the first power terminal and the second power terminal of the adjusting circuit, and is configured to output a preset voltage value of different amplitudes according to the control signals obtained by the plurality of the control terminals.
  • the comparison unit is connected to the input end and the output end of the adjustment circuit for comparing the real-time voltage value received by the input end of the adjustment circuit and the preset voltage value output by the adjustment unit to generate a first switch control signal.
  • the embodiment of the present invention further provides a control method for the smart power module according to the first aspect, where the control method includes:
  • the actual working condition refers to a preset current value required by the intelligent power module and its subsequent circuits under different working conditions.
  • the embodiment of the present invention further provides an air conditioner, comprising the intelligent power module of the fourth or sixth aspect, the micro control unit MCU for performing the control method of the fifth or seventh aspect, and Storage module
  • the MCU is connected to the smart power module for acquiring a real-time voltage value from the smart power module; the voltage value is converted by a real-time current value of the smart power module;
  • the MCU is connected to the storage module, and is configured to obtain an actual working condition of the air conditioner and a corresponding preset current value and a preset voltage value;
  • the MCU is further configured to output a control signal to the plurality of control signal inputs according to the relationship between the preset voltage value and the real-time voltage value.
  • the present invention provides an intelligent power module including a power driving circuit, an adjusting circuit, and a current sampling circuit;
  • the current sampling circuit is connected to the power driving circuit for collecting a real-time current value of the power driving circuit and converting it into a real-time voltage value;
  • the adjusting circuit is respectively connected to the current sampling circuit and the power driving circuit, configured to generate a preset voltage value according to the control signal, and compare the preset voltage value and the real-time voltage value to generate a switch control signal to send to The power drive circuit.
  • the current sampling circuit includes a first resistor; a first end of the first resistor is connected to a U-phase low-voltage reference terminal of the power driving circuit through a first end of the current sampling circuit, and a V-phase is low.
  • the voltage reference terminal, the W-phase low voltage reference terminal and the input end of the adjusting circuit, the second end of the first resistor is connected to the common voltage terminal through the second end of the current sampling circuit.
  • the adjustment circuit has a first power terminal, a second power terminal, a control terminal, an input terminal, and an output terminal;
  • the first end of the current sampling circuit is connected to the input end of the adjusting circuit, and the second end of the current sampling circuit is connected to the common voltage end;
  • the first power terminal of the adjusting circuit is connected to the power supply, the second power terminal of the adjusting circuit is connected to the common voltage terminal, and the control terminal of the adjusting circuit is configured to receive a control signal, and the output end of the adjusting circuit is connected The power drive circuit.
  • the adjustment circuit includes an adjustment unit and a comparison unit;
  • the adjusting unit is connected to the first power terminal, the second power terminal and the control terminal of the adjusting circuit, and is configured to output preset voltage values of different amplitudes to the comparing unit according to the input control signal;
  • the comparison unit is connected to the input end and the output end of the adjustment circuit for comparing the real-time voltage value received by the input end of the adjustment circuit and the preset voltage value to generate a switch control signal.
  • the adjusting unit includes a second resistor, a third resistor, a Zener diode, a fourth resistor, and a digital potentiometer;
  • the first end of the second resistor is connected to the first power end of the adjusting circuit, and the second end of the second resistor is connected to the first end of the third resistor;
  • the first pole of the Zener diode is connected to the second end of the third resistor in the first section Point, the second pole of the Zener diode is connected to the second power end of the adjusting circuit;
  • the first end of the fourth resistor is connected to the first node, and the second end of the fourth resistor is connected to the first end of the digital potentiometer and the output end of the adjusting unit to the second node;
  • the second end of the digital potentiometer is connected to the second power end of the adjusting circuit, and the control end of the digital potentiometer is connected to the control end of the adjusting circuit.
  • the third resistor is a negative temperature coefficient thermistor and the second resistor is a positive temperature coefficient thermistor.
  • the resistance value of the third resistor changes by the same amount as the resistance value of the second resistor.
  • the comparison unit includes an operational amplifier; an inverting input terminal of the operational amplifier is connected to the first end of the current sampling circuit, and a non-inverting input terminal of the operational amplifier is connected to the digital potentiometer in the adjusting unit The first end of the operational amplifier is connected to the output of the adjustment circuit.
  • the embodiment of the present invention further provides a control method for the intelligent power module according to the ninth aspect, the control method includes:
  • the actual working condition refers to a preset current value required by the subsequent circuit under different working conditions of the subsequent circuit.
  • the present invention provides an intelligent power module, a power driving circuit, Also includes an adjustment circuit; wherein
  • the power driving circuit connects a current sampling circuit disposed outside the smart power module through a low voltage reference port of the power driving circuit;
  • the adjusting circuit is respectively connected to the current sampling circuit and the power driving circuit, wherein the current sampling circuit is configured to collect a real-time current value of the power driving circuit and convert it into a real-time voltage value and output the signal to the adjusting circuit.
  • the adjusting circuit generates a preset voltage value according to the control signal, and compares the preset voltage value and the real-time voltage value to generate a switch control signal and sends the switch control signal to the power driving circuit.
  • the adjusting circuit has a first power terminal, a second power terminal, a control terminal, an input terminal, and an output terminal;
  • the first end of the current sampling circuit is connected to the input end of the adjusting circuit, and the second end of the current sampling circuit is connected to the common voltage end;
  • the first power terminal of the adjusting circuit is connected to the power supply, the second power terminal of the adjusting circuit is connected to the common voltage terminal, and the control terminal of the adjusting circuit is configured to receive a control signal, and the output end of the adjusting circuit is connected The power drive circuit.
  • the adjusting circuit includes an adjusting unit and a comparing unit
  • the adjusting unit is connected to the first power terminal, the second power terminal and the control terminal of the adjusting circuit, and is configured to output preset voltage values of different amplitudes to the comparing unit according to the input control signal;
  • the comparison unit is connected to the input end and the output end of the adjustment circuit for comparing the real-time voltage value received by the input end of the adjustment circuit and the preset voltage value to generate a switch control signal.
  • the embodiment of the present invention further provides a control method for the intelligent power module according to the eleventh aspect, where the control method includes:
  • the actual working condition refers to a preset current value required by the subsequent circuit under different working conditions of the subsequent circuit.
  • the embodiment of the present invention further provides an air conditioner, comprising the smart power module according to the ninth or eleventh aspect, and the micro control for performing the control method according to the tenth or twelfth aspect Unit MCU and storage module;
  • the MCU is connected to the smart power module for acquiring a real-time voltage value from the smart power module; the voltage value is converted by a real-time current value of the smart power module;
  • the MCU is connected to the storage module, and is configured to obtain an actual working condition of the air conditioner and a corresponding preset current value and a preset voltage value;
  • the MCU is further configured to output a control signal to the control signal input end according to the preset voltage value and the real-time voltage value.
  • the embodiment of the present invention uses the adjustment circuit and the current sampling circuit in the intelligent power module, utilizes the real-time current value of the power driving circuit of the current sampling circuit, and converts it into a real-time voltage value, and generates a preset voltage by using the adjustment circuit. And comparing the preset voltage value and the real-time voltage value to generate a switch control signal to be sent to the power drive circuit, so that the power drive circuit can output corresponding current and power.
  • the smart power module in the embodiment of the present invention can adjust the current protection point, that is, set the preset current value according to the environment of the smart power module or the environment in which the subsequent circuit is driven.
  • the intelligent power module when the intelligent power module is still safe under a large current, the intelligent power module can increase the preset voltage value, otherwise it is lowered, so that the effective working range of the intelligent power module can be adjusted, thereby avoiding users caused by stopping the work.
  • the intelligent power module can increase the preset voltage value, otherwise it is lowered, so that the effective working range of the intelligent power module can be adjusted, thereby avoiding users caused by stopping the work.
  • Experience low and increase current The problem of increased cost caused by quantity.
  • 1(A) to 1(B) are circuit structural diagrams of a prior art smart power module
  • FIG. 2 is a circuit structural diagram of an intelligent power module according to an embodiment of the present invention.
  • FIG. 3 is a circuit diagram of the smart power module shown in FIG. 2.
  • 4(A) to 4(C) are circuit structural diagrams of an intelligent power module according to a fourth embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for controlling an intelligent power module according to a sixth embodiment of the present invention.
  • FIG. 6 is a circuit structural diagram of an intelligent power module according to an eighth embodiment of the present invention.
  • FIG. 7 is a schematic flow chart of a control method for the smart power module shown in FIG. 6 according to a tenth embodiment of the present invention.
  • the circuit structure diagram of the prior art intelligent power module 100 includes a high voltage integrated circuit (HVIC) 110 and a transistor IGBT (Insulated Gate Bipolar). Transistor, IGBT) (shown by reference numerals 121 to 126 in Fig. 1(A)) and its Fast Recovery Diode (FRD) (shown by reference numerals 111 to 116 in Fig. 1(A)).
  • HVIC high voltage integrated circuit
  • IGBT Insulated Gate Bipolar
  • FDD Fast Recovery Diode
  • the VCC terminal of the HVIC tube 110 is connected to the power supply positive terminal VDD of the smart power module 100 (the voltage at VDD is generally set to 15V).
  • the HIN1 end of the HVIC tube 110 is connected to the U-phase upper arm input terminal UHIN of the smart power module 100, and the input end of the UH drive circuit 101 is connected inside the HVIC tube 110.
  • the HIN2 terminal of the HVIC tube 110 is connected to the V-phase upper arm input terminal VHIN of the smart power module 100, and the input terminal of the VH drive circuit 102 is connected inside the HVIC tube 110.
  • the HIN3 end of the HVIC tube 110 is connected to the W-phase upper arm input terminal WHIN of the smart power module 100, and the input end of the WH drive circuit 103 is connected inside the HVIC tube 110.
  • the LIN1 end of the HVIC tube 110 is connected to the U-phase lower arm input terminal ULIN of the smart power module 100, and the input end of the UL drive circuit 104 is connected inside the HVIC tube 110.
  • the LIN2 end of the HVIC tube 110 is connected to the V-phase lower arm input terminal VLIN of the smart power module 100, and the input end of the VL drive circuit 105 is connected inside the HVIC tube 110.
  • the LIN3 end of the HVIC tube 110 is connected to the W-phase lower arm input terminal WLIN of the smart power module 100, and the input end of the WL drive circuit 106 is connected inside the HVIC tube 110.
  • the six inputs of the U, V, and W phases of the intelligent power module 100 receive an input signal of 0 V or 5 V.
  • input signals of other voltage amplitudes can also be received according to actual needs. It can be understood that the amplitude of the above input signal can be selected according to the actual device of the circuit.
  • the GND end of the HVIC tube 110 is connected to the power supply negative terminal COM of the smart power module 100, and is respectively connected to the UH driving circuit 101, the VH driving circuit 102, the WH driving circuit 103, the UL driving circuit 104, the VL driving circuit 105, and the WL driving circuit 106.
  • the negative end of the power supply (not shown).
  • the VB1 end of the HVIC tube 110 is connected to the power supply positive terminal (output side) of the UH driving circuit 101, and one end of the capacitor 131 is connected outside the HVIC tube 110, and is connected to the U-phase power supply positive terminal UVB of the intelligent power module 100 (output side). .
  • the HO1 end of the HVIC tube 110 is connected to the output terminal of the UH driving circuit 101, and is connected to the gate of the U-phase upper arm transistor IGBT121.
  • the VS1 terminal of the HVIC transistor 110 is connected to the negative power supply terminal (output side) of the UH driving circuit 101, and connects the emitter of the transistor IGBT 121, the anode of the FRD transistor 111, the collector of the U-phase lower arm transistor IGBT 124, and the FRD tube 114. The cathode and the other end of the capacitor 131.
  • the VS1 terminal is also connected to the U-phase power supply negative terminal UVS (output side) of the smart power module 100.
  • the VB2 end of the HVIC tube 110 is connected to the power supply positive terminal (output side) of the VH driving circuit 102, and one end of the connection capacitor 132.
  • the VB2 terminal is also connected to the U-phase power supply positive terminal VVB (output side) of the smart power module 100.
  • the HO2 terminal of the HVIC transistor 110 is connected to the output terminal of the VH driving circuit 102, and to the gate of the V-phase upper arm transistor IGBT 123.
  • the VS2 terminal of the HVIC transistor 110 is connected to the power supply negative terminal of the VH driving circuit 102, and the emitter of the connection transistor IGBT 122, the anode of the FRD transistor 112, the collector of the V-phase lower arm transistor IGBT 125, the cathode of the FRD transistor 115, and the capacitor 132. The other end.
  • the VS2 terminal is also connected to the W-phase power supply negative terminal VVS (output side) of the smart power module 100.
  • the VB3 end of the HVIC tube 110 is connected to the power supply positive terminal (output side) of the WH drive circuit 103, and one end of the connection capacitor 133. In addition, the VB3 end is also connected to the W-phase power supply positive terminal WVB of the smart power module 100.
  • the HO3 terminal of the HVIC transistor 110 is connected to the output terminal of the WH driving circuit 101, and to the gate of the W-phase upper arm transistor IGBT 123.
  • the VS3 terminal of the HVIC transistor 110 is connected to the power supply negative terminal (output side) of the WH drive circuit 103, and the emitter of the connection transistor IGBT 123, the anode of the FRD transistor 113, the collector of the W-phase lower arm transistor IGBT 126, and the FRD transistor 116. The cathode and the other end of the capacitor 133.
  • the VS3 terminal is also connected to the W-phase power supply negative terminal WVS (output side) of the smart power module 100.
  • the LO1 terminal of the HVIC transistor 110 is connected to the gate of the transistor IGBT 124.
  • the LO2 terminal of the HVIC transistor 110 is connected to the gate of the transistor IGBT 125.
  • the LO3 terminal of the HVIC transistor 110 is connected to the gate of the transistor IGBT 126.
  • the emitter of the transistor IGBT 124 is coupled to the anode of the FRD tube 114 and to the U-phase low voltage reference terminal UN of the smart power module 100.
  • the emitter of the transistor IGBT 125 is coupled to the anode of the FRD tube 115 and to the V-phase low voltage reference terminal VN of the smart power module 100.
  • the emitter of transistor IGBT 126 is coupled to the anode of FRD tube 116 and to the W-phase low voltage reference terminal WN of smart power module 100.
  • the collector of the transistor IGBT 121 is connected to the cathode of the FRD tube 111, the collector of the transistor IGBT 122, the cathode of the FRD tube 112, the collector of the transistor IGBT 123, and the cathode of the FRD tube 113, and the input terminal P of the smart power module 100.
  • the voltage at input P is typically set to 300V.
  • the above HVIC tube 110 adopts the following connection methods:
  • the VDD terminal is the positive power supply terminal of the HVIC pipe 110
  • the GND terminal is the power supply negative terminal of the HVIC pipe 110
  • the voltage between the VDD terminal and the GND terminal is generally set to 15V.
  • the VB1 and VS1 terminals are the positive and negative poles of the U-phase power supply, and the HO1 is the U-phase power supply output.
  • the VB2 and VS2 terminals are the positive and negative terminals of the V-phase power supply, and the HO2 is the V-phase power supply output.
  • the VB3 and VS3 terminals are the positive and negative poles of the U-phase power supply, and the HO3 is the W-phase power supply output.
  • LO1, LO2, and LO3 are the output ends of the U-phase, V-phase, and W-phase low-voltage regions, respectively.
  • the UH driving circuit, the VH driving circuit, the WH driving circuit, the UL driving circuit, the VL driving circuit, and the WL are passed.
  • the driving circuit outputs to the HO1 terminal, the HO2 terminal, the HO3 terminal, and the LO1 terminal, the LO2 terminal, and the LO3 terminal.
  • the output signal at the HO1 end is equal to the output signal at the VS1 terminal, or equal to the sum of the output signal +15V at the VS1 terminal.
  • the output signal at the HO2 terminal is equal to the output signal at the VS2 terminal, or equal to the sum of the output signal +15V at the VS2 terminal.
  • the output signal at the HO3 end is equal to the output signal at the VS3 end, or equal to the VS3 end.
  • the output signal is 0 or 15V at the LO1 terminal, the LO2 terminal, and the LO3 terminal.
  • the HIN3 end and the LIN3 end cannot simultaneously be at a high level, that is, the two terminals of the same phase cannot simultaneously be at a high level.
  • a capacitor 135 is connected between the UVB terminal and the UVS terminal
  • a capacitor 136 is connected between the VVB terminal and the VVS terminal
  • a capacitor 137 is connected between the WVB terminal and the WVS terminal.
  • the above capacitors 135, 136, 137 are used to store the amount of electricity.
  • a capacitor 133 is connected between the UVB terminal and the UVS terminal
  • a capacitor 132 is connected between the VVB terminal and the VVS terminal
  • a capacitor 131 is connected between the WVB terminal and the WVS terminal for filtering.
  • the UN terminal, the VN terminal, and the WN terminal are connected to one end of the resistor 138, and then connected to the pin Pin7 of the MCU 200.
  • the other end of the resistor 138 is connected to the common voltage terminal COM.
  • the pin Pin1 of the MCU 200 is connected to the UHIN end of the smart power module 100; the pin Pin2 of the MCU 200 is connected to the VHIN end of the intelligent power module 100; the pin Pin3 of the MCU 200 is connected to the WHIN end of the intelligent power module 100; the pin Pin4 of the MCU 200 is connected.
  • the U phase is taken as an example to illustrate the working process of the intelligent power module 100:
  • the pin Pin4 of the MCU200 When the pin Pin4 of the MCU200 is a high level signal, the pin Pin1 of the MCU200 must be a low level signal, so that the LIN1 terminal is at a high level and the HIN1 terminal is at a low level.
  • the LO1 terminal is at a high level and the HO1 terminal is at a low level, so that the transistor IGBT 124 is turned on and the transistor IGBT 121 is turned off, and the voltage at the VS1 terminal is about 0V.
  • the VCC terminal charges the capacitor 133 and the capacitor 135. When the time is long enough or the remaining power before the capacitor 133 and the capacitor 135 are charged, the voltage between the VB1 terminal and the VS1 terminal is close to 15V.
  • the pin Pin4 of the MCU200 must be a low level signal, so that the LIN1 terminal is at a low level and the HIN1 terminal is at a high level.
  • the LO1 terminal is at a low level and the HO1 terminal is at a high level, so that the transistor IGBT 124 is turned off and the transistor IGBT 121 is turned on, so that the voltage at the VS1 terminal is about 300V.
  • the voltage at the VB1 terminal is raised to about 315V, and the U phase is maintained at a high voltage state by the capacitance of the capacitor 133 and the capacitor 135.
  • the U phase When the U phase is in the high voltage state, if the duration of the high level at the HIN1 terminal is sufficiently short or the capacitance of the capacitor 133 and the capacitor 135 is sufficiently large, the voltage between the VB1 terminal and the VS1 terminal can be maintained above 14V.
  • the voltage change of the MCU detection resistor 138 adjusts and controls the working state of the intelligent power module 100 according to the environment change of the air conditioner:
  • the smart power module 100 When the voltage value of the resistor 138 is greater than a certain value, that is, the current flowing through the smart power module 100 is greater than a certain value, it is proved that the smart power module 100 has an abnormal heat of overload operation, and the PIN1 to PIN6 terminals of the MCU 200 are simultaneously output. Low level controls the intelligent power module 100 to stop operating.
  • the preset current value or the preset voltage value needs to be set relatively low, and the environment of the air conditioner often changes, causing the power module to stop working prematurely, thereby reducing the user experience.
  • the current capability of the transistor IGBT in the above intelligent power module is increased, which in turn greatly increases the raw material cost of the smart power module, which is disadvantageous for the popular use of the frequency conversion home appliance.
  • the smart power module in the embodiment of the present invention includes a power driving circuit, an adjusting circuit, and a current sampling circuit. among them,
  • the current sampling circuit is connected to the power driving circuit for collecting the real-time current value of the power driving circuit and converting it into a real-time voltage value;
  • the adjusting circuit is respectively connected to the current sampling circuit and the power driving circuit for generating a preset voltage value, and comparing the preset voltage value and the real-time voltage value to generate a switch control signal and sending the Power drive circuit
  • the power driving circuit also includes a transistor IGBT (shown by reference numerals 4121 to 4126 in FIG. 3), an FRD tube (reference numeral 4111 to 4116 in FIG. 3), and a UVW three-phase driving circuit (the standard in FIG. 3).
  • Nos. 4101 to 4106) and capacitors (indicated by reference numerals 4131 to 4133 in Fig. 3), the connection relationship of the above devices is the same as that of the power driving circuit of Fig. 1. That is, the part of the content is in the prior art, and those skilled in the art can refer to the description of FIG. 1(A) or FIG. 1(B) in the embodiment of the present invention, and details are not described herein again.
  • the current sampling circuit and the adjusting circuit in the embodiment of the present invention are mainly described below.
  • the current sampling circuit includes a first resistor 4301.
  • the first end of the first resistor 4301 is connected to the U-phase low voltage reference terminal UN of the power driving circuit, the V-phase low voltage reference terminal VN, the W-phase low voltage reference terminal VN, and the input terminal ITRIP of the adjusting circuit, and the first resistor 4301
  • the second end is connected to the common voltage terminal COM.
  • the common voltage terminal is connected to the ground GND.
  • an adjustment circuit has a first power terminal, a second power terminal, an input terminal, and an output terminal;
  • the input end of the adjustment circuit is connected to the first end of the current sampling circuit, the first power end of the adjustment circuit is connected to the power supply VDD, the second power end of the adjustment circuit is connected to the common voltage terminal COM, and the output end of the adjustment circuit is connected to the power drive circuit.
  • the adjustment circuit includes an adjustment unit 4302 and a comparison unit. among them,
  • the above comparison unit includes an operational amplifier 4107.
  • the inverting input terminal of the operational amplifier 4107 is connected to the first end of the current sampling circuit (ie, the first end of the first resistor 4301), and the non-inverting input terminal of the operational amplifier 4107 is connected to the first end of the third resistor 4306 of the adjusting unit 4302.
  • the output of the operational amplifier 4107 is connected to the output of the adjustment circuit. Referring to FIG. 3, the output ends of the adjustment circuit are respectively connected to the UH driver circuit, the VH driver circuit, the WH driver circuit, the UL driver circuit, the VL driver circuit, and the control terminal (or enable terminal) of the WL driver circuit.
  • the adjusting unit 4302 includes a second resistor 4303, a third resistor 4306, and a fourth resistor 4308.
  • the first end of the second resistor 4303 is connected to the first power terminal of the adjusting circuit, that is, the power supply VDD is connected, and the second end of the second resistor 4303 is connected to the first end of the third resistor 4306.
  • the first end of the fourth resistor 4308 is connected to the second end of the third resistor 4306, and the second end of the fourth resistor 4308 is connected to the common voltage terminal COM.
  • the adjustment circuit works as follows:
  • the third resistor is a negative temperature coefficient thermistor in the embodiment of the present invention; or the second resistor is a positive temperature coefficient thermistor; or, The third resistor is a negative temperature coefficient thermistor and the second resistor is a positive temperature coefficient thermistor.
  • thermoelectric thermistor means that the resistance linearly decreases or a predictable decrease occurs as the temperature changes.
  • positive temperature coefficient thermistor means that the resistance linearly increases or a predictable increase occurs as the temperature changes.
  • the resistance of the second resistor 4303 and/or the third resistor 4306 changes correspondingly, so that the preset voltage outputted by the output end of the adjustment unit
  • the value changes according to the preset direction. For example, when the environment When the temperature becomes higher, the smaller the preset voltage value is, the lower the overcurrent protection point is; or, when the temperature of the environment is low, the larger the preset voltage value is, the higher the overcurrent protection point is.
  • the operational amplifier 4107 compares the real-time voltage value collected by the first resistor 4301 with the predetermined voltage value.
  • V ITRIP ⁇ V VTRIP (including equal)
  • the output terminal of the operational amplifier 4107 outputs a high level.
  • the UH driving circuit, the VH driving circuit, the WH driving circuit, the UL driving circuit, the VL driving circuit, and the WL driving circuit output a pulse signal normally.
  • the driving transistors IGBTs 4121 to 4126 are normally turned on and off.
  • the intelligent power module outputs voltage and power according to the actual demand of the subsequent circuit.
  • V ITRIP >V VTRIP
  • the output of the operational amplifier 4107 outputs a low level.
  • the UH driver circuit, the VH driver circuit, the WH driver circuit, the UL driver circuit, the VL driver circuit, and the control terminal (or enable terminal) of the WL driver circuit is valid and cannot output the switch control signal.
  • the UHIN terminal, the VHIN terminal, the WHIN terminal, the ULIN terminal, the VLIN terminal, and the WLIN terminal simultaneously input the signal 0.
  • an intelligent power module capable of providing a 15A current capability by driving a rare earth compressor will be described as an example.
  • the first resistor 4301 is set to 33m ⁇ , when the current flowing through the first resistor 4301 is 15A, the real-time voltage value at the ITRIP end is 0.5V;
  • the overcurrent protection point should decrease with the increase of temperature, then set as follows:
  • the second resistor 4303 is set to 64 k ⁇ .
  • the second resistor 4306 is configured as a NTC resistor (Negative Temperature Coefficient), and the NTC resistor has a characteristic that the resistance value decreases exponentially with increasing temperature.
  • the NTC resistor has a resistance value of 2 k ⁇ at 25 ° C, and the temperature is The resistance is 1.75 k ⁇ at 50 ° C and 1.55 k ⁇ at 75 ° C.
  • the fourth resistor 4308 is set to 0.2 K ⁇ .
  • the preset voltage at the VTRIP end is:
  • the preset voltage at the VTRIP end is:
  • the overcurrent protection point of the intelligent power module 4100 at a temperature of 50 ° C is:
  • the preset voltage at the VTRIP end is:
  • the overcurrent protection point of the intelligent power module 4100 at a temperature of 75 ° C is:
  • the power driving module can lower the overcurrent protection point as the ambient temperature is higher, so that the intelligent power module triggers protection before the compressor reaches the demagnetization current, ensuring normal operation. jobs.
  • an intelligent power module including a power driving circuit, further includes an adjustment circuit, where
  • the power driving circuit connects the current sampling circuit disposed outside the intelligent power module through the low voltage reference port of the power driving circuit;
  • the adjusting circuit is respectively connected with a current sampling circuit and a power driving circuit, and the current sampling circuit is configured to collect the real-time current value of the power driving circuit and convert it into a real-time voltage value and output it to the adjusting circuit, and the adjusting circuit generates a preset voltage value and compares the preset voltage.
  • the value and real-time voltage value are sent to the power drive circuit to generate a switch control signal.
  • the current sampling circuit is disposed outside the smart power module, wherein the power driving circuit is sampled by UN, VN and WN currents through its low voltage reference port as shown in FIG. 1(B).
  • the circuit is connected, and the current sampling circuit collects the real-time current value of the power driving circuit and converts it into a real-time voltage value, and then passes through a port input expiration adjusting circuit of the intelligent power module, which is not shown in FIG. 1(B).
  • the adjustment circuit and the power drive circuit and functions inside the smart power module are the same as those in the first embodiment, and will not be described again.
  • an embodiment of the present invention provides an air conditioner, which includes an intelligent power module according to Embodiment 1 of the present invention.
  • the smart power module and the air conditioner provided by the embodiments of the present invention increase the adjustment circuit and the current sampling circuit in the smart power module, and connect the current sampling circuit to the power driving circuit, and the adjusting circuit respectively connects the current sampling.
  • a circuit and the power drive circuit On the basis of the above circuit, the current sampling circuit can acquire the real-time current value of the power driving circuit and convert it into a real-time voltage value; the adjusting circuit generates a preset voltage value, and compares the preset voltage value with the real-time voltage value. A high level or low level signal is generated and sent to the power drive circuit.
  • the smart power module can dynamically adjust its current protection point, that is, set the preset current value according to the environment of the smart power module or the circuit in which the subsequent circuit is driven, for example, when the smart power module operates at a large current.
  • the intelligent power module can increase the preset current value according to the control signal, otherwise it will be turned down. It can be seen that, by adjusting the preset current value, the effective working range of the intelligent power module can be adjusted, thereby avoiding the problem of low user experience and increased cost caused by stopping the current.
  • the intelligent power module in the fourth embodiment of the present invention includes a power driving circuit, an adjusting circuit, and a current sampling circuit. among them,
  • the current sampling circuit is connected to the power driving circuit for collecting the real-time current value of the power driving circuit and converting it into a real-time voltage value;
  • the adjusting circuit is respectively connected to the current sampling circuit and the power driving circuit, configured to generate a preset voltage value according to the received control signal, and compare the preset voltage value and the real-time voltage value to generate a first switch control signal and send the signal to the power driving circuit.
  • the power driving circuit also includes a transistor IGBT (shown by reference numerals 4121 to 4126 in FIG. 4), an FRD tube (reference numeral 4111 to 4116 in FIG. 4), and a UVW three-phase driving circuit (the standard in FIG. 4).
  • Nos. 4101 to 4106) and capacitors (indicated by numerals 4131 to 4133 in Fig. 4), the connection relationship of the above devices and the power driving circuit of Fig. 1
  • the connection relationship is the same. That is, the part of the content is in the prior art, and those skilled in the art can refer to the description of FIG. 1(A) or FIG. 1(B) in the embodiment of the present invention, and details are not described herein again.
  • FIG. 4(A) to (C) in the embodiment of the present invention respectively indicate:
  • the current sampling circuit and the adjusting circuit in the embodiment of the present invention are mainly described below.
  • the current sampling circuit includes a first resistor 4301.
  • the first end of the first resistor 4301 is connected to the U-phase low voltage reference terminal UN of the power driving circuit, the V-phase low voltage reference terminal VN, the W-phase low voltage reference terminal VN, and the input terminal ITRIP of the adjusting circuit, and the first resistor 4301
  • the second end is connected to the common voltage terminal COM.
  • the common voltage terminal is connected to the ground GND.
  • the adjustment circuit has a plurality of control terminals, an input terminal, and an output terminal.
  • the first end of the current sampling circuit is connected to the input end of the adjusting circuit, and the second end of the current sampling circuit is connected to the common voltage end.
  • Each control end of the adjustment circuit is connected to a control signal input terminal for receiving a control signal (control signal input terminals USO1 to USO4 in FIG. 4(A)); the first power supply terminal of the adjustment circuit is connected to the power supply, and the adjustment circuit is The second power terminal is connected to the common voltage end, and the output end of the adjusting circuit is connected to the power driving circuit; the control signals respectively received by the plurality of control terminals form a control signal combination.
  • the above adjustment circuit includes an adjustment unit and a comparison unit.
  • the plurality of the control terminals, the first power terminal and the second power terminal of the adjustment unit connection adjustment circuit are configured to output a preset voltage value of different amplitudes to the comparison unit according to the control signals obtained by the plurality of control terminals.
  • the comparison unit is connected to the input end and the output end of the adjustment circuit for comparing the real-time voltage value received by the input end of the adjustment circuit and the preset voltage value output by the adjustment unit to generate a first switch control signal.
  • the above comparison unit includes a first operational amplifier 4107.
  • the inverting input terminal of the first operational amplifier 4107 is connected to the first end of the current sampling circuit (ie, the upper end of the first resistor 4301), and the non-inverting input terminal of the first operational amplifier 4107 is connected to the output end of the adjusting unit (ie, the adjusting unit Output VTRIP), the output of the first operational amplifier 4107
  • the output terminal of the terminal connection adjustment circuit (the output terminal of 4107 in FIG. 4(B) is sequentially connected to the UH driver circuit, the VH driver circuit, the WH driver circuit, the UL driver circuit, the VL driver circuit, the control terminal or the enable terminal of the WL driver circuit. ).
  • the adjusting unit comprises a plurality of variable resistance sub-modules and a proportional sub-module.
  • the control end of each variable resistance sub-module is connected to a control end of the adjustment circuit, and the input end is connected to the first power end of the adjustment circuit, and the first output end is connected to the first input end of the proportional sub-module,
  • the second output is connected to the second input of the proportional sub-module.
  • the output end of the proportional sub-module is connected to the non-inverting input end of the first operational amplifier in the comparison unit; the second input end of the proportional sub-module is further connected to the common voltage end.
  • variable resistance sub-modules are taken as an example.
  • the four variable resistance sub-modules have the same circuit structure.
  • the changeover switch and the second resistor in each of the variable resistance sub-modules have different identifiers.
  • the first variable resistance sub-module includes a changeover switch 4313 and a second resistor 4303.
  • the first transfer switch 4313 includes a control pole, a first input terminal, a second input terminal, and an output terminal.
  • the control pole of the first changeover switch 4313 is connected to the input end of the first variable resistance submodule (see FIG. 4(A) and FIG.
  • the proportional sub-module includes a second operational amplifier 4307, a third resistor 4308, and a voltage inverter 4309.
  • the inverting input of the second operational amplifier 4307 is connected to the first output of the variable resistance sub-module (see FIG. 4(A) and FIG. 4(C), and the inverting input is last connected through the first input of the proportional sub-module To the second end of the second resistor 4303);
  • the non-inverting input terminal of the second operational amplifier 4307 is connected to the common voltage terminal COM and the second input terminal of the change-over switch 4313;
  • the output terminal of the second operational amplifier 4307 is connected to the voltage inverter 4309 Input.
  • the first end of the third resistor 4308 is coupled to the inverting input of the second operational amplifier 4307, and the second end of the third resistor 4308 is coupled to the output of the second operational amplifier 4307.
  • the output of the voltage inverter 4309 is connected to the output of the adjustment unit (last connected to the VTRIP terminal).
  • the working principle of the adjusting unit in the embodiment of the present invention is:
  • the second resistors 4303, 4304, 4305, and 4306 are connected in parallel with each other, and the parallel equivalent resistance, the third resistor 4308, and the second operational amplifier 4307 constitute a proportional amplifier whose amplification ratio coefficient is a ratio of the equivalent resistance to the third resistance. Decide.
  • the second terminal voltage of the third resistor 4308 (the right end of the third resistor 4308 in FIG. 4) is further converted by the voltage inverter 4309 (if the potential at the second end of 4308 is 0, it is converted to 1; if 1, Then it is converted to 0. Only the logic level is taken as an example to transfer to the VTRIP end.
  • the first resistor 4301 collects the real-time current value of the U-phase low-voltage reference terminal UN, the V-phase low-voltage reference terminal VN, and the W-phase low-voltage reference terminal VN, and converts the value into a real-time voltage value, and sends it to the adjustment circuit.
  • the input is at the ITRIP end.
  • the first operational amplifier 4107 compares the voltages at the two input terminals, and when V ITRIP ⁇ V VTRIP (including equal), the output terminal of the operational amplifier 4107 outputs a high level, at this time, the UH driving circuit, the VH driving circuit, the WH driving circuit, The UL drive circuit, the VL drive circuit, and the WL drive circuit normally output the first switch control signal, that is, the transistors IGBTs 4121 to 4126 are normally turned on and off, and the smart power module outputs the voltage and power according to the actual demand of the subsequent circuit. When V ITRIP >V VTRIP , the output of the operational amplifier 4107 outputs a low level.
  • the UH driver circuit, the VH driver circuit, the WH driver circuit, the UL driver circuit, the VL driver circuit, and the control terminal (or enable terminal) of the WL driver circuit ) is valid, the first switch control signal cannot be output.
  • the UHIN terminal, the VHIN terminal, the WHIN terminal, the ULIN terminal, the VLIN terminal, and the WLIN terminal simultaneously input the signal 0.
  • the resistance value of the second resistor 4303 is set to R
  • the resistance of the second resistor 4304 is 2R
  • the resistance of the second resistor 4305 is 4R
  • the resistance of the second resistor 4306 is 4R.
  • the third resistor 4308 has a resistance value of 0.019R.
  • VTRIP means that the preset voltage value at the VTRIP end is substantially the same as the V VTRIP above, and USO1 to USO4 refer to the voltage values at the input ends of the respective control signals.
  • the second resistor 4303 is 52.6 k ⁇
  • the second resistor 4304 is 104.2 k ⁇
  • the second resistor 4305 is 210.4 k ⁇
  • the second resistor 4306 is 210.4 k ⁇ .
  • the third resistor 4308 is set to 1 k ⁇ .
  • control signal input terminal USO1 When the control signal input terminal USO1 is at a high level, the control signal input terminal USO2 is at a high level, the control signal input terminal USO3 is at a high level, and the control signal input terminal USO4 is at a low level, that is, the control signal combination is 1110.
  • Set the voltage value to:
  • control signal input terminal USO1 When the control signal input terminal USO1 is at a high level, the control signal input terminal USO2 is at a high level, the control signal input terminal USO3 is at a high level, and the control signal input terminal USO4 is at a high level, that is, the control signal combination is 1111.
  • Set the voltage value to:
  • control signal input terminal USO1 When the control signal input terminal USO1 is at a high level, the control signal input terminal USO2 is at a high level, the control signal input terminal USO3 is at a low level, and the control signal input terminal USO4 is at a low level, that is, the control signal combination is 1100.
  • Set the voltage value to:
  • the first resistor 4301 is set to 33 m ⁇ , and the real-time voltage value is:
  • the voltage comparator 4107 outputs a high level, the UH driving circuit 4101, the VH driving circuit 4102, the WH driving circuit 4103, and the UL.
  • the control terminals of the driving circuit 4104, the VL driving circuit 4105, and the WL driving circuit 4106 are enabled, and the input signals of the HIN1 terminal, the HIN2 terminal, the HIN3 terminal, the LIN1 terminal, the LIN2 terminal, and the LIN3 terminal respectively pass through the UH driving circuit 4101 and the VH driving circuit 4102, respectively.
  • the WH driving circuit 4103, the UL driving circuit 4104, the VL driving circuit 4105, and the WL driving circuit 4106 enable the intelligent power module 4100 to operate normally.
  • the voltage comparator 4107 When the current current flowing through the transistor IGBT is greater than 15A, that is, V ITRIP >V VTRIP , the voltage comparator 4107 outputs a low level, the UH driving circuit 4101, the VH driving circuit 4102, the WH driving circuit 4103, the UL driving circuit 4104, and the VL driving.
  • the control terminals of the circuit 4105 and the WL driving circuit 4106 are invalid, and the input signals of the HIN1 terminal, the HIN2 terminal, the HIN3 terminal, the LIN1 terminal, the LIN2 terminal, and the LIN3 terminal cannot pass through the UH driving circuit 4101, the VH driving circuit 4102, the WH driving circuit 4103, and the UL driving.
  • the MCU 200 When encountering a special situation such as extremely low outdoor temperature (the real-time temperature value T of the environment in which the air conditioner is located is less than the first preset temperature value), the MCU 200 outputs low to the USO1 terminal and the USO2 terminal through the first and second control signal input terminals, respectively.
  • the level, the voltage at the VTRIP terminal is set to 0.5V, so that the current flowing through the transistor IGBT is raised from 15A to 17.1A.
  • the voltage comparator 4107 When the current current flowing through the transistor IGBT is less than 17.1A, that is, V ITRIP ⁇ V VTRIP , the voltage comparator 4107 outputs a high level, the UH driving circuit 4101, the VH driving circuit 4102, the WH driving circuit 4103, the UL driving circuit 4104, VL.
  • the control terminals of the driving circuit 4105 and the WL driving circuit 4106 are enabled, and the input signals of the HIN1 terminal, the HIN2 terminal, the HIN3 terminal, the LIN1 terminal, the LIN2 terminal, and the LIN3 terminal can pass through the UH driving circuit 4101, the VH driving circuit 4102, the WH driving circuit 4103,
  • the UL drive circuit 4104, the VL drive circuit 4105, and the WL drive circuit 4106 enable the intelligent power module 4100 to operate normally.
  • the voltage comparator 4107 When the current current value flowing through the IGBT is greater than 17.1A, that is, V ITRIP >V VTRIP , the voltage comparator 4107 outputs a low level, the UH driving circuit 4101, the VH driving circuit 4102, the WH driving circuit 4103, the UL driving circuit 4104, VL.
  • the control terminals of the driving circuit 4105 and the WL driving circuit 4106 are invalid, and the input signals of the HIN1 terminal, the HIN2 terminal, the HIN3 terminal, the LIN1 terminal, the LIN2 terminal, and the LIN3 terminal cannot pass through the UH driving circuit 4101, the VH driving circuit 4102, the WH driving circuit 4103, and the UL.
  • the driving circuit 4104, the VL driving circuit 4105, and the WL driving circuit 4106, the smart power module 4100 stops operating.
  • the MCU 200 When encountering a special situation such as extremely high outdoor temperature (the real-time temperature value T of the environment in which the air conditioner is located is greater than the second preset temperature value), the MCU 200 outputs a high level to the USO1 terminal and the USO2 terminal through the first and second control signal input terminals. , set the voltage at the VTRIP terminal to 0.4V, from The current flowing through the transistor IGBT is reduced from 15A to 12.9A, namely:
  • the voltage comparator 4107 When the current current value flowing through the transistor IGBT is less than 12.9A, that is, V ITRIP ⁇ V VTRIP , the voltage comparator 4107 outputs a high level, the UH driving circuit 4101, the VH driving circuit 4102, the WH driving circuit 4103, the UL driving circuit 4104, The control terminals of the VL driving circuit 4105 and the WL driving circuit 4106 are enabled, and the input signals of the HIN1 terminal, the HIN2 terminal, the HIN3 terminal, the LIN1 terminal, the LIN2 terminal, and the LIN3 terminal can pass through the UH driving circuit 4101, the VH driving circuit 4102, and the WH driving circuit 4103.
  • the UL driving circuit 4104, the VL driving circuit 4105, and the WL driving circuit 4106 enable the intelligent power module 4100 to operate normally.
  • the voltage comparator 4107 When the current current flowing through the IGBT is greater than 12.9A, that is, V ITRIP >V VTRIP , the voltage comparator 4107 outputs a low level, the UH driving circuit 4101, the VH driving circuit 4102, the WH driving circuit 4103, the UL driving circuit 4104, and the VL driving.
  • the control terminals of the circuit 4105 and the WL driving circuit 4106 are invalid, and the input signals of the HIN1 terminal, the HIN2 terminal, the HIN3 terminal, the LIN1 terminal, the LIN2 terminal, and the LIN3 terminal cannot pass through the UH driving circuit 4101, the VH driving circuit 4102, the WH driving circuit 4103, and the UL driving.
  • the circuit 4104, the VL drive circuit 4105, the WL drive circuit 4106, and the smart power module 4100 are stopped.
  • the first preset temperature value and the second preset temperature value are temperature thresholds for distinguishing the environment in which the air conditioner is located, and those skilled in the art may adjust the first preset temperature value according to the specific use scenario and the first The data value of the two preset temperature values.
  • those skilled in the art can also set the number of preset temperature values according to the specific use scenario, thereby dividing more temperature intervals. At this time, the number of the variable resistance sub-modules in the adjustment unit needs to be adjusted correspondingly.
  • variable resistance sub-modules when four variable resistance sub-modules are set, theoretically, there are 16 preset voltage values at the VTRIP end; when five variable resistance sub-modules are set, theoretically, there are 32 preset voltage values at the VTRIP end, and no further description is given here. .
  • the fifth embodiment of the present invention further provides an intelligent power module, including a power driving circuit, which further includes an adjustment circuit;
  • the power drive circuit is connected to the low voltage reference port of the power drive circuit. a current sampling circuit outside the power module;
  • the adjusting circuit is respectively connected with a current sampling circuit and a power driving circuit, and the current sampling circuit is configured to collect the real-time current value of the power driving circuit and convert it into a real-time voltage value and output the signal to the adjusting circuit, and the adjusting circuit generates a preset voltage value according to the received control signal combination. And comparing the preset voltage value and the real-time voltage value to generate a first switch control signal to be sent to the power drive circuit.
  • the current sampling circuit is disposed outside the smart power module, wherein the power driving circuit is sampled by UN, VN and WN currents through its low voltage reference port as shown in FIG. 1(B).
  • the circuit is connected, and the current sampling circuit collects the real-time current value of the power driving circuit and converts it into a real-time voltage value, and then passes through a port input expiration adjusting circuit of the intelligent power module, which is not shown in FIG. 1(B).
  • the adjustment circuit and the power drive circuit and functions inside the smart power module are the same as those in the first embodiment, and will not be described again.
  • the sixth embodiment of the present invention further provides a control method. Referring to FIG. 5, the method includes:
  • S1 acquiring a real-time current value from a power driving circuit collected by the current sampling circuit and converting the value into a real-time voltage value;
  • the output control signal is combined to the plurality of control signal inputs according to the relationship between the preset voltage value and the real-time voltage value.
  • the actual working condition refers to the preset current value required by the intelligent function module and its subsequent circuits under different working conditions of the subsequent circuit.
  • the ambient temperature of the intelligent power module and its subsequent circuits is high, a small preset current value is required at this time, and a larger preset current value is required.
  • a person skilled in the art can make a selection according to the actual operation of the circuit, which is not limited by the present invention.
  • the above control signals can be implemented in advance for the application of the intelligent power module.
  • the preset current value under the above different operating conditions and the corresponding control signal combination are saved in the corresponding storage device.
  • the micro control unit MCU executes the above control method, the preset current value is directly read according to the actual working condition, and then the real-time current value is combined, thereby determining the output of the corresponding control signal combination.
  • the present invention can dynamically adjust the preset current value of the intelligent power module and its subsequent circuits, that is, the overcurrent protection current value, to prevent premature protection of the intelligent power module, thereby improving the working efficiency of the intelligent power module.
  • control method may be implemented by using hardware or by software.
  • control method is copied to the MCU 200.
  • the MCU 200 cooperates with the intelligent power control module to provide the required power for the air conditioner.
  • a seventh embodiment of the present invention further provides an air conditioner, comprising a smart power module, a micro control unit MCU and a storage module for performing the control method provided by the embodiment of the present invention.
  • the MCU is connected to the smart power module for acquiring a real-time voltage value from the smart power module; the voltage value is converted by the real-time current value of the smart power module;
  • the MCU is connected to the storage module, and is configured to obtain an actual working condition of the air conditioner and a corresponding preset current value and a preset voltage value;
  • the MCU is further configured to output a control signal to the plurality of control signal inputs according to the relationship between the preset voltage value and the real-time voltage value.
  • the intelligent power module, the control method thereof and the air conditioner provided by the embodiments of the present invention increase the adjustment circuit and the current sampling circuit in the intelligent power module, and connect the current sampling circuit to the power driving circuit, and the adjusting circuit is respectively connected.
  • the current sampling circuit and the power driving circuit On the basis of the above circuit, the current sampling circuit can collect the real-time current value of the power driving circuit and convert it into a real-time voltage value; the adjusting circuit generates a preset voltage value according to the received control signal combination, and compares the preset voltage value. And The real-time voltage value generates a first switch control signal that is sent to the power drive circuit.
  • the smart power module can dynamically adjust the current protection point according to the control signal, that is, set the preset current value according to the environment of the smart power module or the circuit in which the subsequent circuit is driven, for example, the smart power module works in a larger state.
  • the intelligent power module can increase the preset current value according to the control signal, otherwise it is turned down. That is to say, the present invention can adjust the effective working range of the intelligent power module, thereby avoiding the problem of low user experience due to stopping work and increasing cost caused by increasing current margin.
  • FIG. 2 and FIG. 6 are circuit diagrams showing an intelligent power module according to an eighth embodiment of the present invention.
  • the smart power module in the embodiment of the present invention includes a power driving circuit, an adjusting circuit, and a current sampling circuit. among them,
  • the current sampling circuit is connected to the power driving circuit for collecting a real-time current value of the power driving circuit and converting the value into a real-time voltage value;
  • the adjusting circuit is respectively connected to the current sampling circuit and the power driving circuit, configured to generate a preset voltage value according to the control signal, and compare the preset voltage value and the real-time voltage value to generate a switch control signal and send the signal to the power driving circuit.
  • the power driving circuit also includes a transistor IGBT (shown by reference numerals 4121 to 4126 in FIG. 6), an FRD tube (reference numeral 4111 to 4116 in FIG. 6), and a UVW three-phase driving circuit (the standard in FIG. 6).
  • Nos. 4101 to 4106) and capacitors (indicated by reference numerals 4131 to 4133 in Fig. 6), the connection relationship of the above respective devices is the same as that of the power driving circuit of Fig. 1. That is, the part of the content is in the prior art, and those skilled in the art can refer to the description of FIG. 1(A) or FIG. 1(B) in the embodiment of the present invention, and details are not described herein again.
  • the current sampling circuit and the adjusting circuit in the embodiment of the present invention are mainly described below.
  • the current sampling circuit includes a first resistor 4301.
  • the first end of the first resistor 4301 is connected to the U-phase low voltage reference terminal UN of the power driving circuit, the V-phase low voltage reference terminal VN, the W-phase low voltage reference terminal VN, and the input terminal ITRIP of the adjusting circuit, and the first resistor 4301
  • the second end is connected to the common voltage terminal COM.
  • the common voltage terminal is connected to the ground GND.
  • an adjustment circuit has a first power terminal, a second power terminal, a control terminal, an input terminal, and an output terminal;
  • the input end of the adjusting circuit is connected to the first end of the current sampling circuit, the first power end of the adjusting circuit is connected to the power supply VDD, and the second power end of the adjusting circuit is connected to the common voltage terminal COM, and the control end of the adjusting circuit is connected
  • a control signal input terminal USO set on the MCU for receiving the control signal, and an output terminal of the adjustment circuit is connected to the power drive circuit.
  • the adjustment circuit includes an adjustment unit 4302 and a comparison unit. among them,
  • the above comparison unit includes an operational amplifier 4107.
  • the inverting input terminal of the operational amplifier 4107 is connected to the first end of the current sampling circuit (ie, the first end of the first resistor 4301), and the non-inverting input terminal of the operational amplifier 4107 is connected to the first end of the third resistor 4304 in the adjusting unit 4302. That is, the first node A, the output of the operational amplifier 4107 is connected to the output of the adjustment circuit.
  • the output ends of the adjustment circuit are respectively connected to the UH driver circuit, the VH driver circuit, the WH driver circuit, the UL driver circuit, the VL driver circuit, and the control terminal (or enable terminal) of the WL driver circuit.
  • the adjusting unit 4302 includes a second resistor 4303, a third resistor 4304, a Zener diode 4305, a fourth resistor 4306, and a digital potentiometer 4307.
  • the first end of the second resistor 4303 is connected to the first power terminal of the adjusting circuit, that is, the power supply VDD is connected, and the second end of the second resistor 4303 is connected to the first end of the third resistor 4304.
  • the first end of the Zener diode 4306 is connected to the second end of the third resistor 4304 at the first node A, and the second end of the Zener diode 4306 is connected to the second power terminal of the adjustment circuit to be connected to the common voltage terminal COM.
  • the first end of the fourth resistor 4306 is connected to the first node A, and the second end of the fourth resistor 4306 is connected to the first end of the digital potentiometer 4307 and the output end of the adjusting unit to the second node (the positive input terminal of the operational amplifier 4107) Connected to the second node via the VTRIP end).
  • the second end of the digital potentiometer 4307 is connected to the second power terminal of the adjustment circuit, that is, connected to the common voltage terminal COM (ie, the first voltage regulator diode 4305)
  • the diode is connected to the second end of the digital potentiometer.
  • the control terminal of the digital potentiometer 4307 is connected to the control terminal of the adjustment circuit.
  • the adjustment circuit works as follows:
  • the second resistor 4303, the third resistor 4304 and the Zener diode 4305 are connected in series. Due to the voltage stabilization of the Zener diode 4305, the voltage at the first node A is stabilized at a certain value Va. .
  • the fourth resistor 4306 and the digital potentiometer 4307 are connected in series, and the series branch is connected in parallel with the Zener diode 4305, that is, the fourth resistor 4306 and the digital potentiometer 4307 divide the Va, and the voltage at the second node is a preset voltage value. It is then input through the VTRIP terminal to the non-inverting input of operational amplifier 4107.
  • the preset voltage value at the second node also changes, that is, the preset voltage value is adjusted by the control signal (in the first
  • the purpose of the resistance value of the resistor 4301 is based on the preset current value and the preset voltage value.
  • the environment in which the intelligent power module and the subsequent circuits it drives are changed, the most relevant is the ambient temperature.
  • the resistance values of the second resistor 4303 and the third resistor 4304 change, causing the voltage value Va at the first node A to be no longer fixed, thereby causing the preset voltage value at the second node to change. , reduce control accuracy.
  • the third resistor 4304 is a negative temperature coefficient thermistor and the second resistor 4303 is a positive temperature coefficient thermistor.
  • thermoelectric thermistor means that the resistance linearly decreases or a predictable decrease occurs as the temperature changes.
  • positive temperature coefficient thermistor means that the resistance linearly increases or a predictable increase occurs as the temperature changes.
  • the amount of change in the resistance value of the third resistor 4304 and the resistance value of the second resistor 4303 are equal (or similar, due to the manufacturing process, a certain error is allowed, but the difference in the amount of change is The influence of the voltage value at the first node A is not Big).
  • the resistance values of the second resistor 4303 and the third resistor 4304 change correspondingly.
  • the resistance value of the second resistor 4303 increases, the resistance value of the third resistor 4304 decreases, and the amount of increase cancels out the amount of decrease, that is, the resistance values of the second resistor 4303 and the second resistor 4304.
  • the voltage value Va at the first node A continues to be stable, so that the preset voltage value outputted by the output of the adjustment unit does not change. That is to say, by adjusting the second resistor 4303 and the third resistor 4304, the sensitivity of the preset voltage value to the ambient temperature can be lowered.
  • the digital potentiometer 4307 is adjusted by inputting the corresponding control signal through the USO terminal, thereby achieving the purpose of accurately adjusting the preset voltage value. For example, when the temperature of the environment is high, the resistance value of the digital potentiometer 4307 is lowered by the control signal, so that the preset voltage value is lowered, that is, the overcurrent protection point is lowered; or, when the temperature of the environment is low, the preset is preset. When the voltage value becomes larger, the overcurrent protection point becomes higher.
  • the resistance value of the digital potentiometer 4307 is in one-to-one correspondence with the control signal received by the control terminal (in practice, the control signal may be a set of logical numbers).
  • the above correspondence may be stored in advance in the memory.
  • the operational amplifier 4107 compares the real-time voltage value collected by the first resistor 4301 with the predetermined voltage value.
  • V ITRIP ⁇ V VTRIP (including equal)
  • the output terminal of the operational amplifier 4107 outputs a high level.
  • the UH driving circuit, the VH driving circuit, the WH driving circuit, the UL driving circuit, the VL driving circuit, and the WL driving circuit output a pulse signal normally.
  • the driving transistors IGBTs 4121 to 4126 are normally turned on and off.
  • the intelligent power module outputs voltage and power according to the actual demand of the subsequent circuit.
  • V ITRIP >V VTRIP
  • the output of the operational amplifier 4107 outputs a low level.
  • the UH driver circuit, the VH driver circuit, the WH driver circuit, the UL driver circuit, the VL driver circuit, and the control terminal (or enable terminal) of the WL driver circuit is valid and cannot output the switch control signal.
  • the UHIN terminal, the VHIN terminal, the WHIN terminal, the ULIN terminal, the VLIN terminal, and the WLIN terminal simultaneously input the signal 0.
  • an intelligent power module capable of providing 15A current capability will be described as an example.
  • the second resistor 4303 is set to be a PTC (positive temperature coefficient), that is, a positive temperature coefficient resistor, and the resistance at 25 ° C is 10 k ⁇ .
  • the third resistor 4304 is set to be an NTC resistor (Negative Temperature Coefficient), and the NTC resistor has a resistance value of 10 k ⁇ at 25 °C.
  • the current flowing through the Zener diode 4305 is:
  • the Zener diode 4305 when the operating current is 0.5 mA to 0.8 mA, the Zener diode 4305 has a voltage regulation value of 6.4V. That is to say, at an ambient temperature of 25 ° C, the voltage at the first node A is 6.4V. Since the second resistor 4303 is a PCT resistor and the third resistor 4304 is an NTC resistor, when the ambient temperature of the third resistor changes, the current flowing through the Zener diode 4305 is maintained at about 0.75 mA, so that the first node A The voltage value is basically stable.
  • the resistance value of the fourth resistor 4306 is set to be 11.8 k ⁇ .
  • the digital potentiometer 4307 employs the following logical truth table, as shown in FIG.
  • the micro control unit MCU outputs different control signals to the adjustment circuit through the USO end through the control signal input terminal, thereby controlling different resistance values between the first end and the second end of the digital potentiometer 4307.
  • the preset voltage value of the adjustment unit is:
  • the preset voltage value of the adjustment unit is:
  • the first resistor 4301 is set to 33 m ⁇ , then:
  • the real-time voltage value voltage at the ITRIP terminal is 0.57V.
  • the ninth embodiment of the present invention further provides an intelligent power module, including a power driving circuit, further comprising an adjustment circuit;
  • the power driving circuit connects the current sampling circuit disposed outside the intelligent power module through the low voltage reference port of the power driving circuit;
  • the adjusting circuit is respectively connected with a current sampling circuit and a power driving circuit, and the current sampling circuit is configured to collect the real-time current value of the power driving circuit and convert it into a real-time voltage value and output it to the adjusting circuit, and the adjusting circuit generates a preset voltage value according to the control signal, and compares The preset voltage value and the real-time voltage value are sent to the power drive circuit to generate a switch control signal.
  • the current sampling circuit is disposed outside the smart power module, wherein the power driving circuit is sampled by UN, VN and WN currents through its low voltage reference port as shown in FIG. 1(B).
  • the circuit is connected, and the current sampling circuit collects the real-time current value of the power driving circuit and converts it into a real-time voltage value, and then passes through a port input expiration adjusting circuit of the intelligent power module, which is not shown in FIG. 1(B).
  • the adjustment circuit and the power drive circuit and functions inside the smart power module are the same as those in the first embodiment, and will not be described again.
  • the tenth embodiment of the present invention further provides a control method. Referring to FIG. 7, the method includes:
  • S1 acquiring a real-time current value from a power driving circuit collected by the current sampling circuit and converting the value into a real-time voltage value;
  • the actual working condition refers to a preset current value required by the subsequent circuit under different working conditions of the subsequent circuit.
  • the above control method may be implemented in hardware or in software.
  • the above control method is copied into the micro control unit MCU.
  • the MCU 200 cooperates with the above intelligent power control module to provide the required power for the operation of the subsequent circuit.
  • the eleventh embodiment of the present invention further provides an air conditioner, comprising the intelligent power module provided by the eighth or ninth embodiment of the present invention, the micro control unit MCU and the storage module for performing the control method provided by the embodiment of the present invention ( Not shown in the figure).
  • the MCU is connected to the intelligent power module for acquiring the real-time voltage value from the intelligent power module; the voltage value is converted by the real-time current value of the intelligent power module;
  • the above MCU is connected to the storage module for obtaining the actual working condition of the air conditioner and the corresponding Preset current value and preset voltage value;
  • the MCU is further configured to output a control signal to the control signal input according to a preset voltage value and a real-time voltage value.
  • the storage module can be implemented by using a prior art hard disk, a USB disk, an SD card, or the like.
  • the storage module setting position may be set in the above-mentioned MCU, the controller of the air conditioner or a separate storage device, which is not limited by the present invention.
  • the foregoing control method is copied into the MCU.
  • the MCU is connected to the storage module, and can be directly read from the corresponding controller of the air conditioner according to the actual working condition of the air conditioner, or calculated according to the temperature interval of the temperature, in this case, the direct reading is taken as an example)
  • the corresponding preset current value and the preset voltage value are read in the storage module.
  • the current sampling circuit in the intelligent power module collects the real-time current value in the current situation in real time, and then converts it into a real-time voltage value through the first resistor 4301, and transmits it to the MCU through the ISO end, that is, the MCU acquires the real-time voltage value from the intelligent power module.
  • the MCU outputs a corresponding control signal according to the relationship between the real-time voltage value and the preset voltage value, that is, directly reading the preset current value or the preset voltage value from the storage module.
  • the intelligent power module, the control method thereof and the air conditioner provided by the embodiments of the present invention increase the adjustment circuit and the current sampling circuit in the intelligent power module, and connect the current sampling circuit to the power driving circuit, and the adjusting circuit is respectively connected.
  • Current sampling circuit and power drive circuit On the basis of the above circuit, the current sampling circuit can acquire the real-time current value of the power driving circuit and convert it into a real-time voltage value; the adjusting circuit generates a preset voltage value according to the control signal, and compares the preset voltage value with the The real-time voltage value generates a high level or low level signal and sends it to the power drive circuit.
  • the smart power module can dynamically adjust its current protection point, that is, set the preset current value according to the environment of the smart power module or the circuit in which the subsequent circuit is driven, for example, when the smart power module operates at a large current.
  • the intelligent power module can increase the preset current value according to the control signal, otherwise it will be turned down. It can be seen that, by adjusting the preset current value, the effective working range of the intelligent power module can be adjusted, thereby avoiding the work caused by stopping the work. The problem of low user experience and increased cost of increasing current margin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种智能功率模块(4100)、空调器,该智能功率模块包括功率驱动电路、调整电路和电流采样电路。电流采样电路连接功率驱动电路,用于采集功率驱动电路的实时电流值并转换成实时电压值;调整电路分别连接电流采样电路和功率驱动电路,用于生成预设电压值,并比较预设电压值和实时电压值以生成开关控制信号发送给功率驱动电路。该空调器基于上述智能功率模块实现。可以根据智能功率模块或其驱动后续电路所处环境的情况设置预设电流值的大小,从而避免过早停止工作所带来的用户体验低以及增大电流余量所带来成本增加的问题。

Description

智能功率模块、空调器 技术领域
本发明涉及电源技术领域,具体涉及一种智能功率模块、空调器。
背景技术
智能功率模块(Intelligent Power Module,IPM)是一种利用电力电子器件和集成电路输出预设电压和预设功率的功率驱动产品。实际应用中,智能功率模块与微控制单元(Microcontroller Unit,MCU)配合使用,即该智能功率模块一方面接收MCU的控制信号驱动后续电路工作,另一方面将后续电路的检测信号反馈给MCU,以方便MCU调整控制信号。上述智能功率模块由于集成度高、可靠性高等优势在适合于驱动电机的变频器及各种逆变电源(例如变频调速、冶金机械、电力牵引、伺服驱动、变频家电等)等领域得到广泛应用。
为保证其正常工作,智能功率模块中通常设置有过电压、过电流和过热等故障检测电路。该故障检测电路的工作性能将影响到智能功率模块以及后续电路的工作可靠性。下面以上述智能功率模块应用于变频空调为例进行说明。
如图1(A)和图1(B)所示,电阻138作为过电流故障检测电路的一部分,MCU检测电阻138的电压变化并控制该智能功率模块100的工作状态:
当电阻138的电压值小于某一电压预设值即流过智能功率模块100的电流小于某一预设电流值时,说明该智能功率模块100处于安全工作状态,MCU200的PIN1~PIN6管脚输出正常控制信号,控制智能功率模块100正常工作。
当所述电阻138的电压值大于某一电压预设值即流过智能功率模块100的电流大于某一预设电流值时,说明该智能功率模块100存 在过负荷工作异常发热的风险,此时,MCU200的PIN1~PIN6管脚同时输出低电平,控制所述智能功率模块100停止动作。
发明内容
针对现有技术中的缺陷,本发明实施例提供一种智能功率模块、空调器,以解决现有技术中智能功率模块预设电压值或者预设电流值设置过低,导致该智能功率模块所驱动后续电路过早停止工作的技术问题。
第一方面,本发明提供了一种智能功率模块,包括功率驱动电路,还包括调整电路和电流采样电路;其中,
所述电流采样电路连接所述功率驱动电路,用于采集所述功率驱动电路的实时电流值并转换成实时电压值;
所述调整电路分别连接所述电流采样电路和所述功率驱动电路,用于生成预设电压值,并比较所述预设电压值和所述实时电压值以生成开关控制信号发送给所述功率驱动电路。
可选地,所述电流采样电路包括第一电阻;所述第一电阻的第一端通过所述电流采样电路的第一端连接所述功率驱动电路的U相低电压参考端、V相低电压参考端、W相低电压参考端和所述调整电路的输入端,所述第一电阻的第二端通过所述电流采样电路的第二端连接公共电压端。
可选地,所述调整电路具有第一电源端、第二电源端、输入端和输出端;其中,
所述电流采样电路的第一端连接所述调整电路的输入端,所述电流采样电路的第二端连接公共电压端;
所述调整电路的第一电源端连接供电电源,所述调整电路的第二电源端连接所述公共电压端,所述调整电路的输出端连接所述功率驱动电路。
可选地,所述调整电路包括调整单元和比较单元;
所述调整单元连接所述调整电路的第一电源端和第二电源端,用于根据所处温度变化输出不同幅值的预设电压值至所述比较单元;
所述比较单元连接所述调整电路的输入端和输出端,用于比较该调整电路的输入端接收的实时电压值和所述预设电压值以生成开关控制信号。
可选地,所述调整单元包括第二电阻、第三电阻和第四电阻;
所述第二电阻的第一端连接所述调整电路的第一电源端,所述第二电阻的第二端连接所述第三电阻的第一端;
所述第四电阻的第一端连接所述第三电阻的第二端,所述第四电阻的第二端连接所述调整电路的第二电源端。
可选地,所述第三电阻为负温度系数热敏电阻;或者,所述第二电阻为正温度系数热敏电阻;或者,所述第三电阻为负温度系数热敏电阻并且所述第二电阻为正温度系数热敏电阻。
可选地,所述比较单元包括运算放大器;所述运算放大器的反相输入端连接所述电流采样电路的第一端,所述运算放大器的正相输入端连接所述调整单元中第三电阻的第一端,所述运算放大器的输出端连接所述调整电路的输出端。
第二方面,本发明提供了一种智能功率模块,包括功率驱动电路,
还包括调整电路;其中,
所述功率驱动电路通过所述功率驱动电路的低压参考端口连接设置在所述智能功率模块之外的电流采样电路;
所述调整电路分别连接所述电流采样电路和所述功率驱动电路,所述电流采样电路用于采集所述功率驱动电路的实时电流值并转换成实时电压值并输出至所述调整电路,所述调整电路生成预设电压值,并比较所述预设电压值和所述实时电压值以生成开关控制信号发送给所述功率驱动电路。
可选的,所述调整电路具有第一电源端、第二电源端、输入端和输出端;其中,
所述电流采样电路的第一端连接所述调整电路的输入端,所述电流采样电路的第二端连接公共电压端;
所述调整电路的第一电源端连接供电电源,所述调整电路的第二电源端连接所述公共电压端,所述调整电路的输出端连接所述功率驱动电路。
可选的,所述调整电路包括调整单元和比较单元;
所述调整单元连接所述调整电路的第一电源端和第二电源端,用于根据所处温度变化输出不同幅值的预设电压值至所述比较单元;
所述比较单元连接所述调整电路的输入端和输出端,用于比较该调整电路的输入端接收的实时电压值和所述预设电压值以生成开关控制信号。
第三方面,本发明实施例还提供了一种空调器,包括第一或第二方面所述的智能功率模块。
第四方面,本发明提供了一种智能功率模块,包括功率驱动电路、调整电路和电流采样电路;其中,
所述电流采样电路连接所述功率驱动电路,用于采集所述功率驱动电路的实时电流值并转换成实时电压值;
所述调整电路分别连接所述电流采样电路和所述功率驱动电路,用于根据接收的控制信号组合生成预设电压值,并比较所述预设电压值和所述实时电压值以生成第一开关控制信号发送给所述功率驱动电路。
可选地,所述电流采样电路包括第一电阻;所述第一电阻的第一端通过所述电流采样电路的第一端连接所述功率驱动电路的U相低 电压参考端、V相低电压参考端、W相低电压参考端和所述调整电路的输入端,所述第一电阻的第二端通过所述电流采样电路的第二端连接公共电压端。
可选地,所述调整电路具有第一电源端、第二电源端、多个控制端、输入端和输出端;
所述电流采样电路的第一端连接所述调整电路的输入端,所述电流采样电路的第二端连接公共电压端;
所述调整电路的每个所述控制端连接用于接收控制信号的控制信号输入端;所述调整电路的第一电源端连接供电电源,所述调整电路的第二电源端连接所述公共电压端,所述调整电路的输出端连接所述功率驱动电路;多个所述控制端分别接收的控制信号形成控制信号组合。
可选地,所述调整电路包括调整单元和比较单元;
所述调整单元连接所述调整电路的多个所述控制端、第一电源端和第二电源端,用于根据多个所述控制端得到的控制信号组合输出不同幅值的预设电压值至所述比较单元;
所述比较单元连接所述调整电路的输入端和输出端,用于比较该调整电路的输入端接收的实时电压值和所述调整单元输出的预设电压值以生成第一开关控制信号。
可选地,所述比较单元包括第一运算放大器;所述第一运算放大器的反相输入端连接所述电流采样电路的第一端,所述第一运算放大器的正相输入端连接所述调整单元的输出端;所述第一运算放大器的输出端连接所述调整电路的输出端。
可选地,所述调整单元包括多个变阻子模块和比例子模块;
每个变阻子模块的控制端连接所述调整电路的一个控制端,其输入端连接所述调整电路的第一电源端,其第一输出端连接所述比例子模块的第一输入端,其第二输出端连接所述比例子模块的第二输入 端;
所述比例子模块的输出端连接所述调整单元的输出端和比较单元中第一运算放大器的正相输入端;所述比例子模块的第二输入端还连接所述公共电压端。
可选地,每个变阻子模块包括一个转换开关和一个第二电阻;所述转换开关的控制极连接所述变阻子模块的输入端,其第一输入端连接所述变阻子模块的输入端,其第二输入端连接所述变阻子模块的第二输出端,其输出端连接所述第二电阻的第一端;所述第二电阻的第二端连接所述变阻子模块的第一输出端;
和/或,
所述比例子模块包括第二运算放大器、第三电阻和电压反相器;所述第二运算放大器的反相输入端连接所述变阻子模块的第一输出端,所述第二运算放大器的正相输入端连接所述公共电压端,所述第二运算放大器的输出端连接所述电压反相器的输入端;所述第三电阻的第一端连接所述第二运算放大器的反相输入端,所述第三电阻的第二端连接所述第二运算放大器的输出端;所述电压反相器的输出端连接所述调整单元的输出端。
第五方面,本发明实施例还提供了一种用于第一方面所述的智能功率模块的控制方法,所述控制方法包括:
获取来自电流采样电路所采集功率驱动电路的实时电流值并转换成实时电压值;
获取所述智能功率电路以及所驱动后续电路的实际工况得到所需要的预设电流值以及预设电压值;
根据所述预设电压值以及所述实时电压值的关系输出控制信号组合到多个控制信号输入端;
所述实际工况是指所述智能功率模块及其后续电路在不同工作 情况下所需要的预设电流值。
第六方面,发明提供了一种智能功率模块,包括功率驱动电路,还包括调整电路;其中,
所述功率驱动电路通过所述功率驱动电路的低压参考端口连接设置在所述智能功率模块之外的电流采样电路;
所述调整电路分别连接所述电流采样电路和所述功率驱动电路,所述电流采样电路用于采集所述功率驱动电路的实时电流值并转换成实时电压值并输出至所述调整电路,所述调整电路根据接收的控制信号组合生成预设电压值,并比较所述预设电压值和所述实时电压值以生成第一开关控制信号发送给所述功率驱动电路。
可选的,所述调整电路具有第一电源端、第二电源端、多个控制端、输入端和输出端;
所述电流采样电路的第一端连接所述调整电路的输入端,所述电流采样电路的第二端连接公共电压端;
所述调整电路的每个所述控制端连接用于接收控制信号的控制信号输入端;所述调整电路的第一电源端连接供电电源,所述调整电路的第二电源端连接所述公共电压端,所述调整电路的输出端连接所述功率驱动电路;多个所述控制端分别接收的控制信号形成控制信号组合。
可选的,所述调整电路包括调整单元和比较单元;
所述调整单元连接所述调整电路的多个所述控制端、第一电源端和第二电源端,用于根据多个所述控制端得到的控制信号组合输出不同幅值的预设电压值至所述比较单元;
所述比较单元连接所述调整电路的输入端和输出端,用于比较该调整电路的输入端接收的实时电压值和所述调整单元输出的预设电压值以生成第一开关控制信号。
第七方面,本发明实施例还提供了一种用于第一方面所述的智能功率模块的控制方法,所述控制方法包括:
获取来自电流采样电路所采集功率驱动电路的实时电流值并转换成实时电压值;
获取所述智能功率电路以及所驱动后续电路的实际工况得到所需要的预设电流值以及预设电压值;
根据所述预设电压值以及所述实时电压值的关系输出控制信号组合到多个控制信号输入端;
所述实际工况是指所述智能功率模块及其后续电路在不同工作情况下所需要的预设电流值。
第八方面,本发明实施例又提供了一种空调器,包括第四或第六方面所述的智能功率模块、用于执行第五或第七方面所述的控制方法的微控制单元MCU和存储模块;
所述MCU连接所述智能功率模块,用于获取来自所述智能功率模块的实时电压值;所述电压值由所述智能功率模块的实时电流值转换而成;
所述MCU连接所述存储模块,用于获取空调器的实际工况及其对应的预设电流值和预设电压值;
所述MCU还用于根据所述预设电压值以及所述实时电压值的关系输出控制信号组合到多个控制信号输入端。
第九方面,本发明提供了一种智能功率模块,包括功率驱动电路、调整电路和电流采样电路;其中,
所述电流采样电路连接所述功率驱动电路,用于采集所述功率驱动电路的实时电流值并转换成实时电压值;
所述调整电路分别连接所述电流采样电路和所述功率驱动电路,用于根据控制信号生成预设电压值,并比较所述预设电压值和所述实时电压值以生成开关控制信号发送给所述功率驱动电路。
可选地,所述电流采样电路包括第一电阻;所述第一电阻的第一端通过所述电流采样电路的第一端连接所述功率驱动电路的U相低电压参考端、V相低电压参考端、W相低电压参考端和所述调整电路的输入端,所述第一电阻的第二端通过所述电流采样电路的第二端连接公共电压端。
可选地,所述调整电路具有第一电源端、第二电源端、控制端、输入端和输出端;其中,
所述电流采样电路的第一端连接所述调整电路的输入端,所述电流采样电路的第二端连接公共电压端;
所述调整电路的第一电源端连接供电电源,所述调整电路的第二电源端连接所述公共电压端,所述调整电路的控制端用于接收控制信号,所述调整电路的输出端连接所述功率驱动电路。
可选地,所述调整电路包括调整单元和比较单元;
所述调整单元连接所述调整电路的第一电源端、第二电源端和控制端,用于根据输入的控制信号输出不同幅值的预设电压值至所述比较单元;
所述比较单元连接所述调整电路的输入端和输出端,用于比较该调整电路的输入端接收的实时电压值和所述预设电压值以生成开关控制信号。
可选地,所述调整单元包括第二电阻、第三电阻、稳压二极管、第四电阻和数字电位器;
所述第二电阻的第一端连接所述调整电路的第一电源端,所述第二电阻的第二端连接所述第三电阻的第一端;
所述稳压二极管的第一极连接所述第三电阻的第二端于第一节 点,所述稳压二极管的第二极连接所述调整电路的第二电源端;
所述第四电阻的第一端连接所述第一节点,所述第四电阻的第二端连接所述数字电位器的第一端和所述调整单元的输出端于第二节点;
所述数字电位器的第二端连接所述调整电路的第二电源端,所述数字电位器的控制端连接所述调整电路的控制端。
可选地,所述第三电阻为负温度系数热敏电阻并且所述第二电阻为正温度系数热敏电阻。
可选地,在第三电阻所处环境温度发生变化时,所述第三电阻的电阻值变化量与所述第二电阻的电阻值变化量相同。
可选地,所述比较单元包括运算放大器;所述运算放大器的反相输入端连接所述电流采样电路的第一端,所述运算放大器的正相输入端连接所述调整单元中数字电位器的第一端,所述运算放大器的输出端连接所述调整电路的输出端。
第十方面,本发明实施例还提供了一种用于第九方面所述的智能功率模块的控制方法,所述控制方法包括:
获取来自电流采样电路所采集功率驱动电路的实时电流值并转换成实时电压值;
获取所述功率驱动电路以及所驱动后续电路的实际工况得到所需要的预设电流值以及预设电压值;
根据所述预设电压值以及所述实时电压值的关系输出控制信号到控制信号输入端;
所述实际工况是指所述后续电路在不同工作情况下,该后续电路所需要的预设电流值。
第十一方面,本发明提供了一种智能功率模块,功率驱动电路, 还包括调整电路;其中,
所述功率驱动电路通过所述功率驱动电路的低压参考端口连接设置在所述智能功率模块之外的电流采样电路;
所述调整电路分别连接所述电流采样电路和所述功率驱动电路,所述电流采样电路用于采集所述功率驱动电路的实时电流值并转换成实时电压值并输出至所述调整电路,所述调整电路根据控制信号生成预设电压值,并比较所述预设电压值和所述实时电压值以生成开关控制信号发送给所述功率驱动电路。
可选的,所述调整电路具有第一电源端、第二电源端、控制端、输入端和输出端;其中,
所述电流采样电路的第一端连接所述调整电路的输入端,所述电流采样电路的第二端连接公共电压端;
所述调整电路的第一电源端连接供电电源,所述调整电路的第二电源端连接所述公共电压端,所述调整电路的控制端用于接收控制信号,所述调整电路的输出端连接所述功率驱动电路。
可选的,所述调整电路包括调整单元和比较单元;
所述调整单元连接所述调整电路的第一电源端、第二电源端和控制端,用于根据输入的控制信号输出不同幅值的预设电压值至所述比较单元;
所述比较单元连接所述调整电路的输入端和输出端,用于比较该调整电路的输入端接收的实时电压值和所述预设电压值以生成开关控制信号。
第十二方面,本发明实施例还提供了一种用于第十一方面所述的智能功率模块的控制方法,所述控制方法包括:
获取来自电流采样电路所采集功率驱动电路的实时电流值并转换成实时电压值;
获取所述功率驱动电路以及所驱动后续电路的实际工况得到所需要的预设电流值以及预设电压值;
根据所述预设电压值以及所述实时电压值的关系输出控制信号到控制信号输入端;
所述实际工况是指所述后续电路在不同工作情况下,该后续电路所需要的预设电流值。
第十三方面,本发明实施例又提供了一种空调器,包括第九或第十一方面所述的智能功率模块、用于执行第十或第十二方面所述的控制方法的微控制单元MCU和存储模块;
所述MCU连接所述智能功率模块,用于获取来自所述智能功率模块的实时电压值;所述电压值由所述智能功率模块的实时电流值转换而成;
所述MCU连接所述存储模块,用于获取空调器的实际工况及其对应的预设电流值和预设电压值;
所述MCU还用于根据所述预设电压值以及所述实时电压值的关系输出控制信号到控制信号输入端。
由上述技术方案可知,本发明实施例通过在智能功率模块中设置调整电路和电流采样电路,利用电流采样电路该功率驱动电路的实时电流值并转换成实时电压值,利用调整电路生成预设电压值,并比较预设电压值和实时电压值以生成开关控制信号发送给所述功率驱动电路,这样功率驱动电路可以输出相应的电流及功率。与现有技术相比较,本发明实施例中智能功率模块可以调整其电流保护点即根据智能功率模块或其驱动后续电路所处环境的情况设置预设电流值的大小。例如智能功率模块工作在较大电流下仍然安全时,智能功率模块可以将预设电压值调高,否则调低,从而可以调整智能功率模块的有效工作范围,从而避免停止工作所带来的用户体验低以及增大电流余 量所带来成本增加的问题。
附图说明
图1(A)~图1(B)是现有技术中智能功率模块的电路结构图;
图2是本发明实施例提供的一种智能功率模块的电路结构图;
图3是图2所示智能功率模块的电路图。
图4(A)~图4(C)是本发明第四实施例提供的一种智能功率模块的电路结构图;
图5是本发明第六实施例提供的一种智能功率模块的控制方法流程图;
图6是本发明第八实施例提供的一种智能功率模块的电路结构图;
图7是本发明第十实施例提供的一种用于图6所示智能功率模块的控制方法流程示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1(A)和图1(B)所示,现有技术中智能功率模块100的电路结构图,包括高压集成电路芯片(High Voltage Integrated Circuit,HVIC管)110、晶体管IGBT(Insulated Gate Bipolar Transistor,IGBT) (图1(A)中标号121~126所示)及其快恢复二极管(Fast Recovery Diode,FRD)(图1(A)中标号111~116所示)。
参见图1(A),HVIC管110的VCC端连接智能功率模块100的供电电源正端VDD(VDD处电压一般为设置15V)。
HVIC管110的HIN1端连接智能功率模块100的U相上桥臂输入端UHIN,在HVIC管110内部连接UH驱动电路101的输入端。
HVIC管110的HIN2端连接智能功率模块100的V相上桥臂输入端VHIN,在HVIC管110内部连接VH驱动电路102的输入端。
HVIC管110的HIN3端连接智能功率模块100的W相上桥臂输入端WHIN,在HVIC管110内部连接WH驱动电路103的输入端。
HVIC管110的LIN1端连接智能功率模块100的U相下桥臂输入端ULIN,在HVIC管110内部连接UL驱动电路104的输入端。
HVIC管110的LIN2端连接智能功率模块100的V相下桥臂输入端VLIN,在HVIC管110内部连接VL驱动电路105的输入端。
HVIC管110的LIN3端连接智能功率模块100的W相下桥臂输入端WLIN,在HVIC管110内部连接WL驱动电路106的输入端。
实际应用中,该智能功率模块100的U、V、W三相的六路输入接收0V或5V的输入信号。当然,根据实际需要还可以接收其他电压幅值的输入信号。可理解的是,上述输入信号的幅值可以根据电路的实际器件进行选择。
HVIC管110的GND端连接智能功率模块100的供电电源负端COM,并分别连接UH驱动电路101、VH驱动电路102、WH驱动电路103、UL驱动电路104、VL驱动电路105、WL驱动电路106的供电电源负端(图中未示出)。
HVIC管110的VB1端连接UH驱动电路101的供电电源正端(输出侧),在HVIC管110外部连接电容131的一端,并连接智能功率模块100的U相供电电源正端UVB(输出侧)。
HVIC管110的HO1端连接UH驱动电路101的输出端,并连接U相上桥臂晶体管IGBT121的栅极。
HVIC管110的VS1端连接UH驱动电路101的供电电源负端(输出侧),并且连接晶体管IGBT121的射极、FRD管111的阳极、U相下桥臂晶体管IGBT124的集电极、FRD管114的阴极和电容131的另一端。此外,该VS1端还连接智能功率模块100的U相供电电源负端UVS(输出侧)。
HVIC管110的VB2端连接VH驱动电路102的供电电源正端(输出侧),以及连接电容132的一端。此外,该VB2端还连接智能功率模块100的U相供电电源正端VVB(输出侧)。
HVIC管110的HO2端连接VH驱动电路102的输出端,以及连接V相上桥臂晶体管IGBT123的栅极。
HVIC管110的VS2端连接VH驱动电路102的供电电源负端,以及连接晶体管IGBT122的射极、FRD管112的阳极、V相下桥臂晶体管IGBT125的集电极、FRD管115的阴极和电容132的另一端。此外,该VS2端还连接智能功率模块100的W相供电电源负端VVS(输出侧)。
HVIC管110的VB3端连接WH驱动电路103的供电电源正端(输出侧),以及连接电容133的一端。此外,该VB3端还连接智能功率模块100的W相供电电源正端WVB。
HVIC管110的HO3端连接WH驱动电路101的输出端,以及连接W相上桥臂晶体管IGBT123的栅极。
HVIC管110的VS3端连接WH驱动电路103的供电电源负端(输出侧),以及连接晶体管IGBT123的射极、FRD管113的阳极、W相下桥臂晶体管IGBT126的集电极、FRD管116的阴极和电容133的另一端。此外该VS3端还连接智能功率模块100的W相供电电源负端WVS(输出侧)。
HVIC管110的LO1端连接晶体管IGBT124的栅极。
HVIC管110的LO2端连接晶体管IGBT125的栅极。
HVIC管110的LO3端连接晶体管IGBT126的栅极。
晶体管IGBT124的射极连接FRD管114的阳极,以及连接智能功率模块100的U相低电压参考端UN。
晶体管IGBT125的射极连接FRD管115的阳极,以及连接智能功率模块100的V相低电压参考端VN。
晶体管IGBT126的射极连接FRD管116的阳极,以及连接智能功率模块100的W相低电压参考端WN。
晶体管IGBT121的集电极分别连接FRD管111的阴极、晶体管IGBT122的集电极、FRD管112的阴极、晶体管IGBT123的集电极和FRD管113的阴极,以及连接智能功率模块100的输入端P。输入端P处电压一般设置为300V。
上述HVIC管110的采用以下连接方式:
VDD端为HVIC管110的供电电源正端,GND端为HVIC管110的供电电源负端;VDD端与GND端之间电压一般设置为15V。
VB1端和VS1端为U相供电电源的正极和负极,HO1为U相电源输出端。VB2端和VS2端为V相供电电源的正极和负极,HO2为V相电源输出端。VB3端和VS3端为U相供电电源的正极和负极,HO3为W相电源输出端。LO1、LO2、LO3分别为U相、V相、W相低压区的输出端。
当HIN1端、HIN2端、HIN3端和LIN1端、LIN2端、LIN3端输入0或5V的输入信号时,然后经过UH驱动电路、VH驱动电路、WH驱动电路、UL驱动电路、VL驱动电路、WL驱动电路输出至HO1端、HO2端、HO3端和LO1端、LO2端、LO3端。其中,HO1端处输出信号等于VS1端处输出信号,或者等于VS1端处输出信号+15V的和。HO2端处输出信号等于VS2端处输出信号,或者等于VS2端处输出信号+15V的和。HO3端处输出信号等于VS3端处输出信号,或者等于VS3端处 输出信号+15V的和。LO1端、LO2端、LO3端处为0或15V的输出信号。
需要说明的是,上述HIN1端处和LIN1端处,HIN2端处和LIN2端处,HIN3端处和LIN3端处不能同时为高电平,即同一相的两个端子处不能同时为高电平。
如图1(B)所示,上述智能功率模块的具体电路结构。其中,UVB端与UVS端之间连接电容135,VVB端与VVS端之间连接电容136,WVB端与WVS端之间连接电容137。上述电容135、136、137用于存储电量。在UVB端与UVS端之间连接电容133,VVB端与VVS端之间连接电容132,WVB端与WVS端之间连接电容131,用于滤波。
UN端、VN端、WN端连接电阻138的一端,然后连接MCU200的管脚Pin7。上述电阻138的另一端接公共电压端COM。
另外,MCU200的管脚Pin1连接智能功率模块100的UHIN端;MCU200的管脚Pin2连接智能功率模块100的VHIN端;MCU200的管脚Pin3连接智能功率模块100的WHIN端;MCU200的管脚Pin4连接智能功率模块100的ULIN端;MCU200的管脚Pin5连接智能功率模块100的VLIN端;MCU200的管脚Pin6连接智能功率模块100的WLIN端。
以U相为例说明智能功率模块100的工作过程:
1、当MCU200的管脚Pin4处为高电平信号时,这时MCU200的管脚Pin1处必须为低电平信号,从而使LIN1端处为高电平、HIN1端处为低电平。这时,LO1端处为高电平而HO1端处为低电平,从而晶体管IGBT124导通而晶体管IGBT121截止,VS1端处电压约为0V。此时,VCC端向电容133及电容135充电,当时间足够长或使电容133及电容135充电前的剩余电量足够多时,VB1端与VS1端之间电压接近15V。
2、当MCU200的管脚Pin1处为高电平信号,这时MCU200的管脚Pin4处必须为低电平信号,从而使LIN1端处为低电平、HIN1端处为高电平。这时,LO1端处为低电平而HO1端处为高电平,从而晶体管IGBT124截止而晶体管IGBT121导通,从而VS1端处电压约为300V, VB1端处电压被抬高到315V左右,通过电容133及电容135的电量,维持U相处于高电压状态。U相处于高电压状态时,若HIN1端处为高电平的持续时间足够短或电容133及电容135存储的电量足够多,VB1端与VS1端之间电压可保持在14V以上。
实际应用中,例如上述智能功率模块应用于变频空调器时,根据空调器所处环境变化,MCU检测电阻138的电压变化调整控制智能功率模块100的工作状态:
当电阻138的电压值小于某一特定值,即流过智能功率模块100的电流小于某一特定值时,证明智能功率模块100处于安全工作状态,MCU200的管脚PIN1~PIN6端输出正常控制信号,控制智能功率模块100正常工作;
当电阻138的电压值大于某一特定值,即流过智能功率模块100的电流大于某一特定值时,证明智能功率模块100存在过负荷工作异常发热的风险,MCU200的PIN1~PIN6端同时输出低电平,控制智能功率模块100停止动作。
可见,为保证上述智能功率模块的正常工作,需要将预设电流值或者预设电压值设置得比较低,由于空调器所处环境经常发生变化,导致功率模块过早停止工作,降低了用户体验。或者,提高上述智能功率模块中的晶体管IGBT的电流能力,这样又会大幅增加智能功率模块的原材料成本,不利于变频家电的普及使用。
图2和图3示出了本发明第一实施例提供的一种智能功率模块的电路图。参见图2和图3,本发明实施例中智能功率模块包括功率驱动电路、调整电路和电流采样电路。其中,
电流采样电路连接功率驱动电路,用于采集功率驱动电路的实时电流值并转换成实时电压值;
调整电路分别连接电流采样电路和功率驱动电路,用于生成预设电压值,并比较预设电压值和实时电压值以生成开关控制信号发送给 功率驱动电路
需要说明的是,本发明实施例中功率驱动电路同样包括晶体管IGBT(图3中标号4121~4126所示)、FRD管(图3中标号4111~4116)、UVW三相驱动电路(图3中标号4101~4106所示)以及电容(图3中标号4131~4133所示),上述各器件的连接关系与图1中功率驱动电路的连接关系相同。即该部分内容为现有技术中,本领域技术人员可以参考本发明实施例中对图1(A)或者图1(B)的描述,在此不再赘述。
下面着重介绍本发明实施例中电流采样电路和调整电路。
参见图3,本发明一实施例中,电流采样电路包括第一电阻4301。该第一电阻4301的第一端连接功率驱动电路的U相低电压参考端UN、V相低电压参考端VN、W相低电压参考端VN和调整电路的输入端ITRIP,第一电阻4301的第二端连接公共电压端COM。本发明实施例中上述公共电压端连接地GND。
参见图3,本发明一实施例中,调整电路具有第一电源端、第二电源端、输入端和输出端;其中,
调整电路的输入端连接电流采样电路的第一端,调整电路的第一电源端连接供电电源VDD,调整电路的第二电源端连接公共电压端COM,调整电路的输出端连接功率驱动电路。
更具体地,本发明一实施例中该调整电路包括调整单元4302和比较单元。其中,
上述比较单元包括运算放大器4107。该运算放大器4107的反相输入端连接电流采样电路的第一端(即第一电阻4301的第一端),运算放大器4107的正相输入端连接调整单元4302中第三电阻4306的第一端,运算放大器4107的输出端连接调整电路的输出端。参见图3,该调整电路的输出端分别连接UH驱动电路、VH驱动电路、WH驱动电路、UL驱动电路、VL驱动电路、WL驱动电路的控制端(或者使能端)。
调整单元4302包括第二电阻4303、第三电阻4306和第四电阻4308。第二电阻4303的第一端连接调整电路的第一电源端即连接供电电源VDD,第二电阻4303的第二端连接第三电阻4306的第一端。第四电阻4308的第一端连接第三电阻4306的第二端,第四电阻4308的第二端公共电压端COM。
该调整电路的工作原理为:
当供电电源VDD与公共电压端恒定时,由于第二电阻4303、第三电阻4306和第四电阻4308串联分压,会在第三电阻4306的第一端生成预设电压值作为调整单元的输出电压,通过VTRIP端输入到运算放大器的正相输入端。
实际应用中,由于该智能功率模块及其所驱动的后续电路所处环境会发生变化,与其相关性最大的就是环境温度。为使调整电路输出的预设电压值随之发生相应的变化,本发明实施例中第三电阻为负温度系数热敏电阻;或者,第二电阻为正温度系数热敏电阻;或者,所述第三电阻为负温度系数热敏电阻并且所述第二电阻为正温度系数热敏电阻。
需要说明的是,上述负温度系数热敏电阻是指,随着温度的变化其阻值线性减小或者发生可预知的减小。上述正温度系数热敏电阻是指,随着温度的变化其阻值线性增大或者发生可预知的增大。
此时该调整电路的工作原理为:
当供电电源VDD与公共电压端恒定时,由于第二电阻4303、第三电阻4306和第四电阻4308串联分压,会在第三电阻4306的第一端生成预设电压值作为调整单元的输出电压,通过VTRIP端输入到运算放大器的正相输入端。
当该智能功率模块及其所驱动的后续电路所处环境会发生变化,第二电阻4303和/或第三电阻4306的阻值发生相应的变化,使调整单元的输出端所输出的预设电压值按照预设方向变化。例如当所处环境 的温度变高时,预设电压值越小即过流保护点越低;或者,当所处环境的温度变低时,预设电压值越大即过流保护点越高。
然后运算放大器4107再比较第一电阻4301采集的实时电压值和上述预设电压值。VITRIP<VVTRIP(包含相等)时,运算放大器4107输出端输出高电平,此时UH驱动电路、VH驱动电路、WH驱动电路、UL驱动电路、VL驱动电路、WL驱动电路正常输出脉冲信号驱动晶体管IGBT4121~4126正常导通与关断,此时智能功率模块根据后续电路的实际需求输出电压及功率。VITRIP>VVTRIP时,运算放大器4107输出端输出低电平,此时UH驱动电路、VH驱动电路、WH驱动电路、UL驱动电路、VL驱动电路、WL驱动电路的控制端(或者使能端)有效,无法输出开关控制信号。同时UHIN端、VHIN端、WHIN端、ULIN端、VLIN端、WLIN端同时输入信号0。
为验证本发明提供的智能功率模块的优越性,下面以一款驱动稀土压缩机,能够提供15A电流能力的智能功率模块为例进行说明。
第一电阻4301设置为33mΩ,则当流过第一电阻4301的电流为15A时,ITRIP端处的实时电压值为0.5V;
因为稀土压缩机在温度越高时压缩机的退磁电流越小,所以过流保护点应随着温度的升高而降低,则进行如下设置:
第二电阻4303设置为64kΩ。第二电阻4306设置为NTC电阻(Negative Temperature Coefficient,负温度系数电阻)且该NTC电阻具有随温度上升电阻值呈指数关系减小的特性,该NTC电阻在25℃时电阻值为2kΩ,温度为50℃时阻值为1.75kΩ,温度为75℃时阻值为1.55kΩ。第四电阻4308设置为0.2Kω。
(1)在25℃时,VTRIP端处的预设电压值为:
15×(2+0.2)/(64+2+0.2)=0.5V;
这样可以使智能功率模块4100在温度为25℃的过流保护点为15A。
在50℃时,VTRIP端处的预设电压值为:
15×(1.75+0.2)/(64+1.75+0.2)=0.45V;
该智能功率模块4100在温度为50℃的过流保护点为:
0.45/0.033=13.5A。
在75℃时,VTRIP端处的预设电压值为:
15×(1.55+0.2)/(64+1.55+0.2)=0.40V
该智能功率模块4100在温度为75℃的过流保护点为:
0.40/0.033=12.1A。
可见,本发明实施例中通过设置调整电路,可以使该功率驱动模块随着环境温度越高其过流保护点越低的目的,使压缩机达到退磁电流前智能功率模块提前触发保护,确保正常工作。
第二方面,本发明实施例还提供的一种智能功率模块,包括功率驱动电路,其特征在于,还包括调整电路;其中,
功率驱动电路通过功率驱动电路的低压参考端口连接设置在智能功率模块之外的电流采样电路;
调整电路分别连接电流采样电路和功率驱动电路,电流采样电路用于采集功率驱动电路的实时电流值并转换成实时电压值并输出至调整电路,调整电路生成预设电压值,并比较预设电压值和实时电压值以生成开关控制信号发送给功率驱动电路。
与上述本发明第一实施例不同的是,电流采样电路是设置在智能功率模块之外的,其中功率驱动电路通过其低压参考端口如图1(B)所示的UN、VN和WN电流采样电路连接,电流采样电路采集到功率驱动电路的实时电流值并转换成实时电压值后通过智能功率模块的一端口输入到期调整电路,图1(B)中未示出。智能功率模块内部的调整电路和功率驱动电路和功能与第一实施例中相同,不再赘述。
第三方面,本发明实施例还提供了一种空调器,包括本发明实施例一提供智能功率模块。
综上所述,本发明实施例提供的智能功率模块、空调器,通过在智能功率模块中增加调整电路和电流采样电路,并且使电流采样电路连接功率驱动电路,调整电路分别连接所述电流采样电路和所述功率驱动电路。在上述电路基础之上,电流采样电路可以采集所述功率驱动电路的实时电流值并转换成实时电压值;调整电路生成预设电压值,并比较所述预设电压值和所述实时电压值生成高电平或者低电平信号发送给功率驱动电路。本发明实施例中智能功率模块可以动态调整其电流保护点即根据智能功率模块或其驱动后续电路所处环境的情况设置预设电流值的大小,例如在智能功率模块工作在较大的电流下仍然安全时,智能功率模块可以根据控制信号将预设电流值调高,否则调低。可见,本发明实施例通过调整预设电流值,可以调整智能功率模块的有效工作范围,从而避免停止工作所带来的用户体验低以及增大电流余量所带来成本增加的问题。
参见图2和图4,本发明第四实施例中智能功率模块包括功率驱动电路、调整电路和电流采样电路。其中,
电流采样电路连接功率驱动电路,用于采集功率驱动电路的实时电流值并转换成实时电压值;
调整电路分别连接电流采样电路和功率驱动电路,用于根据接收的控制信号生成预设电压值,并比较预设电压值和实时电压值生成第一开关控制信号发送给所述功率驱动电路。
需要说明的是,本发明实施例中功率驱动电路同样包括晶体管IGBT(图4中标号4121~4126所示)、FRD管(图4中标号4111~4116)、UVW三相驱动电路(图4中标号4101~4106所示)以及电容(图4中标号4131~4133所示),上述各器件的连接关系与图1中功率驱动电路的 连接关系相同。即该部分内容为现有技术中,本领域技术人员可以参考本发明实施例中对图1(A)或者图1(B)的描述,在此不再赘述。
需要说明的是,本发明实施例中图4(A)~(C)三幅图分别表示:
下面着重介绍本发明实施例中电流采样电路和调整电路。
参见图4(A)和图4(B),本发明一实施例中,电流采样电路包括第一电阻4301。该第一电阻4301的第一端连接功率驱动电路的U相低电压参考端UN、V相低电压参考端VN、W相低电压参考端VN和调整电路的输入端ITRIP,第一电阻4301的第二端连接公共电压端COM。本发明实施例中上述公共电压端连接地GND。
本发明一实施例中,调整电路具有多个控制端、输入端和输出端。其中,电流采样电路的第一端连接调整电路的输入端,电流采样电路的第二端连接公共电压端。调整电路的每个控制端连接用于接收控制信号的控制信号输入端(图4(A)中控制信号输入端USO1~USO4,);调整电路的第一电源端连接供电电源,调整电路的第二电源端连接公共电压端,调整电路的输出端连接功率驱动电路;多个控制端分别接收的控制信号形成控制信号组合。
上述调整电路包括调整单元和比较单元。调整单元连接调整电路的多个所述控制端、第一电源端和第二电源端,用于根据多个控制端得到的控制信号组合输出不同幅值的预设电压值至比较单元。比较单元连接调整电路的输入端和输出端,用于比较该调整电路的输入端接收的实时电压值和所述调整单元输出的预设电压值以生成第一开关控制信号。
参见图4,上述比较单元包括第一运算放大器4107。该第一运算放大器4107的反相输入端连接电流采样电路的第一端(即第一电阻4301的上端),第一运算放大器4107的正相输入端连接调整单元的输出端(即调整单元的输出端VTRIP处),第一运算放大器4107的输出 端连接调整电路的输出端(图4(B)中4107输出端依次连接至UH驱动电路、VH驱动电路、WH驱动电路、UL驱动电路、VL驱动电路、WL驱动电路的控制端或使能端)。
本发明实施例中调整单元包括多个变阻子模块和比例子模块。其中,每个变阻子模块的控制端连接所述调整电路的一个控制端,其输入端连接调整电路的第一电源端,其第一输出端连接比例子模块的第一输入端,其第二输出端连接比例子模块的第二输入端。上述比例子模块的输出端连接比较单元中第一运算放大器的正相输入端;比例子模块的第二输入端还连接所述公共电压端。
本发明一实施例中以4个变阻子模块为例,为简化电路,这4个变阻子模块具有相同的电路结构。为方便识别,本发明实施例中每个变阻子模块中转换开关和第二电阻具有不同的标识。参见图1,第一个变阻子模块包括转换开关4313和第二电阻4303。该第一转换开关4313包括控制极、第一输入端、第二输入端和输出端。其中第一转换开关4313的控制极连接第一个变阻子模块的输入端(参见图4(A)与图(C),该控制极最后连接至控制信号输入端USO1。当控制信号输入端USO1输入高电平信号时,该转换开关的左支路导通,连接方式如图4所示。即转换开关的动触头连接至静触头1。当控制信号输入端USO1输入低电平信号时,该转换开关的右支路导通。即转换开关的动触头连接至静触头0。),该第一转换开关4313的第一输入端连接变阻子模块的输入端(参见图4(C),该第一输入端最后连接至供电电源正端VDD);该第一转换开关4313的第二输入端连接变阻子模块的第二输出端;该第一转换开关4313的输出端连接第二电阻4303的第一端。第二电阻4303的第二端连接比例子模块的第一输入端。其余三个变阻子模块与上述第一个变阻子模块具有相同的电路结构,但是电路结构中转换开关和第二电阻的参数可以根据实际需要进行设置,本发明不作限定。
参见图4(A)和图4(C),本发明一实施例中比例子模块包括第二运算放大器4307、第三电阻4308和电压反相器4309。第二运算放大器4307的反相输入端连接变阻子模块的第一输出端(参见图4(A)和图4(C),该反相输入端通过比例子模块的第一输入端最后连接至第二电阻4303的第二端);第二运算放大器4307的正相输入端连接公共电压端COM以及转换开关4313的第二输入端;第二运算放大器4307的输出端连接电压反相器4309的输入端。第三电阻4308的第一端连接第二运算放大器4307的反相输入端,第三电阻4308的第二端连接第二运算放大器4307的输出端。电压反相器4309的输出端连接调整单元的输出端(最后连接至VTRIP端处)。
参见图4(A)~3(C),本发明实施例中调整单元的工作原理为:
当控制信号输入端USO1~USO4输入不同的控制信号组合时,例如USO1~USO4输入控制信号组合1111(1表示高电平,实际中指使转换开关4313的动触头连接到静触头1的阈值电压)时,各变阻子模块的连接方式如图4所示。此时第二电阻4303、4304、4305和4306的第一端都连接至供电电源VDD,第二电阻4303、4304、4305和4306的第二端都连接至第二运算放大器4307的反相输入端。换言之,第二电阻4303、4304、4305和4306相互并联,并联后的等效电阻、第三电阻4308和第二运算放大器4307构成比例放大器,其放大比例系数由等效电阻和第三电阻的比值决定。第三电阻4308的第二端电压(图4中第三电阻4308的右端)再经过电压反相器4309的转换(若4308的第二端处电位为0,则转换为1;若为1,则转换为0。仅以逻辑电平为例进行说明)传输至VTRIP端处。
第一电阻4301采集U相低电压参考端UN、V相低电压参考端VN、W相低电压参考端VN连接处的实时电流值即中性点电流值并转换成实时电压值发送到调整电路的输入端ITRIP端处。此时第一运算放大器4107比较两输入端处的电压,VITRIP<VVTRIP(包含相等)时,运算 放大器4107输出端输出高电平,此时UH驱动电路、VH驱动电路、WH驱动电路、UL驱动电路、VL驱动电路、WL驱动电路正常输出第一开关控制信号,即晶体管IGBT4121~4126正常导通与关断,此时智能功率模块根据后续电路的实际需求输出电压及功率。VITRIP>VVTRIP时,运算放大器4107输出端输出低电平,此时UH驱动电路、VH驱动电路、WH驱动电路、UL驱动电路、VL驱动电路、WL驱动电路的控制端(或者使能端)有效,无法输出第一开关控制信号。同时UHIN端、VHIN端、WHIN端、ULIN端、VLIN端、WLIN端同时输入信号0。
下面以一款15A电流能力的智能功率模块为例,说明本发明实施例的工作原理和参数设置(以当前采样周期内的数据为准):
本实施例中设置第二电阻4303的电阻值为R,第二电阻4304的电阻值为2R,第二电阻4305的电阻值为4R和第二电阻4306的电阻值为4R。第三电阻4308的电阻值为0.019R。则调整单元输出端输出到VTRIP端处的电压为:
上式中,为简便直观,VTRIP是指VTRIP端处的预设电压值与上文中的VVTRIP实质相同,USO1~USO4是指各控制信号输入端处的电压值。
当电阻值R设置为52.6kΩ,则第二电阻4303为52.6kΩ,第二电阻4304为104.2kΩ,第二电阻4305为210.4kΩ,第二电阻4306为210.4kΩ。第三电阻4308设置为1kΩ。
当控制信号输入端USO1为高电平,控制信号输入端USO2为高电平,控制信号输入端USO3为高电平,控制信号输入端USO4为低电平即控制信号组合为1110,此时预设电压值为:
VVTRIP=(1+0.5+0.25)*0.019*1*VDD=0.50V。
当控制信号输入端USO1为高电平,控制信号输入端USO2为高电平,控制信号输入端USO3为高电平,控制信号输入端USO4为高电平即控制信号组合为1111,此时预设电压值为:
VVTRIP=(1+0.5+0.25+0.25)*0.019*1*VDD=0.57V。
当控制信号输入端USO1为高电平,控制信号输入端USO2为高电平,控制信号输入端USO3为低电平,控制信号输入端USO4为低电平即控制信号组合为1100,此时预设电压值为:
VVTRIP=(1+0.5)*0.019*1*VDD=0.57V。
本发明一实施例中,设置第一电阻4301为33mΩ,则实时电压值为:
当U相低电压参考端UN、V相低电压参考端VN、W相低电压参考端VN连接处即中性点流过15.0A的实时电流时,ITRIP端处的实时电压值为0.50V;
当U相低电压参考端UN、V相低电压参考端VN、W相低电压参考端VN连接处即中性点流过12.9A的实时电流时,ITRIP端处的实时电压值为0.43V;
当U相低电压参考端UN、V相低电压参考端VN、W相低电压参考端VN连接处即中性点流过17.1A电流时,ITRIP端处的实时电压值为0.57V。
可见,本发明实施例中通过在控制信号输入端USO1~USO4输入不同的控制信号组合,可以向VTRIP端处输出不同的预设电压值,进而控制智能功率模块具有不同的过流保护电流值。
在正常情况下,当流过晶体管IGBT的当前电流值小于15A时,即VITRIP<VVTRIP,电压比较器4107输出高电平,UH驱动电路4101、VH驱动电路4102、WH驱动电路4103、UL驱动电路4104、VL驱动电路4105、WL驱动电路4106的控制端使能,HIN1端、HIN2端、HIN3端、LIN1端、LIN2端、LIN3端的输入信号分别通过UH驱动电路4101、VH驱动电路4102、WH驱动电路4103、UL驱动电路4104、VL驱动电路4105、WL驱动电路4106,使智能功率模块4100正常工作。
当流过晶体管IGBT的当前电流大于15A时,即VITRIP>VVTRIP,电 压比较器4107输出低电平,UH驱动电路4101、VH驱动电路4102、WH驱动电路4103、UL驱动电路4104、VL驱动电路4105、WL驱动电路4106的控制端无效,HIN1端、HIN2端、HIN3端、LIN1端、LIN2端、LIN3端的输入信号不能通过UH驱动电路4101、VH驱动电路4102、WH驱动电路4103、UL驱动电路4104、VL驱动电路4105、WL驱动电路4106,从而使智能功率模块4100停止工作。
当遇到室外温度极低等特殊情况(空调器所处环境的实时温度值T小于第一预设温度值)时,MCU200分别通过第一、二控制信号输入端向USO1端和USO2端输出低电平,将VTRIP端处电压设置为0.5V,从而使流过晶体管IGBT的电流从15A提升到17.1A。
当流过晶体管IGBT的当前电流小于17.1A时,即VITRIP<VVTRIP,电压比较器4107输出高电平,UH驱动电路4101、VH驱动电路4102、WH驱动电路4103、UL驱动电路4104、VL驱动电路4105、WL驱动电路4106的控制端使能,HIN1端、HIN2端、HIN3端、LIN1端、LIN2端、LIN3端的输入信号可以通过UH驱动电路4101、VH驱动电路4102、WH驱动电路4103、UL驱动电路4104、VL驱动电路4105、WL驱动电路4106,使智能功率模块4100正常工作。
当流过IGBT的当前电流值大于17.1A时,即VITRIP>VVTRIP,电压比较器4107输出低电平,UH驱动电路4101、VH驱动电路4102、WH驱动电路4103、UL驱动电路4104、VL驱动电路4105、WL驱动电路4106的控制端无效,HIN1端、HIN2端、HIN3端、LIN1端、LIN2端、LIN3端的输入信号不能通过UH驱动电路4101、VH驱动电路4102、WH驱动电路4103、UL驱动电路4104、VL驱动电路4105、WL驱动电路4106,智能功率模块4100停止工作。
当遇到室外温度极高等特殊情况(空调器所处环境的实时温度值T大于第二预设温度值)时,MCU200通过第一、二控制信号输入端向USO1端、USO2端输出高电平,将VTRIP端处电压设置为0.4V,从 而使流过晶体管IGBT的电流从15A降低到12.9A,即:
当流过晶体管IGBT的当前电流值小于12.9A时,即VITRIP<VVTRIP,电压比较器4107输出高电平,UH驱动电路4101、VH驱动电路4102、WH驱动电路4103、UL驱动电路4104、VL驱动电路4105、WL驱动电路4106的控制端使能,HIN1端、HIN2端、HIN3端、LIN1端、LIN2端、LIN3端的输入信号可以通过UH驱动电路4101、VH驱动电路4102、WH驱动电路4103、UL驱动电路4104、VL驱动电路4105、WL驱动电路4106,使智能功率模块4100正常工作。
当流过IGBT的当前电流大于12.9A时,即VITRIP>VVTRIP,电压比较器4107输出低电平,UH驱动电路4101、VH驱动电路4102、WH驱动电路4103、UL驱动电路4104、VL驱动电路4105、WL驱动电路4106的控制端无效,HIN1端、HIN2端、HIN3端、LIN1端、LIN2端、LIN3端的输入信号不能通过UH驱动电路4101、VH驱动电路4102、WH驱动电路4103、UL驱动电路4104、VL驱动电路4105、WL驱动电路4106,智能功率模块4100停止工作。
需要说明的是,上述第一预设温度值和第二预设温度值是用于区别空调器所处环境的温度阈值,本领域技术人员可以根据具体使用场景调整第一预设温度值和第二预设温度值的数据值。当然,本领域技术人员还可以根据具体使用场景设置预设温度值的个数,从而划分更多的温度区间,此时调整单元中变阻子模块的个数需要对应调整。例如设置4个变阻子模块时,理论上VTRIP端处对应16个预设电压值;设置5个变阻子模块时,理论上VTRIP端处对应32个预设电压值,在此不再赘述。
本发明第五实施例还提供的一种智能功率模块,包括功率驱动电路,其特征在于,还包括调整电路;其中,
功率驱动电路通过功率驱动电路的低压参考端口连接设置在智 能功率模块之外的电流采样电路;
调整电路分别连接电流采样电路和功率驱动电路,电流采样电路用于采集功率驱动电路的实时电流值并转换成实时电压值并输出至调整电路,调整电路根据接收的控制信号组合生成预设电压值,并比较预设电压值和实时电压值以生成第一开关控制信号发送给功率驱动电路。
与上述本发明第一实施例不同的是,电流采样电路是设置在智能功率模块之外的,其中功率驱动电路通过其低压参考端口如图1(B)所示的UN、VN和WN电流采样电路连接,电流采样电路采集到功率驱动电路的实时电流值并转换成实时电压值后通过智能功率模块的一端口输入到期调整电路,图1(B)中未示出。智能功率模块内部的调整电路和功率驱动电路和功能与第一实施例中相同,不再赘述。
针对上述本发明第四或第五实施例的智能功率模块,本发明第六实施例还提供了一种控制方法,参见图5,包括:
S1、获取来自电流采样电路所采集功率驱动电路的实时电流值并转换成实时电压值;
S2、获取所述智能功率电路以及所驱动后续电路的实际工况得到所需要的预设电流值以及预设电压值;
S3、根据所述预设电压值以及所述实时电压值的关系输出控制信号组合到多个控制信号输入端。
需要说明的是,上述实际工况是指所述后续电路在不同工作情况下,该智能功能模块及其后续电路所需要的预设电流值。例如上文中,智能功率模块及其后续电路所处环境温度较高时此时需要较小的预设电流值,反之需要较大的预设电流值。本领域技术人员可以根据电路的实际运行情况进行选择,本发明不作限定。
实际应用中,上述控制信号可以智能功率模块的应用场合提前实 验得到,然后上述不同工况下的预设电流值及其所对应的控制信号组合保存到相应的存储设备中。例如微控制单元MCU在执行上述控制方法时,根据实际工况直接读取预设电流值,然后再结合实时电流值,从而确定输出相应的控制信号组合。可见,本发明可以动态调整智能功率模块及其后续电路的预设电流值即过流保护电流值,防止智能功率模块过早保护,从而提高智能功率模块工作的工作效率。
本发明实施例中上述控制方法可以采用硬件实现,也可以采用软件实现。本发明一实施例中将上述控制方法拷贝到MCU200中,如图1所示,该MCU200与上述智能功率控制模块相配合,从而为空调器提供所需求的功率。
本发明第七实施例还提供了一种空调器,包括本发明第四或第五实施例提供智能功率模块、用于执行本发明实施例提供的控制方法的微控制单元MCU和存储模块。
上述MCU连接智能功率模块,用于获取来自所述智能功率模块的实时电压值;所述电压值由所述智能功率模块的实时电流值转换而成;
上述MCU连接上述存储模块,用于获取空调器的实际工况及其对应的预设电流值和预设电压值;
上述MCU还用于根据所述预设电压值以及所述实时电压值的关系输出控制信号组合到多个控制信号输入端。
综上所述,本发明实施例提供的智能功率模块及其控制方法、空调器,通过在智能功率模块中增加调整电路和电流采样电路,并且使电流采样电路连接功率驱动电路,调整电路分别连接所述电流采样电路和所述功率驱动电路。在上述电路基础之上,电流采样电路可以采集所述功率驱动电路的实时电流值并转换成实时电压值;调整电路根据接收的控制信号组合生成预设电压值,并比较所述预设电压值和所 述实时电压值生成第一开关控制信号发送给功率驱动电路。本发明实施例中智能功率模块可以根据控制信号动态调整其电流保护点即根据智能功率模块或其驱动后续电路所处环境的情况设置预设电流值的大小,例如在智能功率模块工作在较大的电流下仍然安全时,智能功率模块可以根据控制信号将预设电流值调高,否则调低。也就是说,本发明可以调整智能功率模块的有效工作范围,从而避免停止工作所带来的用户体验低以及增大电流余量所带来成本增加的问题。
图2和图6示出了本发明第八实施例提供的一种智能功率模块的电路图。参见图2和图6,本发明实施例中智能功率模块包括功率驱动电路、调整电路和电流采样电路。其中,
上述电流采样电路连接上述功率驱动电路,用于采集功率驱动电路的实时电流值并转换成实时电压值;
上述调整电路分别连接电流采样电路和功率驱动电路,用于根据控制信号生成预设电压值,并比较上述预设电压值和上述实时电压值以生成开关控制信号发送给功率驱动电路。
需要说明的是,本发明实施例中功率驱动电路同样包括晶体管IGBT(图6中标号4121~4126所示)、FRD管(图6中标号4111~4116)、UVW三相驱动电路(图6中标号4101~4106所示)以及电容(图6中标号4131~4133所示),上述各器件的连接关系与图1中功率驱动电路的连接关系相同。即该部分内容为现有技术中,本领域技术人员可以参考本发明实施例中对图1(A)或者图1(B)的描述,在此不再赘述。
下面着重介绍本发明实施例中电流采样电路和调整电路。
参见图6,本发明一实施例中,电流采样电路包括第一电阻4301。该第一电阻4301的第一端连接功率驱动电路的U相低电压参考端UN、V相低电压参考端VN、W相低电压参考端VN和调整电路的输入端ITRIP,第一电阻4301的第二端连接公共电压端COM。本发明实施 例中上述公共电压端连接地GND。
参见图6,本发明一实施例中,调整电路具有第一电源端、第二电源端、控制端、输入端和输出端;其中,
该调整电路的输入端连接上述电流采样电路的第一端,该调整电路的第一电源端连接供电电源VDD,该调整电路的第二电源端连接公共电压端COM,该调整电路的控制端连接用于接收控制信号的控制信号输入端USO(设置在MCU上),调整电路的输出端连接功率驱动电路。
更具体地,本发明一实施例中该调整电路包括调整单元4302和比较单元。其中,
上述比较单元包括运算放大器4107。该运算放大器4107的反相输入端连接电流采样电路的第一端(即第一电阻4301的第一端),运算放大器4107的正相输入端连接调整单元4302中第三电阻4304的第一端即第一节点A,运算放大器4107的输出端连接调整电路的输出端。参见图6,该调整电路的输出端分别连接UH驱动电路、VH驱动电路、WH驱动电路、UL驱动电路、VL驱动电路、WL驱动电路的控制端(或者使能端)。
调整单元4302包括第二电阻4303、第三电阻4304、稳压二极管4305、第四电阻4306和数字电位器4307。第二电阻4303的第一端连接调整电路的第一电源端即连接供电电源VDD,第二电阻4303的第二端连接第三电阻4304的第一端。稳压二极管4306的第一极连接第三电阻4304的第二端于第一节点A,该稳压二极管4306的第二极连接调整电路的第二电源端即连接公共电压端COM。第四电阻4306的第一端连接第一节点A,第四电阻4306的第二端连接数字电位器4307的第一端和调整单元的输出端于第二节点(运算放大器4107的正相输入端经过VTRIP端连接至第二节点处)。数字电位器4307的第二端连接调整电路的第二电源端即连接公共电压端COM(即稳压二极管4305的第 二极与数字电位器的第二端连接),数字电位器4307的控制端连接调整电路的控制端。
该调整电路的工作原理为:
当供电电源VDD与公共电压端恒定时,第二电阻4303、第三电阻4304和稳压二极管4305串联,由于稳压二极管4305的稳压作用,第一节点A处的电压稳定在某一数值Va。
第四电阻4306和数字电位器4307串联,并且该串联支路与稳压二极管4305并联,即第四电阻4306和数字电位器4307分压上述Va,第二节点处的电压为预设电压值。然后通过VTRIP端输入到运算放大器4107的正相输入端。
由于上述数字电位器4307的电阻值会根据USO处输入的控制信号进行改变,从而导致第二节点处预设电压值也发生变化,即通过控制信号达到了调节预设电压值(在确实第一电阻4301的电阻值的基础上,预设电流值与预设电压值一一对应)的目的。
实际应用中,由于该智能功率模块及其所驱动的后续电路所处环境会发生变化,与其相关性最大的就是环境温度。当环境温度发生变化时,第二电阻4303和第三电阻4304的电阻值会发生变化,导致第一节点A处的电压值Va不再固定,从而引起第二节点处的预设电压值发生变化,降低控制精度。为解决上述问题,本发明实施例中,第三电阻4304为负温度系数热敏电阻并且第二电阻4303为正温度系数热敏电阻。
需要说明的是,上述负温度系数热敏电阻是指,随着温度的变化其阻值线性减小或者发生可预知的减小。上述正温度系数热敏电阻是指,随着温度的变化其阻值线性增大或者发生可预知的增大。
最优地,在温度发生变化时,第三电阻4304的电阻值变化量和第二电阻4303的电阻值变化量相等(或者相近,由于制造工艺,允许存在一定的误差,但是变化量的差异对第一节点A处电压值的影响不 大)。
可见,当该智能功率模块及其所驱动的后续电路所处环境发生变化时,第二电阻4303和第三电阻4304的电阻值发生相应的变化。例如,当温度升高时,第二电阻4303的电阻值增加,第三电阻4304的电阻值减小,并且增加量与减小量相抵消,即第二电阻4303和第二电阻4304的电阻值之和未发生变化(或者变化量在误差范围内),则第一节点A处的电压值Va继续保持稳定,这样调整单元的输出端所输出的预设电压值不变。也就是说,通过对第二电阻4303和第三电阻4304的调整,可以使预设电压值对环境温度的敏感度降低。
当后续电路的工况发生变化时,再通过USO端输入相应的控制信号调整数字电位器4307,从而达到了精准调节预设电压值的目的。例如当所处环境的温度变高时,通过控制信号调低数字电位器4307的电阻值,从而使预设电压值降低即过流保护点降低;或者,当所处环境的温度变低时,预设电压值变大即过流保护点变高。
需要说明的是,数字电位器4307的电阻值与控制端接收的控制信号(实际应用中,控制信号可以是一组逻辑数字)一一对应。上述对应关系可以预先存储在存储器中。
然后运算放大器4107再比较第一电阻4301采集的实时电压值和上述预设电压值。VITRIP<VVTRIP(包含相等)时,运算放大器4107输出端输出高电平,此时UH驱动电路、VH驱动电路、WH驱动电路、UL驱动电路、VL驱动电路、WL驱动电路正常输出脉冲信号驱动晶体管IGBT4121~4126正常导通与关断,此时智能功率模块根据后续电路的实际需求输出电压及功率。VITRIP>VVTRIP时,运算放大器4107输出端输出低电平,此时UH驱动电路、VH驱动电路、WH驱动电路、UL驱动电路、VL驱动电路、WL驱动电路的控制端(或者使能端)有效,无法输出开关控制信号。同时UHIN端、VHIN端、WHIN端、ULIN端、VLIN端、WLIN端同时输入信号0。
为验证本发明提供的智能功率模块的优越性,下面以一款能够提供15A电流能力的智能功率模块为例进行说明。
本发明实施例中设置第二电阻4303为PCT电阻(positive temperature coefficient)即正温度系数电阻,在25℃下的阻值为10kΩ。设置第三电阻4304为NTC电阻(Negative Temperature Coefficient,负温度系数电阻),该NTC电阻在25℃时电阻值为10kΩ。
本发明在25℃时,流过所述稳压二极管4305的电流为:
Figure PCTCN2017086425-appb-000001
本发明实施例中,稳压二极管4305在工作电流为0.5mA~0.8mA时,其稳压值为6.4V。也就是说,在环境温度25℃时,第一节点A处电压值为6.4V。由于第二电阻4303为PCT电阻而第三电阻4304为NTC电阻,在第三电阻所处环境温度发生变化时时,流过稳压二极管4305的电流基本维持在0.75mA左右,从而第一节点A处的电压值基本稳定。
本发明实施例中设置第四电阻4306的电阻值为11.8kΩ。数字电位器4307采用如下逻辑真值表,如图1所示。
表1数字电位器4307逻辑真值表
I2C R(kΩ)
0101000 1
0100000 0.85
0111000 1.15
本发明实施例中微控制单元MCU通过控制信号输入端经过USO端处向调整电路输出不同的控制信号,从而控制数字电位器4307的第一端和第二端间呈现不同的阻值。
当该数字电位器的电阻值为1kΩ时,调整单元输出的预设电压值(采用VVTRIP表示):
VVTRIP=6.4×1/(11.8+1)=0.50V。
当该数字电位器的电阻值为0.85kΩ时,调整单元输出的预设电压值为:
VVTRIP=6.4×0.85/(11.8+0.85)=0.43V。
当该数字电位器的电阻值为1.15kΩ时,调整单元输出的预设电压值为:
VVTRIP=6.4×1.15/(11.8+1.15)=0.57V。
本发明实施例中第一电阻4301设置为33mΩ,则:
当流过第一电阻4301的实时电流值为15.0A时,ITRIP端处实时电压值为0.50V;
当流过第一电阻4301的实时电流值为12.9A电流时,ITRIP端处实时电压值电压为0.43V;
当流过第一电阻4301的实时电流值为17.1A电流时,ITRIP端处实时电压值电压为0.57V。
可见,本发明实施例中通过向USO端处输出不同的控制信号,实际应用中可以为I2C总线输出不同的逻辑数字信息,控制不同数字电阻器具有不同的电阻值,从而使调整电路生成不同的预设电压值,进而使该智能功率模块的过流保护电流值发生变化。
本发明第九实施例还提供的一种智能功率模块,包括功率驱动电路,其特征在于,还包括调整电路;其中,
功率驱动电路通过功率驱动电路的低压参考端口连接设置在智能功率模块之外的电流采样电路;
调整电路分别连接电流采样电路和功率驱动电路,电流采样电路用于采集功率驱动电路的实时电流值并转换成实时电压值并输出至调整电路,调整电路根据控制信号生成预设电压值,并比较预设电压值和实时电压值以生成开关控制信号发送给功率驱动电路。
与上述本发明第一实施例不同的是,电流采样电路是设置在智能功率模块之外的,其中功率驱动电路通过其低压参考端口如图1(B)所示的UN、VN和WN电流采样电路连接,电流采样电路采集到功率驱动电路的实时电流值并转换成实时电压值后通过智能功率模块的一端口输入到期调整电路,图1(B)中未示出。智能功率模块内部的调整电路和功率驱动电路和功能与第一实施例中相同,不再赘述。
针对上述本发明第八或第九实施例提供的智能功率模块,本发明第十实施例还提供了一种控制方法,参见图7,包括:
S1、获取来自电流采样电路所采集功率驱动电路的实时电流值并转换成实时电压值;
S2、获取所述功率驱动电路以及所驱动后续电路的实际工况得到所需要的预设电流值以及预设电压值;
S3、根据所述预设电压值以及所述实时电压值的关系输出控制信号到控制信号输入端;
所述实际工况是指所述后续电路在不同工作情况下,该后续电路所需要的预设电流值。
实际应用中,上述控制方法可以采用硬件实现,也可以采用软件实现。本发明一实施例中将上述控制方法拷贝到微控制单元MCU中。如图1所示,该MCU200与上述智能功率控制模块相配合,从而为后续电路的工作提供所需求的功率。
本发明第十一实施例还提供了一种空调器,包括本发明第八或第九实施例提供智能功率模块、用于执行本发明实施例提供的控制方法的微控制单元MCU和存储模块(图中未示出)。
上述MCU连接智能功率模块,用于获取来自智能功率模块的实时电压值;上述电压值由智能功率模块的实时电流值转换而成;
上述MCU连接存储模块,用于获取空调器的实际工况及其对应 的预设电流值和预设电压值;
上述MCU还用于根据预设电压值以及实时电压值的关系输出控制信号到控制信号输入端。
实际应用中,存储模块可以采用现有技术的硬盘、U盘、SD卡等实现。并且该存储模块设置位置可以设置在上述MCU中、空调器的控制器或者单独的存储设备中,本发明不作限定。
具体地,本发明实施例中将上述控制方法拷贝到MCU中。该MCU与存储模块相连接,可以根据空调器的实际工况(可以直接从空调器的相应控制器直接读取,或者根据温度所处温度区间计算得到,本文中以直接读取为例)从存储模块中读取对应的预设电流值及预设电压值。智能功率模块中电流采样电路实时采集当前情况下的实时电流值,然后经过第一电阻4301转换成实时电压值,并通过ISO端传输到MCU中,即MCU获取来自智能功率模块的实时电压值。最后,MCU根据实实时电压值和预设电压值的关系输出相应的控制信号即直接从存储模块中读取预设电流值或者预设电压值即可。
综上所述,本发明实施例提供的智能功率模块及其控制方法、空调器,通过在智能功率模块中增加调整电路和电流采样电路,并且使电流采样电路连接功率驱动电路,调整电路分别连接电流采样电路和功率驱动电路。在上述电路基础之上,电流采样电路可以采集所述功率驱动电路的实时电流值并转换成实时电压值;调整电路根据控制信号生成预设电压值,并比较所述预设电压值和所述实时电压值生成高电平或者低电平信号发送给功率驱动电路。本发明实施例中智能功率模块可以动态调整其电流保护点即根据智能功率模块或其驱动后续电路所处环境的情况设置预设电流值的大小,例如在智能功率模块工作在较大的电流下仍然安全时,智能功率模块可以根据控制信号将预设电流值调高,否则调低。可见,本发明实施例通过调整预设电流值,可以调整智能功率模块的有效工作范围,从而避免停止工作所带来的 用户体验低以及增大电流余量所带来成本增加的问题。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,其本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。

Claims (41)

  1. 一种智能功率模块,包括功率驱动电路,其特征在于,还包括调整电路和电流采样电路;其中,
    所述电流采样电路连接所述功率驱动电路,用于采集所述功率驱动电路的实时电流值并转换成实时电压值;
    所述调整电路分别连接所述电流采样电路和所述功率驱动电路,用于生成预设电压值,并比较所述预设电压值和所述实时电压值以生成开关控制信号发送给所述功率驱动电路。
  2. 根据权利要求1所述的智能功率模块,其特征在于,所述电流采样电路包括第一电阻;所述第一电阻的第一端通过所述电流采样电路的第一端连接所述功率驱动电路的U相低电压参考端、V相低电压参考端、W相低电压参考端和所述调整电路的输入端,所述第一电阻的第二端通过所述电流采样电路的第二端连接公共电压端。
  3. 根据权利要求1所述的智能功率模块,其特征在于,所述调整电路具有第一电源端、第二电源端、输入端和输出端;其中,
    所述电流采样电路的第一端连接所述调整电路的输入端,所述电流采样电路的第二端连接公共电压端;
    所述调整电路的第一电源端连接供电电源,所述调整电路的第二电源端连接所述公共电压端,所述调整电路的输出端连接所述功率驱动电路。
  4. 根据权利要求3所述的智能功率模块,其特征在于,所述调整电路包括调整单元和比较单元;
    所述调整单元连接所述调整电路的第一电源端和第二电源端,用于根据所处温度变化输出不同幅值的预设电压值至所述比较单元;
    所述比较单元连接所述调整电路的输入端和输出端,用于比较该调整电路的输入端接收的实时电压值和所述预设电压值以生成开关控制信号。
  5. 根据权利要求4所述的智能功率模块,其特征在于,所述调整单元包括第二电阻、第三电阻和第四电阻;
    所述第二电阻的第一端连接所述调整电路的第一电源端,所述第二电阻的第二端连接所述第三电阻的第一端;
    所述第四电阻的第一端连接所述第三电阻的第二端,所述第四电阻的第二端连接所述调整电路的第二电源端。
  6. 根据权利要求5所述的智能功率模块,其特征在于,所述第三电阻为负温度系数热敏电阻;或者,所述第二电阻为正温度系数热敏电阻;或者,所述第三电阻为负温度系数热敏电阻并且所述第二电阻为正温度系数热敏电阻。
  7. 根据权利要求4所述的智能功率模块,其特征在于,所述比较单元包括运算放大器;所述运算放大器的反相输入端连接所述电流采样电路的第一端,所述运算放大器的正相输入端连接所述调整单元中第三电阻的第一端,所述运算放大器的输出端连接所述调整电路的输出端。
  8. 一种空调器,其特征在于,包括权利要求1所述的智能功率模块。
  9. 一种智能功率模块,包括功率驱动电路,其特征在于,还包括调整电路;其中,
    所述功率驱动电路通过所述功率驱动电路的低压参考端口连接设置在所述智能功率模块之外的电流采样电路;
    所述调整电路分别连接所述电流采样电路和所述功率驱动电路,所述电流采样电路用于采集所述功率驱动电路的实时电流值并转换成实时电压值并输出至所述调整电路,所述调整电路生成预设电压值,并比较所述预设电压值和所述实时电压值以生成开关控制信号发送给所述功率驱动电路。
  10. 根据权利要求9所述的智能功率模块,其特征在于,所述调整电路具有第一电源端、第二电源端、输入端和输出端;其中,
    所述电流采样电路的第一端连接所述调整电路的输入端,所述电流采样电路的第二端连接公共电压端;
    所述调整电路的第一电源端连接供电电源,所述调整电路的第二电源端连接所述公共电压端,所述调整电路的输出端连接所述功率驱动电路。
  11. 根据权利要求10所述的智能功率模块,其特征在于,所述调整电路包括调整单元和比较单元;
    所述调整单元连接所述调整电路的第一电源端和第二电源端,用于根据所处温度变化输出不同幅值的预设电压值至所述比较单元;
    所述比较单元连接所述调整电路的输入端和输出端,用于比较该调整电路的输入端接收的实时电压值和所述预设电压值以生成开关控制信号。
  12. 一种空调器,其特征在于,包括权利要求9所述的智能功率模块。
  13. 一种智能功率模块,包括功率驱动电路,其特征在于,还包括调整电路和电流采样电路;其中,
    所述电流采样电路连接所述功率驱动电路,用于采集所述功率驱动电路的实时电流值并转换成实时电压值;
    所述调整电路分别连接所述电流采样电路和所述功率驱动电路,用于根据接收的控制信号组合生成预设电压值,并比较所述预设电压值和所述实时电压值以生成第一开关控制信号发送给所述功率驱动电路。
  14. 根据权利要求13所述的智能功率模块,其特征在于,所述电流采样电路包括第一电阻;所述第一电阻的第一端通过所述电流采样电路的第一端连接所述功率驱动电路的U相低电压参考端、V相低电压参考端、W相低电压参考端和所述调整电路的输入端,所述第一电阻的第二端通过所述电流采样电路的第二端连接公共电压端。
  15. 根据权利要求13所述的智能功率模块,其特征在于,所述调整电路具有第一电源端、第二电源端、多个控制端、输入端和输出端;
    所述电流采样电路的第一端连接所述调整电路的输入端,所述电流采样电路的第二端连接公共电压端;
    所述调整电路的每个所述控制端连接用于接收控制信号的控制信号输入端;所述调整电路的第一电源端连接供电电源,所述调整电路的第二电源端连接所述公共电压端,所述调整电路的输出端连接所述功率驱动电路;多个所述控制端分别接收的控制信号形成控制信号组合。
  16. 根据权利要求15所述的智能功率模块,其特征在于,所述调整电路包括调整单元和比较单元;
    所述调整单元连接所述调整电路的多个所述控制端、第一电源端和第二电源端,用于根据多个所述控制端得到的控制信号组合输出不同幅值的预设电压值至所述比较单元;
    所述比较单元连接所述调整电路的输入端和输出端,用于比较该调整电路的输入端接收的实时电压值和所述调整单元输出的预设电压值以生成第一开关控制信号。
  17. 根据权利要求16所述的智能功率模块,其特征在于,所述比较单元包括第一运算放大器;所述第一运算放大器的反相输入端连接所述电流采样电路的第一端,所述第一运算放大器的正相输入端连接所述调整单元的输出端;所述第一运算放大器的输出端连接所述调整电路的输出端。
  18. 根据权利要求17所述的智能功率模块,其特征在于,所述调整单元包括多个变阻子模块和比例子模块;
    每个变阻子模块的控制端连接所述调整电路的一个控制端,其输入端连接所述调整电路的第一电源端,其第一输出端连接所述比例子模块的第一输入端,其第二输出端连接所述比例子模块的第二输入端;
    所述比例子模块的输出端连接所述调整单元的输出端和比较单元中第一运算放大器的正相输入端;所述比例子模块的第二输入端还连接所述公共电压端。
  19. 根据权利要求18所述的智能功率模块,其特征在于,每个变阻子模块包括一个转换开关和一个第二电阻;所述转换开关的控制极连接所述变阻子模块的输入端,其第一输入端连接所述变阻子模块的输入端,其第二输入端连接所述变阻子模块的第二输出端,其输出端 连接所述第二电阻的第一端;所述第二电阻的第二端连接所述变阻子模块的第一输出端;
    和/或,
    所述比例子模块包括第二运算放大器、第三电阻和电压反相器;所述第二运算放大器的反相输入端连接所述变阻子模块的第一输出端,所述第二运算放大器的正相输入端连接所述公共电压端,所述第二运算放大器的输出端连接所述电压反相器的输入端;所述第三电阻的第一端连接所述第二运算放大器的反相输入端,所述第三电阻的第二端连接所述第二运算放大器的输出端;所述电压反相器的输出端连接所述调整单元的输出端。
  20. 一种用于权利要求13所述的智能功率模块的控制方法,其特征在于,所述控制方法包括:
    获取来自电流采样电路所采集功率驱动电路的实时电流值并转换成实时电压值;
    获取所述智能功率电路以及所驱动后续电路的实际工况得到所需要的预设电流值以及预设电压值;
    根据所述预设电压值以及所述实时电压值的关系输出控制信号组合到多个控制信号输入端;
    所述实际工况是指所述智能功率模块及其后续电路在不同工作情况下所需要的预设电流值。
  21. 一种空调器,其特征在于,包括权利要求13所述的智能功率模块、用于执行权利要求20所述的控制方法的微控制单元MCU和存储模块;
    所述MCU连接所述智能功率模块,用于获取来自所述智能功率模块的实时电压值;所述电压值由所述智能功率模块的实时电流值转 换而成;
    所述MCU连接所述存储模块,用于获取空调器的实际工况及其对应的预设电流值和预设电压值;
    所述MCU还用于根据所述预设电压值以及所述实时电压值的关系输出控制信号组合到多个控制信号输入端。
  22. 一种智能功率模块,包括功率驱动电路,其特征在于,还包括调整电路;其中,
    所述功率驱动电路通过所述功率驱动电路的低压参考端口连接设置在所述智能功率模块之外的电流采样电路;
    所述调整电路分别连接所述电流采样电路和所述功率驱动电路,所述电流采样电路用于采集所述功率驱动电路的实时电流值并转换成实时电压值并输出至所述调整电路,所述调整电路根据接收的控制信号组合生成预设电压值,并比较所述预设电压值和所述实时电压值以生成第一开关控制信号发送给所述功率驱动电路。
  23. 根据权利要求22所述的智能功率模块,其特征在于,所述调整电路具有第一电源端、第二电源端、多个控制端、输入端和输出端;
    所述电流采样电路的第一端连接所述调整电路的输入端,所述电流采样电路的第二端连接公共电压端;
    所述调整电路的每个所述控制端连接用于接收控制信号的控制信号输入端;所述调整电路的第一电源端连接供电电源,所述调整电路的第二电源端连接所述公共电压端,所述调整电路的输出端连接所述功率驱动电路;多个所述控制端分别接收的控制信号形成控制信号组合。
  24. 根据权利要求23所述的智能功率模块,其特征在于,所述调 整电路包括调整单元和比较单元;
    所述调整单元连接所述调整电路的多个所述控制端、第一电源端和第二电源端,用于根据多个所述控制端得到的控制信号组合输出不同幅值的预设电压值至所述比较单元;
    所述比较单元连接所述调整电路的输入端和输出端,用于比较该调整电路的输入端接收的实时电压值和所述调整单元输出的预设电压值以生成第一开关控制信号。
  25. 一种用于权利要求22所述的智能功率模块的控制方法,其特征在于,所述控制方法包括:
    获取来自电流采样电路所采集功率驱动电路的实时电流值并转换成实时电压值;
    获取所述智能功率电路以及所驱动后续电路的实际工况得到所需要的预设电流值以及预设电压值;
    根据所述预设电压值以及所述实时电压值的关系输出控制信号组合到多个控制信号输入端;
    所述实际工况是指所述智能功率模块及其后续电路在不同工作情况下所需要的预设电流值。
  26. 一种空调器,其特征在于,包括权利要求22所述的智能功率模块、用于执行权利要求25所述的控制方法的微控制单元MCU和存储模块;
    所述MCU连接所述智能功率模块,用于获取来自所述智能功率模块的实时电压值;所述电压值由所述智能功率模块的实时电流值转换而成;
    所述MCU连接所述存储模块,用于获取空调器的实际工况及其对应的预设电流值和预设电压值;
    所述MCU还用于根据所述预设电压值以及所述实时电压值的关系输出控制信号组合到多个控制信号输入端。
  27. 一种智能功率模块,包括功率驱动电路,其特征在于,还包括调整电路和电流采样电路;其中,
    所述电流采样电路连接所述功率驱动电路,用于采集所述功率驱动电路的实时电流值并转换成实时电压值;
    所述调整电路分别连接所述电流采样电路和所述功率驱动电路,用于根据控制信号生成预设电压值,并比较所述预设电压值和所述实时电压值以生成开关控制信号发送给所述功率驱动电路。
  28. 根据权利要求27所述的智能功率模块,其特征在于,所述电流采样电路包括第一电阻;所述第一电阻的第一端通过所述电流采样电路的第一端连接所述功率驱动电路的U相低电压参考端、V相低电压参考端、W相低电压参考端和所述调整电路的输入端,所述第一电阻的第二端通过所述电流采样电路的第二端连接公共电压端。
  29. 根据权利要求27所述的智能功率模块,其特征在于,所述调整电路具有第一电源端、第二电源端、控制端、输入端和输出端;其中,
    所述电流采样电路的第一端连接所述调整电路的输入端,所述电流采样电路的第二端连接公共电压端;
    所述调整电路的第一电源端连接供电电源,所述调整电路的第二电源端连接所述公共电压端,所述调整电路的控制端用于接收控制信号,所述调整电路的输出端连接所述功率驱动电路。
  30. 根据权利要求29所述的智能功率模块,其特征在于,所述调 整电路包括调整单元和比较单元;
    所述调整单元连接所述调整电路的第一电源端、第二电源端和控制端,用于根据输入的控制信号输出不同幅值的预设电压值至所述比较单元;
    所述比较单元连接所述调整电路的输入端和输出端,用于比较该调整电路的输入端接收的实时电压值和所述预设电压值以生成开关控制信号。
  31. 根据权利要求30所述的智能功率模块,其特征在于,所述调整单元包括第二电阻、第三电阻、稳压二极管、第四电阻和数字电位器;
    所述第二电阻的第一端连接所述调整电路的第一电源端,所述第二电阻的第二端连接所述第三电阻的第一端;
    所述稳压二极管的第一极连接所述第三电阻的第二端于第一节点,所述稳压二极管的第二极连接所述调整电路的第二电源端;
    所述第四电阻的第一端连接到所述第一节点,所述第四电阻的第二端连接所述数字电位器的第一端和所述调整单元的输出端于第二节点;
    所述数字电位器的第二端连接所述调整电路的第二电源端,所述数字电位器的控制端连接所述调整电路的控制端。
  32. 根据权利要求31所述的智能功率模块,其特征在于,所述第三电阻为负温度系数热敏电阻并且所述第二电阻为正温度系数热敏电阻。
  33. 根据权利要求32所述的智能功率模块,其特征在于,在第三电阻所处环境温度发生变化时,所述第三电阻的电阻值变化量与所述 第二电阻的电阻值变化量相同。
  34. 根据权利要求30所述的智能功率模块,其特征在于,所述比较单元包括运算放大器;所述运算放大器的反相输入端连接所述电流采样电路的第一端,所述运算放大器的正相输入端连接所述调整单元中数字电位器的第一端,所述运算放大器的输出端连接所述调整电路的输出端。
  35. 一种用于权利要求27所述的智能功率模块的控制方法,其特征在于,所述控制方法包括:
    获取来自电流采样电路所采集功率驱动电路的实时电流值并转换成实时电压值;
    获取所述功率驱动电路以及所驱动后续电路的实际工况得到所需要的预设电流值以及预设电压值;
    根据所述预设电压值以及所述实时电压值的关系输出控制信号到控制信号输入端;
    所述实际工况是指所述后续电路在不同工作情况下,该后续电路所需要的预设电流值。
  36. 一种空调器,其特征在于,包括权利要求27所述的智能功率模块、用于执行权利要求35所述的控制方法的微控制单元MCU和存储模块;
    所述MCU连接所述智能功率模块,用于获取来自所述智能功率模块的实时电压值;所述电压值由所述智能功率模块的实时电流值转换而成;
    所述MCU连接所述存储模块,用于获取空调器的实际工况及其对应的预设电流值和预设电压值;
    所述MCU还用于根据所述预设电压值以及所述实时电压值的关系输出控制信号到控制信号输入端。
  37. 一种智能功率模块,包括功率驱动电路,其特征在于,还包括调整电路;其中,
    所述功率驱动电路通过所述功率驱动电路的低压参考端口连接设置在所述智能功率模块之外的电流采样电路;
    所述调整电路分别连接所述电流采样电路和所述功率驱动电路,所述电流采样电路用于采集所述功率驱动电路的实时电流值并转换成实时电压值并输出至所述调整电路,所述调整电路根据控制信号生成预设电压值,并比较所述预设电压值和所述实时电压值以生成开关控制信号发送给所述功率驱动电路。
  38. 根据权利要求37所述的智能功率模块,其特征在于,所述调整电路具有第一电源端、第二电源端、控制端、输入端和输出端;其中,
    所述电流采样电路的第一端连接所述调整电路的输入端,所述电流采样电路的第二端连接公共电压端;
    所述调整电路的第一电源端连接供电电源,所述调整电路的第二电源端连接所述公共电压端,所述调整电路的控制端用于接收控制信号,所述调整电路的输出端连接所述功率驱动电路。
  39. 根据权利要求38所述的智能功率模块,其特征在于,所述调整电路包括调整单元和比较单元;
    所述调整单元连接所述调整电路的第一电源端、第二电源端和控制端,用于根据输入的控制信号输出不同幅值的预设电压值至所述比较单元;
    所述比较单元连接所述调整电路的输入端和输出端,用于比较该调整电路的输入端接收的实时电压值和所述预设电压值以生成开关控制信号。
  40. 一种用于权利要求37所述的智能功率模块的控制方法,其特征在于,所述控制方法包括:
    获取来自电流采样电路所采集功率驱动电路的实时电流值并转换成实时电压值;
    获取所述功率驱动电路以及所驱动后续电路的实际工况得到所需要的预设电流值以及预设电压值;
    根据所述预设电压值以及所述实时电压值的关系输出控制信号到控制信号输入端;
    所述实际工况是指所述后续电路在不同工作情况下,该后续电路所需要的预设电流值。
  41. 一种空调器,其特征在于,包括权利要求37所述的智能功率模块、用于执行权利要求40所述的控制方法的微控制单元MCU和存储模块;
    所述MCU连接所述智能功率模块,用于获取来自所述智能功率模块的实时电压值;所述电压值由所述智能功率模块的实时电流值转换而成;
    所述MCU连接所述存储模块,用于获取空调器的实际工况及其对应的预设电流值和预设电压值;
    所述MCU还用于根据所述预设电压值以及所述实时电压值的关系输出控制信号到控制信号输入端。
PCT/CN2017/086425 2017-03-13 2017-05-27 智能功率模块、空调器 WO2018166074A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201710147228.7 2017-03-13
CN201710146987.1 2017-03-13
CN201710147493.5 2017-03-13
CN201710147228.7A CN106849631B (zh) 2017-03-13 2017-03-13 智能功率模块、空调器
CN201710146987.1A CN106911125A (zh) 2017-03-13 2017-03-13 智能功率模块及其控制方法、空调器
CN201710147493.5A CN106849632B (zh) 2017-03-13 2017-03-13 智能功率模块及其控制方法、空调器

Publications (1)

Publication Number Publication Date
WO2018166074A1 true WO2018166074A1 (zh) 2018-09-20

Family

ID=63521701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086425 WO2018166074A1 (zh) 2017-03-13 2017-05-27 智能功率模块、空调器

Country Status (1)

Country Link
WO (1) WO2018166074A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113037059A (zh) * 2019-12-24 2021-06-25 广东美的白色家电技术创新中心有限公司 一种智能功率模块及驱动控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004015884A (ja) * 2002-06-05 2004-01-15 Nissan Motor Co Ltd スイッチング回路及び電源回路
CN203456860U (zh) * 2013-08-27 2014-02-26 广东美的制冷设备有限公司 Ipm模块可调电流保护值的保护电路及空调器
CN104105264A (zh) * 2014-07-22 2014-10-15 常州顶芯半导体技术有限公司 一种主动式温控led大功率驱动电路及其工作方法
CN206517045U (zh) * 2017-03-13 2017-09-22 广东美的制冷设备有限公司 智能功率模块、空调器
CN206650576U (zh) * 2017-03-13 2017-11-17 广东美的制冷设备有限公司 智能功率模块、空调器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004015884A (ja) * 2002-06-05 2004-01-15 Nissan Motor Co Ltd スイッチング回路及び電源回路
CN203456860U (zh) * 2013-08-27 2014-02-26 广东美的制冷设备有限公司 Ipm模块可调电流保护值的保护电路及空调器
CN104105264A (zh) * 2014-07-22 2014-10-15 常州顶芯半导体技术有限公司 一种主动式温控led大功率驱动电路及其工作方法
CN206517045U (zh) * 2017-03-13 2017-09-22 广东美的制冷设备有限公司 智能功率模块、空调器
CN206650576U (zh) * 2017-03-13 2017-11-17 广东美的制冷设备有限公司 智能功率模块、空调器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113037059A (zh) * 2019-12-24 2021-06-25 广东美的白色家电技术创新中心有限公司 一种智能功率模块及驱动控制方法

Similar Documents

Publication Publication Date Title
CN108281941B (zh) 智能功率模块、空调器控制器及空调器
CN104716631A (zh) 空调控制器及其过电流保护电路和采样电路
WO2018166074A1 (zh) 智能功率模块、空调器
WO2017148121A1 (zh) 智能功率模块和空调器
CN106849630B (zh) 智能功率模块及其控制方法、空调器
CN206379719U (zh) 过流保护外围电路和用电设备
CN106849632B (zh) 智能功率模块及其控制方法、空调器
WO2017092449A1 (zh) 智能功率模块和空调器
CN107947771A (zh) 一种igbt保护电路
CN106849631B (zh) 智能功率模块、空调器
CN206517045U (zh) 智能功率模块、空调器
CN111313357A (zh) 智能功率模块及其检测电路、空调器
US9577568B2 (en) Detection of a wire-break fault during the operation of a brushless d.c. motor
CN105577016A (zh) 智能功率模块和空调器
CN206650576U (zh) 智能功率模块、空调器
CN105515429B (zh) 智能功率模块和空调器
CN213041909U (zh) 一种直流变频电流的检测电路
CN206517046U (zh) 智能功率模块、空调器
CN203734294U (zh) 空调控制器及其过电流保护电路和采样电路
CN106911125A (zh) 智能功率模块及其控制方法、空调器
WO2017092448A1 (zh) 智能功率模块和空调器
CN105790627B (zh) 智能功率模块和空调器
CN116545242B (zh) 一种智能功率模块
CN205123616U (zh) 智能功率模块和空调器
CN110568371B (zh) 火灾探测报警器电量检测电路及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901162

Country of ref document: EP

Kind code of ref document: A1