WO2018164209A1 - 弾性波装置、弾性波装置パッケージ、高周波フロントエンド回路及び通信装置 - Google Patents

弾性波装置、弾性波装置パッケージ、高周波フロントエンド回路及び通信装置 Download PDF

Info

Publication number
WO2018164209A1
WO2018164209A1 PCT/JP2018/008912 JP2018008912W WO2018164209A1 WO 2018164209 A1 WO2018164209 A1 WO 2018164209A1 JP 2018008912 W JP2018008912 W JP 2018008912W WO 2018164209 A1 WO2018164209 A1 WO 2018164209A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave device
elastic wave
support substrate
piezoelectric body
formula
Prior art date
Application number
PCT/JP2018/008912
Other languages
English (en)
French (fr)
Inventor
卓哉 小柳
英樹 岩本
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to KR1020197025378A priority Critical patent/KR102294237B1/ko
Priority to CN202310552681.1A priority patent/CN116599490A/zh
Priority to JP2019504655A priority patent/JP6624336B2/ja
Priority to CN201880016602.2A priority patent/CN110431743B/zh
Publication of WO2018164209A1 publication Critical patent/WO2018164209A1/ja
Priority to US16/562,465 priority patent/US11476828B2/en
Priority to US17/945,139 priority patent/US11671071B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/09Elastic or damping supports
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6489Compensation of undesirable effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02834Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02866Means for compensation or elimination of undesirable effects of bulk wave excitation and reflections
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1064Mounting in enclosures for surface acoustic wave [SAW] devices
    • H03H9/1071Mounting in enclosures for surface acoustic wave [SAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the SAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/74Multiple-port networks for connecting several sources or loads, working on the same frequency or frequency band, to a common load or source

Definitions

  • the present invention relates to an acoustic wave device in which a piezoelectric body is provided on a support substrate made of silicon.
  • Patent Document 1 discloses an acoustic wave device in which an organic adhesive layer and a piezoelectric substrate are laminated on a silicon support substrate. And heat resistance is improved by joining on the (111) plane of silicon.
  • the higher order mode is the first higher order mode having a frequency higher than that of the main mode propagating through the piezoelectric body and closest to the response of the main mode
  • the first higher order mode is used. Is close to the response of the main mode, which may adversely affect the filter characteristics.
  • the main mode here means that when the elastic wave device is a resonator for a band-pass filter, at least one of a resonance frequency and an anti-resonance frequency exists in the pass band of the filter, and The wave mode has the largest difference between the impedance at the resonance frequency and the impedance at the anti-resonance frequency.
  • the elastic wave device is a filter, it is a wave mode used to form a pass band of the filter.
  • An object of the present invention is to provide an elastic wave device, an elastic wave device package, a high-frequency front-end circuit, and a communication device that can suppress a response due to the first higher-order mode propagating through a piezoelectric body.
  • the present invention includes a support substrate made of silicon, a silicon oxide film provided on the support substrate, a piezoelectric body provided on the silicon oxide film, and one main surface of the piezoelectric body.
  • IDT electrodes and when the wavelength determined by the electrode finger pitch of the IDT electrodes is ⁇ , the thickness of the support substrate is 3 ⁇ or more, and the sound velocity of the first higher-order mode propagating through the piezoelectric body but equal to or acoustic velocity V Si of the following equation is the speed of sound of a bulk wave propagating through the supporting substrate (1), or is faster than the acoustic velocity V Si, is an elastic wave device.
  • the speed of sound V Si is expressed by the following formula (1).
  • V Si (V 1 ) 1/2 (m / sec) (1)
  • V 1 in formula (1) is the solution of the following equation (2).
  • A, B, C and D are values represented by the following formulas (2A) to (2D), respectively.
  • L 11 c 11 ⁇ a 1 2 + c 44 ⁇ a 2 2 + c 44 ⁇ a 3 2
  • L 22 c 44 ⁇ a 1 2 + c 11 ⁇ a 2 2 + c 44 ⁇ a 3 2
  • L 33 c 44 ⁇ a 1 2 + c 44 ⁇ a 2 2 + c 11 ⁇ a 3 2
  • L 21 (c 12 + c 44 ) ⁇ a 2 ⁇ a 1
  • L 31 (c 12 + c 44) ⁇ a 1 ⁇ a 3 ...
  • L 23 (c 44 + c 12) ⁇ a 3 ⁇ a 2 ... Equation (3F)
  • a 1 , a 2 and a 3 are values represented by the following formulas (4A) to (4C).
  • a 1 cos ( ⁇ ) ⁇ cos ( ⁇ ) ⁇ sin ( ⁇ ) ⁇ cos ( ⁇ ) ⁇ sin ( ⁇ ) (4A)
  • a 2 sin ( ⁇ ) ⁇ cos ( ⁇ ) + cos ( ⁇ ) ⁇ cos ( ⁇ ) ⁇ sin ( ⁇ )
  • a 3 sin ( ⁇ ) ⁇ sin ( ⁇ ) Equation (4C)
  • ⁇ , ⁇ , and ⁇ in the equations (4A) to (4C) are ⁇ , ⁇ , and ⁇ in the crystal orientation ( ⁇ , ⁇ , ⁇ ) of the support substrate.
  • the thickness of the support substrate is 20 ⁇ or more. In this case, since the thickness of the support substrate is 20 ⁇ or more, the response of the second higher-order mode having a higher frequency can be further suppressed.
  • the thickness of the silicon oxide film is in any of the ranges shown in Table 1 below. In this case, it is possible to suppress the second higher-order mode.
  • the thickness of the silicon oxide film is in any of the ranges shown in Table 2 below. In this case, it is possible to further suppress the first higher-order mode.
  • the V 1 in the equation (1) is the smallest value among the solutions V 1, V 2 , and V 3 of the equation (2). In this case, the higher-order mode response can be more effectively suppressed.
  • the sound velocity V Si of the support substrate is 4700 m / sec or less.
  • the response of the higher-order mode can be reduced when the film thickness of the silicon oxide film is 1.20 ⁇ or less.
  • the support substrate has a thickness of 180 ⁇ m or less. In this case, heat dissipation can be enhanced and a reduction in height can be realized.
  • the thickness of the piezoelectric body is 3.5 ⁇ or less.
  • the energy concentration of the elastic wave can be increased, and loss can be reduced.
  • the film thickness of the piezoelectric body is 2.5 ⁇ or less.
  • the absolute value of the frequency temperature coefficient (TCF) of the device can be reduced.
  • the film thickness of the piezoelectric body is 1.5 ⁇ or less.
  • the electromechanical coupling coefficient can be easily adjusted.
  • the thickness of the piezoelectric body is 0.5 ⁇ or less.
  • the electromechanical coupling coefficient can be easily adjusted in a wide range by setting the film thickness of the piezoelectric body to 0.5 ⁇ or less.
  • the piezoelectric body is made of LiTaO 3 .
  • the acoustic velocity of the bulk wave propagating through the silicon oxide film is slower than the acoustic velocity of the elastic wave propagating through the piezoelectric body. In this case, the higher-order mode can be leaked to the silicon oxide film side more effectively.
  • the acoustic velocity of the bulk wave propagating through the support substrate is faster than the acoustic velocity of the elastic wave propagating through the piezoelectric body.
  • the acoustic velocity of the bulk wave propagating between the silicon oxide film and the support substrate is higher than the acoustic velocity of the elastic wave propagating through the piezoelectric body.
  • a fast high sound speed material layer is further provided. In this case, the higher-order mode response can be more effectively suppressed.
  • a dielectric layer provided between the piezoelectric body and the IDT electrode is further provided.
  • the dielectric layer is made of silicon oxide or tantalum pentoxide.
  • silicon oxide has a positive temperature characteristic (a direction in which the frequency increases as the temperature is increased), the frequency temperature characteristic can be improved.
  • a support layer surrounding the IDT electrode, a cover member covering the support layer and forming a hollow space surrounding the IDT electrode, and the cover A plurality of metal bumps provided on the member and electrically connected to the IDT electrode are further provided.
  • the elastic wave device of the present invention having a WLP structure can be provided.
  • a support layer surrounding the IDT electrode, and a cover member covering the support layer and forming a hollow space surrounding the IDT electrode are further included.
  • the support substrate includes a through-electrode penetrating the support substrate and a surface electrically connected to the through-electrode and opposite to the side of the support substrate on which the IDT electrode is provided And the through electrode is electrically connected to the IDT electrode and the terminal electrode.
  • the terminal electrode is provided on the surface of the support substrate opposite to the side on which the IDT electrode is provided, so that a reduction in size can be realized as compared with the case where the terminal electrode is provided on the cover member side. it can.
  • An acoustic wave device package includes a case substrate having a plurality of electrode lands provided on one surface and an acoustic wave device configured according to the present invention, and is a metal electrically connected to the IDT electrode. Bumps are provided on the acoustic wave device, and are mounted on the case substrate so that the metal bumps of the acoustic wave device are bonded to the electrode lands, and the acoustic wave device is sealed. A sealing resin layer provided on the case substrate is further provided.
  • the case includes: a case substrate provided with a plurality of electrode lands on one surface; and an acoustic wave device configured according to the present invention and having a WLP structure.
  • the plurality of metal bumps are mounted on the case substrate so that the plurality of metal bumps are bonded to the plurality of electrode lands of the substrate, and a sealing resin layer provided to seal the acoustic wave device is further provided. ing.
  • a gap may be provided between the cover member and the case substrate.
  • a high-frequency front end circuit according to the present invention includes an elastic wave device configured according to the present invention and a power amplifier.
  • the communication device includes a high-frequency front-end circuit configured according to the present invention and an RF signal processing circuit.
  • the first frequency is higher than the main mode propagating through the piezoelectric body and closest to the response of the main mode. The response due to the higher order mode can be suppressed.
  • FIG. 1A and 1B are a front sectional view of an acoustic wave device according to an embodiment of the present invention and a schematic plan view showing an electrode structure of the acoustic wave device in one embodiment.
  • FIG. 2 is a diagram for explaining the first and second higher-order modes.
  • FIG. 3 is a diagram showing the relationship between the thickness of the support substrate made of silicon and the first and second higher-order mode phase maximum values.
  • FIG. 4 is a schematic diagram for explaining the definition of the crystal orientation of the support substrate made of silicon.
  • FIG. 6 (a) and 6 (b) are diagrams showing impedance characteristics of the acoustic wave device when the sound velocity V Si is 5000 m / sec and the acoustic wave device when the sound velocity V Si is 4500 m / sec. .
  • FIG. 7 is a diagram showing the relationship between the thickness of the LiTaO 3 film and the Q characteristic in the acoustic wave device.
  • FIG. 8 is a diagram showing the relationship between the LiTaO 3 film thickness and the frequency temperature coefficient TCF in the acoustic wave device.
  • FIG. 9 is a diagram showing the relationship between the film thickness of the LiTaO 3 film and the sound speed in the acoustic wave device.
  • FIG. 10 is a diagram showing the relationship between the film thickness of the piezoelectric film made of LiTaO 3 and the specific band.
  • FIG. 11 is a diagram showing the relationship among the film thickness, the sound speed, and the material of the high sound speed film of the silicon oxide film.
  • FIG. 12 is a diagram showing the relationship among the film thickness of the silicon oxide film, the electromechanical coupling coefficient, and the material of the high sound velocity film.
  • FIG. 13 is a diagram showing the relationship between the film thickness of the silicon oxide film and the sound speed of the higher-order mode.
  • FIG. 14 is a front sectional view of an acoustic wave device according to a second embodiment of the present invention.
  • FIG. 15 is a diagram showing the relationship between the film thickness of the dielectric layer and the ratio band.
  • FIG. 16 is a front sectional view of an acoustic wave device according to a third embodiment of the present invention.
  • FIG. 17 is a front sectional view of an acoustic wave device package according to a fourth embodiment of the present invention.
  • FIG. 18 is a front sectional view of an acoustic wave device package according to a fifth embodiment of the present invention.
  • FIG. 19 is a front sectional view of an acoustic wave device according to a sixth embodiment of the present invention.
  • FIG. 20 is a front sectional view of an acoustic wave device package according to a seventh embodiment of the present invention. It is a block diagram of the communication apparatus which has a high frequency front end circuit.
  • FIG. 1A is a front sectional view of an acoustic wave device according to an embodiment of the present invention.
  • the acoustic wave device 1 has a support substrate 2 made of silicon.
  • the support substrate 2 has a single crystal structure having a crystal orientation. Note that the supporting substrate 2 may not have a complete single crystal structure as long as it has a crystal orientation.
  • the support substrate 2 made of silicon is used as the support substrate 2, but also includes a substrate that includes a part of impurities. This is the same not only in the first embodiment but also in all the following embodiments.
  • a silicon oxide film 3 is laminated on the support substrate 2.
  • the silicon oxide film 3 is made of SiO 2 or the like.
  • a piezoelectric body 4 is laminated directly or indirectly on the silicon oxide film 3.
  • the piezoelectric body 4 is LiTaO 3 .
  • the piezoelectric body 4 is indirectly provided on the support substrate 2.
  • An IDT electrode 5 and reflectors 6 and 7 are provided on the piezoelectric body 4.
  • the electrode structure of the acoustic wave device 1 includes the IDT electrode 5 and the reflectors 6 and 7.
  • the elastic wave device 1 is a 1-port elastic wave resonator.
  • the IDT electrode 5 is provided on the upper surface of the piezoelectric body 4, but may be provided on the lower surface. A dielectric film may be formed on the IDT electrode 5.
  • the inventor of the present application can suppress the first higher-order mode by setting the thickness of the support substrate 2 to 3 ⁇ or more when the wavelength determined by the electrode finger pitch of the IDT electrode 5 is ⁇ . I discovered something new. The present invention is based on this new finding. This is shown below.
  • FIG. 2 shows a silicon oxide film 3 having a thickness of 0.3 ⁇ and a piezoelectric body 4 having a thickness of 0.2 ⁇ on a support substrate 2 made of silicon having a crystal orientation of (0 °, 0 °, 0 °).
  • the resonance characteristics of an acoustic wave device provided with an IDT electrode 5 made of Al having a thickness of 0.08 ⁇ and reflectors 6 and 7 are shown.
  • the wavelength ⁇ determined by the electrode finger pitch in the IDT electrode 5 was 1 ⁇ m.
  • the acoustic wave device 1 When the acoustic wave device 1 is excited, a plurality of higher-order mode responses appear in a higher frequency range than the main-mode response.
  • the higher order mode closest to the response of the main mode is the first higher order mode
  • the higher order mode closest to the response of the main mode next to the first higher order mode is the second higher order mode.
  • the main mode means that at least one of a resonance frequency and an anti-resonance frequency exists in the pass band, and the impedance at this resonance frequency is The mode having the largest impedance ratio at the anti-resonance frequency shall be said.
  • the response of the first higher-order mode appears in the vicinity of 5.25 GHz.
  • a response by the second higher-order mode appears at 5.5 GHz to 5.6 GHz.
  • the acoustic wave device 1 in order to obtain good characteristics, it is necessary to suppress at least the first higher-order mode closest to the main mode.
  • FIG. 3 is a diagram showing the relationship between the thickness of the support substrate made of silicon and the phase maximum values of the first and second higher-order modes.
  • the phase maximum value of the first higher-order mode increases as the thickness of the support substrate 2 increases.
  • the thickness of the support substrate 2 is 3 ⁇ or more, the phase maximum value of the first higher-order mode becomes substantially constant. Therefore, in order to suppress the first higher-order mode, the thickness of the support substrate 2 needs to be 3 ⁇ or more.
  • the thickness of the support substrate 2 is 20 ⁇ or more, the phase maximum values of the first higher-order mode and the second higher-order mode can be reduced. Further, when the thickness of the support substrate 2 is 20 ⁇ or more, the phase maximum values of the first higher-order mode and the second higher-order mode are substantially constant. Therefore, in order to suppress the first higher-order mode and the second higher-order mode, the thickness of the support substrate 2 needs to be 20 ⁇ or more.
  • the upper limit of the thickness of the support substrate 2 is desirably 180 ⁇ m or less.
  • the thickness of the support substrate 2 is preferably 20 ⁇ or more and 180 ⁇ m or less. In this case, ⁇ is less than 9 ⁇ m.
  • the inventor of the present application increases the response of the higher-order mode propagating through the piezoelectric body when the sound velocity V Si of the bulk wave propagating in the support substrate becomes higher than the sound speed of the higher-order mode propagating through the piezoelectric body. It is new that the response of the higher order mode propagating through the piezoelectric body becomes smaller when V Si is equal to the sound speed of the higher order mode propagating through the piezoelectric body or lower than the sound speed of the higher order mode propagating through the piezoelectric body. I found it. The present invention is based on this new finding. In the following, the speed of sound V Si may be described as the speed of sound of the support substrate.
  • the acoustic velocity V Si of the bulk wave propagating in the support substrate is expressed by the following formulas (1) to (4C), and depends on the crystal orientation ( ⁇ , ⁇ , ⁇ ) values of the support substrate made of silicon. The value changes.
  • V Si (V 1 ) 1/2 (m / sec) (1)
  • V 1 in the above formula (1) is a solution of the following formula (2).
  • A, B, C and D are values represented by the following formulas (2A) to (2D), respectively.
  • L 11 , L 22 , L 33 , L 21 , L 31 and L 23 are values represented by the following formulas (3A) to (3F).
  • L 11 c 11 ⁇ a 1 2 + c 44 ⁇ a 2 2 + c 44 ⁇ a 3 2
  • L 22 c 44 ⁇ a 1 2 + c 11 ⁇ a 2 2 + c 44 ⁇ a 3 2
  • L 33 c 44 ⁇ a 1 2 + c 44 ⁇ a 2 2 + c 11 ⁇ a 3 2
  • L 21 (c 12 + c 44 ) ⁇ a 2 ⁇ a 1
  • L 31 (c 12 + c 44) ⁇ a 1 ⁇ a 3 ...
  • L 23 (c 44 + c 12) ⁇ a 3 ⁇ a 2 ... Equation (3F)
  • a 1 , a 2 and a 3 are values represented by the following formulas (4A) to (4C).
  • a 1 cos ( ⁇ ) ⁇ cos ( ⁇ ) ⁇ sin ( ⁇ ) ⁇ cos ( ⁇ ) ⁇ sin ( ⁇ ) (4A)
  • a 2 sin ( ⁇ ) ⁇ cos ( ⁇ ) + cos ( ⁇ ) ⁇ cos ( ⁇ ) ⁇ sin ( ⁇ )
  • a 3 sin ( ⁇ ) ⁇ sin ( ⁇ ) Equation (4C)
  • ⁇ , ⁇ , and ⁇ in the equations (4A) to (4C) are ⁇ , ⁇ , and ⁇ in the crystal orientation ( ⁇ , ⁇ , ⁇ ) of the support substrate made of silicon.
  • FIG. 4 is a schematic diagram for explaining the definition of the crystal orientation of the support substrate.
  • ZXZ is the rotation axis.
  • the crystal orientation ( ⁇ , ⁇ , ⁇ ) means 1) (X, Y, Z) is rotated by “ ⁇ ” around the Z axis to (X 1 , Y 1 , Z 1 ), and then 2) ( X 1 , Y 1 , Z 1 ) is rotated by “ ⁇ ” around the X 1 axis to (X 2 , Y 2 , Z 2 ), and 3) (X 2 , Y 2 , Z 2 ) is Z 2 axis It rotates around “ ⁇ ” and becomes an orientation (X 3 , Y 3 , Z 3 ).
  • V Si is calculated as the sound velocity of the slowest transverse wave among the bulk waves propagating in the support substrate propagating in the Xa direction.
  • the elastic constants c 11 , C 12 and c 44 of Si are values defined as follows.
  • the strain S and stress T of the elastic body are in a proportional relationship. This proportional relationship is represented by the following matrix.
  • the proportionality constant (c ij ) in this equation is called the elastic constant.
  • the elastic constant c ij is determined by the crystal system to which the solid belongs. For example, silicon can be expressed as follows from the symmetry of crystals.
  • the speed of sound V Si can be obtained by the equation (1) according to the crystal orientation of the support substrate made of silicon.
  • the sound velocity of the first higher-order mode propagating through the piezoelectric body 4 is the same as the sound velocity V Si shown below, which is the sound velocity of the bulk wave propagating in the support substrate 2, or higher than the sound velocity V Si. It is shown below that it is possible to suppress the first higher-order mode when it is done.
  • FIG. 6A shows the impedance of the acoustic wave device when the sound velocity V Si is 5000 m / sec when the thickness of the silicon oxide film is 0.5 ⁇ and the thickness of the piezoelectric body is 0.3 ⁇ . It is a figure which shows a characteristic.
  • FIG. 6B is a diagram showing impedance characteristics of an elastic wave device configured in the same manner as described above except that the speed of sound V Si is 4500 m / sec.
  • the acoustic velocity of the first higher-order mode is equal to or acoustic velocity V Si, which is faster than the acoustic velocity V Si. Accordingly, the first higher-order mode leaks to the support substrate 2 side. Thereby, the response by the first higher-order mode can be effectively suppressed.
  • the thickness of the support substrate 2 is 3 ⁇ or more, and the sound velocity of the first higher-order mode propagating through the piezoelectric body 4 is the sound velocity of the bulk wave propagating through the support substrate 2.
  • the speed of sound is equal to a certain speed of sound V Si or higher than the speed of sound of V Si , the response due to the first higher-order mode can be more effectively suppressed.
  • the thickness of the support substrate 2 is 20 ⁇ or more and the sound velocity of the first higher-order mode propagating through the piezoelectric body 4 is the same as the sound velocity V Si that is the sound velocity of the bulk wave propagating through the support substrate 2 Alternatively, when the speed is higher than the sound speed V Si , the response due to the first higher-order mode and the second higher-order mode can be further effectively suppressed. Since the sound speed of the second higher-order mode is faster than the sound speed of the first higher-order mode, if the sound speed of the first higher-order mode satisfies Expression (1), the second higher-order mode is automatically turned on. The speed of sound also satisfies equation (1).
  • the thickness of the piezoelectric body 4 is such that the thickness of the piezoelectric body made of LiTaO 3 is 3.5 ⁇ when the wavelength of the acoustic wave determined by the electrode finger pitch of the IDT electrode 5 is ⁇ . It is preferable to be in the following range. In this case, the Q value can be increased.
  • the thickness of the piezoelectric body 4 made of LiTaO 3 is 2.5 ⁇ or less, and in that case, the absolute value of the frequency temperature coefficient TCF can be reduced. More preferably, the thickness of the piezoelectric body 4 made of LiTaO 3 is 1.5 ⁇ or less. In this case, the electromechanical coupling coefficient can be easily adjusted. More preferably, the thickness of the piezoelectric body 4 made of LiTaO 3 is 0.5 ⁇ or less. In this case, the electromechanical coupling coefficient can be easily adjusted in a wide range.
  • Still another feature of the acoustic wave device 1 is that the sound velocity V Si is shown in Table 3 below according to the film thickness of the silicon oxide film 3 when the wavelength determined by the electrode finger pitch of the IDT electrode 5 is ⁇ . It changes like a range. Incidentally, in Table 4 to Table 3 and described below, the acoustic velocity V Si of the bulk wave propagating in the supporting substrate and the acoustic velocity V Si of the silicon.
  • FIG. 7 shows a low sound velocity film made of a silicon oxide film having a thickness of 0.35 ⁇ and a lithium tantalate with Euler angles (0 °, 140.0 °, 0 °) on a high sound velocity support substrate made of silicon. and the thickness of the LiTaO 3 film in the acoustic wave device obtained by stacking a piezoelectric film is a diagram showing the relationship between the Q characteristic.
  • the vertical axis in FIG. 7 is the product of the Q characteristic of the resonator and the ratio band ( ⁇ f).
  • FIG. 8 is a diagram showing the relationship between the LiTaO 3 film thickness and the frequency temperature coefficient TCF.
  • FIG. 9 is a diagram showing the relationship between the film thickness of the LiTaO 3 film and the sound speed. From FIG.
  • the thickness of the LiTaO 3 film is 3.5 ⁇ or less. In that case, the Q value becomes higher than that in the case of exceeding 3.5 ⁇ . More preferably, in order to further increase the Q value, the thickness of the LiTaO 3 film is desirably 2.5 ⁇ or less.
  • the absolute value of the frequency temperature coefficient TCF can be made smaller than that when the thickness exceeds 2.5 ⁇ . More preferably, the film thickness of the LiTaO 3 film is desirably 2 ⁇ or less, and in that case, the absolute value of the frequency temperature coefficient TCF can be 10 ppm / ° C. or less. In order to reduce the absolute value of the frequency temperature coefficient TCF, the thickness of the LiTaO 3 film is more preferably 1.5 ⁇ or less.
  • the ratio band greatly changes when the thickness of the LiTaO 3 film is in the range of 0.05 ⁇ to 0.5 ⁇ . Therefore, the electromechanical coupling coefficient can be adjusted in a wider range. Therefore, in order to widen the adjustment range of the electromechanical coupling coefficient and the specific band, the thickness of the LiTaO 3 film is desirably in the range of 0.05 ⁇ to 0.5 ⁇ .
  • the elastic wave device has a low acoustic velocity film as a low acoustic velocity material layer and a high acoustic velocity membrane as a high acoustic velocity material layer.
  • a silicon nitride film, an aluminum oxide film, and diamond were respectively used as high sound speed films below the low sound speed film made of SiO 2 .
  • the film thickness of the high acoustic velocity film was 1.5 ⁇ .
  • the speed of sound of bulk waves in silicon nitride is 6000 m / sec
  • the speed of sound of bulk waves in aluminum oxide is 6000 m / sec
  • the speed of sound of bulk waves in diamond is 12800 m / sec.
  • the electromechanical coupling coefficient and the sound velocity hardly change.
  • the film thickness of the silicon oxide film is 0.1 ⁇ or more and 0.5 ⁇ or less
  • the electromechanical coupling coefficient hardly changes regardless of the material of the high acoustic velocity film. Further, it can be seen from FIG.
  • the film thickness of the low acoustic velocity film made of silicon oxide is more preferably 2 ⁇ or less and 0.5 ⁇ or less.
  • FIG. 13 is a diagram showing the relationship between the film thickness of the silicon oxide film 3 and the sound speeds of the first higher-order mode and the second higher-order mode.
  • the calculation conditions of FIG. 13 are that the thickness of the piezoelectric body 4 is 0.3 ⁇ , the cut angle is 50 ° Y, the crystal orientation of the support substrate 2 made of silicon is (0 °, 0 °, 0 °), and the IDT electrode 5 Al was 0.08 ⁇ , and the wavelength was 1 ⁇ m.
  • the piezoelectric body 4 is a LiTaO 3 film.
  • FIG. 13 the sound speed of the first higher-order mode and the sound speed of the second higher-order mode are shown. It can be seen that the sound speeds of these two types of higher-order modes change due to changes in the thickness of the silicon oxide film.
  • the sound speed of the second higher-order mode is 5500 m / sec. Therefore, it can be seen that the second higher-order mode can be suppressed if the sound velocity of the support substrate 2 is 5500 m / sec or less. Therefore, from FIG. 13, when the film thickness of the silicon oxide film 3 is 0.40 ⁇ or less, the sound velocity of the support substrate 2 may be 5500 m / sec or less. Similarly, when the film thickness of the silicon oxide film 3 exceeds 0.40 ⁇ and is 0.64 ⁇ or less, it can be seen that the sound velocity of the support substrate 2 may be 5300 m / second or less. Therefore, in order to suppress the second higher-order mode, any one of the sound velocity ranges of the support substrate corresponding to the film thickness of the silicon oxide film 3 shown in Table 3 may be adopted. Thereby, the second higher-order mode can be suppressed.
  • the sound speed of the support substrate 2 is set to any one shown in Table 4 below according to the film thickness range of the silicon oxide film 3.
  • the range may be set.
  • the sound speed of the first higher-order mode is 5300 m / sec when the thickness of the silicon oxide film 3 is 0.12 ⁇ . Therefore, when the thickness of the silicon oxide film 3 is 0.12 ⁇ or less, the sound velocity of the support substrate 2 may be 5300 m / sec or less. Similarly, when the thickness of the silicon oxide film 3 is 0.34 ⁇ , the sound speed of the first higher-order mode is 5100 m / sec as shown in FIG. Therefore, when the film thickness of the silicon oxide film 3 exceeds 0.12 ⁇ and is 0.34 ⁇ or less, if the sound velocity of the support substrate 2 is 5100 m / second or less, the first higher-order mode and the second higher-order mode Both higher order modes can be suppressed.
  • the first film thickness is 0.54 ⁇ or less regardless of the film thickness of the silicon oxide film 3.
  • the first higher-order mode and the second higher-order mode can be effectively suppressed.
  • the acoustic wave device 1 of the present embodiment at least the response due to the first higher-order mode can be effectively suppressed.
  • a 1-port type acoustic wave resonator has been described as the acoustic wave device 1.
  • the acoustic wave device of the present invention is not limited to a 1-port type acoustic wave resonator, and is a longitudinally coupled resonator type elastic device.
  • the present invention can be widely applied to acoustic wave devices having various electrode structures such as wave filters.
  • FIGS. 14 to 20 the structure of the acoustic wave device and the package of the acoustic wave device according to the second to seventh embodiments of the present invention will be described.
  • FIG. 14 is a front sectional view of the acoustic wave device according to the second embodiment of the present invention.
  • a dielectric layer 112 is provided between the piezoelectric body 4 and the IDT electrode 5.
  • the elastic wave device 111 is the same as the elastic wave device 1.
  • the dielectric layer 112 may be provided between the IDT electrode 5 and the piezoelectric body 4. Examples of the dielectric layer 112 include tantalum pentoxide and silicon oxide.
  • FIG. 15 is a diagram showing the relationship between the thickness of the dielectric film and the specific band when the dielectric layer made of tantalum pentoxide is provided and when the dielectric material made of silicon oxide is provided.
  • the result when tantalum pentoxide is used as the dielectric film is indicated by ⁇ , and the result when silicon oxide is used is indicated by ⁇ .
  • the thickness of the dielectric layer can be adjusted to control the specific band.
  • the piezoelectric body is not limited to LiTaO 3 , and other piezoelectric single crystals such as LiNbO 3 , piezoelectric thin films such as ZnO and AlN, and piezoelectric ceramics such as PZT may be used.
  • FIG. 16 is a front sectional view of the acoustic wave device 101 according to the third embodiment of the present invention.
  • a low acoustic velocity material layer 102, a high acoustic velocity material layer 103, and a silicon oxide film 104 are laminated on the support substrate 2 in this order.
  • the acoustic velocity of the bulk wave propagating through the silicon oxide film 104 is slower than the acoustic velocity of the elastic wave propagating through the piezoelectric body 4. Therefore, the silicon oxide film 104 is also a low sound velocity material layer.
  • the piezoelectric body 4 is laminated on the silicon oxide film 104.
  • another low acoustic velocity material layer 102 and a high acoustic velocity material layer 103 may be laminated between the support substrate 2 and the piezoelectric body 4 as in the acoustic wave device 101.
  • the low acoustic velocity material layer 102 is made of a low acoustic velocity material.
  • the low sound velocity material is a material in which the sound velocity of the propagating bulk wave is slower than the sound velocity of the elastic wave propagating through the piezoelectric body such as the piezoelectric body 4.
  • the high sound speed material layer 103 is made of a high sound speed material.
  • the high acoustic velocity material is a material in which the acoustic velocity of the propagating bulk wave is faster than the acoustic velocity of the elastic wave propagating through the piezoelectric body such as the piezoelectric body 4.
  • the low sound velocity materials include dielectric materials such as silicon oxide and tantalum pentoxide containing SiO 2 , glass, silicon oxynitride, tantalum oxide, and compounds obtained by adding fluorine, carbon, or boron to silicon oxide. Examples include a medium having a main component.
  • high sound velocity materials include aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, silicon oxynitride, sapphire, lithium tantalate, lithium niobate, quartz, alumina, zirconia, cordierite, mullite. And various materials such as steatite, forsterite, magnesia, DLC film or diamond, a medium mainly composed of the material, and a medium mainly composed of a mixture of the materials.
  • silicon oxide or tantalum pentoxide is used as the dielectric as the low acoustic velocity material layer, and more preferably silicon oxide is used. In this case, the frequency temperature characteristic can be improved.
  • At least one low sound velocity material layer is disposed between at least one high sound velocity material layer 103 and a piezoelectric body such as the piezoelectric body 4.
  • the support substrate 2 is made of a high sound speed material. Therefore, as in the first embodiment, the structure in which the silicon oxide film 3 is laminated on the support substrate 2 has a configuration in which the low sound velocity material layer is located between the high sound velocity material and the piezoelectric body. Become. Therefore, also in the elastic wave device 1, the energy of the elastic wave can be effectively confined in the piezoelectric body 4.
  • the acoustic wave device package 51 of the fourth embodiment includes a support substrate 52, a silicon oxide film 52 a stacked on the support substrate 52, a piezoelectric body 53, and an IDT electrode 54.
  • a support layer 55 made of resin is provided so as to surround the IDT electrode 54.
  • a cover member 56 is joined on the support layer 55. Thereby, a hollow space D is formed. Terminal electrodes 57a and 57b and metal bumps 58a and 58b are provided on the cover member 56.
  • An element portion having a WLP structure is configured by the portion having the piezoelectric body 53, the IDT electrode 54, the support layer 55, the cover member 56, the terminal electrodes 57a and 57b, and the metal bumps 58a and 58b on the support substrate 52.
  • Metal bumps 58 a and 58 b are electrically connected to terminal electrodes 60 a and 60 b as electrode lands of case substrate 59.
  • the entire element portion having the WLP structure is sealed with a sealing resin layer 61.
  • the sealing resin layer 61 does not reach the space E sandwiched between the metal bumps 58a and the metal bumps 58b. Otherwise, the elastic wave device 65 is the same as the elastic wave device 51. At this time, if the metal bumps 58a and 58b are made of Au, the thermal shock resistance is improved, which is more preferable.
  • the silicon oxide film 73 and the piezoelectric body 74 are laminated in this order on the support substrate 72.
  • An IDT electrode 75 is provided on the piezoelectric body 74.
  • a dielectric layer 76 is provided so as to cover the IDT electrode 75. As described above, the dielectric layer 76 may be further provided so as to cover the IDT electrode 75.
  • the dielectric material constituting the dielectric layer 76 is not particularly limited. For example, silicon oxide can be used.
  • a support layer 77 is provided so as to surround the IDT electrode 75.
  • a cover member 78 is joined on the support layer 77. Thereby, a hollow space D is provided.
  • Via electrodes 79 a and 79 b as through electrodes are provided so as to penetrate the support substrate 72, the silicon oxide film 73 and the piezoelectric body 74.
  • the via electrodes 79a and 79b are electrically connected to the IDT electrode 75.
  • Terminal electrodes 80 a and 80 b are provided on the lower surface of the support substrate 72.
  • the via electrodes 79a and 79b are electrically connected to the terminal electrodes 80a and 80b.
  • the via electrodes 79a and 79b penetrating the support substrate 72 may be used to electrically connect to the outside.
  • terminal electrodes 83 a and 83 b are provided on one surface of the case substrate 82.
  • An elastic wave device 84 is mounted on the case substrate 82.
  • the acoustic wave device 84 has a structure in which a silicon oxide film 86, a piezoelectric body 87, and an IDT electrode 88 are laminated in this order on a support substrate 85.
  • Terminal electrodes 89 a and 89 b are provided on the piezoelectric body 87.
  • Metal bumps 90a and 90b are provided on the terminal electrodes 89a and 89b.
  • the metal bumps 90a and 90b are joined to the terminal electrodes 83a and 83b.
  • a sealing resin layer 91 is provided so as to cover the acoustic wave device 84. In this case, it is more preferable that the metal bumps 90a and 90b are made of Au, because the thermal shock resistance is improved.
  • the first higher-order mode propagating through the piezoelectric film can be specified by a finite element method simulation. Specifically, the thickness of the IDT electrode, the material of the IDT electrode, the thickness of the piezoelectric film, the material of the piezoelectric film, the thickness of each intermediate layer, such as the low-velocity film or the high-speed film, the material of each intermediate layer, the support The parameters of the substrate thickness and the crystal orientation of the support substrate are specified. After that, harmonic vibration analysis is performed with simulation software (FEMET) using each parameter.
  • FEMET simulation software
  • the impedance at each frequency can be obtained by harmonic vibration analysis.
  • the passband of the filter can be specified by measuring the insertion loss of the filter with a network analyzer. Therefore, from the result of the harmonic vibration analysis, it is possible to specify one or more resonance frequencies at which the impedance is a minimum value and one or more anti-resonance frequencies at which the impedance is a maximum value. Then, a wave mode in which the difference between the impedance at the resonance frequency and the impedance at the antiresonance frequency is the largest is specified. The wave mode becomes the main mode propagating through the piezoelectric film. From the harmonic vibration analysis result, it can also be seen whether at least one of the resonance frequency and the anti-resonance frequency exists in the pass band of the filter.
  • the acoustic wave device When the acoustic wave device is a resonator, at least one of a resonance frequency and an anti-resonance frequency exists in the pass band of the filter, and the difference between the impedance at the resonance frequency and the impedance at the anti-resonance frequency is This is the largest wave mode.
  • the elastic wave device When the elastic wave device is a filter, it is a wave mode used to form a pass band of the filter.
  • the main mode it is possible to specify the first higher-order mode propagating through the piezoelectric film (the wave mode occurring on the higher frequency side than the main mode and closest to the main mode).
  • the sound speed of the first higher-order mode propagating through the piezoelectric film is the sound speed at the anti-resonance frequency of the first higher-order mode propagating through the piezoelectric film.
  • V f ⁇ ⁇
  • the sound velocity V of the first higher-order mode propagating through the piezoelectric film is equal to the anti-resonance frequency f of the first higher-order mode propagating through the piezoelectric film and the electrode finger of the IDT electrode. It can be determined from ⁇ , which is twice the pitch.
  • the elastic wave device can be used as a duplexer for a high-frequency front end circuit. This example is described below.
  • FIG. 21 is a configuration diagram of a communication apparatus having a high-frequency front-end circuit.
  • the high-frequency front end circuit 230 and the components connected to the high-frequency front end circuit 230 are shown.
  • an antenna element 202 and an RF signal processing circuit (RFIC) 203 are illustrated.
  • the high-frequency front end circuit 230 and the RF signal processing circuit 203 constitute a communication device 240.
  • the communication device 240 may include a power supply, a CPU, and a display.
  • the high-frequency front-end circuit 230 includes a switch 225, duplexers 201A and 201B, low-noise amplifier circuits 214 and 224, filters 231 and 232, and power amplifier circuits 234a, 234b, 244a, and 244b. Note that the high-frequency front-end circuit 230 and the communication device 240 in FIG. 21 are examples of the high-frequency front-end circuit and the communication device, and are not limited to this configuration.
  • the duplexer 201A includes filters 211 and 212.
  • the duplexer 201B includes filters 221 and 222.
  • the duplexers 201 ⁇ / b> A and 201 ⁇ / b> B are connected to the antenna element 202 via the switch 225.
  • the said elastic wave apparatus may be duplexers 201A and 201B, and may be filters 211, 212, 221 and 222.
  • the elastic wave device may be an elastic wave resonator constituting the duplexers 201A, 201B and the filters 211, 212, 221, 222.
  • the elastic wave device is also applicable to a configuration including three or more filters such as a triplexer in which the antenna terminals of three filters are shared and a hexaplexer in which the antenna terminals of six filters are shared. Can do.
  • the acoustic wave device includes an acoustic wave resonator, a filter, and a multiplexer including two or more filters.
  • the switch 225 connects the antenna element 202 and a signal path corresponding to a predetermined band in accordance with a control signal from a control unit (not shown), and is configured by, for example, a SPDT (Single Pole Double Throw) type switch. .
  • a SPDT Single Pole Double Throw
  • the number of signal paths connected to the antenna element 202 is not limited to one and may be plural. That is, the high frequency front end circuit 230 may be one that supports carrier aggregation.
  • the low noise amplifier circuit 214 is a reception amplification circuit that amplifies a high frequency signal (here, a high frequency reception signal) via the antenna element 202, the switch 225, and the duplexer 201A and outputs the amplified signal to the RF signal processing circuit 203.
  • the low noise amplifier circuit 224 is a reception amplification circuit that amplifies a high-frequency signal (here, a high-frequency reception signal) that has passed through the antenna element 202, the switch 225, and the duplexer 201B, and outputs the amplified signal to the RF signal processing circuit 203.
  • the power amplifier circuits 234a and 234b are transmission amplifier circuits that amplify the high frequency signal (here, the high frequency transmission signal) output from the RF signal processing circuit 203 and output the amplified signal to the antenna element 202 via the duplexer 201A and the switch 225.
  • the power amplifier circuits 244a and 244b are transmission amplifier circuits that amplify the high-frequency signal (here, the high-frequency transmission signal) output from the RF signal processing circuit 203 and output the amplified signal to the antenna element 202 via the duplexer 201B and the switch 225. .
  • the filters 231 and 232 are connected between the RF signal processing circuit 203 and the switch 225 without passing through the low noise amplifier circuit and the power amplifier circuit.
  • the filters 231 and 232 are also connected to the antenna element 202 via the switch 225, similarly to the duplexers 201A and 201B.
  • the RF signal processing circuit 203 processes the high-frequency reception signal input from the antenna element 202 via the reception signal path by down-conversion or the like, and outputs a reception signal generated by the signal processing. Further, the RF signal processing circuit 203 performs signal processing on the input transmission signal by up-conversion or the like, and outputs the high-frequency transmission signal generated by the signal processing to the power amplifier circuits 244a and 244b.
  • the RF signal processing circuit 203 is, for example, an RFIC.
  • the communication apparatus may include a BB (baseband) IC. In this case, the BBIC processes the received signal processed by the RFIC. The BBIC processes the transmission signal and outputs it to the RFIC.
  • the reception signal processed by the BBIC and the transmission signal before the signal processing by the BBIC are, for example, an image signal or an audio signal.
  • the high-frequency front end circuit 230 may include other circuit elements between the above-described components.
  • the high-frequency front end circuit 230 may include a duplexer according to a modification of the duplexers 201A and 201B instead of the duplexers 201A and 201B.
  • the elastic wave device, the high-frequency front-end circuit, and the communication device according to the embodiment of the present invention have been described with reference to the above-described embodiment.
  • another embodiment realized by combining arbitrary components in the above-described embodiment In addition, modifications obtained by various modifications conceived by those skilled in the art within the scope of the present invention without departing from the gist of the present invention, and various devices incorporating the high-frequency front-end circuit and communication device according to the present invention are also described. Included in the invention.
  • the present invention can be widely used for communication devices such as acoustic wave resonators, filters, multiplexers having two or more filters, high-frequency front-end circuits, and mobile phones.
  • Support layer 78 Cover members 79a, 79b ... Via electrodes 80a, 80b ... Terminal electrode 81 ... Elastic wave device package 82 ... Case substrate 83a, 83b ... Terminal electrode 84 ... Elastic wave device 85 ... Support substrate 86 ... Silicon oxide film 87 ... Piezoelectric body 88 ... IDT electrodes 89a, 89b ... Terminal electrodes 90a, 90b Metal bump 91 ... Sealing resin layer 101 ... Elastic wave device 102 ... Low acoustic velocity material layer 103 ... High acoustic velocity material layer 104 ... Silicon oxide film 111 ... Elastic wave device 112 ... Dielectric layer 201A, 201B ... Duplexer 202 ...
  • Antenna element 203 ... RF signal processing circuits 211 and 212 ... Filter 214 ... Low noise amplifier circuits 221 and 222 ... Filter 224 ... Low noise amplifier circuit 225 ... Switch 230 ... High frequency front end circuits 231 and 232 ... Filters 234a and 234b ... Power amplifier circuit 240 ... Communication device 244a, 244b ... Power amplifier circuit

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

圧電体を伝搬する第1の高次モードの応答を抑制することができる、弾性波装置を提供する。 シリコンで構成される支持基板2上に、酸化ケイ素膜3、圧電体4及びIDT電極5とが積層されている弾性波装置1。IDT電極5の電極指ピッチで定まる波長をλとしたときに、支持基板2の厚みが、3λ以上である。圧電体4を伝搬する第1の高次モードの音速が、下記の式(2)から導出されるxの解V1,V2,V3のうちのV1により規定される、支持基板内を伝搬するバルク波の音速VSi=(V1)1/2と同じか、VSiよりも高速とされている。 Ax3+Bx2+Cx+D=0 …式(2)

Description

弾性波装置、弾性波装置パッケージ、高周波フロントエンド回路及び通信装置
 本発明は、シリコンで構成される支持基板上に、圧電体が設けられている弾性波装置に関する。
 従来、シリコンで構成される支持基板を用いた弾性波装置が種々提案されている。
 下記の特許文献1では、シリコン製の支持基板上に、有機接着層と圧電基板とを積層してなる弾性波装置が開示されている。そして、シリコンの(111)面で接合させることにより耐熱性を高めている。
特開平2010-187373号公報
 特許文献1に記載の弾性波装置では、シリコンで構成される支持基板の結晶方位によっては、支持基板を伝搬するバルク波の音速が、圧電体を伝搬する高次モードの音速よりも高くなる場合がある。この場合、支持基板側に漏洩されるべき高次モードが、支持基板よりも上層の位置に閉じこもり高次モードによる応答が大きくなってしまう場合がある、という問題があった。
 そして、上記高次モードが、圧電体を伝搬するメインモードよりも周波数が高く、かつ、メインモードの応答に最も周波数が近い第1の高次モードである場合には、第1の高次モードがメインモードの応答に近い位置にあるため、フィルタ特性に悪影響を与える可能性がある。
 なお、ここでいうメインモードとは、弾性波装置が帯域通過型フィルタ用の共振子の場合には、フィルタの通過帯域内に共振周波数および反共振周波数の少なくとも一方が存在しており、かつ、共振周波数でのインピーダンスと反共振周波数でのインピーダンスとの差が一番大きい波のモードである。また、弾性波装置がフィルタの場合には、フィルタの通過帯域を形成するために使用される波のモードである。
 本発明の目的は、圧電体を伝搬する上記第1の高次モードによる応答を抑制することができる、弾性波装置、弾性波装置パッケージ、高周波フロントエンド回路及び通信装置を提供することにある。
 本発明は、シリコンで構成される支持基板と、前記支持基板上に設けられた酸化ケイ素膜と、前記酸化ケイ素膜上に設けられた圧電体と、前記圧電体の一方主面上に設けられたIDT電極と、を備え、前記IDT電極の電極指ピッチで定まる波長をλとしたときに、前記支持基板の厚みが3λ以上であり、前記圧電体を伝搬する第1の高次モードの音速が、前記支持基板内を伝搬するバルク波の音速である下記の式(1)の音速VSiと同じか、または、前記音速VSiよりも高速とされている、弾性波装置である。
 本発明において、音速VSiは、以下の式(1)で表される。
 VSi=(V1/2(m/秒) …式(1)
 式(1)における前記Vは、下記の式(2)の解である。
 Ax+Bx+Cx+D=0  …式(2)
 式(2)において、A、B、C及びDは、それぞれ、下記の式(2A)~(2D)で表される値である。
 A=-ρ  …式(2A)
 B=ρ(L11+L22+L33)  …式(2B)
 C=ρ(L21 +L23 +L31 -L11・L33-L22・L33-L11・L22)  …式(2C)
 D=2・L21・L23・L31+L11・L22・L33-L31 ・L22-L11・L23 -L21 ・L33  …式(2D)
 ただし、式(2A)、式(2B)、式(2C)または式(2D)において、ρ=2.331(g/cm)である。また、L11、L22、L33、L21、L31及びL23は、下記の式(3A)~(3F)で表される値である。
 L11=c11・a +c44・a +c44・a   …式(3A)
 L22=c44・a +c11・a +c44・a   …式(3B)
 L33=c44・a +c44・a +c11・a   …式(3C)
 L21=(c12+c44)・a・a  …式(3D)
 L31=(c12+c44)・a・a  …式(3E)
 L23=(c44+c12)・a・a  …式(3F)
 ただし、式(3A)~(3F)において、c11、c12、c44は、それぞれ、c11=1.674E+11(N/m)、c12=6.523E+10(N/m)、c44=7.957E+10(N/m)である。また、a、a及びaは、下記の式(4A)~(4C)で表される値である。
 a=cos(φ)・cos(ψ)-sin(φ)・cos(θ)・sin(ψ)  …式(4A)
 a=sin(φ)・cos(ψ)+cos(φ)・cos(θ)・sin(ψ)  …式(4B)
 a=sin(θ)・sin(ψ)  …式(4C)
 なお、式(4A)~(4C)におけるφ,θ及びψは、前記支持基板の結晶方位(φ,θ,ψ)における、φ,θ,ψである。
 本発明に係る弾性波装置のある特定の局面では、前記支持基板の厚みが20λ以上である。この場合には、支持基板の厚みが20λ以上であることにより、さらに、周波数が高い第2の高次モードの応答も抑制することができる。
 本発明に係る弾性波装置の他の特定の局面では、前記酸化ケイ素膜の膜厚が下記の表1に示す範囲のいずれかである。この場合には、第2の高次モードを抑制することが可能となる。
Figure JPOXMLDOC01-appb-T000003
 本発明に係る弾性波装置のさらに他の特定の局面では、前記酸化ケイ素膜の膜厚が、下記の表2に示す範囲のいずれかである。この場合には、第1の高次モードをより一層抑制することが可能となる。
Figure JPOXMLDOC01-appb-T000004
 本発明に係る弾性波装置の別の特定の局面では、前記式(1)における前記Vは、前記式(2)の解V1、、Vのうち、最も小さい値である。この場合には、高次モードの応答をより一層効果的に抑制することができる。
 本発明に係る弾性波装置では、好ましくは、前記支持基板の前記音速VSiは4700m/秒以下である。この場合には、酸化ケイ素膜の膜厚が1.20λ以下の範囲おいて、高次モードの応答を小さくすることができる。
 本発明に係る弾性波装置の他の特定の局面では、前記支持基板の厚みが、180μm以下である。この場合には、放熱性を高めることができ、かつ低背化が実現できる。
 本発明に係る弾性波装置の別の特定の局面では、前記圧電体の膜厚は、3.5λ以下である。この場合には、弾性波のエネルギー集中度を高めることができ、損失を低減することが可能となる。
 本発明に係る弾性波装置の他の特定の局面では、前記圧電体の膜厚は、2.5λ以下とされている。この場合には、デバイスの周波数温度係数(TCF)の絶対値を小さくすることが可能となる。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記圧電体の膜厚は、1.5λ以下とされている。この場合には、電気機械結合係数を容易に調整することができる。
 本発明に係る弾性波装置の別の特定の局面では、前記圧電体の膜厚は、0.5λ以下とされている。この場合には、圧電体の膜厚を0.5λ以下とすることで広い範囲で電気機械結合係数を容易に調整できる。
 本発明に係る弾性波装置の別の特定の局面では、前記圧電体が、LiTaOからなる。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記酸化ケイ素膜を伝搬するバルク波の音速が、前記圧電体を伝搬する弾性波の音速よりも遅い。この場合には、高次モードをより一層効果的に酸化ケイ素膜側に漏洩させることができる。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記支持基板を伝搬するバルク波の音速が、前記圧電体を伝搬する弾性波の音速よりも速い。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記酸化ケイ素膜と、前記支持基板との間に、伝搬するバルク波の音速が、前記圧電体を伝搬する弾性波の音速よりも速い高音速材料層がさらに備えられている。この場合には、高次モードの応答をより一層効果的に抑制することができる。
 本発明に係る弾性波装置のさらに別の特定の局面では、前記圧電体と前記IDT電極との間に設けられた誘電体層がさらに備えられている。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記誘電体層が、酸化ケイ素または五酸化タンタルからなる。特に、酸化ケイ素の場合は正の温度特性(温度を上げると周波数が上がる方向)を持つため、周波数温度特性を改善することができる。
 本発明に係る弾性波装置の別の特定の局面では、前記IDT電極を囲む支持層と、前記支持層を覆っており、前記IDT電極を囲む中空空間を構成しているカバー部材と、前記カバー部材上に設けられており、前記IDT電極に電気的に接続されている複数の金属バンプとがさらに備えられている。この場合には、WLP構造を有する本発明の弾性波装置を提供することができる。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記IDT電極を囲む支持層と、前記支持層を覆っており、前記IDT電極を囲む中空空間を構成しているカバー部材とをさらに備え、前記支持基板において、前記支持基板を貫通している貫通電極と、前記貫通電極に電気的に接続されており、前記支持基板の前記IDT電極が設けられている側とは反対側の面に設けられている端子電極とが設けられており、前記貫通電極が前記IDT電極と前記端子電極とに電気的に接続されている。この場合には、支持基板におけるIDT電極が設けられている側とは反対側の面に端子電極が設けられることにより、カバー部材側に端子電極を設ける場合に比べて小型化を実現することができる。
 本発明に係る弾性波装置パッケージは、複数の電極ランドが一方面に設けられたケース基板と、本発明に従って構成されている弾性波装置とを備え、前記IDT電極に電気的に接続される金属バンプが前記弾性波装置に設けられており、前記弾性波装置の前記金属バンプが前記電極ランドに接合されるように、前記ケース基板に搭載されており、前記弾性波装置を封止するように前記ケース基板上に設けられた封止樹脂層がさらに備えられている。
 本発明に係る弾性波パッケージのある特定の局面では、一方面に複数の電極ランドが設けられたケース基板と、本発明に従って構成されており、WLP構造を有する弾性波装置とを備え、前記ケース基板の前記複数の電極ランドに前記複数の金属バンプが接合されるようにして前記ケース基板に搭載されており、前記弾性波装置を封止するように設けられた封止樹脂層がさらに設けられている。この場合、カバー部材とケース基板との間に空隙を有していてもよい。
 本発明に係る高周波フロントエンド回路は、本発明に従って構成された弾性波装置と、パワーアンプと、を備える。
 本発明に係る通信装置は、本発明に従って構成された高周波フロントエンド回路と、RF信号処理回路と、を備える。
 本発明に係る弾性波装置、弾性波装置パッケージ、高周波フロントエンド回路及び通信装置によれば、圧電体を伝搬するメインモードよりも周波数が高く、かつ、メインモードの応答に最も周波数が近い第1の高次モードによる応答を抑制することができる。
図1(a)及び図1(b)は、本発明の一実施形態に係る弾性波装置の正面断面図及び一実施形態における弾性波装置の電極構造を示す模式的平面図である。 図2は、第1及び第2の高次モードを説明するための図である。 図3は、シリコンで構成される支持基板の厚みと、第1及び第2の高次モード位相最大値との関係を示す図である。 図4は、シリコンで構成される支持基板の結晶方位の定義を説明するための模式図である。 図5は、シリコンで構成される支持基板の結晶方位(φ,θ,ψ)=(0°,0°,0°)のときのシリコンで構成される支持基板のX軸と、IDT電極の電極指の延びる方向との関係を示す模式的平面図である。 図6(a)及び図6(b)は、音速VSiが5000m/秒である場合の弾性波装置及び音速VSiが4500m/秒である場合の弾性波装置のインピーダンス特性を示す図である。 図7は、弾性波装置におけるLiTaO膜の膜厚とQ特性との関係を示す図である。 図8は、弾性波装置におけるLiTaO膜の膜厚と、周波数温度係数TCFとの関係を示す図である。 図9は、弾性波装置におけるLiTaO膜の膜厚と、音速との関係を示す図である。 図10は、LiTaOからなる圧電膜の膜厚と、比帯域との関係を示す図である。 図11は、酸化ケイ素膜の膜厚と、音速と、高音速膜の材質との関係を示す図である。 図12は、酸化ケイ素膜の膜厚と、電気機械結合係数と、高音速膜の材質との関係を示す図である。 図13は、酸化ケイ素膜の膜厚と、高次モードの音速との関係を示す図である。 図14は、本発明の第2の実施形態に係る弾性波装置の正面断面図である。 図15は、誘電体層の膜厚と、比帯域との関係を示す図である。 図16は、本発明の第3の実施形態に係る弾性波装置の正面断面図である。 図17は、本発明の第4の実施形態に係る弾性波装置パッケージの正面断面図である。 図18は、本発明の第5の実施形態に係る弾性波装置パッケージの正面断面図である。 図19は、本発明の第6の実施形態に係る弾性波装置の正面断面図である。 図20は、本発明の第7の実施形態に係る弾性波装置パッケージの正面断面図である。 高周波フロントエンド回路を有する通信装置の構成図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 図1(a)は、本発明の一実施形態に係る弾性波装置の正面断面図である。弾性波装置1は、シリコンで構成される支持基板2を有する。支持基板2は、結晶方位を有している単結晶構造である。なお、支持基板2は、結晶方位を有していれば、完全な単結晶構造でなくてもよい。さらに、支持基板2として、本実施形態では、シリコンで構成される支持基板2を用いているが、不純物を一部含むものも含む。これは、第1の実施形態だけでなく、以下のすべての実施形態でも同様である。
 支持基板2上に、酸化ケイ素膜3が積層されている。酸化ケイ素膜3は、SiO等からなる。
 酸化ケイ素膜3上に直接的又は間接的に、圧電体4が積層されている。ここでは、圧電体4は、LiTaOである。圧電体4は、支持基板2上に間接的に設けられている。圧電体4上に、IDT電極5と、反射器6,7とが設けられている。図1(b)に示すように、弾性波装置1の電極構造は、上記IDT電極5と反射器6,7とを有する。弾性波装置1は、1ポート型弾性波共振子である。
 IDT電極5は、圧電体4の上面に設けられているが、下面に設けられていてもよい。IDT電極5上に誘電体膜を形成しても良い。
 なお、本願発明者は、IDT電極5の電極指ピッチで定まる波長をλとした場合に、支持基板2の厚みを3λ以上とすることで第1の高次モードを抑制することが可能であることを新たに発見した。本発明は、この新しい知見に基づく。それを以下で示す。
 弾性波装置1では、複数の高次モードが出現することが普通である。図2は、(0°,0°,0°)の結晶方位のシリコンで構成される支持基板2上に、0.3λの厚みの酸化ケイ素膜3、0.2λの厚みの圧電体4、0.08λの厚みのAlからなるIDT電極5及び反射器6,7を設けた弾性波装置の共振特性を示す。IDT電極5における電極指ピッチで定まる波長λは1μmとした。
 弾性波装置1を励振した場合、メインモードの応答よりも高い周波数域に、複数の高次モードの応答が現れる。このうち、メインモードの応答に最も近い高次モードを第1の高次モード、第1の高次モードの次にメインモードの応答に近い高次モードを第2の高次モードとする。
 なお、メインモードとは、弾性波装置が帯域通過型フィルタ用の共振子の場合には、通過帯域内に共振周波数及び反共振周波数の少なくとも一方が存在しており、かつこの共振周波数におけるインピーダンスに対する反共振周波数におけるインピーダンスの比が最も大きいモードをいうものとする。
 図2に示すように、5.25GHz付近に、第1の高次モードの応答が現れている。また、5.5GHz~5.6GHzにおいて、第2の高次モードによる応答が現れている。
 弾性波装置1において、良好な特性を得るには、少なくともメインモードに最も近い第1の高次モードを抑制することが必要である。
 図3は、シリコンで構成される支持基板の厚みと、第1及び第2の高次モードの位相最大値との関係を示す図である。
 図3から明らかなように、第1の高次モードについては、支持基板2の厚みが増加するにつれて、第1の高次モードの位相最大値が大きくなる。もっとも、支持基板2の厚みが3λ以上になると、第1の高次モードの位相最大値はほぼ一定となる。従って、第1の高次モードを抑制するには、支持基板2の厚みは3λ以上であることが必要である。
 また、図3から明らかなように、支持基板2の厚みが20λ以上であれば、第1の高次モード及び第2の高次モードの位相最大値を小さくすることができる。さらに、支持基板2の厚みが20λ以上の場合、第1の高次モード及び第2の高次モードの位相最大値がほぼ一定となる。従って、第1の高次モード及び第2の高次モードを抑制するには、支持基板2の厚みは、20λ以上であることが必要である。
 なお、支持基板2の厚みが厚くなりすぎると、放熱性が低下したり、低背化し難くなったりする。従って、支持基板2の厚みの上限は180μm以下とすることが望ましい。
 従って支持基板2の厚みは、20λ以上、180μm以下が好ましい。なお、この場合λは9μm未満となる。
 また、本願発明者は、支持基板内を伝搬するバルク波の音速VSiが圧電体を伝搬する高次モードの音速よりも高くなると、圧電体を伝搬する高次モードの応答が大きくなり、音速VSiが圧電体を伝搬する高次モードの音速と同じか、または、圧電体を伝搬する高次モードの音速よりも低くなると、圧電体を伝搬する高次モードの応答が小さくなることを新たに発見した。本発明は、この新しい知見に基づく。なお、以下においては、音速VSiを支持基板の音速と記載されることがある。
 なお、支持基板内を伝搬するバルク波の音速VSiは、下記の式(1)~(4C)で表現され、シリコンで構成される支持基板の結晶方位(φ,θ,ψ)の値によって値が変わる。
 VSi=(V1/2(m/秒)  …式(1)
 上記式(1)におけるVは、下記の式(2)の解である。
 Ax+Bx+Cx+D=0  …式(2)
 式(2)において、A、B、C及びDは、それぞれ、下記の式(2A)~(2D)で表される値である。
 A=-ρ  …式(2A)
 B=ρ(L11+L22+L33)  …式(2B)
 C=ρ(L21 +L23 +L31 -L11・L33-L22・L33-L11・L22)  …式(2C)
 D=2・L21・L23・L31+L11・L22・L33-L31 ・L22-L11・L23 -L21 ・L33  …式(2D)
 ただし、式(2A)、式(2B)、式(2C)または式(2D)において、ρはシリコンの密度(g/cm)であり、ρ=2.331(g/cm)である。また、L11、L22、L33、L21、L31及びL23は、下記の式(3A)~(3F)で表される値である。
 L11=c11・a +c44・a +c44・a   …式(3A)
 L22=c44・a +c11・a +c44・a   …式(3B)
 L33=c44・a +c44・a +c11・a   …式(3C)
 L21=(c12+c44)・a・a  …式(3D)
 L31=(c12+c44)・a・a  …式(3E)
 L23=(c44+c12)・a・a  …式(3F)
 ただし、式(3A)~(3F)において、c11、c12、c44は、それぞれ、シリコンの弾性定数(N/m)であり、c11=1.674E+11(N/m)、c12=6.523E+10(N/m)、c44=7.957E+10(N/m)である。また、a、a及びaは、下記の式(4A)~(4C)で表される値である。
 a=cos(φ)・cos(ψ)-sin(φ)・cos(θ)・sin(ψ)  …式(4A)
 a=sin(φ)・cos(ψ)+cos(φ)・cos(θ)・sin(ψ)  …式(4B)
 a=sin(θ)・sin(ψ)  …式(4C)
 なお、式(4A)~(4C)におけるφ,θ及びψは、シリコンで構成される支持基板の結晶方位(φ,θ,ψ)における、φ,θ,ψである。
 シリコンで構成される支持基板の結晶方位(φ,θ,ψ)を、図4を参照して説明する。図4は、支持基板の結晶方位の定義を説明するための模式図である。図4の支持基板の結晶構造において、右ネジの回転方向を正とした場合、Z-X-Zを回転軸とする。結晶方位(φ,θ,ψ)とは、1)(X,Y,Z)をZ軸回りに「φ」回転し、(X,Y,Z)とし、次に、2)(X,Y,Z)をX軸回りに「θ」回転し、(X,Y,Z)とし、さらに3)(X,Y,Z)をZ軸回りに「ψ」回転し、(X,Y,Z)とした方位となる。
 図5に示すように、弾性波装置1において、(φ,θ,ψ)=(0°,0°,0°)のときにSi結晶のX軸と、IDT電極5の電極指の延びる方向と直交する方向Xaとが同一方向となる。
 ここでは、VSiは、Xa方向に伝搬する支持基板内を伝搬するバルク波のうち、最も遅い横波の音速として計算している。
 使用しているシリコンの結晶方位が例えば(φ,θ,ψ)=(0°,0°,0°)の場合に、音速VSiを、式(1)により求めると、5843(m/秒)となる。
 Siの弾性定数c11、C12及びc44は以下のように定義される値である。
 弾性体の歪みSと応力Tは比例関係にある。この比例関係は、以下の行列で表される。
Figure JPOXMLDOC01-appb-M000005
 この式の比例定数(cij)が弾性定数と呼ばれている。弾性定数cijは固体の属する結晶系によって決まる。例えば、シリコンでは、結晶の対称性から、以下のように表現することができる。
 Siの弾性定数(N/m
Figure JPOXMLDOC01-appb-M000006
 上述した弾性定数c11、c12及びc44は、上記のようにして定義されるSiの弾性定数である。なお、Siの弾性定数c11=1.674E+11(N/m)、c12=6.523E+10(N/m)、c44=7.957E+10(N/m)である(H. J. McSkimin, et al., "Measurement of the Elastic Constants of Silicon Single Crystals and Their Thermal Constants", Phys. Rev. Vol. 83, p.1080(L) (1951).)。また、シリコンの密度ρ=2.331(g/cm)である。
 上記のように、音速VSiは、シリコンで構成される支持基板の結晶方位に応じて式(1)により求めることができる。
 そして、圧電体4を伝搬する第1の高次モードの音速が、支持基板2内を伝搬するバルク波の音速である下記で示す音速VSiと同じか、または、音速VSiよりも高速とされている場合に、第1の高次モードを抑制することが可能であることを、以下で示す。
 まず、第1の高次モードの音速と、支持基板2内を伝搬するバルク波の音速VSiとの関係について説明する。図6(a)は、酸化ケイ素膜の膜厚が0.5λであり、圧電体の膜厚が0.3λである場合に、音速VSiが5000m/秒である場合の弾性波装置のインピーダンス特性を示す図である。他方、図6(b)は、音速VSiが4500m/秒であることを除いては、上記と同様に構成された弾性波装置のインピーダンス特性を示す図である。
 図6(a)と図6(b)とを対比すれば明らかなように、第1の高次モードの音速よりも音速VSiが速い場合、矢印Cで示すように、第1の高次モードが大きく現れている。これは、第1の高次モードが、酸化ケイ素膜3及び圧電体4にも閉じこもっているからである。これに対して、図6(b)では、4.5GHz~5.0GHzの範囲内において、第1の高次モードの大きな応答は現れていない。これは、第1の高次モードの音速に比べて音速VSiが低いため、第1の高次モードが効果的に抑制されていることによる。他方、音速VSiは、結晶方位でコントロールすることができる。従って、第1の高次モードの音速よりも、音速VSiを低めることにより、第1の高次モードを効果的に抑制し得ることがわかる。
 つまり、弾性波装置1では、第1の高次モードの音速が、音速VSiと同じか、音速VSiよりも高速になっている。従って、第1の高次モードが支持基板2側に漏洩する。それによって、第1の高次モードによる応答を効果的に抑制することができる。
 以上より、弾性波装置1では、支持基板2の厚みが3λ以上であり、かつ、圧電体4を伝搬する第1の高次モードの音速が、支持基板2内を伝搬するバルク波の音速である音速VSiと同じか、または、音速VSiよりも高速とされている場合に、第1の高次モードによる応答を更に効果的に抑制することができる。
 また、支持基板2の厚みが20λ以上であり、かつ、圧電体4を伝搬する第1の高次モードの音速が、支持基板2内を伝搬するバルク波の音速である音速VSiと同じか、または、音速VSiよりも高速とされている場合に、第1の高次モード及び第2の高次モードによる応答を更に効果的に抑制することができる。なお、第2の高次モードの音速は第1の高次モードの音速より速いので、第1の高次モードの音速が式(1)を満たせば、自動的に第2の高次モードの音速も式(1)を満たすことになる。
 弾性波装置1の更なる特徴は、圧電体4を伝搬する高次モードの音速が、上記の式(2)を満たすxの解V、V、V(V≦V<V)の中で、最も小さい解をVとしたとき、VSi=(V1/2で表される、支持基板2内を伝搬する遅い横波の音速VSiと同じか、または、音速VSiよりも高速とされていることにある。
 本実施形態の構成とすることにより、高次モードの応答をより一層効果的に抑制することができる。
 さらに、弾性波装置1では、上記圧電体4の厚みは、IDT電極5の電極指ピッチで定まる弾性波の波長をλとしたときに、LiTaOからなる圧電体の膜厚が、3.5λ以下の範囲にあることが好ましい。この場合には、Q値を高くすることができる。
 より好ましくは、LiTaOからなる圧電体4の膜厚は、2.5λ以下であり、その場合には周波数温度係数TCFの絶対値を小さくし得る。さらに、好ましくは、LiTaOからなる圧電体4の膜厚は、1.5λ以下である。この場合には、電気機械結合係数を容易に調整することができる。さらに、より好ましくは、LiTaOからなる圧電体4の膜厚は、0.5λ以下である。この場合には、広い範囲で電気機械結合係数を容易に調整できる。
 弾性波装置1のさらに他の特徴は、IDT電極5の電極指ピッチで定まる波長をλとしたときに、音速VSiが、酸化ケイ素膜3の膜厚に応じて、下記の表3に示す範囲のように変化する。なお、表3及び後述する表4においては、支持基板内を伝搬するバルク波の音速VSiをシリコンの音速VSiとする。
Figure JPOXMLDOC01-appb-T000007
 図7は、シリコンで構成される高音速支持基板上に、厚み0.35λの酸化ケイ素膜からなる低音速膜及びオイラー角(0°,140.0°,0°)のタンタル酸リチウムからなる圧電膜を積層した弾性波装置におけるLiTaO膜の膜厚と、Q特性との関係を示す図である。この図7における縦軸は、共振子のQ特性と比帯域(Δf)との積である。また、図8は、LiTaO膜の膜厚と、周波数温度係数TCFとの関係を示す図である。図9は、LiTaO膜の膜厚と音速との関係を示す図である。図7より、LiTaO膜の膜厚が、3.5λ以下であることが好ましい。その場合には、3.5λを超えた場合に比べて、Q値が高くなる。より好ましくは、Q値をより高めるには、LiTaO膜の膜厚は、2.5λ以下であることが望ましい。
 また、図8より、LiTaO膜の膜厚が、2.5λ以下の場合、周波数温度係数TCFの絶対値を、上記膜厚が2.5λを超えた場合に比べて小さくすることができる。より好ましくは、LiTaO膜の膜厚を2λ以下とすることが望ましく、その場合には、周波数温度係数TCFの絶対値が、10ppm/℃以下とされ得る。周波数温度係数TCFの絶対値を小さくするには、LiTaO膜の膜厚を1.5λ以下とすることがさらに好ましい。
 図9より、LiTaO膜の膜厚が1.5λを超えると、音速の変化が極めて小さい。
 もっとも、図10に示すように、LiTaO膜の膜厚が、0.05λ以上、0.5λ以下の範囲では、比帯域が大きく変化する。従って、電気機械結合係数をより広い範囲で調整することができる。よって、電気機械結合係数及び比帯域の調整範囲を広げるためには、LiTaO膜の膜厚が、0.05λ以上、0.5λ以下の範囲が望ましい。
 図11及び図12は、酸化ケイ素膜厚(λ)と、音速及び電気機械結合係数との関係をそれぞれ示す図である。ここでは、弾性波装置は、低音速材料層としての低音速膜及び高音速材料層としての高音速膜を有する。SiOからなる低音速膜の下方に、高音速膜として、窒化ケイ素膜、酸化アルミニウム膜及びダイヤモンドをそれぞれ用いた。高音速膜の膜厚は、1.5λとした。窒化ケイ素のバルク波の音速は6000m/秒であり、酸化アルミニウムにおけるバルク波の音速は6000m/秒であり、ダイヤモンドにおけるバルク波の音速は12800m/秒である。図11及び図12に示すように、高音速膜の材質及び酸化ケイ素膜の膜厚を変更したとしても、電気機械結合係数及び音速はほとんど変化しない。特に、酸化ケイ素膜の膜厚が、0.1λ以上、0.5λ以下では、高音速膜の材質の如何に関わらず、電気機械結合係数はほとんど変わらない。また、図11より酸化ケイ素膜の膜厚が、0.3λ以上、2λ以下であれば、高音速膜の材質の如何に関わらず、音速が変わらないことがわかる。従って、好ましくは、酸化ケイ素からなる低音速膜の膜厚は、2λ以下、0.5λ以下であることがより好ましい。
 第1の高次モード及び第2の高次モードの音速については、酸化ケイ素3膜により、調整することができる。図13は、酸化ケイ素膜3の膜厚と、第1の高次モード及び第2の高次モードの音速との関係を示す図である。図13の計算条件は、圧電体4の厚みは0.3λ、カット角は50°Y、シリコンで構成される支持基板2の結晶方位は(0°,0°,0°)、IDT電極5はAlを0.08λ、波長は1μmとした。また、圧電体4は、LiTaO膜である。図13においては、第1の高次モードの音速と第2の高次モードの音速とが示されている。この2種類の高次モードの音速が、酸化ケイ素膜の膜厚の変化により変化していることがわかる。
 図13に示すように、酸化ケイ素膜3の膜厚が、例えば0.40λの場合、第2の高次モードの音速は、5500m/秒である。従って、支持基板2の音速を5500m/秒以下とすれば、第2の高次モードを抑制し得ることがわかる。よって、図13より、酸化ケイ素膜3の膜厚が、0.40λ以下の場合、支持基板2の音速を5500m/秒以下とすればよい。同様に、酸化ケイ素膜3の膜厚が、0.40λを超え、0.64λ以下の場合には、支持基板2の音速を5300m/秒以下とすればよいことがわかる。従って、第2の高次モードを抑制するには、前述した表3に示す酸化ケイ素膜3の膜厚に応じた支持基板の音速範囲のいずれかを採用すればよい。それによって、第2の高次モードを抑制することができる。
 他方、第1の高次モード及び第2の高次モードの双方を抑制するには、支持基板2の音速を、酸化ケイ素膜3の膜厚範囲に応じて、下記の表4に示すいずれかの範囲とすればよい。
 例えば、図13に示すように、第1の高次モードの音速は、酸化ケイ素膜3の膜厚が0.12λである場合5300m/秒である。従って、酸化ケイ素膜3の膜厚が、0.12λ以下の場合、支持基板2の音速を5300m/秒以下とすればよい。同様に、酸化ケイ素膜3の膜厚が0.34λの場合、第1の高次モードの音速は、図13に示すように、5100m/秒である。従って、酸化ケイ素膜3の膜厚が、0.12λを超え、0.34λ以下の場合には、支持基板2の音速を5100m/秒以下とすれば、第1の高次モード及び第2の高次モードの双方を抑制することができる。
 従って、下記の表4に示すように、酸化ケイ素膜3の膜厚に応じて、支持基板2の音速を選択することにより、第1の高次モード及び第2の高次モードの双方を効果的に抑制することができる。
Figure JPOXMLDOC01-appb-T000008
 また、表4から、支持基板2の音速を4700m/秒以下とすれば、酸化ケイ素膜3の膜厚が0.54λ以下の場合に、酸化ケイ素膜3の膜厚の如何にかかわらず、第1の高次モード及び第2の高次モードを効果的に抑制することができる。
 上記のように、本実施形態の弾性波装置1では、少なくとも第1の高次モードによる応答を効果的に抑制することができる。
 なお、上記実施形態では、弾性波装置1として、1ポート型弾性波共振子を説明したが、本発明の弾性波装置は、1ポート型弾性波共振子に限らず、縦結合共振子型弾性波フィルタなどの様々な電極構造を有する弾性波装置に広く適用することができる。
 図14~図20を参照して、本発明の第2~第7の実施形態に係る弾性波装置及び弾性波装置のパッケージの構造を説明する。
 図14は、本発明の第2の実施形態に係る弾性波装置の正面断面図である。本発明に係る弾性波装置111では、圧電体4とIDT電極5との間に誘電体層112が設けられていることにある。その他の点については、弾性波装置111は弾性波装置1と同様である。このように、IDT電極5と、圧電体4との間に誘電体層112が設けられていてもよい。この誘電体層112としては、五酸化タンタルや、酸化ケイ素などをあげることができる。
 図15は、五酸化タンタルからなる誘電体層を設けた場合及び酸化ケイ素からなる誘電体を設けた場合の誘電体膜の膜厚と、比帯域との関係を示す図である。誘電体膜として、五酸化タンタルを用いた場合の結果が、△で示されており、酸化ケイ素を用いた場合の結果が◇で示されている。
 図15から明らかなように、五酸化タンタルや酸化ケイ素を用いることより、誘電体層の膜厚を調整して、比帯域をコントロールし得ることがわかる。
 なお、本発明において、圧電体としては、LiTaOに限らず、LiNbOなどの他の圧電単結晶やZnO、AlN等の圧電薄膜、PZT等の圧電セラミクスを用いてもよい。
 図16は、本発明の第3の実施形態に係る弾性波装置101の正面断面図である。
 弾性波装置101では、支持基板2上に、低音速材料層102、高音速材料層103及び酸化ケイ素膜104が、この順序で積層されている。なお、酸化ケイ素膜104を伝搬するバルク波の音速は、圧電体4を伝搬する弾性波の音速よりも遅い。従って、酸化ケイ素膜104は、低音速材料層でもある。酸化ケイ素膜104上に、圧電体4が積層されている。
 弾性波装置101のように、支持基板2と、圧電体4との間に、酸化ケイ素膜104以外に、他の低音速材料層102及び高音速材料層103が積層されていてもよい。ここで、低音速材料層102は、低音速材料からなる。低音速材料とは、伝搬するバルク波の音速が、圧電体4のような圧電体を伝搬する弾性波の音速よりも遅い材料である。また、高音速材料層103は、高音速材料からなる。高音速材料は、伝搬するバルク波の音速が、圧電体4のような圧電体を伝搬する弾性波の音速よりも速い材料である。上記低音速材料としては、SiOを含む酸化ケイ素や五酸化タンタルなどの誘電体、ガラス、酸窒化ケイ素、酸化タンタル、また、酸化ケイ素にフッ素や炭素やホウ素を加えた化合物など、上記材料を主成分とした媒質が挙げられる。また、高音速材料としては、金属やシリコンの他、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、酸窒化ケイ素、サファイア、タンタル酸リチウム、ニオブ酸リチウム、水晶、アルミナ、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライト、マグネシア、DLC膜またはダイヤモンド、該材料を主成分とする媒質、該材料の混合物を主成分とする媒質等のさまざまな材料を挙げることができる。好ましくは、低音速材料層としての誘電体として、酸化ケイ素または五酸化タンタルが用いられ、より好ましくは、酸化ケイ素が用いられる。その場合には、周波数温度特性の向上も図ることができる。
 なお、少なくとも1つの高音速材料層103と、圧電体4などの圧電体との間に少なくとも1つの低音速材料層が配置されていることが好ましい。それによって、弾性波を圧電体内に効果的に閉じ込めることができる。また、支持基板2は高音速材料からなる。従って、第1の実施形態のように、支持基板2上に、酸化ケイ素膜3が積層されている構造は、高音速材料と圧電体との間に低音速材料層が位置している構成となる。従って、弾性波装置1においても、弾性波のエネルギーを、圧電体4内に効果的に閉じ込めることができる。
 図17に示すように、第4の実施形態の弾性波装置パッケージ51は、支持基板52、支持基板52上に積層された酸化ケイ素膜52a、圧電体53、及びIDT電極54を有する。IDT電極54を囲むように樹脂からなる支持層55が設けられている。支持層55上に、カバー部材56が接合されている。それによって、中空空間Dが形成されている。そして、上記カバー部材56上に端子電極57a,57b及び金属バンプ58a,58bが設けられている。上記支持基板52に、圧電体53、IDT電極54、支持層55、カバー部材56、端子電極57a,57b及び金属バンプ58a,58bを有する部分により、WLP構造を有する素子部分が構成されている。金属バンプ58a,58bが、ケース基板59の電極ランドとしての端子電極60a,60bに電気的に接続されている。そして、上記WLP構造を有する素子部分の全体が封止樹脂層61により封止されている。
 図18に示す第5の実施形態に係る弾性波装置パッケージ65では、金属バンプ58aと、金属バンプ58bとで挟まれた空間Eに、封止樹脂層61が至っていない。その他の点は、弾性波装置65は、弾性波装置51と同様である。この時、金属バンプ58a,58bをAuで形成すると熱衝撃耐性が向上し、なお好ましい。
 図19に示す第6の実施形態に係る弾性波装置71では、支持基板72上に、酸化ケイ素膜73及び圧電体74がこの順序で積層されている。圧電体74上にIDT電極75が設けられている。また、IDT電極75を覆うように誘電体層76が設けられている。このように、IDT電極75を覆うように誘電体層76がさらに設けられていてもよい。このような誘電体層76を構成する誘電体材料は特に限定されない。例えば、酸化ケイ素などを用いることができる。
 IDT電極75を囲むように支持層77が設けられている。支持層77上にカバー部材78が接合されている。それによって、中空空間Dが設けられている。支持基板72、酸化ケイ素膜73及び圧電体74を貫通するように、貫通電極としてのビア電極79a,79bが設けられている。ビア電極79a,79bは、IDT電極75に電気的に接続されている。また、支持基板72の下面に端子電極80a,80bが設けられている。ビア電極79a,79bは、端子電極80a,80bに電気的に接続されている。このように、支持基板72を貫通するビア電極79a,79bを用いて、外部と電気的に接続してもよい。
 図20に示すように、第7の実施形態としての弾性波装置パッケージ81では、ケース基板82の一方面に端子電極83a,83bが設けられている。このケース基板82上に、弾性波装置84が搭載されている。弾性波装置84は支持基板85上に、酸化ケイ素膜86及び圧電体87、さらにIDT電極88をこの順序で積層した構造を有する。圧電体87上に、端子電極89a,89bが設けられている。端子電極89a,89b上に金属バンプ90a,90bが設けられている。この金属バンプ90a,90bが、端子電極83a,83bに接合されている。そして、弾性波装置84を覆うように、封止樹脂層91が設けられている。この場合、金属バンプ90a,90bをAuで形成すると、熱衝撃耐性が向上し、なお好ましい。
 (侵害立証方法)
 圧電膜を伝搬する第1の高次モードは、有限要素法のシミュレーションにより特定することが可能である。具体的には、IDT電極の膜厚、IDT電極の材料、圧電膜の膜厚、圧電膜の材料、低音速膜や高音速膜等の各中間層の膜厚、各中間層の材料、支持基板の厚み、支持基板の結晶方位の各パラメータを特定する。その後、各パラメータを用いてシミュレーションソフト(FEMTET)で調和振動解析を行う。
 そして、調和振動解析により、各周波数でのインピーダンスを得ることができる。
 また、ネットワークアナライザによってフィルタの挿入損失を測定することで、フィルタの通過帯域も特定することができる。従って、その調和振動解析の結果から、インピーダンスが極小値となる1以上の共振周波数と、インピーダンスが極大値となる1以上の反共振周波数を特定できる。そして、その中から、共振周波数でのインピーダンスと反共振周波数でのインピーダンスとの差が一番大きい波のモードを特定する。その波のモードが圧電膜を伝搬するメインモードとなる。なお、調和振動解析結果から、フィルタの通過帯域内に共振周波数および反共振周波数の少なくとも一方が存在しているかどうかもわかる。
 弾性波装置が共振子の場合には、フィルタの通過帯域内に共振周波数および反共振周波数の少なくとも一方が存在しており、かつ、共振周波数でのインピーダンスと反共振周波数でのインピーダンスとの差が一番大きい波のモードである。また、弾性波装置がフィルタの場合には、フィルタの通過帯域を形成するために使用される波のモードである。
 そして、上記メインモードから、圧電膜を伝搬する第1の高次モード(メインモードよりも高周波数側に発生し、かつ、メインモードに最も近い波のモード)を特定することができる。
 また、圧電膜を伝搬する第1の高次モードの音速は、圧電膜を伝搬する第1の高次モードの反共振周波数での音速である。
 なお、V=f×λであるため、圧電膜を伝搬する第1の高次モードの音速Vは、圧電膜を伝搬する第1の高次モードの反共振周波数fと、IDT電極の電極指ピッチの2倍の値であるλから求めることが出来る。
 上記弾性波装置は、高周波フロントエンド回路のデュプレクサなどとして用いることができる。この例を下記において説明する。
 図21は、高周波フロントエンド回路を有する通信装置の構成図である。なお、同図には、高周波フロントエンド回路230と、高周波フロントエンド回路230と接続される各構成要素とが図示されている。高周波フロントエンド回路230と接続される各構成要素としては、例えば、アンテナ素子202やRF信号処理回路(RFIC)203が図示されている。高周波フロントエンド回路230及びRF信号処理回路203は、通信装置240を構成している。なお、通信装置240は、電源、CPUやディスプレイを含んでいてもよい。
 高周波フロントエンド回路230は、スイッチ225と、デュプレクサ201A,201Bと、ローノイズアンプ回路214,224と、フィルタ231,232と、パワーアンプ回路234a,234b,244a,244bとを備える。なお、図21の高周波フロントエンド回路230及び通信装置240は、高周波フロントエンド回路及び通信装置の一例であって、この構成に限定されるものではない。
 デュプレクサ201Aは、フィルタ211,212を有する。デュプレクサ201Bは、フィルタ221,222を有する。デュプレクサ201A,201Bは、スイッチ225を介してアンテナ素子202に接続される。なお、上記弾性波装置は、デュプレクサ201A,201Bであってもよいし、フィルタ211,212,221,222であってもよい。上記弾性波装置は、デュプレクサ201A,201Bや、フィルタ211,212,221,222を構成する弾性波共振子であってもよい。さらに、上記弾性波装置は、例えば、3つのフィルタのアンテナ端子が共通化されたトリプレクサや、6つのフィルタのアンテナ端子が共通化されたヘキサプレクサなど、3以上のフィルタを備える構成についても適用することができる。
 すなわち、上記弾性波装置は、弾性波共振子、フィルタ、2以上のフィルタを備えるマルチプレクサを含む。
 スイッチ225は、制御部(図示せず)からの制御信号に従って、アンテナ素子202と所定のバンドに対応する信号経路とを接続し、例えば、SPDT(Single Pole Double Throw)型のスイッチによって構成される。なお、アンテナ素子202と接続される信号経路は1つに限らず、複数であってもよい。すなわち、高周波フロントエンド回路230は、キャリアアグリゲーションに対応しているものであってもよい。
 ローノイズアンプ回路214は、アンテナ素子202、スイッチ225及びデュプレクサ201Aを経由した高周波信号(ここでは高周波受信信号)を増幅し、RF信号処理回路203へ出力する受信増幅回路である。ローノイズアンプ回路224は、アンテナ素子202、スイッチ225及びデュプレクサ201Bを経由した高周波信号(ここでは高周波受信信号)を増幅し、RF信号処理回路203へ出力する受信増幅回路である。
 パワーアンプ回路234a,234bは、RF信号処理回路203から出力された高周波信号(ここでは高周波送信信号)を増幅し、デュプレクサ201A及びスイッチ225を経由してアンテナ素子202に出力する送信増幅回路である。パワーアンプ回路244a,244bは、RF信号処理回路203から出力された高周波信号(ここでは高周波送信信号)を増幅し、デュプレクサ201B及びスイッチ225を経由してアンテナ素子202に出力する送信増幅回路である。
 なお、フィルタ231,232は、ローノイズアンプ回路及びパワーアンプ回路を介さず、RF信号処理回路203とスイッチ225との間に接続されている。フィルタ231,232も、デュプレクサ201A,201Bと同様に、スイッチ225を介してアンテナ素子202に接続される。
 RF信号処理回路203は、アンテナ素子202から受信信号経路を介して入力された高周波受信信号を、ダウンコンバートなどにより信号処理し、当該信号処理して生成された受信信号を出力する。また、RF信号処理回路203は、入力された送信信号をアップコンバートなどにより信号処理し、当該信号処理して生成された高周波送信信号をパワーアンプ回路244a,244bへ出力する。RF信号処理回路203は、例えば、RFICである。なお、通信装置は、BB(ベースバンド)ICを含んでいてもよい。この場合、BBICは、RFICで処理された受信信号を信号処理する。また、BBICは、送信信号を信号処理し、RFICに出力する。BBICで処理された受信信号や、BBICが信号処理する前の送信信号は、例えば、画像信号や音声信号等である。なお、高周波フロントエンド回路230は、上述した各構成要素の間に、他の回路素子を備えていてもよい。
 なお、高周波フロントエンド回路230は、上記デュプレクサ201A,201Bに代わり、デュプレクサ201A,201Bの変形例に係るデュプレクサを備えていてもよい。
 以上、本発明の実施形態に係る弾性波装置、高周波フロントエンド回路及び通信装置について、上記実施形態を挙げて説明したが、上記実施形態における任意の構成要素を組み合わせて実現される別の実施形態や、上記実施形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係る高周波フロントエンド回路及び通信装置を内蔵した各種機器も本発明に含まれる。
 本発明は、弾性波共振子、フィルタ、2以上のフィルタを備えるマルチプレクサ、高周波フロントエンド回路、及び携帯電話等の通信装置に広く利用できる。
1…弾性波装置
2…支持基板
3…酸化ケイ素膜
4…圧電体
5…IDT電極
6,7…反射器
51…弾性波装置パッケージ
52…支持基板
52a…酸化ケイ素膜
53…圧電体
54…IDT電極
55…支持層
56…カバー部材
57a,57b,60a,60b…端子電極
58a,58b…金属バンプ
59…ケース基板
61…封止樹脂層
65…弾性波装置パッケージ
71…弾性波装置
72…支持基板
73…酸化ケイ素膜
74…圧電体
75…IDT電極
76…誘電体層
77…支持層
78…カバー部材
79a,79b…ビア電極
80a,80b…端子電極
81…弾性波装置パッケージ
82…ケース基板
83a,83b…端子電極
84…弾性波装置
85…支持基板
86…酸化ケイ素膜
87…圧電体
88…IDT電極
89a,89b…端子電極
90a,90b…金属バンプ
91…封止樹脂層
101…弾性波装置
102…低音速材料層
103…高音速材料層
104…酸化ケイ素膜
111…弾性波装置
112…誘電体層
201A,201B…デュプレクサ
202…アンテナ素子
203…RF信号処理回路
211,212…フィルタ
214…ローノイズアンプ回路
221,222…フィルタ
224…ローノイズアンプ回路
225…スイッチ
230…高周波フロントエンド回路
231,232…フィルタ
234a,234b…パワーアンプ回路
240…通信装置
244a,244b…パワーアンプ回路

Claims (24)

  1.  シリコンで構成される支持基板と、
     前記支持基板上に設けられた酸化ケイ素膜と、
     前記酸化ケイ素膜上に設けられた圧電体と、
     前記圧電体の一方主面上に設けられたIDT電極と、
    を備え、
     前記IDT電極の電極指ピッチで定まる波長をλとしたときに、前記支持基板の厚みが3λ以上であり、
     前記圧電体を伝搬する第1の高次モードの音速が、前記支持基板内を伝搬するバルク波の音速である下記の式(1)の音速VSiと同じか、または、前記音速VSiよりも高速とされている、弾性波装置。
     VSi=(V1/2(m/秒) …式(1)
     式(1)における前記Vは、下記の式(2)の解である。
     Ax+Bx+Cx+D=0  …式(2)
     式(2)において、A、B、C及びDは、それぞれ、下記の式(2A)~(2D)で表される値である。
     A=-ρ  …式(2A)
     B=ρ(L11+L22+L33)  …式(2B)
     C=ρ(L21 +L23 +L31 -L11・L33-L22・L33-L11・L22)  …式(2C)
     D=2・L21・L23・L31+L11・L22・L33-L31 ・L22-L11・L23 -L21 ・L33  …式(2D)
     ただし、式(2A)、式(2B)、式(2C)または式(2D)において、ρ=2.331(g/cm)である。また、L11、L22、L33、L21、L31及びL23は、下記の式(3A)~(3F)で表される値である。
     L11=c11・a +c44・a +c44・a   …式(3A)
     L22=c44・a +c11・a +c44・a   …式(3B)
     L33=c44・a +c44・a +c11・a   …式(3C)
     L21=(c12+c44)・a・a  …式(3D)
     L31=(c12+c44)・a・a  …式(3E)
     L23=(c44+c12)・a・a  …式(3F)
     ただし、式(3A)~(3F)において、c11、c12、c44は、それぞれ、c11=1.674E+11(N/m)、c12=6.523E+10(N/m)、c44=7.957E+10(N/m)である。また、a、a及びaは、下記の式(4A)~(4C)で表される値である。
     a=cos(φ)・cos(ψ)-sin(φ)・cos(θ)・sin(ψ)  …式(4A)
     a=sin(φ)・cos(ψ)+cos(φ)・cos(θ)・sin(ψ)  …式(4B)
     a=sin(θ)・sin(ψ)  …式(4C)
     なお、式(4A)~(4C)におけるφ,θ及びψは、前記支持基板の結晶方位(φ,θ,ψ)における、φ,θ,ψである。
  2.  前記支持基板の厚みが20λ以上である、請求項1に記載の弾性波装置。
  3.  前記酸化ケイ素膜の膜厚が下記の表1に示す範囲のいずれかである、請求項1または2に記載の弾性波装置。
    Figure JPOXMLDOC01-appb-T000001
  4.  前記酸化ケイ素膜の膜厚が、下記の表2に示す範囲のいずれかである、請求項1~3のいずれか1項に記載の弾性波装置。
    Figure JPOXMLDOC01-appb-T000002
  5.   前記式(1)における前記Vは、前記式(2)の解V、V、Vのうち、最も小さい値である、請求項1~4のいずれか1項に記載の弾性波装置。
  6.  前記支持基板の前記音速VSiが4700m/秒以下である、請求項1に記載の弾性波装置。
  7.  前記支持基板の厚みが、180μm以下である、請求項1~6のいずれか1項に記載の弾性波装置。
  8.  前記圧電体の膜厚は、3.5λ以下である、請求項1~7のいずれか1項に記載の弾性波装置。
  9.  前記圧電体の膜厚は、2.5λ以下である、請求項1~7のいずれか1項に記載の弾性波装置。
  10.  前記圧電体の膜厚が、1.5λ以下である、請求項1~7のいずれか1項に記載の弾性波装置。
  11.  前記圧電体の膜厚が、0.5λ以下である、請求項1~7のいずれか1項に記載の弾性波装置。
  12.  前記圧電体が、LiTaOからなる、請求項1~11のいずれか1項に記載の弾性波装置。
  13.  前記酸化ケイ素膜を伝搬するバルク波の音速が、前記圧電体を伝搬する弾性波の音速よりも遅い、請求項1~12のいずれか1項に記載の弾性波装置。
  14.  前記支持基板を伝搬するバルク波の音速が、前記圧電体を伝搬する弾性波の音速よりも速い、請求項1~13のいずれか1項に記載の弾性波装置。
  15.  前記酸化ケイ素膜と、前記支持基板との間に、伝搬するバルク波の音速が、前記圧電体を伝搬する弾性波の音速よりも速い高音速材料層をさらに備える、請求項3~14のいずれか1項に記載の弾性波装置。
  16.  前記圧電体と前記IDT電極との間に設けられた誘電体層をさらに備える、請求項1~15のいずれか1項に記載の弾性波装置。
  17.  前記誘電体層が、酸化ケイ素または五酸化タンタルからなる、請求項16に記載の弾性波装置。
  18.  前記IDT電極を囲む支持層と、
     前記支持層を覆っており、前記IDT電極を囲む中空空間を構成しているカバー部材と、
     前記カバー部材上に設けられており、前記IDT電極に電気的に接続されている複数の金属バンプと、
     をさらに備える、請求項1~17のいずれか1項に記載の弾性波装置。
  19.  前記IDT電極を囲む支持層と、
     前記支持層を覆っており、前記IDT電極を囲む中空空間を構成しているカバー部材と、をさらに備え、
     前記支持基板において、前記支持基板を貫通している貫通電極と、前記貫通電極に電気的に接続されており、前記支持基板の前記IDT電極が設けられている側とは反対側の面に設けられている端子電極と、が設けられており、
     前記貫通電極が、前記IDT電極と前記端子電極とに電気的に接続されている、請求項1~17のいずれか1項に記載の弾性波装置。
  20.  複数の電極ランドが一方面に設けられたケース基板と、
     請求項1~17のいずれか1項に記載の弾性波装置と、
    を備え、
     前記IDT電極に電気的に接続される金属バンプが、前記弾性波装置に設けられており、
     前記弾性波装置の前記金属バンプが前記電極ランドに接合されるように、前記弾性波装置が前記ケース基板に搭載されており、
     前記弾性波装置を封止するように前記ケース基板上に設けられた封止樹脂層をさらに備える、弾性波装置パッケージ。
  21.  請求項18に記載の弾性波装置と、
     一方面に複数の電極ランドが設けられたケース基板と、
    を備え、
     前記複数の金属バンプが、前記ケース基板の前記複数の電極ランドに接合されるように、前記弾性波装置が前記ケース基板に搭載されており、
     前記弾性波装置を封止するように設けられた封止樹脂層をさらに備える、弾性波装置パッケージ。
  22.  前記カバー部材と前記ケース基板との間に空隙を有する、請求項21に記載の弾性波装置パッケージ。
  23.  請求項1~19のいずれか1項に記載の弾性波装置と、
     パワーアンプと、
     を備える、高周波フロントエンド回路。
  24.  請求項23に記載の高周波フロントエンド回路と、
     RF信号処理回路と、
     を備える、通信装置。
PCT/JP2018/008912 2017-03-09 2018-03-08 弾性波装置、弾性波装置パッケージ、高周波フロントエンド回路及び通信装置 WO2018164209A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197025378A KR102294237B1 (ko) 2017-03-09 2018-03-08 탄성파 장치, 탄성파 장치 패키지, 고주파 프론트 엔드 회로 및 통신 장치
CN202310552681.1A CN116599490A (zh) 2017-03-09 2018-03-08 弹性波装置及弹性波装置封装件
JP2019504655A JP6624336B2 (ja) 2017-03-09 2018-03-08 弾性波装置、弾性波装置パッケージ、高周波フロントエンド回路及び通信装置
CN201880016602.2A CN110431743B (zh) 2017-03-09 2018-03-08 弹性波装置及弹性波装置封装件
US16/562,465 US11476828B2 (en) 2017-03-09 2019-09-06 Acoustic wave device, acoustic wave device package, radio-frequency front-end circuit, and communication device
US17/945,139 US11671071B2 (en) 2017-03-09 2022-09-15 Acoustic wave device, acoustic wave device package, radio-frequency front-end circuit, and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-044686 2017-03-09
JP2017044686 2017-03-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/562,465 Continuation US11476828B2 (en) 2017-03-09 2019-09-06 Acoustic wave device, acoustic wave device package, radio-frequency front-end circuit, and communication device

Publications (1)

Publication Number Publication Date
WO2018164209A1 true WO2018164209A1 (ja) 2018-09-13

Family

ID=63448595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008912 WO2018164209A1 (ja) 2017-03-09 2018-03-08 弾性波装置、弾性波装置パッケージ、高周波フロントエンド回路及び通信装置

Country Status (5)

Country Link
US (2) US11476828B2 (ja)
JP (1) JP6624336B2 (ja)
KR (1) KR102294237B1 (ja)
CN (2) CN116599490A (ja)
WO (1) WO2018164209A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124128A1 (ja) * 2017-12-22 2019-06-27 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置
TWI677951B (zh) * 2018-11-09 2019-11-21 恆勁科技股份有限公司 表面聲波濾波器封裝結構及其製作方法
WO2020130051A1 (ja) * 2018-12-20 2020-06-25 株式会社村田製作所 弾性波素子および弾性波装置
KR20200112663A (ko) * 2019-03-22 2020-10-05 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치
JP2021145306A (ja) * 2020-03-13 2021-09-24 太陽誘電株式会社 弾性波デバイス、フィルタおよびマルチプレクサ
JPWO2021210551A1 (ja) * 2020-04-17 2021-10-21
WO2023157958A1 (ja) * 2022-02-18 2023-08-24 株式会社村田製作所 弾性波装置及び弾性波装置の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102011467B1 (ko) * 2015-09-10 2019-08-16 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
CN116599490A (zh) * 2017-03-09 2023-08-15 株式会社村田制作所 弹性波装置及弹性波装置封装件
CN110663175B (zh) * 2017-05-26 2023-11-07 株式会社村田制作所 弹性波装置、滤波器、高频前端电路以及通信装置
CN113676149B (zh) * 2021-08-26 2023-11-21 中国科学院上海微系统与信息技术研究所 一种声波器件及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046117A1 (ja) * 2009-10-13 2011-04-21 株式会社村田製作所 弾性表面波装置
WO2013191122A1 (ja) * 2012-06-22 2013-12-27 株式会社村田製作所 弾性波装置
WO2016208427A1 (ja) * 2015-06-25 2016-12-29 株式会社村田製作所 弾性波装置
WO2017043394A1 (ja) * 2015-09-10 2017-03-16 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1515436A3 (en) * 2003-08-29 2005-08-31 Seiko Epson Corporation Surface acoustic wave element and electronic equipment provided with the element
JP2010187373A (ja) * 2009-01-19 2010-08-26 Ngk Insulators Ltd 複合基板及びそれを用いた弾性波デバイス
CN105794107B (zh) * 2013-12-27 2018-12-25 株式会社村田制作所 弹性波装置以及其制造方法
WO2015178227A1 (ja) * 2014-05-20 2015-11-26 株式会社村田製作所 弾性波デバイス及びその製造方法
JP6464735B2 (ja) * 2014-12-25 2019-02-06 株式会社村田製作所 弾性波装置及びその製造方法
WO2017176211A1 (en) * 2016-04-06 2017-10-12 Singapore University Of Technology And Design Particle manipulation
CN116599490A (zh) * 2017-03-09 2023-08-15 株式会社村田制作所 弹性波装置及弹性波装置封装件
US10840875B2 (en) * 2017-10-24 2020-11-17 Resonant Inc. Surface acoustic wave devices using beryllium conductors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046117A1 (ja) * 2009-10-13 2011-04-21 株式会社村田製作所 弾性表面波装置
WO2013191122A1 (ja) * 2012-06-22 2013-12-27 株式会社村田製作所 弾性波装置
WO2016208427A1 (ja) * 2015-06-25 2016-12-29 株式会社村田製作所 弾性波装置
WO2017043394A1 (ja) * 2015-09-10 2017-03-16 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11539343B2 (en) 2017-12-22 2022-12-27 Murata Manufacturing Co., Ltd. Acoustic wave device, high-frequency front-end circuit, and communication device
WO2019124128A1 (ja) * 2017-12-22 2019-06-27 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置
TWI677951B (zh) * 2018-11-09 2019-11-21 恆勁科技股份有限公司 表面聲波濾波器封裝結構及其製作方法
WO2020130051A1 (ja) * 2018-12-20 2020-06-25 株式会社村田製作所 弾性波素子および弾性波装置
CN113243083A (zh) * 2018-12-20 2021-08-10 株式会社村田制作所 弹性波元件以及弹性波装置
CN113243083B (zh) * 2018-12-20 2024-07-30 株式会社村田制作所 弹性波元件以及弹性波装置
KR20200112663A (ko) * 2019-03-22 2020-10-05 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치
KR102345530B1 (ko) 2019-03-22 2021-12-30 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치
JP7485478B2 (ja) 2020-03-13 2024-05-16 太陽誘電株式会社 弾性波デバイス、フィルタおよびマルチプレクサ
JP2021145306A (ja) * 2020-03-13 2021-09-24 太陽誘電株式会社 弾性波デバイス、フィルタおよびマルチプレクサ
WO2021210551A1 (ja) * 2020-04-17 2021-10-21 株式会社村田製作所 弾性波装置
JPWO2021210551A1 (ja) * 2020-04-17 2021-10-21
JP7424473B2 (ja) 2020-04-17 2024-01-30 株式会社村田製作所 弾性波装置
WO2023157958A1 (ja) * 2022-02-18 2023-08-24 株式会社村田製作所 弾性波装置及び弾性波装置の製造方法

Also Published As

Publication number Publication date
CN116599490A (zh) 2023-08-15
US20230019446A1 (en) 2023-01-19
JP6624336B2 (ja) 2019-12-25
US11476828B2 (en) 2022-10-18
CN110431743B (zh) 2023-06-23
US11671071B2 (en) 2023-06-06
KR102294237B1 (ko) 2021-08-26
KR20190109521A (ko) 2019-09-25
CN110431743A (zh) 2019-11-08
US20190393854A1 (en) 2019-12-26
JPWO2018164209A1 (ja) 2019-12-26

Similar Documents

Publication Publication Date Title
JP6624336B2 (ja) 弾性波装置、弾性波装置パッケージ、高周波フロントエンド回路及び通信装置
US11482983B2 (en) Elastic wave device, high-frequency front-end circuit, and communication device
KR102142866B1 (ko) 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
JP6822597B2 (ja) 弾性波装置、高周波フロントエンド回路及び通信装置
CN111602337B (zh) 弹性波装置、多工器、高频前端电路及通信装置
JP7136293B2 (ja) 弾性波装置、弾性波装置パッケージ及びマルチプレクサ
US11984869B2 (en) Acoustic wave device
KR102294196B1 (ko) 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
KR20190099119A (ko) 탄성파 장치, 멀티플렉서, 고주파 프론트 엔드 회로 및 통신 장치
KR20190099065A (ko) 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
JP7441010B2 (ja) 弾性波デバイス、フィルタおよびマルチプレクサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764601

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197025378

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019504655

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18764601

Country of ref document: EP

Kind code of ref document: A1