WO2018164507A2 - Mast4 유전자를 이용한 세포외 기질 생산용 조성물 및 그 제조방법 - Google Patents

Mast4 유전자를 이용한 세포외 기질 생산용 조성물 및 그 제조방법 Download PDF

Info

Publication number
WO2018164507A2
WO2018164507A2 PCT/KR2018/002763 KR2018002763W WO2018164507A2 WO 2018164507 A2 WO2018164507 A2 WO 2018164507A2 KR 2018002763 W KR2018002763 W KR 2018002763W WO 2018164507 A2 WO2018164507 A2 WO 2018164507A2
Authority
WO
WIPO (PCT)
Prior art keywords
mast4
composition
fragment
protein
extracellular matrix
Prior art date
Application number
PCT/KR2018/002763
Other languages
English (en)
French (fr)
Other versions
WO2018164507A3 (ko
Inventor
김성진
정한성
다카하시사토루
Original Assignee
주식회사 길로
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180027111A external-priority patent/KR102588627B1/ko
Priority to US16/492,477 priority Critical patent/US11180573B2/en
Priority to AU2018231559A priority patent/AU2018231559A1/en
Priority to EP18764604.7A priority patent/EP3594324A4/en
Priority to CA3055729A priority patent/CA3055729A1/en
Priority to CN201880030519.0A priority patent/CN110612348B/zh
Application filed by 주식회사 길로 filed Critical 주식회사 길로
Priority to JP2019571194A priority patent/JP7154238B2/ja
Publication of WO2018164507A2 publication Critical patent/WO2018164507A2/ko
Publication of WO2018164507A3 publication Critical patent/WO2018164507A3/ko
Priority to US17/494,765 priority patent/US20220220221A1/en
Priority to JP2022159928A priority patent/JP7498239B2/ja
Priority to AU2023222944A priority patent/AU2023222944A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0278Knock-in vertebrates, e.g. humanised vertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/11Protein-serine/threonine kinases (2.7.11)
    • C12Y207/11001Non-specific serine/threonine protein kinase (2.7.11.1), i.e. casein kinase or checkpoint kinase
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/035Animal model for multifactorial diseases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Definitions

  • the present invention is a composition for producing extracellular matrix from eukaryotic cells using MAST4 (Microtubule Associated Serine / Threonine Kinase Family Member 4) gene, a method for producing extracellular matrix from eukaryotic cells and cartilage regeneration comprising the composition It relates to a composition for promotion.
  • MAST4 Microtubule Associated Serine / Threonine Kinase Family Member 4
  • MAST Microtubule associated serine / threonine kinase 4 is known to be expressed in cartilage ( BMC Genomics 2007, 8: 165), its role is not clearly identified. Although CN 105636614 discloses the possibility of cartilage treatment with MAST4, it is based solely on the probabilistic results of MAST4 expression in cartilage and does not clarify its specific role.
  • MAST4 as a novel central regulator involved in cartilage formation and provide a source technology for the development of substances that modulate the activity of MAST4.
  • Non-Patent Document BMC Genomics 2007, 8: 165
  • Patent Documents CN 105636614
  • a compound capable of specifically binding to a MAST4 (Microtubule Associated Serine / Threonine Kinase Family Member 4) protein or a fragment thereof, or a compound capable of specifically binding to a nucleic acid encoding the MAST4 protein or a fragment thereof Provided is a composition for promoting the production of extracellular matrix in eukaryotic cells.
  • MAST4 Microtubule Associated Serine / Threonine Kinase Family Member 4
  • Another aspect is chondrogenesis from chondrocytes comprising a compound capable of specifically binding to a MAST4 protein or fragment thereof, or a compound capable of specifically binding to a nucleic acid encoding the MAST4 protein or fragment thereof. It provides a composition for promoting the.
  • Another aspect provides a method of producing extracellular matrix from eukaryotic cells comprising contacting a composition for promoting extracellular matrix production from the eukaryotic cell with the eukaryotic cell.
  • a compound capable of specifically binding to a MAST4 (Microtubule Associated Serine / Threonine Kinase Family Member 4) protein or a fragment thereof, or a compound capable of specifically binding to a nucleic acid encoding the MAST4 protein or a fragment thereof It provides a composition for promoting the production of extracellular matrix in the eukaryotic cell (extracellular matrix).
  • MAST4 Microtubule Associated Serine / Threonine Kinase Family Member 4
  • extracellular matrix extracellular matrix
  • Chondrogenesis from chondrocytes comprising a compound capable of specifically binding to a MAST4 protein or fragment thereof, or a compound capable of specifically binding to a nucleic acid encoding the MAST4 protein or fragment thereof
  • the present invention provides a composition for promoting).
  • the compound capable of specifically binding to the MAST4 protein or fragment thereof, or the compound capable of specifically binding to a nucleic acid encoding the MAST4 protein or fragment thereof may comprise the protein or fragment thereof, or And capable of at least partially binding to a nucleic acid.
  • the compound may be a chemically synthesized compound, polypeptide, polynucleotide, or a combination thereof. These may be ones that inhibit the activity or expression of the MAST4 protein.
  • the composition for promoting the production of extracellular matrix in the eukaryotic cells may be a composition for promoting cartilage formation from eukaryotic cells.
  • any of the inhibitors of the activity of the MAST4 protein or the inhibitor of the expression of the MAST4 protein is included as long as it inhibits the expression of the MAST4 gene or inhibits the activity of the MAST4 protein.
  • the activity inhibitor or expression inhibitor may be a polynucleotide complementary to all or a portion of the MAST4 gene.
  • the polynucleotide sequence may be RNA, DNA, or a fusion thereof.
  • the inhibition of MAST4 protein activity may be to inhibit the kinase activity of MAST4 protein.
  • MAST4 can phosphorylate Ser or Thr of a target substrate as a kinase
  • inhibition of kinase activity of the MAST4 protein may mean blocking phosphorylation of a substrate targeted by MAST4, specifically, Ser or Thr. have.
  • the polypeptide capable of specifically binding to the MAST4 protein or fragment thereof, or the polypeptide capable of specifically binding to a nucleic acid encoding the MAST4 protein or fragment thereof is an antibody, or antigen binding fragment thereof. Can be.
  • antibody refers to a specific immunoglobulin directed against an antigenic site, wherein the MAST4 gene is cloned into an expression vector to obtain a MAST4 protein encoded by the gene, from the protein according to conventional methods in the art.
  • Antibodies can be prepared. Forms of such antibodies include polyclonal antibodies or monoclonal antibodies, and include all immunoglobulin antibodies. The antibody does not have the structure of a full form intact antibody with two light chains and two heavy chains, as well as a full form with two full length light chains and two full length heavy chains, but is directed against antigenic sites Also included are functional fragments of antibody molecules that possess specific antigen binding sites (binding domains) and retain antigen binding function.
  • polynucleotide may be used in the same sense as a nucleotide or nucleic acid, unless stated otherwise, and refers to deoxyribonucleotides or ribonucleotides, unless otherwise specified, analogs and sugars of natural nucleotides or The base moiety may comprise an analog modified.
  • the polynucleotide can be modified through various methods known in the art as needed.
  • modifications include methylation, capping, substitution of one or more homologs of natural nucleotides, and modifications between nucleotides, such as uncharged linkages such as methylphosphonate, phosphoroester, phosphoramidate, carbamate And the like) or a charged linker such as phosphorothioate, phosphorodithioate and the like.
  • a compound capable of specifically binding to a nucleic acid encoding the MAST4 protein or fragment thereof is the MAST4 protein Or miRNAs (microRNA), siRNA (small interfering RNA), shRNA (short hairpin RNA), Piwi-interacting RNA (piRNA), snRNA (small nuclearRNA), antisense specific for nucleic acids encoding fragments thereof Oligonucleotides or combinations thereof.
  • the compound capable of specifically binding to a nucleic acid encoding the MAST4 protein or fragment thereof comprises a polynucleotide capable of specifically binding to a nucleic acid encoding the MAST4 protein or fragment thereof.
  • CRISPR-Cas comprising guide RNA specific for the nucleic acid encoding the MAST4 protein or fragment thereof.
  • the Cas may be Cas9.
  • CRISPRs Clustered Regularly Interspaced Short Palindromic Repeats
  • guide RNA specifically, two RNAs, namely CRISPR RNA (crRNA) and trans-activating crRNA (tracrRNA) included in the guideRNA
  • crRNA CRISPR RNA
  • tracrRNA trans-activating crRNA
  • the guide RNA comprises crRNA (CRISPR RNA) and tracrRNA (transactivating crRNA) specific for the nucleic acid encoding the MAST4 protein.
  • CRISPR RNA crRNA
  • tracrRNA transactivating crRNA
  • Said double RNA and single-chain guide RNA can at least partially hybridize with the polynucleotide encoding the MAST4 protein, specifically "5'-TACCCTGCCGCTGCCGCACC-3 '(SEQ ID NO: 5) of the polynucleotide sequence encoding the amino acid sequence of the MAST4 protein. Hybridization with the part corresponding to number 17) ".
  • the guide RNA hybridizes to a selected nucleotide sequence encoding the MAST4 protein, a dualRNA comprising a crRNA and a tracrRNA, or a portion of the crRNA and tracrRNA and hybridizes to a nucleotide encoding the MAST4 protein.
  • the target sequence, the MAST4 gene comprises at least in part a sequence comprising a polynucleotide sequence of a sequence complementary to the crRNA or sgRNA and a protospacer-adjacent motif (PAM) do.
  • the protopole fit motif may be one having a sequence well known to the nuclease protein as a sequence well known in the art.
  • the MAST4 gene that is the target of the CRISPR-Cas system may be endogenous DNA or artificial DNA.
  • the nucleotide encoding the MAST4 protein may be an endogenous DNA of eukaryotic cells, more specifically. May refer to the intrinsic DNA of chondrocytes.
  • the crRNA or sgRNA may comprise 20 contiguous polynucleotides complementary to the target DNA, and the target DNA of the complementary 20 contiguous polynucleotides is 5'-TACCCTGCCGCTGCCGCACC-3 '( SEQ ID NO: 17), and may include a selection among the sequences shown in bold in SEQ ID NOs: 74, 76, and 77 in Table 6.
  • the nucleic acid or Cas9 protein encoding the Cas9 protein may be derived from a genus Streptococcus microorganism. The microorganism of the genus Streptococcus may be streptococcus pyogenes.
  • the PAM may mean a 5'-NGG-3 'trinucleotide, and the Cas9 protein may have a nuclear localization signal (NLS) at the C-terminus or the N-terminus to enhance efficiency. It may further include.
  • NLS nuclear localization signal
  • the eukaryotic cells are yeast, fungi, protozoa, plants, higher plants and insects, amphibian cells, or mammalian cells Can be.
  • the mammal may be a variety of humans including monkeys, cows, horses, pigs and the like.
  • Such eukaryotic cells include, but are not limited to, cells cultured (in vitro), transplanted cells, in vivo cells, or recombinant cells isolated from an individual.
  • Eukaryotic cells isolated from the subject may be eukaryotic cells isolated from the same subject as the subject to which the product comprising the extracellular matrix produced from the eukaryotic cell is to be injected. In this case, there is an advantage that can prevent side effects such as unnecessary hyperimmune reactions or rejection reactions, including graft-versus-host reaction that can be generated by injection of products produced from different individuals.
  • the eukaryotic cell may be fibroblast or chondrocyte.
  • the composition for promoting the production of extracellular matrix in the eukaryotic cell and / or the composition for promoting chondrogenesis from chondrocytes may further comprise TGF- ⁇ 1.
  • TGF- ⁇ 1 decreases the expression of MAST4 in human chondrocytes, thereby promoting the production of extracellular matrix.
  • the MAST4 is a protein derived from human ( Homo sapiens ) or mouse ( Mus musculus), but the same protein may be expressed in other mammals such as monkeys, cows, and horses.
  • Human-derived MAST4 may include all seven isoforms present in human cells.
  • the seven isoforms are NP_055998.1 (SEQ ID NO: 1), N P_942123.1 (SEQ ID NO: 2), NP_001158136.1 (SEQ ID NO: 3), NP_001277155.1 (SEQ ID NO: 4), NP_001277156 based on the NCBI reference sequence.
  • NP_001277157.1 (SEQ ID NO: 6), or NP_001284580.1 (SEQ ID NO: 7), wherein the protein or polypeptide having the respective amino acid sequence is NM_015183.2, A polynucleotide sequence of SEQ ID NOs: 8 to 14 encoding the amino acid sequence of each of SEQ ID NOs: 1 to 7 in the sequence of NM_198828.2, NM_001164664.1, NM_001290226.1, NM_001290227.1, NM_001290228.1, or NM_001297651.1 Each translated from the containing mRNA may be.
  • MAST4 derived from a mouse may include an amino acid sequence of NP_780380.2 (SEQ ID NO: 15) based on an NCBI reference sequence, and the protein or polypeptide having the amino acid sequence may have an amino acid sequence of SEQ ID NO: 15 in the sequence of NM_175171.3. It may be translated from mRNA comprising the polynucleotide sequence of SEQ ID NO: 16 coding.
  • an amino acid sequence or polynucleotide sequence having biologically equivalent activity may be considered a MAST4 protein or mRNA thereof have.
  • the MAST4 protein comprises the sequence of any one of SEQ ID NOs: 1 to 7 and 15, the nucleotide sequence encoding the MAST4 protein comprises the sequence of any one of SEQ ID NOs: 8 to 14 and 16. It may be.
  • the MAST4 protein or polypeptide has at least 60%, for example at least 70%, at least 80%, at least 90%, at least 95%, at least 99%, or 100% sequence identity with SEQ ID NOs: 1-7 and 15 It may include an amino acid sequence.
  • the MAST4 protein is one or more amino acids, two or more amino acids, three or more amino acids, four or more amino acids, five or more amino acids, six or more amino acids, or seven or more amino acids in the amino acid sequences of SEQ ID NOs: 1 to 7 and 15.
  • the amino acid may be an amino acid sequence having a changed sequence.
  • the polynucleotide encoding each of the MAST4 is SEQ ID NO: 8 to 14 and 16 and 60% or more, for example, 70% or more, 80% or more, 90% or more, 95% or more, 99% or more, or 100% sequence It may be one having a sequence having identity.
  • the nucleic acid encoding the MAST4 is at least one or more nucleotides, two or more nucleotides, three or more nucleotides, four or more nucleotides, five or more nucleotides in the sequence of SEQ ID NOs: 8 to 14 and 16
  • the at least nucleotides or at least seven nucleotides may be polynucleotides having different sequences.
  • the inventors first identified that inhibiting MAST4 gene expression in chondrocytes increases the production of extracellular matrix and promotes cartilage formation.
  • the composition for promoting the production of extracellular matrix in the eukaryotic cells of the present invention or the composition for promoting cartilage formation from chondrocytes may be for the prevention, treatment or improvement of symptoms of joint disease. have.
  • the composition for promoting the production of extracellular matrix in the eukaryotic cells of the present invention or a composition for promoting cartilage formation from chondrocytes may be to induce cartilage regeneration.
  • the composition for promoting the production of extracellular matrix in the eukaryotic cells may be for use in preventing tissue regeneration or aging.
  • the tissue regeneration refers to the regeneration of the skin damaged or modified by wounds, burns, trauma, aging, chronic inflammation, disease, genetic factors, etc., and includes both those used for medical or skin cosmetic purposes.
  • the damage or modification is caused by the loss of the extracellular matrix in the tissue, reduced production or incapable of recovery by the above factors, and improves, alleviates, recovers by promoting the production of the extracellular matrix by the composition of the present invention. Or cure is possible.
  • the composition of the present invention may increase the production of extracellular matrix, thereby preventing or promoting elasticity reduction, deformation, or damage of tissues due to aging.
  • the tissue regeneration or anti-aging composition may be used as a filler, a component of collagen supplement cosmetics. In another embodiment, the tissue regeneration or anti-aging composition may be used as a component of the functional cosmetics to block the adsorption of fine dust or minerals.
  • composition for promoting the production of extracellular matrix in the eukaryotic cells of the present invention or the composition for promoting cartilage formation from chondrocytes may further comprise a pharmaceutically acceptable salt or carrier.
  • pharmaceutically acceptable salts means any of the compounds in the compositions of the present invention that are relatively nontoxic to the patient and have a harmless effective action and that the side effects caused by these salts do not compromise the beneficial efficacy of the compositions of the present invention. It means an organic or inorganic addition salt. These salts can be selected any known to those skilled in the art.
  • composition of the present invention may further comprise a pharmaceutically acceptable carrier.
  • the composition comprising a pharmaceutically acceptable carrier can be in various oral or parenteral formulations. When formulated, it may be prepared using diluents or excipients such as fillers, extenders, binders, wetting agents, disintegrating agents, surfactants, etc. which are commonly used. Solid preparations for oral administration may include tablets, patients, powders, granules, capsules, troches, and the like, which may comprise at least one excipient such as starch, calcium carbonate, It may be prepared by mixing sucrose or lactose or gelatin. In addition to the simple excipients, lubricants such as magnesium styrate talc may also be used.
  • suspensions, solutions, emulsions or syrups may be used.
  • various excipients such as wetting agents, sweeteners, fragrances, and preservatives may be used. May be included.
  • Formulations for parenteral administration may include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilized preparations, suppositories, and the like.
  • non-aqueous solvent and the suspension solvent propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethyl oleate, and the like can be used.
  • base of the suppository witepsol, macrogol, tween 61, cacao butter, laurin butter, glycerol, gelatin and the like can be used.
  • One aspect provides a method of preventing, treating or ameliorating joint disease, comprising administering the composition to a subject.
  • Another aspect provides a method of producing an extracellular matrix comprising contacting a composition for producing an extracellular matrix from the eukaryotic cell of the present invention with the eukaryotic cell.
  • the eukaryotic cell may be isolated from an individual. In one embodiment, the eukaryotic cell may be chondrocytes.
  • contacting the eukaryotic cell may comprise co-transfecting or serial-transfecting the composition with the eukaryotic cell.
  • a composition of the present invention may comprise co-transfecting or serial-transfecting the composition with the eukaryotic cell.
  • microinjection, electroporation, DEAE-dextran treatment, lipofection, nanoparticle-mediated transformation Various methods in the art can be used, such as, but not limited to, injection, protein delivery domain mediated introduction, virus-mediated gene transfer, and PEG-mediated transfection in protozoa.
  • contacting the eukaryotic cell comprises culturing the eukaryotic cell in the presence of the composition.
  • the culturing step comprises culturing in the presence of a substance that induces cartilage formation.
  • the method for producing an extracellular matrix of the present invention further comprises the step of separating the extracellular matrix from the contact product.
  • the method of producing the extracellular matrix may comprise contacting the composition for promoting cartilage formation of the present invention with chondrocytes.
  • Another aspect provides a method of forming cartilage comprising contacting a composition for promoting cartilage of the present invention with chondrocytes.
  • the chondrocytes may be isolated from the individual.
  • the chondrocytes may be derived from an individual to which the generated cartilage is transplanted.
  • Another aspect includes the steps of culturing eukaryotic cells with increased extracellular matrix production capacity of the present invention to produce ECM; And separating the ECM from the culture.
  • the culturing may be culturing in the presence of a substance that induces cartilage formation.
  • the substance inducing cartilage may be BMP.
  • the composition for promoting the production of extracellular matrix can be injected into a subject in need of the supply of extracellular matrix to prevent, treat and ameliorate diseases including joint diseases, and cells from eukaryotic cells It can be applied to a method for efficiently producing other substrates.
  • FIG. 1 is a schematic diagram of a method for manufacturing a MAST4 knockout mouse using the CRISPR / Cas9 system.
  • Figure 2A shows the results of confirming the change in the expression amount of each gene in MAST4 knockout mice A and B type by RT-PCR
  • Figure 2B shows the protein expression state of MAST4 knocked out mice.
  • Figure 3 shows that MAST4 knockout was confirmed in C3H10T1 / 2 cells knocked out by MAST4 using the CRISPR / Cas9 system.
  • Figure 4 shows the results of the RT-PCR confirmed the change in the expression level of each gene in MAST4 knocked out C3H10T1 / 2 cells using the CRISPR / Cas9 system.
  • Figure 5 shows the results of confirming the change in the expression amount of each gene in the micromass culture (micromass culture) for cartilage formation confirmed by RT-PCR.
  • Figure 6 shows the results of confirming the difference in the degree of cartilage differentiation in MAST4 knocked out C3H10T1 / 2 cells using the CRISPR / Cas9 system by Alsian blue staining.
  • Figure 7 relates to information of target sequences used to knock out MAST4 of human cells.
  • FIG. 8A shows human chondrocytes knocked down MAST4 with siRNA
  • FIG. 8B shows the expression level of extracellular matrix factor in human chondrocytes knocked out MAST4 using the CRISPR / Cas system.
  • Figure 9 shows the change in the expression level of MAST4 and the resulting extracellular matrix factor after TGF- ⁇ 1 treatment in human cartilage cells.
  • Figure 10 confirms the cartilage formation and regeneration effect in the tibia of MAST4 knocked out mice.
  • MAST4 knockout mouse was constructed using the CRISPR / Cas9 system.
  • pX330-U6-Chimeric_BB-CBh-hSpCas9 (Addgene, # 42230), donated by Dr. Feng Zhang (Cong et al., 2013), to make CRISPR knockout mice, was used as a plasmid capable of expressing Cas9 mRNA and guide RNA.
  • MAST4 is a large protein of more than 7 kb, it is designed to be genetically edited for two parts, exon 1 and exon 15.
  • the guide RNA sequence targeting exon 1 of MAST4 is 5'-GGAAACTCTGTCGGAGGAAGGGG-3 'and exon 15 Is a 5'-GGCACAAAGAGTCCCGCCAGAGG-3 '.
  • the guide RNA sequence was prepared according to the manufacturer's protocol (http://crispr.mit.edu/, Zhang Feng Lab) to prepare oligomers as shown in the MAST4 CRISPR oligomer table below and inserted into the px330 plasmid, exon 1 and 15, respectively. Two plasmids targeted to were cloned.
  • mice C57BL / 6J female mice were given 5 IU of Pregnant mare serum gonadotrophin (PMSG; Prospec, cat.no.HOR-272) 2 days before mating, and Humanchorionic gonadotrophin (hCG; Prospec, cat.no) after 47 hours. HOR-250) 5 IU was administered. Embryos were then obtained from fallopian tubes by crossing with C57BL / 6J male mice.
  • the microinjection mixture comprising 5 ng / ⁇ l and 10 ng ssDNA donor (ssDNA donor) prepared above was prepared by referring to a standard protocol (Gordon and Ruddle, 1981) of one-cell-stage embryos. Injected into pronuclei. The injected single cell embryos were transferred to fertility ICR mice.
  • Phenotypic analysis of born mice was performed on exon 1 and exon 15, and finally two MAST4 knockout mice were obtained. Information on the two types of MAST4 knockout mice, A and B, is shown in FIGS. 2 (5 ' ⁇ 3').
  • Type A MAST4 EN (Exon 1 out of 71 bp deletion) (SEQ ID NO: 22) ATGGGGGAGAAAGTTTCCGAGGCGCCTGAGCCCGTGCCCCGGGGCTGCAGCGGACACGGCGCCCGGACCCTAGTCTCTTCGGCGGCAGCCGTGTCCTCGGAGGGCGCTTCCTCAGCGGAGTCATCCTCTGGCTCGGAAACT CTGTCGGAGGAAGGGGAGCCCAGCCGCTTCTCCTGCAGGTCGCAGCCGCCGCGCGCGCCGGGCGGCGCCCT GGGAACCCGGCTACCCGCCGCGTGGGCTCCCGCGCGCGTGGCTCTGGAGCGTGGAGTCCCTACCCTGCCGCTGCCGCACCCGGGAGGAGCGGTGCTGCCGGTGCCAGGTCAGCAGCGCATCCCAAGAGGAGCAGGATGAAGAG Type B MAST4 EN (Exon 1 out of 90 bp Fruiting) (SEQ ID NO: 23) ATGGGGGAAAGTTTCCGAGGCGCCTGAGCCCGTGCCGGGGCTGCAG
  • RNA-sequencing was performed on each gene to identify changes in extracellular matrix as a cartilage component in MAST4 knockout mice prepared in Example 1-1.
  • the tibia was dissected.
  • the incised tibia was immersed in a dish containing DEPC-PBS on ice and cartilage and bone portions of the tibia were separated using a needle using an anatomical microscope.
  • Each tissue isolated from each group was soaked in 500 ⁇ l of Trizol (purchased from Invitrogen) to make each sample and RNA was extracted and quantified by Nanodrop (Thermo scientific) according to methods well known in the art.
  • RNA-sequencing was performed on terragenetex. Specifically, mRNA was isolated using oligo (dT) from 2 ⁇ g of total RNA extracted from each group of mice. The mRNA was fragmented and synthesized into single-stranded cDNA via random hexamer priming. Using this as a template, secondary strands were synthesized and double-stranded cDNAs were synthesized. End repair was made to make the Blunt-end and A-tailing and Adapter ligation to attach the Adapter. Thereafter, the cDNA library was amplified by using PCR (Polymerase Chain Reaction). 2100 BioAnalyzer was used to check the concentration and size of the final product.
  • PCR Polymerase Chain Reaction
  • the generated library was finally quantified using KAPA library quantificationkit and then hiseq2500 or less to decode sequence.
  • the ratio of base represented by N in the sequence information included 10% or more of the total sequence, or reads having 40% or more of bases less than Q20 were removed, and the average quality was Q20. Filtering was also performed to remove leads below. The entire filtering process was performed by an internally produced program. The filtered sequence was aligned to the species reference genome sequence (hg19) using STAR v2.4.0b (Dobin et al, 2013).
  • Expression measurement was calculated using Cufflinksv2.1.1 (Trapnell C. et al, 2010), and the calculated expression value was expressed as fragments read per kilobase of exon per million fragments mapped (FPKM).
  • Ensemble 72 was used as the genetic information database, and non-coding gene regions were excluded from the expression-mask option. Multi-read correction and fragment-bias-correct options were used to increase the accuracy of expression measurement, while the default values were used for the other options.
  • Col2a1 known as a chondrocyte marker, was identified by fluorescence staining in tibia of mice.
  • tibial tissue was obtained from the mouse model of Example 1-1 and fixed overnight at 4 ° C. with 0.01% phosphate-buffered saline (PBS, pH 7.4) at 4 ° C. with 4% paraformaldehyde (PFA, Wako, Osaka, JAPAN). It was.
  • the tissue was decalcified with 10% EDTA, embedded in paraffin (Leica Biosystems, Mo., USA) and sectioned to a thickness of 6 mm. Sample slides were stained with hematoxylin and eosin and the tissue sections were incubated with primary antibodies overnight at 4 ° C.
  • the primary antibody targets Coll2a1 (Abcam, Cambridge, UK).
  • FIG. 10 magnifies a specific portion of the observed sample, with Col2a1 (fluorescent green zone / gray background zone) significantly increased in the tibia of the mouse model knocked out of MAST4.
  • TOPRO-3 is a stain of the nuclei of chondrocytes (area marked with red dots / gray dots). Therefore, it can be seen that cartilage formation and regeneration are promoted by MAST4 knockout.
  • MAST4 knockout cells were prepared using the CRISPR / Cas9 system to confirm that the extracellular matrix increase phenomenon seen in MAST4 knockout mice was reproduced in vitro.
  • C3H / 10T1 / 2 and Clone 8 which are fibroblast cells derived from mice and are capable of differentiating into chondrocytes, were selected for the Department of Medical Genetics, Ajou University School of Medicine. Purchased from Professor's Laboratory (C3H10T1 / 2 cells).
  • lentiCRISPR v2 (Plasmid # 52961), pVSVg (AddGene 8454) and psPAX2 (AddGene 12260) were purchased from Addgene and the seller's instructions (lentiCRISPRv2 and lentiGuide oligo cloning) using the oligomers of Table 5 below guide RNA targeting exon 1 of the mouse MAST4 gene (ENSMUSG00000034751) was inserted into the LentiCRISPR v2 plasmid according to the protocol), thereby preparing a plasmid expressing the guide RNA and the Cas9 enzyme simultaneously (control group did not insert guideRNA, but expressed only Cas9). Plasmid was used).
  • Oligomer order mMAST4 CRISPR exon 1 sgRNA F (SEQ ID NO: 70) 5'-CACCGTACCCTGCCGCTGCCGCACC-3 ' mMAST4 CRISPR exon 1 sgRNA R (SEQ ID NO: 71) 5'-AAACGGTGCGGCAGCGGCAGGGTAC-3 ' Mouse MAST4 Exon 1 (SEQ ID NO: 72) 5'-ATGGGGGAGAAAGTTTCCGAGGCGCCTGAGCCCGTGCCCCGGGGCTGCAGCGGACACGGCGCCCGGACCCTAGTCTCTTCGGCGGCAGCCGTGTCCTCGGAGGGCGCTTCCTCAGCGGAGTCATCCTCTGGCTCGGAAACTCTGTCGGAGGAAGGGGAGCCCAGCCGCTTCTCCTGCAGGTCGCAGCCGCCGCGCGCCGGGCGGCGCCCTGGGAACCCGGCTACCCGCCGCGTGGGCTCCCGCGCGTGGCTCTGGAGCGTGGAGTCCC TACCCTGCCGCTGCCGCACC CGG
  • This method is a CRISPR knockout method based on lentiviral, three plasmids (LentiCRISPR v2 (+ guide RNA) prepared above: guide RNA + Cas9 expressing plasmid, pVSVg: Virus envelop plasmid) were prepared on 293T cells for virus production. , psPAX2: Virus packaging plasmid) was transfected with the reagent polyethyenimine (PEI). After 18 hours, fresh medium was replaced and only the medium was harvested to obtain virus using a 0.45 ⁇ m filter.
  • PEI reagent polyethyenimine
  • the obtained virus was infected with a 6 well dish seeded with C3H10T / 12, treated with 1 ml of virus + 1 ml of DMEM / FBS + 2 ⁇ l of polybren, and then replaced with fresh DMEM / FBS after 24 hours. After 24 hours, only the infected cells were selected by treatment with puromycin, and passaged up to 40% confluent in 10 cm dishes. Gene editing by CRISPR can occur randomly from cell to cell, thus allowing for single colony selection.
  • RT-PCR was performed on each gene in order to confirm the change of the extracellular matrix as a cartilage component in the MAST4 knockout mouse prepared in Example 1-1.
  • MAST4 knockout cells were prepared in the same manner as in Example 2-1, and carried out with reference to a conventionally known method (Differentiation and Mineralization of Murine Mesenchymal C3H10T1 / 2 Cells in Micromass Culture, 2010, Rani Roy) for micromass culture. It was. First, 10 ⁇ l of a culture solution containing a total of 10 5 cells in a fibroblast state was placed in the center of each well of a 12 well plate, incubated for 2 hours, and 1 ml of DMEM containing 10% of FBS was added to each well. Each culture was then added with 100ng / ml, 500ng / ml, and 1000ng / ml of BMP2, respectively, for the purpose of inducing cartilage. The culture was then replaced with a new one every three days.
  • RNA was isolated on the same day by harvesting the cultures for 0, 3, and 6 days, respectively, based on the day of inoculation on the plate for micromass culture, and Example 1- for each gene.
  • RT-PCR was performed as shown in FIG. 3 to determine whether the production of cartilage components was increased.
  • Example 3-2 Alcian blue staining was performed to confirm whether the gene overexpression associated with each extracellular matrix component observed in Example 3-2 was increased to a protein unit that is actually obtainable, not to a gene expression unit.
  • the plates of cells corresponding to each date were washed twice with PBS and fixed for 15 minutes by adding 1 ml of 4% paraformaldehyde. Then, 1 ml of 1% Alcian blue 8-GX (Sigma-Aldrich, A5268) dissolved in 0.1 N HCl (pH 1.0) was added and stained overnight. Then washed twice with 500ul 0.1N HCl to obtain an image.
  • MAST4 siRNA sc-106201; Santa Cruz biotechnology
  • siRNA was performed using reverse transfection technology, which simultaneously planted and transfected cells for high transfection efficiency, and the transfection reagent was Lipofectamine® RNAiMAX Transfection Reagent from ThermoFisher SCIENCITFIC. Used. Specifically, 15 nM MAST4 siRNA and 4.5 ⁇ l of Lipofectamine RNAiMax were mixed in 40 ⁇ l of Gibco TM Opti-MEM TM and incubated for 15 minutes. Subsequently, 1.5 x 10 5 cells / well of human primary chondrocytes (*** altered) were added to a 6 well plate (ColI coated plate) with 2 ml of medium without gentamicin (FBS 10%).
  • RNA isolated Human primary chondrocytes are DMEM (17-205-CVR Corning), FBS Qualified (USA origin 500mL 26140-079, Gibco), L-Glutamine (200mM) (100x 25030-081, Gibco) and Gentamicin (5 mug / ml) (10 mL 15700-060, Thermofisher) incubated in a flask coated with collagen I (175, Col I Straight Vent 356487, Corning).
  • DMEM 17-205-CVR Corning
  • FBS Qualified USA origin 500mL 26140-079, Gibco
  • L-Glutamine 200mM
  • Gentamicin 5 mug / ml
  • Knockouts were performed targeting 20nt on the MAST4 genome (sequences for the targets shown in bold in Table 6), specifically # 1, # 3 targeting Exon5, # 2 targeting Exon 8. # 1 and # 3 are made in reverse direction, and # 2 is made in forward direction.
  • References to the human MAST4 gene used in the construction of the CRISPR / Cas9 system were based on MAST4 ENSG00000069020 (http://asia.ensembl.org/).
  • Targeted Exon sequence information and NGG PAM sequence (grey box) in which CRISPR deletions are generated are specifically disclosed in FIG. 7.
  • hMAST4 CR # 1 F (SEQ ID NO: 73) 5'-TAATACGACTCACTATAG GAGTGTGGTCGAGGCAATGC-3 ' hMAST4 CR # 1 R (SEQ ID NO: 74) 5'-TTCTAGCTCTAAAAC GCATTGCCTCGACCACACTC -3 ' hMAST4 CR # 2 F (SEQ ID NO: 75) 5'-TAATACGACTCACTATAG GTAACTCGTCTGGTGTTGGT-3 ' hMAST4 CR # 2 R (SEQ ID NO: 76) 5'-TTCTAGCTCTAAAAC ACCAACACCAGACGAGTTAC -3 ' hMAST4 CR # 3 F (SEQ ID NO: 77) 5'-TAATACGACTCACTATAG AGCAACCGGAAAAGCTTAAT -3 ' hMAST4 CR # 3 R (SEQ ID NO: 78) 5'-TTCTAGCTCTAAAAC ATTAAGCTTTTC
  • Example 4- In human cells TGF - of ⁇ 1 MAST4 Inhibit expression and confirm its effects
  • TGF- ⁇ 1 was treated to human primary chondrocytes of Example 4-1, and the expression levels thereof were measured using RT-PCR and Western blotting as in Examples 1-2 and 1-3.
  • TGF- ⁇ 1 5ng / ml
  • MAST4 extracellular matrix factor Able

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Environmental Sciences (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Plant Pathology (AREA)
  • Animal Husbandry (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Veterinary Medicine (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 MAST4(Microtubule Associated Serine/Threonine Kinase Family Member 4) 단백질 또는 이의 단편에 특이적으로 결합할 수 있는 폴리펩티드 또는 화합물, 또는 상기 MAST4 단백질 또는 이의 단편을 코딩하는 핵산에 특이적으로 결합할 수 있는 폴리뉴클레오티드, 폴리펩티드 또는 화합물을 포함하는, 진핵세포로부터 세포외 기질(extracellular matrix)을 생산하기 위한 조성물 및 상기 조성물을 포함하는 연골재생 촉진용 조성물에 관한 것이다.

Description

MAST4 유전자를 이용한 세포외 기질 생산용 조성물 및 그 제조방법
본 발명은 MAST4(Microtubule Associated Serine/Threonine Kinase Family Member 4) 유전자를 이용하여 진핵세포로부터 세포외 기질을 생산하기 위한 조성물, 상기 진핵세포로부터 세포외 기질을 생산하는 방법 및 상기 조성물을 포함하는 연골재생 촉진용 조성물에 관한 것이다.
대부분의 뼈의 형성은 연골판(cartilaginous template)에서 시작을 하기 때문에 성공적인 골격계의 발달은 구조적인 면과 분자적인 면에서 완벽한 협력이 요구된다. 관절연골은 고도로 조직화된 조직으로 이에 관여하는 생체내 연골형성의 기전은 아직도 잘 알려져 있지 않다. 콜라겐 미소섬유와 그 외의 다른 세포외 기질 구성 단백질들 사이의 상호작용이 연골의 구조적인 완벽성을 유지시키는 것으로 알려져 있지만 이들의 복잡한 과정을 조절하는 신호전달기전은 아직도 명백하게 밝혀져 있지 않다. 그러므로 연골형성을 주도하는 중심 조절자(master regulator) 존재의 규명과 이의 기능을 밝히는 것은 학문적으로 의미가 클 뿐 아니라 국민 건강에 기여하는 것은 물론, 이를 이용하여 혁신적인 치료제를 개발하는 것 또한 가능할 것이다.
Microtubule associated serine/threonine kinase (MAST) 4는 연골에서 발현하는 것으로 알려져 있는데 (BMC Genomics 2007, 8:165), 그 역할에 대해서는 명확히 규명된 바가 없다. CN 105636614에서 MAST4를 이용하여 연골 치료를 할 수 있음을 개시하나, 이는 단지 MAST4가 연골에서 발현한다는 확률적 결과에 근거할 뿐이고, 이의 구체적인 역할에 대해 명확히 규명하지 않는다.
본 발명자들은 연골 형성에 관여하는 새로운 중심 조절자로서 MAST4를 발견하고, MAST4의 활성을 조절하는 물질의 개발을 위한 원천 기술을 제공한다.
[선행문헌]
비특허문헌: BMC Genomics 2007, 8:165
특허문헌: CN 105636614
일 양상은 MAST4(Microtubule Associated Serine/Threonine Kinase Family Member 4) 단백질 또는 이의 단편에 특이적으로 결합할 수 있는 화합물, 또는 상기 MAST4 단백질 또는 이의 단편을 코딩하는 핵산에 특이적으로 결합할 수 있는 화합물을 포함하는, 진핵세포에서 세포외 기질의 생산을 촉진하기 위한 조성물을 제공한다.
다른 양상은 MAST4 단백질 또는 이의 단편에 특이적으로 결합할 수 있는 화합물, 또는 상기 MAST4 단백질 또는 이의 단편을 코딩하는 핵산에 특이적으로 결합할 수 있는 화합물을 포함하는, 연골세포로부터 연골형성(chondrogenesis)을 촉진시키기 위한 조성물을 제공한다.
또 다른 양상은 상기 진핵세포로부터 세포외 기질 생산을 촉진하기 위한 조성물을 진핵세포와 접촉시키는 단계를 포함하는 진핵세포로부터 세포외 기질 생산하는 방법을 제공한다.
일 양상에 따른 MAST4(Microtubule Associated Serine/Threonine Kinase Family Member 4) 단백질 또는 이의 단편에 특이적으로 결합할 수 있는 화합물, 또는 상기 MAST4 단백질 또는 이의 단편을 코딩하는 핵산에 특이적으로 결합할 수 있는 화합물을 포함하는, 진핵세포에서 세포외 기질 (extracellular matrix)의 생산을 촉진하기 위한 조성물을 제공한다.
다른 양상에 따른 MAST4 단백질 또는 이의 단편에 특이적으로 결합할 수 있는 화합물, 또는 상기 MAST4 단백질 또는 이의 단편을 코딩하는 핵산에 특이적으로 결합할 수 있는 화합물을 포함하는, 연골세포로부터 연골형성(chondrogenesis)을 촉진시키기 위한 조성물을 제공한다.
일 구체예에서, 상기 MAST4 단백질 또는 이의 단편에 특이적으로 결합할 수 있는 화합물, 또는 상기 MAST4 단백질 또는 이의 단편을 코딩하는 핵산에 특이적으로 결합할 수 있는 화합물은 상기 단백질 또는 이의 단편, 또는 상기 핵산에 적어도 부분적으로 결합할 수 있는 것을 포함한다. 여기서 상기 화합물은 화학적으로 합성된 화합물, 폴리펩티드, 폴리뉴클레오티드 또는 이들의 조합일 수 있다. 이들은 MAST4 단백질의 활성 또는 발현을 저해하는 것일 수 있다.
일 구체예에서, 상기 진핵세포에서 세포외 기질의 생산을 촉진하기 위한 조성물은 진핵세포로부터 연골형성을 촉진시키기 위한 것인 조성물일 수 있다.
상기 조성물에 있어서, 상기 MAST4 단백질의 활성 저해제 또는 MAST4 단백질의 발현 저해제는 MAST4의 유전자의 발현을 저해 또는 상기 MAST4 단백질의 활성을 저해하는 것이면 어느 것이나 포함된다. 상기 활성 저해제 또는 발현 저해제는 상기 MAST4 유전자 전부 또는 일부 영역에서 상보적인 폴리뉴클레오티드 일 수 있다. 상기 폴리뉴클레오티드 서열은 RNA, DNA, 또는 이들의 융합체(hybrid)일 수 있다.
일 구체예에서, 상기 MAST4 단백질 활성의 저해는 MAST4 단백질의 키나제 활성을 저해하는 것일 수 있다.
MAST4는 키나제로서 표적이 되는 기질의 Ser 또는 Thr을 인산화할 수 있으므로, 상기 MAST4 단백질의 키나제 활성의 저해는 MAST4의 표적이 되는 기질의 인산화, 구체적으로 Ser 또는 Thr의 인산화를 차단하는 것을 의미할 수 있다.
일 구체예에서, 상기 MAST4 단백질 또는 이의 단편에 특이적으로 결합할 수 있는 폴리펩티드, 또는 상기 MAST4 단백질 또는 이의 단편을 코딩하는 핵산에 특이적으로 결합할 수 있는 폴리펩티드는 항체, 또는 이의 항원 결합 단편일 수 있다.
용어 "항체"란 항원성 부위에 대하여 지시되는 특이적인 면역 글로불린을 의미하며, MAST4 유전자를 발현 벡터에 클로닝하여 상기 유전자에 의해 코딩되는 MAST4 단백질을 얻고 상기 단백질로부터 당해 기술분야의 통상적인 방법에 따라 항체를 제조할 수 있다. 상기 항체의 형태는 폴리클로날 항체 또는 모노클로날 항체를 포함하며, 모든 면역 글로불린 항체가 포함된다. 상기 항체는 2개의 전체 길이의 경쇄 및 2 개의 전체 길이의 중쇄를 갖는 완전한 형태뿐만 아니라, 2개의 경쇄 및 2개의 중쇄를 갖는 완전한 형태 온전한 항체의 구조를 갖지는 않지만, 항원성 부위에 대해 지시되는 특이적인 항원결합부위(결합 도메인)를 가져 항원 결합 기능을 보유하고 있는, 항체 분자의 기능적 단편 또한 포함한다.
용어 "폴리뉴클레오티드(nucleotide)"는 달리 언급되지 않는 한 뉴클레오티드 또는 핵산과 동일한 의미로 사용될 수 있으며, 데옥시리보뉴클레오티드 또는 리보뉴클레오티드를 나타내고, 특별하게 언급되어 있지 않은 한 자연의 뉴클레오티드의 유사체 및 당 또는 염기 부위가 변형된 유사체를 포함할 수 있다. 상기 폴리뉴클레오티드는 필요에 따라 당해 기술분야에 공지된 다양한 방법을 통해 변형시킬 수 있다. 이러한 변형의 예로는 메틸화, 캡화, 천연 뉴클레오티드 하나 이상의 동족체로의 치환, 및 뉴클레오티드 간의 변형, 예를 들면 하전되지 않은 연결체(예: 메틸포스포네이트, 포스포트리에스테르, 포스포로아미데이트, 카바메이트 등) 또는 하전된 연결체(예: 포스포로티오에이트, 포스포로디티오에이트 등)로의 변형이 있다.
일 구체예에서, 상기 MAST4 단백질 또는 이의 단편을 코딩하는 핵산에 특이적으로 결합할 수 있는 화합물로서, 상기 MAST4 단백질 또는 이의 단편을 코딩하는 핵산에 특이적으로 결합할 수 있는 폴리뉴클레오티드는 상기 MAST4 단백질 또는 이의 단편을 코딩하는 핵산에 특이적인 miRNA(microRNA), siRNA(small interfering RNA), shRNA(short hairpin RNA), Piwi-상호작용 RNA(Piwi-interacting RNA; piRNA), snRNA(small nuclearRNA), 안티센스 올리고뉴클레오티드 또는 이들의 조합일 수 있다.
다른 구체예에서, 상기 MAST4 단백질 또는 이의 단편을 코딩하는 핵산에 특이적으로 결합할 수 있는 화합물은 상기 MAST4 단백질 또는 이의 단편을 코딩하는 핵산에 특이적으로 결합할 수 있는 폴리뉴클레오티드를 포함하는 것으로서 상기 MAST4 단백질 또는 이의 단편을 코딩하는 핵산에 특이적인 가이드 RNA (guide RNA)를 포함하는 CRISPR-Cas일 수 있다.
일 구체예에서, 상기 Cas는 Cas9일 수 있다.
CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats)는 유전자 서열이 밝혀진 박테리아 또는 고세균의 유전체에서 발견되는 여러 짧은 직접 반복을 포함하는 좌위를 의미하며, CRISPR-Cas 시스템에서 필수적인 단백질 요소로 Cas9을 포함하여 가이드 RNA(guide RNA) (구체적으로, guideRNA에 포함된 CRISPR RNA (crRNA) 및 trans-activating crRNA(tracrRNA)로 명명된 두 개의 RNA)와 복합체를 형성했을 때, 활성 엔도뉴클레아제(endonuclease)로서 작용한다.
일 구체예에서, 상기 CRISPR-Cas 시스템이 표적 유전자인 MAST4에 특이적으로 작용하기 위하여, 상기 가이드 RNA는 상기 MAST4 단백질을 코딩하는 핵산에 특이적인 crRNA(CRISPR RNA) 및 tracrRNA (transactivating crRNA)를 포함하는 이중RNA (dualRNA), 또는 상기 crRNA 및 tracrRNA의 부분을 포함하고 상기 MAST4 단백질을 코딩하는 핵산과 혼성화하는 단일-사슬 가이드 RNA (single strand guideRNA)의 형태를 갖는다. 상기 이중 RNA 및 단일-사슬 가이드 RNA는 MAST4 단백질을 코딩하는 폴리뉴클레오티드와 적어도 부분적으로 혼성화할 수 있고, 구체적으로 MAST4 단백질의 아미노산 서열을 코딩하는 폴리뉴클레오티드 서열 중 "5'-TACCCTGCCGCTGCCGCACC-3' (서열번호 17)"에 해당하는 부분과 혼성화 할 수 있다.
구체적으로, 상기 가이드 RNA는 상기 MAST4 단백질을 코딩하는 뉴클레오티드 서열 중 선택된 표적 서열에 혼성화하는 crRNA 및 tracrRNA를 포함하는 이중RNA, 또는 상기 crRNA 및 tracrRNA의 부분을 포함하고 상기 MAST4 단백질을 코딩하는 뉴클레오티드와 혼성화하는 단일-사슬 가이드 RNA이고, 상기 표적 서열인 MAST4 유전자는 적어도 부분적으로 상기 crRNA 또는 sgRNA와 상보적인 서열의 폴리뉴클레오타이드 서열과 프로토스페이서-인접 모티프(protospacer-adjacent motif, PAM)을 포함하는 서열을 포함한다. 상기 프로토간극자 적합 모티프는 당업계에 잘 알려진 서열로서 뉴클레아제 단백질이 인식하기에 적합한 서열을 갖는 것일 수 있다. 상기 CRISPR-Cas 시스템의 표적이 되는 MAST4 유전자는 내재적 DNA (endogenous DNA), 또는 인위적인 DNA (artificial DNA)일 수 있고, 구체적으로는 상기 MAST4 단백질을 코딩하는 뉴클레오티드는 진핵 세포의 내재적 DNA, 보다 구체적으로는 연골세포의 내재적 DNA를 의미하는 것일 수 있다.
일 구체예에서, 상기 crRNA 또는 sgRNA는 상기 표적 DNA와 상보적인 20개의 연속적인 폴리뉴클레오티드를 포함하는 것일 수 있고, 상기 상보적인 20개의 연속적인 폴리뉴클레오티드의 표적 DNA는 5'-TACCCTGCCGCTGCCGCACC-3' (서열번호 17)일 수 있고, 표 6의 서열번호 74, 76 및 77에서 볼드체로 표시된 서열 중 선택 것을 포함할 수 있다. 상기 Cas9 단백질을 암호화하는 핵산 또는 Cas9 단백질은 스트렙토코커스 속 (genus Streptococcus) 미생물로부터 유래되는 것일 수 있다. 상기 스트렙토코커스 속 미생물은 스트렙토코커스 피요젠스 (streptococcus pyogenes)일 수 있다. 상기 PAM은 5'-NGG-3' 트리뉴클레오타이드 (trinucledotide)를 의미하는 것일 수 있고, 상기 Cas9 단백질은 효율을 증진시키기 위하여 C-말단 또는 N-말단에 핵 위치 신호 (nuclear localization signal, NLS))를 더 포함할 수 있다.
본 발명의 상기 진핵세포에서 세포외 기질의 생산을 촉진하기 위한 조성물에 있어서, 상기 진핵세포는 효모, 곰팡이, 원생동물 (protozoa), 식물, 고등 식물 및 곤충, 양서류의 세포, 또는 포유동물의 세포일 수 있다. 상기 포유동물은 인간을 포함해 원숭이, 소, 말, 돼지 등 다양할 수 있다. 상기 진핵세포는 개체로부터 분리되어 배양된 세포 (인 비트로), 이식된 세포 (graft cell), 인 비보 세포, 또는 재조합된 세포를 포함하나, 이에 제한되지 않는다. 상기 개체로부터 분리된 진핵세포는 상기 진핵세포로부터 생산된 세포외 기질을 포함한 생성물을 주입할 개체와 동일한 개체로부터 분리된 진핵세포일 수 있다. 이 경우, 상이한 개체로부터 생산된 생성물이 주입됨으로써 발생될 수 있는 이식편대숙주반응을 포함한 불필요한 과잉 면역 반응 또는 거부 반응 등의 부작용을 방지할 수 있는 장점이 있다.
일 구체예에서, 상기 진핵세포는 섬유아세포(fibroblast) 또는 연골세포(chondrocyte)일 수 있다.
일 구체예에서, 상기 진핵세포에서 세포외 기질의 생산을 촉진하기 위한 조성물 및/또는 연골세포로부터 연골형성(chondrogenesis)을 촉진시키기 위한 조성물은 TGF-β1을 더 포함할 수 있다. 본 발명자들은 TGF-β1에 의해서 인간 연골세포에서 MAST4의 발현이 감소하고, 그에 따라 세포외 기질의 생산이 촉진됨을 확인하였다. 따라서 진핵세포 (또는 연골세포)에서 MAST4 녹아웃 세포에서 세포외 기질을 보다 효과적이고 용이하게 촉진시키기 위해, TGF-β1을 병행 처리하는 것이 유리할 수 있다.
상기 MAST4는 인간(Homo sapiens) 또는 마우스(Musmusculus)유래의 단백질이나, 원숭이, 소, 말 등의 다른 포유 동물에서도 동일한 단백질이 발현될 수 있다.
인간 유래의 MAST4는 인간 세포에 존재하는 7 개의 이소형(isoform)을 모두 포함하는 것일 수 있다. 상기 7 개의 이소형은 NCBI reference sequence 기준으로 NP_055998.1 (서열번호 1), NP_942123.1 (서열번호 2), NP_001158136.1 (서열번호 3), NP_001277155.1 (서열번호 4), NP_001277156.1 (서열번호 5), NP_001277157.1 (서열번호 6), 또는 NP_001284580.1 (서열번호 7)의 아미노산 서열을 포함하는 것일 수 있고, 상기 각각의 아미노산 서열을 갖는 단백질 또는 폴리펩티드는 NM_015183.2, NM_198828.2, NM_001164664.1, NM_001290226.1, NM_001290227.1, NM_001290228.1, 또는 NM_001297651.1의 서열 중 각 상기 서열번호 1 내지 7의 아미노산 서열을 코딩하는 서열번호 8 내지 14의 폴리뉴클레오티드 서열을 포함하는 mRNA로부터 각 번역된 것일 수 있다.
마우스 유래의 MAST4는 NCBI reference sequence 기준으로 NP_780380.2 (서열번호 15)의 아미노산 서열을 포함하는 것일 수 있고, 상기 아미노산 서열을 갖는 단백질 또는 폴리펩티드는 NM_175171.3의 서열 중 서열번호 15의 아미노산 서열을 코딩하는 서열번호 16의 폴리뉴클레오티드 서열을 포함하는 mRNA로부터 번역된 것일 수 있다.
상기 서열번호 1 내지 7 및 15의 아미노산 서열 또는 서열번호 8 내지 14 및 16의 폴리뉴클레오티드 서열과 일치하지 않더라도, 생물학적으로 동등한 활성을 갖는 아미노산 서열 또는 폴리뉴클레오티드 서열은 MAST4 단백질 또는 이의 mRNA로 간주될 수 있다.
따라서, 일 구체예에서 상기 MAST4 단백질은 서열번호 1 내지 7 및 15 중 어느 하나의 서열을 포함하는 것이고, 상기 MAST4 단백질을 코딩하는 뉴클레오티드 서열은 서열번호 8 내지 14 및 16 중 어느 하나의 서열을 포함하는 것일 수 있다.
상기 MAST4 단백질 또는 폴리펩티드는 서열번호 1 내지 7 및 15와 60% 이상, 예를 들면, 70%이상, 80%이상, 90%이상, 95%이상, 99%이상, 또는 100%의 서열 동일성을 갖는 아미노산 서열을 포함하는 것일 수 있다. 또한 상기 MAST4 단백질은 상기 서열번호 1 내지 7 및 15의 아미노산 서열에서 1개 이상의 아미노산, 2개 이상의 아미노산, 3개 이상의 아미노산, 4개 이상의 아미노산, 5개 이상의 아미노산, 6개 이상의 아미노산 또는 7개 이상의 아미노산이 변화된 서열을 갖는 아미노산 서열일 수 있다.
상기 MAST4 각각을 코딩하는 폴리뉴클레오티드는 서열번호 8 내지 14 및 16과 60% 이상, 예를 들면, 70%이상, 80%이상, 90%이상, 95%이상, 99%이상, 또는 100%의 서열 동일성을 갖는 서열을 갖는 것일 수 있다. 또한, 상기 MAST4를 코딩하는 핵산은 상기 서열번호 8 내지 14 및 16의 서열에서 1개 이상의 1개 이상의 뉴클레오티드, 2개 이상의 뉴클레오티드, 3개 이상의 뉴클레오티드, 4개 이상의 뉴클레오티드, 5개 이상의 뉴클레오티드, 6개 이상의 뉴클레오티드 또는 7개 이상의 뉴클레오티드가 상이한 서열을 갖는 폴리뉴클레오티드일 수 있다.
본 발명자들은 연골세포(chondrocyte)에서 MAST4 유전자 발현을 저해하면 세포외 기질의 생산이 증가하고 연골형성이 촉진되는 것을 최초로 규명하였다.
따라서, 일 구체예에서, 본 발명의 상기 진핵세포에서 세포외 기질의 생산을 촉진하기 위한 조성물 또는 연골세포로부터 연골형성을 촉진시키기 위한 조성물은 관절 질환의 예방, 치료 또는 증상의 개선을 위한 것일 수 있다.
또한 일 구체예에서, 본 발명의 상기 진핵세포에서 세포외 기질의 생산을 촉진하기 위한 조성물 또는 연골세포로부터 연골형성을 촉진시키기 위한 조성물은 연골재생을 유도하기 위한 것일 수 있다.
또한 일 구체예에서, 상기 진핵세포에서 세포외 기질의 생산을 촉진하기 위한 조성물은 조직 재생 또는 노화를 방지하는데 사용하기 위한 것일 수 있다.
상기 조직 재생은 상처, 화상, 외상, 노화, 만성 염증, 질병, 유전적 요인 등에 의해 손상되거나 변형된 피부의 재생을 의미하는 것으로서, 의료적 목적 또는 피부 미용 목적으로 사용되는 것을 모두 포함한다. 상기 손상 또는 변형은 상기 요인들에 의해 조직 내 세포외 기질이 손실되거나 생산량이 감소하거나 또는 회복이 불가능하여 유발된 것으로서, 본 발명의 조성물에 의하여 세포외 기질 생산을 촉진시킴으로써 증상 개선, 완화, 회복 또는 완치가 가능한 것을 의미한다.
피부를 포함한 조직이 노화하는 경우 세포외 기질의 생산이 감소하여 조직의 탄력이 감소하고, 외부 자극에 의해 쉽게 변형되거나 손상되며, 회복 속도가 느려진다. 이에 본 발명의 조성물은 세포외 기질의 생산을 증가시키므로 노화로 인한 조직의 탄력 감소, 변형, 또는 손상을 예방하거나 회복을 촉진시킬 수 있다.
다른 구체예에서, 상기 조직 재생 또는 노화 방지용 조성물은 필러, 콜라겐 보충용 화장품의 성분으로 이용되는 것일 수 있다. 또 다른 구체예에서, 상기 조직 재생 또는 노화 방지용 조성물은 미세먼지 또는 광물질의 흡착을 차단하기 위한 기능성 화장품의 성분으로 이용되는 것일 수 있다.
본 발명의 상기 진핵세포에서 세포외 기질의 생산을 촉진하기 위한 조성물 또는 연골세포로부터 연골형성을 촉진시키기 위한 조성물은 약학적으로 허용가능한 염 또는 담체를 더 포함할 수 있다.
용어 "약학적으로 허용가능한 염"이란, 환자에게 비교적 비독성이고 무해한 유효작용을 갖는 농도로서 이 염에 기인한 부작용이 본 발명의 조성물의 이로운 효능을 떨어뜨리지 않는 본 발명의 조성물 중 화합물의 어떠한 유기 또는 무기 부가염을 의미한다. 이들 염은 통상의 기술자에게 알려진 것이라면 어떤 것이든 선택될 수 있다.
본 발명의 조성물은 약학적으로 허용 가능한 담체를 추가로 포함할 수 있다. 약학적으로 허용 가능한 담체를 포함하는 상기 조성물은 경구 또는 비경구의 여러가지 제형일 수 있다. 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제,습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제될 수 있다. 경구투여를 위한 고형 제제에는 정제, 환자, 산제, 과립제, 캡슐제, 트로키제 등이 포함될 수 있으며, 이러한 고형 제제는 하나 이상의 본 발명의 화합물에 적어도 하나 이상의 부형제 예를 들면, 전분, 탄산칼슘, 수크로스(sucrose) 또는 락토오스(lactose) 또는 젤라틴 등을 섞어 조제될 수 있다. 또한, 단순한 부형제 외에 마그네슘 스티레이트 탈크 같은 윤활제들도 사용될 수 있다. 경구 투여를 위한 액상 제제로는 현탁제, 내용액제, 유제 또는 시럽제 등이 사용될 수 있는데, 흔히 사용되는 단순 희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다.
비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁용제, 유제, 동결건조제제, 좌제 등이 포함될 수 있다. 비수성용제, 현탁용제로는 프로필렌글리콜, 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세롤, 젤라틴 등이 사용될 수 있다.
일 양상은 상기 조성물을 개체에 투여하는 단계를 포함하는, 관절 질환의 예방, 치료 또는 개선시키는 방법을 제공한다.
또 다른 양상은, 본 발명의 상기 진핵세포로부터 세포외 기질을 생산하기 위한 조성물을 진핵세포와 접촉시키는 단계를 포함하는 세포외 기질을 생산하는 방법을 제공한다.
일 구체예에서, 상기 진핵세포는 개체로부터 분리된 것일 수 있다. 일 구체예에서, 상기 진핵세포는 연골세포일 수 있다.
일 구체예에서, 상기 진핵 세포와 접촉시키는 단계는 상기 조성물을 진핵세포에 공동-형질주입 (co-transfecting) 또는 단계적 형질주입 (serial-transfecting)하는 단계를 포함할 수 있다. 상기 본 발명의 조성물을 진핵세포 내로 효과적으로 전달시키기 위하여, 미세주입법 (microinjection), 전기천공법 (electroporation), DEAE-덱스트란 처리 (DEAE-dextran treatment), 리포펙션 (lipofection), 나노파티클-매개 형질주입, 단백질 전달 도메인 매개 도입, 바이러스-매개 유전자 전달, 및 원생동물에서 PEG-매개 형질주입 등과 같은 당업계의 다양한 방법을 사용할 수 있으나, 이에 제한되는 것은 아니다.
일 구체예에서, 상기 진핵 세포와 접촉시키는 단계는 상기 조성물의 존재 하에서 상기 진핵세포를 배양하는 단계를 포함한다.
일 구체예에서, 상기 배양하는 단계는 연골형성을 유도하는 물질의 존재하에서 배양하는 것을 포함한다.
일 구체예에서, 본 발명의 세포외 기질을 생산하는 방법은 상기 접촉 산물로부터 세포외 기질을 분리하는 단계를 더 포함하는 세포외 기질을 생산하는 방법
다른 구체예에서, 상기 세포외 기질을 생산하는 방법은 본 발명의 연골형성을 촉진시키기 위한 조성물을 연골세포와 접촉시키는 단계를 포함하는 것일 수 있다.
다른 양상은 상기 본 발명의 연골형성을 촉진시키기 위한 조성물을 연골세포와 접촉시키는 단계를 포함하는 연골(cartilage)를 형성하는 방법을 제공한다.
일 구체예에서 상기 연골세포는 개체로부터 분리된 것일 수 있다.
일 구체예에서 상기 연골세포는 생성된 연골이 이식될 개체로부터 유래한 것일 수 있다.
또 다른 양상은 본 발명의 증가된 세포외 기질 생산능을 갖는 진핵세포를 배양하여 ECM을 생산하는 단계; 및 배양물로부터 ECM을 분리하는 단계;를 포함하는 ECM을 생산하는 방법을 제공한다.
일 구체예에서, 상기 배양은 연골형성을 유도하는 물질의 존재하에서 배양하는 것일 수 있다.
일 구체예에서, 상기 연골형성을 유도하는 물질은 BMP일 수 있다.
일 양상에 따른 세포 외 기질의 생산을 촉진하기 위한 조성물을 이용하여, 세포외 기질의 공급이 필요한 개체에 주입하여 관절 질환을 포함한 질병을 예방, 치료 및 증상을 개선시킬 수 있고, 진핵세포로부터 세포외 기질을 효율적으로 생산하는 방법에 적용할 수 있다.
다른 양상에 따른 연골세포로부터 연골형성을 촉진시키기 위한 조성물을 개체에 주입하여 관절 질환을 포함한 질병을 예방, 치료 및 증상을 개선시킬 수 있고, 개체로부터 분리된 연골 세포의 연골재생을 촉진시켜 연골재생 현상으로 인해 생산되는 세포외 기질을 포함한 다양한 성분을 효율적으로 생산하는 방법에 적용할 수 있다.
또 다른 양상에 따른 진핵세포로부터 세포외 기질 생산하는 방법에 의하여, 진핵세포로부터 세포외 기질을 효율적으로 생산할 수 있다.
도 1은 CRISPR/Cas9 시스템을 이용한 MAST4 녹아웃 마우스를 제작하는 방법을 도식화한 것이다.
도 2A는 MAST4 녹아웃 마우스 A 및 B 타입에서 각 유전자들의 발현량의 변화를 RT-PCR로 확인한 결과를 나타낸 것이고, 도 2B는 MAST4가 녹아웃된 마우스의 단백질 발현 상태를 확인한 것이다.
도 3은 CRISPR/Cas9 시스템을 이용하여 MAST4가 녹아웃된 C3H10T1/2 세포에서 MAST4 녹아웃을 확인한 것을 나타낸 것이다.
도 4는 CRISPR/Cas9 시스템을 이용하여 MAST4가 녹아웃된 C3H10T1/2 세포에서 각 유전자들의 발현량의 변화를 RT-PCR로 확인한 결과를 나타낸 것이다.
도 5는 연골형성 확인을 위한 마이크로매스 배양 (micromass culture)에서각 유전자들의 발현량의 변화를 RT-PCR로 확인한 결과를 나타낸 것이다.
도 6은 CRISPR/Cas9 시스템을 이용하여 MAST4가 녹아웃된 C3H10T1/2 세포에서 연골분화 정도의 차이를 알시안 블루 염색으로 확인한 결과를 나타낸 것이다.
도 7은 인간세포의 MAST4를 녹아웃하기 위해 사용된 표적 서열의 정보에 관한 것이다.
도 8A은 MAST4를 siRNA로 녹다운한 인간 연골세포, 도 8B는 MAST4를 CRISPR/Cas 시스템을 이용하여 녹아웃한 인간 연골세포에서 세포 외 기질 인자의 발현 정도를 나타낸 것이다.
도 9는 인간 원성 연골세포에 TGF-β1 처리 후 MAST4의 발현량 변화 및 그에 따른 세포 외 기질 인자의 발현량을 나타낸 것이다.
도 10은 MAST4가 녹아웃된 마우스의 경골에서 연골형성 및 재생 효과를 확인한 것이다.
이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1. MAST4 녹아웃 마우스에서 연골 구성 성분의 발현 증가 확인
1-1. CRISPR/Cas9 시스템을 이용한 MAST4 녹아웃 마우스의 제작
MAST4의 발현이 억제되는 경우 연골 구성 성분인 세포외 기질이 증가하는지 확인하기 위해, 우선 CRISPR/Cas9 시스템을 이용하여 MAST4 녹아웃 마우스를 제작하였다.
구체적으로, CRISPR 녹아웃 마우스를 만들기 위해 Feng Zhang 박사(Cong 등, 2013)으로부터 기증받은 pX330-U6-Chimeric_BB-CBh-hSpCas9(Addgene, #42230)으로, Cas9 mRNA와 가이드 RNA 발현이 가능한 플라스미드를 사용하였다. MAST4는 7kb이상의 큰 단백질이므로, 엑손 1과 엑손 15, 두 가지 부분을 대상으로 하여 유전자 편집이 되도록 디자인하였으며, MAST4의 엑손 1을 표적하는 가이드 RNA 서열은 5'-GGAAACTCTGTCGGAGGAAGGGG-3', 그리고 엑손 15를 표적하는 서열은 5'-GGCACAAAGAGTCCCGCCAGAGG-3'이다. 상기 가이드 RNA 서열을 제작자의 프로토콜(http://crispr.mit.edu/, Zhang Feng Lab)에 따라 하기의 MAST4 CRISPR 올리고머 표로 도시한 올리고머를 제작하여 px330 플라스미드에 삽입하여, 각각 엑손 1, 및 15를 표적하는 2가지 플라스미드를 클로닝하였다.
MAST4 엑손 1 CRISPR F (서열번호 18) 5'-caccGGAAACTCTGTCGGAGGAAG-3'
MAST4 엑손 1 CRISPR R (서열번호 19) 5'-aaacCTTCCTCCGACAGAGTTTCC-3'
MAST4 엑손 15 CRISPR F (서열번호 20) 5'-caccGGCACAAAGAGTCCCGCCAG-3'
MAST4 엑손 15 CRISPR R (서열번호 21) 5'-aaacCTGGCGGGACTCTTTGTGCC-3'
배아를 얻기 위하여 C57BL/6J 암컷 마우스에 교배 2일 전에 Pregnant mare serum gonadotrophin (PMSG; Prospec, cat. no. HOR-272) 5 IU를 투여하고, 47시간 이후 Humanchorionic gonadotrophin (hCG; Prospec, cat. no. HOR-250) 5 IU를 투여하였다. 그 후 C57BL/6J 수컷 쥐와 교배하여 배아를 난관으로부터 수득하였다. 종래에 표준적인 프로토콜을 참조하여 (Gordon and Ruddle,1981) 상기 제작된 플라스미드 5ng/㎕ 및 10ng ssDNA 공여자(ssDNA donor)를 포함하는 미세주입 혼합물을 일세포 단계(one-cell-stage)의 배아의 전핵(pronuclei)에 주입하였다. 주입된 일세포 배아를 가임신 ICR 마우스로 옮겼다.
태어난 쥐들에 대한 표현형 분석은 엑손 1 및 엑손 15에 대해 이루어졌으며, 최종적으로 2가지 MAST4 녹아웃 마우스를 얻을 수 있었으며, 상기 2가지 MAST4 녹아웃 마우스인 A 및 B 유형에 대한 정보는 도 1 및 하기의 표 2 (5'→3')에 표시한 바와 같다.
유형 A MAST4 KO (엑손 1 중 71 bp 결실) (서열번호 22) ATGGGGGAGAAAGTTTCCGAGGCGCCTGAGCCCGTGCCCCGGGGCTGCAGCGGACACGGCGCCCGGACCCTAGTCTCTTCGGCGGCAGCCGTGTCCTCGGAGGGCGCTTCCTCAGCGGAGTCATCCTCTGGCTCGGAAACTCTGTCGGAGGAAGGGGAGCCCAGCCGCTTCTCCTGCAGGTCGCAGCCGCCGCGGCCGCCGGGCGGCGCCCTGGGAACCCGGCTACCCGCCGCGTGGGCTCCCGCGCGCGTGGCTCTGGAGCGTGGAGTCCCTACCCTGCCGCTGCCGCACCCGGGAGGAGCGGTGCTGCCGGTGCCCCAGGTCAGCAGCGCATCCCAAGAGGAGCAGGATGAAGAG
유형 B MAST4 KO (엑손 1 중 90bp 결실) (서열번호 23) ATGGGGGAGAAAGTTTCCGAGGCGCCTGAGCCCGTGCCCCGGGGCTGCAGCGGACACGGCGCCCGGACCCTAGTCTCTTCGGCGGCAGCCGTGTCCTCGGAGGGCGCTTCCTCAGCGGAGTCATCCTCTGGCTCGGAAACTCTGTCGGAGGAAGGGGAGCCCAGCCGCTTCTCCTGCAGGTCGCAGCCGCCGCGGCCGCCGGGCGGCGCCCTGGGAACCCGGCTACCCGCCGCGTGGGCTCCCGCGCGCGTGGCTCTGGAGCGTGGAGTCCCTACCCTGCCGCTGCCGCACCCGGGAGGAGCGGTGCTGCCGGTGCCCCAGGTCAGCAGCGCATCCCAAGAGGAGCAGGATGAAGAG
유형 A MAST4 KO (엑손 15 중 3bp 결실) (서열번호 24) GGCAGTCTACTTTGTTCGGCACAAAGAG TCCCGC CAG AGGTTTGCCATGAAGAAGAT C AA CAA G CAGAACCTCATCCTTCGGAACCAGATCCAGCAGGCCTTCGTGGAGCGAGACATCCT GACTTTCGCAGAGAACCCCTTTGTGGTCAGCATGTATTGCTCCTTTGAAAC G AGGCGTCA CTTATGCATGGTCATGGAGTATGTAGAAG
유형 B MAST4 KO (엑손 15 중 13bp 결실) (서열번호 25) GGCAGTCTACTTTGTTCGGCACAAAG A G TCCCGCCAGAG GTTTGCCATGAAGAAGAT C AA CAA G CAGAACCTCATCCTTCGGAACCAGATCCAGCAGGCCTTCGTGGAGCGAGACATCCT GACTTTCGCAGAGAACCCCTTTGTGGTCAGCATGTATTGCTCCTTTGAAAC G AGGCGTCACTTATGCATGGTCATGGAGTATGTAGAAG
상기 표 2 중 결실되는 염기는 굵은 글씨로 표시하였다.
1-2. MAST4 녹아웃 마우스에서 연골 구성 성분의 발현 변화 확인을 위한 RNA-시퀀싱
상기 실시예 1-1에서 제작된 MAST4 녹아웃 마우스에서 연골 구성 성분인 세포외 기질의 변화를 확인하기 위해 각 유전자에 대해 RNA-시퀀싱을 수행하였다.
구체적으로, 상기 실시예 1-1에서 제작된 생후 1일의 MAST4 녹아웃 마우스, 헤테로 타입 마우스 및 야생형 마우스를 희생시킨 후, 경골(Tibia)을 절개하였다. 얼음 위에 DEPC-PBS가 담긴 디쉬에 상기 절개된 경골을 담궈두고 해부 현미경을 이용하여 경골 중 연골(cartilage)와 뼈 부분을 니들을 이용하여 분리한다. 각 군으로부터 분리된 각각의 조직을 트리졸 (Invitrogen에서 구매) 500㎕에 담궈 각 시료로 하고 당업계에 잘 알려진 방법에 따라 RNA를 추출하고 나노드롭 (Thermo scientific)으로 정량하였다.
RNA-시퀀싱은 테라젠이텍스에서 수행하였다. 구체적으로, 각 군의 마우스로부터 추출된 총 RNA 2㎍으로부터 oligo(dT)를 이용하여 mRNA를 분리하였다. 상기 mRNA를 단편화(fragmentation)시키고 무작위 6량체 프라이밍(random hexamer priming)을 통해 단일-가닥 cDNA로 합성하였다. 이를 주형으로 하여 2차 가닥을 합성하고 이중-가닥 cDNA를 합성하였다. Blunt-end를 만들기 위해 End Repair를 하고, Adapter를 붙이기 위해 A-tailing 및 Adapter ligation 하였다. 그 후 PCR(Polymerase Chain Reaction)을 이용하여 cDNA 라이브러리를 증폭시켰다. 2100 BioAnalyzer를 이용하여 최종 생성물의 농도와 사이즈를 확인하였다. 생성된 라이브러리는 KAPA library quantificationkit를 이하여 최종 정량한 후 Hiseq2500을 이하여 서열을 해독하였다. 상기 해독된 서열에서 낮은 품질의 서열을 제거하기 위해 서열 정보 중 N으로 나타난 염기의 비율이 전체 서열의 10%이상 포함되어 있거나, Q20 미만의 염기가 40% 이상인 리드가 제거되었으며, 평균품질이 Q20 이하인 리드 역시 제거하는 필터링을 수행하였다. 상기 필터링 전 과정은 내부에서 제작된 프로그램에 의해서 수행되었다. 필터링된 서열은 STAR v2.4.0b (Dobin et al, 2013)를 이용하여 해당 종(species) 참조 유전체 서열 (hg19)에 정렬하였다.
발현량 측정은 Cufflinksv2.1.1 (Trapnell C. et al, 2010)를 이용하여 계산하였으며, 계산된 발현값을 FPKM (fragments read per kilobase of exon per million fragments mapped)으로 표현하였다. 유전자 정보 데이터베이스로 ensemble 72를 사용하였으며, non-coding 유전자 영역은 발현-마스크 옵션으로부터 제외하였다. 발현량 측정의 정확성을 높이기 위하여 다중판독교정(multi-read correction)과 단편교정(frag-bias-correct) 옵션을 추가로 사용하였으며, 다른 옵션은 기본값을 사용하였다.
MAST4 녹아웃에 의해 변화되는 유전자를 확인하고자 Cufflinks를통해 얻어진 각 군에서의 시료들의 발현값을 이용하였다. 각 발현값이 MAST4 야생형에 비해 2배 이상, P 값 < 0.01로 유의성 있는 유전자를 선택하였으며 선택된 유전자의 발현값 및 그 차이를 표 3에 나열하였다.
그 결과, 하기의 표 3과 같이 다수의 연골 구성 성분으로 존재하는 세포외 기질 관련 유전자의 발현이 증가한 것을 알 수 있다. 다만, MAST4 녹아웃 마우스의 두 타입 모두에서, 세포외 기질 분해 효소인 mmp8 및 mmp9은 발현이 감소한 것으로 보였다.
Figure PCTKR2018002763-appb-T000001
1-3. MAST4 녹아웃 마우스에서 연골 구성 성분의 발현 변화 확인을 위한 RT-PCR
상기 실시예 1-1에서 제작된 MAST4 녹아웃 마우스에서 연골 구성 성분인 세포외 기질의 변화를 보다 구체적으로 확인하기 위해, 상기 실시에 1-2의 RNA 시퀀싱 결과에서 발현이 변화하는 것으로 보이는 유전자 중 일부를 선별하여 RT-PCR을 수행하였다.
구체적으로, 하기 표 4의 프라이머 세트 및 AccuPower PCR premix (BIONEER, Korea)를 이용하여 판매자의 지침에 따라 수행하였다.
Figure PCTKR2018002763-appb-T000002
그 결과, 실시예 1-2에서의 RNA 시퀀싱 결과와 일치하여, 연골 구성 성분으로 존재하는 세포외 기질 관련 유전자의 발현이 증가한 것을 확인하였다 (도 2)
1-4. MAST4 녹아웃 마우스의 연골세포 마커 발현량 확인
MAST4가 녹아웃된 경우 연골세포에 미치는 영향을 확인하기 위해, 연골세포 마커로서 알려진 Col2a1을 마우스의 경골(tibia)에서 형광염색하여 확인하였다.
구체적으로, 상기 실시예 1-1의 마우스 모델로부터 경골 조직을 얻어 4 % 파라포름알데히드 (PFA, Wako, Osaka, JAPAN)로 0.01 M 인산염-완충 식염수 (PBS, pH 7.4), 4 ℃에서 밤새 고정하였다. 상기 조직을 10% EDTA로 탈칼슘화하고, 파라핀(Leica Biosystems, MO, USA)에 넣어 (embed), 6 mm의 두께로 절편화(sectionize)하였다. 시료 슬라이드르르 헤마톡실린(hematoxylin) 및 에오신(eosin)으로 염색하고, 상기 조직 절편을 4 ℃에서 밤새 일차 항체와 함께 인큐베이션하였다. 상기 일차 항체는 Coll2a1 (Abcam, Cambridge, UK)을 표적한다. PBS로 세척 후, 상기 조직 절편을 연속적으로 AlexaFluor®488 (Invitrogen, CA, USA)에서 2 시간 동안 실온에서 인큐베이션 하였다. 각 이미지를 confocal microscope LSM700 (Carl Zeiss, Oberkochen, Germany)을 이용하여 수득하였고, 대표적인 시료의 절편을 새로 준비한(freshly prepared) Russell-Movatmodified pentachrome (American MasterTech, CA, USA)으로 염색하였다.
그 결과, 도 10은 관찰된 시료의 특정 부분을 확대한 것으로서, Col2a1 (형광 녹색 구역/ 회색 배경 구역)이 MAST4가 녹아웃된 마우스 모델의 경골에서 현저하게 증가하였다. TOPRO-3는 (붉은색 점/ 회색 점으로 표시된 구역) 연골세포의 핵을 염색한 것이다. 따라서, MAST4 녹아웃에 의해, 연골형성 및 재생이 촉진됨을 알 수 있다.
실시예 2. MAST4 녹아웃 세포에서 연골 구성 성분의 발현 증가 확인
2-1. CRISPR/Cas9 시스템을 이용한 MAST4 녹아웃 세포의 제작
MAST4 녹아웃 마우스에서 나타난 세포외 기질 증가 현상이 인 비트로에서도 동일하게 재현되는지 확인하기 위해, CRISPR/Cas9 시스템을 이용하여 MAST4 녹아웃 세포를 제작하였다.
구체적으로, 마우스에서 유래한 섬유아세포(fibroblast cell)이며, 연골세포(chondrocyte)로 분화가 가능한 C3H/10T1/2, Clone 8 (ATCC® CCL-226)을 (아주대학교 의과대학 의학유전학교실 정선용 교수 연구실로부터 증여받음 (C3H10T1/2 세포))로부터 구매하였다. 상기 세포를 녹아웃하기 위하여, lentiCRISPR v2(Plasmid #52961), pVSVg (AddGene 8454) 및 psPAX2 (AddGene 12260)을 Addgene으로부터 구입하고, 하기의 표 5의 올리고머를 이용하여 판매자의 지침(lentiCRISPRv2 and lentiGuide oligo cloning protocol)에 따라 마우스 MAST4 유전자 (ENSMUSG00000034751)의 엑손 1을 표적하는 가이드 RNA를 LentiCRISPR v2 플라스미드에 삽입하여, 가이드 RNA와 Cas9 효소를 동시에 발현하는 플라스미드를 제작하였다(대조군에는 guideRNA가 삽입되지 않고 Cas9만 발현하는 플라스미드를 사용하였다).
올리고머 서열
mMAST4 CRISPR 엑손1 sgRNA F (서열번호 70) 5'-CACCGTACCCTGCCGCTGCCGCACC-3'
mMAST4 CRISPR 엑손1 sgRNA R (서열번호 71) 5'-AAACGGTGCGGCAGCGGCAGGGTAC-3'
마우스 MAST4 엑손1 (서열번호 72) 5'-ATGGGGGAGAAAGTTTCCGAGGCGCCTGAGCCCGTGCCCCGGGGCTGCAGCGGACACGGCGCCCGGACCCTAGTCTCTTCGGCGGCAGCCGTGTCCTCGGAGGGCGCTTCCTCAGCGGAGTCATCCTCTGGCTCGGAAACTCTGTCGGAGGAAGGGGAGCCCAGCCGCTTCTCCTGCAGGTCGCAGCCGCCGCGGCCGCCGGGCGGCGCCCTGGGAACCCGGCTACCCGCCGCGTGGGCTCCCGCGCGCGTGGCTCTGGAGCGTGGAGTCCCTACCCTGCCGCTGCCGCACCCGGGAGGAGCGGTGCTGCCGGTGCCCCAGGTCAGCAGCGCATCCCAAGAGGAGCAGGATGAAGAG-3'
본 방법은 렌티바이러스를 바탕으로 한 CRISPR 녹아웃 방법이므로, 바이러스를 제작하기 위해 293T세포에 상기에서 제작된 3가지 플라스미드(LentiCRISPR v2 (+가이드 RNA): 가이드 RNA + Cas9 expressing plasmid, pVSVg: Virus envelop plasmid, psPAX2: Virus packaging plasmid)를 시약 polyethyenimine (PEI)을 이용하여 형질감염(transfection)시켰다. 18시간 후 신선한 배지로 교체하고, 배지만 수확하여 0.45㎛ 필터를 이용해 바이러스를 수득하였다. 상기 수득된 바이러스를 C3H10T/12가 접종(seeding)된 6웰 디쉬에 감염시키고, 바이러스 1ml + DMEM/FBS 1ml + polybren 2㎕를 처리한 뒤, 24 시간 후 새로운 DMEM/FBS으로 교체되었다. 24 시간 후 푸로미신을 처리하여 감염된 세포들만 선택하고, 10 cm 디쉬에 40% 콘플루언트까지 계대 배양을 진행하였다. CRISPR에 의한 유전자 편집은 세포마다 무작위로 나타날 수 있기 때문에, 단일 균집(colony) 선택을 진행하였다. 10 cm 디쉬에 각 디쉬당 50 개의 세포가 존재하도록 접종하고, 시간이 지나 세포들이 균락을 형성 하면, 이것을 하나의 클론으로 지정하여, 각 클론들의 게놈 DNA을 추출해 엑손 1을 특이적으로 증폭하는 프라이머 (F: 5'->3' CTGTGGTCCAACCTCTGTCA, R : 5'->3' ATCGGCTCAGTGACACTTCC )를 이용하여 PCR을 하였다. 증폭된 PCR 결과물을 시퀀싱 업체에 의뢰하여 분석하였다. 서열 분석결과, 프레임 이동으로 인한 유전자 편집이 확인된 세포를 대조군 세포와 함께 실험에 이용하였다. 상기 제작된 가이드 RNA가 표적하는 서열을 상기 표 5에 굵은 글씨로 표시하였다. 상기 MAST4 녹아웃한 결과를 시퀀싱한 결과 마우스 MAST4 엑손 1에서 2개의 뉴클레오티드가 결실되어 프레임 이동이 유발되었음을 확인하였다.
2-2. MAST4 녹아웃 세포에서 연골 구성 성분의 발현 변화 확인을 위한 RT-PCR
상기 실시예 1-1에서 제작된 MAST4 녹아웃 마우스에서 연골 구성 성분인 세포외 기질의 변화를 확인하기 위해 각 유전자에 대해 RT-PCR을 수행하였다.
12웰의 중앙에 총 105개의 세포를 포함하는 배양액 10㎕를 넣고, 2시간 인큐베이션한 후 각 웰에 FBS 10%를 포함하는 DMEM을 1ml씩 첨가하였다. 24시간이 지난 뒤 세포를 수확하고, easy-BLUE(TM) Total RNA Extraction Kit (Intron, Cat 17061)를 이용하여 판매자의 지침에 따라 RNA를 분리하였다. 그런 다음, M-MLV Reverse Transcriptase(Promega, M1705)을 이용하여 판매자의 지침에 따라 cDNA를 합성하였다. RT-PCR에 사용된 프라이머는 표 4에 기재된 바와 같다.
그 결과, 실시예 1-2 및 실시예 1-3에서의 결과와 일치하여, MAST4 녹아웃 세포에서도 연골 구성 성분으로 존재하는 세포외 기질 관련 유전자의 발현이 증가한 것을 확인함으로써 (도 4), 인 비트로에서도 MAST4 녹아웃 마우스에서 나타난 결과와 동일한 결과를 얻을 수 있음을 확인하였다.
실시예 3. MAST4 녹아웃 세포에서 마이크로매스 배양 및 연골 분화 활성 증가 확인
3-1. MAST4 녹아웃 세포의 마이크로매스 배양 (micromass culture)
상기 실시예 2-2의 MAST4 녹아웃 세포의 연골형성능을 평가하기 위해, 마이크로매스 배양을 수행하였다.
구체적으로, MAST4 녹아웃 세포를 상기 실시예 2-1과 같이 제작하고, 마이크로매스 배양을 위해 종래에 알려진 방법(Differentiation and Mineralization of MurineMesenchymal C3H10T1/2 Cells in Micromass Culture, 2010, Rani Roy)을 참고하여 수행하였다. 먼저 12 웰 플레이트의 각 웰의 중앙에 섬유아세포 상태의 총 105개의 세포를 포함하는 배양액 10㎕를 넣고, 2시간 인큐베이션한 후 각 웰에 FBS 10%를 포함하는 DMEM을 1ml씩 첨가하였다. 이후, 각 배양물에는 연골로 유도시킬 목적에 따라서 100ng/ml, 500ng/ml, 및 1000ng/ml의 BMP2를 각각 첨가하였다. 그런 다음 배양액을 3일 마다 새로운 것으로 교체해 주었다.
3-2. 마이크로매스 배양된 MAST4 녹아웃 세포의 효과 재현 확인
상기 실시예 3-1에 따라 배양된 MAST4 녹아웃 세포에서도 상기 실시예 2-2의 MAST4 녹아웃 세포에서와 같이 연골 구성 성분인 세포외 기질의 생산이 증가하는지 및 최종적으로 연골형성능이 증가하는지 확인하기 위해 RT-PCR을 수행하였다.
구체적으로, 상기 마이크로매스 배양을 위해 플레이트에 접종한 날을 기준으로 0일, 3일, 및 6일 간 배양한 것을 각각 수확하여 같은 날에 RNA를 분리하고, 각 유전자에 대해 상기 실시예 1-3과 같이 RT-PCR을 수행하여, 연골 구성 성분의 생산 증가 여부를 확인하였다.
그 결과, 상기 실시예 2-2의 MAST4 녹아웃 세포에서 관찰된 바와 일치하여, 각 세포외 기질 성분의 발현이 증가함과 동시에, 아그레칸(aggrecan)의 발현에 의해 BMP2를 통한 유도로 3일 째부터 연골세포로 분화가 시작됨을 알 수 있고, 결과적으로 연골형성능이 증가하는 것을 확인하였다 (도 5). 특히, MAST4 녹아웃 된 경우, 3일 째에는 일부 큰 발현 차이를 보이지 않는 유전자가 존재하나 (hapln1), 6일 째에는 표시된 모든 세포외 기질 성분 관련 유전자가 과발현하는 반면, 대조군의 경우, 일부 단백질은 적게 발현하거나 6일 째에 오히려 감소하여(예를 들어, Matn3, 또는 Comp) MAST4 녹아웃 세포가 다양한 세포외 기질을 모두 과발현시키는데 유용한 것으로 보였다.
3-3. 대량 배양된 MAST4 녹아웃 세포의 연골형성(chondrogenesis) 확인
상기 실시예 3-2에서 관찰된 각 세포외 기질 성분 관련 유전자 과발현 현상이 유전자 발현 단위가 아닌, 실제 단리하여 수득 가능한 단백질 단위로 증가하는지 확인하기 위해 알시안 블루 염색을 수행하였다.
구체적으로, 상기 각 날짜에 해당되는 세포의 플레이트를 PBS로 2 번씩 세척하고, 4% 파라포름알데히드 1ml를 첨가하여 15 분간 고정시켰다. 그런 다음, 0.1N HCl(pH 1.0)에 녹인 1% 알시안 블루 8-GX(Sigma-Aldrich, A5268) 1ml를 첨가하고 밤새 염색시켰다. 이후 500㎕의 0.1N HCl을 이용하여 2회 세척하고 이미지를 수득하였다.
그 결과, MAST4 녹아웃 세포의 경우 3일 째부터 연골형성이 증가하여 세포외 기질 분비가 증가함을 확인할 수 있었고, 그 정도는 BMP2 농도가 증가함에 따라 증가하는 것으로 보였다 (도 6).
실시예 4. 인간세포에서 MAST4 발현 억제에 따른 효과 확인
실시예 4-1. 인간세포에서 MAST4 발현 억제에 따른 효과 확인
상기 녹아웃 마우스 모델 및 마우스 세포에서 확인된 바와 같은 결과가 인간 세포에서도 동일하게 유발되는지 확인하였다.
구체적으로, 인간 원성 연골세포 (primary chondrocyte)에 (인하대학교 의과대학으로부터 기증됨) MAST4 siRNA(h) (sc-106201; Santa Cruz biotechnology)를 일시적(transient)으로 형질주입하여 녹다운 하거나 (도 8A), MAST4의 발현을 CRISPR/Cas9 시스템에 의해 녹아웃하였다. MAST4 siRNA는 ThermoFisher SCIENCITFIC의 Lipofectamine® RNAiMAX Transfection Reagent를 사용하여 진행하였고, 이에 사용된 프라이머 정보는 하기의 표 6에 개시된 바와 같다. CRISPR/Cas9 시스템의 제작 및 처리는 실시예 1-1과 같이 수행하되, ThermoScientific의 GeneArt™ Precision gRNA Synthesis Kit (A29377)를 참고하여 진행하였으며, 이에 사용된 프라이머 정보는 하기의 표 6에 개시된 바와 같다.
siRNA의 형질주입은, 높은 형질주입 효율을 위해 세포를 플랜팅(planting)하면서 동시에 형질주입하는 역순형질주입(reverse transfection) 기술을 이용하였으며, 형질주입 시약으로는 ThermoFisher SCIENCITFIC의 Lipofectamine® RNAiMAX Transfection Reagent를 사용하였다. 구체적으로, 15nM의 MAST4 siRNA와 4.5 ㎕의 Lipofectamine RNAiMax를 GibcoTM Opti-MEMTM 40 ㎕에서 혼합 후 15분 동안 인큐베이션하였다. 그 후, 1.5 x 105 세포/웰의 인간 원성 연골세포(***변경)를 6 웰 플레이트 (ColI coated plate)에 겐타마이신(gentamicin)이 포함되지 않은 배지 2ml(FBS 10%)과 함께 플랜팅하고, 상기 siRNA 혼합물을 함께 첨가하여, 72 시간 후 수확하고 RNA를 분리하였다. 인간 원성 연골세포는 DMEM (17-205-CVR Corning), FBS Qualified (USA origin 500mL 26140-079, Gibco), L-글루타민 (200mM) (100x 25030-081, Gibco) 및 겐타마이신 (5 m㎍/ml) (10mL 15700-060, Thermofisher) 조건에서 콜라겐 I으로 코팅된 플라스크 (175, Col I Straight Vent 356487, Corning)에 배양하였다.
녹아웃은 MAST4 게놈 상의 20nt (표적을 위한 서열을 표 6에서 볼드체로 표시하였다)를 표적으로 하여 수행되었으며, 구체적으로 #1, #3는 Exon5, #2는 Exon 8을 표적한 것이다. #1와 #3는 Reverse 방향으로 제작하였고, #2는 Forward 방향으로 제작하였다. CRISPR/Cas9 시스템의 제작에 사용된 인간 MAST4 유전자의 레퍼런스는 MAST4 ENSG00000069020 (http://asia.ensembl.org/)을 기준으로 하였다. 표적이 된 Exon 서열 정보 및 CRISPR 결실이 발생되는 NGG PAM 서열 (회색 박스)을 도 7에 구체적으로 개시하였다.
hMAST4 CR#1 F (서열번호 73) 5'-TAATACGACTCACTATAG GAGTGTGGTCGAGGCAATGC-3'
hMAST4 CR#1 R (서열번호 74) 5'-TTCTAGCTCTAAAAC GCATTGCCTCGACCACACTC-3'
hMAST4 CR#2 F (서열번호 75) 5'-TAATACGACTCACTATAG GTAACTCGTCTGGTGTTGGT-3'
hMAST4 CR#2 R (서열번호 76) 5'-TTCTAGCTCTAAAAC ACCAACACCAGACGAGTTAC-3'
hMAST4 CR#3 F (서열번호 77) 5'-TAATACGACTCACTATAG AGCAACCGGAAAAGCTTAAT-3'
hMAST4 CR#3 R (서열번호 78) 5'-TTCTAGCTCTAAAAC ATTAAGCTTTTCCGGTTGCT-3'
HumanAcanRT Forward (336) (서열번호 82) 5'-gaatcaactgctgcagacca-3'
HumanAcan RT Reverse (336) (서열번호 83) 5'-gtgccagatcatcaccacac-3'
HumanCol9a1RT Forward (467) (서열번호 84) 5'-CGTGGATTTCCAGGCCGTGG-3'
HumanCol9a1RT Reverse (467) (서열번호 85) 5'-TCGCTGTCCTTGATCACCAG-3'
HumanGapdhRT Forward (156) (서열번호 86) 5'-TGGCAAAGTGGAGATTGTTGCC-3'
HumanGapdhRT Reverse (156) (서열번호 87) 5'-AAGATGGTGATGGGCTTCCCG-3'
그 결과, 도 8A에서 알 수 있는 바와 같이, MAST4 siRNA를 형질주입하였을 때, MAST4의 발현이 감소된 것이 확인되었고, 이 때 Acan과 같은 세포 외 기질 인자의 발현이 증가하였다. 또한 도 8B에서 알 수 있는 바와 같이, MAST4가 녹아웃됨에 따라 Acan 및 Col9a1과 같은 세포 외 기질 인자의 발현이 증가하였다. 이러한 결과는 앞서 마우스 모델 및 마우스 세포를 이용하여 입증된 바와 동일하다. 따라서, 다른 세포 외 기질 인자 및 연골형성 효과에서도 인간 세포에서 MAST4의 발현을 저해함으로써, 마우스에서 입증된 바와 동일한 결과를 얻을 수 있을 것이다.
실시예 4-2. 인간세포에서 TGF - β1의 MAST4 발현 억제 및 그에 따른 효과 확인
실시예 4-1에서 확인된 바와 같은 MAST4 발현 억제가 TGF-β1에 의해 유발되고, 그에 따라 세포 외 기질 인자의 발현에 미치는 영향을 확인하였다.
구체적으로, 실시예 4-1의 인간 원성 연골세포에 TGF-β1을 처리하여 실시예 1-2 및 1-3과 같은 RT-PCR 및 웨스턴 블롯팅을 이용해 그 발현량을 측정하였다.
그 결과, 도 9 에서 알 수 있는 바와 같이, TGF-β1 (5ng/ml)을 24, 48, 72 시간 각각 처리하여 보면 MAST4의 발현이 억제되고, 그에 따라 세포 외 기질 인자의 발현도 증가함을 알 수 있다. TGF-β1 (5ng/ml)과 TGF-β1의 저해제인 TEW-7197을 동시에 처리하면 (도 9B) TGF-β1에 의해 증가되었던 Acan의 발현이 억제되고 MAST4의 발현도 TGF-β1 단독 처리한 것에 비해 억제효과가 감소되었다.

Claims (20)

  1. MAST4(Microtubule Associated Serine/Threonine Kinase Family Member 4) 단백질 또는 이의 단편에 특이적으로 결합할 수 있는 화합물, 또는 상기 MAST4 단백질 또는 이의 단편을 코딩하는 핵산에 특이적으로 결합할 수 있는 화합물을 포함하는, 진핵세포에서 세포외 기질의 생산을 촉진하기 위한 조성물.
  2. 청구항 1에 있어서, 상기 MAST4 단백질은 서열번호 1 내지 7 및 15 중 어느 하나의 아미노산 서열을 포함하는 것이고, 상기 MAST4 단백질을 코딩하는 핵산은 서열번호 8 내지 14 및 16 중 어느 하나의 폴리뉴클레오티드 서열을 포함하는 것인 조성물.
  3. 청구항 1에 있어서, 상기 MAST4 단백질 또는 이의 단편에 특이적으로 결합할 수 있는 화합물, 또는 상기 MAST4 단백질 또는 이의 단편을 코딩하는 핵산에 특이적으로 결합할 수 있는 화합물은 상기 MAST4 단백질의 활성 또는 발현을 저해하는 화학적으로 합성된 화합물, 폴리펩티드, 폴리뉴클레오티드 또는 이들의 조합인 것인 조성물.
  4. 청구항 3에 있어서, 상기 폴리펩티드는 항체, 또는 이의 항원 결합 단편인 것인 조성물.
  5. 청구항 1에 있어서, 상기 MAST4 단백질 또는 이의 단편을 코딩하는 핵산에 특이적으로 결합할 수 있는 화합물은 상기 MAST4 단백질 또는 이의 단편을 코딩하는 핵산에 특이적인 miRNA(microRNA), siRNA(small interfering RNA), shRNA(short hairpin RNA), Piwi-상호작용 RNA(Piwi-interacting RNA; piRNA), snRNA(small nuclear RNA), 안티센스 올리고뉴클레오티드 또는 이들의 조합인 것인 조성물.
  6. 청구항 1에 있어서, 상기 MAST4 단백질 또는 이의 단편을 코딩하는 핵산에 특이적으로 결합할 수 있는 화합물은 상기 MAST4 단백질 또는 이의 단편을 코딩하는 핵산에 특이적인 가이드 RNA (guide RNA)를 포함하는 CRISPR-Cas인 것인 조성물.
  7. 청구항 6에 있어서, 상기 가이드 RNA는 상기 MAST4 단백질 또는 이의 단편을 코딩하는 핵산에 특이적인 crRNA(CRISPR RNA) 및 tracrRNA (transactivating crRNA)를 포함하는 이중RNA (dualRNA), 또는 상기 crRNA 및 tracrRNA의 부분을 포함하고 상기 MAST4 단백질 또는 이의 단편을 코딩하는 핵산과 혼성화하는 단일-사슬 가이드 RNA (single strand guideRNA) 것인 조성물.
  8. 청구항 1에 있어서, 상기 진핵세포는 섬유아세포(fibroblast) 또는 연골세포(chondrocyte)인 것인 조성물.
  9. 청구항 1에서, 상기 진핵세포로부터 연골형성(chondrogenesis)을 촉진하기 위한 것인 조성물.
  10. 청구항 1에 있어서, 관절 질환의 예방, 치료 또는 증상의 개선을 위한 것인 조성물.
  11. 청구항 9에 있어서, 상기 연골형성 촉진은 연골재생을 유도하기 위한 것인 조성물.
  12. 청구항 1에 있어서, 조직 재생 또는 노화를 방지하는데 사용하기 위한 조성물.
  13. 청구항 1에 있어서, 상기 조성물은 TGF-β1을 더 포함하는 것인 조성물.
  14. 청구항 1의 조성물을 개체에 투여하는 단계를 포함하는, 관절 질환의 예방, 치료 또는 개선시키는 방법.
  15. 청구항 1의 진핵세포로부터 세포외 기질 생산을 촉진하기 위한 조성물을 진핵세포와 접촉시키는 단계를 포함하는 진핵세포로부터 세포외 기질 생산하는 방법.
  16. 청구항 15에 있어서, 상기 진핵세포는 개체로부터 분리된 것인 방법.
  17. 청구항 15에 있어서, 상기 진핵 세포와 접촉시키는 단계는 상기 조성물의 존재하에서 상기 진핵세포를 배양하는 단계를 포함하는 것인 방법.
  18. 청구항 17에 있어서, 상기 배양하는 단계는 연골형성을 유도하는 물질의 존재하에서 배양하는 것인 방법.
  19. 청구항 15에 있어서, 접촉 산물로부터 세포외 기질을 분리하는 단계를 더 포함하는 세포외 기질을 생산하는 방법.
  20. 청구항 15에 있어서, 상기 진핵세포는 연골세포인 것인 세포외 기질을 생산하는 방법.
PCT/KR2018/002763 2017-03-08 2018-03-08 Mast4 유전자를 이용한 세포외 기질 생산용 조성물 및 그 제조방법 WO2018164507A2 (ko)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2019571194A JP7154238B2 (ja) 2017-03-08 2018-03-08 Mast4遺伝子を利用した細胞外基質生産用組成物及びその製造方法
AU2018231559A AU2018231559A1 (en) 2017-03-08 2018-03-08 Extracellular matrix-producing composition using MAST4 gene and preparation method therefor
EP18764604.7A EP3594324A4 (en) 2017-03-08 2018-03-08 EXTRACELLULAR MATRIX-PRODUCING COMPOSITION WITH MAST4-GEN AND MANUFACTURING METHOD FOR IT
CA3055729A CA3055729A1 (en) 2017-03-08 2018-03-08 Extracellular matrix-producing composition using mast4 gene and preparation method therefor
CN201880030519.0A CN110612348B (zh) 2017-03-08 2018-03-08 用于使用mast4基因产生细胞外基质的组合物及其制备方法
US16/492,477 US11180573B2 (en) 2017-03-08 2018-03-08 Extracellular matrix-producing composition using MAST4 gene and preparation method therefor
US17/494,765 US20220220221A1 (en) 2017-03-08 2021-10-05 Extracellular matrix-producing composition using mast4 gene and preparation method therefor
JP2022159928A JP7498239B2 (ja) 2017-03-08 2022-10-04 Mast4遺伝子を利用した細胞外基質生産用組成物及びその製造方法
AU2023222944A AU2023222944A1 (en) 2017-03-08 2023-08-31 Extracellular matrix-producing composition using MAST4 gene and preparation method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0029607 2017-03-08
KR20170029607 2017-03-08
KR10-2018-0027111 2018-03-07
KR1020180027111A KR102588627B1 (ko) 2017-03-08 2018-03-07 Mast4 유전자를 이용한 세포외 기질 생산용 조성물 및 그 제조방법

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/492,477 A-371-Of-International US11180573B2 (en) 2017-03-08 2018-03-08 Extracellular matrix-producing composition using MAST4 gene and preparation method therefor
US17/494,765 Continuation US20220220221A1 (en) 2017-03-08 2021-10-05 Extracellular matrix-producing composition using mast4 gene and preparation method therefor

Publications (2)

Publication Number Publication Date
WO2018164507A2 true WO2018164507A2 (ko) 2018-09-13
WO2018164507A3 WO2018164507A3 (ko) 2019-04-11

Family

ID=63447864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002763 WO2018164507A2 (ko) 2017-03-08 2018-03-08 Mast4 유전자를 이용한 세포외 기질 생산용 조성물 및 그 제조방법

Country Status (1)

Country Link
WO (1) WO2018164507A2 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105636614A (zh) 2013-09-09 2016-06-01 菲格内有限责任公司 用于软骨细胞或软骨型细胞再生的基因治疗

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX353186B (es) * 2009-09-03 2018-01-05 Genentech Inc Metodos para el tratamiento, diagnosis y monitoreo de artritis reumatoide.
KR102039311B1 (ko) * 2012-09-07 2019-11-04 주식회사 마크로젠 Axl을 포함하는 융합 단백질 및 이를 포함하는 암 진단용 조성물
EP3307728A4 (en) * 2015-06-12 2019-07-17 Dana Farber Cancer Institute, Inc. ASSOCIATION THERAPY USING TRANSCRIPTION INHIBITORS AND KINASE INHIBITORS

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105636614A (zh) 2013-09-09 2016-06-01 菲格内有限责任公司 用于软骨细胞或软骨型细胞再生的基因治疗

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BMC GENOMICS, vol. 8, 2007, pages 165
See also references of EP3594324A4

Also Published As

Publication number Publication date
WO2018164507A3 (ko) 2019-04-11

Similar Documents

Publication Publication Date Title
Song et al. Regulation and function of SOX9 during cartilage development and regeneration
WO2018030608A1 (ko) Cas9 단백질 및 가이드 RNA의 혼성체를 함유하는 나노 리포좀 전달체 조성물
JP2021182934A (ja) アルファ1アンチトリプシン欠乏症の治療のための材料および方法
JP2020182452A (ja) 多能性幹細胞を所望の細胞型へ分化する方法
WO2019050071A1 (ko) 엑소좀 또는 엑소좀 유래 리보핵산을 포함하는 간섬유증 예방 또는 치료용 조성물
KR102201417B1 (ko) 도파민 신경세포의 분리방법 및 이를 이용하여 분리된 도파민 신경세포를 포함하는 파킨슨병 치료용 약제학적 조성물
JP2022522650A (ja) Crispr-casエフェクターポリペプチド及びその使用方法
US20220220221A1 (en) Extracellular matrix-producing composition using mast4 gene and preparation method therefor
US20180147256A1 (en) Means and methods for treating facioscapulohumeral muscular dystrophy (fshd).
US20120003186A1 (en) Method for dedifferentiating adipose tissue stromal cells
WO2018030630A1 (ko) Sox 유전자가 이입된 비바이러스성 미니써클 벡터 및 이의 제조방법
Guo et al. XBP 1S, a BMP 2‐inducible transcription factor, accelerates endochondral bone growth by activating GEP growth factor
JP2022545462A (ja) Crispr/cas9ベースの転写活性化因子による骨格筋芽細胞前駆細胞系譜特定
WO2020017914A1 (ko) Setdb1 또는 이의 저해제를 포함하는 암세포의 분열 또는 분화 조절용 조성물
WO2018164507A2 (ko) Mast4 유전자를 이용한 세포외 기질 생산용 조성물 및 그 제조방법
CA3096274A1 (en) Compositions and methods for somatic cell reprogramming and modulating imprinting
WO2015088162A1 (ko) 줄기세포로부터 연골세포로의 분화 촉진용 조성물
TW201629227A (zh) 新穎治療用抗癌藥的製造與使用
JP7498239B2 (ja) Mast4遺伝子を利用した細胞外基質生産用組成物及びその製造方法
KR102089088B1 (ko) 혈액 응고인자 ⅷ의 교정용 조성물 및 이를 이용한 방법
KR101642202B1 (ko) Klf10 발현 억제제를 포함하는 연골세포 분화 촉진 또는 연골질환 치료용 조성물, 및 이를 이용한 연골분화 촉진 방법
KR20120134360A (ko) 세포의 역분화 증진용 조성물 및 이를 이용한 유도 만능 줄기세포의 제조방법
WO2020122534A1 (ko) Snai1의 발현을 억제하는 비대칭 sirna
CN115054612B (zh) 一种可用于促进骨形成的增强子及其应用
Zhou et al. Treating congenital megacolon by transplanting GDNF and GFRα-1 double genetically modified rat bone marrow mesenchymal stem cells

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3055729

Country of ref document: CA

Ref document number: 2019571194

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018764604

Country of ref document: EP

Effective date: 20191008

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764604

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2018231559

Country of ref document: AU

Date of ref document: 20180308

Kind code of ref document: A