WO2018164007A1 - Electric heater device - Google Patents

Electric heater device Download PDF

Info

Publication number
WO2018164007A1
WO2018164007A1 PCT/JP2018/008113 JP2018008113W WO2018164007A1 WO 2018164007 A1 WO2018164007 A1 WO 2018164007A1 JP 2018008113 W JP2018008113 W JP 2018008113W WO 2018164007 A1 WO2018164007 A1 WO 2018164007A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
electric heater
heater device
heat
heat exchange
Prior art date
Application number
PCT/JP2018/008113
Other languages
French (fr)
Japanese (ja)
Inventor
貴之 福田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112018001261.1T priority Critical patent/DE112018001261T5/en
Publication of WO2018164007A1 publication Critical patent/WO2018164007A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/143Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the heat being derived from cooling an electric component, e.g. electric motors, electric circuits, fuel cells or batteries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/101Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow

Definitions

  • the present disclosure relates to an electric heater device.
  • the power conversion device described in Patent Literature 1 includes a semiconductor stacked unit and a pressure member.
  • the semiconductor lamination unit is configured by alternately laminating semiconductor modules and cooling pipes for cooling the semiconductor modules.
  • the pressurizing member pressurizes the semiconductor stacked unit in the stacking direction.
  • the structure of the power conversion device described in Patent Document 1 can be applied to an electric heater device that heats water using a heating element. Specifically, if a heating element is used instead of the semiconductor module in the power conversion device described in Patent Document 1, an electric heater device that heats the water flowing inside the cooling pipe can be realized.
  • an electronic component such as a drive circuit for driving the heating element is required.
  • a cooling structure is also required.
  • a cooling structure for example, it is conceivable to employ a structure in which electronic components are arranged between the added cooling pipes after adding cooling pipes that are stacked and arranged with a predetermined gap.
  • the number of cooling pipes increases, and thus the size of the electric heater device cannot be avoided.
  • An object of the present disclosure is to provide an electric heater device that can cool an electronic component and can be miniaturized.
  • the electric heater device includes a plurality of pipes and a heating element.
  • the plurality of pipes are stacked between the inflow pipe into which the water flows in and the exhaust pipe from which the water flows out as a heat exchanging portion, with the water distributed and flowing inside, and having a predetermined gap. Yes.
  • the heating element is disposed in a gap between the plurality of pipes and generates heat based on the supply of electric power.
  • the electric heater device further includes a case and an electronic component.
  • the case has a heat exchange part and a heat generating element inside, and has a contact part that comes into contact with the outermost pipe in the stacking direction among the plurality of pipes of the heat exchange part so as to be able to conduct heat.
  • the electronic component is provided so as to be able to conduct heat with the contact portion of the case.
  • heat generated from the electronic component is transmitted to the contact portion. Since the heat exchange part is in contact with the contact part, the heat of the contact part is absorbed by the water flowing through the piping of the heat exchange part. As a result, the heat generated from the electronic component is absorbed by the water flowing through the pipe, so that the electronic component can be cooled. Also, as compared with the case of adopting a structure for cooling electronic components by providing electronic components between stacked piping, separate piping that is stacked for cooling electronic components is not required. The electric heater device can be reduced in size.
  • FIG. 1 is a plan view showing a planar structure of the electric heater device of the first embodiment.
  • FIG. 2 is a plan view showing a planar structure of the electric heater device of the first embodiment.
  • FIG. 3 is a sectional view showing a partial sectional structure taken along line III-III in FIG.
  • FIG. 4 is a flowchart illustrating a procedure of processing executed by the control device of the first embodiment.
  • FIG. 5 is a plan view showing a planar structure of an electric heater device according to a modification of the first embodiment.
  • FIG. 6 is a plan view showing a planar structure of the electric heater device of the second embodiment.
  • FIG. 7 is a plan view showing a planar structure of an electric heater device according to another embodiment.
  • the electric heater device 10 of the present embodiment shown in FIG. 1 is used as a device for raising the temperature of the heater core by electrically heating the circulating water circulating through the heater core in a vehicle air conditioner, for example. By raising the temperature of the heater core, the temperature of the air blown into the passenger compartment can be increased, so that the passenger compartment can be heated.
  • the electric heater device 10 includes a heat exchanging unit 20, a plurality of heating elements 30, a case 40, and a pressing member 50.
  • the heat exchanging unit 20 has a structure in which a plurality of flat pipes 21 through which water flows are stacked with a predetermined gap in the Y direction.
  • the Y direction is also referred to as a “pipe lamination direction”.
  • Cylindrical connecting portions 22a and 22b are formed on both side surfaces in the pipe stacking direction Y at one end in the longitudinal direction of each pipe 21, respectively. By connecting the connecting portions 22a and 22b of the adjacent pipes 21 and 21 to each other, one end portion of each pipe 21 is communicated.
  • cylindrical connecting portions 23 a and 23 b are formed on both side surfaces in the pipe stacking direction Y at the other end in the longitudinal direction of each pipe 21. By connecting the connecting portions 23a and 23b of the adjacent pipes 21 and 21, the other ends of the pipes 21 are communicated with each other.
  • connection part 22a the inflow pipe 70 is connected to the piping 21a arrange
  • the connecting portions 22b and 23b are not formed in the pipe 21b arranged at the other end portion in the pipe stacking direction Y, and the corresponding portions are closed.
  • the water flowing into the inflow pipe 70 is distributed to the inside of each pipe 21 through the connection parts 22 a and 22 b of each pipe 21. Therefore, in the heat exchange unit 20, water flows in the direction indicated by the arrow W in the drawing. The water flowing through each pipe 21 is collected at the connecting portions 23a and 23b of each pipe and then discharged from the discharge pipe 71.
  • the heating element 30 is disposed between the plurality of pipes 21 and 21.
  • the heating element 30 generates heat based on power supply. By performing heat exchange between the heat generating element 30 and the heat exchange unit 20, water flowing inside the heat exchange unit 20 is heated.
  • the case 40 is formed in a square box shape, and the heat exchange unit 20 and the heating element 30 are accommodated therein.
  • the case 40 is formed of a metal material having high thermal conductivity such as aluminum.
  • a through hole 42 into which the inflow pipe 70 is inserted and a through hole 43 into which the discharge pipe 71 is inserted are formed in the side wall 41 of the case 40.
  • the inflow pipe 70 and the discharge pipe 71 extend from the inside of the case 40 to the outside through the through holes 42 and 43.
  • the case 40 is provided with a contact portion 44 that contacts the pipe 21a of the heat exchange portion 20. That is, the contact portion 44 is in contact with one end surface of the heat exchange portion 20 in the pipe stacking direction Y.
  • the contact portion 44 is a thick portion formed so as to protrude toward the inside of the case 40 from a portion corresponding to the side wall 41 of the case 40 between the through hole 42 and the through hole 43.
  • the contact portion 44 is integrally formed with the case 40 by die casting or the like.
  • the heat exchange unit 20 is pressed against the contact portion 44 by the pressing member 50.
  • the pressing member 50 includes a spring member 51 and a plate member 52.
  • the plate member 52 is in surface contact with the pipe 21 b of the heat exchange unit 20.
  • the spring member 51 is made of a leaf spring having a shape curved in an arc shape.
  • the central portion of the spring member 51 is in contact with the plate member 52.
  • Both ends of the spring member 51 are supported by columnar fixing pins 45 a and 45 b formed integrally with the case 40.
  • the spring member 51 is inserted in a compressed state between the fixing pins 45 a and 45 b and the plate member 52. Therefore, the heat exchange unit 20 is pressed against the contact portion 44 by the elastic force applied from the spring member 51 via the plate member 52. Thereby, since the adhesiveness of the piping 21 and the heat generating element 30 is improved, the thermal conductivity between them can be improved.
  • part which the most upstream part of the flow direction W of the water in the heat exchange part 20 contacts among the parts which the heat exchange part 20 contacts in the contact part 44 is the 1st contact part P1, or A portion where the most downstream portion in the water flow direction W in the heat exchanging portion 20 contacts is shown as a second contact portion P2.
  • female screw portions 46 having female screw holes are formed.
  • Bolts for assembling an upper cover (not shown) to the case 40 are screwed into the female screw portion 46.
  • the opening of the case 40 is closed.
  • a plurality of cylindrical female screw portions 47 in which female screw holes are formed are formed inside the case 40.
  • Bolts 48 for assembling the substrate 80 shown in FIG. 2 to the case 40 are screwed into the female screw portion 47.
  • substrate 80 is arrange
  • the heating element 30 is mounted on the substrate 80.
  • the substrate 80 is mounted with electronic components such as a drive circuit for driving the heating element 30, a sensor element for detecting various state quantities of the electric heater device 10, and a control device for controlling the heating element 30. ing.
  • electronic components such as a drive circuit for driving the heating element 30, a sensor element for detecting various state quantities of the electric heater device 10, and a control device for controlling the heating element 30.
  • a switching element 81, temperature sensors 82 and 83, and a control device 84 that constitute a drive circuit are illustrated.
  • the switching element 81 is made of an IGBT, a MOSFET, or the like. In the drive circuit, the supply and stop of power to the heating element 30 can be switched by switching the switching element 81 on and off.
  • the switching element 81 and the temperature sensors 82 and 83 are thermally joined to the contact portion 44 via the heat conductive member 90.
  • the heat conductive member 90 is made of, for example, a heat conductive sheet.
  • the first temperature sensor 82 is provided in a portion of the contact portion 44 close to the first contact site P1.
  • the second temperature sensor 83 is provided in a portion of the contact portion 44 that is close to the second contact site P2.
  • heat generated from the switching element 81 is transmitted to the contact portion 44 through the heat conductive member 90. Since the pipe 21a of the heat exchange unit 20 is in contact with the contact part 44, the heat of the contact part 44 is absorbed by the water flowing through the pipe 21a of the heat exchange part 20. As a result, the heat generated from the switching element 81 is absorbed by the water flowing through the pipe 21a, so that the switching element 81 can be cooled.
  • the first temperature sensor 82 is provided in a portion of the contact portion 44 close to the first contact site P1, the temperature of the first contact site P1 or a temperature substantially equivalent thereto can be detected.
  • the first contact site P ⁇ b> 1 is a site where the most upstream portion of the heat exchange unit 20 in the water flow direction W is in contact with the heat exchange unit 20 in the contact unit 44. Therefore, the first temperature sensor 82 can detect the inflow water temperature T1, which is the temperature of the water flowing into the heat exchange unit 20.
  • the second temperature sensor 83 since the second temperature sensor 83 is provided in a portion of the contact portion 44 close to the second contact site P2, it can detect the temperature of the second contact site P2 or a temperature substantially equivalent thereto.
  • the second contact site P ⁇ b> 2 is a site where the most downstream portion of the heat exchange unit 20 in the water flow direction W is in contact with the heat exchange unit 20 in the contact unit 44. Therefore, the second temperature sensor 83 can detect the outflow water temperature T2, which is the temperature of the water flowing out from the heat exchange unit 20.
  • the control device 84 repeatedly executes the process shown in FIG. 4 at a predetermined cycle. As shown in FIG. 4, first, the control device 84 acquires information on the target water temperature T * transmitted from the host ECU as the process of step S10, and the process of the temperature sensors 82 and 83 as the process of step S11. Information on the inflow water temperature T1 and the outflow water temperature T2 is acquired based on the output signal. And the control apparatus 84 judges whether the inflow water temperature T1 is less than the protection water temperature Tth as a process of step S12 following the process of step S11. The protection water temperature Tth is determined in advance by experiments or the like so that it can be determined whether or not there is a possibility that water will boil, and is stored in the storage device of the control device 84.
  • step S12 If the determination in step S12 is negative, that is, if the inflow water temperature T1 is equal to or higher than the protection water temperature Tth, the control device 84 performs a protection process for avoiding boiling of water as the process in step S15. To do.
  • the protection process for example, the process of stopping the heating element 30 by turning off the switching element 81 and cutting off the supply of power to the heating element 30 is performed.
  • the control device 84 makes a positive determination in the process of step S12 That is, when the inflow water temperature T1 is lower than the protection water temperature Tth, it is determined in step S13 whether the outflow water temperature T2 is lower than the target water temperature T *.
  • step S13 If the determination in step S13 is affirmative, that is, if the outflow water temperature T2 is lower than the target water temperature T *, the control device 84 drives the heating element 30 as the process in step S14. Specifically, the control device 84 calculates a duty ratio based on the deviation between the target water temperature T * and the effluent water temperature T2, and controls on / off of the switching element 81 based on the calculated duty ratio. Then, the heating element 30 is driven.
  • the control device 84 once ends the series of processes after executing the process of step S14. Further, even when the control device 84 makes a negative determination in the process of step S13, that is, when the outflow water temperature T2 is equal to or higher than the target water temperature T *, the series of processes is temporarily ended. According to the electric heater device 10 of the present embodiment described above, the operations and effects shown in the following (1) to (3) can be obtained.
  • a switching element 81 is provided at the contact portion 44. Thereby, since the heat emitted from the switching element 81 is absorbed by the water in the pipe 21a through the contact portion 44, the switching element 81 can be cooled. Further, as compared with a case where a structure in which the switching element 81 is cooled by providing the switching element 81 between the stacked pipes 21 is provided, a separate pipe 21 that is stacked and arranged for cooling the switching element 81. Therefore, the electric heater device 10 can be downsized.
  • temperature sensors 82 and 83 are provided in the contact portion 44. Specifically, the first temperature sensor 82 is provided in a portion of the contact portion 44 close to the first contact site P1. Further, the second temperature sensor 83 is provided in a portion of the contact portion 44 that is close to the second contact site P2. Thereby, the temperature of the water flowing into the heat exchanging unit 20 can be detected by the first temperature sensor 82, and the temperature of the water flowing out of the heat exchanging unit 20 can be detected by the second temperature sensor 83.
  • the contact part 44 has the heat conductive member 90 in the part in which the switching element 81 and the temperature sensors 82 and 83 are provided. Therefore, since the thermal conductivity between the contact part 44 and the switching element 81 and the thermal conductivity between the contact part 44 and the temperature sensors 82 and 83 can be increased, the switching element 81 can be easily cooled. In addition, the temperature detection accuracy by the temperature sensors 82 and 83 can be increased.
  • the contact portion 44 has a heat conductive member 91 at a portion in contact with the pipe 21 a of the heat exchange portion 20.
  • the heat conductive member 91 is made of, for example, a heat conductive sheet. According to such a configuration, since the thermal conductivity between the pipe 21a and the contact portion 44 of the heat exchanging unit 20 can be increased, the switching element 81 can be further easily cooled and the temperature sensors 82 and 83 are used. The temperature detection accuracy can be further increased.
  • the contact portion 44 of this embodiment has a slit 100 formed between a portion where the switching element 81 is provided and a portion where the first temperature sensor 82 is provided.
  • a slit 101 is formed between a portion where the switching element 81 is provided and a portion where the second temperature sensor 83 is provided.
  • the slits 100 and 101 are concave grooves.
  • the slit 100 thermally separates the portion where the switching element 81 is provided from the portion where the first temperature sensor 82 is provided, so that the temperature detection accuracy by the first temperature sensor 82 is improved. Can be improved.
  • the slit 101 thermally separates the portion where the switching element 81 is provided from the portion where the second temperature sensor 83 is provided, the temperature detection accuracy by the second temperature sensor 83 is improved. Can be improved.
  • each embodiment can also be implemented with the following forms.
  • the heat conductive member 90 may be eliminated by bringing the switching element 81 and the temperature sensors 82 and 83 into contact with the contact portion 44.
  • the contact portion 44 may be provided with only one of the switching element 81 and the temperature sensors 82 and 83.
  • the contact portion 44 has a slit between the first temperature sensor 82 and the second temperature sensor 83. 102 may be formed. Thereby, the effect
  • the contact portion 44 may be provided with electronic components other than the switching element 81 and the temperature sensors 82 and 83.
  • the means and / or the function provided by the control device 84 can be provided by software stored in a substantial storage device and a computer that executes the software, software only, hardware only, or a combination thereof.
  • the controller 84 is provided by an electronic circuit that is hardware, it can be provided by a digital circuit including multiple logic circuits, or an analog circuit.

Abstract

An electric heater device (10) comprises a plurality of pipelines (21), and heating elements (30). The plurality of pipelines are layered as a heat exchange section (20) between an inflow pipe (70) into which water flows and a discharge pipe (71) from which the water flows out, the water flowing in a distributed manner within the pipelines, and a prescribed gap being maintained therebetween. The heating elements are disposed in the gaps between the plurality of pipelines, and emit heat on the basis of the supply of power. The electric heater device furthermore comprises a case (40) and electronic components (81, 82, 83). The case internally houses the heat exchange unit and the heating elements, and has a contact part (44) that comes into contact so as to be capable of conducting heat with the pipelines at the end furthest in the lamination direction among the plurality of pipelines of the heat exchange unit. The electronic components are provided so as to be capable of conducting heat with the contact part of the case.

Description

電気ヒータ装置Electric heater device 関連出願の相互参照Cross-reference of related applications
 本出願は、2017年3月10日に出願された日本国特許出願2017-046396号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2017-046396 filed on March 10, 2017, and claims the benefit of its priority. Which is incorporated herein by reference.
 本開示は、電気ヒータ装置に関する。 The present disclosure relates to an electric heater device.
 従来、特許文献1に記載の電力変換装置がある。特許文献1に記載の電力変換装置は、半導体積層ユニットと、加圧部材とを備えている。半導体積層ユニットは、半導体モジュールと、半導体モジュールを冷却する冷却管とが交互に積層されることにより構成されている。加圧部材は、半導体積層ユニットを積層方向に加圧している。 Conventionally, there is a power conversion device described in Patent Document 1. The power conversion device described in Patent Literature 1 includes a semiconductor stacked unit and a pressure member. The semiconductor lamination unit is configured by alternately laminating semiconductor modules and cooling pipes for cooling the semiconductor modules. The pressurizing member pressurizes the semiconductor stacked unit in the stacking direction.
特開2007-166819号公報JP 2007-166819 A
 特許文献1に記載の電力変換装置の構造は、発熱素子により水を加熱する電気ヒータ装置に適用することが可能である。具体的には、特許文献1に記載の電力変換装置において半導体モジュールに代えて発熱素子を用いれば、冷却管の内部を流れる水を加熱する電気ヒータ装置を実現することができる。 The structure of the power conversion device described in Patent Document 1 can be applied to an electric heater device that heats water using a heating element. Specifically, if a heating element is used instead of the semiconductor module in the power conversion device described in Patent Document 1, an electric heater device that heats the water flowing inside the cooling pipe can be realized.
 ところで、このような電気ヒータ装置では、発熱素子を駆動させるための駆動回路等の電子部品が必要となる。また、電子部品が発熱する場合には、その冷却構造も必要となる。このような冷却構造としては、例えば所定の隙間を有して積層配置される冷却管を追加した上で、追加された冷却管の間に電子部品を配置する構造を採用することが考えられる。しかしながら、このような冷却構造を採用した場合、冷却管の数が増加することになるため、電気ヒータ装置の大型化が避けられないものとなる。 By the way, in such an electric heater device, an electronic component such as a drive circuit for driving the heating element is required. In addition, when the electronic component generates heat, a cooling structure is also required. As such a cooling structure, for example, it is conceivable to employ a structure in which electronic components are arranged between the added cooling pipes after adding cooling pipes that are stacked and arranged with a predetermined gap. However, when such a cooling structure is adopted, the number of cooling pipes increases, and thus the size of the electric heater device cannot be avoided.
 本開示の目的は、電子部品を冷却することができるとともに、小型化の可能な電気ヒータ装置を提供することにある。 An object of the present disclosure is to provide an electric heater device that can cool an electronic component and can be miniaturized.
 本開示の一態様による電気ヒータ装置は、複数の配管と、発熱素子と、を備える。複数の配管は、水が流入する流入管と当該水が流出する排出管との間に、熱交換部として、内部に当該水が分配して流れ、かつ所定の隙間を有して積層されている。発熱素子は、複数の配管の隙間に配置され、電力の供給に基づき発熱する。また、電気ヒータ装置は、ケースと、電子部品と、をさらに備える。ケースは、熱交換部及び発熱素子を内部に収容するとともに、熱交換部の複数の配管のうち積層方向の最端の配管と熱伝導可能に接触する接触部を有する。電子部品は、ケースの接触部と熱伝導可能に設けられている。 The electric heater device according to an aspect of the present disclosure includes a plurality of pipes and a heating element. The plurality of pipes are stacked between the inflow pipe into which the water flows in and the exhaust pipe from which the water flows out as a heat exchanging portion, with the water distributed and flowing inside, and having a predetermined gap. Yes. The heating element is disposed in a gap between the plurality of pipes and generates heat based on the supply of electric power. The electric heater device further includes a case and an electronic component. The case has a heat exchange part and a heat generating element inside, and has a contact part that comes into contact with the outermost pipe in the stacking direction among the plurality of pipes of the heat exchange part so as to be able to conduct heat. The electronic component is provided so as to be able to conduct heat with the contact portion of the case.
 この構成によれば、電子部品から発せられる熱が接触部に伝達される。接触部には熱交換部が接触しているため、接触部の熱は、熱交換部の配管を流れる水に吸収される。結果的に、電子部品から発せられる熱が、配管を流れる水に吸収されることになるため、電子部品を冷却することができる。また、積層配置された配管の間に電子部品を設けることにより電子部品の冷却を行う構造を採用する場合と比較すると、電子部品の冷却のために積層配置される別途の配管が不要であるため、電気ヒータ装置を小型化することができる。 According to this configuration, heat generated from the electronic component is transmitted to the contact portion. Since the heat exchange part is in contact with the contact part, the heat of the contact part is absorbed by the water flowing through the piping of the heat exchange part. As a result, the heat generated from the electronic component is absorbed by the water flowing through the pipe, so that the electronic component can be cooled. Also, as compared with the case of adopting a structure for cooling electronic components by providing electronic components between stacked piping, separate piping that is stacked for cooling electronic components is not required. The electric heater device can be reduced in size.
図1は、第1実施形態の電気ヒータ装置の平面構造を示す平面図である。FIG. 1 is a plan view showing a planar structure of the electric heater device of the first embodiment. 図2は、第1実施形態の電気ヒータ装置の平面構造を示す平面図である。FIG. 2 is a plan view showing a planar structure of the electric heater device of the first embodiment. 図3は、図2のIII-III線に沿った部分断面構造を示す断面図である。FIG. 3 is a sectional view showing a partial sectional structure taken along line III-III in FIG. 図4は、第1実施形態の制御装置により実行される処理の手順を示すフローチャートである。FIG. 4 is a flowchart illustrating a procedure of processing executed by the control device of the first embodiment. 図5は、第1実施形態の変形例の電気ヒータ装置の平面構造を示す平面図である。FIG. 5 is a plan view showing a planar structure of an electric heater device according to a modification of the first embodiment. 図6は、第2実施形態の電気ヒータ装置の平面構造を示す平面図である。FIG. 6 is a plan view showing a planar structure of the electric heater device of the second embodiment. 図7は、他の実施形態の電気ヒータ装置の平面構造を示す平面図である。FIG. 7 is a plan view showing a planar structure of an electric heater device according to another embodiment.
 以下、電気ヒータ装置の実施形態について図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
 <第1実施形態>
 図1に示される本実施形態の電気ヒータ装置10は、例えば車両用空調装置においてヒータコアを循環する循環水を電気的に加熱することによりヒータコアの温度を上昇させるための装置として用いられる。ヒータコアの温度を上昇させることにより、車室内に吹き出される空気の温度を上昇させることができるため、車室内の暖房が可能となる。図1に示されるように、電気ヒータ装置10は、熱交換部20と、複数の発熱素子30と、ケース40と、押し付け部材50とを備えている。
Hereinafter, an embodiment of an electric heater device will be described with reference to the drawings. In order to facilitate the understanding of the description, the same constituent elements in the drawings will be denoted by the same reference numerals as much as possible, and redundant description will be omitted.
<First Embodiment>
The electric heater device 10 of the present embodiment shown in FIG. 1 is used as a device for raising the temperature of the heater core by electrically heating the circulating water circulating through the heater core in a vehicle air conditioner, for example. By raising the temperature of the heater core, the temperature of the air blown into the passenger compartment can be increased, so that the passenger compartment can be heated. As shown in FIG. 1, the electric heater device 10 includes a heat exchanging unit 20, a plurality of heating elements 30, a case 40, and a pressing member 50.
 熱交換部20は、内部に水の流れる複数の扁平状の配管21がY方向に所定の隙間を有して積層配置された構造を有している。以下では、Y方向を「配管積層方向」とも称する。
 各配管21の長手方向の一端部における配管積層方向Yの両側面には、筒状の連結部22a,22bがそれぞれ形成されている。隣り合う配管21,21のそれぞれの連結部22a,22bが互いに連結されることにより、各配管21の一端部が連通されている。また、各配管21の長手方向の他端部における配管積層方向Yの両側面には、筒状の連結部23a,23bがそれぞれ形成されている。隣り合う配管21,21のそれぞれの連結部23a,23bが互いに連結されることにより、各配管21の他端部が連通されている。
The heat exchanging unit 20 has a structure in which a plurality of flat pipes 21 through which water flows are stacked with a predetermined gap in the Y direction. Hereinafter, the Y direction is also referred to as a “pipe lamination direction”.
Cylindrical connecting portions 22a and 22b are formed on both side surfaces in the pipe stacking direction Y at one end in the longitudinal direction of each pipe 21, respectively. By connecting the connecting portions 22a and 22b of the adjacent pipes 21 and 21 to each other, one end portion of each pipe 21 is communicated. In addition, cylindrical connecting portions 23 a and 23 b are formed on both side surfaces in the pipe stacking direction Y at the other end in the longitudinal direction of each pipe 21. By connecting the connecting portions 23a and 23b of the adjacent pipes 21 and 21, the other ends of the pipes 21 are communicated with each other.
 なお、配管積層方向Yの一端部に配置される配管21aには、連結部22aに代えて流入管70が接続されるとともに、連結部23aに代えて排出管71が接続されている。また、配管積層方向Yの他端部に配置される配管21bには、連結部22b,23bが形成されておらず、それらに対応する部分が閉塞されている。 In addition, in addition to the connection part 22a, the inflow pipe 70 is connected to the piping 21a arrange | positioned at the one end part of the pipe lamination direction Y, and the discharge pipe 71 is connected instead of the connection part 23a. In addition, the connecting portions 22b and 23b are not formed in the pipe 21b arranged at the other end portion in the pipe stacking direction Y, and the corresponding portions are closed.
 熱交換部20では、流入管70に流入する水が各配管21の連結部22a,22bを通じて各配管21の内部に分配される。よって、熱交換部20では、図中に矢印Wで示される方向に水が流れる。各配管21を流れた水は各配管の連結部23a,23bにおいて集められた後、排出管71から排出される。 In the heat exchange unit 20, the water flowing into the inflow pipe 70 is distributed to the inside of each pipe 21 through the connection parts 22 a and 22 b of each pipe 21. Therefore, in the heat exchange unit 20, water flows in the direction indicated by the arrow W in the drawing. The water flowing through each pipe 21 is collected at the connecting portions 23a and 23b of each pipe and then discharged from the discharge pipe 71.
 発熱素子30は、複数の配管21,21の間に配置されている。発熱素子30は、電力の供給に基づき発熱する。発熱素子30と熱交換部20との間で熱交換が行われることにより、熱交換部20の内部を流れる水が加熱される。
 ケース40は、四角箱状に形成されており、その内部に熱交換部20及び発熱素子30が収容されている。ケース40は、アルミニウム等の高い熱伝導性を有する金属材料により形成されている。ケース40の側壁41には、流入管70が挿入される貫通孔42と、排出管71が挿入される貫通孔43とが形成されている。流入管70及び排出管71は、これらの貫通孔42,43を通じてケース40の内部から外部に延びている。
The heating element 30 is disposed between the plurality of pipes 21 and 21. The heating element 30 generates heat based on power supply. By performing heat exchange between the heat generating element 30 and the heat exchange unit 20, water flowing inside the heat exchange unit 20 is heated.
The case 40 is formed in a square box shape, and the heat exchange unit 20 and the heating element 30 are accommodated therein. The case 40 is formed of a metal material having high thermal conductivity such as aluminum. A through hole 42 into which the inflow pipe 70 is inserted and a through hole 43 into which the discharge pipe 71 is inserted are formed in the side wall 41 of the case 40. The inflow pipe 70 and the discharge pipe 71 extend from the inside of the case 40 to the outside through the through holes 42 and 43.
 ケース40には、熱交換部20の配管21aに接触する接触部44が形成されている。すなわち、接触部44は、配管積層方向Yにおいて熱交換部20の一端面に接触している。接触部44は、ケース40の側壁41における貫通孔42と貫通孔43との間に相当する部分からケース40の内部に向かって突出するように形成された厚肉部からなる。接触部44は、ダイカスト成形等によりケース40に一体的に形成されている。接触部44には、押し付け部材50により熱交換部20が押し付けられている。 The case 40 is provided with a contact portion 44 that contacts the pipe 21a of the heat exchange portion 20. That is, the contact portion 44 is in contact with one end surface of the heat exchange portion 20 in the pipe stacking direction Y. The contact portion 44 is a thick portion formed so as to protrude toward the inside of the case 40 from a portion corresponding to the side wall 41 of the case 40 between the through hole 42 and the through hole 43. The contact portion 44 is integrally formed with the case 40 by die casting or the like. The heat exchange unit 20 is pressed against the contact portion 44 by the pressing member 50.
 具体的には、押し付け部材50は、ばね部材51と、プレート部材52とにより構成されている。プレート部材52は、熱交換部20の配管21bに面接触している。ばね部材51は、円弧状に湾曲した形状からなる板ばねからなる。ばね部材51の中央部はプレート部材52に接触している。ばね部材51の両端部は、ケース40に一体的に形成された円柱状の固定ピン45a,45bにより支持されている。ばね部材51は、固定ピン45a,45bとプレート部材52との間に圧縮された状態で挿入されている。よって、熱交換部20は、ばね部材51からプレート部材52を介して加わる弾性力により接触部44に押し付けられている。これにより、配管21と発熱素子30との密着性が高められるため、それらの間の熱伝導性を高めることができる。 Specifically, the pressing member 50 includes a spring member 51 and a plate member 52. The plate member 52 is in surface contact with the pipe 21 b of the heat exchange unit 20. The spring member 51 is made of a leaf spring having a shape curved in an arc shape. The central portion of the spring member 51 is in contact with the plate member 52. Both ends of the spring member 51 are supported by columnar fixing pins 45 a and 45 b formed integrally with the case 40. The spring member 51 is inserted in a compressed state between the fixing pins 45 a and 45 b and the plate member 52. Therefore, the heat exchange unit 20 is pressed against the contact portion 44 by the elastic force applied from the spring member 51 via the plate member 52. Thereby, since the adhesiveness of the piping 21 and the heat generating element 30 is improved, the thermal conductivity between them can be improved.
 なお、図1では、接触部44において熱交換部20が接触する部位のうち、熱交換部20における水の流れ方向Wの最も上流側の部分が接触する部位が第1接触部位P1として、また熱交換部20における水の流れ方向Wの最も下流側の部分が接触する部位が第2接触部位P2として図示されている。 In addition, in FIG. 1, the site | part which the most upstream part of the flow direction W of the water in the heat exchange part 20 contacts among the parts which the heat exchange part 20 contacts in the contact part 44 is the 1st contact part P1, or A portion where the most downstream portion in the water flow direction W in the heat exchanging portion 20 contacts is shown as a second contact portion P2.
 ケース40の四隅には、雌ねじ穴が形成された雌ねじ部46が形成されている。雌ねじ部46には、図示しない上蓋をケース40に組み付けるためのボルトがねじ込まれる。ケース40に上蓋が組み付けられることにより、ケース40の開口部分が閉塞される。
 また、ケース40の内部には、雌ねじ穴が形成された円柱状の雌ねじ部47が複数形成されている。雌ねじ部47には、図2に示される基板80をケース40に組み付けるためのボルト48がねじ込まれる。これにより、基板80は、熱交換部20の全体及び接触部44の一部と対向するように配置される。
At the four corners of the case 40, female screw portions 46 having female screw holes are formed. Bolts for assembling an upper cover (not shown) to the case 40 are screwed into the female screw portion 46. By attaching the upper lid to the case 40, the opening of the case 40 is closed.
In addition, a plurality of cylindrical female screw portions 47 in which female screw holes are formed are formed inside the case 40. Bolts 48 for assembling the substrate 80 shown in FIG. 2 to the case 40 are screwed into the female screw portion 47. Thereby, the board | substrate 80 is arrange | positioned so that the whole heat exchange part 20 and a part of contact part 44 may be opposed.
 基板80には、発熱素子30が実装されている。また、基板80には、発熱素子30を駆動させるための駆動回路や、電気ヒータ装置10の各種状態量を検出するためのセンサ素子、発熱素子30を制御する制御装置等の電子部品が実装されている。図2では、これらの電子部品のうち、駆動回路を構成するスイッチング素子81、温度センサ82,83、及び制御装置84が図示されている。スイッチング素子81は、IGBTやMOSFET等からなる。駆動回路では、スイッチング素子81のオン/オフの切り替えにより、発熱素子30への電力の供給及び停止を切り替えることが可能となっている。 The heating element 30 is mounted on the substrate 80. The substrate 80 is mounted with electronic components such as a drive circuit for driving the heating element 30, a sensor element for detecting various state quantities of the electric heater device 10, and a control device for controlling the heating element 30. ing. In FIG. 2, among these electronic components, a switching element 81, temperature sensors 82 and 83, and a control device 84 that constitute a drive circuit are illustrated. The switching element 81 is made of an IGBT, a MOSFET, or the like. In the drive circuit, the supply and stop of power to the heating element 30 can be switched by switching the switching element 81 on and off.
 図3に示されるように、スイッチング素子81及び温度センサ82,83は、熱伝導性部材90を介して接触部44と熱的に接合されている。熱伝導性部材90は、例えば熱伝導性シートからなる。図1に示されるように、第1温度センサ82は、接触部44における第1接触部位P1に近接した部分に設けられている。また、第2温度センサ83は、接触部44における第2接触部位P2に近接した部分に設けられている。このような構造により、スイッチング素子81を冷却することができるとともに、熱交換部20を流れる水の温度を温度センサ82,83により検出することができる。 As shown in FIG. 3, the switching element 81 and the temperature sensors 82 and 83 are thermally joined to the contact portion 44 via the heat conductive member 90. The heat conductive member 90 is made of, for example, a heat conductive sheet. As shown in FIG. 1, the first temperature sensor 82 is provided in a portion of the contact portion 44 close to the first contact site P1. Further, the second temperature sensor 83 is provided in a portion of the contact portion 44 that is close to the second contact site P2. With such a structure, the switching element 81 can be cooled, and the temperature of the water flowing through the heat exchange unit 20 can be detected by the temperature sensors 82 and 83.
 具体的には、スイッチング素子81から発せられる熱は熱伝導性部材90を通じて接触部44に伝達される。接触部44には、熱交換部20の配管21aが接触しているため、接触部44の熱は、熱交換部20の配管21aを流れる水に吸収される。結果的に、スイッチング素子81から発せられる熱が、配管21aを流れる水に吸収されることになるため、スイッチング素子81を冷却することができる。 Specifically, heat generated from the switching element 81 is transmitted to the contact portion 44 through the heat conductive member 90. Since the pipe 21a of the heat exchange unit 20 is in contact with the contact part 44, the heat of the contact part 44 is absorbed by the water flowing through the pipe 21a of the heat exchange part 20. As a result, the heat generated from the switching element 81 is absorbed by the water flowing through the pipe 21a, so that the switching element 81 can be cooled.
 一方、第1温度センサ82は、接触部44における第1接触部位P1に近接した部分に設けられているため、第1接触部位P1の温度、あるいはそれと略同等の温度を検出することができる。第1接触部位P1は、接触部44において熱交換部20が接触する部位のうち、熱交換部20における水の流れ方向Wの最も上流側の部分が接触する部位である。よって、第1温度センサ82は、熱交換部20に流入する水の温度である流入水温T1を検出することが可能である。 On the other hand, since the first temperature sensor 82 is provided in a portion of the contact portion 44 close to the first contact site P1, the temperature of the first contact site P1 or a temperature substantially equivalent thereto can be detected. The first contact site P <b> 1 is a site where the most upstream portion of the heat exchange unit 20 in the water flow direction W is in contact with the heat exchange unit 20 in the contact unit 44. Therefore, the first temperature sensor 82 can detect the inflow water temperature T1, which is the temperature of the water flowing into the heat exchange unit 20.
 また、第2温度センサ83は、接触部44における第2接触部位P2に近接した部分に設けられているため、第2接触部位P2の温度、あるいはそれと略同等の温度を検出することができる。第2接触部位P2は、接触部44において熱交換部20が接触する部位のうち、熱交換部20における水の流れ方向Wの最も下流側の部分が接触する部位である。よって、第2温度センサ83は、熱交換部20から流出する水の温度である流出水温T2を検出することが可能である。 Further, since the second temperature sensor 83 is provided in a portion of the contact portion 44 close to the second contact site P2, it can detect the temperature of the second contact site P2 or a temperature substantially equivalent thereto. The second contact site P <b> 2 is a site where the most downstream portion of the heat exchange unit 20 in the water flow direction W is in contact with the heat exchange unit 20 in the contact unit 44. Therefore, the second temperature sensor 83 can detect the outflow water temperature T2, which is the temperature of the water flowing out from the heat exchange unit 20.
 次に、電気ヒータ装置10の動作例について説明する。
 制御装置84は、図4に示される処理を所定の周期で繰り返し実行する。図4に示されるように、制御装置84は、まず、ステップS10の処理として、上位ECUから送信される目標水温T*の情報を取得するとともに、ステップS11の処理として、温度センサ82,83の出力信号に基づいて流入水温T1及び流出水温T2の情報を取得する。そして、制御装置84は、ステップS11の処理に続いて、ステップS12の処理として、流入水温T1が保護水温Tth未満であるか否かを判断する。保護水温Tthは、水が沸騰する可能性があるか否かを判定することができるように予め実験等により定められており、制御装置84の記憶装置に記憶されている。
Next, an operation example of the electric heater device 10 will be described.
The control device 84 repeatedly executes the process shown in FIG. 4 at a predetermined cycle. As shown in FIG. 4, first, the control device 84 acquires information on the target water temperature T * transmitted from the host ECU as the process of step S10, and the process of the temperature sensors 82 and 83 as the process of step S11. Information on the inflow water temperature T1 and the outflow water temperature T2 is acquired based on the output signal. And the control apparatus 84 judges whether the inflow water temperature T1 is less than the protection water temperature Tth as a process of step S12 following the process of step S11. The protection water temperature Tth is determined in advance by experiments or the like so that it can be determined whether or not there is a possibility that water will boil, and is stored in the storage device of the control device 84.
 制御装置84は、ステップS12の処理で否定判断した場合には、すなわち流入水温T1が保護水温Tth以上である場合には、ステップS15の処理として、水の沸騰を回避するための保護処理を実行する。保護処理としては、例えばスイッチング素子81をオフさせて発熱素子30への電力の供給を遮断することにより発熱素子30を停止させる処理が行われる
 制御装置84は、ステップS12の処理で肯定判断した場合には、すなわち流入水温T1が保護水温Tth未満である場合には、ステップS13の処理として、流出水温T2が目標水温T*未満であるか否かを判断する。制御装置84は、ステップS13の処理で肯定判断した場合には、すなわち流出水温T2が目標水温T*未満である場合には、ステップS14の処理として、発熱素子30を駆動させる。具体的には、制御装置84は、目標水温T*と流出水温T2との偏差に基づきデューティ比を演算するとともに、演算されたデューティ比に基づいてスイッチング素子81のオン/オフを制御することにより、発熱素子30を駆動させる。
If the determination in step S12 is negative, that is, if the inflow water temperature T1 is equal to or higher than the protection water temperature Tth, the control device 84 performs a protection process for avoiding boiling of water as the process in step S15. To do. As the protection process, for example, the process of stopping the heating element 30 by turning off the switching element 81 and cutting off the supply of power to the heating element 30 is performed. When the control device 84 makes a positive determination in the process of step S12 That is, when the inflow water temperature T1 is lower than the protection water temperature Tth, it is determined in step S13 whether the outflow water temperature T2 is lower than the target water temperature T *. If the determination in step S13 is affirmative, that is, if the outflow water temperature T2 is lower than the target water temperature T *, the control device 84 drives the heating element 30 as the process in step S14. Specifically, the control device 84 calculates a duty ratio based on the deviation between the target water temperature T * and the effluent water temperature T2, and controls on / off of the switching element 81 based on the calculated duty ratio. Then, the heating element 30 is driven.
 制御装置84は、ステップS14の処理を実行した後、一連の処理を一旦終了する。また、制御装置84は、ステップS13の処理で否定判断した場合にも、すなわち流出水温T2が目標水温T*以上である場合にも、一連の処理を一旦終了する。
 以上説明した本実施形態の電気ヒータ装置10によれば、以下の(1)~(3)に示される作用及び効果を得ることができる。
The control device 84 once ends the series of processes after executing the process of step S14. Further, even when the control device 84 makes a negative determination in the process of step S13, that is, when the outflow water temperature T2 is equal to or higher than the target water temperature T *, the series of processes is temporarily ended.
According to the electric heater device 10 of the present embodiment described above, the operations and effects shown in the following (1) to (3) can be obtained.
 (1)電気ヒータ装置10では、接触部44にスイッチング素子81が設けられている。これにより、スイッチング素子81から発せられる熱が接触部44を介して配管21a内の水に吸収されるため、スイッチング素子81を冷却することができる。また、積層配置された配管21の間にスイッチング素子81を設けることによりスイッチング素子81の冷却を行う構造を採用する場合と比較すると、スイッチング素子81の冷却のために積層配置される別途の配管21が不要であるため、電気ヒータ装置10を小型化することができる。 (1) In the electric heater device 10, a switching element 81 is provided at the contact portion 44. Thereby, since the heat emitted from the switching element 81 is absorbed by the water in the pipe 21a through the contact portion 44, the switching element 81 can be cooled. Further, as compared with a case where a structure in which the switching element 81 is cooled by providing the switching element 81 between the stacked pipes 21 is provided, a separate pipe 21 that is stacked and arranged for cooling the switching element 81. Therefore, the electric heater device 10 can be downsized.
 (2)電気ヒータ装置10では、接触部44に温度センサ82,83が設けられている。具体的には、第1温度センサ82は、接触部44における第1接触部位P1に近接した部分に設けられている。また、第2温度センサ83は、接触部44における第2接触部位P2に近接した部分に設けられている。これにより、熱交換部20に流入する水の温度を第1温度センサ82により検出することができるとともに、熱交換部20から流出する水の温度を第2温度センサ83により検出することができる。 (2) In the electric heater device 10, temperature sensors 82 and 83 are provided in the contact portion 44. Specifically, the first temperature sensor 82 is provided in a portion of the contact portion 44 close to the first contact site P1. Further, the second temperature sensor 83 is provided in a portion of the contact portion 44 that is close to the second contact site P2. Thereby, the temperature of the water flowing into the heat exchanging unit 20 can be detected by the first temperature sensor 82, and the temperature of the water flowing out of the heat exchanging unit 20 can be detected by the second temperature sensor 83.
 (3)接触部44は、スイッチング素子81及び温度センサ82,83が設けられる部分に熱伝導性部材90を有している。これにより、接触部44とスイッチング素子81との間の熱伝導性、並びに接触部44と温度センサ82,83との間の熱伝導性を高めることができるため、スイッチング素子81を冷却させ易くなるとともに、温度センサ82,83による温度の検出精度を高めることができる。 (3) The contact part 44 has the heat conductive member 90 in the part in which the switching element 81 and the temperature sensors 82 and 83 are provided. Thereby, since the thermal conductivity between the contact part 44 and the switching element 81 and the thermal conductivity between the contact part 44 and the temperature sensors 82 and 83 can be increased, the switching element 81 can be easily cooled. In addition, the temperature detection accuracy by the temperature sensors 82 and 83 can be increased.
 (変形例)
 次に、第1実施形態の電気ヒータ装置10の変形例について説明する。
 図5に示されるように、接触部44は、熱交換部20の配管21aと接触する部分に熱伝導性部材91を有している。熱伝導性部材91は、例えば熱伝導性シートからなる。このような構成によれば、熱交換部20の配管21aと接触部44との間の熱伝導性を高めることができるため、スイッチング素子81を更に冷却させ易くなるとともに、温度センサ82,83による温度の検出精度を更に高めることができる。
(Modification)
Next, a modification of the electric heater device 10 of the first embodiment will be described.
As shown in FIG. 5, the contact portion 44 has a heat conductive member 91 at a portion in contact with the pipe 21 a of the heat exchange portion 20. The heat conductive member 91 is made of, for example, a heat conductive sheet. According to such a configuration, since the thermal conductivity between the pipe 21a and the contact portion 44 of the heat exchanging unit 20 can be increased, the switching element 81 can be further easily cooled and the temperature sensors 82 and 83 are used. The temperature detection accuracy can be further increased.
 <第2実施形態>
 次に、電気ヒータ装置10の第2実施形態について説明する。以下、第1実施形態の電気ヒータ装置10との相違点を中心に説明する。
 図6に示されるように、本実施形態の接触部44には、スイッチング素子81が設けられる部分と第1温度センサ82が設けられる部分との間にスリット100が形成されている。また、接触部44には、スイッチング素子81が設けられる部分と第2温度センサ83が設けられる部分との間にスリット101が形成されている。スリット100,101は、凹状の溝からなる。
Second Embodiment
Next, a second embodiment of the electric heater device 10 will be described. Hereinafter, it demonstrates centering around difference with the electric heater apparatus 10 of 1st Embodiment.
As shown in FIG. 6, the contact portion 44 of this embodiment has a slit 100 formed between a portion where the switching element 81 is provided and a portion where the first temperature sensor 82 is provided. In the contact portion 44, a slit 101 is formed between a portion where the switching element 81 is provided and a portion where the second temperature sensor 83 is provided. The slits 100 and 101 are concave grooves.
 以上説明した本実施形態の電気ヒータ装置10によれば、以下の(4)に示される作用及び効果を更に得ることができる。
 (4)スリット100により、スイッチング素子81が設けられている部分と、第1温度センサ82が設けられている部分とが熱的に分断されるため、第1温度センサ82による温度の検出精度を向上させることができる。同様に、スリット101により、スイッチング素子81が設けられている部分と、第2温度センサ83が設けられている部分とが熱的に分断されるため、第2温度センサ83による温度の検出精度を向上させることができる。
According to the electric heater device 10 of the present embodiment described above, the operation and effect shown in the following (4) can be further obtained.
(4) The slit 100 thermally separates the portion where the switching element 81 is provided from the portion where the first temperature sensor 82 is provided, so that the temperature detection accuracy by the first temperature sensor 82 is improved. Can be improved. Similarly, because the slit 101 thermally separates the portion where the switching element 81 is provided from the portion where the second temperature sensor 83 is provided, the temperature detection accuracy by the second temperature sensor 83 is improved. Can be improved.
 <他の実施形態>
 なお、各実施形態は、以下の形態にて実施することもできる。
 ・スイッチング素子81及び温度センサ82,83を接触部44に接触させることにより、熱伝導性部材90を排除してもよい。
<Other embodiments>
In addition, each embodiment can also be implemented with the following forms.
The heat conductive member 90 may be eliminated by bringing the switching element 81 and the temperature sensors 82 and 83 into contact with the contact portion 44.
 ・接触部44には、スイッチング素子81及び温度センサ82,83のいずれか一方のみが設けられていてもよい。例えば接触部44に温度センサ82,83のみが設けられている場合には、図7に示されるように、接触部44には、第1温度センサ82と第2温度センサ83との間にスリット102が形成されていてもよい。これにより、第2実施形態の電気ヒータ装置10に類似の作用及び効果を得ることができる。 The contact portion 44 may be provided with only one of the switching element 81 and the temperature sensors 82 and 83. For example, when only the temperature sensors 82 and 83 are provided in the contact portion 44, as shown in FIG. 7, the contact portion 44 has a slit between the first temperature sensor 82 and the second temperature sensor 83. 102 may be formed. Thereby, the effect | action and effect similar to the electric heater apparatus 10 of 2nd Embodiment can be acquired.
 ・接触部44には、スイッチング素子81及び温度センサ82,83以外の電子部品が設けられていてもよい。
 ・制御装置84が提供する手段及び/又は機能は、実体的な記憶装置に記憶されたソフトウェア及びそれを実行するコンピュータ、ソフトウェアのみ、ハードウェアのみ、あるいはそれらの組み合わせにより提供することができる。例えば制御装置84がハードウェアである電子回路により提供される場合、それは多数の論理回路を含むデジタル回路、又はアナログ回路により提供することができる。
The contact portion 44 may be provided with electronic components other than the switching element 81 and the temperature sensors 82 and 83.
The means and / or the function provided by the control device 84 can be provided by software stored in a substantial storage device and a computer that executes the software, software only, hardware only, or a combination thereof. For example, if the controller 84 is provided by an electronic circuit that is hardware, it can be provided by a digital circuit including multiple logic circuits, or an analog circuit.
 ・本開示は上記の具体例に限定されるものではない。上記の具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素、及びその配置、条件、形状等は、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 ・ This disclosure is not limited to the above specific examples. Any of the above specific examples that are appropriately modified by those skilled in the art are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each of the specific examples described above, and the arrangement, conditions, shape, and the like thereof are not limited to those illustrated, and can be appropriately changed. Each element included in each of the specific examples described above can be appropriately combined as long as no technical contradiction occurs.

Claims (9)

  1.  水が流入する流入管(70)と当該水が流出する排出管(71)との間に、熱交換部(20)として、内部に当該水が分配して流れ、かつ所定の隙間を有して積層された複数の配管(21)と、
     前記複数の配管の前記隙間に配置され、電力の供給に基づき発熱する発熱素子(30)と、を備え、
     前記熱交換部及び前記発熱素子を内部に収容するとともに、前記熱交換部(20)の前記複数の配管(21)のうち積層方向の最端の配管と熱伝導可能に接触する接触部(44)を有するケース(40)と、
     前記ケース(40)の前記接触部(44)と熱伝導可能に設けられた電子部品(81,82,83)と、
     をさらに備える電気ヒータ装置。
    Between the inflow pipe (70) into which the water flows and the discharge pipe (71) from which the water flows out, the water is distributed and flows inside as a heat exchange section (20) and has a predetermined gap. A plurality of pipes (21) stacked in layers,
    A heating element (30) disposed in the gaps of the plurality of pipes and generating heat based on the supply of electric power,
    While accommodating the said heat exchange part and the said heat generating element inside, the contact part (44) which contacts the pipe | tube of the end of a lamination direction among the several pipes (21) of the said heat exchange part (20) so that heat conduction is possible. ) Having a case (40),
    Electronic parts (81, 82, 83) provided so as to be able to conduct heat with the contact portion (44) of the case (40);
    An electric heater device further comprising:
  2.  前記熱交換部(20)側から、前記最端の配管と前記接触部とを押し付ける押し付け部材(50)を、さらに備える
     請求項1に記載の電気ヒータ装置。
    The electric heater device according to claim 1, further comprising: a pressing member (50) that presses the outermost pipe and the contact portion from the heat exchanging portion (20) side.
  3.  前記接触部(44)は、前記ケース(40)のうち前記流入管(70)の貫通孔(42)と前記排出管(71)の貫通孔(43)との間にある側壁(41)に相当する部分から、前記ケース(40)の内部に向かって突出するように形成されており、
     前記接触部は、熱交換部(20)における水の流れ方向の最も上流側の部分の前記最端の配管と接触するように配置されている
     請求項1又は2に記載の電気ヒータ装置。
    The contact portion (44) is formed on a side wall (41) between the through hole (42) of the inflow pipe (70) and the through hole (43) of the discharge pipe (71) in the case (40). It is formed so as to protrude from the corresponding part toward the inside of the case (40),
    3. The electric heater device according to claim 1, wherein the contact portion is disposed so as to be in contact with the outermost pipe in the most upstream portion in the water flow direction in the heat exchanging portion (20).
  4.  前記電子部品は、
     前記接触部に複数設けられ、
     前記接触部には、
     複数の前記電子部品のそれぞれが設けられている部分の間にスリット(100,101,102)が形成されている
     請求項1~3のいずれか一項に記載の電気ヒータ装置。
    The electronic component is
    A plurality of the contact portions are provided,
    In the contact portion,
    The electric heater device according to any one of claims 1 to 3, wherein a slit (100, 101, 102) is formed between portions where each of the plurality of electronic components is provided.
  5.  前記電子部品には、
     前記発熱素子の駆動回路を構成するスイッチング素子(81)が含まれている
     請求項1~4のいずれか一項に記載の電気ヒータ装置。
    The electronic component includes
    The electric heater device according to any one of claims 1 to 4, further comprising a switching element (81) constituting a drive circuit of the heat generating element.
  6.  前記電子部品には、
     温度センサ(82,83)が含まれている
     請求項1~4のいずれか一項に記載の電気ヒータ装置。
    The electronic component includes
    The electric heater device according to any one of claims 1 to 4, further comprising a temperature sensor (82, 83).
  7.  前記接触部において前記熱交換部が接触する部位のうち、前記熱交換部における水の流れ方向の最も上流側の部分が接触する部位を第1接触部位(P1)とし、前記熱交換部における水の流れ方向の最も下流側の部分が接触する部位を第2接触部位(P2)とするとき、
     前記温度センサは、
     前記接触部における前記第1接触部位に近接した部分に設けられる第1温度センサ(82)と、
     前記接触部における前記第2接触部位に近接した部分に設けられる第2温度センサ(83)と、からなる
     請求項6に記載の電気ヒータ装置。
    Of the parts of the contact part that are in contact with the heat exchange part, the part of the heat exchange part that is in contact with the most upstream part of the water flow direction is defined as a first contact part (P1). When the part where the most downstream part of the flow direction of the contact is the second contact part (P2),
    The temperature sensor is
    A first temperature sensor (82) provided in a portion of the contact portion adjacent to the first contact portion;
    The electric heater device according to claim 6, further comprising: a second temperature sensor (83) provided at a portion of the contact portion adjacent to the second contact portion.
  8.  前記接触部は、
     前記熱交換部と接触する部分に熱伝導性部材(90)を有している
     請求項1~7のいずれか一項に記載の電気ヒータ装置。
    The contact portion is
    The electric heater device according to any one of claims 1 to 7, further comprising a heat conductive member (90) in a portion in contact with the heat exchange unit.
  9.  前記接触部は、
     前記電子部品が設けられる部分に熱伝導性部材(91)を有している
     請求項1~8のいずれか一項に記載の電気ヒータ装置。
    The contact portion is
    The electric heater device according to any one of claims 1 to 8, further comprising a heat conductive member (91) in a portion where the electronic component is provided.
PCT/JP2018/008113 2017-03-10 2018-03-02 Electric heater device WO2018164007A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112018001261.1T DE112018001261T5 (en) 2017-03-10 2018-03-02 Electric heating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017046396A JP6708151B2 (en) 2017-03-10 2017-03-10 Electric heater device
JP2017-046396 2017-03-10

Publications (1)

Publication Number Publication Date
WO2018164007A1 true WO2018164007A1 (en) 2018-09-13

Family

ID=63447607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008113 WO2018164007A1 (en) 2017-03-10 2018-03-02 Electric heater device

Country Status (3)

Country Link
JP (1) JP6708151B2 (en)
DE (1) DE112018001261T5 (en)
WO (1) WO2018164007A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019184163A (en) 2018-04-10 2019-10-24 株式会社デンソー Electric heater device
JP2019184164A (en) 2018-04-10 2019-10-24 株式会社デンソー Electric heater device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012096779A (en) * 2010-10-07 2012-05-24 Mitsubishi Heavy Ind Ltd Heat-medium heating device and vehicle air conditioning device provided with the same
JP2014129090A (en) * 2014-02-10 2014-07-10 Mitsubishi Heavy Ind Ltd Heat medium heating device and vehicle air conditioner using the same
JP2017016817A (en) * 2015-06-30 2017-01-19 カルソニックカンセイ株式会社 Fluid heating device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6537107B2 (en) 2015-08-25 2019-07-03 矢崎総業株式会社 Electrical connection box

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012096779A (en) * 2010-10-07 2012-05-24 Mitsubishi Heavy Ind Ltd Heat-medium heating device and vehicle air conditioning device provided with the same
JP2014129090A (en) * 2014-02-10 2014-07-10 Mitsubishi Heavy Ind Ltd Heat medium heating device and vehicle air conditioner using the same
JP2017016817A (en) * 2015-06-30 2017-01-19 カルソニックカンセイ株式会社 Fluid heating device

Also Published As

Publication number Publication date
JP2018152195A (en) 2018-09-27
JP6708151B2 (en) 2020-06-10
DE112018001261T5 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
JP4525582B2 (en) Power converter
JP5699995B2 (en) Power converter
JP5652370B2 (en) Power converter
WO2013031406A1 (en) Module for adjusting battery temperature
US20170187300A1 (en) Power Module
US9377244B2 (en) Heat medium heating device and vehicle air conditioner including the same
JP2016040770A (en) Heat exchange plate for temperature management of battery pack
JP4725536B2 (en) Power converter
WO2018164007A1 (en) Electric heater device
JP2010119300A5 (en)
JP6135623B2 (en) Semiconductor device and manufacturing method thereof
JP4600413B2 (en) Power converter
JP7151599B2 (en) power converter
JP2009212137A (en) Cooling device for heat generating element
JP2006271063A (en) Cooling structure of bus bar
JP2006127920A (en) Power supply device
CN112566446A (en) Heat dissipation structure for electrical component assembly, heat conductive sheet, and method for manufacturing electrical component assembly
JP2011216806A (en) Electronic circuit device
JP6451166B2 (en) Power converter
JP5447191B2 (en) Power converter
JP2014053442A (en) Plate laminated type cooling device
JP2007329330A (en) Semiconductor device
JP2012099748A (en) Stacked cooler
JP7247915B2 (en) power converter
WO2024043335A1 (en) Electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764650

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18764650

Country of ref document: EP

Kind code of ref document: A1