WO2018163985A1 - Scanning line drive circuit and display device equipped with same - Google Patents

Scanning line drive circuit and display device equipped with same Download PDF

Info

Publication number
WO2018163985A1
WO2018163985A1 PCT/JP2018/007958 JP2018007958W WO2018163985A1 WO 2018163985 A1 WO2018163985 A1 WO 2018163985A1 JP 2018007958 W JP2018007958 W JP 2018007958W WO 2018163985 A1 WO2018163985 A1 WO 2018163985A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
node
transistor
scanning line
driving circuit
Prior art date
Application number
PCT/JP2018/007958
Other languages
French (fr)
Japanese (ja)
Inventor
晶 田川
泰章 岩瀬
洋平 竹内
卓哉 渡部
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2018163985A1 publication Critical patent/WO2018163985A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements

Definitions

  • the present invention relates to a scanning line driving circuit provided in a display device such as a liquid crystal display device, and a display device including the scanning line driving circuit.
  • Liquid crystal display devices are widely used as thin, lightweight, and low power consumption display devices.
  • a scanning line driving circuit and a thin film transistor (hereinafter referred to as TFT) along with a pixel circuit are provided on one substrate of the liquid crystal panel.
  • TFT thin film transistor
  • Such a scanning line driving circuit is called a monolithic gate driver circuit.
  • the TFT included in the scanning line driving circuit is configured using, for example, amorphous silicon or an oxide semiconductor.
  • the conductivity type of the TFT is an n-channel type.
  • the TFT included in the scanning line driving circuit is formed using low-temperature polysilicon or low-temperature CG (Continuous Grain) silicon.
  • the conductivity type of the TFT may be a p-channel type or an n-channel type.
  • the depletion type TFT has, for example, voltage-current characteristics shown in FIG. As shown in FIG. 16, in the depletion type TFT, even when the gate-source voltage Vgs is 0, a current Ids (> 0) flows between the drain and the source. The depletion type TFT is not completely turned off even when the gate terminal and the source terminal are equipotential. For this reason, in a scanning line driving circuit including a depletion type TFT, an output signal may become unstable. In addition, since a through current flows through the scanning line driving circuit, current supply from a control circuit that controls the scanning line driving circuit is insufficient, and the scanning line driving circuit may malfunction.
  • Patent Document 1 describes a scanning line driving circuit using a depletion type TFT having a configuration in which unit circuits shown in FIG. 17 are connected in multiple stages and operating according to a timing chart shown in FIG. Yes. Three types of low level voltages VGL1 to VGL3 are supplied to the unit circuit shown in FIG.
  • the scanning line driving circuit described in Patent Document 1 is supplied with clock signals CK1 to CK3 whose voltage level changes between VGH and VGL1, and clock signals CK1a to CK3a whose voltage level changes between VGH and VGL3. (See FIG. 18).
  • the amplitude differs between these two systems of clock signals. For this reason, the configuration of the control circuit for controlling the scanning line driving circuit becomes complicated, and the cost of the display device increases. In addition, it is necessary to adjust the timing between the two clock signals.
  • the scanning line driving circuit described in Patent Document 1 has a problem that the configuration of the control circuit becomes complicated and the cost of the display device increases.
  • each of the unit circuits includes a first conduction terminal connected to the clock terminal, a control terminal connected to the first node, and a second conduction terminal connected to the first output terminal for outputting a signal for the scanning line.
  • a second output terminal for outputting a signal to a unit circuit in another stage, a first conduction terminal connected to the clock terminal, a control terminal connected to the first node, A second output transistor having a second conduction terminal connected to the first node, a first node set transistor for applying the on-voltage to the first node according to the potential of the set terminal, and the potential according to the potential of the control terminal.
  • a first node reset transistor that applies a second off voltage to the first node
  • a second output reset transistor that applies a third off voltage to the second output terminal according to the potential of the second node.
  • the second off voltage is a voltage farther from the on voltage than the first off voltage
  • the third off voltage is a voltage farther from the on voltage than the second off voltage. It is.
  • the first to third off voltages having the above-described magnitude relationship are applied to the first output terminal, the first node, and the second node of the unit circuit, respectively.
  • a voltage at which the transistor is turned off (difference between the second off voltage and the first off voltage) is applied between the control terminal and the second conduction terminal of the first output transistor
  • a voltage at which the transistor is turned off (difference between the third off voltage and the second off voltage) is also applied between the control terminal and the second conduction terminal of the first node set transistor.
  • the scanning line driving circuit operates in accordance with a clock signal that changes between two voltage levels. Therefore, a scan line driver circuit using a depletion type transistor that can be controlled more easily than in the past can be provided.
  • FIG. 1 is a block diagram illustrating a configuration of a scanning line driving circuit according to a first embodiment.
  • FIG. FIG. 2 is a circuit diagram of a unit circuit of the scanning line driving circuit shown in FIG. 1.
  • 2 is a timing chart of the scanning line driving circuit shown in FIG. It is a block diagram which shows the structure of the scanning line drive circuit which concerns on a comparative example.
  • It is a circuit diagram of a unit circuit of a scanning line driving circuit according to a comparative example.
  • 6 is a timing chart of a scanning line driving circuit according to a comparative example. It is a figure which shows the electric potential of the terminal of the transistor in a non-selection period about the scanning line drive circuit which concerns on a comparative example.
  • FIG. 2 is a diagram showing a potential of a transistor in a non-selection period for the scanning line driving circuit shown in FIG.
  • FIG. 6 is a circuit diagram of a unit circuit of a scanning line driving circuit according to a second embodiment. It is a block diagram which shows the structure of the scanning-line drive circuit which concerns on 3rd Embodiment. 13 is a timing chart of the scanning line driving circuit shown in FIG.
  • FIG. 15 is a timing chart of the scanning line driving circuit shown in FIG. It is a figure which shows the example of the voltage-current characteristic of a depletion type TFT. It is a circuit diagram of a unit circuit of a conventional scanning line driving circuit. It is a timing chart of the conventional scanning line drive circuit.
  • the scanning line driving circuit according to each embodiment has a configuration in which n (n is an integer of 1 or more) unit circuits are connected in multiple stages, and operates according to a multiphase clock signal.
  • n unit circuits included in the scanning line driving circuit are referred to as SR1, SR2,.
  • the horizontal direction of the drawing is referred to as the row direction, and the vertical direction of the drawing is referred to as the column direction.
  • a voltage that turns on the transistor when applied to the control terminal is referred to as an on-voltage
  • a voltage that turns off the transistor when applied to the control terminal is referred to as an off-voltage.
  • the high level voltage is an on voltage and the low level voltage is an off voltage.
  • the p-channel transistor the low level voltage is an on voltage and the high level voltage is an off voltage.
  • FIG. 1 is a block diagram illustrating a configuration of a scanning line driving circuit according to the first embodiment.
  • the scanning line driving circuit 10 shown in FIG. 1 is formed together with the display unit 5 on one substrate of a liquid crystal panel (not shown).
  • the display unit 5 is also called an active area, and the scanning line driving circuit 10 is also called a monolithic gate driver circuit.
  • the display unit 5 and the scanning line driving circuit 10 constitute a liquid crystal display device together with a data line driving circuit (not shown).
  • n is a multiple of 8
  • i is an integer of 1 to n
  • k is an integer of 1 to (n / 8).
  • the display unit 5 includes n scanning lines G1 to Gn (not shown) extending in the row direction, a plurality of data lines (not shown) extending in the column direction, and a plurality of data including the scanning lines G1 to Gn.
  • a plurality of pixel circuits (not shown) arranged corresponding to the intersections of the lines are included.
  • the scanning line drive circuit 10 includes a first drive unit 12 disposed on the left side of the display unit 5 and a second drive unit 13 disposed on the right side of the display unit 5.
  • Each of the first and second drive units 12 and 13 has a configuration in which (n / 2) unit circuits 11 are connected in multiple stages.
  • the first drive unit 12 includes odd-numbered unit circuits SR1, SR3,..., SRn-1, and the second drive unit 13 includes even-numbered unit circuits SR2, SR4,.
  • the unit circuit 11 has a clock terminal CK, a set terminal S, a reset terminal R, a first output terminal G, and a second output terminal Q.
  • the first output terminal G of the odd-numbered unit circuits SR1, SR3,..., SRn-1 is connected to the left end of the odd-numbered scanning lines G1, G3,.
  • the first output terminals G of the even-numbered unit circuits SR2, SR4,..., SRn are connected to the right ends of the even-numbered scanning lines G2, G4,.
  • the first driving unit 12 drives odd-numbered scanning lines G1, G3,..., Gn ⁇ 1, and the second driving unit 13 drives even-numbered scanning lines G2, G4,.
  • Such a driving method of the scanning lines G1 to Gn is also called comb driving (interlace driving).
  • the scanning line driving circuit 10 is supplied with 8-phase clock signals CK1 to CK8, two gate start pulses GSP1 and GSP2, and four clear signals CLR1 to CLR4.
  • the clock signals CK1 to CK8 are supplied to the clock terminals CK of the unit circuits 11 in the (8k-7) to 8k stages, respectively.
  • the gate start pulses GSP1 and GSP2 are supplied to the set terminals S of the first and second stage unit circuits SR1 and SR2, respectively.
  • the set terminals S of the unit circuits SR3 to SRn at the third to nth stages are connected to the second output terminal Q of the unit circuit at the second stage.
  • the clear signals CLR1 to CLR4 are supplied to the reset terminals R of the (n-3) to n-th unit circuits SRn-3 to SRn, respectively.
  • the reset terminals R of the unit circuits SR1 to SRn-4 in the 1st to (n-4) stages are connected to the second output terminal Q of the unit circuit in the 4th stage.
  • FIG. 2 is a circuit diagram of the unit circuit 11.
  • the unit circuit 11 includes nine transistors M1, M5, M6, M8 to M10, M14, M10B, M14B, and a capacitor C10.
  • the transistors included in the unit circuit 11 are all n-channel and depletion type TFTs.
  • the transistor included in the unit circuit 11 is, for example, a TFT having a semiconductor layer formed using an oxide semiconductor.
  • the transistor included in the unit circuit 11 may be an IGZO-TFT having a semiconductor layer formed using indium gallium zinc oxide (Indium Gallium Zinc Oxide: IGZO).
  • the high level voltage VGH is applied to the drain terminals of the transistors M1 and M5 and the gate terminal of the transistor M5.
  • the source terminal of the transistor M1, the drain terminals of the transistors M8 and M9, and the gate terminals of the transistors M6, M10, and M10B are connected to the node Na.
  • the source terminal of the transistor M5, the drain terminal of the transistor M6, and the gate terminals of the transistors M8, M14, and M14B are connected to the node Nb.
  • the gate terminal of the transistor M1 is connected to the set terminal S.
  • the gate terminal of the transistor M9 is connected to the reset terminal R.
  • the drain terminals of the transistors M10 and M10B are connected to the clock terminal CK.
  • the source terminal of the transistor M10 and the drain terminal of the transistor M14 are connected to the first output terminal G.
  • the source terminal of the transistor M10B and the drain terminal of the transistor M14B are connected to the second output terminal Q.
  • the capacitor C10 is provided between the gate and source of the transistor M10.
  • a low level voltage VSS1 is applied to the source terminals of the transistors M6 and M14.
  • a low level voltage VSS2 is applied to the source terminals of the transistors M8 and M9.
  • the low level voltage VSS3 is applied to the source terminal of the transistor M14B.
  • the low level voltage VSS2 is lower than the low level voltage VSS1, and the low level voltage VSS3 is lower than the low level voltage VSS2. That is, the low level voltages VSS1 to VSS3 satisfy the following expression (1).
  • the low level voltage VSS2 is a voltage farther from the high level voltage VGH than the low level voltage VSS1
  • the low level voltage VSS3 is a voltage farther from the high level voltage VGH than the low level voltage VSS2.
  • FIG. 3 is a timing chart of the scanning line driving circuit 10.
  • one cycle of the clock signal CK1 is referred to as T.
  • the clock signal CK1 becomes a high level in a quarter period of one period and becomes a low level in the remaining 3/4 period.
  • the clock signals CK2 to CK8 are signals delayed by T / 8, T / 4, 3T / 8, T / 2, 5T / 8, 3T / 4, and 7T / 8 from the clock signal CK1, respectively.
  • the high level voltage of the clock signals CK1 to CK8 is VGH
  • the low level voltage of the clock signals CK1 to CK8 is VSS1.
  • the scanning line driving circuit 10 operates in accordance with 8-phase clock signals CK1 to CK8 that change between the high level voltage VGH and the low level voltage VSS1.
  • FIG. 3 shows changes in the potentials of the clock signals CK1 to CK8 and changes in the potentials of the nodes and terminals of the unit circuit 11 in the (8k-7) stage.
  • the scanning line driving circuit 90 includes a first driving unit in which (n / 2) unit circuits 91 are connected in multiple stages, and a second driving unit having the same configuration as the first driving unit. As shown in FIG. 5, the unit circuit 91 does not include the transistors M10B and M14B and does not have the second output terminal Q. In the unit circuit 91, the low level voltage VSS1 is applied to the source terminals of the transistors M8 and M9.
  • the output signal of the i-th stage unit circuit 91 (the signal output from the output terminal G) is supplied to the scanning line Gi, and the set terminal S of the unit circuit 91 after the second stage and the unit circuit 91 before the fourth stage. To the reset terminal R.
  • FIG. 6 is a timing chart of the scanning line driving circuit 90.
  • FIG. 6 shows changes in the potentials of the clock signals CK1 to CK8 and changes in the potentials of the nodes and terminals of the unit circuit 91 in the (8k-7) stage, as in FIG. With reference to FIG. 6, the operation of the unit circuit 91 in the (8k-7) stage will be described.
  • the potential of the set terminal S (the output signal of the unit circuit 91 two stages before) changes to high level
  • the transistor M1 is turned on and the potential of the node Na becomes high level.
  • the transistors M6 and M10 are turned on, the potential of the node Nb becomes low level, and the transistors M8 and M14 are turned off.
  • the potential of the clock terminal CK clock signal CK1
  • the potential of the output terminal G (the output signal of the unit circuit 91) is at a low level.
  • the potential of the clock terminal CK changes to a high level. While the potential of the clock terminal CK is at a high level, the potential of the node Na is raised to a higher level than usual due to the push-up. Further, since the transistor M10 is in the on state, the potential of the output terminal G is high while the potential of the clock terminal CK is high. At this time, since the gate potential of the transistor M10 is higher than usual, the potential of the output terminal G becomes high level (VGH) with no threshold drop.
  • the potential of the clock terminal CK changes to the low level
  • the potential of the output terminal G changes to the low level
  • the potential of the node Na returns to the normal high level.
  • the transistor M9 is turned on
  • the potential of the node Na becomes a low level
  • the transistor M6 is turned off.
  • the potential of the node Nb becomes high level by the action of the transistor M5, and the transistors M8 and M14 are turned on.
  • the transistor M8 applies the low level voltage VSS1 to the node Na
  • the transistor M14 applies the low level voltage VSS1 to the output terminal G.
  • FIG. 7 is a diagram showing the potential of the terminal of the transistor M10 in the non-selection period for the scanning line driving circuit 90.
  • the gate-source voltage Vgs of the transistor M10 is zero.
  • the current Ix (> 0) flows between the drain and the source.
  • the potential of the output terminal G rises and the output signal of the unit circuit 91 rises unnecessarily.
  • the potentials of the output terminal G, the set terminal S, and the reset terminal R rise unnecessarily at the timing indicated by the arrows in FIG.
  • the scanning line driving circuit 90 malfunctions, and the display quality of the display device including the scanning line driving circuit 90 may deteriorate.
  • a method of lowering the gate potential of the transistor M10 during the non-selection period than the source potential (hereinafter referred to as the first method) can be considered.
  • a low level voltage VSS2 ( ⁇ VSS1) lower than the low level voltage VSS1 may be applied to the source terminals of the transistors M8 and M9.
  • FIG. 8 is a diagram illustrating the potentials of the terminals of the transistors M1 and M8 in the non-selection period when the first method is applied to the scanning line driving circuit 90.
  • the gate potential of the transistor M1 in the non-selection period is VSS1
  • the source potential is VSS2. Since the gate-source voltage Vgs of the transistor M1 is positive, the transistor M1 is turned on.
  • the gate potential of the transistor M8 is (VGH ⁇ Vth) (where Vth is the threshold voltage of the transistor M5), and the source potential is VSS2.
  • the transistor M8 Since VGH ⁇ Vth> VSS1, since the gate-source voltage Vgs of the transistor M8 is positive, the transistor M8 is also turned on. As described above, when the first method is applied to the scanning line driving circuit 90, the transistors M1 and M8 are turned on and the high-level voltage VGH is supplied in the non-selection period, the transistors M1, M8, and low Leakage current ILa flows through a path passing through a power supply line that supplies level voltage VSS2.
  • FIG. 9 is a diagram illustrating the potentials of the terminals of the transistors M1 and M8 in the non-selection period when the second method is applied to the scanning line driving circuit 90.
  • the gate-source voltage Vgs of the transistor M1 in the non-selection period is zero.
  • the leakage current ILb flows through the same path as when the first method is applied. Note that the leakage current ILb in this case is smaller than the leakage current ILa when the first method is applied.
  • the unit circuit 11 included in the scanning line driving circuit 10 is different from the unit circuit 91 included in the scanning line driving circuit 90 in the following points.
  • the unit circuit 11 includes transistors M10B and M14B and has a second output terminal Q.
  • the drain terminal of the transistor M10B is connected to the clock terminal CK
  • the gate terminal of the transistor M10B is connected to the node Na
  • the source terminal of the transistor M10B is connected to the second output terminal Q.
  • the drain terminal of the transistor M14B is connected to the second output terminal Q
  • the gate terminal of the transistor M14B is connected to the node Nb.
  • the low level voltage VSS2 is applied to the source terminals of the transistors M8 and M9
  • the low level voltage VSS3 is applied to the source terminal of the transistor M14B.
  • the low level voltages VSS1 to VSS3 satisfy Expression (1).
  • the operation of the unit circuit 11 at the (8k-7) stage will be described with reference to FIG.
  • the transistors M10B and M14B are turned on / off at the same timing as the transistors M10 and M14, respectively.
  • the potential of the first output terminal G is VGH when the potential of the clock terminal CK is at a high level within the selection period, and is VSS1 otherwise.
  • the potential of the terminal of the second output terminal Q is VGH when the potential of the clock terminal CK is high in the selection period, VSS1 when the potential of the clock terminal CK is low during the selection period, and VSS3 in the non-selection period. .
  • the potential of the set terminal S (the output signal from the second output terminal Q of the unit circuit 11 two stages before) changes ahead of the potential of the second output terminal Q by T / 4.
  • the potential of the reset terminal R (the output signal from the second output terminal Q of the unit circuit 11 after four stages) changes with a delay of T / 2 from the potential of the second output terminal Q.
  • the transistor M1 When the potential of the set terminal S changes to high level, the transistor M1 is turned on and the potential of the node Na becomes high level. Accordingly, the transistors M6, M10, and M10B are turned on, the potential of the node Nb becomes low level, and the transistors M8 and M14 are turned off. At this time, since the potential of the clock terminal CK is VSS1, the potentials of the first and second output terminals G and Q are VSS1.
  • the potential of the clock terminal CK changes to a high level. While the potential of the clock terminal CK is at a high level, the potential of the node Na is raised to a higher level than usual due to the push-up. Since the transistors M10 and M10B are on, the potentials of the first and second output terminals G and Q are high while the potential of the clock terminal CK is high. At this time, since the gate potentials of the transistors M10 and M10B are at a higher level than usual, the potentials at the first and second output terminals G and Q are at a high level (VGH) with no threshold drop.
  • VGH high level
  • the transistor M8 applies the low level voltage VSS2 to the node Na
  • the transistor M14 applies the low level voltage VSS1 to the first output terminal G
  • the transistor M14B applies the low level voltage VSS3 to the second output terminal Q. For this reason, the electric potential of the 2nd output terminal Q falls to VSS3.
  • the transistor M10 includes a first terminal having a drain terminal connected to the clock terminal CK, a gate terminal connected to the node Na, and a source terminal connected to the first output terminal G for outputting a signal for the scanning line. Functions as an output transistor.
  • the transistor M10B includes a drain terminal connected to the clock terminal CK, a gate terminal connected to the node Na, and a source terminal connected to the second output terminal Q for outputting a signal to the unit circuit 11 in the other stage. It functions as a second output transistor having
  • the transistor M1 functions as a first node set transistor that applies the high level voltage VGH to the node Na according to the potential of the set terminal S.
  • the transistor M9 functions as a first node reset transistor that applies the low level voltage VSS2 to the node Na according to the potential of the reset terminal R (the potential of the gate terminal).
  • the transistor M8 functions as a first node auxiliary reset transistor that applies the low level voltage VSS2 to the node Na according to the potential of the node Nb.
  • the transistor M14 functions as a first output reset transistor that applies the low-level voltage VSS1 to the first output terminal G according to the potential of the node Nb.
  • the transistor M14B functions as a second output reset transistor that applies the low-level voltage VSS3 to the second output terminal Q in accordance with the potential of the node Nb.
  • the transistor M5 functions as a voltage continuous application transistor that applies a high level voltage to the node Nb in a fixed manner.
  • the transistor M6 functions as a second node reset transistor that applies the low level voltage VSS1 to the node Nb in accordance with the potential of the node Na.
  • the transistors M5 and M6 constitute a second node control unit that controls the potential of the node Nb to a potential of a logic level opposite to the potential of the node Na.
  • the unit circuit 11 includes a transistor M10B sharing a drain terminal and a gate terminal with the transistor M10. Therefore, the output signals for the scanning lines G1 to Gn (signals output from the first output terminal G) and the output signals for the other unit circuits 11 (signals output from the second output terminal Q) are separated. Can do. Therefore, the low level voltage VSS3 of the latter output signal can be set separately from the low level voltage VSS1 of the former output signal.
  • the low level voltage VSS3 is set so as to satisfy Expression (1).
  • FIG. 10A is a diagram showing the potential of the terminal of the transistor M10 during the non-selection period for the scanning line driving circuit 10.
  • FIG. 10A in the non-selection period, the gate potential of the transistor M10 is VSS2, and the source potential is VSS1. From equation (1), the gate-source voltage Vgs of the transistor M10 is negative. Therefore, even when the transistor M10 is a depletion type, no current flows between the drain and source of the transistor M10. Thus, in the scanning line driving circuit 10, the current Ix shown in FIG. 7 does not flow during the non-selection period.
  • FIG. 10B is a diagram showing the potentials of the terminals of the transistors M1 and M8 in the non-selection period for the scanning line driving circuit 10.
  • the gate potential of the transistor M1 is VSS3 and the source potential is VSS2.
  • the gate-source voltage Vgs of the transistor M1 is negative. Therefore, even when the transistor M1 is a depletion type, no current flows between the drain and source of the transistor M1. Therefore, in the scanning line driving circuit 10, the leakage currents ILa and ILb shown in FIGS. 8 and 9 do not flow during the non-selection period.
  • the scanning line driving circuit 10 it is necessary to set the low level voltages VSS1 to VSS3 so as to satisfy the expression (1).
  • the current flowing through the TFT in the off state when the drain-source voltage Vds is 10 V should be 1 ⁇ 10 ⁇ 9 A or less per unit channel length and unit channel width. It is enough. Therefore, based on the characteristics of the TFT, the gate-source in which the current (drain-source current) flowing through the TFT when the drain-source voltage Vds is 10 V is 1 ⁇ 10 ⁇ 9 A per unit channel length and unit channel width.
  • the inter-level voltage (hereinafter referred to as Va) is obtained, and the low-level voltages VSS2 and VSS3 are set so as to satisfy VSS1-VSS2> (absolute value of Va) and VSS2-VSS3> (absolute value of Va).
  • the scanning line driving circuit 10 In the scanning line driving circuit 10, during the non-selection period, the current Ix shown in FIG. 7 does not flow, and the leakage currents ILa and ILb shown in FIGS. 8 and 9 do not flow. Therefore, malfunction of the scanning line driving circuit 10 can be prevented, and power consumption in the control circuit of the scanning line driving circuit 10 can be reduced. Further, the scanning line driving circuit 10 operates in accordance with 8-phase clock signals CK1 to CK8 that change between two voltage levels VGH and VSS1. Therefore, according to the scanning line driving circuit 10, it is possible to provide a scanning line driving circuit that uses a depletion type transistor and can be controlled more easily than in the past.
  • the scanning line driving circuit 10 has a configuration in which a plurality of unit circuits 11 are connected in multiple stages, and an on voltage (high level voltage VGH) and a first off voltage (low level voltage VSS1). ) And the multi-phase (eight-phase) clock signals CK1 to CK8.
  • Each unit circuit 11 outputs a signal to the first conduction terminal (drain terminal) connected to the clock terminal CK, a control terminal (gate terminal) connected to the first node (node Na), and the scanning line.
  • a first output transistor (transistor M10) having a second conduction terminal (source terminal) connected to the first output terminal G, a first conduction terminal connected to the clock terminal CK, and a first node.
  • a second output transistor (transistor M10B) having a control terminal and a second conduction terminal connected to a second output terminal Q for outputting a signal to the unit circuit 11 in the other stage;
  • a first node set transistor (transistor M1) that applies an on voltage to the first node, and a second off voltage (low level) at the first node according to the potential of the control terminal.
  • a first node reset transistor (transistor M9) that applies a voltage VSS2), and a second output reset transistor that applies a third off voltage (low level voltage VSS3) to the second output terminal Q in accordance with the potential of the second node.
  • the second off voltage is a voltage farther from the on voltage than the first off voltage
  • the third off voltage is a voltage farther from the on voltage than the second off voltage.
  • the first to third off voltages having the above-described magnitude relationship are applied to the first output terminal G, the first node, and the second node of the unit circuit 11, respectively. Is done.
  • a voltage at which the transistor is turned off (difference between the second off voltage and the first off voltage) is applied between the control terminal and the second conduction terminal of the first output transistor,
  • a voltage at which the transistor is turned off (difference between the third off voltage and the second off voltage) is also applied between the control terminal and the second conduction terminal of the first node set transistor.
  • the scanning line driving circuit 10 operates according to a clock signal that changes between two voltage levels. Therefore, a scan line driver circuit using a depletion type transistor that can be controlled more easily than in the past can be provided.
  • Each unit circuit 11 includes a second node control unit that controls the potential of the second node to a potential of a logic level opposite to the potential of the first node.
  • a second node control unit that controls the potential of the second node to a potential of a logic level opposite to the potential of the first node.
  • the first node reset transistor applies a second off voltage to the first node according to the potential of the reset terminal R. Therefore, the second off voltage can be applied to the first node according to the potential of the reset terminal using the first node reset transistor.
  • Each unit circuit 11 includes a first node auxiliary reset transistor (transistor M8) that applies a second off voltage to the first node according to the potential of the second node. By providing the first auxiliary reset transistor, the second off voltage can be applied to the first node together with the first node reset transistor.
  • Each unit circuit 11 includes a first output reset transistor (transistor M14) that applies a first off voltage to the first output terminal G in accordance with the potential of the second node. By providing the first output reset transistor, the first off voltage can be applied to the first output terminal.
  • the second node control unit applies a voltage continuous application transistor (transistor M5) that applies an on-voltage to the second node in a fixed manner and a first off-voltage to the second node according to the potential of the first node.
  • a second node reset transistor transistor M6. Therefore, the second node control unit that controls the potential of the second node to the potential of the logic level opposite to the potential of the first node can be configured by using the voltage continuous application transistor and the second node reset transistor.
  • the difference between the first off-voltage and the second off-voltage (VSS1-VSS2) and the difference between the second off-voltage and the third off-voltage (VSS2-VSS3) are set based on the characteristics of the transistors included in the unit circuit 11. ing.
  • the difference between the first off-voltage and the second off-voltage and the difference between the second off-voltage and the third off-voltage are the voltage between the first and second conduction terminals of the transistor (the drain-source voltage Vds of the TFT).
  • Is 10 V the current flowing between the transistors (drain-source current) is 1 ⁇ 10 ⁇ 9 A per unit channel length and unit channel width. It is set larger than the absolute value of the gate-source voltage.
  • the first to third off-voltages are set in consideration of the transistor characteristics, so that current flows through the first output transistor and the first node set transistor in the non-selection period. Can be prevented. Therefore, the output signal of the scanning line driving circuit 10 can be stabilized and the malfunctioning of the scanning line driving circuit 10 can be prevented.
  • the plurality of clock signals CK1 to CK8 have the same amplitude, and one clock signal selected from the plurality of clock signals CK1 to CK8 is input to each unit circuit 11 via the clock terminal CK. . Therefore, it is possible to provide a scanning line driving circuit that operates based on multiphase clock signals having the same amplitude and can be controlled more easily than in the past.
  • the transistor included in the unit circuit 11 is a thin film transistor having a semiconductor layer formed using an oxide semiconductor. Therefore, leakage current in the scanning line driving circuit 10 can be reduced, and malfunctioning of the scanning line driving circuit 10 can be prevented.
  • the conductivity type of the transistor included in the unit circuit 11 is an n-channel type, the ON voltage is a high level voltage VGH, the first OFF voltage is a low level voltage VSS1, and the second OFF voltage is a low level voltage lower than the first OFF voltage.
  • VSS2 and the third off voltage are the low level voltage VSS3 lower than the second off voltage. Therefore, it is possible to provide the scanning line driving circuit 10 that uses an n-channel type and depletion type transistor and can be controlled more easily than in the past.
  • a display device including a display unit 5 including a plurality of scanning lines, a plurality of data lines, and a plurality of pixel circuits, and a scanning line driving circuit 10 that drives the scanning lines can be configured.
  • a low-cost display device can be provided by using the scanning line driving circuit 10 that uses a depletion type transistor and can be controlled more easily than in the past.
  • the scanning line driving circuit 10 is formed on the display panel (liquid crystal panel) together with the display unit 5. Therefore, the width of the peripheral part of the display screen can be reduced.
  • the scanning line driving circuit according to the second embodiment has the same configuration as the scanning line driving circuit 10 according to the first embodiment (see FIG. 1).
  • the scanning line driving circuit according to the present embodiment is formed together with the display unit 5 on one substrate of a liquid crystal panel (not shown) (gate driver monolithic configuration).
  • gate driver monolithic configuration the same constituent elements as those of the above-described embodiments are denoted by the same reference numerals and description thereof is omitted.
  • the scanning line driving circuit according to this embodiment has a configuration in which unit circuits 21 shown in FIG. 11 are connected in multiple stages instead of the unit circuit 11 shown in FIG.
  • the unit circuit 21 is obtained by connecting the source terminal of the transistor M9 to the node Nb in the unit circuit 11.
  • the transistor M9 is turned on and the potential of the node Nb becomes high level.
  • the transistors M8, M14, and M14B are turned on.
  • the transistor M8 applies the low level voltage VSS2 to the node Na
  • the transistor M14B applies the low level voltage VSS1 to the first output terminal G
  • the transistor M14B applies the low level voltage VSS3 to the second output terminal Q.
  • the scanning line driving circuit according to the present embodiment operates in the same manner as the scanning line driving circuit 10 according to the first embodiment.
  • the transistors M10, M10B, M1, M14, M14B, M5, and M6 are respectively a first output transistor, a second output transistor, a first node set transistor, and a first output reset. It functions as a transistor, a second output reset transistor, a voltage continuous application transistor, and a second node reset transistor, and the transistors M5 and M6 constitute a second node control unit.
  • the transistor M9 functions as a second node set transistor that applies the high level voltage VGH to the node Nb according to the potential of the reset terminal R.
  • the transistor M8 functions as a first node reset transistor that applies the low-level voltage VSS2 to the node Na in accordance with the potential of the node Nb (gate terminal potential).
  • the scanning line driving circuit according to the present embodiment the same effect as the scanning line driving circuit 10 according to the first embodiment can be obtained.
  • the drain terminal of the transistor M9 is not connected to the node Na.
  • the scanning line driving circuit according to the present embodiment also has an advantage that there is no leakage current path from the node Na through the transistor M9.
  • each unit circuit 21 applies the ON voltage (high level voltage VGH) to the second node (node Nb) according to the potential of the reset terminal R.
  • a second node set transistor (transistor M9) is included.
  • the first node reset transistor (transistor M8) applies the second off voltage (low level voltage VSS2) to the first node (node Na) according to the potential of the second node.
  • the second off voltage can be applied to the first node according to the potential of the second node using the first node reset transistor.
  • the scanning line driving circuit according to the present embodiment it is possible to provide a scanning line driving circuit that uses a depletion type transistor and can be controlled more easily than in the past, as in the first embodiment.
  • FIG. 12 is a block diagram illustrating a configuration of a scanning line driving circuit according to the third embodiment.
  • the scanning line driving circuit 30 shown in FIG. 12 is formed together with the display unit 5 on one substrate of a liquid crystal panel (not shown) (gate driver monolithic configuration).
  • the display unit 5 and the scanning line driving circuit 30 constitute a liquid crystal display device together with a data line driving circuit (not shown).
  • n is a multiple of 24, and k is an integer of 1 to (n / 8).
  • the scanning line driving circuit 30 includes a first driving unit 32 disposed on the left side of the display unit 5 and a second driving unit 33 disposed on the right side of the display unit 5.
  • Each of the first and second drive units 32 and 33 has a configuration in which (n / 2) unit circuits 21 (FIG. 11) are connected in multiple stages.
  • the first driving unit 32 includes odd-numbered unit circuits SR1, SR3,..., SRn ⁇ 1, and the second driving unit 33 includes even-numbered unit circuits SR2, SR4,.
  • the first and second drive units 32 and 33 are connected to the display unit 5 in the same manner as in the first embodiment.
  • the scanning line driving circuit 30 performs comb driving.
  • the scanning line driving circuit 30 is supplied with eight-phase clock signals CK1 to CK8, four gate start pulses GSP1 to GSP4, and six clear signals CLR1 to CLR6.
  • the clock signals CK1 to CK8 are supplied to the clock terminals CK of the unit circuits 11 in the (8k-7) to 8k stages, respectively.
  • the gate start pulses GSP1 to GSP4 are supplied to the set terminals S of the first to fourth stage unit circuits SR1 to SR4, respectively.
  • the set terminals S of the fifth to nth stage unit circuits SR5 to SRn are connected to the second output terminal Q of the unit circuit four stages before.
  • the clear signals CLR1 to CLR6 are respectively supplied to the reset terminals R of the (n-5) to n-th unit circuits SRn-5 to SRn.
  • the reset terminals R of the unit circuits SR1 to SRn-6 in the 1st to (n-6) stages are connected to the second output terminal Q of the unit circuit in the 6th stage.
  • FIG. 13 is a timing chart of the scanning line driving circuit 30.
  • the clock signal CK1 becomes high level in 1/2 cycle of one cycle and becomes low level in the remaining 1/2 cycle.
  • the clock signals CK2 to CK8 are signals delayed by T / 8, T / 4, 3T / 8, T / 2, 5T / 8, 3T / 4, and 7T / 8 from the clock signal CK1, respectively.
  • the high level voltage of the clock signals CK1 to CK8 is VGH
  • the low level voltage of the clock signals CK1 to CK8 is VSS1.
  • the scanning line driving circuit 30 operates in accordance with 8-phase clock signals CK1 to CK8 that change between the high level voltage VGH and the low level voltage VSS1.
  • FIG. 13 shows changes in the potentials of the clock signals CK1 to CK8 and changes in the potentials of the nodes and terminals of the unit circuit 21 in the (8k-7) stage.
  • the scanning line driving circuit 30 it is possible to provide a scanning line driving circuit that uses a depletion type transistor and can be controlled more easily than in the past, as in the first and second embodiments. .
  • a circuit including two driving units arranged on both sides of the display unit 5 is considered as one scanning line driving circuit, but is arranged on both sides of the display unit 5.
  • the two driving units thus formed may be considered as separate scanning line driving circuits.
  • FIG. 14 is a block diagram showing a configuration of a scanning line driving circuit according to the fourth embodiment. 14 is formed together with the display unit 5 on one substrate of a liquid crystal panel (not shown) (gate driver monolithic configuration).
  • the display unit 5 and the scanning line driving circuit 40 constitute a liquid crystal display device together with a data line driving circuit (not shown).
  • n is a multiple of 12
  • k is an integer of 1 or more (n / 4) or less.
  • the scanning line driving circuit 40 is arranged on one side (left side in the drawing) of the display unit 5.
  • the scanning line driving circuit 40 has a configuration in which n unit circuits 21 (FIG. 11) are connected in multiple stages.
  • the first output terminals G of the unit circuits SR1 to SRn at the 1st to nth stages are connected to the left ends of the scanning lines G1 to Gn, respectively.
  • the scanning line driving circuit 40 drives the scanning lines G1 to Gn.
  • the scanning line driving circuit 40 is supplied with four-phase clock signals CK1 to CK4, two gate start pulses GSP1 and GSP2, and three clear signals CLR1 to CLR3.
  • the clock signals CK1 to CK4 are supplied to the clock terminals CK of the unit circuits 21 in the (4k-3) to 4k stages, respectively.
  • the gate start pulses GSP1 and GSP2 are supplied to the set terminals S of the first and second stage unit circuits SR1 and SR2, respectively.
  • the set terminals S of the unit circuits SR3 to SRn at the third to nth stages are connected to the second output terminal Q of the unit circuit at the second stage.
  • the clear signals CLR1 to CLR3 are respectively supplied to the reset terminals R of the (n-2) to n-th unit circuits SRn-2 to SRn.
  • the reset terminals R of the unit circuits SR1 to SRn-3 at the 1st to (n-3) th stages are connected to the second output terminal Q of the unit circuit at the 3rd stage.
  • FIG. 15 is a timing chart of the scanning line driving circuit 40.
  • the clock signal CK1 becomes high level in 1/2 cycle of one cycle and becomes low level in the remaining 1/2 cycle.
  • the clock signals CK2 to CK4 are signals delayed by T / 4, T / 2, and 3T / 4 from the clock signal CK1, respectively.
  • the high level voltage of the clock signals CK1 to CK4 is VGH
  • the low level voltage of the clock signals CK1 to CK4 is VSS1.
  • the scanning line driving circuit 40 operates according to four-phase clock signals CK1 to CK4 that change between the high level voltage VGH and the low level voltage VSS1.
  • FIG. 15 shows changes in the potentials of the clock signals CK1 to CK4 and changes in the potentials of the nodes and terminals of the unit circuit 21 in the (4k-3) stage.
  • the scanning line driving circuit 40 it is possible to provide a scanning line driving circuit that uses a depletion type transistor and can be controlled more easily than in the prior art, as in the first to third embodiments. .
  • the scanning line driving circuit according to the embodiment can be configured as follows.
  • the scanning line driving circuit 30 according to the third embodiment has a configuration in which the unit circuits 21 are connected in multiple stages as shown in FIG. 12, and the scanning line driving circuit 40 according to the fourth embodiment illustrates the unit circuit 21. 14 has a multi-stage connection configuration.
  • the scanning line driving circuit according to the modification may have a configuration in which the unit circuits 11 are connected in multiple stages as shown in FIG.
  • the scanning line driving circuit according to the modified example includes a unit circuit in which one or both of the transistors M8 and M14 are deleted from the unit circuit 11, a unit circuit in which the transistor M14 is deleted from the unit circuit 21, or the unit circuits 11 and 21.
  • a unit circuit in which the drain terminal of the transistor M1 is connected to the set terminal S may be provided.
  • the scanning line driving circuit according to the modification may be a multi-stage connection of an arbitrary number of unit circuits.
  • the unit circuits 11 and 21 are configured using n-channel TFTs.
  • the unit circuit may be configured using an n-channel TFT.
  • the n-channel transistor included in the unit circuit is replaced with a p-channel transistor. The polarity of the voltage applied to the power supply wiring and the control wiring may be reversed.
  • the conductivity type of the transistor included in the unit circuit is a p-channel type
  • the on voltage is a low level voltage
  • the first off voltage is a high level voltage
  • the second off voltage is a high level voltage higher than the first off voltage.
  • the third off voltage is a high level voltage higher than the second off voltage. Accordingly, it is possible to provide a scanning line driver circuit using a p-channel type and a depletion type transistor that can be controlled more easily than in the past.
  • the scanning line driving circuit According to the scanning line driving circuit according to the embodiment and the modification thereof, it is possible to provide a scanning line driving circuit that uses a depletion type transistor and can be controlled more easily than in the past.
  • the scanning line driving circuit has a configuration in which a plurality of unit circuits are connected in multiple stages, and operates in accordance with a multiphase clock signal that changes between an on-voltage and a first off-voltage.
  • Each of the unit circuits includes a first conduction terminal connected to the clock terminal, a control terminal connected to the first node, and a second conduction terminal connected to the first output terminal for outputting a signal for the scanning line.
  • a second output terminal for outputting a signal to a unit circuit in another stage, a first conduction terminal connected to the clock terminal, a control terminal connected to the first node, A second output transistor having a second conduction terminal connected to the first node, a first node set transistor for applying the on-voltage to the first node according to the potential of the set terminal, and the potential according to the potential of the control terminal.
  • a first node reset transistor that applies a second off voltage to the first node
  • a second output reset transistor that applies a third off voltage to the second output terminal according to the potential of the second node.
  • the second off voltage is a voltage farther from the on voltage than the first off voltage
  • the third off voltage is a voltage farther from the on voltage than the second off voltage.
  • Each of the unit circuits may include a second node control unit that controls the potential of the second node to a potential of a logic level opposite to the potential of the first node (second aspect).
  • the first node reset transistor may apply the second off voltage to the first node according to a potential of a reset terminal (third aspect).
  • Each of the unit circuits may further include a first node auxiliary reset transistor that applies the second off voltage to the first node according to the potential of the second node (fourth aspect).
  • Each of the unit circuits further includes a second node set transistor that applies the on-voltage to the second node according to a potential of a reset terminal, and the first node reset transistor corresponds to the potential of the second node.
  • the second off voltage may be applied to the first node (fifth aspect).
  • Each of the unit circuits may further include a first output reset transistor that applies the first off voltage to the first output terminal in accordance with the potential of the second node (sixth aspect).
  • the second node control unit applies a voltage continuous application transistor that applies the on voltage to the second node in a fixed manner, and applies the first off voltage to the second node according to the potential of the first node.
  • a second node reset transistor may be included (seventh aspect).
  • the difference between the first off-voltage and the second off-voltage, and the difference between the second off-voltage and the third off-voltage may be set based on characteristics of transistors included in the unit circuit (first 8 aspects).
  • the difference between the first off voltage and the second off voltage, and the difference between the second off voltage and the third off voltage are units when the voltage between the first and second conduction terminals of the transistor is 10V.
  • the absolute value of the voltage between the control terminal and the second conduction terminal of the transistor having a channel length and a current per unit channel width of 1 ⁇ 10 ⁇ 9 A may be greater (9th aspect).
  • the amplitudes of the plurality of clock signals are the same, and one clock signal selected from among the plurality of clock signals may be input to each unit circuit via the clock terminal (first). 10 aspects).
  • the transistor included in the unit circuit may be a thin film transistor having a semiconductor layer formed using an oxide semiconductor (eleventh aspect).
  • the transistor included in the unit circuit is an n-channel conductivity type, the on voltage is a high level voltage, the first off voltage is a low level voltage, and the second off voltage is a low level lower than the first off voltage.
  • the level voltage and the third off voltage may be a low level voltage lower than the second off voltage (a twelfth aspect).
  • the transistor included in the unit circuit is a p-channel type, the on voltage is a low level voltage, the first off voltage is a high level voltage, and the second off voltage is higher than the first off voltage.
  • the level voltage and the third off voltage may be a high level voltage higher than the second off voltage (a thirteenth aspect).
  • the display device includes a display unit including a plurality of scanning lines, a plurality of data lines, and a plurality of pixel circuits, and the scanning line according to any one of the first to thirteenth aspects that drives the scanning lines. And a drive circuit (fourteenth aspect).
  • the scanning line driving circuit may be formed on a display panel together with the display unit (fifteenth aspect).
  • the first to third off voltages having the above-described magnitude relationship are applied to the first output terminal, the first node, and the second node of the unit circuit, respectively.
  • a voltage at which the transistor is turned off (difference between the second off voltage and the first off voltage) is applied between the control terminal and the second conduction terminal of the first output transistor
  • a voltage at which the transistor is turned off (difference between the third off voltage and the second off voltage) is also applied between the control terminal and the second conduction terminal of the first node set transistor. For this reason, even when a depletion type transistor is used, no current flows through the first output transistor and the first node set transistor in the non-selection period.
  • the output signal of the scan line driver circuit can be stabilized and malfunction of the scan line driver circuit can be prevented. Further, the scanning line driving circuit operates in accordance with a clock signal that changes between two voltage levels. Therefore, a scan line driver circuit using a depletion type transistor that can be controlled more easily than in the past can be provided.
  • the second output terminal is controlled based on the potential of the second node by controlling the potential of the second node to the potential of the logic level opposite to that of the first node using the second node control unit. And the like can be controlled.
  • the second off voltage can be applied to the first node according to the potential of the reset terminal using the first node reset transistor.
  • the second off voltage can be applied to the first node together with the first node reset transistor.
  • the second node set transistor by providing the second node set transistor, it is possible to apply the second off voltage to the first node according to the potential of the second node using the first node reset transistor.
  • the first output reset transistor by providing the first output reset transistor, the first off voltage can be applied to the first output terminal.
  • the second node control unit that controls the potential of the second node to the potential of the logic level opposite to the potential of the first node by using the voltage continuous application transistor and the second node reset transistor. Can be configured.
  • the first to third off voltages are set in consideration of the characteristics of the transistor, so that the first output transistor It is possible to prevent a current from flowing through the first node set transistor. Therefore, the output signal of the scan line driver circuit can be stabilized and malfunction of the scan line driver circuit can be prevented.
  • the scanning line driving circuit is configured by using the thin film transistor having the semiconductor layer formed using the oxide semiconductor, thereby reducing the leakage current in the scanning line driving circuit, and the scanning line driving circuit. Can be prevented from malfunctioning.
  • a low-cost display device can be provided by using a scanning line driving circuit that uses a depletion type transistor and can be controlled more easily than in the past.
  • the width of the peripheral portion of the display screen can be narrowed by forming the scanning line driving circuit on the display panel together with the display portion.

Abstract

A scanning line drive circuit 10 constructed from a cascade of single circuits 11 operates in accordance with eight-phases of clock signals CK1 through CK8 that vary between a high-level voltage VGH and a low-level voltage VSS1. A single circuit 11 comprises: a transistor M10B that includes a drain terminal connected to a clock terminal CK, a gate terminal connected to a node Na, and a source terminal connected to a second output terminal Q for outputting a signal to single circuits in other blocks; a transistor M9 that applies a low-level voltage VSS2 to the node Na in accordance with the potential at a reset terminal R; and a transistor M14B that applies a low-level voltage VSS3 to the second output terminal Q in accordance with the potential at a Node Nb. The low-level voltage satisfies VSS1 > VSS2 > VSS3. Thereby, the present invention provides a scanning line drive circuit that can be controlled more easily using a depletion type transistor.

Description

走査線駆動回路およびこれを備えた表示装置Scan line driving circuit and display device having the same
 本発明は、液晶表示装置などの表示装置に設けられる走査線駆動回路、および、走査線駆動回路を備えた表示装置に関する。 The present invention relates to a scanning line driving circuit provided in a display device such as a liquid crystal display device, and a display device including the scanning line driving circuit.
 液晶表示装置は、薄型、軽量、低消費電力の表示装置として広く利用されている。近年の液晶表示装置では、表示画面の周辺部(額縁と呼ばれる)の幅を狭くするために、液晶パネルの一方の基板上に走査線駆動回路を画素回路と共に薄膜トランジスタ(Thin Film Transistor:以下、TFTという)を用いて形成する場合が多い。このような走査線駆動回路は、モノリシックゲートドライバ回路と呼ばれる。 Liquid crystal display devices are widely used as thin, lightweight, and low power consumption display devices. In recent liquid crystal display devices, in order to reduce the width of the peripheral portion of the display screen (referred to as a frame), a scanning line driving circuit and a thin film transistor (hereinafter referred to as TFT) along with a pixel circuit are provided on one substrate of the liquid crystal panel. In many cases. Such a scanning line driving circuit is called a monolithic gate driver circuit.
 走査線駆動回路に含まれるTFTは、例えば、アモルファスシリコンや酸化物半導体を用いて構成される。この場合、TFTの導電型はnチャネル型である。また、走査線駆動回路に含まれるTFTを低温ポリシリコンや低温CG(Continuous Grain)シリコンを用いて構成する場合もある。この場合、TFTの導電型はpチャネル型でもnチャネル型でもよい。ただし、マスクの枚数を減らし、製造工程を簡単にするために、走査線駆動回路を構成するときには、同じ導電型のTFTだけを用いることが好ましい。 The TFT included in the scanning line driving circuit is configured using, for example, amorphous silicon or an oxide semiconductor. In this case, the conductivity type of the TFT is an n-channel type. In some cases, the TFT included in the scanning line driving circuit is formed using low-temperature polysilicon or low-temperature CG (Continuous Grain) silicon. In this case, the conductivity type of the TFT may be a p-channel type or an n-channel type. However, in order to reduce the number of masks and simplify the manufacturing process, it is preferable to use only TFTs of the same conductivity type when configuring the scanning line driving circuit.
 同じ導電型のTFTを用いて構成された走査線駆動回路では、TFTがデプレッション型の特性を有する場合に、出力信号が不安定になったり、電力が増大したりすることがある。デプレッション型TFTは、例えば、図16に示す電圧-電流特性を有する。図16に示すように、デプレッション型TFTでは、ゲート-ソース間電圧Vgsが0のときでも、ドレイン-ソース間に電流Ids(>0)が流れる。デプレッション型TFTは、ゲート端子とソース端子が等電位のときでも完全にはオフしない。このため、デプレッション型TFTを含む走査線駆動回路では、出力信号が不安定になることがある。また、走査線駆動回路の内部を貫通電流が流れるために、走査線駆動回路を制御する制御回路からの電流供給が不足し、走査線駆動回路が誤動作することがある。 In a scanning line driving circuit configured using TFTs having the same conductivity type, when the TFT has a depletion type characteristic, an output signal may become unstable or power may increase. The depletion type TFT has, for example, voltage-current characteristics shown in FIG. As shown in FIG. 16, in the depletion type TFT, even when the gate-source voltage Vgs is 0, a current Ids (> 0) flows between the drain and the source. The depletion type TFT is not completely turned off even when the gate terminal and the source terminal are equipotential. For this reason, in a scanning line driving circuit including a depletion type TFT, an output signal may become unstable. In addition, since a through current flows through the scanning line driving circuit, current supply from a control circuit that controls the scanning line driving circuit is insufficient, and the scanning line driving circuit may malfunction.
 特許文献1には、デプレッション型TFTを用いた走査線駆動回路として、図17に示す単位回路を多段接続した構成を有し、図18に示すタイミングチャートに従い動作する走査線駆動回路が記載されている。図17に示す単位回路には、3種類のローレベル電圧VGL1~VGL3が供給される。 Patent Document 1 describes a scanning line driving circuit using a depletion type TFT having a configuration in which unit circuits shown in FIG. 17 are connected in multiple stages and operating according to a timing chart shown in FIG. Yes. Three types of low level voltages VGL1 to VGL3 are supplied to the unit circuit shown in FIG.
日本国特開2015-60100号公報Japanese Unexamined Patent Publication No. 2015-60100
 特許文献1に記載の走査線駆動回路には、電圧レベルがVGHとVGL1の間で変化するクロック信号CK1~CK3と、電圧レベルがVGHとVGL3の間で変化するクロック信号CK1a~CK3aとを供給する必要がある(図18を参照)。これら2系統のクロック信号の間では、振幅が異なる。このため、走査線駆動回路を制御する制御回路の構成が複雑になり、表示装置のコストが増加する。また、2系統のクロック信号の間でタイミングを調整する必要がある。このように、特許文献1に記載の走査線駆動回路には、制御回路の構成が複雑になり、表示装置のコストが増加するという問題がある。 The scanning line driving circuit described in Patent Document 1 is supplied with clock signals CK1 to CK3 whose voltage level changes between VGH and VGL1, and clock signals CK1a to CK3a whose voltage level changes between VGH and VGL3. (See FIG. 18). The amplitude differs between these two systems of clock signals. For this reason, the configuration of the control circuit for controlling the scanning line driving circuit becomes complicated, and the cost of the display device increases. In addition, it is necessary to adjust the timing between the two clock signals. As described above, the scanning line driving circuit described in Patent Document 1 has a problem that the configuration of the control circuit becomes complicated and the cost of the display device increases.
 それ故に、デプレッション型トランジスタを用いた、従来よりも容易に制御できる走査線駆動回路を提供することが課題として挙げられる。 Therefore, it is an issue to provide a scanning line driving circuit that uses a depletion type transistor and can be controlled more easily than in the past.
 上記の課題は、例えば、複数の単位回路を多段接続した構成を有し、オン電圧と第1オフ電圧との間で変化する多相のクロック信号に従い動作する以下の走査線駆動回路によって解決することができる。各前記単位回路は、クロック端子に接続された第1導通端子と、第1ノードに接続された制御端子と、走査線に対する信号を出力するための第1出力端子に接続された第2導通端子とを有する第1出力トランジスタと、前記クロック端子に接続された第1導通端子と、前記第1ノードに接続された制御端子と、他段の単位回路に対する信号を出力するための第2出力端子に接続された第2導通端子とを有する第2出力トランジスタと、セット端子の電位に応じて前記第1ノードに前記オン電圧を印加する第1ノードセットトランジスタと、制御端子の電位に応じて前記第1ノードに第2オフ電圧を印加する第1ノードリセットトランジスタと、第2ノードの電位に応じて前記第2出力端子に第3オフ電圧を印加する第2出力リセットトランジスタとを含み、前記第2オフ電圧は、前記第1オフ電圧よりも前記オン電圧から離れた電圧であり、前記第3オフ電圧は、前記第2オフ電圧よりも前記オン電圧から離れた電圧である。 The above-described problem is solved by, for example, the following scanning line driving circuit that has a configuration in which a plurality of unit circuits are connected in multiple stages and operates according to a multiphase clock signal that changes between the ON voltage and the first OFF voltage. be able to. Each of the unit circuits includes a first conduction terminal connected to the clock terminal, a control terminal connected to the first node, and a second conduction terminal connected to the first output terminal for outputting a signal for the scanning line. A second output terminal for outputting a signal to a unit circuit in another stage, a first conduction terminal connected to the clock terminal, a control terminal connected to the first node, A second output transistor having a second conduction terminal connected to the first node, a first node set transistor for applying the on-voltage to the first node according to the potential of the set terminal, and the potential according to the potential of the control terminal. A first node reset transistor that applies a second off voltage to the first node, and a second output reset transistor that applies a third off voltage to the second output terminal according to the potential of the second node. The second off voltage is a voltage farther from the on voltage than the first off voltage, and the third off voltage is a voltage farther from the on voltage than the second off voltage. It is.
 上記の走査線駆動回路によれば、単位回路の第1出力端子、第1ノード、および、第2ノードには、上記の大小関係を有する第1~第3オフ電圧がそれぞれ印加される。第1出力トランジスタがオフする非選択期間では、第1出力トランジスタの制御端子と第2導通端子の間にはトランジスタがオフする電圧(第2オフ電圧と第1オフ電圧の差)が印加され、第1ノードセットトランジスタの制御端子と第2導通端子の間にもトランジスタがオフする電圧(第3オフ電圧と第2オフ電圧の差)が印加される。このため、デプレッション型のトランジスタを用いたときでも、非選択期間では第1出力トランジスタと第1ノードセットトランジスタに電流が流れない。したがって、走査線駆動回路の出力信号を安定化させ、走査線駆動回路の誤動作を防止することができる。また、走査線駆動回路は、2個の電圧レベルの間で変化するクロック信号に従い動作する。よって、デプレッション型トランジスタを用いた、従来よりも容易に制御できる走査線駆動回路を提供することができる。 According to the above scanning line driving circuit, the first to third off voltages having the above-described magnitude relationship are applied to the first output terminal, the first node, and the second node of the unit circuit, respectively. In the non-selection period in which the first output transistor is turned off, a voltage at which the transistor is turned off (difference between the second off voltage and the first off voltage) is applied between the control terminal and the second conduction terminal of the first output transistor, A voltage at which the transistor is turned off (difference between the third off voltage and the second off voltage) is also applied between the control terminal and the second conduction terminal of the first node set transistor. For this reason, even when a depletion type transistor is used, no current flows through the first output transistor and the first node set transistor in the non-selection period. Therefore, the output signal of the scan line driver circuit can be stabilized and malfunction of the scan line driver circuit can be prevented. Further, the scanning line driving circuit operates in accordance with a clock signal that changes between two voltage levels. Therefore, a scan line driver circuit using a depletion type transistor that can be controlled more easily than in the past can be provided.
第1の実施形態に係る走査線駆動回路の構成を示すブロック図である。1 is a block diagram illustrating a configuration of a scanning line driving circuit according to a first embodiment. FIG. 図1に示す走査線駆動回路の単位回路の回路図である。FIG. 2 is a circuit diagram of a unit circuit of the scanning line driving circuit shown in FIG. 1. 図1に示す走査線駆動回路のタイミングチャートである。2 is a timing chart of the scanning line driving circuit shown in FIG. 比較例に係る走査線駆動回路の構成を示すブロック図である。It is a block diagram which shows the structure of the scanning line drive circuit which concerns on a comparative example. 比較例に係る走査線駆動回路の単位回路の回路図である。It is a circuit diagram of a unit circuit of a scanning line driving circuit according to a comparative example. 比較例に係る走査線駆動回路のタイミングチャートである。6 is a timing chart of a scanning line driving circuit according to a comparative example. 比較例に係る走査線駆動回路について、非選択期間におけるトランジスタの端子の電位を示す図である。It is a figure which shows the electric potential of the terminal of the transistor in a non-selection period about the scanning line drive circuit which concerns on a comparative example. 第1の方法を適用した走査線駆動回路について、非選択期間におけるトランジスタの端子の電位を示す図である。It is a figure which shows the electric potential of the terminal of the transistor in a non-selection period about the scanning line drive circuit to which the 1st method is applied. 第2の方法を適用した走査線駆動回路について、非選択期間におけるトランジスタの電位を示す図である。It is a figure which shows the electric potential of the transistor in a non-selection period about the scanning line drive circuit to which the 2nd method is applied. 図1に示す走査線駆動回路について、非選択期間におけるトランジスタの電位を示す図である。FIG. 2 is a diagram showing a potential of a transistor in a non-selection period for the scanning line driving circuit shown in FIG. 第2の実施形態に係る走査線駆動回路の単位回路の回路図である。FIG. 6 is a circuit diagram of a unit circuit of a scanning line driving circuit according to a second embodiment. 第3の実施形態に係る走査線駆動回路の構成を示すブロック図である。It is a block diagram which shows the structure of the scanning-line drive circuit which concerns on 3rd Embodiment. 図12に示す走査線駆動回路のタイミングチャートである。13 is a timing chart of the scanning line driving circuit shown in FIG. 第4の実施形態に係る走査線駆動回路の構成を示すブロック図である。It is a block diagram which shows the structure of the scanning-line drive circuit which concerns on 4th Embodiment. 図14に示す走査線駆動回路のタイミングチャートである。15 is a timing chart of the scanning line driving circuit shown in FIG. デプレッション型TFTの電圧-電流特性の例を示す図である。It is a figure which shows the example of the voltage-current characteristic of a depletion type TFT. 従来の走査線駆動回路の単位回路の回路図である。It is a circuit diagram of a unit circuit of a conventional scanning line driving circuit. 従来の走査線駆動回路のタイミングチャートである。It is a timing chart of the conventional scanning line drive circuit.
 以下、図面を参照して、実施形態に係る走査線駆動回路について説明する。各実施形態に係る走査線駆動回路は、n個(nは1以上の整数)の単位回路を多段接続した構成を有し、多相のクロック信号に従い動作する。以下の説明では、走査線駆動回路に含まれるn個の単位回路を初段から順に、SR1、SR2、…、SRnという。また、図面の水平方向を行方向、図面の垂直方向を列方向という。また、制御端子に与えたときにトランジスタがオンする電圧をオン電圧、制御端子に与えたときにトランジスタがオフする電圧をオフ電圧という。nチャネル型トランジスタについては、ハイレベル電圧がオン電圧、ローレベル電圧がオフ電圧である。pチャネル型トランジスタについては、ローレベル電圧がオン電圧、ハイレベル電圧がオフ電圧である。 Hereinafter, the scanning line driving circuit according to the embodiment will be described with reference to the drawings. The scanning line driving circuit according to each embodiment has a configuration in which n (n is an integer of 1 or more) unit circuits are connected in multiple stages, and operates according to a multiphase clock signal. In the following description, n unit circuits included in the scanning line driving circuit are referred to as SR1, SR2,. The horizontal direction of the drawing is referred to as the row direction, and the vertical direction of the drawing is referred to as the column direction. A voltage that turns on the transistor when applied to the control terminal is referred to as an on-voltage, and a voltage that turns off the transistor when applied to the control terminal is referred to as an off-voltage. For the n-channel transistor, the high level voltage is an on voltage and the low level voltage is an off voltage. As for the p-channel transistor, the low level voltage is an on voltage and the high level voltage is an off voltage.
 (第1の実施形態)
 図1は、第1の実施形態に係る走査線駆動回路の構成を示すブロック図である。図1に示す走査線駆動回路10は、液晶パネル(図示せず)の一方の基板上に表示部5と共に形成される。表示部5はアクティブエリアとも呼ばれ、走査線駆動回路10はモノリシックゲートドライバ回路とも呼ばれる。表示部5と走査線駆動回路10は、データ線駆動回路(図示せず)と共に液晶表示装置を構成する。第1および第2の実施形態では、nは8の倍数、iは1以上n以下の整数、kは1以上(n/8)以下の整数である。
(First embodiment)
FIG. 1 is a block diagram illustrating a configuration of a scanning line driving circuit according to the first embodiment. The scanning line driving circuit 10 shown in FIG. 1 is formed together with the display unit 5 on one substrate of a liquid crystal panel (not shown). The display unit 5 is also called an active area, and the scanning line driving circuit 10 is also called a monolithic gate driver circuit. The display unit 5 and the scanning line driving circuit 10 constitute a liquid crystal display device together with a data line driving circuit (not shown). In the first and second embodiments, n is a multiple of 8, i is an integer of 1 to n, and k is an integer of 1 to (n / 8).
 表示部5は、行方向に延伸するn本の走査線G1~Gn(図示せず)、列方向に延伸する複数のデータ線(図示せず)、および、走査線G1~Gnと複数のデータ線の交点に対応して配置された複数の画素回路(図示せず)を含んでいる。走査線駆動回路10は、表示部5の左側に配置された第1駆動部12と、表示部5の右側に配置された第2駆動部13とを含んでいる。第1および第2駆動部12、13は、それぞれ、(n/2)個の単位回路11を多段接続した構成を有する。第1駆動部12は奇数段目の単位回路SR1、SR3、…、SRn-1を含み、第2駆動部13は偶数段目の単位回路SR2、SR4、…、SRnを含んでいる。 The display unit 5 includes n scanning lines G1 to Gn (not shown) extending in the row direction, a plurality of data lines (not shown) extending in the column direction, and a plurality of data including the scanning lines G1 to Gn. A plurality of pixel circuits (not shown) arranged corresponding to the intersections of the lines are included. The scanning line drive circuit 10 includes a first drive unit 12 disposed on the left side of the display unit 5 and a second drive unit 13 disposed on the right side of the display unit 5. Each of the first and second drive units 12 and 13 has a configuration in which (n / 2) unit circuits 11 are connected in multiple stages. The first drive unit 12 includes odd-numbered unit circuits SR1, SR3,..., SRn-1, and the second drive unit 13 includes even-numbered unit circuits SR2, SR4,.
 単位回路11は、クロック端子CK、セット端子S、リセット端子R、第1出力端子G、および、第2出力端子Qを有する。奇数段目の単位回路SR1、SR3、…、SRn-1の第1出力端子Gは、奇数番目の走査線G1、G3、…、Gn-1の左端に接続される。偶数段目の単位回路SR2、SR4、…、SRnの第1出力端子Gは、偶数番目の走査線G2、G4、…、Gnの右端に接続される。第1駆動部12は奇数番目の走査線G1、G3、…、Gn-1を駆動し、第2駆動部13は偶数番目の走査線G2、G4、…、Gnを駆動する。このような走査線G1~Gnの駆動方法は、櫛歯駆動(インターレス駆動)とも呼ばれる。 The unit circuit 11 has a clock terminal CK, a set terminal S, a reset terminal R, a first output terminal G, and a second output terminal Q. The first output terminal G of the odd-numbered unit circuits SR1, SR3,..., SRn-1 is connected to the left end of the odd-numbered scanning lines G1, G3,. The first output terminals G of the even-numbered unit circuits SR2, SR4,..., SRn are connected to the right ends of the even-numbered scanning lines G2, G4,. The first driving unit 12 drives odd-numbered scanning lines G1, G3,..., Gn−1, and the second driving unit 13 drives even-numbered scanning lines G2, G4,. Such a driving method of the scanning lines G1 to Gn is also called comb driving (interlace driving).
 走査線駆動回路10には、8相のクロック信号CK1~CK8、2個のゲートスタートパルスGSP1、GSP2、および、4個のクリア信号CLR1~CLR4が供給される。クロック信号CK1~CK8は、それぞれ、(8k-7)~8k段目の単位回路11のクロック端子CKに供給される。ゲートスタートパルスGSP1、GSP2は、それぞれ、1~2段目の単位回路SR1、SR2のセット端子Sに供給される。3~n段目の単位回路SR3~SRnのセット端子Sは、2段前の単位回路の第2出力端子Qに接続される。クリア信号CLR1~CLR4は、それぞれ、(n-3)~n段目の単位回路SRn-3~SRnのリセット端子Rに供給される。1~(n-4)段目の単位回路SR1~SRn-4のリセット端子Rは、4段後の単位回路の第2出力端子Qに接続される。 The scanning line driving circuit 10 is supplied with 8-phase clock signals CK1 to CK8, two gate start pulses GSP1 and GSP2, and four clear signals CLR1 to CLR4. The clock signals CK1 to CK8 are supplied to the clock terminals CK of the unit circuits 11 in the (8k-7) to 8k stages, respectively. The gate start pulses GSP1 and GSP2 are supplied to the set terminals S of the first and second stage unit circuits SR1 and SR2, respectively. The set terminals S of the unit circuits SR3 to SRn at the third to nth stages are connected to the second output terminal Q of the unit circuit at the second stage. The clear signals CLR1 to CLR4 are supplied to the reset terminals R of the (n-3) to n-th unit circuits SRn-3 to SRn, respectively. The reset terminals R of the unit circuits SR1 to SRn-4 in the 1st to (n-4) stages are connected to the second output terminal Q of the unit circuit in the 4th stage.
 図2は、単位回路11の回路図である。図2に示すように、単位回路11は、9個のトランジスタM1、M5、M6、M8~M10、M14、M10B、M14B、および、コンデンサC10を含んでいる。単位回路11に含まれるトランジスタは、いずれも、nチャネル型、かつ、デプレッション型のTFTである。単位回路11に含まれるトランジスタは、例えば、酸化物半導体を用いて形成された半導体層を有するTFTである。単位回路11に含まれるトランジスタは、インジウムガリウム亜鉛酸化物(Indium Gallium Zinc Oxide :IGZO)を用いて形成された半導体層を有するIGZO-TFTでもよい。 FIG. 2 is a circuit diagram of the unit circuit 11. As shown in FIG. 2, the unit circuit 11 includes nine transistors M1, M5, M6, M8 to M10, M14, M10B, M14B, and a capacitor C10. The transistors included in the unit circuit 11 are all n-channel and depletion type TFTs. The transistor included in the unit circuit 11 is, for example, a TFT having a semiconductor layer formed using an oxide semiconductor. The transistor included in the unit circuit 11 may be an IGZO-TFT having a semiconductor layer formed using indium gallium zinc oxide (Indium Gallium Zinc Oxide: IGZO).
 トランジスタM1、M5のドレイン端子、および、トランジスタM5のゲート端子には、ハイレベル電圧VGHが印加される。トランジスタM1のソース端子、トランジスタM8、M9のドレイン端子、および、トランジスタM6、M10、M10Bのゲート端子は、ノードNaに接続される。トランジスタM5のソース端子、トランジスタM6のドレイン端子、および、トランジスタM8、M14、M14Bのゲート端子は、ノードNbに接続される。トランジスタM1のゲート端子は、セット端子Sに接続される。トランジスタM9のゲート端子は、リセット端子Rに接続される。トランジスタM10、M10Bのドレイン端子は、クロック端子CKに接続される。トランジスタM10のソース端子、および、トランジスタM14のドレイン端子は、第1出力端子Gに接続される。トランジスタM10Bのソース端子、および、トランジスタM14Bのドレイン端子は、第2出力端子Qに接続される。コンデンサC10は、トランジスタM10のゲート-ソース間に設けられる。 The high level voltage VGH is applied to the drain terminals of the transistors M1 and M5 and the gate terminal of the transistor M5. The source terminal of the transistor M1, the drain terminals of the transistors M8 and M9, and the gate terminals of the transistors M6, M10, and M10B are connected to the node Na. The source terminal of the transistor M5, the drain terminal of the transistor M6, and the gate terminals of the transistors M8, M14, and M14B are connected to the node Nb. The gate terminal of the transistor M1 is connected to the set terminal S. The gate terminal of the transistor M9 is connected to the reset terminal R. The drain terminals of the transistors M10 and M10B are connected to the clock terminal CK. The source terminal of the transistor M10 and the drain terminal of the transistor M14 are connected to the first output terminal G. The source terminal of the transistor M10B and the drain terminal of the transistor M14B are connected to the second output terminal Q. The capacitor C10 is provided between the gate and source of the transistor M10.
 トランジスタM6、M14のソース端子には、ローレベル電圧VSS1が印加される。トランジスタM8、M9のソース端子には、ローレベル電圧VSS2が印加される。トランジスタM14Bのソース端子には、ローレベル電圧VSS3が印加される。ローレベル電圧VSS2はローレベル電圧VSS1よりも低く、ローレベル電圧VSS3はローレベル電圧VSS2よりも低い。すなわち、ローレベル電圧VSS1~VSS3は、次式(1)を満たす。
  VGH>VSS1>VSS2>VSS3 …(1)
 ローレベル電圧VSS2はローレベル電圧VSS1よりもハイレベル電圧VGHから離れた電圧であり、ローレベル電圧VSS3はローレベル電圧VSS2よりもハイレベル電圧VGHから離れた電圧である。
A low level voltage VSS1 is applied to the source terminals of the transistors M6 and M14. A low level voltage VSS2 is applied to the source terminals of the transistors M8 and M9. The low level voltage VSS3 is applied to the source terminal of the transistor M14B. The low level voltage VSS2 is lower than the low level voltage VSS1, and the low level voltage VSS3 is lower than the low level voltage VSS2. That is, the low level voltages VSS1 to VSS3 satisfy the following expression (1).
VGH>VSS1>VSS2> VSS3 (1)
The low level voltage VSS2 is a voltage farther from the high level voltage VGH than the low level voltage VSS1, and the low level voltage VSS3 is a voltage farther from the high level voltage VGH than the low level voltage VSS2.
 図3は、走査線駆動回路10のタイミングチャートである。以下、クロック信号CK1の1周期をTという。図3に示すように、クロック信号CK1は、1周期のうち1/4周期でハイレベルになり、残りの3/4周期でローレベルになる。クロック信号CK2~CK8は、それぞれ、クロック信号CK1からT/8、T/4、3T/8、T/2、5T/8、3T/4、および、7T/8だけ遅れた信号である。クロック信号CK1~CK8のハイレベル電圧はVGHであり、クロック信号CK1~CK8のローレベル電圧はVSS1である。走査線駆動回路10は、ハイレベル電圧VGHとローレベル電圧VSS1との間で変化する8相のクロック信号CK1~CK8に従い動作する。図3には、クロック信号CK1~CK8の電位の変化と、(8k-7)段目の単位回路11のノードと端子の電位の変化とが記載されている。 FIG. 3 is a timing chart of the scanning line driving circuit 10. Hereinafter, one cycle of the clock signal CK1 is referred to as T. As shown in FIG. 3, the clock signal CK1 becomes a high level in a quarter period of one period and becomes a low level in the remaining 3/4 period. The clock signals CK2 to CK8 are signals delayed by T / 8, T / 4, 3T / 8, T / 2, 5T / 8, 3T / 4, and 7T / 8 from the clock signal CK1, respectively. The high level voltage of the clock signals CK1 to CK8 is VGH, and the low level voltage of the clock signals CK1 to CK8 is VSS1. The scanning line driving circuit 10 operates in accordance with 8-phase clock signals CK1 to CK8 that change between the high level voltage VGH and the low level voltage VSS1. FIG. 3 shows changes in the potentials of the clock signals CK1 to CK8 and changes in the potentials of the nodes and terminals of the unit circuit 11 in the (8k-7) stage.
 走査線駆動回路10について説明する前に、比較例として、図4に示す走査線駆動回路90について説明する。走査線駆動回路90は、(n/2)個の単位回路91を多段接続した第1駆動部と、第1駆動部と同じ構成を有する第2駆動部とを有する。図5に示すように、単位回路91は、トランジスタM10B、M14Bを含まず、第2出力端子Qを有しない。単位回路91では、トランジスタM8、M9のソース端子にローレベル電圧VSS1が印加されている。i段目の単位回路91の出力信号(出力端子Gから出力された信号)は、走査線Giに供給されると共に、2段後の単位回路91のセット端子Sと4段前の単位回路91のリセット端子Rとに供給される。 Before describing the scanning line driving circuit 10, a scanning line driving circuit 90 shown in FIG. 4 will be described as a comparative example. The scanning line driving circuit 90 includes a first driving unit in which (n / 2) unit circuits 91 are connected in multiple stages, and a second driving unit having the same configuration as the first driving unit. As shown in FIG. 5, the unit circuit 91 does not include the transistors M10B and M14B and does not have the second output terminal Q. In the unit circuit 91, the low level voltage VSS1 is applied to the source terminals of the transistors M8 and M9. The output signal of the i-th stage unit circuit 91 (the signal output from the output terminal G) is supplied to the scanning line Gi, and the set terminal S of the unit circuit 91 after the second stage and the unit circuit 91 before the fourth stage. To the reset terminal R.
 図6は、走査線駆動回路90のタイミングチャートである。図6には、図3と同様に、クロック信号CK1~CK8の電位の変化と、(8k-7)段目の単位回路91のノードと端子の電位の変化とが記載されている。図6を参照して、(8k-7)段目の単位回路91の動作を説明する。セット端子Sの電位(2段前の単位回路91の出力信号)がハイレベルに変化すると、トランジスタM1がオンし、ノードNaの電位はハイレベルになる。これに伴い、トランジスタM6、M10がオンし、ノードNbの電位はローレベルになり、トランジスタM8、M14はオフする。このとき、クロック端子CKの電位(クロック信号CK1)はローレベルであるので、出力端子Gの電位(単位回路91の出力信号)はローレベルである。 FIG. 6 is a timing chart of the scanning line driving circuit 90. FIG. 6 shows changes in the potentials of the clock signals CK1 to CK8 and changes in the potentials of the nodes and terminals of the unit circuit 91 in the (8k-7) stage, as in FIG. With reference to FIG. 6, the operation of the unit circuit 91 in the (8k-7) stage will be described. When the potential of the set terminal S (the output signal of the unit circuit 91 two stages before) changes to high level, the transistor M1 is turned on and the potential of the node Na becomes high level. Accordingly, the transistors M6 and M10 are turned on, the potential of the node Nb becomes low level, and the transistors M8 and M14 are turned off. At this time, since the potential of the clock terminal CK (clock signal CK1) is at a low level, the potential of the output terminal G (the output signal of the unit circuit 91) is at a low level.
 次に、クロック端子CKの電位がハイレベルに変化する。クロック端子CKの電位がハイレベルである間、ノードNaの電位は突き上げによって通常よりも高いハイレベルになる。また、トランジスタM10はオン状態であるので、クロック端子CKの電位がハイレベルである間、出力端子Gの電位はハイレベルになる。このときトランジスタM10のゲート電位は通常よりも高いハイレベルであるので、出力端子Gの電位は閾値落ちのないハイレベル(VGH)になる。 Next, the potential of the clock terminal CK changes to a high level. While the potential of the clock terminal CK is at a high level, the potential of the node Na is raised to a higher level than usual due to the push-up. Further, since the transistor M10 is in the on state, the potential of the output terminal G is high while the potential of the clock terminal CK is high. At this time, since the gate potential of the transistor M10 is higher than usual, the potential of the output terminal G becomes high level (VGH) with no threshold drop.
 次に、クロック端子CKの電位がローレベルに変化すると、出力端子Gの電位はローレベルに変化し、ノードNaの電位は通常のハイレベルに戻る。次に、リセット端子Rの電位(4段後の単位回路91の出力信号)がハイレベルに変化すると、トランジスタM9がオンし、ノードNaの電位はローレベルになり、トランジスタM6はオフする。このときノードNbの電位はトランジスタM5の作用によってハイレベルになり、トランジスタM8、M14はオンする。トランジスタM8はノードNaにローレベル電圧VSS1を印加し、トランジスタM14は出力端子Gにローレベル電圧VSS1を印加する。 Next, when the potential of the clock terminal CK changes to the low level, the potential of the output terminal G changes to the low level, and the potential of the node Na returns to the normal high level. Next, when the potential of the reset terminal R (the output signal of the unit circuit 91 after four stages) changes to a high level, the transistor M9 is turned on, the potential of the node Na becomes a low level, and the transistor M6 is turned off. At this time, the potential of the node Nb becomes high level by the action of the transistor M5, and the transistors M8 and M14 are turned on. The transistor M8 applies the low level voltage VSS1 to the node Na, and the transistor M14 applies the low level voltage VSS1 to the output terminal G.
 以下、ノードNaの電位がハイレベル(通常よりも高いハイレベルを含む)である期間を選択期間、ノードNaの電位がローレベルである期間を非選択期間という。図7は、走査線駆動回路90について、非選択期間におけるトランジスタM10の端子の電位を示す図である。トランジスタM10のドレイン端子にはクロック信号CK1~CK8のいずれかが印加されるので、トランジスタM10のドレイン電位はVGHまたはVSS1である。非選択期間では、トランジスタM10のゲート電位とソース電位はVSS1であるので、トランジスタM10のゲート-ソース間電圧Vgsは0である。トランジスタM10がデプレッション型である場合、ゲート-ソース間電圧Vgsが0のときでも、ドレイン-ソース間には電流Ix(>0)が流れる。電流Ixが流れると、出力端子Gの電位が上昇し、単位回路91の出力信号が不必要に上昇する。このため、図6に矢印で示すタイミングで、出力端子G、セット端子S、および、リセット端子Rの電位が不必要に上昇する。この結果、走査線駆動回路90が誤動作し、走査線駆動回路90を備えた表示装置では表示品位が低下することがある。 Hereinafter, a period in which the potential of the node Na is at a high level (including a higher level than usual) is referred to as a selection period, and a period in which the potential of the node Na is at a low level is referred to as a non-selection period. FIG. 7 is a diagram showing the potential of the terminal of the transistor M10 in the non-selection period for the scanning line driving circuit 90. FIG. Since any one of the clock signals CK1 to CK8 is applied to the drain terminal of the transistor M10, the drain potential of the transistor M10 is VGH or VSS1. In the non-selection period, since the gate potential and the source potential of the transistor M10 are VSS1, the gate-source voltage Vgs of the transistor M10 is zero. When the transistor M10 is a depletion type, even when the gate-source voltage Vgs is 0, the current Ix (> 0) flows between the drain and the source. When the current Ix flows, the potential of the output terminal G rises and the output signal of the unit circuit 91 rises unnecessarily. For this reason, the potentials of the output terminal G, the set terminal S, and the reset terminal R rise unnecessarily at the timing indicated by the arrows in FIG. As a result, the scanning line driving circuit 90 malfunctions, and the display quality of the display device including the scanning line driving circuit 90 may deteriorate.
 この問題を解決する方法として、非選択期間におけるトランジスタM10のゲート電位をソース電位よりも低くする方法(以下、第1の方法という)が考えられる。第1の方法を実施するためには、トランジスタM8、M9のソース端子にローレベル電圧VSS1よりも低いローレベル電圧VSS2(<VSS1)を印加すればよい。 As a method of solving this problem, a method of lowering the gate potential of the transistor M10 during the non-selection period than the source potential (hereinafter referred to as the first method) can be considered. In order to implement the first method, a low level voltage VSS2 (<VSS1) lower than the low level voltage VSS1 may be applied to the source terminals of the transistors M8 and M9.
 しかしながら、走査線駆動回路90に第1の方法を適用すると、別の問題が発生する。図8は、走査線駆動回路90に第1の方法を適用した場合について、非選択期間におけるトランジスタM1、M8の端子の電位を示す図である。図8に示すように、非選択期間におけるトランジスタM1のゲート電位はVSS1、ソース電位はVSS2である。トランジスタM1のゲート-ソース間電圧Vgsは正であるので、トランジスタM1はオンする。また、トランジスタM8のゲート電位は(VGH-Vth)(ただし、VthはトランジスタM5の閾値電圧)、ソース電位はVSS2である。VGH-Vth>VSS1より、トランジスタM8のゲート-ソース間電圧Vgsは正であるので、トランジスタM8もオンする。このように走査線駆動回路90に第1の方法を適用した場合、非選択期間において、トランジスタM1、M8がオンし、ハイレベル電圧VGHを供給する電源線、トランジスタM1、トランジスタM8、および、ローレベル電圧VSS2を供給する電源線を経由する経路にリーク電流ILaが流れる。 However, when the first method is applied to the scanning line driving circuit 90, another problem occurs. FIG. 8 is a diagram illustrating the potentials of the terminals of the transistors M1 and M8 in the non-selection period when the first method is applied to the scanning line driving circuit 90. FIG. As shown in FIG. 8, the gate potential of the transistor M1 in the non-selection period is VSS1, and the source potential is VSS2. Since the gate-source voltage Vgs of the transistor M1 is positive, the transistor M1 is turned on. The gate potential of the transistor M8 is (VGH−Vth) (where Vth is the threshold voltage of the transistor M5), and the source potential is VSS2. Since VGH−Vth> VSS1, since the gate-source voltage Vgs of the transistor M8 is positive, the transistor M8 is also turned on. As described above, when the first method is applied to the scanning line driving circuit 90, the transistors M1 and M8 are turned on and the high-level voltage VGH is supplied in the non-selection period, the transistors M1, M8, and low Leakage current ILa flows through a path passing through a power supply line that supplies level voltage VSS2.
 第1の方法を適用した場合の問題を解決する方法として、第1の方法を適用した上で、非選択期間におけるトランジスタM1のゲート電位をVSS2にする方法(以下、第2の方法という)が考えられる。図9は、走査線駆動回路90に第2の方法を適用した場合について、非選択期間におけるトランジスタM1、M8の端子の電位を示す図である。図9に示すように、非選択期間におけるトランジスタM1のゲート-ソース間電圧Vgsは0である。しかし、トランジスタM1がデプレッション型である場合、ゲート-ソース間電圧Vgsが0のときでも、ドレイン-ソース間に電流が流れる。このため、第2の方法を適用した場合でも、第1の方法を適用した場合と同じ経路にリーク電流ILbが流れる。なお、この場合のリーク電流ILbは、第1の方法を適用した場合のリーク電流ILaよりも少なくなる。 As a method for solving the problem when the first method is applied, there is a method (hereinafter referred to as a second method) in which the gate potential of the transistor M1 in the non-selection period is set to VSS2 after applying the first method. Conceivable. FIG. 9 is a diagram illustrating the potentials of the terminals of the transistors M1 and M8 in the non-selection period when the second method is applied to the scanning line driving circuit 90. FIG. As shown in FIG. 9, the gate-source voltage Vgs of the transistor M1 in the non-selection period is zero. However, when the transistor M1 is a depletion type, a current flows between the drain and the source even when the gate-source voltage Vgs is zero. For this reason, even when the second method is applied, the leakage current ILb flows through the same path as when the first method is applied. Note that the leakage current ILb in this case is smaller than the leakage current ILa when the first method is applied.
 リーク電流ILa、ILbの経路の両端には、直流電圧が印加される。トランジスタM10を流れる電流Ix(図7)とは異なり、リーク電流ILa、ILb(図8、図9)は非選択期間において定常的に流れる。リーク電流ILa、ILbが流れると、走査線駆動回路における消費電力が増加し、走査線駆動回路を制御する制御回路からの電流供給が不足する。このため、リーク電流ILa、ILbが流れることは、電流Ixが流れることよりも深刻な問題である。 DC voltage is applied to both ends of the leakage current ILa and ILb paths. Unlike the current Ix flowing through the transistor M10 (FIG. 7), the leakage currents ILa and ILb (FIGS. 8 and 9) flow constantly during the non-selection period. When the leakage currents ILa and ILb flow, power consumption in the scanning line driving circuit increases, and current supply from the control circuit that controls the scanning line driving circuit becomes insufficient. For this reason, the leakage currents ILa and ILb flow more seriously than the current Ix flows.
 以下、本実施形態に係る走査線駆動回路10について説明する。走査線駆動回路10に含まれる単位回路11は、以下の点で、走査線駆動回路90に含まれる単位回路91と相違する。単位回路11は、トランジスタM10B、M14Bを含み、第2出力端子Qを有する。トランジスタM10Bのドレイン端子はクロック端子CKに接続され、トランジスタM10Bのゲート端子はノードNaに接続され、トランジスタM10Bのソース端子は第2出力端子Qに接続される。トランジスタM14Bのドレイン端子は第2出力端子Qに接続され、トランジスタM14Bのゲート端子はノードNbに接続される。トランジスタM8、M9のソース端子にはローレベル電圧VSS2が印加され、トランジスタM14Bのソース端子にはローレベル電圧VSS3が印加される。ローレベル電圧VSS1~VSS3は、式(1)を満たす。 Hereinafter, the scanning line driving circuit 10 according to the present embodiment will be described. The unit circuit 11 included in the scanning line driving circuit 10 is different from the unit circuit 91 included in the scanning line driving circuit 90 in the following points. The unit circuit 11 includes transistors M10B and M14B and has a second output terminal Q. The drain terminal of the transistor M10B is connected to the clock terminal CK, the gate terminal of the transistor M10B is connected to the node Na, and the source terminal of the transistor M10B is connected to the second output terminal Q. The drain terminal of the transistor M14B is connected to the second output terminal Q, and the gate terminal of the transistor M14B is connected to the node Nb. The low level voltage VSS2 is applied to the source terminals of the transistors M8 and M9, and the low level voltage VSS3 is applied to the source terminal of the transistor M14B. The low level voltages VSS1 to VSS3 satisfy Expression (1).
 図3を参照して、(8k-7)段目の単位回路11の動作を説明する。トランジスタM10B、M14Bは、それぞれ、トランジスタM10、M14と同じタイミングでオン/オフする。第1出力端子Gの電位は、選択期間内でクロック端子CKの電位がハイレベルのときにはVGH、それ以外のときにはVSS1となる。第2出力端子Qの端子の電位は、選択期間内でクロック端子CKの電位がハイレベルのときにはVGH、選択期間内でクロック端子CKの電位がローレベルのときにはVSS1、非選択期間ではVSS3となる。セット端子Sの電位(2段前の単位回路11の第2出力端子Qからの出力信号)は、第2出力端子Qの電位よりもT/4だけ進んで変化する。リセット端子Rの電位(4段後の単位回路11の第2出力端子Qからの出力信号)は、第2出力端子Qの電位よりもT/2だけ遅れて変化する。 The operation of the unit circuit 11 at the (8k-7) stage will be described with reference to FIG. The transistors M10B and M14B are turned on / off at the same timing as the transistors M10 and M14, respectively. The potential of the first output terminal G is VGH when the potential of the clock terminal CK is at a high level within the selection period, and is VSS1 otherwise. The potential of the terminal of the second output terminal Q is VGH when the potential of the clock terminal CK is high in the selection period, VSS1 when the potential of the clock terminal CK is low during the selection period, and VSS3 in the non-selection period. . The potential of the set terminal S (the output signal from the second output terminal Q of the unit circuit 11 two stages before) changes ahead of the potential of the second output terminal Q by T / 4. The potential of the reset terminal R (the output signal from the second output terminal Q of the unit circuit 11 after four stages) changes with a delay of T / 2 from the potential of the second output terminal Q.
 セット端子Sの電位がハイレベルに変化すると、トランジスタM1がオンし、ノードNaの電位はハイレベルになる。これに伴い、トランジスタM6、M10、M10Bがオンし、ノードNbの電位はローレベルになり、トランジスタM8、M14はオフする。このとき、クロック端子CKの電位はVSS1であるので、第1および第2出力端子G、Qの電位はVSS1になる。 When the potential of the set terminal S changes to high level, the transistor M1 is turned on and the potential of the node Na becomes high level. Accordingly, the transistors M6, M10, and M10B are turned on, the potential of the node Nb becomes low level, and the transistors M8 and M14 are turned off. At this time, since the potential of the clock terminal CK is VSS1, the potentials of the first and second output terminals G and Q are VSS1.
 次に、クロック端子CKの電位がハイレベルに変化する。クロック端子CKの電位がハイレベルである間、ノードNaの電位は突き上げによって通常よりも高いハイレベルになる。また、トランジスタM10、M10Bはオン状態であるので、クロック端子CKの電位がハイレベルである間、第1および第2出力端子G、Qの電位はハイレベルになる。このときトランジスタM10、M10Bのゲート電位は通常よりも高いハイレベルであるので、第1および第2出力端子G、Qの電位は閾値落ちのないハイレベル(VGH)になる。 Next, the potential of the clock terminal CK changes to a high level. While the potential of the clock terminal CK is at a high level, the potential of the node Na is raised to a higher level than usual due to the push-up. Since the transistors M10 and M10B are on, the potentials of the first and second output terminals G and Q are high while the potential of the clock terminal CK is high. At this time, since the gate potentials of the transistors M10 and M10B are at a higher level than usual, the potentials at the first and second output terminals G and Q are at a high level (VGH) with no threshold drop.
 次に、クロック端子CKの電位がローレベルに変化すると、第1および第2出力端子G、Qの電位はVSS1に変化し、ノードNaの電位は通常のハイレベルに戻る。次に、リセット端子Rの電位(4段後の単位回路11の出力信号)がハイレベルに変化すると、トランジスタM9がオンし、ノードNaの電位はローレベルになり、トランジスタM6はオフする。このときノードNbの電位はトランジスタM5の作用によってハイレベルになり、トランジスタM8、M14、M14Bはオンする。トランジスタM8はノードNaにローレベル電圧VSS2を印加し、トランジスタM14は第1出力端子Gにローレベル電圧VSS1を印加し、トランジスタM14Bは第2出力端子Qにローレベル電圧VSS3を印加する。このため、第2出力端子Qの電位はVSS3に低下する。 Next, when the potential of the clock terminal CK changes to the low level, the potentials of the first and second output terminals G and Q change to VSS1, and the potential of the node Na returns to the normal high level. Next, when the potential of the reset terminal R (the output signal of the unit circuit 11 after four stages) changes to high level, the transistor M9 is turned on, the potential of the node Na becomes low level, and the transistor M6 is turned off. At this time, the potential of the node Nb becomes high level by the action of the transistor M5, and the transistors M8, M14, and M14B are turned on. The transistor M8 applies the low level voltage VSS2 to the node Na, the transistor M14 applies the low level voltage VSS1 to the first output terminal G, and the transistor M14B applies the low level voltage VSS3 to the second output terminal Q. For this reason, the electric potential of the 2nd output terminal Q falls to VSS3.
 トランジスタM10は、クロック端子CKに接続されたドレイン端子と、ノードNaに接続されたゲート端子と、走査線に対する信号を出力するための第1出力端子Gに接続されたソース端子とを有する第1出力トランジスタとして機能する。トランジスタM10Bは、クロック端子CKに接続されたドレイン端子と、ノードNaに接続されたゲート端子と、他段の単位回路11に対する信号を出力するための第2出力端子Qに接続されたソース端子とを有する第2出力トランジスタとして機能する。トランジスタM1は、セット端子Sの電位に応じてノードNaにハイレベル電圧VGHを印加する第1ノードセットトランジスタとして機能する。トランジスタM9は、リセット端子Rの電位(ゲート端子の電位)に応じてノードNaにローレベル電圧VSS2を印加する第1ノードリセットトランジスタとして機能する。トランジスタM8は、ノードNbの電位に応じてノードNaにローレベル電圧VSS2を印加する第1ノード補助リセットトランジスタとして機能する。トランジスタM14は、ノードNbの電位に応じて第1出力端子Gにローレベル電圧VSS1を印加する第1出力リセットトランジスタとして機能する。トランジスタM14Bは、ノードNbの電位に応じて第2出力端子Qにローレベル電圧VSS3を印加する第2出力リセットトランジスタとして機能する。トランジスタM5は、ノードNbにハイレベル電圧を固定的に印加する電圧連続印加トランジスタとして機能する。トランジスタM6は、ノードNaの電位に応じてノードNbにローレベル電圧VSS1を印加する第2ノードリセットトランジスタとして機能する。トランジスタM5、M6は、ノードNbの電位をノードNaの電位とは反対の論理レベルの電位に制御する第2ノード制御部を構成する。 The transistor M10 includes a first terminal having a drain terminal connected to the clock terminal CK, a gate terminal connected to the node Na, and a source terminal connected to the first output terminal G for outputting a signal for the scanning line. Functions as an output transistor. The transistor M10B includes a drain terminal connected to the clock terminal CK, a gate terminal connected to the node Na, and a source terminal connected to the second output terminal Q for outputting a signal to the unit circuit 11 in the other stage. It functions as a second output transistor having The transistor M1 functions as a first node set transistor that applies the high level voltage VGH to the node Na according to the potential of the set terminal S. The transistor M9 functions as a first node reset transistor that applies the low level voltage VSS2 to the node Na according to the potential of the reset terminal R (the potential of the gate terminal). The transistor M8 functions as a first node auxiliary reset transistor that applies the low level voltage VSS2 to the node Na according to the potential of the node Nb. The transistor M14 functions as a first output reset transistor that applies the low-level voltage VSS1 to the first output terminal G according to the potential of the node Nb. The transistor M14B functions as a second output reset transistor that applies the low-level voltage VSS3 to the second output terminal Q in accordance with the potential of the node Nb. The transistor M5 functions as a voltage continuous application transistor that applies a high level voltage to the node Nb in a fixed manner. The transistor M6 functions as a second node reset transistor that applies the low level voltage VSS1 to the node Nb in accordance with the potential of the node Na. The transistors M5 and M6 constitute a second node control unit that controls the potential of the node Nb to a potential of a logic level opposite to the potential of the node Na.
 単位回路11は、トランジスタM10とドレイン端子およびゲート端子を共有するトランジスタM10Bを含んでいる。このため、走査線G1~Gnに対する出力信号(第1出力端子Gから出力される信号)と、他の単位回路11に対する出力信号(第2出力端子Qから出力される信号)とを分離することができる。したがって、前者の出力信号のローレベル電圧VSS1とは別に、後者の出力信号のローレベル電圧VSS3を設定することができる。ローレベル電圧VSS3は、式(1)を満たすように設定される。 The unit circuit 11 includes a transistor M10B sharing a drain terminal and a gate terminal with the transistor M10. Therefore, the output signals for the scanning lines G1 to Gn (signals output from the first output terminal G) and the output signals for the other unit circuits 11 (signals output from the second output terminal Q) are separated. Can do. Therefore, the low level voltage VSS3 of the latter output signal can be set separately from the low level voltage VSS1 of the former output signal. The low level voltage VSS3 is set so as to satisfy Expression (1).
 図10(a)は、走査線駆動回路10について、非選択期間におけるトランジスタM10の端子の電位を示す図である。図10(a)に示すように、非選択期間では、トランジスタM10のゲート電位はVSS2、ソース電位はVSS1である。式(1)より、トランジスタM10のゲート-ソース間電圧Vgsは負である。したがって、トランジスタM10がデプレッション型である場合でも、トランジスタM10のドレイン-ソース間には電流は流れない。このように走査線駆動回路10では、非選択期間において図7に示す電流Ixは流れない。 FIG. 10A is a diagram showing the potential of the terminal of the transistor M10 during the non-selection period for the scanning line driving circuit 10. FIG. As shown in FIG. 10A, in the non-selection period, the gate potential of the transistor M10 is VSS2, and the source potential is VSS1. From equation (1), the gate-source voltage Vgs of the transistor M10 is negative. Therefore, even when the transistor M10 is a depletion type, no current flows between the drain and source of the transistor M10. Thus, in the scanning line driving circuit 10, the current Ix shown in FIG. 7 does not flow during the non-selection period.
 図10(b)は、走査線駆動回路10について、非選択期間におけるトランジスタM1、M8の端子の電位を示す図である。図10(b)に示すように、非選択期間では、トランジスタM1のゲート電位はVSS3、ソース電位はVSS2である。式(1)より、トランジスタM1のゲート-ソース間電圧Vgsは負である。したがって、トランジスタM1がデプレッション型である場合でも、トランジスタM1のドレイン-ソース間に電流は流れない。よって、走査線駆動回路10では、非選択期間において図8および図9に示すリーク電流ILa、ILbは流れない。 FIG. 10B is a diagram showing the potentials of the terminals of the transistors M1 and M8 in the non-selection period for the scanning line driving circuit 10. As shown in FIG. 10B, in the non-selection period, the gate potential of the transistor M1 is VSS3 and the source potential is VSS2. From the equation (1), the gate-source voltage Vgs of the transistor M1 is negative. Therefore, even when the transistor M1 is a depletion type, no current flows between the drain and source of the transistor M1. Therefore, in the scanning line driving circuit 10, the leakage currents ILa and ILb shown in FIGS. 8 and 9 do not flow during the non-selection period.
 走査線駆動回路10では、式(1)を満たすようにローレベル電圧VSS1~VSS3を設定する必要がある。走査線駆動回路10が正しく動作するためには、ドレイン-ソース間電圧Vdsが10Vのときにオフ状態のTFTを流れる電流が、単位チャネル長かつ単位チャネル幅あたり1×10-9A以下であれば十分である。そこで、TFTの特性に基づき、ドレイン-ソース間電圧Vdsが10VのときのTFTを流れる電流(ドレイン-ソース間電流)が単位チャネル長かつ単位チャネル幅あたり1×10-9Aとなるゲート-ソース間電圧(以下、Vaという)を求め、VSS1-VSS2>(Vaの絶対値)、かつ、VSS2-VSS3>(Vaの絶対値)を満たすようにローレベル電圧VSS2、VSS3を設定する。 In the scanning line driving circuit 10, it is necessary to set the low level voltages VSS1 to VSS3 so as to satisfy the expression (1). In order for the scanning line driving circuit 10 to operate correctly, the current flowing through the TFT in the off state when the drain-source voltage Vds is 10 V should be 1 × 10 −9 A or less per unit channel length and unit channel width. It is enough. Therefore, based on the characteristics of the TFT, the gate-source in which the current (drain-source current) flowing through the TFT when the drain-source voltage Vds is 10 V is 1 × 10 −9 A per unit channel length and unit channel width. The inter-level voltage (hereinafter referred to as Va) is obtained, and the low-level voltages VSS2 and VSS3 are set so as to satisfy VSS1-VSS2> (absolute value of Va) and VSS2-VSS3> (absolute value of Va).
 走査線駆動回路10では、非選択期間において、図7に示す電流Ixは流れず、図8および図9に示すリーク電流ILa、ILbは流れない。したがって、走査線駆動回路10の誤動作を防止し、走査線駆動回路10の制御回路における消費電力を削減することができる。また、走査線駆動回路10は、2個の電圧レベルVGHとVSS1の間で変化する8相のクロック信号CK1~CK8に従い動作する。したがって、走査線駆動回路10によれば、デプレッション型トランジスタを用いた、従来よりも容易に制御できる走査線駆動回路を提供することができる。 In the scanning line driving circuit 10, during the non-selection period, the current Ix shown in FIG. 7 does not flow, and the leakage currents ILa and ILb shown in FIGS. 8 and 9 do not flow. Therefore, malfunction of the scanning line driving circuit 10 can be prevented, and power consumption in the control circuit of the scanning line driving circuit 10 can be reduced. Further, the scanning line driving circuit 10 operates in accordance with 8-phase clock signals CK1 to CK8 that change between two voltage levels VGH and VSS1. Therefore, according to the scanning line driving circuit 10, it is possible to provide a scanning line driving circuit that uses a depletion type transistor and can be controlled more easily than in the past.
 以上に示すように、本実施形態に係る走査線駆動回路10は、複数の単位回路11を多段接続した構成を有し、オン電圧(ハイレベル電圧VGH)と第1オフ電圧(ローレベル電圧VSS1)との間で変化する多相(8相)のクロック信号CK1~CK8に従い動作する。各単位回路11は、クロック端子CKに接続された第1導通端子(ドレイン端子)と、第1ノード(ノードNa)に接続された制御端子(ゲート端子)と、走査線に対する信号を出力するための第1出力端子Gに接続された第2導通端子(ソース端子)とを有する第1出力トランジスタ(トランジスタM10)と、クロック端子CKに接続された第1導通端子と、第1ノードに接続された制御端子と、他段の単位回路11に対する信号を出力するための第2出力端子Qに接続された第2導通端子とを有する第2出力トランジスタ(トランジスタM10B)と、セット端子Sの電位に応じて第1ノードにオン電圧を印加する第1ノードセットトランジスタ(トランジスタM1)と、制御端子の電位に応じて第1ノードに第2オフ電圧(ローレベル電圧VSS2)を印加する第1ノードリセットトランジスタ(トランジスタM9)と、第2ノードの電位に応じて第2出力端子Qに第3オフ電圧(ローレベル電圧VSS3)を印加する第2出力リセットトランジスタ(トランジスタM14B)とを含んでいる。第2オフ電圧は第1オフ電圧よりもオン電圧から離れた電圧であり、第3オフ電圧は第2オフ電圧よりもオン電圧から離れた電圧である。 As described above, the scanning line driving circuit 10 according to the present embodiment has a configuration in which a plurality of unit circuits 11 are connected in multiple stages, and an on voltage (high level voltage VGH) and a first off voltage (low level voltage VSS1). ) And the multi-phase (eight-phase) clock signals CK1 to CK8. Each unit circuit 11 outputs a signal to the first conduction terminal (drain terminal) connected to the clock terminal CK, a control terminal (gate terminal) connected to the first node (node Na), and the scanning line. A first output transistor (transistor M10) having a second conduction terminal (source terminal) connected to the first output terminal G, a first conduction terminal connected to the clock terminal CK, and a first node. A second output transistor (transistor M10B) having a control terminal and a second conduction terminal connected to a second output terminal Q for outputting a signal to the unit circuit 11 in the other stage; In response, a first node set transistor (transistor M1) that applies an on voltage to the first node, and a second off voltage (low level) at the first node according to the potential of the control terminal. A first node reset transistor (transistor M9) that applies a voltage VSS2), and a second output reset transistor that applies a third off voltage (low level voltage VSS3) to the second output terminal Q in accordance with the potential of the second node. Transistor M14B). The second off voltage is a voltage farther from the on voltage than the first off voltage, and the third off voltage is a voltage farther from the on voltage than the second off voltage.
 本実施形態に係る走査線駆動回路10では、単位回路11の第1出力端子G、第1ノード、および、第2ノードには、上記の大小関係を有する第1~第3オフ電圧がそれぞれ印加される。第1出力トランジスタがオフする非選択期間では、第1出力トランジスタの制御端子と第2導通端子の間にはトランジスタがオフする電圧(第2オフ電圧と第1オフ電圧の差)が印加され、第1ノードセットトランジスタの制御端子と第2導通端子の間にもトランジスタがオフする電圧(第3オフ電圧と第2オフ電圧の差)が印加される。このため、デプレッション型のトランジスタを用いたときでも、非選択期間では第1出力トランジスタと第1ノードセットトランジスタに電流が流れない。したがって、走査線駆動回路10の出力信号を安定化させ、走査線駆動回路10の誤動作を防止することができる。また、走査線駆動回路10は、2個の電圧レベルの間で変化するクロック信号に従い動作する。よって、デプレッション型トランジスタを用いた、従来よりも容易に制御できる走査線駆動回路を提供することができる。 In the scanning line driving circuit 10 according to the present embodiment, the first to third off voltages having the above-described magnitude relationship are applied to the first output terminal G, the first node, and the second node of the unit circuit 11, respectively. Is done. In the non-selection period in which the first output transistor is turned off, a voltage at which the transistor is turned off (difference between the second off voltage and the first off voltage) is applied between the control terminal and the second conduction terminal of the first output transistor, A voltage at which the transistor is turned off (difference between the third off voltage and the second off voltage) is also applied between the control terminal and the second conduction terminal of the first node set transistor. For this reason, even when a depletion type transistor is used, no current flows through the first output transistor and the first node set transistor in the non-selection period. Therefore, the output signal of the scanning line driving circuit 10 can be stabilized and the malfunctioning of the scanning line driving circuit 10 can be prevented. The scanning line driving circuit 10 operates according to a clock signal that changes between two voltage levels. Therefore, a scan line driver circuit using a depletion type transistor that can be controlled more easily than in the past can be provided.
 各単位回路11は、第2ノードの電位を第1ノードの電位とは反対の論理レベルの電位に制御する第2ノード制御部を含んでいる。第2ノード制御部を用いて第2ノードの電位を第1ノードとは反対の論理レベルの電位に制御することにより、第2ノードの電位に基づき第2出力端子の電位などを制御することができる。 Each unit circuit 11 includes a second node control unit that controls the potential of the second node to a potential of a logic level opposite to the potential of the first node. By controlling the potential of the second node to a potential of a logic level opposite to that of the first node using the second node control unit, the potential of the second output terminal can be controlled based on the potential of the second node. it can.
 第1ノードリセットトランジスタは、リセット端子Rの電位に応じて第1ノードに第2オフ電圧を印加する。したがって、第1ノードリセットトランジスタを用いて、リセット端子の電位に応じて第1ノードに第2オフ電圧を印加することができる。また、各単位回路11は、第2ノードの電位に応じて第1ノードに第2オフ電圧を印加する第1ノード補助リセットトランジスタ(トランジスタM8)を含んでいる。第1補助リセットトランジスタを設けることにより、第1ノードリセットトランジスタと共に第1ノードに第2オフ電圧を印加することができる。 The first node reset transistor applies a second off voltage to the first node according to the potential of the reset terminal R. Therefore, the second off voltage can be applied to the first node according to the potential of the reset terminal using the first node reset transistor. Each unit circuit 11 includes a first node auxiliary reset transistor (transistor M8) that applies a second off voltage to the first node according to the potential of the second node. By providing the first auxiliary reset transistor, the second off voltage can be applied to the first node together with the first node reset transistor.
 各単位回路11は、第2ノードの電位に応じて第1出力端子Gに第1オフ電圧を印加する第1出力リセットトランジスタ(トランジスタM14)を含んでいる。第1出力リセットトランジスタを設けることにより、第1出力端子に第1オフ電圧を印加することができる。また、第2ノード制御部は、第2ノードにオン電圧を固定的に印加する電圧連続印加トランジスタ(トランジスタM5)と、第1ノードの電位に応じて第2ノードに第1オフ電圧を印加する第2ノードリセットトランジスタ(トランジスタM6)とを含んでいる。したがって、電圧連続印加トランジスタと第2ノードリセットトランジスタを用いて、第2ノードの電位を第1ノードの電位とは反対の論理レベルの電位に制御する第2ノード制御部を構成することができる。 Each unit circuit 11 includes a first output reset transistor (transistor M14) that applies a first off voltage to the first output terminal G in accordance with the potential of the second node. By providing the first output reset transistor, the first off voltage can be applied to the first output terminal. The second node control unit applies a voltage continuous application transistor (transistor M5) that applies an on-voltage to the second node in a fixed manner and a first off-voltage to the second node according to the potential of the first node. A second node reset transistor (transistor M6). Therefore, the second node control unit that controls the potential of the second node to the potential of the logic level opposite to the potential of the first node can be configured by using the voltage continuous application transistor and the second node reset transistor.
 第1オフ電圧と第2オフ電圧の差(VSS1-VSS2)、および、第2オフ電圧と第3オフ電圧の差(VSS2-VSS3)は、単位回路11に含まれるトランジスタの特性に基づき設定されている。特に、第1オフ電圧と第2オフ電圧の差、および、第2オフ電圧と第3オフ電圧の差は、トランジスタの第1および第2導通端子間の電圧(TFTのドレイン-ソース間電圧Vds)が10Vのときのトランジスタを流れる電流(ドレイン-ソース間電流)が、単位チャネル長かつ単位チャネル幅あたり1×10-9Aとなるトランジスタの制御端子と第2導通端子間の電圧(TFTのゲート-ソース間電圧)の絶対値よりも大きく設定される。デプレッション型のトランジスタを用いたときでも、トランジスタの特性を考慮して第1~第3オフ電圧を設定することにより、非選択期間において第1出力トランジスタと第1ノードセットトランジスタに電流が流れることを防止することができる。したがって、走査線駆動回路10の出力信号を安定化させ、走査線駆動回路10の誤動作を防止することができる。 The difference between the first off-voltage and the second off-voltage (VSS1-VSS2) and the difference between the second off-voltage and the third off-voltage (VSS2-VSS3) are set based on the characteristics of the transistors included in the unit circuit 11. ing. In particular, the difference between the first off-voltage and the second off-voltage and the difference between the second off-voltage and the third off-voltage are the voltage between the first and second conduction terminals of the transistor (the drain-source voltage Vds of the TFT). ) Is 10 V, the current flowing between the transistors (drain-source current) is 1 × 10 −9 A per unit channel length and unit channel width. It is set larger than the absolute value of the gate-source voltage. Even when a depletion type transistor is used, the first to third off-voltages are set in consideration of the transistor characteristics, so that current flows through the first output transistor and the first node set transistor in the non-selection period. Can be prevented. Therefore, the output signal of the scanning line driving circuit 10 can be stabilized and the malfunctioning of the scanning line driving circuit 10 can be prevented.
 複数のクロック信号CK1~CK8の振幅は同じであり、各単位回路11には、複数のクロック信号CK1~CK8の中から選択された1個のクロック信号がクロック端子CKを経由して入力される。したがって、同じ振幅を有する多相数のクロック信号に基づき動作する、従来よりも容易に制御できる走査線駆動回路を提供することができる。また、単位回路11に含まれるトランジスタは、酸化物半導体を用いて形成された半導体層を有する薄膜トランジスタである。したがって、走査線駆動回路10におけるリーク電流を削減し、走査線駆動回路10の誤動作を防止することができる。 The plurality of clock signals CK1 to CK8 have the same amplitude, and one clock signal selected from the plurality of clock signals CK1 to CK8 is input to each unit circuit 11 via the clock terminal CK. . Therefore, it is possible to provide a scanning line driving circuit that operates based on multiphase clock signals having the same amplitude and can be controlled more easily than in the past. In addition, the transistor included in the unit circuit 11 is a thin film transistor having a semiconductor layer formed using an oxide semiconductor. Therefore, leakage current in the scanning line driving circuit 10 can be reduced, and malfunctioning of the scanning line driving circuit 10 can be prevented.
 単位回路11に含まれるトランジスタの導電型はnチャネル型であり、オン電圧はハイレベル電圧VGH、第1オフ電圧はローレベル電圧VSS1、第2オフ電圧は第1オフ電圧よりも低いローレベル電圧VSS2、第3オフ電圧は第2オフ電圧よりも低いローレベル電圧VSS3である。したがって、nチャネル型かつデプレッション型トランジスタを用いた、従来よりも容易に制御できる走査線駆動回路10を提供することができる。 The conductivity type of the transistor included in the unit circuit 11 is an n-channel type, the ON voltage is a high level voltage VGH, the first OFF voltage is a low level voltage VSS1, and the second OFF voltage is a low level voltage lower than the first OFF voltage. VSS2 and the third off voltage are the low level voltage VSS3 lower than the second off voltage. Therefore, it is possible to provide the scanning line driving circuit 10 that uses an n-channel type and depletion type transistor and can be controlled more easily than in the past.
 複数の走査線、複数のデータ線、および、複数の画素回路を含む表示部5と、走査線を駆動する走査線駆動回路10とを備えた表示装置(液晶表示装置)を構成することができる。このような表示装置によれば、デプレッション型トランジスタを用いた、従来よりも容易に制御できる走査線駆動回路10を用いて、低コストの表示装置を提供することができる。また、走査線駆動回路10は、表示部5と共に表示パネル(液晶パネル)上に形成されている。したがって、表示画面の周辺部の幅を狭くすることができる。 A display device (liquid crystal display device) including a display unit 5 including a plurality of scanning lines, a plurality of data lines, and a plurality of pixel circuits, and a scanning line driving circuit 10 that drives the scanning lines can be configured. . According to such a display device, a low-cost display device can be provided by using the scanning line driving circuit 10 that uses a depletion type transistor and can be controlled more easily than in the past. The scanning line driving circuit 10 is formed on the display panel (liquid crystal panel) together with the display unit 5. Therefore, the width of the peripheral part of the display screen can be reduced.
 (第2の実施形態)
 第2の実施形態に係る走査線駆動回路は、第1の実施形態に係る走査線駆動回路10と同じ構成を有する(図1を参照)。本実施形態に係る走査線駆動回路は、液晶パネル(図示せず)の一方の基板上に表示部5と共に形成される(ゲートドライバモノリシック構成)。以下、各実施形態の構成要素のうち、先に述べた実施形態と同一の構成要素については、同一の参照符号を付して説明を省略する。
(Second Embodiment)
The scanning line driving circuit according to the second embodiment has the same configuration as the scanning line driving circuit 10 according to the first embodiment (see FIG. 1). The scanning line driving circuit according to the present embodiment is formed together with the display unit 5 on one substrate of a liquid crystal panel (not shown) (gate driver monolithic configuration). Hereinafter, among the constituent elements of each embodiment, the same constituent elements as those of the above-described embodiments are denoted by the same reference numerals and description thereof is omitted.
 本実施形態に係る走査線駆動回路は、図2に示す単位回路11に代えて、図11に示す単位回路21を多段接続した構成を有する。単位回路21は、単位回路11において、トランジスタM9のソース端子をノードNbに接続したものである。リセット端子Rの電位がハイレベルに変化すると、トランジスタM9がオンし、ノードNbの電位はハイレベルになる。これに伴い、トランジスタM8、M14、M14Bはオンする。このとき、トランジスタM8はノードNaにローレベル電圧VSS2を印加し、トランジスタM14Bは第1出力端子Gにローレベル電圧VSS1を印加し、トランジスタM14Bは第2出力端子Qにローレベル電圧VSS3を印加する。本実施形態に係る走査線駆動回路は、第1の実施形態に係る走査線駆動回路10と同様に動作する。 The scanning line driving circuit according to this embodiment has a configuration in which unit circuits 21 shown in FIG. 11 are connected in multiple stages instead of the unit circuit 11 shown in FIG. The unit circuit 21 is obtained by connecting the source terminal of the transistor M9 to the node Nb in the unit circuit 11. When the potential of the reset terminal R changes to high level, the transistor M9 is turned on and the potential of the node Nb becomes high level. Accordingly, the transistors M8, M14, and M14B are turned on. At this time, the transistor M8 applies the low level voltage VSS2 to the node Na, the transistor M14B applies the low level voltage VSS1 to the first output terminal G, and the transistor M14B applies the low level voltage VSS3 to the second output terminal Q. . The scanning line driving circuit according to the present embodiment operates in the same manner as the scanning line driving circuit 10 according to the first embodiment.
 単位回路21では、単位回路11と同様に、トランジスタM10、M10B、M1、M14、M14B、M5、M6は、それぞれ、第1出力トランジスタ、第2出力トランジスタ、第1ノードセットトランジスタ、第1出力リセットトランジスタ、第2出力リセットトランジスタ、電圧連続印加トランジスタ、および、第2ノードリセットトランジスタとして機能し、トランジスタM5、M6は第2ノード制御部を構成する。トランジスタM9は、リセット端子Rの電位に応じてノードNbにハイレベル電圧VGHを印加する第2ノードセットトランジスタとして機能する。トランジスタM8は、ノードNbの電位(ゲート端子の電位)に応じて、ノードNaにローレベル電圧VSS2を印加する第1ノードリセットトランジスタとして機能する。 In the unit circuit 21, as in the unit circuit 11, the transistors M10, M10B, M1, M14, M14B, M5, and M6 are respectively a first output transistor, a second output transistor, a first node set transistor, and a first output reset. It functions as a transistor, a second output reset transistor, a voltage continuous application transistor, and a second node reset transistor, and the transistors M5 and M6 constitute a second node control unit. The transistor M9 functions as a second node set transistor that applies the high level voltage VGH to the node Nb according to the potential of the reset terminal R. The transistor M8 functions as a first node reset transistor that applies the low-level voltage VSS2 to the node Na in accordance with the potential of the node Nb (gate terminal potential).
 本実施形態に係る走査線駆動回路によれば、第1の実施形態に係る走査線駆動回路10と同じ効果が得られる。また、単位回路21では、トランジスタM9のドレイン端子はノードNaに接続されていない。このため、本実施形態に係る走査線駆動回路には、ノードNaからトランジスタM9を経由するリーク電流の経路が存在しないという利点もある。 According to the scanning line driving circuit according to the present embodiment, the same effect as the scanning line driving circuit 10 according to the first embodiment can be obtained. In the unit circuit 21, the drain terminal of the transistor M9 is not connected to the node Na. For this reason, the scanning line driving circuit according to the present embodiment also has an advantage that there is no leakage current path from the node Na through the transistor M9.
 以上に示すように、本実施形態に係る走査線駆動回路では、各単位回路21は、リセット端子Rの電位に応じて第2ノード(ノードNb)にオン電圧(ハイレベル電圧VGH)を印加する第2ノードセットトランジスタ(トランジスタM9)を含んでいる。第1ノードリセットトランジスタ(トランジスタM8)は、第2ノードの電位に応じて第1ノード(ノードNa)に第2オフ電圧(ローレベル電圧VSS2)を印加する。第2ノードセットトランジスタを設けることにより、第1ノードリセットトランジスタを用いて、第2ノードの電位に応じて第1ノードに第2オフ電圧を印加することができる。本実施形態に係る走査線駆動回路によれば、第1の実施形態と同様に、デプレッション型トランジスタを用いた、従来よりも容易に制御できる走査線駆動回路を提供することができる。 As described above, in the scanning line driving circuit according to the present embodiment, each unit circuit 21 applies the ON voltage (high level voltage VGH) to the second node (node Nb) according to the potential of the reset terminal R. A second node set transistor (transistor M9) is included. The first node reset transistor (transistor M8) applies the second off voltage (low level voltage VSS2) to the first node (node Na) according to the potential of the second node. By providing the second node set transistor, the second off voltage can be applied to the first node according to the potential of the second node using the first node reset transistor. According to the scanning line driving circuit according to the present embodiment, it is possible to provide a scanning line driving circuit that uses a depletion type transistor and can be controlled more easily than in the past, as in the first embodiment.
 (第3の実施形態)
 図12は、第3の実施形態に係る走査線駆動回路の構成を示すブロック図である。図12に示す走査線駆動回路30は、液晶パネル(図示せず)の一方の基板上に表示部5と共に形成される(ゲートドライバモノリシック構成)。表示部5と走査線駆動回路30は、データ線駆動回路(図示せず)と共に液晶表示装置を構成する。本実施形態では、nは24の倍数、kは1以上(n/8)以下の整数である。
(Third embodiment)
FIG. 12 is a block diagram illustrating a configuration of a scanning line driving circuit according to the third embodiment. The scanning line driving circuit 30 shown in FIG. 12 is formed together with the display unit 5 on one substrate of a liquid crystal panel (not shown) (gate driver monolithic configuration). The display unit 5 and the scanning line driving circuit 30 constitute a liquid crystal display device together with a data line driving circuit (not shown). In the present embodiment, n is a multiple of 24, and k is an integer of 1 to (n / 8).
 走査線駆動回路30は、表示部5の左側に配置された第1駆動部32と、表示部5の右側に配置された第2駆動部33とを含んでいる。第1および第2駆動部32、33は、それぞれ、(n/2)個の単位回路21(図11)を多段接続した構成を有する。第1駆動部32は奇数段目の単位回路SR1、SR3、…、SRn-1を含み、第2駆動部33は偶数段目の単位回路SR2、SR4、…、SRnを含んでいる。第1および第2駆動部32、33は、表示部5に対して、第1の実施形態と同じ態様で接続される。走査線駆動回路30は、櫛歯駆動を行う。 The scanning line driving circuit 30 includes a first driving unit 32 disposed on the left side of the display unit 5 and a second driving unit 33 disposed on the right side of the display unit 5. Each of the first and second drive units 32 and 33 has a configuration in which (n / 2) unit circuits 21 (FIG. 11) are connected in multiple stages. The first driving unit 32 includes odd-numbered unit circuits SR1, SR3,..., SRn−1, and the second driving unit 33 includes even-numbered unit circuits SR2, SR4,. The first and second drive units 32 and 33 are connected to the display unit 5 in the same manner as in the first embodiment. The scanning line driving circuit 30 performs comb driving.
 走査線駆動回路30には、8相のクロック信号CK1~CK8、4個のゲートスタートパルスGSP1~GSP4、および、6個のクリア信号CLR1~CLR6が供給される。クロック信号CK1~CK8は、それぞれ、(8k-7)~8k段目の単位回路11のクロック端子CKに供給される。ゲートスタートパルスGSP1~GSP4は、それぞれ、1~4段目の単位回路SR1~SR4のセット端子Sに供給される。5~n段目の単位回路SR5~SRnのセット端子Sは、4段前の単位回路の第2出力端子Qに接続される。クリア信号CLR1~CLR6は、それぞれ、(n-5)~n段目の単位回路SRn-5~SRnのリセット端子Rに供給される。1~(n-6)段目の単位回路SR1~SRn-6のリセット端子Rは、6段後の単位回路の第2出力端子Qに接続される。 The scanning line driving circuit 30 is supplied with eight-phase clock signals CK1 to CK8, four gate start pulses GSP1 to GSP4, and six clear signals CLR1 to CLR6. The clock signals CK1 to CK8 are supplied to the clock terminals CK of the unit circuits 11 in the (8k-7) to 8k stages, respectively. The gate start pulses GSP1 to GSP4 are supplied to the set terminals S of the first to fourth stage unit circuits SR1 to SR4, respectively. The set terminals S of the fifth to nth stage unit circuits SR5 to SRn are connected to the second output terminal Q of the unit circuit four stages before. The clear signals CLR1 to CLR6 are respectively supplied to the reset terminals R of the (n-5) to n-th unit circuits SRn-5 to SRn. The reset terminals R of the unit circuits SR1 to SRn-6 in the 1st to (n-6) stages are connected to the second output terminal Q of the unit circuit in the 6th stage.
 図13は、走査線駆動回路30のタイミングチャートである。図13に示すように、クロック信号CK1は、1周期のうち1/2周期でハイレベルになり、残りの1/2周期でローレベルになる。クロック信号CK2~CK8は、それぞれ、クロック信号CK1からT/8、T/4、3T/8、T/2、5T/8、3T/4、および、7T/8だけ遅れた信号である。クロック信号CK1~CK8のハイレベル電圧はVGHであり、クロック信号CK1~CK8のローレベル電圧はVSS1である。走査線駆動回路30は、ハイレベル電圧VGHとローレベル電圧VSS1との間で変化する8相のクロック信号CK1~CK8に従い動作する。図13には、クロック信号CK1~CK8の電位の変化と、(8k-7)段目の単位回路21のノードと端子の電位の変化とが記載されている。 FIG. 13 is a timing chart of the scanning line driving circuit 30. As shown in FIG. 13, the clock signal CK1 becomes high level in 1/2 cycle of one cycle and becomes low level in the remaining 1/2 cycle. The clock signals CK2 to CK8 are signals delayed by T / 8, T / 4, 3T / 8, T / 2, 5T / 8, 3T / 4, and 7T / 8 from the clock signal CK1, respectively. The high level voltage of the clock signals CK1 to CK8 is VGH, and the low level voltage of the clock signals CK1 to CK8 is VSS1. The scanning line driving circuit 30 operates in accordance with 8-phase clock signals CK1 to CK8 that change between the high level voltage VGH and the low level voltage VSS1. FIG. 13 shows changes in the potentials of the clock signals CK1 to CK8 and changes in the potentials of the nodes and terminals of the unit circuit 21 in the (8k-7) stage.
 本実施形態に係る走査線駆動回路30によれば、第1および第2の実施形態と同様に、デプレッション型トランジスタを用いた、従来よりも容易に制御できる走査線駆動回路を提供することができる。なお、第1~第3の実施形態では、表示部5の両側に配置された2個の駆動部を合わせた回路を1個の走査線駆動回路と考えたが、表示部5の両側に配置された2個の駆動部をそれぞれ別の走査線駆動回路と考えてもよい。 According to the scanning line driving circuit 30 according to the present embodiment, it is possible to provide a scanning line driving circuit that uses a depletion type transistor and can be controlled more easily than in the past, as in the first and second embodiments. . In the first to third embodiments, a circuit including two driving units arranged on both sides of the display unit 5 is considered as one scanning line driving circuit, but is arranged on both sides of the display unit 5. The two driving units thus formed may be considered as separate scanning line driving circuits.
 (第4の実施形態)
 図14は、第4の実施形態に係る走査線駆動回路の構成を示すブロック図である。図14に示す走査線駆動回路40は、液晶パネル(図示せず)の一方の基板上に表示部5と共に形成される(ゲートドライバモノリシック構成)。表示部5と走査線駆動回路40は、データ線駆動回路(図示せず)と共に液晶表示装置を構成する。本実施形態では、nは12の倍数、kは1以上(n/4)以下の整数である。
(Fourth embodiment)
FIG. 14 is a block diagram showing a configuration of a scanning line driving circuit according to the fourth embodiment. 14 is formed together with the display unit 5 on one substrate of a liquid crystal panel (not shown) (gate driver monolithic configuration). The display unit 5 and the scanning line driving circuit 40 constitute a liquid crystal display device together with a data line driving circuit (not shown). In the present embodiment, n is a multiple of 12, and k is an integer of 1 or more (n / 4) or less.
 走査線駆動回路40は、表示部5の一方の側(図面では左側)に配置されている。走査線駆動回路40は、n個の単位回路21(図11)を多段接続した構成を有する。1~n段目の単位回路SR1~SRnの第1出力端子Gは、それぞれ、走査線G1~Gnの左端に接続される。走査線駆動回路40は、走査線G1~Gnを駆動する。 The scanning line driving circuit 40 is arranged on one side (left side in the drawing) of the display unit 5. The scanning line driving circuit 40 has a configuration in which n unit circuits 21 (FIG. 11) are connected in multiple stages. The first output terminals G of the unit circuits SR1 to SRn at the 1st to nth stages are connected to the left ends of the scanning lines G1 to Gn, respectively. The scanning line driving circuit 40 drives the scanning lines G1 to Gn.
 走査線駆動回路40には、4相のクロック信号CK1~CK4、2個のゲートスタートパルスGSP1、GSP2、および、3個のクリア信号CLR1~CLR3が供給される。クロック信号CK1~CK4は、それぞれ、(4k-3)~4k段目の単位回路21のクロック端子CKに供給される。ゲートスタートパルスGSP1、GSP2は、それぞれ、1~2段目の単位回路SR1、SR2のセット端子Sに供給される。3~n段目の単位回路SR3~SRnのセット端子Sは、2段前の単位回路の第2出力端子Qに接続される。クリア信号CLR1~CLR3は、それぞれ、(n-2)~n段目の単位回路SRn-2~SRnのリセット端子Rに供給される。1~(n-3)段目の単位回路SR1~SRn-3のリセット端子Rは、3段後の単位回路の第2出力端子Qに接続される。 The scanning line driving circuit 40 is supplied with four-phase clock signals CK1 to CK4, two gate start pulses GSP1 and GSP2, and three clear signals CLR1 to CLR3. The clock signals CK1 to CK4 are supplied to the clock terminals CK of the unit circuits 21 in the (4k-3) to 4k stages, respectively. The gate start pulses GSP1 and GSP2 are supplied to the set terminals S of the first and second stage unit circuits SR1 and SR2, respectively. The set terminals S of the unit circuits SR3 to SRn at the third to nth stages are connected to the second output terminal Q of the unit circuit at the second stage. The clear signals CLR1 to CLR3 are respectively supplied to the reset terminals R of the (n-2) to n-th unit circuits SRn-2 to SRn. The reset terminals R of the unit circuits SR1 to SRn-3 at the 1st to (n-3) th stages are connected to the second output terminal Q of the unit circuit at the 3rd stage.
 図15は、走査線駆動回路40のタイミングチャートである。図15に示すように、クロック信号CK1は、1周期のうち1/2周期でハイレベルになり、残りの1/2周期でローレベルになる。クロック信号CK2~CK4は、それぞれ、クロック信号CK1からT/4、T/2、および、3T/4だけ遅れた信号である。クロック信号CK1~CK4のハイレベル電圧はVGHであり、クロック信号CK1~CK4のローレベル電圧はVSS1である。走査線駆動回路40は、ハイレベル電圧VGHとローレベル電圧VSS1との間で変化する4相のクロック信号CK1~CK4に従い動作する。図15には、クロック信号CK1~CK4の電位の変化と、(4k-3)段目の単位回路21のノードと端子の電位の変化とが記載されている。 FIG. 15 is a timing chart of the scanning line driving circuit 40. As shown in FIG. 15, the clock signal CK1 becomes high level in 1/2 cycle of one cycle and becomes low level in the remaining 1/2 cycle. The clock signals CK2 to CK4 are signals delayed by T / 4, T / 2, and 3T / 4 from the clock signal CK1, respectively. The high level voltage of the clock signals CK1 to CK4 is VGH, and the low level voltage of the clock signals CK1 to CK4 is VSS1. The scanning line driving circuit 40 operates according to four-phase clock signals CK1 to CK4 that change between the high level voltage VGH and the low level voltage VSS1. FIG. 15 shows changes in the potentials of the clock signals CK1 to CK4 and changes in the potentials of the nodes and terminals of the unit circuit 21 in the (4k-3) stage.
 本実施形態に係る走査線駆動回路40によれば、第1~第3の実施形態と同様に、デプレッション型トランジスタを用いた、従来よりも容易に制御できる走査線駆動回路を提供することができる。 According to the scanning line driving circuit 40 according to the present embodiment, it is possible to provide a scanning line driving circuit that uses a depletion type transistor and can be controlled more easily than in the prior art, as in the first to third embodiments. .
 実施形態に係る走査線駆動回路については、以下の変形例を構成することができる。第3の実施形態に係る走査線駆動回路30は、単位回路21を図12に示すよう多段接続した構成を有し、第4の実施形態に係る走査線駆動回路40は、単位回路21を図14に示すよう多段接続した構成を有する。変形例に係る走査線駆動回路は、単位回路11を図12または図14に示すように多段接続した構成を有していてもよい。あるいは、変形例に係る走査線駆動回路は、単位回路11からトランジスタM8、M14の一方または両方を削除した単位回路、単位回路21からトランジスタM14を削除した単位回路、もしくは、単位回路11、21においてトランジスタM1のドレイン端子をセット端子Sに接続した単位回路を備えていてもよい。あるいは、変形例に係る走査線駆動回路は、任意の個数の単位回路を多段接続したものでもよい。 The scanning line driving circuit according to the embodiment can be configured as follows. The scanning line driving circuit 30 according to the third embodiment has a configuration in which the unit circuits 21 are connected in multiple stages as shown in FIG. 12, and the scanning line driving circuit 40 according to the fourth embodiment illustrates the unit circuit 21. 14 has a multi-stage connection configuration. The scanning line driving circuit according to the modification may have a configuration in which the unit circuits 11 are connected in multiple stages as shown in FIG. Alternatively, the scanning line driving circuit according to the modified example includes a unit circuit in which one or both of the transistors M8 and M14 are deleted from the unit circuit 11, a unit circuit in which the transistor M14 is deleted from the unit circuit 21, or the unit circuits 11 and 21. A unit circuit in which the drain terminal of the transistor M1 is connected to the set terminal S may be provided. Alternatively, the scanning line driving circuit according to the modification may be a multi-stage connection of an arbitrary number of unit circuits.
 第1~第4の実施形態に係る走査線駆動回路では、単位回路11、21はnチャネル型TFTを用いて構成されている。変形例に係る走査線駆動回路では、単位回路はnチャネル型TFTを用いて構成されていてもよい。nチャネル型トランジスタを用いて構成された単位回路を変形して、pチャネル型トランジスタを用いて構成された単位回路を構成するためには、単位回路に含まれるnチャネル型トランジスタをpチャネル型トランジスタに置換し、電源配線と制御配線に与える電圧の極性を逆にすればよい。この場合、単位回路に含まれるトランジスタの導電型はpチャネル型であり、オン電圧はローレベル電圧、第1オフ電圧はハイレベル電圧、第2オフ電圧は第1オフ電圧よりも高いハイレベル電圧、第3オフ電圧は第2オフ電圧よりも高いハイレベル電圧である。これにより、pチャネル型、かつ、デプレッション型のトランジスタを用いた、従来よりも容易に制御できる走査線駆動回路を提供することができる。 In the scanning line driving circuits according to the first to fourth embodiments, the unit circuits 11 and 21 are configured using n-channel TFTs. In the scanning line driving circuit according to the modification, the unit circuit may be configured using an n-channel TFT. In order to modify a unit circuit configured using an n-channel transistor and configure a unit circuit configured using a p-channel transistor, the n-channel transistor included in the unit circuit is replaced with a p-channel transistor. The polarity of the voltage applied to the power supply wiring and the control wiring may be reversed. In this case, the conductivity type of the transistor included in the unit circuit is a p-channel type, the on voltage is a low level voltage, the first off voltage is a high level voltage, and the second off voltage is a high level voltage higher than the first off voltage. The third off voltage is a high level voltage higher than the second off voltage. Accordingly, it is possible to provide a scanning line driver circuit using a p-channel type and a depletion type transistor that can be controlled more easily than in the past.
 実施形態およびその変形例に係る走査線駆動回路によれば、デプレッション型トランジスタを用いた、従来よりも容易に制御できる走査線駆動回路を提供することができる。 According to the scanning line driving circuit according to the embodiment and the modification thereof, it is possible to provide a scanning line driving circuit that uses a depletion type transistor and can be controlled more easily than in the past.
 以上に示すように、走査線駆動回路は、複数の単位回路を多段接続した構成を有し、オン電圧と第1オフ電圧との間で変化する多相のクロック信号に従い動作する。各前記単位回路は、クロック端子に接続された第1導通端子と、第1ノードに接続された制御端子と、走査線に対する信号を出力するための第1出力端子に接続された第2導通端子とを有する第1出力トランジスタと、前記クロック端子に接続された第1導通端子と、前記第1ノードに接続された制御端子と、他段の単位回路に対する信号を出力するための第2出力端子に接続された第2導通端子とを有する第2出力トランジスタと、セット端子の電位に応じて前記第1ノードに前記オン電圧を印加する第1ノードセットトランジスタと、制御端子の電位に応じて前記第1ノードに第2オフ電圧を印加する第1ノードリセットトランジスタと、第2ノードの電位に応じて前記第2出力端子に第3オフ電圧を印加する第2出力リセットトランジスタとを含み、前記第2オフ電圧は、前記第1オフ電圧よりも前記オン電圧から離れた電圧であり、前記第3オフ電圧は、前記第2オフ電圧よりも前記オン電圧から離れた電圧であってもよい(第1の局面)。 As described above, the scanning line driving circuit has a configuration in which a plurality of unit circuits are connected in multiple stages, and operates in accordance with a multiphase clock signal that changes between an on-voltage and a first off-voltage. Each of the unit circuits includes a first conduction terminal connected to the clock terminal, a control terminal connected to the first node, and a second conduction terminal connected to the first output terminal for outputting a signal for the scanning line. A second output terminal for outputting a signal to a unit circuit in another stage, a first conduction terminal connected to the clock terminal, a control terminal connected to the first node, A second output transistor having a second conduction terminal connected to the first node, a first node set transistor for applying the on-voltage to the first node according to the potential of the set terminal, and the potential according to the potential of the control terminal. A first node reset transistor that applies a second off voltage to the first node, and a second output reset transistor that applies a third off voltage to the second output terminal according to the potential of the second node. The second off voltage is a voltage farther from the on voltage than the first off voltage, and the third off voltage is a voltage farther from the on voltage than the second off voltage. (First aspect).
 各前記単位回路は、前記第2ノードの電位を前記第1ノードの電位とは反対の論理レベルの電位に制御する第2ノード制御部を含んでいてもよい(第2の局面)。前記第1ノードリセットトランジスタは、リセット端子の電位に応じて前記第1ノードに前記第2オフ電圧を印加してもよい(第3の局面)。各前記単位回路は、前記第2ノードの電位に応じて前記第1ノードに前記第2オフ電圧を印加する第1ノード補助リセットトランジスタをさらに含んでいてもよい(第4の局面)。 Each of the unit circuits may include a second node control unit that controls the potential of the second node to a potential of a logic level opposite to the potential of the first node (second aspect). The first node reset transistor may apply the second off voltage to the first node according to a potential of a reset terminal (third aspect). Each of the unit circuits may further include a first node auxiliary reset transistor that applies the second off voltage to the first node according to the potential of the second node (fourth aspect).
 各前記単位回路は、リセット端子の電位に応じて前記第2ノードに前記オン電圧を印加する第2ノードセットトランジスタをさらに含み、前記第1ノードリセットトランジスタは、前記第2ノードの電位に応じて前記第1ノードに前記第2オフ電圧を印加してもよい(第5の局面)。各前記単位回路は、前記第2ノードの電位に応じて前記第1出力端子に前記第1オフ電圧を印加する第1出力リセットトランジスタをさらに含んでいてもよい(第6の局面)。前記第2ノード制御部は、前記第2ノードに前記オン電圧を固定的に印加する電圧連続印加トランジスタと、前記第1ノードの電位に応じて前記第2ノードに前記第1オフ電圧を印加する第2ノードリセットトランジスタとを含んでいてもよい(第7の局面)。 Each of the unit circuits further includes a second node set transistor that applies the on-voltage to the second node according to a potential of a reset terminal, and the first node reset transistor corresponds to the potential of the second node. The second off voltage may be applied to the first node (fifth aspect). Each of the unit circuits may further include a first output reset transistor that applies the first off voltage to the first output terminal in accordance with the potential of the second node (sixth aspect). The second node control unit applies a voltage continuous application transistor that applies the on voltage to the second node in a fixed manner, and applies the first off voltage to the second node according to the potential of the first node. A second node reset transistor may be included (seventh aspect).
 前記第1オフ電圧と前記第2オフ電圧の差、および、前記第2オフ電圧と前記第3オフ電圧の差は、前記単位回路に含まれるトランジスタの特性に基づき設定されていてもよい(第8の局面)。前記第1オフ電圧と前記第2オフ電圧の差、および、前記第2オフ電圧と前記第3オフ電圧の差は、トランジスタの第1および第2導通端子間の電圧が10Vのときに、単位チャネル長かつ単位チャネル幅あたりの電流が1×10-9Aとなるトランジスタの制御端子と第2導通端子間の電圧の絶対値よりも大きくてもよい(第9の局面)。前記複数のクロック信号の振幅は同じであり、各前記単位回路には、前記複数のクロック信号の中から選択された1個のクロック信号が前記クロック端子を経由して入力されてもよい(第10の局面)。 The difference between the first off-voltage and the second off-voltage, and the difference between the second off-voltage and the third off-voltage may be set based on characteristics of transistors included in the unit circuit (first 8 aspects). The difference between the first off voltage and the second off voltage, and the difference between the second off voltage and the third off voltage are units when the voltage between the first and second conduction terminals of the transistor is 10V. The absolute value of the voltage between the control terminal and the second conduction terminal of the transistor having a channel length and a current per unit channel width of 1 × 10 −9 A may be greater (9th aspect). The amplitudes of the plurality of clock signals are the same, and one clock signal selected from among the plurality of clock signals may be input to each unit circuit via the clock terminal (first). 10 aspects).
 前記単位回路に含まれるトランジスタは、酸化物半導体を用いて形成された半導体層を有する薄膜トランジスタであってもよい(第11の局面)。前記単位回路に含まれるトランジスタの導電型はnチャネル型であり、前記オン電圧はハイレベル電圧、前記第1オフ電圧はローレベル電圧、前記第2オフ電圧は前記第1オフ電圧よりも低いローレベル電圧、前記第3オフ電圧は前記第2オフ電圧よりも低いローレベル電圧であってもよい(第12の局面)。前記単位回路に含まれるトランジスタの導電型はpチャネル型であり、前記オン電圧はローレベル電圧、前記第1オフ電圧はハイレベル電圧、前記第2オフ電圧は前記第1オフ電圧よりも高いハイレベル電圧、前記第3オフ電圧は前記第2オフ電圧よりも高いハイレベル電圧であってもよい(第13の局面)。 The transistor included in the unit circuit may be a thin film transistor having a semiconductor layer formed using an oxide semiconductor (eleventh aspect). The transistor included in the unit circuit is an n-channel conductivity type, the on voltage is a high level voltage, the first off voltage is a low level voltage, and the second off voltage is a low level lower than the first off voltage. The level voltage and the third off voltage may be a low level voltage lower than the second off voltage (a twelfth aspect). The transistor included in the unit circuit is a p-channel type, the on voltage is a low level voltage, the first off voltage is a high level voltage, and the second off voltage is higher than the first off voltage. The level voltage and the third off voltage may be a high level voltage higher than the second off voltage (a thirteenth aspect).
 また、表示装置は、複数の走査線と、複数のデータ線と、複数の画素回路とを含む表示部と、前記走査線を駆動する、第1~第13のいずれかの局面に係る走査線駆動回路とを備えていてもよい(第14の局面)。前記走査線駆動回路は、前記表示部と共に表示パネル上に形成されていてもよい(第15の局面)。 The display device includes a display unit including a plurality of scanning lines, a plurality of data lines, and a plurality of pixel circuits, and the scanning line according to any one of the first to thirteenth aspects that drives the scanning lines. And a drive circuit (fourteenth aspect). The scanning line driving circuit may be formed on a display panel together with the display unit (fifteenth aspect).
 第1の局面によれば、単位回路の第1出力端子、第1ノード、および、第2ノードには、上記の大小関係を有する第1~第3オフ電圧がそれぞれ印加される。第1出力トランジスタがオフする非選択期間では、第1出力トランジスタの制御端子と第2導通端子の間にはトランジスタがオフする電圧(第2オフ電圧と第1オフ電圧の差)が印加され、第1ノードセットトランジスタの制御端子と第2導通端子の間にもトランジスタがオフする電圧(第3オフ電圧と第2オフ電圧の差)が印加される。このため、デプレッション型のトランジスタを用いたときでも、非選択期間では第1出力トランジスタと第1ノードセットトランジスタに電流が流れない。したがって、走査線駆動回路の出力信号を安定化させ、走査線駆動回路の誤動作を防止することができる。また、走査線駆動回路は、2個の電圧レベルの間で変化するクロック信号に従い動作する。よって、デプレッション型トランジスタを用いた、従来よりも容易に制御できる走査線駆動回路を提供することができる。 According to the first aspect, the first to third off voltages having the above-described magnitude relationship are applied to the first output terminal, the first node, and the second node of the unit circuit, respectively. In the non-selection period in which the first output transistor is turned off, a voltage at which the transistor is turned off (difference between the second off voltage and the first off voltage) is applied between the control terminal and the second conduction terminal of the first output transistor, A voltage at which the transistor is turned off (difference between the third off voltage and the second off voltage) is also applied between the control terminal and the second conduction terminal of the first node set transistor. For this reason, even when a depletion type transistor is used, no current flows through the first output transistor and the first node set transistor in the non-selection period. Therefore, the output signal of the scan line driver circuit can be stabilized and malfunction of the scan line driver circuit can be prevented. Further, the scanning line driving circuit operates in accordance with a clock signal that changes between two voltage levels. Therefore, a scan line driver circuit using a depletion type transistor that can be controlled more easily than in the past can be provided.
 第2の局面によれば、第2ノード制御部を用いて第2ノードの電位を第1ノードとは反対の論理レベルの電位に制御することにより、第2ノードの電位に基づき第2出力端子の電位などを制御することができる。第3の局面によれば、第1ノードリセットトランジスタを用いて、リセット端子の電位に応じて第1ノードに第2オフ電圧を印加することができる。第4の局面によれば、第1ノード補助リセットトランジスタを設けることにより、第1ノードリセットトランジスタと共に第1ノードに第2オフ電圧を印加することができる。 According to the second aspect, the second output terminal is controlled based on the potential of the second node by controlling the potential of the second node to the potential of the logic level opposite to that of the first node using the second node control unit. And the like can be controlled. According to the third aspect, the second off voltage can be applied to the first node according to the potential of the reset terminal using the first node reset transistor. According to the fourth aspect, by providing the first node auxiliary reset transistor, the second off voltage can be applied to the first node together with the first node reset transistor.
 第5の局面によれば、第2ノードセットトランジスタを設けることにより、第1ノードリセットトランジスタを用いて、第2ノードの電位に応じて第1ノードに第2オフ電圧を印加することができる。第6の局面によれば、第1出力リセットトランジスタを設けることにより、第1出力端子に第1オフ電圧を印加することができる。第7の局面によれば、電圧連続印加トランジスタと第2ノードリセットトランジスタを用いて、第2ノードの電位を第1ノードの電位とは反対の論理レベルの電位に制御する第2ノード制御部を構成することができる。 According to the fifth aspect, by providing the second node set transistor, it is possible to apply the second off voltage to the first node according to the potential of the second node using the first node reset transistor. According to the sixth aspect, by providing the first output reset transistor, the first off voltage can be applied to the first output terminal. According to the seventh aspect, the second node control unit that controls the potential of the second node to the potential of the logic level opposite to the potential of the first node by using the voltage continuous application transistor and the second node reset transistor. Can be configured.
 第8または第9の局面によれば、デプレッション型のトランジスタを用いたときでも、トランジスタの特性を考慮して第1~第3オフ電圧を設定することにより、非選択期間において第1出力トランジスタと第1ノードセットトランジスタに電流が流れることを防止することができる。したがって、走査線駆動回路の出力信号を安定化させ、走査線駆動回路の誤動作を防止することができる。第10の局面によれば、同じ振幅を有する多相のクロック信号に基づき動作する、従来よりも容易に制御できる走査線駆動回路を提供することができる。 According to the eighth or ninth aspect, even when a depletion type transistor is used, the first to third off voltages are set in consideration of the characteristics of the transistor, so that the first output transistor It is possible to prevent a current from flowing through the first node set transistor. Therefore, the output signal of the scan line driver circuit can be stabilized and malfunction of the scan line driver circuit can be prevented. According to the tenth aspect, it is possible to provide a scanning line driving circuit that operates based on multiphase clock signals having the same amplitude and can be controlled more easily than in the past.
 第11の局面によれば、酸化物半導体を用いて形成された半導体層を有する薄膜トランジスタを用いて走査線駆動回路を構成することにより、走査線駆動回路におけるリーク電流を削減し、走査線駆動回路の誤動作を防止することができる。第12の局面によれば、nチャネル型、かつ、デプレッション型のトランジスタを用いた、従来よりも容易に制御できる走査線駆動回路を提供することができる。第13の局面によれば、pチャネル型、かつ、デプレッション型のトランジスタを用いた、従来よりも容易に制御できる走査線駆動回路を提供することができる。 According to the eleventh aspect, the scanning line driving circuit is configured by using the thin film transistor having the semiconductor layer formed using the oxide semiconductor, thereby reducing the leakage current in the scanning line driving circuit, and the scanning line driving circuit. Can be prevented from malfunctioning. According to the twelfth aspect, it is possible to provide a scanning line driving circuit using n-channel and depletion type transistors that can be controlled more easily than in the past. According to the thirteenth aspect, it is possible to provide a scanning line driving circuit using p-channel type and depletion type transistors that can be controlled more easily than in the past.
 第14の局面によれば、デプレッション型トランジスタを用いた、従来よりも容易に制御できる走査線駆動回路を用いて、低コストの表示装置を提供することができる。第15の局面によれば、走査線駆動回路を表示部と共に表示パネル上に形成することにより、表示画面の周辺部の幅を狭くすることができる。 According to the fourteenth aspect, a low-cost display device can be provided by using a scanning line driving circuit that uses a depletion type transistor and can be controlled more easily than in the past. According to the fifteenth aspect, the width of the peripheral portion of the display screen can be narrowed by forming the scanning line driving circuit on the display panel together with the display portion.
 本願は、2017年3月10日に出願された「走査線駆動回路およびこれを備えた表示装置」という名称の日本国特願2017-45631号に基づく優先権を主張する出願であり、この出願の内容は引用することによって本願の中に含まれる。 This application is an application claiming priority based on Japanese Patent Application No. 2017-45631 entitled “Scanning line driving circuit and display device having the same” filed on Mar. 10, 2017. Is incorporated herein by reference.
 5…表示部
 10、30、40…走査線駆動回路
 11、21…単位回路
 12、32…第1駆動部
 13、33…第2駆動部
 M1…トランジスタ(第1ノードセットトランジスタ)
 M5…トランジスタ(電圧連続印加トランジスタ)
 M6…トランジスタ(第2ノードリセットトランジスタ)
 M8…トランジスタ(第1ノード補助リセットトランジスタまたは第1ノードリセットトランジスタ)
 M9…トランジスタ(第1ノードリセットトランジスタまたは第2ノードセットトランジスタ)
 M10…トランジスタ(第1出力トランジスタ)
 M10B…トランジスタ(第2出力トランジスタ)
 M14…トランジスタ(第1出力リセットトランジスタ)
 M14B…トランジスタ(第2出力リセットトランジスタ)
DESCRIPTION OF SYMBOLS 5 ... Display part 10, 30, 40 ... Scanning line drive circuit 11, 21 ... Unit circuit 12, 32 ... 1st drive part 13, 33 ... 2nd drive part M1 ... Transistor (1st node set transistor)
M5 ... Transistor (continuous voltage application transistor)
M6 ... Transistor (second node reset transistor)
M8 ... Transistor (first node auxiliary reset transistor or first node reset transistor)
M9 ... Transistor (first node reset transistor or second node set transistor)
M10: Transistor (first output transistor)
M10B ... Transistor (second output transistor)
M14: Transistor (first output reset transistor)
M14B ... Transistor (second output reset transistor)

Claims (15)

  1.  複数の単位回路を多段接続した構成を有し、オン電圧と第1オフ電圧との間で変化する多相のクロック信号に従い動作する走査線駆動回路であって、
     各前記単位回路は、
      クロック端子に接続された第1導通端子と、第1ノードに接続された制御端子と、走査線に対する信号を出力するための第1出力端子に接続された第2導通端子とを有する第1出力トランジスタと、
      前記クロック端子に接続された第1導通端子と、前記第1ノードに接続された制御端子と、他段の単位回路に対する信号を出力するための第2出力端子に接続された第2導通端子とを有する第2出力トランジスタと、
      セット端子の電位に応じて前記第1ノードに前記オン電圧を印加する第1ノードセットトランジスタと、
      制御端子の電位に応じて前記第1ノードに第2オフ電圧を印加する第1ノードリセットトランジスタと、
      第2ノードの電位に応じて前記第2出力端子に第3オフ電圧を印加する第2出力リセットトランジスタとを含み、
     前記第2オフ電圧は、前記第1オフ電圧よりも前記オン電圧から離れた電圧であり、
     前記第3オフ電圧は、前記第2オフ電圧よりも前記オン電圧から離れた電圧であることを特徴とする、走査線駆動回路。
    A scanning line driving circuit having a configuration in which a plurality of unit circuits are connected in multiple stages and operating according to a multiphase clock signal that changes between an on-voltage and a first off-voltage,
    Each of the unit circuits is
    A first output having a first conduction terminal connected to the clock terminal, a control terminal connected to the first node, and a second conduction terminal connected to the first output terminal for outputting a signal for the scanning line. A transistor,
    A first conduction terminal connected to the clock terminal; a control terminal connected to the first node; a second conduction terminal connected to a second output terminal for outputting a signal to a unit circuit in another stage; A second output transistor having:
    A first node set transistor for applying the on-voltage to the first node according to a potential of a set terminal;
    A first node reset transistor for applying a second off voltage to the first node according to a potential of a control terminal;
    A second output reset transistor that applies a third off voltage to the second output terminal according to the potential of the second node;
    The second off voltage is a voltage farther from the on voltage than the first off voltage,
    3. The scanning line driving circuit according to claim 1, wherein the third off voltage is a voltage farther from the on voltage than the second off voltage.
  2.  各前記単位回路は、前記第2ノードの電位を前記第1ノードの電位とは反対の論理レベルの電位に制御する第2ノード制御部を含むことを特徴とする、請求項1に記載の走査線駆動回路。 2. The scanning according to claim 1, wherein each of the unit circuits includes a second node control unit that controls the potential of the second node to a potential of a logic level opposite to the potential of the first node. Line drive circuit.
  3.  前記第1ノードリセットトランジスタは、リセット端子の電位に応じて前記第1ノードに前記第2オフ電圧を印加することを特徴とする、請求項2に記載の走査線駆動回路。 3. The scanning line driving circuit according to claim 2, wherein the first node reset transistor applies the second off voltage to the first node in accordance with a potential of a reset terminal.
  4.  各前記単位回路は、前記第2ノードの電位に応じて前記第1ノードに前記第2オフ電圧を印加する第1ノード補助リセットトランジスタをさらに含むことを特徴とする、請求項3に記載の走査線駆動回路。 4. The scanning according to claim 3, wherein each of the unit circuits further includes a first node auxiliary reset transistor that applies the second off voltage to the first node according to a potential of the second node. Line drive circuit.
  5.  各前記単位回路は、リセット端子の電位に応じて前記第2ノードに前記オン電圧を印加する第2ノードセットトランジスタをさらに含み、
     前記第1ノードリセットトランジスタは、前記第2ノードの電位に応じて前記第1ノードに前記第2オフ電圧を印加することを特徴とする、請求項2に記載の走査線駆動回路。
    Each of the unit circuits further includes a second node set transistor that applies the ON voltage to the second node according to a potential of a reset terminal,
    The scanning line driving circuit according to claim 2, wherein the first node reset transistor applies the second off voltage to the first node in accordance with a potential of the second node.
  6.  各前記単位回路は、前記第2ノードの電位に応じて前記第1出力端子に前記第1オフ電圧を印加する第1出力リセットトランジスタをさらに含むことを特徴とする、請求項2に記載の走査線駆動回路。 3. The scanning according to claim 2, wherein each of the unit circuits further includes a first output reset transistor that applies the first off voltage to the first output terminal according to a potential of the second node. Line drive circuit.
  7.  前記第2ノード制御部は、前記第2ノードに前記オン電圧を固定的に印加する電圧連続印加トランジスタと、前記第1ノードの電位に応じて前記第2ノードに前記第1オフ電圧を印加する第2ノードリセットトランジスタとを含むことを特徴とする、請求項2に記載の走査線駆動回路。 The second node control unit applies a voltage continuous application transistor that applies the on voltage to the second node in a fixed manner, and applies the first off voltage to the second node according to the potential of the first node. The scanning line driving circuit according to claim 2, further comprising a second node reset transistor.
  8.  前記第1オフ電圧と前記第2オフ電圧の差、および、前記第2オフ電圧と前記第3オフ電圧の差は、前記単位回路に含まれるトランジスタの特性に基づき設定されていることを特徴とする、請求項1に記載の走査線駆動回路。 The difference between the first off voltage and the second off voltage, and the difference between the second off voltage and the third off voltage are set based on characteristics of transistors included in the unit circuit. The scanning line driving circuit according to claim 1.
  9.  前記第1オフ電圧と前記第2オフ電圧の差、および、前記第2オフ電圧と前記第3オフ電圧の差は、トランジスタの第1および第2導通端子間の電圧が10Vのときに、単位チャネル長かつ単位チャネル幅あたりの電流が1×10-9Aとなるトランジスタの制御端子と第2導通端子間の電圧の絶対値よりも大きいことを特徴とする、請求項8に記載の走査線駆動回路。 The difference between the first off voltage and the second off voltage, and the difference between the second off voltage and the third off voltage are units when the voltage between the first and second conduction terminals of the transistor is 10V. 9. The scanning line according to claim 8, wherein an absolute value of a voltage between a control terminal and a second conduction terminal of a transistor having a channel length and a current per unit channel width of 1 × 10 −9 A is larger. Driving circuit.
  10.  前記複数のクロック信号の振幅は同じであり、
     各前記単位回路には、前記複数のクロック信号の中から選択された1個のクロック信号が前記クロック端子を経由して入力されることを特徴とする、請求項1に記載の走査線駆動回路。
    The amplitudes of the plurality of clock signals are the same,
    2. The scanning line driving circuit according to claim 1, wherein one clock signal selected from the plurality of clock signals is input to each unit circuit via the clock terminal. 3. .
  11.  前記単位回路に含まれるトランジスタは、酸化物半導体を用いて形成された半導体層を有する薄膜トランジスタであることを特徴とする、請求項1に記載の走査線駆動回路。 2. The scanning line driving circuit according to claim 1, wherein the transistor included in the unit circuit is a thin film transistor having a semiconductor layer formed using an oxide semiconductor.
  12.  前記単位回路に含まれるトランジスタの導電型はnチャネル型であり、
     前記オン電圧はハイレベル電圧、前記第1オフ電圧はローレベル電圧、前記第2オフ電圧は前記第1オフ電圧よりも低いローレベル電圧、前記第3オフ電圧は前記第2オフ電圧よりも低いローレベル電圧であることを特徴とする、請求項1に記載の走査線駆動回路。
    The conductivity type of the transistor included in the unit circuit is an n-channel type,
    The on voltage is a high level voltage, the first off voltage is a low level voltage, the second off voltage is a low level voltage lower than the first off voltage, and the third off voltage is lower than the second off voltage. The scanning line driving circuit according to claim 1, wherein the scanning line driving circuit is a low level voltage.
  13.  前記単位回路に含まれるトランジスタの導電型はpチャネル型であり、
     前記オン電圧はローレベル電圧、前記第1オフ電圧はハイレベル電圧、前記第2オフ電圧は前記第1オフ電圧よりも高いハイレベル電圧、前記第3オフ電圧は前記第2オフ電圧よりも高いハイレベル電圧であることを特徴とする、請求項1に記載の走査線駆動回路。
    The conductivity type of the transistor included in the unit circuit is a p-channel type,
    The on voltage is a low level voltage, the first off voltage is a high level voltage, the second off voltage is a high level voltage higher than the first off voltage, and the third off voltage is higher than the second off voltage. 2. The scanning line driving circuit according to claim 1, wherein the scanning line driving circuit is a high level voltage.
  14.  複数の走査線と、複数のデータ線と、複数の画素回路とを含む表示部と、
     前記走査線を駆動する、請求項1~13のいずれかに記載の走査線駆動回路とを備えた、表示装置。
    A display unit including a plurality of scanning lines, a plurality of data lines, and a plurality of pixel circuits;
    A display device comprising: the scanning line driving circuit according to any one of claims 1 to 13, which drives the scanning line.
  15.  前記走査線駆動回路は、前記表示部と共に表示パネル上に形成されていることを特徴とする、請求項14に記載の表示装置。 15. The display device according to claim 14, wherein the scanning line driving circuit is formed on a display panel together with the display unit.
PCT/JP2018/007958 2017-03-10 2018-03-02 Scanning line drive circuit and display device equipped with same WO2018163985A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017045631 2017-03-10
JP2017-045631 2017-03-10

Publications (1)

Publication Number Publication Date
WO2018163985A1 true WO2018163985A1 (en) 2018-09-13

Family

ID=63448597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007958 WO2018163985A1 (en) 2017-03-10 2018-03-02 Scanning line drive circuit and display device equipped with same

Country Status (1)

Country Link
WO (1) WO2018163985A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010067641A1 (en) * 2008-12-10 2010-06-17 シャープ株式会社 Scanning signal line driving circuit, shift register, and method of driving shift register
JP2012257211A (en) * 2011-05-13 2012-12-27 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2014026258A (en) * 2012-07-24 2014-02-06 Samsung Display Co Ltd Display device
US20140267214A1 (en) * 2013-03-13 2014-09-18 Samsung Display Co., Ltd. Display panel
JP2015033026A (en) * 2013-08-05 2015-02-16 株式会社ジャパンディスプレイ Thin film transistor circuit and display device using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010067641A1 (en) * 2008-12-10 2010-06-17 シャープ株式会社 Scanning signal line driving circuit, shift register, and method of driving shift register
JP2012257211A (en) * 2011-05-13 2012-12-27 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2014026258A (en) * 2012-07-24 2014-02-06 Samsung Display Co Ltd Display device
US20140267214A1 (en) * 2013-03-13 2014-09-18 Samsung Display Co., Ltd. Display panel
JP2015033026A (en) * 2013-08-05 2015-02-16 株式会社ジャパンディスプレイ Thin film transistor circuit and display device using the same

Similar Documents

Publication Publication Date Title
JP7315469B2 (en) SHIFT REGISTER UNIT AND DRIVING METHOD THEREOF, GATE DRIVE CIRCUIT AND DISPLAY DEVICE
JP4990034B2 (en) Shift register circuit and image display apparatus including the same
US7098882B2 (en) Bidirectional shift register shifting pulse in both forward and backward directions
US7492853B2 (en) Shift register and image display apparatus containing the same
JP5079350B2 (en) Shift register circuit
JP4912186B2 (en) Shift register circuit and image display apparatus including the same
US8175216B2 (en) Shift register circuit
US7636412B2 (en) Shift register circuit and image display apparatus equipped with the same
KR100847092B1 (en) Shift register circuit and image display apparatus equipped with the same
JP5165153B2 (en) Scanning signal line driving circuit, display device including the same, and scanning signal line driving method
US7382347B2 (en) Shift register for pulse-cut clock signal
JP5128102B2 (en) Shift register circuit and image display apparatus including the same
US9076370B2 (en) Scanning signal line drive circuit, display device having the same, and drive method for scanning signal line
US8731135B2 (en) Shift register and display device
WO2011129126A1 (en) Scan signal line drive circuit and display device provided therewith
WO2014054518A1 (en) Shift register
KR102383363B1 (en) Gate driver and display device having the same
US20040004593A1 (en) Level converter circuit and a liquid crystal display device employing the same
JP2008251094A (en) Shift register circuit and image display apparatus with the same
US10923064B2 (en) Scanning signal line drive circuit and display device equipped with same
JP2007207411A (en) Shift register circuit and image display device provided with the same
WO2010116778A1 (en) Shift register, display device provided with same, and method of driving shift register
US10529296B2 (en) Scanning line drive circuit and display device including the same
WO2018163985A1 (en) Scanning line drive circuit and display device equipped with same
KR101143803B1 (en) Shift register and method for driving the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18764280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP