WO2018163691A1 - 波長変換部材及び発光デバイス - Google Patents
波長変換部材及び発光デバイス Download PDFInfo
- Publication number
- WO2018163691A1 WO2018163691A1 PCT/JP2018/003993 JP2018003993W WO2018163691A1 WO 2018163691 A1 WO2018163691 A1 WO 2018163691A1 JP 2018003993 W JP2018003993 W JP 2018003993W WO 2018163691 A1 WO2018163691 A1 WO 2018163691A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wavelength conversion
- light
- conversion member
- package
- resin
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 148
- 229920005989 resin Polymers 0.000 claims abstract description 96
- 239000011347 resin Substances 0.000 claims abstract description 96
- 230000005284 excitation Effects 0.000 claims abstract description 61
- 239000000463 material Substances 0.000 claims abstract description 41
- 239000011159 matrix material Substances 0.000 claims abstract description 40
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 38
- 230000005855 radiation Effects 0.000 claims description 30
- 239000011231 conductive filler Substances 0.000 claims description 24
- 239000002245 particle Substances 0.000 claims description 13
- 230000006866 deterioration Effects 0.000 abstract description 2
- 239000011521 glass Substances 0.000 description 22
- 230000017525 heat dissipation Effects 0.000 description 18
- 239000000919 ceramic Substances 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 11
- 239000002096 quantum dot Substances 0.000 description 10
- 229910004298 SiO 2 Inorganic materials 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 3
- 239000011258 core-shell material Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 3
- 229910000484 niobium oxide Inorganic materials 0.000 description 3
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 3
- 239000011224 oxide ceramic Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000002241 glass-ceramic Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910017115 AlSb Inorganic materials 0.000 description 1
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- 229910004613 CdTe Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- -1 InN Inorganic materials 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- DGWFDTKFTGTOAF-UHFFFAOYSA-N P.Cl.Cl.Cl Chemical compound P.Cl.Cl.Cl DGWFDTKFTGTOAF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910007709 ZnTe Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
Definitions
- the present invention relates to a wavelength conversion member and a light emitting device using the wavelength conversion member and an excitation light source such as an LED (Light Emitting Diode) or LD (Laser Diode).
- an excitation light source such as an LED (Light Emitting Diode) or LD (Laser Diode).
- next-generation light sources In recent years, attention has been focused on light-emitting devices using LEDs and LDs as next-generation light sources to replace fluorescent lamps and incandescent lamps.
- a light-emitting device that combines an LED that emits blue light and a wavelength conversion member that absorbs part of the light from the LED and converts it into yellow light is disclosed.
- This light emitting device emits white light that is a combined light of blue light emitted from the LED and transmitted through the wavelength conversion unit and yellow light emitted from the wavelength conversion unit.
- Patent Document 1 discloses a wavelength conversion unit in which a resin in which a phosphor is dispersed is arranged in a package as an example of a wavelength conversion unit.
- the present inventors have found that when a wavelength conversion part made of a resin containing a phosphor is used, there is a problem that when used for a long time, the resin deteriorates and becomes black due to heat and the emission intensity decreases.
- An object of the present invention is to provide a wavelength conversion member and a light emitting device capable of suppressing the resin containing a phosphor from being deteriorated by heat and blackening.
- the wavelength conversion member of the present invention includes a package and a wavelength conversion layer provided in the package, and the wavelength conversion layer is dispersed in the resin matrix and the resin matrix, and the fluorescence that converts the wavelength of the excitation light.
- the package has a transparent heat dissipating part located on the incident side of the excitation light.
- the thermal conductivity of the transparent heat dissipating part is 0.8 W / mK or more.
- the difference in refractive index between the transparent heat radiating portion and the resin constituting the resin matrix is preferably 0.4 or less.
- the refractive index indicates a value at a wavelength of 587 nm.
- the package may have a bottom plate positioned on the excitation light incident side, and the transparent heat radiating portion may include a bottom plate and a heat dissipation layer provided on the bottom plate.
- the package may include a bottom plate positioned on the excitation light incident side, and the transparent heat radiating portion may include a bottom plate and a heat conductive filler provided on the bottom plate.
- another transparent heat radiating portion may be provided also on the light emitting side of the wavelength conversion layer.
- the wavelength conversion layer may have a light diffusing material.
- the average particle diameter of the light diffusing material is preferably 5 ⁇ m or less.
- the difference in refractive index between the resin constituting the resin matrix and the light diffusing material is preferably 0.4 or less.
- the content of the light diffusing material in the wavelength conversion layer is preferably 10% by mass or more.
- the density difference between the resin constituting the resin matrix and the light diffusing material is preferably 1 g / cm 3 or less.
- the wavelength conversion member of the present invention includes a package and a wavelength conversion layer provided in the package, and the wavelength conversion layer is dispersed in the resin matrix and the resin matrix, and the fluorescence that converts the wavelength of the excitation light. And a light diffusing material having an average particle diameter of 5 ⁇ m or less.
- the light-emitting device of the present invention is characterized by comprising the above-described wavelength conversion member of the present invention and a light-emitting unit that is provided on the transparent heat radiating unit side of the package and emits excitation light.
- the light emitting part is provided with a case member having an opening, a light source that emits excitation light, disposed at the bottom of the case member, and a resin that is provided in the case member and seals the light source It is preferable that the opening part of the case member is sealed by the transparent heat radiating part of the package.
- the difference in refractive index between the transparent heat radiation part and the resin constituting the resin layer is preferably 0.4 or less.
- the emission peak has a wavelength of 450 nm to 630 nm, and the half width of the wavelength of the emission peak is 50 nm or less.
- the chromaticity of the emitted light in the direction immediately above the light emitting side of the wavelength conversion member is C x
- the chromaticity of the emitted light in the direction of 60 ° with respect to the direction immediately above the light emitting side is C x60
- C x60 It is preferable that / C x ⁇ 5.
- the wavelength conversion member and the light emitting device According to the wavelength conversion member and the light emitting device according to the present invention, it is possible to suppress the resin containing the phosphor from being deteriorated by heat and being blackened.
- FIG. 1 is a schematic cross-sectional view showing a wavelength conversion member according to the first embodiment of the present invention.
- FIG. 2 is a schematic cross-sectional view showing a wavelength conversion member according to the second embodiment of the present invention.
- FIG. 3 is a schematic cross-sectional view showing a wavelength conversion member according to a modification of the second embodiment of the present invention.
- FIG. 4 is a schematic cross-sectional view showing a wavelength conversion member according to a third embodiment of the present invention.
- FIG. 5 is a schematic cross-sectional view showing a wavelength conversion member according to a fourth embodiment of the present invention.
- FIG. 6 is a schematic cross-sectional view showing a light emitting device using the wavelength conversion member according to the first embodiment of the present invention.
- FIG. 1 is a schematic cross-sectional view showing a wavelength conversion member according to the first embodiment of the present invention.
- the wavelength conversion member 21 of this embodiment includes a package 5 and a wavelength conversion layer 2 provided in the package 5.
- the wavelength conversion layer 2 includes a resin matrix 3 and a phosphor 4 dispersed in the resin matrix 3.
- the phosphor 4 is contained in the resin matrix 3 in the form of particles.
- the package 5 has a bottom plate and a side wall 6 provided on the bottom plate.
- the bottom plate is the transparent heat radiating portion 11.
- the package 5 is opened on the side opposite to the transparent heat radiation part 11.
- a lid member 7 is provided on the side wall 6.
- the opening 5 a of the package 5 is sealed with a lid material 7.
- the bottom plate may be composed of a plurality of layers of the transparent heat radiating portion 11.
- the wavelength conversion member 21 converts the wavelength of the excitation light L1 incident from the transparent heat radiation part 11 side. More specifically, the excitation light L ⁇ b> 1 passes through the transparent heat radiating unit 11 and is emitted to the wavelength conversion layer 2.
- the phosphor 4 in the wavelength conversion layer 2 converts the wavelength of the excitation light L1 and emits fluorescence.
- the combined light L2 of the fluorescence emitted from the phosphor 4 and the excitation light L1 transmitted through the wavelength conversion layer 2 passes through the lid member 7 and is emitted from the wavelength conversion member 21.
- the excitation light L1 is blue light, for example, yellow light is emitted as fluorescence from the phosphor 4, and white light is emitted as the excitation light L1 and the combined light L2 of fluorescence.
- the excitation light L1 is blue light
- the phosphor 4 that emits green light and the light that emits red light are mixed and used, so that the excitation light L1 and the fluorescence combined light L2 are white. Light is emitted.
- the excitation light L1 excites the phosphor 4 to emit fluorescence, and a part thereof is converted into thermal energy. For this reason, the resin matrix 3 in the wavelength conversion layer 2 is heated by irradiation with the excitation light L1.
- the present inventors have found that there is a problem that the resin matrix 3 is deteriorated by this heat, the wavelength conversion layer 2 is blackened, and the emission intensity is lowered. Moreover, the light emission characteristics of the phosphor 4 included in the wavelength conversion layer 2 are also reduced by this heat.
- the package 5 includes the transparent heat radiating portion 11 located on the incident side of the excitation light L1.
- the heat generated in the wavelength conversion layer 2 can be diffused and dissipated to the outside of the package 5, and local heating in the wavelength conversion layer 2 can be suppressed.
- the thermal energy generated in the central portion of the excitation light L1 tends to increase. Therefore, by disposing the transparent heat radiating part 11 on the incident side of the excitation light L1 in the wavelength conversion layer 2, the heat generated in the central part of the excitation light L1 is diffused to the peripheral part and radiated to the outside of the package 5. Can do. Therefore, in this embodiment, it can suppress that the wavelength conversion layer 2 deteriorates by heat and blackens, and can suppress that emitted light intensity falls.
- the material of the transparent heat radiation part 11 is one that transmits the excitation light L1 (and fluorescence emitted from the phosphor 4) and has a higher thermal conductivity than the resin that constitutes the resin matrix 3 of the wavelength conversion layer 2.
- the thermal conductivity of the transparent heat radiation part 11 is 0.8 W / mK or more, 0.9 W / mK or more, 1 W / mK or more, 1.2 W / mK or more, 1.5 W / mK or more, 3 W / mK or more, 5 W / mK.
- the heat generated in the wavelength conversion layer 2 can be diffused more efficiently.
- the transparent thermal radiation part 11 it is preferable that the thermal conductivity of each layer satisfy
- the transparent heat radiation part 11 is comprised from multiple layers, it is preferable to maximize the thermal conductivity of the layer having the maximum thickness. In that case, if the layer having the maximum thickness is arranged on the resin matrix 3 side, the heat generated in the wavelength conversion layer 2 can be effectively diffused, and the heat can be effectively radiated to the outside of the package 5. it can.
- Such materials include glass and ceramic. Since glass and ceramic are difficult to transmit moisture and oxygen, the phosphor 4 contained in the wavelength conversion layer 2 is hardly deteriorated, and the reliability of the wavelength conversion member 21 can be improved.
- the glass include SiO 2 —B 2 O 3 —RO (R is Mg, Ca, Sr, or Ba) glass, SiO 2 —B 2 O 3 —R ′ 2 O (R ′ is Li, Na, or K). ) -Based glass or SiO 2 —B 2 O 3 —RO—R ′ 2 O-based glass.
- SiO 2 —B 2 O 3 —RO based glass for example, “OA-10G” (thermal conductivity 1 W / mK) manufactured by Nippon Electric Glass Co., Ltd. is suitable.
- OA-10G thermal conductivity 1 W / mK
- the ceramic a high thermal conductive ceramic can be used.
- high thermal conductive ceramics include aluminum oxide ceramics, aluminum nitride ceramics, silicon carbide ceramics, boron nitride ceramics, magnesium oxide ceramics, titanium oxide ceramics, niobium oxide ceramics, zinc oxide ceramics, and oxides. Examples thereof include yttrium-based ceramics.
- the thickness of the transparent heat radiating portion 11 is appropriately determined in consideration of the transparency of the excitation light L1, the thermal conductivity, the mechanical strength, and the like. be able to.
- the thickness of the transparent heat dissipation part 11 is preferably in the range of 0.001 mm to 1 mm, more preferably in the range of 0.01 mm to 0.5 mm, and in the range of 0.05 mm to 0.2 mm, for example. More preferably. In addition, it can suppress that light leaks from the side surface of the transparent heat radiation part 11 by making thickness of the transparent heat radiation part 11 small.
- the average transmittance of the transparent heat radiation part 11 at a wavelength of 400 nm to 800 nm is preferably 70% or more, more preferably 80% or more, and further preferably 90% or more. If the average transmittance is small, the light extraction efficiency tends to be reduced.
- a curable resin such as a translucent ultraviolet curable resin or a thermosetting resin is used.
- an epoxy resin, an acrylic resin, a silicone resin, or the like can be used.
- the difference in refractive index (nd) between the transparent heat radiation part 11 and the resin constituting the resin matrix 3 is preferably 0.4 or less, more preferably 0.3 or less, and 0.2 or less. More preferably it is.
- the difference in refractive index By reducing the difference in refractive index, the reflection of the excitation light L1 at the interface between the transparent heat radiation part 11 and the wavelength conversion layer 2 can be reduced, and the light emission efficiency and the light extraction efficiency can be increased.
- the difference in refractive index between the heat radiation layers 17 and 18 constituting the transparent heat radiation portions 12 and 13 and the resin constituting the resin matrix 3 is described. Is preferably within the above range.
- the difference of the refractive index of the heat conductive filler 19 which comprises the transparent thermal radiation part 14, and resin which comprises the resin matrix 3 is in the said range. Is preferred.
- quantum dots can be used.
- quantum dots include II-VI group compounds and III-V group compounds.
- the II-VI group compound include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe and the like.
- the III-V group compound include InP, GaN, GaAs, GaP, AlN, AlP, AlSb, InN, InAs, and InSb. At least one selected from these compounds, or a composite of two or more of these can be used as quantum dots.
- the composite include those having a core-shell structure, such as those having a core-shell structure in which the surface of CdSe particles is coated with ZnS.
- Quantum dots are characterized by a sharp emission peak in the emission spectrum. Therefore, when a quantum dot is used for a light source for direct type display, for example, it becomes possible to obtain a clear image. Specifically, when quantum dots are used as the phosphor, a light emitting device having a light emission peak at a wavelength of 450 nm to 630 nm and a half width of the light emission peak wavelength of 50 nm or less can be obtained.
- the phosphor 4 is not limited to quantum dots.
- the outgoing light may have a different color distribution (chromaticity unevenness) depending on the outgoing angle.
- the excitation light L1 has a certain directivity
- the emitted light in the direction directly above the light emission side of the wavelength conversion member 21 has a stronger color of the excitation light L1
- the light of the wavelength conversion member 21 The emitted light in the direction deviating from the direction directly above the emission side has a strong fluorescent color.
- it is conceivable to suppress the chromaticity unevenness by installing a light diffusion plate on the light emitting side of the wavelength conversion member 21, in this case, the light emission intensity tends to decrease.
- the wavelength conversion layer 2 contains a light diffusing material.
- a light diffusing material such as silica, alumina, and zirconia.
- the quantum dots when used as the phosphor 4, the quantum dots have a very small particle size and have little light scattering effect, and therefore the chromaticity unevenness of the emitted light tends to increase. Therefore, it is easy to obtain the effect of suppressing chromaticity unevenness by including the light diffusing material in the wavelength conversion layer 2.
- the average particle diameter (D 50 ) of the light diffusing material is preferably 5 ⁇ m or less, more preferably 4 ⁇ m or less, further preferably 3 ⁇ m or less, and particularly preferably 2 ⁇ m or less.
- the average particle diameter of the light diffusing material is preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more, further preferably 0.7 ⁇ m or more, and 0.9 ⁇ m or more. Particularly preferred. If the average particle size of the light diffusing material is too small, Rayleigh scattering becomes dominant, and wavelength dependence occurs in the emitted light, which tends to increase chromaticity unevenness.
- the difference in refractive index between the resin constituting the resin matrix 3 and the light diffusing material is 0.4 or less, 0.3 or less, 0.2 or less, 0.1 or less, 0.05 or less, particularly 0.03 or less. It is preferably 0.001 or more, 0.003 or more, and particularly preferably 0.005 or more. If the difference in refractive index is too large, the component of backscattered light (light scattered on the light incident side) increases, and the light emission efficiency tends to decrease. On the other hand, if the difference in refractive index is too small, the light diffusion effect is insufficient and the chromaticity unevenness of the emitted light tends to increase.
- the content of the light diffusing material in the wavelength conversion layer 2 is preferably 10% by mass or more, more preferably 20% by mass or more, further preferably 30% by mass or more, and 40% by mass or more. It is particularly preferred. If the content of the light diffusing material is too small, the light diffusing effect is insufficient and the chromaticity unevenness of the emitted light tends to increase. On the other hand, the content of the light diffusing material in the wavelength conversion layer 2 is preferably 90% by mass or less, more preferably 80% by mass or less, further preferably 70% by mass or less, and 60% by mass or less. It is particularly preferred that When there is too much content of a light-diffusion material, the component of backscattered light will increase and there exists a tendency for luminous efficiency to fall. Also, the chromaticity unevenness of the emitted light tends to increase.
- the density difference of light diffusing material is 1 g / cm 3 or less, more preferably 0.8 g / cm 3 or less, is 0.5 g / cm 3 or less More preferably, it is particularly preferably 0.3 g / cm 3 or less. If the density difference is too large, the light diffusing material settles in the resin matrix 3 and it becomes difficult to obtain a desired light diffusing effect.
- the wavelength conversion member shown in FIG. 1 was produced as an experimental example under the following conditions, and the chromaticity of the emitted light when the content of the light diffusing material was changed was measured. .
- the results are shown in Table 1. As shown in Table 1, it can be seen that the occurrence of chromaticity unevenness of the emitted light can be significantly suppressed by including a light diffusing material in the wavelength conversion layer.
- Cover material 7 and transparent heat radiation part 11 SiO 2 —B 2 O 3 —RO glass (“OA-10G” manufactured by Nippon Electric Glass Co., Ltd., thickness 0.1 mm)
- Side wall 6 Glass ceramic (thickness 0.6 mm) made of a sintered body of aluminum oxide and SiO 2 —CaO—Al 2 O 3 glass
- Phosphor 4 Quantum dot phosphor having a core-shell structure of CdSe / ZnS Content of phosphor 4: 0.5% by mass
- Light diffusing material Silica particles (“Fine Sphere” manufactured by Nippon Electric Glass Co., Ltd., average particle diameter (D 50 ) 1.5 ⁇ m)
- Resin constituting the resin matrix 3 External dimensions of the epoxy resin package 5: 3.7 mm ⁇ 3 .7mm x 0.8mm
- the wavelength conversion member was placed on a light source (an LED chip having an excitation wavelength of 462 nm).
- the wavelength conversion member was irradiated with excitation light from a light source, and the chromaticity of light emitted from a surface (light emission surface) opposite to the light source of the wavelength conversion member was measured.
- a screen was installed at a position of about 15 mm from the light emitting surface of the wavelength conversion member, and the chromaticity distribution of the light irradiation spot that appeared on the screen was measured.
- the side wall 6 of the package 5 can be made of, for example, ceramic or glass.
- the ceramic include aluminum oxide, aluminum nitride, zirconia, and mullite.
- the ceramic may be a glass ceramic such as LTCC (Low Temperature Co-fired Ceramics).
- LTCC Low Temperature Co-fired Ceramics
- the heat generated in the wavelength conversion layer 2 can be effectively radiated to the outside of the package 5.
- Specific examples of LTCC include a sintered body of an inorganic powder such as titanium oxide, niobium oxide, and aluminum oxide and a glass powder.
- the glass examples include SiO 2 —B 2 O 3 —RO (R is Mg, Ca, Sr, or Ba) glass, SiO 2 —B 2 O 3 —R ′ 2 O (R ′ is Li, Na, or K). ) Based glass, SiO 2 —B 2 O 3 —RO—R ′ 2 O based glass, SnO—P 2 O 5 based glass, TeO 2 based glass or Bi 2 O 3 based glass.
- the thickness of the side wall 6 is preferably 0.5 mm or less, and more preferably 0.3 mm or less. Thereby, the wavelength conversion member 21 can be reduced in size. On the other hand, the thickness of the side wall 6 is preferably 0.15 mm or more. Thereby, the mechanical strength of the wavelength conversion member 21 can be increased.
- the lid member 7 can be made of a transparent material such as glass, for example. As glass, the same material as the glass constituting the side wall 6 of the package 5 can be used.
- the thickness of the lid member 7 is preferably 0.001 mm or more, more preferably 0.01 mm or more, and further preferably 0.05 mm or more in consideration of mechanical strength. On the other hand, considering the transparency of the excitation light L1, the thickness of the lid member 7 is preferably 1 mm or less, more preferably 0.5 mm or less, and further preferably 0.2 mm or less. Further, by reducing the thickness of the lid member 7, it is possible to suppress light from leaking from the side surface of the lid member 7.
- the transparent heat radiating part 11 is arranged on the incident side of the excitation light L1 in the wavelength conversion layer 2, the heat generated in the wavelength conversion layer 2 by the irradiation of the excitation light L1 is diffused by the transparent heat radiating part 11. It is possible to suppress deterioration of the wavelength conversion layer 2 due to heat and blackening.
- the wavelength conversion layer 2 is provided so as to be in contact with the transparent heat radiating portion 11, but is not limited to this, and a gap is formed between the wavelength conversion layer 2 and the transparent heat radiating portion 11. It may be.
- FIG. 2 is a schematic cross-sectional view showing a wavelength conversion member according to the second embodiment of the present invention.
- a heat dissipation layer 17 is provided on the bottom plate 8.
- the transparent heat radiating part 12 is composed of a bottom plate 8 and a heat radiating layer 17.
- the side wall 6 of the package 5 is provided on the bottom plate 8 via the heat dissipation layer 17.
- Other configurations are the same as those of the first embodiment.
- the heat dissipation layer 17 is made of a heat conductive film such as aluminum nitride or magnesium oxide.
- the thickness of the heat dissipation layer 17 can be appropriately determined in consideration of the transparency of the excitation light L1, the thermal conductivity, and the like.
- the thickness of the heat dissipation layer 17 is, for example, preferably in the range of 1 nm to 15 ⁇ m, more preferably in the range of 10 nm to 10 ⁇ m, and further preferably in the range of 0.1 ⁇ m to 5 ⁇ m.
- the heat generated in the wavelength conversion layer 2 by the irradiation of the excitation light L1 can be diffused by the heat dissipation layer 17, so that it is effective that the wavelength conversion layer 2 deteriorates due to heat and becomes blackened. Can be suppressed.
- the transparent heat radiating part 11 in the first embodiment as the bottom plate 8, the heat diffusion effect can be further enhanced.
- the heat dissipation layer 17 is provided on the entire surface of the bottom plate 8. Thereby, heat dissipation can be improved effectively.
- the heat dissipation layer 17 may be provided on a part of the bottom plate 8.
- FIG. 3 is a schematic cross-sectional view showing a wavelength conversion member according to a modification of the second embodiment of the present invention.
- the heat dissipation layer 18 is provided so as to be located inside the side wall 6 of the package 5.
- the heat radiation layer 18 is preferably provided so as to cover the irradiation region of the excitation light L1.
- the area of the heat dissipation layer 18 is preferably 1.1 times or more, more preferably 1.3 times or more, and even more preferably 1.5 times or more the area of the irradiation region of the excitation light L1. It is still more preferably 2 times or more, particularly preferably 3 times or more, and most preferably 4 times or more. Thereby, the heat generated in the wavelength conversion layer 2 can be effectively diffused by the transparent heat radiation part 13 including the heat radiation layer 18.
- the peripheral edge of the heat dissipation layer 18 is in contact with the side wall 6 of the package 5. In this way, the generated heat can be efficiently released to the outside.
- FIG. 4 is a schematic cross-sectional view showing a wavelength conversion member according to a third embodiment of the present invention.
- a heat conductive filler 19 is provided on the bottom plate 8.
- the transparent heat radiating portion 14 is constituted by the bottom plate 8 and the heat conductive filler 19.
- Other configurations are the same as those of the first embodiment.
- the thermal conductivity of the thermal conductive filler 19 is 0.8 W / mK or higher, 0.9 W / mK or higher, 1 W / mK or higher, 1.2 W / mK or higher, 1.5 W / mK or higher, 3 W / mK or higher, 5 W / mK. As mentioned above, it is especially preferable that it is 10 W / mK or more. Thereby, the heat generated by the wavelength conversion layer 2 can be more effectively diffused.
- heat conductive filler 19 for example, glass, silicon dioxide, boron nitride, aluminum nitride, aluminum oxide, magnesium oxide, titanium oxide, niobium oxide, zinc oxide, aluminum, silver or the like can be used.
- the shape of the heat conductive filler 19 is not particularly limited, and examples thereof include a spherical powder shape and a fiber shape.
- the wavelength conversion member 24 is provided so as to be in contact with the bottom plate 8 in a state in which the plurality of heat conductive fillers 19 are packed most closely.
- the heat conductive filler 19 that is not in direct contact with the bottom plate 8 is in contact with the bottom plate 8 indirectly through another heat conductive filler 19.
- the heat generated in the wavelength conversion layer 2 by the irradiation of the excitation light L ⁇ b> 1 is quickly conducted to the heat conductive filler 19, conducted from the heat conductive filler 19 to the bottom plate 8, and diffused by the bottom plate 8.
- heat can be diffused by the heat conductive filler 19. Therefore, it can suppress effectively that the wavelength conversion layer 2 deteriorates and blackens by heat.
- heat conductive filler 19 may not be close-packed and may be provided so as to be in direct or indirect contact with the bottom plate 8.
- the thickness of the layer constituting the heat conductive filler 19 is preferably 10 ⁇ m or more, more preferably 30 ⁇ m or more, further preferably 50 ⁇ m or more, and particularly preferably 100 ⁇ m or more. Further, the thickness of the layer constituting the heat conductive filler 19 is preferably 400 ⁇ m or less, more preferably 350 ⁇ m or less, further preferably 300 ⁇ m or less, particularly preferably 250 ⁇ m or less, and 200 ⁇ m. Most preferably:
- the heat conductive filler 19 may be further dispersed in the resin matrix 3. In this way, the heat generated in the wavelength conversion layer 2 can be diffused more efficiently and radiated to the outside of the package 5.
- the heat conductive filler 19 may be provided on the heat dissipation layer in the second embodiment. That is, the transparent heat radiating portion 14 may include the bottom plate 8, the heat radiating layer, and the heat conductive filler 19.
- FIG. 5 is a schematic cross-sectional view showing a wavelength conversion member according to a fourth embodiment of the present invention.
- another transparent heat radiating portion 15 is also provided on the light emitting side of the wavelength conversion layer 2.
- the transparent heat radiation part 15 can be configured in the same manner as the transparent heat radiation part 11.
- the transparent heat radiating portion 15 is provided inside the side wall 6 of the package 5.
- Other configurations are the same as those of the first embodiment.
- another transparent heat radiating portion 15 is also provided on the light emitting side of the wavelength conversion layer 2, so that the heat generated in the wavelength conversion layer 2 by the irradiation of the excitation light L 1 is transferred to the transparent heat radiating portion 11. And it can diffuse effectively in the transparent thermal radiation part 15, and can further suppress that the wavelength conversion layer 2 deteriorates and blackens by heat.
- the transparent heat radiating portion 15 is provided separately from the lid member 7, but the lid material 7 may function as a transparent heat radiating portion.
- FIG. 6 is a schematic cross-sectional view showing a light emitting device using the wavelength conversion member according to the first embodiment of the present invention.
- the light emitting device 30 includes the wavelength conversion member 21 of the first embodiment and the light emitting unit 31 provided on the transparent heat radiating unit 11 side of the package 5.
- the light emitting unit 31 emits excitation light L1.
- the light emitting unit 31 has a case member 35.
- the case member 35 has an opening 35a.
- a light source 34 that emits excitation light L ⁇ b> 1 is disposed on the bottom 35 b in the case member 35.
- the light source 34 is sealed by the resin layer 32 in the case member 35.
- the opening 35 a of the case member 35 is sealed by the transparent heat radiating part 11 of the package 5.
- excitation light L ⁇ b> 1 is emitted from the light source 34 sealed in the resin layer 32.
- the excitation light L1 passes through the transparent heat radiating part 11 and is emitted to the wavelength conversion layer 2.
- the phosphor 4 in the wavelength conversion layer 2 converts the wavelength of the excitation light L1 and emits fluorescence.
- the combined light L2 of the fluorescence emitted from the phosphor 4 and the excitation light L1 transmitted through the wavelength conversion layer 2 is emitted from the light emitting device 30 through the lid member 7.
- the light source 34 for example, an LED light source or an LD light source that emits blue light as excitation light L1 is used.
- the case member 35 can be made of the same material as that of the side wall 6 of the package 5.
- the resin constituting the resin layer 32 the same resin as the resin of the resin matrix 3 can be used.
- the material of the transparent heat radiating portion 11 in the light emitting device 30 is one that transmits the excitation light L1 and has a higher thermal conductivity than the resin that constitutes the resin matrix 3 of the wavelength conversion layer 2 and the resin that constitutes the resin layer 32. If there is, it can be used without any particular limitation.
- the transparent heat radiating portion 11 is located between the wavelength conversion layer 2 and the resin layer 32. Therefore, the heat generated in the wavelength conversion layer 2 by the irradiation of the excitation light L1 can be diffused by the transparent heat radiating portion 11, and the wavelength conversion layer 2 can be prevented from being deteriorated and blackened by the heat.
- the heat generated in the wavelength conversion layer 2 can be efficiently radiated to the outside of the light emitting device 30 through the transparent heat radiating portion 11.
- the transparent heat radiation part 11 can also diffuse the heat in the resin layer 32 generated by the irradiation of the excitation light L1.
- the difference in refractive index between the transparent heat radiation part 11 and the resin constituting the resin layer 32 is preferably 0.4 or less, more preferably 0.3 or less, and 0.2 or less. Further preferred. By reducing the difference in refractive index, the reflection of the excitation light L1 at the interface between the transparent heat radiation part 11 and the resin layer 32 can be reduced, and the light emission efficiency and the light extraction efficiency can be increased.
- the transparent heat radiating portion 11 is provided so as to be in contact with the resin layer 32, but is not limited thereto, and a gap may be formed between the transparent heat radiating portion 11 and the resin layer 32.
- the manufacturing method of the wavelength conversion member 21 is demonstrated.
- a bottom plate is prepared as the transparent heat dissipating part 11 and the side wall 6 is provided on the bottom plate.
- the package 5 having the transparent heat radiating portion 11 is formed.
- a resin for the resin matrix 3 before curing for forming the wavelength conversion layer 2 is introduced on the transparent heat radiating portion 11 in the package 5.
- the phosphor 4 is dispersed and contained in the resin for the resin matrix 3 before curing.
- the wavelength conversion layer 2 is formed by curing the resin for the resin matrix 3.
- the package 5 is sealed with the lid member 7.
- the wavelength conversion member 21 of the first embodiment can be manufactured.
- the heat dissipation layer 17 is formed on the bottom plate 8 in the process of forming the package 5.
- the side wall 6 is provided on the bottom plate 8 through the heat dissipation layer 17.
- the subsequent steps are the same as the steps in the method for manufacturing the wavelength conversion member 21 of the first embodiment.
- the heat dissipation layer 18 is formed on a part of the bottom plate 8, and the side wall 6 is provided on the bottom plate 8. That's fine.
- the heat conductive filler 19 is disposed on the bottom plate 8. At this time, the plurality of heat conductive fillers 19 are arranged, for example, in a close-packed manner.
- the subsequent steps are the same as the steps in the method for manufacturing the wavelength conversion member 21 of the first embodiment.
- the package 5 is formed in the same manner as the method of manufacturing the wavelength conversion member 21 of the first embodiment.
- a resin for the resin matrix 3 before curing for forming the wavelength conversion layer 2 is introduced on the transparent heat radiating portion 11 in the package 5.
- the resin matrix 3 is cured.
- the package 5 is sealed with the lid member 7 provided with the transparent heat radiating portion 15 on the surface.
- a case member 35 having an opening 35 a is prepared, and the light source 34 is disposed on the bottom 35 b in the case member 35.
- the resin for the resin layer 32 before curing is introduced into the case member 35, and the light source 34 is covered with the resin for the resin layer 32.
- the resin for the resin layer 32 is cured to form the light emitting portion 31.
- the wavelength conversion member 21 is formed by the method described above. Next, the transparent heat radiating part 11 and the case member 35 are joined so that the transparent heat radiating part 11 of the wavelength conversion member 21 seals the opening 35 a of the case member 35.
- the light emitting device 30 can be manufactured as described above.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Led Device Packages (AREA)
Abstract
蛍光体を含む樹脂が熱により劣化し黒色化するのを抑制することができる波長変換部材及び発光デバイスを提供する。 パッケージ5と、パッケージ5内に設けられている波長変換層2とを備え、波長変換層2が、樹脂マトリクス3と、樹脂マトリクス3中に分散されており、励起光L1を波長変換する蛍光体4とを有し、パッケージ5が、励起光L1の入射側に位置する透明放熱部11を有することを特徴としている。
Description
本発明は、波長変換部材並びに上記波長変換部材及びLED(Light Emitting Diode)やLD(Laser Diode)等の励起光源を用いた発光デバイスに関するものである。
近年、蛍光ランプや白熱灯に代わる次世代の光源として、LEDやLDを用いた発光デバイス等に対する注目が高まってきている。そのような次世代光源の一例として、青色光を出射するLEDと、LEDからの光の一部を吸収して黄色光に変換する波長変換部材とを組み合わせた発光デバイスが開示されている。この発光デバイスは、LEDから出射され、波長変換部を透過した青色光と、波長変換部から出射された黄色光との合成光である白色光を発する。特許文献1には、波長変換部の一例として、パッケージ内に、蛍光体を分散させた樹脂が配置された波長変換部が開示されている。
本発明者らは、蛍光体を含む樹脂からなる波長変換部を用いた場合、長時間使用すると熱により樹脂が劣化し黒色化して、発光強度が低下するという課題があることを見出した。
本発明の目的は、蛍光体を含む樹脂が熱により劣化し黒色化するのを抑制することができる波長変換部材及び発光デバイスを提供することにある。
本発明の波長変換部材は、パッケージと、パッケージ内に設けられている波長変換層とを備え、波長変換層が、樹脂マトリクスと、樹脂マトリクス中に分散されており、励起光を波長変換する蛍光体とを有し、パッケージが、励起光の入射側に位置する透明放熱部を有することを特徴としている。
本発明においては、透明放熱部の熱伝導率が0.8W/mK以上であることが好ましい。
本発明においては、透明放熱部と、樹脂マトリクスを構成する樹脂との屈折率の差が、0.4以下であることが好ましい。なお、本明細書において、屈折率は波長587nmにおける値を指す。
本発明においては、パッケージが、励起光の入射側に位置する底板を有し、透明放熱部が、底板と、底板の上に設けられる放熱層とを含んでいてもよい。
本発明においては、パッケージが、励起光の入射側に位置する底板を有し、透明放熱部が、底板と、底板の上に設けられる熱伝導フィラーとを含んでいてもよい。
本発明においては、波長変換層の光出射側にも、別の透明放熱部が設けられていてもよい。
本発明においては、波長変換層が光拡散材を有していてもよい。
本発明においては、光拡散材の平均粒子径が5μm以下であることが好ましい。
本発明においては、樹脂マトリクスを構成する樹脂と、光拡散材の屈折率の差が0.4以下であることが好ましい。
本発明においては、波長変換層における光拡散材の含有量が10質量%以上であることが好ましい。
本発明においては、樹脂マトリクスを構成する樹脂と、光拡散材の密度差が1g/cm3以下であることが好ましい。
本発明の波長変換部材は、パッケージと、パッケージ内に設けられている波長変換層とを備え、波長変換層が、樹脂マトリクスと、樹脂マトリクス中に分散されており、励起光を波長変換する蛍光体と、平均粒子径が5μm以下の光拡散材とを有することを特徴としている。
本発明の発光デバイスは、上記本発明の波長変換部材と、パッケージの透明放熱部側に設けられており、励起光を出射する発光部とを備えることを特徴としている。
本発明においては、発光部が、開口部を有するケース部材と、ケース部材内における底部に配置される、励起光を出射する光源と、ケース部材内に設けられており、光源を封止する樹脂層とを有し、ケース部材の開口部が、パッケージの透明放熱部により封止されていることが好ましい。
本発明においては、透明放熱部と、樹脂層を構成する樹脂との屈折率の差が、0.4以下であることが好ましい。
本発明においては、波長450nm~630nmに発光ピークを有し、前記発光ピークの波長の半値幅が50nm以下であることが好ましい。
本発明においては、波長変換部材の光出射側直上方向の出射光の色度をCx、光出射側直上方向に対し60°の方向の出射光の色度をCx60とした場合、Cx60/Cx≦5であることが好ましい。
本発明に係る波長変換部材及び発光デバイスによれば、蛍光体を含む樹脂が熱により劣化し黒色化するのを抑制することができる。
以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、各図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。
(波長変換部材)
(第1の実施形態)
図1は、本発明の第1の実施形態の波長変換部材を示す模式的断面図である。図1に示すように、本実施形態の波長変換部材21は、パッケージ5と、パッケージ5内に設けられる波長変換層2とを備えている。波長変換層2は、樹脂マトリクス3と、樹脂マトリクス3中に分散されている蛍光体4とを有する。蛍光体4は、粒子の形態で樹脂マトリクス3中に含まれている。
(第1の実施形態)
図1は、本発明の第1の実施形態の波長変換部材を示す模式的断面図である。図1に示すように、本実施形態の波長変換部材21は、パッケージ5と、パッケージ5内に設けられる波長変換層2とを備えている。波長変換層2は、樹脂マトリクス3と、樹脂マトリクス3中に分散されている蛍光体4とを有する。蛍光体4は、粒子の形態で樹脂マトリクス3中に含まれている。
パッケージ5は、底板と、底板の上に設けられている側壁6とを有する。本実施形態では、底板は透明放熱部11である。パッケージ5は、透明放熱部11とは反対側において開口している。側壁6の上には蓋材7が設けられている。パッケージ5の開口部5aは、蓋材7により封止されている。なお、底板は複数層の透明放熱部11で構成されていてもよい。
波長変換部材21は、透明放熱部11側から入射する励起光L1を波長変換する。より具体的には、励起光L1は、透明放熱部11を通り、波長変換層2に出射される。波長変換層2内の蛍光体4は、励起光L1を波長変換し、蛍光を出射する。蛍光体4から出射された蛍光と、波長変換層2を透過した励起光L1との合成光L2が、蓋材7を通り波長変換部材21から出射される。励起光L1が青色光である場合、例えば、黄色光が蛍光体4から蛍光として出射され、励起光L1と蛍光の合成光L2として白色光が出射される。あるいは、励起光L1が青色光である場合に、蛍光体4として緑色光を出射するものと赤色光を出射するものを混合して使用することにより、励起光L1と蛍光の合成光L2として白色光が出射される。
励起光L1は、蛍光体4を励起して蛍光を出射させるとともに、その一部は熱エネルギーに変換される。このため、波長変換層2における樹脂マトリクス3は、励起光L1の照射により加熱される。本発明者らは、この熱により樹脂マトリクス3が劣化し波長変換層2が黒色化して発光強度が低下するという問題があることを見出した。また、この熱により、波長変換層2に含まれる蛍光体4の発光特性も低下する。
本実施形態では、パッケージ5が、励起光L1の入射側に位置する透明放熱部11を有する。このため、波長変換層2内で生じた熱を拡散し、またパッケージ5の外部へ放熱することができ、波長変換層2内で局所的に加熱されるのを抑制することができる。特に、励起光L1のエネルギー分布は通常中心部において高くなっているので、励起光L1の中心部において発生する熱エネルギーも大きくなる傾向がある。そのため、波長変換層2における励起光L1の入射側に透明放熱部11を配置することにより、励起光L1の中心部において生じた熱を周辺部に拡散し、またパッケージ5の外部へ放熱することができる。従って、本実施形態では、波長変換層2が熱により劣化し黒色化するのを抑制することができ、発光強度が低下するのを抑制することができる。
透明放熱部11の材料には、励起光L1(さらには蛍光体4から出射する蛍光)を透過し、かつ波長変換層2の樹脂マトリクス3を構成する樹脂より高い熱伝導率を有するものであれば、特に限定されることなく用いることができる。透明放熱部11の熱伝導率は0.8W/mK以上、0.9W/mK以上、1W/mK以上、1.2W/mK以上、1.5W/mK以上、3W/mK以上、5W/mK以上、特に10W/mK以上であることが好ましい。それによって、波長変換層2において生じた熱をより一層効率的に拡散することができる。なお、透明放熱部11が複数層から構成される場合は、その各層の熱伝導率が上記範囲を満たすことが好ましい。透明放熱部11が複数層から構成される場合、最大厚みを有する層の熱伝導率を最も大きくすることが好ましい。その場合、最大厚みを有する層が樹脂マトリクス3側に配置されるようにすると、波長変換層2内で生じた熱を効果的に拡散し、またパッケージ5の外部へ効果的に放熱することができる。
このような材料として、ガラス及びセラミックが挙げられる。ガラスやセラミックは水分や酸素が透過し難いため、波長変換層2に含まれる蛍光体4が劣化し難く、波長変換部材21の信頼性を高めることができる。ガラスとしては、例えば、SiO2-B2O3-RO(RはMg、Ca、SrまたはBa)系ガラス、SiO2-B2O3-R’2O(R’はLi、NaまたはK)系ガラスまたはSiO2-B2O3-RO-R’2O系ガラス等が挙げられる。SiO2-B2O3-RO系ガラスとしては、例えば日本電気硝子株式会社製の「OA-10G」(熱伝導率1W/mK)が好適である。セラミックとしては、高熱伝導性セラミックを用いることができる。高熱伝導性セラミックとしては、例えば、酸化アルミニウム系セラミック、窒化アルミニウム系セラミック、炭化ケイ素系セラミック、窒化ホウ素系セラミック、酸化マグネシウム系セラミック、酸化チタン系セラミック、酸化ニオビウム系セラミック、酸化亜鉛系セラミック、酸化イットリウム系セラミック等が挙げられる。
本実施形態のように、透明放熱部11がパッケージ5の底板である場合、透明放熱部11の厚みは、励起光L1の透過性、熱伝導性及び機械的強度等を考慮して適宜決定することができる。透明放熱部11の厚みは、例えば、0.001mm~1mmの範囲であることが好ましく、0.01mm~0.5mmの範囲であることがより好ましく、0.05mm~0.2mmの範囲であることがさらに好ましい。なお、透明放熱部11の厚みを小さくすることにより、透明放熱部11の側面から光が漏れることを抑制することができる。
透明放熱部11の波長400nm~800nmにおける平均透過率は、70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることがさらに好ましい。平均透過率が小さくなると、光取り出し効率が低下しやすくなる。
波長変換層2の樹脂マトリクス3としては、例えば、透光性を有する紫外線硬化性樹脂や熱硬化性樹脂等の硬化性樹脂が用いられる。具体的には、例えば、エポキシ系樹脂、アクリル系樹脂、シリコーン系樹脂等を用いることができる。
透明放熱部11と、樹脂マトリクス3を構成する樹脂との屈折率(nd)の差は、0.4以下であることが好ましく、0.3以下であることがより好ましく、0.2以下であることがさらに好ましい。屈折率の差を小さくすることにより、透明放熱部11と波長変換層2との界面における励起光L1の反射を低減することができ、発光効率及び光の取り出し効率を高めることができる。なお、後述する第2の実施形態の波長変換部材22及びその変形例においては、透明放熱部12,13を構成する放熱層17,18と、樹脂マトリクス3を構成する樹脂との屈折率の差が上記範囲内であることが好ましい。また、後述する第3の実施形態の波長変換部材24においては、透明放熱部14を構成する熱伝導フィラー19と、樹脂マトリクス3を構成する樹脂との屈折率の差が上記範囲内であることが好ましい。
波長変換層2に含まれる蛍光体4としては、例えば、量子ドットを用いることができる。量子ドットとしては、II-VI族化合物、及びIII-V族化合物等が挙げられる。II-VI族化合物としては、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe等が挙げられる。III-V族化合物としては、InP、GaN、GaAs、GaP、AlN、AlP、AlSb、InN、InAsまたはInSb等が挙げられる。これらの化合物から選択される少なくとも1種、またはこれらのうちの2種以上の複合体を量子ドットとして用いることができる。複合体としては、コアシェル構造のものが挙げられ、例えばCdSe粒子表面がZnSによりコーティングされたコアシェル構造のものが挙げられる。量子ドットは発光スペクトルにおける発光ピークがシャープであるという特徴がある。そのため、量子ドットを例えば直下型ディスプレイ用光源に使用した場合、鮮明な画像を得ることが可能となる。具体的には、蛍光体として量子ドットを用いた場合、波長450nm~630nmに発光ピークを有し、発光ピークの波長の半値幅が50nm以下である発光デバイスを得ることができる。
蛍光体4は、量子ドットに限定されるものではなく、例えば、酸化物蛍光体、窒化物蛍光体、酸窒化物蛍光体、塩化物蛍光体、酸塩化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体、カルコゲン化物蛍光体、アルミン酸塩蛍光体、ハロリン酸塩化物蛍光体またはガーネット系化合物蛍光体等の無機蛍光体粒子等を用いてもよい。
なお、出射光(励起光L1と蛍光との合成光L2)は、出射角度によって色の分布が異なる(色度むら)場合がある。具体的には、励起光L1が一定の指向性を有する場合、波長変換部材21の光出射側直上方向の出射光は励起光L1の色味が強くなり、一方で、波長変換部材21の光出射側直上方向から外れた方向の出射光は蛍光の色味が強くなる。波長変換部材21の光出射側に光拡散板を設置することにより色度むらを抑制することも考えられるが、この場合発光強度が低下する傾向がある。そこで、波長変換層2に光拡散材を含有させることが好ましい。このようにすれば、発光強度の低下を抑制しつつ、出射光の色度むらを抑制することができる。例えば、波長変換部材の光出射側直上方向の出射光の色度をCx、光出射側直上方向に対し60°の方向の出射光の色度をCx60とした場合、Cx60/Cxの値が5以下、4以下、3以下、さらには2以下である発光デバイスを得ることができる。光拡散材としては、シリカ、アルミナ、ジルコニア等の無機粒子が挙げられる。
特に、蛍光体4として量子ドットを用いた場合は、量子ドットは粒径が非常に小さく光散乱効果がほとんどないため、出射光の色度むらが大きくなる傾向がある。そのため、波長変換層2に光拡散材を含有させることによる色度むら抑制の効果が得やすい。
光拡散材の平均粒子径(D50)は5μm以下であることが好ましく、4μm以下であることがより好ましく、3μm以下であることがさらに好ましく、2μm以下であることが特に好ましい。光拡散材の平均粒子径が大きすぎると、光拡散効果が不十分となり、色度むらが発生しやすくなる。一方、光拡散材の平均粒子径は0.3μm以上であることが好ましく、0.5μm以上であることがより好ましく、0.7μm以上であることがさらに好ましく、0.9μm以上であることが特に好ましい。光拡散材の平均粒子径が小さすぎると、レイリー散乱が優勢となり、出射光に波長依存性が生じ、かえって色度むらが大きくなる傾向がある。
樹脂マトリクス3を構成する樹脂と、光拡散材の屈折率の差は0.4以下、0.3以下、0.2以下、0.1以下、0.05以下、特に0.03以下であることが好ましく、0.001以上、0.003以上、特に0.005以上であることが好ましい。当該屈折率の差が大きすぎると、後方散乱光(光入射側に散乱される光)の成分が多くなり、発光効率が低下する傾向がある。一方、当該屈折率の差が小さすぎると、光拡散効果が不十分となり、出射光の色度むらが大きくなる傾向がある。
波長変換層2における光拡散材の含有量は10質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることがさらに好ましく、40質量%以上であることが特に好ましい。光拡散材の含有量が少なすぎると、光拡散効果が不十分となり、出射光の色度むらが大きくなる傾向がある。一方、波長変換層2における光拡散材の含有量は90質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることがさらに好ましく、60質量%以下であることが特に好ましい。光拡散材の含有量が多すぎると、後方散乱光の成分が多くなり、発光効率が低下する傾向がある。また、出射光の色度むらがかえって大きくなる傾向がある。
樹脂マトリクス3を構成する樹脂と、光拡散材の密度差が1g/cm3以下であることが好ましく、0.8g/cm3以下であることがより好ましく、0.5g/cm3以下であることがさらに好ましく、0.3g/cm3以下であることが特に好ましい。当該密度差が大きすぎると、樹脂マトリクス3中で光拡散材が沈降し、所望の光拡散効果が得にくくなる。
なお、光拡散材による効果を確認するため、下記の条件で図1に示す波長変換部材を実験例として作製し、光拡散材の含有量を変化させた際の出射光の色度を測定した。結果を表1に示す。表1に示す通り、波長変換層に光拡散材を含有させることにより、出射光の色度むらの発生を大幅に抑制できることがわかる。
(実験例の波長変換部材の構成)
蓋材7及び透明放熱部11:SiO2-B2O3-RO系ガラス(日本電気硝子株式会社製「OA-10G」、厚み0.1mm)
側壁6:酸化アルミニウムとSiO2-CaO-Al2O3系ガラスの焼結体からなるガラスセラミック(厚み0.6mm)
蛍光体4:CdSe/ZnSのコアシェル構造の量子ドット蛍光体
蛍光体4の含有量:0.5質量%
光拡散材:シリカ粒子(日本電気硝子株式会社製「ファインスフィア」、平均粒子径(D50)1.5μm) 樹脂マトリクス3を構成する樹脂:エポキシ樹脂
パッケージ5の外寸:3.7mm×3.7mm×0.8mm
蓋材7及び透明放熱部11:SiO2-B2O3-RO系ガラス(日本電気硝子株式会社製「OA-10G」、厚み0.1mm)
側壁6:酸化アルミニウムとSiO2-CaO-Al2O3系ガラスの焼結体からなるガラスセラミック(厚み0.6mm)
蛍光体4:CdSe/ZnSのコアシェル構造の量子ドット蛍光体
蛍光体4の含有量:0.5質量%
光拡散材:シリカ粒子(日本電気硝子株式会社製「ファインスフィア」、平均粒子径(D50)1.5μm) 樹脂マトリクス3を構成する樹脂:エポキシ樹脂
パッケージ5の外寸:3.7mm×3.7mm×0.8mm
(色度測定試験)
上記の波長変換部材を光源(励起波長462nmのLEDチップ)の上に設置した。光源から励起光を波長変換部材に照射し、波長変換部材の光源とは反対側の面(光出射面)から出射された光の色度を測定した。具体的には、波長変換部材の光出射面から約15mmの位置にスクリーンを設置し、スクリーン上に現れた光照射スポットの色度分布を測定した。光照射スポットにおける色度の平均値(Cx)と、光照射スポットにおける色度の最大値と最小値の差(=色度むら)を算出した。
上記の波長変換部材を光源(励起波長462nmのLEDチップ)の上に設置した。光源から励起光を波長変換部材に照射し、波長変換部材の光源とは反対側の面(光出射面)から出射された光の色度を測定した。具体的には、波長変換部材の光出射面から約15mmの位置にスクリーンを設置し、スクリーン上に現れた光照射スポットの色度分布を測定した。光照射スポットにおける色度の平均値(Cx)と、光照射スポットにおける色度の最大値と最小値の差(=色度むら)を算出した。
パッケージ5の側壁6は、例えば、セラミックやガラス等から構成することができる。セラミックとしては、酸化アルミニウム、窒化アルミニウム、ジルコニア、ムライト等が挙げられる。また、セラミックは、LTCC(Low Temperature Co-fired Ceramics)等のガラスセラミックであってもよい。側壁6がLTCCからなると、波長変換層2内で生じた熱をパッケージ5の外部へ効果的に放熱することができる。LTCCの具体例としては、酸化チタン、酸化ニオブ、酸化アルミニウム等の無機粉末とガラス粉末との焼結体等が挙げられる。ガラスとしては、例えば、SiO2-B2O3-RO(RはMg、Ca、SrまたはBa)系ガラス、SiO2-B2O3-R’2O(R’はLi、NaまたはK)系ガラス、SiO2-B2O3-RO-R’2O系ガラス、SnO-P2O5系ガラス、TeO2系ガラスまたはBi2O3系ガラス等が挙げられる。側壁6の厚みは0.5mm以下であることが好ましく、0.3mm以下であることがより好ましい。それによって、波長変換部材21の小型化を図ることができる。一方、側壁6の厚みは0.15mm以上であることが好ましい。それによって、波長変換部材21の機械的強度を高めることができる。
蓋材7は、例えば、ガラス等の透明材料から構成することができる。ガラスとしては、パッケージ5の側壁6を構成する上記ガラスと同様の材料を用いることができる。蓋材7の厚みは、機械的強度を考慮し、0.001mm以上であることが好ましく、0.01mm以上であることがより好ましく、0.05mm以上であることがさらに好ましい。一方、励起光L1の透過性を考慮し、蓋材7の厚みは1mm以下であることが好ましく、0.5mm以下であることがより好ましく、0.2mm以下であることがさらに好ましい。また、蓋材7の厚みを小さくすることにより、蓋材7の側面から光が漏れることを抑制することができる。
本実施形態においては、波長変換層2における励起光L1の入射側に透明放熱部11が配置されているので、励起光L1の照射により波長変換層2に生じた熱を透明放熱部11で拡散することができ、波長変換層2が熱により劣化し黒色化するのを抑制することができる。
本実施形態では、波長変換層2が透明放熱部11と接するように設けられているが、これに限定されるものではなく、波長変換層2と透明放熱部11との間に隙間が形成されていてもよい。
(第2の実施形態)
図2は、本発明の第2の実施形態の波長変換部材を示す模式的断面図である。図2に示すように、本実施形態においては、底板8の上に放熱層17が設けられている。透明放熱部12は、底板8及び放熱層17により構成されている。パッケージ5の側壁6は、放熱層17を介して底板8の上に設けられている。その他の構成は、第1の実施形態と同様である。
図2は、本発明の第2の実施形態の波長変換部材を示す模式的断面図である。図2に示すように、本実施形態においては、底板8の上に放熱層17が設けられている。透明放熱部12は、底板8及び放熱層17により構成されている。パッケージ5の側壁6は、放熱層17を介して底板8の上に設けられている。その他の構成は、第1の実施形態と同様である。
放熱層17は、例えば窒化アルミニウム、酸化マグネシウム等の熱伝導性膜からなる。
放熱層17の厚みは、励起光L1の透過性及び熱伝導性等を考慮して適宜決定することができる。放熱層17の厚みは、例えば、1nm~15μmの範囲であることが好ましく、10nm~10μmの範囲であることがより好ましく、0.1μm~5μmの範囲であることがさらに好ましい。
波長変換部材22においては、励起光L1の照射により波長変換層2に生じた熱を、放熱層17によって拡散することができるため、波長変換層2が熱により劣化し黒色化するのを効果的に抑制することができる。なお、底板8として、第1の実施形態における透明放熱部11を使用することにより、より一層熱の拡散効果を高めることができる。
本実施形態では、放熱層17は底板8上の全面に設けられている。これにより、放熱性を効果的に高めることができる。なお以下に示すように、放熱層17は、底板8上の一部に設けられていてもよい。
図3は、本発明の第2の実施形態の変形例の波長変換部材を示す模式的断面図である。図3に示すように、波長変換部材23においては、放熱層18は、パッケージ5の側壁6の内側に位置するように設けられている。放熱層18は、励起光L1の照射領域を覆うように設けられていることが好ましい。放熱層18の面積は、励起光L1の照射領域の面積の1.1倍以上であることが好ましく、1.3倍以上であることがより好ましく、1.5倍以上であることがさらに好ましく、2倍以上であることがなお好ましく、3倍以上であることが特に好ましく、4倍以上であることが最も好ましい。これにより、波長変換層2内で生じた熱を、放熱層18を含む透明放熱部13によって効果的に拡散することができる。
本変形例においては、放熱層18は、少なくとも周縁部の一部がパッケージ5の側壁6に接していることが好ましい。このようにすれば、発生した熱を外部に効率的に放出することができる。
(第3の実施形態)
図4は、本発明の第3の実施形態の波長変換部材を示す模式的断面図である。図4に示すように、本実施形態においては、底板8の上に熱伝導フィラー19が設けられている。透明放熱部14は、底板8及び熱伝導フィラー19により構成されている。その他の構成は、第1の実施形態と同様である。
図4は、本発明の第3の実施形態の波長変換部材を示す模式的断面図である。図4に示すように、本実施形態においては、底板8の上に熱伝導フィラー19が設けられている。透明放熱部14は、底板8及び熱伝導フィラー19により構成されている。その他の構成は、第1の実施形態と同様である。
熱伝導フィラー19の熱伝導率は0.8W/mK以上、0.9W/mK以上、1W/mK以上、1.2W/mK以上、1.5W/mK以上、3W/mK以上、5W/mK以上、特に10W/mK以上であることが好ましい。それによって、波長変換層2によって生じた熱をより一層効果的に拡散することができる。
熱伝導フィラー19には、例えば、ガラスや、二酸化ケイ素、窒化ホウ素、窒化アルミニウム、酸化アルミニウム、酸化マグネシウム、酸化チタン、酸化ニオビウム、酸化亜鉛、アルミニウム、銀等からなるものを用いることができる。熱伝導フィラー19の形状は特に限定されず、球状等の粉末形状やファイバー形状が挙げられる。
波長変換部材24においては、複数の熱伝導フィラー19が最密充填された状態において、底板8に接するように設けられている。複数の熱伝導フィラー19のうち、底板8に直接的に接していない熱伝導フィラー19は、他の熱伝導フィラー19を介して間接的に底板8に接している。これにより、励起光L1の照射により波長変換層2に生じた熱は速やかに熱伝導フィラー19に伝導し、熱伝導フィラー19から底板8に伝導し、底板8により拡散される。なお、熱伝導フィラー19により熱を拡散させることもできる。従って、波長変換層2が熱により劣化し黒色化するのを効果的に抑制することができる。
なお、熱伝導フィラー19は最密充填されていなくともよく、底板8に直接的または間接的に接するように設けられていればよい。
熱伝導フィラー19が構成する層の厚みは、10μm以上であることが好ましく、30μm以上であることがより好ましく、50μm以上であることがさらに好ましく、100μm以上であることが特に好ましい。また、熱伝導フィラー19が構成する層の厚みは、400μm以下であることが好ましく、350μm以下であることがより好ましく、300μm以下であることがさらに好ましく、250μm以下であることが特に好ましく、200μm以下であることが最も好ましい。
熱伝導フィラー19はさらに樹脂マトリクス3中にも分散されていてもよい。このようにすれば、波長変換層2内で生じた熱をより一層効率的に拡散し、またパッケージ5の外部へ放熱することができる。
熱伝導フィラー19は、第2の実施形態における放熱層の上に設けられていてもよい。すなわち、透明放熱部14は、底板8、放熱層及び熱伝導フィラー19を含んでいてもよい。
(第4の実施形態)
図5は、本発明の第4の実施形態の波長変換部材を示す模式的断面図である。図5に示すように、本実施形態においては、波長変換層2の光出射側にも、別の透明放熱部15が設けられている。透明放熱部15は、透明放熱部11と同様にして構成することができる。なお、透明放熱部15は、パッケージ5における側壁6の内側に設けられている。その他の構成は、第1の実施形態と同様である。
図5は、本発明の第4の実施形態の波長変換部材を示す模式的断面図である。図5に示すように、本実施形態においては、波長変換層2の光出射側にも、別の透明放熱部15が設けられている。透明放熱部15は、透明放熱部11と同様にして構成することができる。なお、透明放熱部15は、パッケージ5における側壁6の内側に設けられている。その他の構成は、第1の実施形態と同様である。
波長変換部材25においては、波長変換層2の光出射側にも、別の透明放熱部15が設けられているので、励起光L1の照射により波長変換層2に生じた熱を透明放熱部11及び透明放熱部15で効果的に拡散することができ、波長変換層2が熱により劣化し黒色化するのをさらに抑制することができる。
本実施形態では、蓋材7とは別に透明放熱部15を設けているが、蓋材7を透明放熱部として機能させてもよい。
(発光デバイス)
図6は、本発明の第1の実施形態の波長変換部材を用いた発光デバイスを示す模式的断面図である。図6に示すように、発光デバイス30は、第1の実施形態の波長変換部材21と、パッケージ5の透明放熱部11側に設けられている発光部31とを備える。発光部31は励起光L1を出射する。
図6は、本発明の第1の実施形態の波長変換部材を用いた発光デバイスを示す模式的断面図である。図6に示すように、発光デバイス30は、第1の実施形態の波長変換部材21と、パッケージ5の透明放熱部11側に設けられている発光部31とを備える。発光部31は励起光L1を出射する。
より具体的には、発光部31はケース部材35を有する。ケース部材35は開口部35aを有する。ケース部材35内における底部35bには、励起光L1を出射する光源34が配置されている。光源34は、ケース部材35内において、樹脂層32によって封止されている。図6に示すように、ケース部材35の開口部35aは、パッケージ5の透明放熱部11により封止されている。
発光デバイス30においては、樹脂層32に封止された光源34から励起光L1が出射される。励起光L1は透明放熱部11を通り、波長変換層2に出射される。波長変換層2内の蛍光体4は、励起光L1を波長変換し、蛍光を出射する。蛍光体4から出射された蛍光と、波長変換層2を透過した励起光L1との合成光L2が、蓋材7を通り発光デバイス30から出射される。
光源34としては、例えば、青色光を励起光L1として出射するLED光源やLD光源等が用いられる。ケース部材35には、パッケージ5の側壁6と同様の材料を用いることができる。樹脂層32を構成する樹脂には、樹脂マトリクス3の樹脂と同様のものを用いることができる。
発光デバイス30における透明放熱部11の材料には、励起光L1を透過し、かつ波長変換層2の樹脂マトリクス3を構成する樹脂及び樹脂層32を構成する樹脂より高い熱伝導率を有するものであれば、特に限定されることなく用いることができる。
本実施形態においては、波長変換層2と樹脂層32との間に透明放熱部11が位置している。よって、励起光L1の照射により波長変換層2に生じた熱を透明放熱部11で拡散することができ、波長変換層2が熱により劣化し黒色化するのを抑制することができる。
加えて、波長変換層2に生じた熱を、透明放熱部11を通じて発光デバイス30の外部に効率的に放熱することができる。なお、透明放熱部11は、励起光L1の照射で生じた樹脂層32内の熱も拡散することができる。
透明放熱部11と、樹脂層32を構成する樹脂との屈折率の差は、0.4以下であることが好ましく、0.3以下であることがより好ましく、0.2以下であることがさらに好ましい。屈折率の差を小さくすることにより、透明放熱部11と樹脂層32との界面における励起光L1の反射を低減することができ、発光効率及び光の取り出し効率を高めることができる。
本実施形態では、透明放熱部11が樹脂層32と接するように設けられているが、これに限定されるものではなく、樹脂層32との間に隙間が形成されていてもよい。
(波長変換部材の製造方法)
図1を参照して、波長変換部材21の製造方法を説明する。透明放熱部11としての底板を用意し、上記底板の上に側壁6を設ける。これにより、透明放熱部11を有するパッケージ5を形成する。次に、パッケージ5内の透明放熱部11の上に、波長変換層2を形成するための硬化前の樹脂マトリクス3用の樹脂を導入する。硬化前の樹脂マトリクス3用の樹脂には、蛍光体4が分散して含まれている。次に、樹脂マトリクス3用の樹脂を硬化させて波長変換層2を形成する。次に、蓋材7によりパッケージ5を封止する。
図1を参照して、波長変換部材21の製造方法を説明する。透明放熱部11としての底板を用意し、上記底板の上に側壁6を設ける。これにより、透明放熱部11を有するパッケージ5を形成する。次に、パッケージ5内の透明放熱部11の上に、波長変換層2を形成するための硬化前の樹脂マトリクス3用の樹脂を導入する。硬化前の樹脂マトリクス3用の樹脂には、蛍光体4が分散して含まれている。次に、樹脂マトリクス3用の樹脂を硬化させて波長変換層2を形成する。次に、蓋材7によりパッケージ5を封止する。
以上のようにして、第1の実施形態の波長変換部材21を製造することができる。
図2に示す第2の実施形態の波長変換部材22を製造する場合においては、パッケージ5を形成する工程において、底板8の上に放熱層17を形成する。次に、放熱層17を介して、底板8の上に側壁6を設ける。その後の工程は、第1の実施形態の波長変換部材21の製造方法における工程と同様である。なお、図3に示す第2の実施形態の変形例の波長変換部材23を製造する場合においては、底板8上の一部に放熱層18を形成し、底板8の上に側壁6を設ければよい。
図4に示す第3の実施形態の波長変換部材24を製造する場合においては、底板8の上に側壁6を設けた後に、底板8の上に熱伝導フィラー19を配置する。このとき、複数の熱伝導フィラー19を例えば最密充填して配置する。その後の工程は、第1の実施形態の波長変換部材21の製造方法における工程と同様である。
図5に示す第4の実施形態の波長変換部材25を製造する場合においては、第1の実施形態の波長変換部材21の製造方法と同様に、パッケージ5を形成する。次に、パッケージ5内の透明放熱部11の上に、波長変換層2を形成するための硬化前の樹脂マトリクス3用の樹脂を導入する。次に、樹脂マトリクス3を硬化させる。次に、表面に透明放熱部15が設けられた蓋材7によりパッケージ5を封止する。
(発光デバイスの製造方法)
図6を参照して、発光デバイス30の製造方法を説明する。開口部35aを有するケース部材35を用意し、ケース部材35内における底部35bの上に光源34を配置する。次に、硬化前の樹脂層32用の樹脂をケース部材35内に導入し、光源34を樹脂層32用の樹脂で覆う。次に、樹脂層32用の樹脂を硬化させて発光部31を形成する。
図6を参照して、発光デバイス30の製造方法を説明する。開口部35aを有するケース部材35を用意し、ケース部材35内における底部35bの上に光源34を配置する。次に、硬化前の樹脂層32用の樹脂をケース部材35内に導入し、光源34を樹脂層32用の樹脂で覆う。次に、樹脂層32用の樹脂を硬化させて発光部31を形成する。
一方で、上述した方法により、波長変換部材21を形成する。次に、波長変換部材21の透明放熱部11によりケース部材35の開口部35aを封止するように、透明放熱部11とケース部材35とを接合する。
以上のようにして、発光デバイス30を製造することができる。
2…波長変換層
3…樹脂マトリクス
4…蛍光体
5…パッケージ
5a…開口部
6…側壁
7…蓋材
8…底板
11,12,13,14,15…透明放熱部
17,18…放熱層
19…熱伝導フィラー
21,22,23,24,25…波長変換部材
30…発光デバイス
31…発光部
32…樹脂層
34…光源
35…ケース部材
35a…開口部
35b…底部
L1…励起光
L2…合成光
3…樹脂マトリクス
4…蛍光体
5…パッケージ
5a…開口部
6…側壁
7…蓋材
8…底板
11,12,13,14,15…透明放熱部
17,18…放熱層
19…熱伝導フィラー
21,22,23,24,25…波長変換部材
30…発光デバイス
31…発光部
32…樹脂層
34…光源
35…ケース部材
35a…開口部
35b…底部
L1…励起光
L2…合成光
Claims (17)
- パッケージと、
前記パッケージ内に設けられている波長変換層と、
を備え、
前記波長変換層が、樹脂マトリクスと、前記樹脂マトリクス中に分散されており、励起光を波長変換する蛍光体とを有し、
前記パッケージが、前記励起光の入射側に位置する透明放熱部を有する、波長変換部材。 - 前記透明放熱部の熱伝導率が0.8W/mK以上である、請求項1に記載の波長変換部材。
- 前記透明放熱部と、前記樹脂マトリクスを構成する樹脂との屈折率の差が、0.4以下である、請求項1または2に記載の波長変換部材。
- 前記パッケージが、前記励起光の入射側に位置する底板を有し、
前記透明放熱部が、前記底板と、前記底板の上に設けられる放熱層とを含む、請求項1~3のいずれか一項に記載の波長変換部材。 - 前記パッケージが、前記励起光の入射側に位置する底板を有し、
前記透明放熱部が、前記底板と、前記底板の上に設けられる熱伝導フィラーとを含む、請求項1~4のいずれか一項に記載の波長変換部材。 - 前記波長変換層の光出射側にも、別の透明放熱部が設けられている、請求項1~5のいずれか一項に記載の波長変換部材。
- 前記波長変換層が光拡散材を有する、請求項1~6のいずれか一項に記載の波長変換部材。
- 前記光拡散材の平均粒子径が5μm以下である、請求項7に記載の波長変換部材。
- 前記樹脂マトリクスを構成する樹脂と、前記光拡散材の屈折率の差が0.4以下である、請求項7または8に記載の波長変換部材。
- 前記波長変換層における前記光拡散材の含有量が10質量%以上である、請求項7~9のいずれか一項に記載の波長変換部材。
- 前記樹脂マトリクスを構成する樹脂と、前記光拡散材の密度差が1g/cm3以下である、請求項7~10のいずれか一項に記載の波長変換部材。
- パッケージと、
前記パッケージ内に設けられている波長変換層と、
を備え、
前記波長変換層が、樹脂マトリクスと、前記樹脂マトリクス中に分散されており、励起光を波長変換する蛍光体と、平均粒子径が5μm以下の光拡散材とを有する、波長変換部材。 - 請求項1~12のいずれか一項に記載の波長変換部材と、
前記パッケージの前記透明放熱部側に設けられており、前記励起光を出射する発光部と、
を備える、発光デバイス。 - 前記発光部が、開口部を有するケース部材と、前記ケース部材内における底部に配置される、前記励起光を出射する光源と、前記ケース部材内に設けられており、前記光源を封止する樹脂層とを有し、
前記ケース部材の前記開口部が、前記パッケージの前記透明放熱部により封止されている、請求項13に記載の発光デバイス。 - 前記透明放熱部と、前記樹脂層を構成する樹脂との屈折率の差が、0.4以下である、請求項14に記載の発光デバイス。
- 波長450nm~630nmに発光ピークを有し、前記発光ピークの波長の半値幅が50nm以下である、請求項13~15のいずれか一項に記載の発光デバイス。
- 前記波長変換部材の光出射側直上方向の出射光の色度をCx、前記光出射側直上方向に対し60°の方向の出射光の色度をCx60とした場合、Cx60/Cx≦5である、請求項13~16のいずれか一項に記載の発光デバイス。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-045688 | 2017-03-10 | ||
JP2017045688 | 2017-03-10 | ||
JP2017140507A JP2018151610A (ja) | 2017-03-10 | 2017-07-20 | 波長変換部材及び発光デバイス |
JP2017-140507 | 2017-07-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018163691A1 true WO2018163691A1 (ja) | 2018-09-13 |
Family
ID=63448676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/003993 WO2018163691A1 (ja) | 2017-03-10 | 2018-02-06 | 波長変換部材及び発光デバイス |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018163691A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004179644A (ja) * | 2002-11-12 | 2004-06-24 | Nichia Chem Ind Ltd | 蛍光体積層構造及びそれを用いる光源 |
WO2010123052A1 (ja) * | 2009-04-22 | 2010-10-28 | シーシーエス株式会社 | 発光装置 |
JP2011035198A (ja) * | 2009-08-03 | 2011-02-17 | Ccs Inc | Led発光デバイスの製造方法 |
JP2013207049A (ja) * | 2012-03-28 | 2013-10-07 | Nec Corp | 波長変換体を用いた発光装置 |
WO2015178223A1 (ja) * | 2014-05-21 | 2015-11-26 | 日本電気硝子株式会社 | 波長変換部材及びそれを用いた発光装置 |
JP2016046262A (ja) * | 2014-08-22 | 2016-04-04 | 大日本印刷株式会社 | 表示装置 |
JP2017027019A (ja) * | 2015-07-22 | 2017-02-02 | パナソニックIpマネジメント株式会社 | 光源装置 |
-
2018
- 2018-02-06 WO PCT/JP2018/003993 patent/WO2018163691A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004179644A (ja) * | 2002-11-12 | 2004-06-24 | Nichia Chem Ind Ltd | 蛍光体積層構造及びそれを用いる光源 |
WO2010123052A1 (ja) * | 2009-04-22 | 2010-10-28 | シーシーエス株式会社 | 発光装置 |
JP2011035198A (ja) * | 2009-08-03 | 2011-02-17 | Ccs Inc | Led発光デバイスの製造方法 |
JP2013207049A (ja) * | 2012-03-28 | 2013-10-07 | Nec Corp | 波長変換体を用いた発光装置 |
WO2015178223A1 (ja) * | 2014-05-21 | 2015-11-26 | 日本電気硝子株式会社 | 波長変換部材及びそれを用いた発光装置 |
JP2016046262A (ja) * | 2014-08-22 | 2016-04-04 | 大日本印刷株式会社 | 表示装置 |
JP2017027019A (ja) * | 2015-07-22 | 2017-02-02 | パナソニックIpマネジメント株式会社 | 光源装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10879434B2 (en) | Quantum dot-based color-converted light emitting device and method for manufacturing the same | |
US8610340B2 (en) | Solid-state light emitting devices and signage with photoluminescence wavelength conversion | |
JP7277804B2 (ja) | 発光装置及び光源 | |
WO2009107535A1 (ja) | 白色ledランプ、バックライト、発光装置、表示装置および照明装置 | |
KR102102699B1 (ko) | 양자점-기반 색-변환형 발광 디바이스 및 이를 제조하기 위한 방법 | |
WO2017038164A1 (ja) | 発光装置 | |
TW201608005A (zh) | 波長轉換構件及使用其之發光裝置 | |
JP6457225B2 (ja) | 発光装置 | |
CN107887490B (zh) | 发光装置 | |
US8348468B2 (en) | Light emitting device | |
TWI788436B (zh) | 波長轉換構件及其之製造方法、與發光裝置 | |
JP2016225581A (ja) | 波長変換部材及びそれを用いた発光装置 | |
JP2009070892A (ja) | Led光源 | |
CN112166354A (zh) | 波长转换元件以及光源装置 | |
JP6741102B2 (ja) | 発光装置 | |
JP2018151610A (ja) | 波長変換部材及び発光デバイス | |
WO2019116916A1 (ja) | 波長変換部材及びその製造方法、並びに発光装置 | |
WO2018163691A1 (ja) | 波長変換部材及び発光デバイス | |
JP6848582B2 (ja) | 波長変換部材及び発光デバイス | |
JP2018018871A (ja) | 波長変換部材及び発光デバイス | |
WO2018155167A1 (ja) | 発光デバイス及びその製造方法 | |
WO2018074170A1 (ja) | 発光デバイス | |
JP2019029648A (ja) | 波長変換部材及び発光装置 | |
WO2021132212A1 (ja) | 波長変換部材、発光素子及び発光装置 | |
WO2020246239A1 (ja) | 波長変換部材及び発光装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18764756 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18764756 Country of ref document: EP Kind code of ref document: A1 |