WO2018163582A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2018163582A1
WO2018163582A1 PCT/JP2017/047229 JP2017047229W WO2018163582A1 WO 2018163582 A1 WO2018163582 A1 WO 2018163582A1 JP 2017047229 W JP2017047229 W JP 2017047229W WO 2018163582 A1 WO2018163582 A1 WO 2018163582A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
short
negative
positive
phase
Prior art date
Application number
PCT/JP2017/047229
Other languages
English (en)
French (fr)
Inventor
卓郎 新井
大地 鈴木
Original Assignee
株式会社 東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社 東芝
Priority to EP17899501.5A priority Critical patent/EP3595157B1/en
Publication of WO2018163582A1 publication Critical patent/WO2018163582A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/021Details concerning the disconnection itself, e.g. at a particular instant, particularly at zero value of current, disconnection in a predetermined order
    • H02H3/023Details concerning the disconnection itself, e.g. at a particular instant, particularly at zero value of current, disconnection in a predetermined order by short-circuiting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • H02H3/162Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass for ac systems
    • H02H3/165Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass for ac systems for three-phase systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • H02H7/1227Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to abnormalities in the output circuit, e.g. short circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/10Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers
    • H02M5/12Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers for conversion of voltage or current amplitude only

Definitions

  • Embodiment of this invention is related with the power converter device which converts electric power mutually between direct current
  • a three-phase two-level converter has been applied to a power converter that converts power between DC and AC. Since the three-phase two-level converter is composed of six semiconductor switching elements that are the minimum necessary for constructing a power converter that outputs three-phase alternating current from direct current, the size and cost can be reduced. There are advantages.
  • the output voltage waveform is simulated by switching between binary values of + Vdc / 2 and ⁇ Vdc / 2 for each phase by PWM (pulse width modulation).
  • PWM pulse width modulation
  • a reactor or capacitor is used for the three-phase AC output to reduce switching harmonics.
  • a unit converter including a DC voltage source such as a capacitor can be connected in multiple stages, such as a modular multilevel converter (hereinafter referred to as MMC), and a high voltage equivalent to the power system and distribution system voltage can be converted.
  • MMC modular multilevel converter
  • the MMC can simplify a transformer that is large in weight and volume and has a relatively high cost for the entire system.
  • the unit converter is configured to include a switching element and a DC capacitor, and by shifting the ON / OFF timing of the switching element, the output voltage and voltage waveform can be multi-leveled and close to a sine wave. The advantage of eliminating the need for a filter can be enjoyed.
  • power converters have been designed to be used in the event of an excessive fault current flowing from the AC system due to a ground fault or short circuit caused by a breakdown due to lightning or aging, or a malfunction due to human error.
  • the AC circuit breaker in order for the AC circuit breaker to break, it is necessary to reduce the accident current flowing through the circuit breaker to such an extent that the arc discharge is extinguished.
  • the accident current from the AC system is normally AC, and the polarity is switched in one AC cycle. Therefore, when the accident current is reduced to such an extent that the arc discharge can be extinguished during one cycle, the interruption can be performed safely and quickly.
  • the magnitude of the fault current for each phase changes, and the AC system DC fault current may flow to the side.
  • the accident current is a current in which a DC component is superimposed on the AC current, the accident current does not decrease until the arc discharge is extinguished, and the AC circuit breaker cannot interrupt the accident current. .
  • the power converter according to the embodiment of the present invention is made to solve the above-described problems, and even if a DC fault current flows on the AC system side, the fault current passing through the AC circuit breaker is reduced. It is an object of the present invention to provide a power converter that can safely and quickly interrupt an accident current.
  • the power conversion device of the present embodiment is provided between a DC terminal having a positive DC terminal and a negative DC terminal and a three-phase AC terminal.
  • a power conversion device for mutually converting power between unit converters each including a switching element and a capacitor, and connected in series, and connected in series between the positive DC terminal and the negative DC terminal The positive side arm and the negative side arm are provided in each phase of three phases, and the positive side DC terminal and the negative side DC terminal are connected to a ground point between the positive side DC terminal and the negative side DC terminal.
  • a short-circuit switch that is connected directly or directly is provided.
  • FIG. 1 It is a figure which shows the structure of the power converter device which concerns on 1st Embodiment. It is a figure which shows the structure of a chopper cell. It is a sequence diagram of the control apparatus which concerns on 1st Embodiment. It is a figure which shows a ground fault electric current path
  • (A) is a current waveform diagram of an AC circuit breaker before and after the occurrence of an accident when a short-circuit switch is not provided.
  • (B) is a current waveform diagram of an AC circuit breaker before and after the occurrence of an accident when a short-circuit switch is provided. It is a figure which shows a short circuit current path
  • FIG. 1 is a diagram illustrating a configuration of a power conversion device according to the present embodiment.
  • the power conversion device mutually converts power between AC and DC, and converts power from AC to DC or from DC to AC for power transmission.
  • the power converter is connected between a DC terminal having a positive DC terminal 10 a and a negative DC terminal 10 b and a three-phase AC terminal connected to the three-phase AC system 100.
  • the positive side DC terminal 10a and the negative side DC terminal 10b are connected to, for example, another power conversion device or a DC line, and the power conversion device is used for frequency conversion such as conversion from 50 Hz to 60 Hz or for a DC power transmission system. Used.
  • the positive DC terminal 10a side is referred to as “positive side”
  • the negative DC terminal 10b side is referred to as “negative side”.
  • the power conversion device includes an MMC, a transformer 3, a buffer reactor 4, an AC circuit breaker 5, a short-circuit switch 6, and a control device 7.
  • MMC is composed of a series of unit converters, and outputs an arbitrary voltage such as a stepped AC voltage by shifting the switching timing of each unit converter.
  • the unit converter is, for example, a chopper cell 1 as shown in FIG.
  • the chopper cell 1 includes two switching elements 11a and 11b, diodes 12a and 12b, and a capacitor 13.
  • the capacitor 13 is used as a voltage source, and a desired DC voltage is output by the on / off operation of the switching elements 11a and 11b.
  • the switching elements 11a and 11b are connected in series to form a leg, and the capacitor 13 is connected in parallel to the leg.
  • controllable self-extinguishing elements such as IEGT, GTO, GCT, MOSFET, or IGBT can be used.
  • Feedback diodes 12a and 12b are connected in antiparallel to the switching elements 11a and 11b.
  • the chopper cell 1 outputs the DC voltage Vc of the capacitor 13 when the switching element 11a is on, and becomes zero voltage when the switching element 11b is on.
  • such unit converters are connected in series in multiple stages between the positive DC terminal 10a and the negative DC terminal 10b for each of the U-phase, V-phase, and W-phase.
  • the arrangement of unit converters between the DC terminals 10a and 10b is referred to as a leg 2
  • the legs 2 of each phase are connected in parallel between the positive DC terminal 10a and the negative DC terminal 10b.
  • Such legs are roughly divided into a positive arm 2a and a negative arm 2b. That is, the positive side arm 2a is a unit converter group in which unit converters are connected in series in multiple stages, and one end thereof is connected to the positive side DC terminal 10a.
  • the negative arm 2b is a unit converter group in which unit converters are connected in series in multiple stages, and one end thereof is connected to the negative DC terminal 10b.
  • the positive arm 2a and the negative arm 2b are connected to each other at the other ends.
  • the terminals connected to the positive DC terminal 10a and the negative DC terminal 10b of each arm 2a, 2b are MMC DC terminals, and the connection point between the positive arm 2a and the negative arm 2b is an AC terminal.
  • the transformer 3 is connected between the AC terminal and the AC system 100.
  • the transformer 3 adjusts the electrical insulation between the AC system 100 and the power converter and the voltage level difference between the MMC and the AC system 100, and is not necessarily required.
  • the buffer reactor 4 is provided in each of the positive side arm 2a and the negative side arm 2b. That is, the buffer reactor 4 of the positive side arm 2a is connected in series between the AC terminal and the positive side arm 2a.
  • the buffer reactor 4 of the negative side arm 2b is connected in series between the AC terminal and the negative side arm 2b.
  • the buffer reactor 4 is a reactor that prevents an excessive short-circuit current from flowing between the phases due to the three-phase DC voltages being different.
  • the AC circuit breaker 5 is connected between the AC terminal and the AC system 100.
  • the AC circuit breaker 5 is a switch that can be closed and opened according to an input signal.
  • the AC circuit breaker 5 is a mechanical circuit breaker that can be opened / closed by contact / separation of contacts, and for example, a gas circuit breaker can be used.
  • the short-circuit switch 6 is a switch that is connected between the DC terminal and the connection point, and can be closed or opened according to the input signal.
  • the negative side DC terminal 10b is at the ground potential
  • the short-circuit switch 6 is connected to the ground point and the positive side DC terminal 10a.
  • the short-circuit switch 6 only needs to be connected to all the three-phase legs 2 of the MMC.
  • the positive-side DC terminal 10a is connected to the ground potential, and the short-circuit switch 6 is connected to the ground point and the negative-side DC terminal 10b. Also good. Moreover, you may make it connect between the positive side DC terminal 10a and the negative side DC terminal 10b.
  • the short-circuit switch 6 is a switch having a rating capable of withstanding a short circuit, and is a switch having a quick response that is turned on in the order of several tens of ms.
  • a semiconductor switch such as a thyristor can be used as the short-circuit switch 6, a semiconductor switch such as a thyristor can be used as the short-circuit switch 6, a semiconductor switch such as a thyristor can be used.
  • the power converter is provided with a measuring instrument (not shown) that measures the voltage and current of each part.
  • This measuring instrument is an ammeter or a voltmeter, and measures, for example, the current of the positive side arm 2a and the negative side arm 2b, the voltage and current of the transformer 3, the voltage of the DC terminal, and the current.
  • the control device 7 is a device that controls the power conversion device.
  • the control device 7 acquires a current value and a voltage value of each part from the measuring device, and detects a detection unit that detects the occurrence of an accident, and a signal that causes the AC circuit breaker 5 to interrupt the AC circuit between the AC system 100 and the AC terminal. It has a circuit breaker control unit that generates and outputs, and a short circuit switch control unit that outputs a close command to the short circuit switch 6.
  • the control device 7 controls the on / off timing of the switching elements 11 a and 11 b of the chopper cell 1.
  • the AC circuit breaker 5 and the short circuit switch 6 are each provided with a switch called an auxiliary contact that operates in mechanical synchronization with the main open / close state of the AC circuit breaker 5 and the short circuit switch 6.
  • a signal indicating the open / closed state can be input to the control device 7 by reading the on / off state of the auxiliary contact with a sensor.
  • FIG. 3 is a sequence diagram of the control device 7.
  • the control device 7 detects the accident from the current and voltage values of each part by the detection unit. For example, if a ground fault occurs, the detection unit obtains the current values of the secondary side of the positive side arm 2a, the negative side arm 2b, and the transformer 3, and obtains a differential current thereof, thereby obtaining a certain phase. It can be detected that a ground fault has occurred at the connection point between the positive arm 2a and the negative arm 2b. In the following, the accident will be described by taking a ground fault as an example.
  • FIG. 4 is a ground fault current path when a ground fault occurs at a connection point between the one-phase positive side arm 2a and the negative side arm 2b, and shows a path for one cycle of three-phase alternating current.
  • a ground fault current is supplied from the AC system 100 toward the ground fault point as an accident current. This ground fault current returns from the ground point of the negative DC terminal 10b of the power converter to the AC system 100 through the other two-phase negative arm 2b in which no ground fault has occurred.
  • control device 7 After detecting the accident, the control device 7 turns off the switching elements 11a and 11b and puts the MMC into the gate block state.
  • the AC circuit breaker 5 is opened, the contacts are opened and arc discharge occurs between the contacts. Normally, when an accident does not occur, the arc current disappears at the current zero point, and the accident current is cut off. However, because one phase has a ground fault, the balance of the three-phase ground fault current is lost. For example, when a ground fault occurs in the U phase, as shown in FIG. 4, the ground fault current is supplied from the AC system 100 toward the ground fault point, depending on the magnitude relationship of the AC voltage of the three phases. It becomes a path to return to the AC system 100 through the V-phase and W-phase negative side arm 2b via the grounding point of the terminal 10b, and the three phases become unbalanced.
  • a direct current component may be superimposed on the ground fault current passing through the AC circuit breaker 5, and the current may not be reduced to the extent that it can be interrupted.
  • the DC current component of the U phase may increase, the AC ground fault current may shift, and may not cross the current zero point.
  • the control device 7 outputs a signal for turning on the short-circuit switch 6 to the switch by the short-circuit switch control unit.
  • the short-circuit switch 6 is turned on, the positive DC terminal 10a and the ground point are connected, and the positive DC terminal 10a and the negative DC terminal 10b are short-circuited via the ground point.
  • a zero point auxiliary current that assists in creating a current zero point in the accident current flows.
  • FIG. 5 is a diagram showing a current path through which the zero-point auxiliary current flows, and shows a path for one cycle of the three-phase alternating current.
  • the flowing phase changes depending on the magnitude relationship of the three-phase AC voltage, but the short-circuit switch 6 is connected to all of the three-phase legs 2 via the positive-side DC terminal 10a.
  • a zero point auxiliary current flows in a balanced manner for all three phases.
  • both the ground fault current and the zero point auxiliary current are supplied from the AC system 100 to the power converter.
  • the fault current flowing in the AC circuit breaker 5 is, for example, the sum of the ground fault current and the zero-point auxiliary current when considering the time average of one AC cycle, and the DC component of the ground fault current is determined by the DC component of the zero-point auxiliary current.
  • the current can be reduced to such an extent that the AC circuit breaker 5 can be interrupted.
  • FIG. 6A is a current waveform diagram of the AC circuit breaker before and after the occurrence of the accident when the short-circuit switch 6 is not provided
  • FIG. 6B is an accident when the short-circuit switch 6 is provided. It is a current waveform diagram of AC circuit breaker 5 before and after generation.
  • the current waveform of the fault phase indicated by the solid line is rising from the zero current line after the occurrence of the ground fault and oscillating up and down, and the DC component is superimposed on the ground fault current. Can be confirmed. Further, it can be seen that due to the superimposition of the DC component, it does not cross the current zero line and cannot be interrupted by the AC circuit breaker 5. The other two-phase current waveforms indicated by the broken line and the dotted line descend from the current zero line and oscillate up and down after the occurrence of the ground fault. It can be confirmed that the components are superimposed.
  • the current waveform of each phase is the same as that in FIG. 6A until the short-circuit switch 6 is turned on, but after the short-circuit switch 6 is turned on, the solid line
  • the current waveform of the accident phase indicated by is reduced so as to cross the zero current line, and it can be confirmed that the DC component of the ground fault current is offset by the zero point auxiliary current.
  • the other two-phase current waveforms indicated by the broken line and the dotted line also show a behavior that approaches the zero current line after the occurrence of the ground fault, and the DC component contained in the ground fault current is offset by the zero point auxiliary current. It can be confirmed.
  • the DC terminals 10a and 10b are short-circuited by the short-circuit switch 6, and a zero-phase auxiliary current having a three-phase balance is caused to flow, thereby artificially creating a current zero point in the accident current flowing through the AC circuit breaker 5. be able to.
  • the AC circuit breaker 5 causes the AC circuit breaker 5 to interrupt the AC circuit. Since the current zero point can be created artificially in this way, even when an accident occurs and a DC component is superimposed on the accident current, the accident current can be reduced and the accident current can be interrupted safely and quickly. .
  • a ground fault accident has been described as an example, but a similar effect can be obtained even in a short-circuit accident.
  • the short-circuit current flows from the AC system 100 to the positive arm 2a or the negative arm 2b of the short-circuit fault phase as shown in FIG.
  • a DC component may be superimposed on the short-circuit current.
  • the short-circuit switch 6 can reduce the short-circuit current and interrupt the accident current safely and quickly.
  • the power conversion device is provided between a DC terminal having a positive DC terminal 10a and a negative DC terminal 10b and a three-phase AC terminal, and between the DC and the three-phase AC.
  • a power conversion device that converts power into a plurality of unit converters including switching elements 11a and 11b and a capacitor 13, and is connected in series between a positive DC terminal 10a and a negative DC terminal 10b.
  • the positive side arm 2a and the negative side arm 2b connected to each other are provided in three phases, and the positive side DC terminal 10a and the negative side DC terminal 10b are provided between the positive side DC terminal 10a and the negative side DC terminal 10b.
  • a short-circuit switch 6 connected via a grounding point is provided.
  • the current flowing through the AC circuit breaker 5 is the sum of the accident current and the zero point auxiliary current, and the DC component can be canceled out of the accident current flowing through the AC circuit breaker. For this reason, even if a three-phase imbalance occurs due to an accident, a zero current point can be created, and the current can be safely and quickly interrupted.
  • the control device 7 includes a short-circuit switch control unit that outputs a close command to the short-circuit switch 6, and the control device 7 outputs a close command to the short-circuit switch 6, indicating the closed state of the short-circuit switch 6.
  • the circuit breaker control unit After receiving the signal, the circuit breaker control unit outputs a circuit break command to the AC circuit breaker 5.
  • the short-circuit switch 6 is a semiconductor switch. Thereby, the positive side DC terminal 10a and the negative side DC terminal 10b can be short-circuited instantaneously through the grounding point. That is, since the DC component of the accident current can be instantaneously canceled by the zero point auxiliary current, the current zero point can be quickly created, the AC circuit breaker 5 can be prevented from being destroyed, and the current can be safely and quickly supplied. Can be blocked.
  • FIG. 8 is a diagram illustrating a configuration of a power conversion device according to a modification of the first embodiment.
  • This modification includes a multi-winding transformer 8 in place of the buffer reactor 4.
  • the U-phase, V-phase, and W-phase multi-winding transformers 8 are star-connected.
  • the multi-winding transformer 8 is a transformer having at least three windings.
  • the multi-winding transformer 8 includes an AC system side winding 81 connected to the three-phase AC system 100, and a first DC system side winding connected in series between the positive side arm 2a and the negative side arm 2b. 82, the second DC system side winding 83, and an iron core (not shown).
  • the multi-winding transformer 8 may have a stable winding for suppressing harmonics flowing into the system.
  • the windings 81 to 83 are wound around an iron core.
  • the windings 82 and 83 have the same number of turns, and have opposite polarities when the negative polarities are connected to each other.
  • the multi-winding transformer 8 has a neutral wire 84 between the first DC system side winding 82 and the second DC system side winding 83 of each of the three phases.
  • the neutral wire 84 extends from between the first DC system side winding 82 and the second DC system side winding 83 of each of the three phases, and is connected to each other.
  • the U phase, the V phase, and the W phase Are connected to each other.
  • the DC current in the power converter is changed from the positive side arm 2a to the first DC system side winding 82, the second DC system side. It flows to the negative arm 2b via the winding 83. Therefore, since the first DC system side winding 82 and the second DC system side winding 83 are connected in series with opposite polarities, the DC magnetomotive forces caused by the respective DC currents that are opposite to each other have opposite polarities and cancel each other. DC magnetic flux does not occur in the iron core. Furthermore, since the DC magnetomotive force can be canceled within the same phase, the iron core of the multi-winding transformer 8 should operate without being demagnetized or saturated even when an unbalance occurs in the AC system during an accident or the like. Can do.
  • the buffer reactor 4 has been a factor in increasing the size and cost of the device, but the multi-winding transformer 8 interposes the buffer reactor 4 between the positive arm 2a and the negative arm 2b. There is no need to let them. Therefore, it is possible to reduce the size and cost of the device.
  • FIG. 9 is a diagram illustrating a configuration of the power conversion device according to the second embodiment.
  • the short-circuit switch 6 connects the neutral wire 84 and the ground point of the multi-winding transformer 8.
  • the short-circuit switch 6 is turned on to short-circuit the neutral wire 84 and the grounded DC terminal (here, the negative DC terminal 10b).
  • the closed circuit has a circuit configuration balanced in three phases.
  • the zero-point auxiliary current flowing in the circuit is also a current balanced in three phases. Therefore, the current flowing through the AC circuit breaker 5 is the sum of the accident current and the zero point auxiliary current, and the DC component can be canceled out of the accident current flowing through the AC circuit breaker 5.
  • the current waveform of the accident phase indicated by the solid line is reduced to cross the zero current line, and it is confirmed that the DC component of the ground fault current is offset by the zero point auxiliary current. it can. In this way, even if the three-phase imbalance occurs due to an accident, a zero current point can be created and the current can be quickly shut off.
  • the applied voltage only needs to be 1 ⁇ 2, so the breakdown voltage of the short-circuit switch 6 can be reduced.
  • FIG. 11 is a diagram illustrating a configuration of the power conversion device according to the third embodiment.
  • an impedance 9 is inserted between the short-circuit switch 6 and the ground point.
  • the impedance 9 can be configured by, for example, a resistor, a reactor, or a series connection thereof.
  • the impedance 9 is inserted in series with the short-circuit switch 6, the magnitude of the zero point auxiliary current can be changed. For example, when it is desired to increase the magnitude of the zero-point auxiliary current, the impedance 9 is decreased. When it is desired to decrease the magnitude of the zero-point auxiliary current, the impedance 9 is increased. Thereby, the accident current passing through the AC circuit breaker 5 can be reduced, and a zero current point can be created. Therefore, the influence on the AC system 100 can be minimized.
  • FIG. 12 is a sequence diagram of the control device 7 according to the fourth embodiment.
  • the control device 7 After the controller detects an accident, the control device 7 outputs a close command to the short-circuit switch 6 before the short-circuit switch control unit receives the signal indicating the close operation of the short-circuit switch 6, and then the ACB controller A shutoff command is output to the device 5.
  • command by the circuit breaker control part should just be before reception of the signal which shows the closed state of the short circuit switch 6.
  • the control device 7 may output a close command to the short-circuit switch 6 simultaneously with the shut-off command to the AC circuit breaker 5 by the breaker control unit and the short-circuit switch control unit.
  • the opening operation timing of the AC circuit breaker 5 and the closing operation timing of the short circuit switch 6 can be brought close to each other, the accident current passing time of the AC circuit breaker 5 can be shortened.
  • the amount of heat generated in the AC circuit breaker 5 can be suppressed to less than a specified value of the generated heat amount of the circuit breaker 5, and the breakage of the AC circuit breaker 5 can be prevented.
  • the unit converter is the chopper cell 1, but it may be a full bridge cell. As shown in FIG. 13, by making the unit converter a full bridge cell composed of four switching elements 11a and 11b, a capacitor 13 of a DC voltage source, and four diodes 12a and 12b, a DC ground fault, etc. Accident current can be cut off.
  • the on / off timing of the switching elements 11a and 11b of the chopper cell 1 is performed by the control device 7, but may be performed by another control device.
  • the third embodiment has been described based on the second embodiment, the third embodiment can also be applied to the first embodiment, its modifications, and the fourth embodiment.
  • the fourth embodiment has been described based on the first embodiment, the fourth embodiment can also be applied to modifications of the first embodiment, the second embodiment, and the third embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

交流系統側に直流事故電流が流れても、交流遮断器を通過する事故電流を低下させ、安全かつ迅速に事故電流を遮断することのできる電力変換装置を提供する。正側直流端子10a及び負側直流端子10bを有する直流端子と3相交流端子との間に設けられ、直流と3相交流との間で相互に電力を変換する電力変換装置であって、スイッチング素子11a、11bとコンデンサ13とを含む単位変換器がそれぞれ多段接続されてなり、正側直流端子10aと負側直流端子10bとの間に直列接続された正側アーム2a及び負側アーム2bを3相各相に備え、正側直流端子10aと負側直流端子10bとの間には、正側直流端子10aと負側直流端子10bとを接地点を介して接続する短絡スイッチ6を設ける。

Description

電力変換装置
 本発明の実施形態は、直流と交流との間で相互に電力を変換する電力変換装置に関する。
 従来、直流と交流との間で相互に電力を変換する電力変換装置には、3相2レベル変換器が適用されてきた。3相2レベル変換器は、直流から3相交流を出力する電力変換装置を構成する上で必要最小限の半導体スイッチング素子6個で構成されるため、小型化及び低コスト化を図ることができる利点がある。
 一方、その出力電圧波形は、入力直流電圧をVdcとしたとき、各相毎に、+Vdc/2と、-Vdc/2の2値の切替をPWM(パルス幅変調)で行って、擬似的に生成された交流波形となる。高耐圧のスイッチング素子を使用していてPWMスイッチング周波数を高くできない高電圧モータドライブや、直流送電などの電力系統接続機器においては、スイッチング高調波低減のために、3相交流出力にリアクトルやコンデンサで構成されるフィルタを挿入するが、電力系統に流れ出す高調波成分が他の機器に悪影響を及ぼさないレベルまで低減するためには、このフィルタ容量を大きくする必要があり、コスト上昇と重量増加を招いていた。
 そこで、モジュラーマルチレベル変換器(以下、MMCという。)のように、コンデンサなどの直流電圧源を含んでなる単位変換器を多段接続し、電力系統、配電系統電圧と同等な高電圧を変換できる電力変換器の研究開発が進められている。MMCは、重量及び体積が大きくシステム全体に占めるコストも比較的大きいトランスを簡略にすることができる。また、単位変換器は、スイッチング素子及び直流コンデンサを含み構成され、スイッチング素子のオンオフのタイミングをずらすことにより、出力電圧及び電圧波形が多レベル化でき、正弦波に近づけることができるので、高調波フィルタが不要になるメリットを享受することができる。
 このような単位変換器を多段に接続した回路方式では、各単位変換器の直流コンデンサの電圧値を一定に制御するために、直流電源を還流させる還流電流を常時流すことが原理的に必要である。3相を同一の直流電源に接続すると、各相の直流電圧合成値がわずかにでも異なると、相間に過大な短絡電流が流れてしまい、機器を破壊してしまう虞がある。従来では機器を保護するため、各相にバッファリアクトルを挿入し、短絡電流が過大にならないように制限している。
特開2013-115837号公報
 従来から、電力変換装置は、落雷や経年劣化による絶縁破壊、人為的ミスによる誤動作などによって、電力変換装置が地絡又は短絡し、交流系統から過大な事故電流が流れた場合に備えて、交流系統との間の交流電路に交流遮断器を設置する。この交流遮断器は、接点を開離した際に接点間に生じたアーク放電を消滅させて上記のような過大な事故電流を遮断し、交流系統と電力変換装置とを電気的に切り離す。
 そのため、交流遮断器が遮断するには、当該遮断器に流れる事故電流がアーク放電が消滅させられる程度まで低下する必要がある。交流系統からの事故電流は、通常交流であり、交流1周期に極性が切り替わる。従って、1周期の間にアーク放電を消滅させられる程度まで事故電流が低下した場合に、安全かつ迅速に遮断が可能となる。
 しかし、電力変換装置の3相のうち1相のように、3相のバランスが崩れた状態で地絡や短絡などの事故が発生した場合、相毎の事故電流の大きさが変わり、交流系統側に直流事故電流が流れることがある。この場合、事故電流は、交流電流に直流成分が重畳した電流となるため、アーク放電が消滅する程度になるまで事故電流が低下せず、交流遮断器で事故電流を遮断できないという問題があった。
 本発明の実施形態に係る電力変換装置は、上記のような課題を解決するためになされたものであり、交流系統側に直流事故電流が流れても、交流遮断器を通過する事故電流を低下させ、安全かつ迅速に事故電流を遮断することのできる電力変換装置を提供することを目的とする。
 上記の目的を達成するために、本実施形態の電力変換装置は、正側直流端子及び負側直流端子を有する直流端子と3相交流端子との間に設けられ、直流と3相交流との間で相互に電力を変換する電力変換装置であって、スイッチング素子とコンデンサとを含む単位変換器がそれぞれ多段接続されてなり、前記正側直流端子と前記負側直流端子との間に直列接続された正側アーム及び負側アームを3相各相に備え、前記正側直流端子と前記負側直流端子との間には、前記正側直流端子と前記負側直流端子とを接地点を介して又は直接に接続する短絡スイッチが設けられていること、を備えることを特徴とする。
第1の実施形態に係る電力変換装置の構成を示す図である。 チョッパセルの構成を示す図である。 第1の実施形態に係る制御装置のシーケンス図である。 1相の正側アームと負側アームとの間の接続点で地絡事故が発生した場合の地絡電流経路を示す図である。 ゼロ点補助電流が流れる電流経路を示す図である。 (a)は、短絡スイッチが設けられていない場合における事故発生前後の交流遮断器の電流波形図である。(b)は、短絡スイッチが設けられた場合における事故発生前後の交流遮断器の電流波形図である。 1相の正側アームで短絡事故が発生した場合の短絡電流経路を示す図である。 第1の実施形態の変形例に係る電力変換装置の構成を示す図である。 第2の実施形態の電力変換装置の構成を示す図である。 多巻線変圧器の中性線に短絡スイッチが設けられた場合における事故発生前後の交流遮断器の電流波形図である。 第3の実施形態の電力変換装置の構成を示す図である。 第4の実施形態に係る制御装置のシーケンス図の一例である。 フルブリッジセルの構成を示す図である。
 [1.第1の実施形態]
 [1-1.構成]
 以下では、図1、図2を参照しつつ、本実施形態の電力変換装置について説明する。図1は、本実施形態に係る電力変換装置の構成を示す図である。
 電力変換装置は、交流と直流の間で相互に電力を変換し、交流から直流に又は直流から交流に変換して電力伝送を行う。電力変換装置は、正側直流端子10a及び負側直流端子10bを有する直流端子と、3相交流系統100に接続される3相交流端子との間に接続されている。この正側直流端子10a及び負側直流端子10bが、例えば、他の電力変換装置や直流線路と接続されて、電力変換装置は、50Hzから60Hzに変換するなどの周波数変換や、直流送電システムに用いられる。なお、各回路構成を説明するのに、正側直流端子10a側を「正側」と称し、負側直流端子10b側を「負側」と称する。
 電力変換装置は、MMC、変圧器3、バッファリアクトル4、交流遮断器5、短絡スイッチ6、及び制御装置7を備える。
 MMCは、多数の単位変換器の列から構成され、各単位変換器のスイッチングタイミングがずらされることにより、階段状の交流電圧などの任意の電圧を出力する。単位変換器は、例えば、図2に示すようなチョッパセル1である。
 チョッパセル1は、2つのスイッチング素子11a、11b、ダイオード12a、12b、及びコンデンサ13を有し、コンデンサ13を電圧源とし、スイッチング素子11a、11bのオンオフ動作により所望の直流電圧を出力する。
 具体的には、スイッチング素子11a、11bは、互いに直列接続されてレグを構成し、コンデンサ13はこのレグに並列に接続されている。スイッチング素子11a、11bとしては、IEGT、GTO、GCT、MOSFET、又はIGBTなどの制御可能な自己消弧型素子を用いることができる。スイッチング素子11a、11bには、帰還ダイオード12a、12bが逆並列に接続されている。チョッパセル1は、スイッチング素子11aがオン時にコンデンサ13の直流電圧Vcを出力し、スイッチング素子11bがオン時にゼロ電圧となる。
 MMCは、このような単位変換器が正側直流端子10a及び負側直流端子10b間にU相、V相、及びW相の相ごとに、多段に直列接続されている。直流端子10a、10b間の単位変換器の並びをレグ2と称すると、各相のレグ2は正側直流端子10aと負側直流端子10bとの間に並列接続される。
 このようなレグは、正側アーム2aと負側アーム2bとに大別される。すなわち、正側アーム2aは、単位変換器が多段に直列接続されてなる単位変換器群であり、その一端が正側直流端子10aに接続される。負側アーム2bは、単位変換器が多段に直列接続されてなる単位変換器群であり、その一端が負側直流端子10bに接続される。正側アーム2aと負側アーム2bは他端同士で互いに接続される。各アーム2a、2bの正側直流端子10a、負側直流端子10bに接続される端子がMMCの直流端子となり、正側アーム2aと負側アーム2bの接続点が交流端子となる。
 変圧器3は、交流端子と交流系統100との間に接続されている。変圧器3は、交流系統100と電力変換装置との電気的な絶縁及びMMCと交流系統100との電圧レベルの差を合わせるものであり、必ずしも必要ではない。
 バッファリアクトル4は、正側アーム2aと負側アーム2bにそれぞれ設けられている。すなわち、正側アーム2aのバッファリアクトル4は、交流端子と正側アーム2aとの間に直列接続される。負側アーム2bのバッファリアクトル4は、交流端子と負側アーム2bとの間に直列接続される。バッファリアクトル4は、3相の直流電圧が異なることにより、相間に過大な短絡電流が流れるのを防止するリアクトルである。
 交流遮断器5は、交流端子と交流系統100との間に接続される。交流遮断器5は、入力する信号に応じて、閉路、開路の動作が可能なスイッチである。交流遮断器5は、接点の接離により開閉可能な機械的な遮断器であり、例えば、ガス遮断器を用いることができる。
 短絡スイッチ6は、ここでは、直流端子と接続点との間に接続されており、入力された信号に応じて閉路、開路の選択が可能なスイッチである。本実施形態では、負側直流端子10bが接地電位となっており、短絡スイッチ6は接地点及び正側直流端子10aに接続されている。短絡スイッチ6がオンになると正側直流端子10aと負側直流端子10bとが接地点を介して短絡する。短絡スイッチ6は、MMCの3相のレグ2の全てに接続されていれば良く、正側直流端子10aを接地電位として、短絡スイッチ6を接地点及び負側直流端子10bに接続するようにしても良い。また、正側直流端子10aと負側直流端子10bとの間に接続するようにしても良い。
 短絡スイッチ6は、短絡に耐え得る定格を有するスイッチであり、数十msのオーダーでオンとなるような迅速な応答性を有するスイッチである。例えば、短絡スイッチ6としては、サイリスタなどの半導体スイッチを用いることができる。
 電力変換装置には、各部の電圧、電流を測定する測定器(不図示)が設けられている。この測定器は、電流計、電圧計であり、例えば、正側アーム2a、負側アーム2bの電流や、変圧器3の電圧、電流、直流端子の電圧、電流を測定する。
 制御装置7は、電力変換装置の制御を行う装置である。制御装置7は、測定器から各部の電流値、電圧値を取得し、事故発生を検出する検出部と、交流遮断器5に交流系統100と交流端子との間の交流電路を遮断させる信号を生成し、出力する遮断器制御部と、短絡スイッチ6に閉指令を出力する短絡スイッチ制御部とを有する。制御装置7は、チョッパセル1のスイッチング素子11a、11bのオンオフのタイミングを制御する。
 なお、交流遮断器5および短絡スイッチ6には、交流遮断器5、短絡スイッチ6のメインの開閉状態と機械的に同期して動作する補助接点と称されるスイッチがそれぞれ設けられており、当該補助接点のオンオフ状態をセンサで読み取って開閉状態を示す信号が制御装置7に入力させることができる。
 [1-2.作用]
 上記のような構成を有する電力変換装置の作用について、図3~図6を用いて説明する。図3は、制御装置7のシーケンス図である。制御装置7は、検出部により各部の電流、電圧の値から事故を検出する。例えば、地絡事故が発生したとすると、検出部は正側アーム2a、負側アーム2b、変圧器3の2次側の電流値を取得し、それらの差動電流を求めることで、ある相の正側アーム2aと負側アーム2bの間の接続点で地絡事故が発生したことを検出できる。なお、以下では、事故は地絡事故を例に説明する。
 図4は、1相の正側アーム2aと負側アーム2bとの間の接続点で地絡事故が発生した場合の地絡電流経路であり、3相交流の1周期分の経路を示す。図4に示すように、地絡事故が生じると、事故電流として、地絡点に向かって交流系統100から地絡電流が供給される。この地絡電流は、電力変換装置の負側直流端子10bの接地点から、地絡事故が生じていない他の2相の負側アーム2bを通り、交流系統100へ戻る。
 事故の検出後、制御装置7は、スイッチング素子11a、11bをオフにしてMMCをゲートブロック状態とする。
 ここで、仮に交流遮断器5を開離動作させると、接点間が開離し両接点間にアーク放電が発生する。通常、事故が発生しない場合は、電流ゼロ点でアーク放電が消滅することにより事故電流が遮断されるが、1相が地絡したことにより、3相の地絡電流のバランスが崩れる。例えば、U相で地絡した場合、図4に示すように、3相の交流電圧の大小関係にも依るが、交流系統100から地絡点に向かって地絡電流が供給され、負側直流端子10bの接地点を介してV相、W相の負側アーム2bを通って交流系統100へ戻る経路となり、3相が不平衡になる。その際、交流遮断器5を通過する地絡電流に直流成分が重畳し、遮断できる程度まで電流が低下しない場合がある。例えば、U相が地絡した場合、U相の直流電流成分が大きくなり、交流の地絡電流がシフトし、電流ゼロ点にクロスしない場合がある。
 そこで、制御装置7は、短絡スイッチ制御部により、短絡スイッチ6をオンにする信号を当該スイッチに出力する。これにより、短絡スイッチ6がオンとなり、正側直流端子10aと接地点とが接続され、接地点を介して正側直流端子10aと負側直流端子10bとが短絡する。その結果、事故電流に電流ゼロ点を作り出すことをアシストするゼロ点補助電流が流れる。
 図5は、ゼロ点補助電流が流れる電流経路を示す図であり、3相交流の一周期分の経路を示す。図5に示すように、3相の交流電圧の大小関係によって流れる相は変わるが、短絡スイッチ6が正側直流端子10aを介して3相のレグ2の全てに接続されているため、直流端子10a、10b間を短絡させることで、3相全てにバランスしてゼロ点補助電流が流れる。これにより、3相不平衡な地絡電流に3相平衡なゼロ点補助電流が加わることで、交流系統100からは、地絡電流とゼロ点補助電流の両方が電力変換装置に供給される。つまり、交流遮断器5に流れる事故電流は、例えば交流1周期の時間平均で考えると、地絡電流とゼロ点補助電流の和となり、地絡電流の直流成分がゼロ点補助電流の直流成分により相殺され、交流遮断器5が遮断可能な程度にまで電流を低下させることができる。
 実際にゼロ点補助電流により、電流ゼロ点が作り出されていることが確認できる解析結果を示す。すなわち、図6(a)は、短絡スイッチ6が設けられていない場合における事故発生前後の交流遮断器の電流波形図であり、図6(b)は、短絡スイッチ6が設けられた場合における事故発生前後の交流遮断器5の電流波形図である。
 図6(a)に示すように、実線で示す事故相の電流波形は、地絡事故発生後に電流ゼロのラインから上昇して上下に振動しており、地絡電流に直流成分が重畳したことが確認できる。また、直流成分の重畳により、電流ゼロのラインとクロスしておらず、交流遮断器5で遮断できないことが分かる。なお、破線及び点線で示す他の2相の電流波形は、地絡事故発生後に電流ゼロのラインから下降して上下に振動しており、1相の事故の影響を受けて地絡電流に直流成分が重畳したことが確認できる。
 一方、図6(b)に示すように、短絡スイッチ6をオンにするまでは各相の電流波形は図6(a)と同じ挙動となるが、短絡スイッチ6をオンにした後は、実線で示す事故相の電流波形は、電流ゼロのラインにクロスするように低減しており、ゼロ点補助電流により地絡電流の直流成分が相殺されていることが確認できる。なお、破線及び点線で示す他の2相の電流波形も、地絡事故発生後に電流ゼロのラインに近づくような挙動を示しており、ゼロ点補助電流によって地絡電流に含まれる直流成分が相殺されたことが確認できる。
 以上のように、短絡スイッチ6により、直流端子10a、10b間を短絡させ、3相平衡なゼロ点補助電流を流すことで、交流遮断器5に流れる事故電流に人工的に電流ゼロ点を作り出すことができる。
 上記のように、短絡スイッチ6がオンになり、制御装置7は、短絡スイッチ6の閉状態を示す信号を受けた後、遮断器制御部により、交流遮断器5に交流電路を遮断させる。このように人工的に電流ゼロ点を作り出すことができるので、事故が発生して事故電流に直流成分が重畳した場合でも、事故電流を低下させ、安全かつ迅速に事故電流を遮断することができる。
 上記では、地絡事故を例に説明したが、短絡事故でも同様の作用効果を得ることができる。例えば、ある相の正側アーム2a又は負側アーム2bが短絡した場合、短絡電流は、図7に示すように、交流系統100から当該短絡事故相の正側アーム2a又は負側アーム2bに流れ、他の2相の正側アーム2a又は負側アーム2bを経由して交流系統100へ戻る際、短絡電流に直流成分が重畳することがある。このような場合でも、短絡スイッチ6により、短絡電流を低下させ、安全かつ迅速に事故電流を遮断することができる。
 [1-3.効果]
(1)本実施形態に係る電力変換装置は、正側直流端子10a及び負側直流端子10bを有する直流端子と3相交流端子との間に設けられ、直流と3相交流との間で相互に電力を変換する電力変換装置であって、スイッチング素子11a、11bとコンデンサ13とを含む単位変換器がそれぞれ多段接続されてなり、正側直流端子10aと負側直流端子10bとの間を直列接続された正側アーム2a及び負側アーム2bを3相各相に備え、正側直流端子10aと負側直流端子10bとの間には、正側直流端子10aと負側直流端子10bとを接地点を介して接続する短絡スイッチ6を設けるようにした。
 これにより、電力変換装置に地絡や短絡などの事故が発生し、交流系統100側に直流の事故電流が流れる場合でも、短絡スイッチ6により直流端子10a、10b間を短絡させて電力変換装置から交流遮断器5に直流成分を含むゼロ点補助電流を流すことができるので、事故電流の直流成分を低減させることができる。すなわち、短絡スイッチ6は、正側アーム2a又は負側アーム2bの3相のいずれにも接続されているので、短絡スイッチ6をオンにすることで、3相全てにバランスしてゼロ点補助電流を流すことができる。従って、交流遮断器5に流れる電流は、事故電流とゼロ点補助電流との和となり、交流遮断器に流れる事故電流のうち、直流成分を相殺することができる。そのため、事故により3相不平衡になっても、電流ゼロ点を作り出すことができ、安全かつ迅速に遮断することができる。
(2)3相の交流系統100と、正側アーム2a及び負側アーム2b間の接続点との間の交流電路に設けられた交流遮断器5に遮断指令を出力する遮断器制御部と、短絡スイッチ6に閉指令を出力する短絡スイッチ制御部とを有する制御装置7を備え、制御装置7は、短絡スイッチ制御部が短絡スイッチ6に閉指令を出力し、短絡スイッチ6の閉状態を示す信号を受けた後、遮断器制御部が交流遮断器5に遮断指令を出力するようにした。これにより、交流遮断器5にゼロ点が生じることを担保した上で交流遮断器5による遮断をすることができる。結果的に、交流遮断器5の不動作によって短絡スイッチ6などの他の機器の道連れ的な故障を防止することができる。
(3)短絡スイッチ6を半導体スイッチとした。これにより、瞬時に接地点を介して正側直流端子10aと負側直流端子10bとの間を短絡させることができる。すなわち、ゼロ点補助電流により事故電流の直流成分を瞬時に相殺することができるので、電流ゼロ点を迅速に作り出すことができ、交流遮断器5の破壊を防止できるとともに、安全かつ迅速に電流を遮断することができる。
 [1-4.変形例]
 第1の実施形態に係る電力変換装置の変形例を、図8を用いて説明する。本変形例は、第1の実施形態と基本構成は同じである。よって、第1の実施形態と異なる点のみを説明し、第1の実施形態と同じ部分については同じ符号を付して詳細な説明は省略する。
 図8は、第1の実施形態の変形例に係る電力変換装置の構成を示す図である。本変形例は、バッファリアクトル4に代えて多巻線変圧器8を備える。U相、V相、及びW相の多巻線変圧器8はスター結線されている。多巻線変圧器8は、少なくとも3つ以上の巻線を有する変圧器である。多巻線変圧器8は、3相交流系統100と接続される交流系統側巻線81と、正側アーム2aと負側アーム2bとの間に直列接続された第1の直流系統側巻線82及び第2の直流系統側巻線83と、不図示の鉄心とを有する。多巻線変圧器8は、系統に流出する高調波抑制のための安定巻線を有していても良い。巻線81~83は、鉄心に巻回されている。巻線82、83は、巻き数が等しく、負極性が互いに接続されることで逆極性を有する。
 また、多巻線変圧器8は、3相各相の第1の直流系統側巻線82と第2の直流系統側巻線83との間に中性線84を有する。中性線84は、3相各相の第1の直流系統側巻線82と第2の直流系統側巻線83との間から延びて互いに結線しており、U相、V相及びW相の多巻線変圧器8を互いに接続している。
 このように、バッファリアクトル4を多巻線変圧器8に代えたことで、電力変換装置内の直流電流は、正側アーム2aから第1の直流系統側巻線82、第2の直流系統側巻線83を介して負側アーム2bへ流れる。従って、第1の直流系統側巻線82、第2の直流系統側巻線83が逆極性で直列接続されているので、それぞれ流れる直流電流による直流起磁力は、互いに逆極性になって打ち消し合い、鉄心内に直流磁束が生じない。更に、同一相内で直流起磁力を打ち消すことができるため、事故時などに交流系統に不平衡が生じた場合でも、多巻線変圧器8の鉄心は偏磁や飽和せずに動作することができる。
 また、このバッファリアクトル4は、装置の大型化及び高コスト化の要因となっていたが、多巻線変圧器8により、正側アーム2aと負側アーム2bとの間にバッファリアクトル4を介在させる必要がなくなる。そのため、装置の小型化及び低コスト化を図ることができる。
 [2.第2の実施形態]
 第2の実施形態について、図9を用いて説明する。第2の実施形態は、第1の実施形態の変形例と基本構成は同じである。よって、第1の実施形態の変形例と異なる点のみを説明し、第1の実施形態の変形例と同じ部分については同じ符号を付して詳細な説明は省略する。
 図9は、第2の実施形態の電力変換装置の構成を示す図である。第2の実施形態では、短絡スイッチ6は、多巻線変圧器8の中性線84と接地点とを接続する。
 これにより、中性線84が3相全てに接続されているので、短絡スイッチ6をオンにして中性線84と、接地された直流端子(ここでは負側直流端子10b)とを短絡させて閉路にした回路は、3相でバランスした回路構成となる。そのため、当該回路に流れるゼロ点補助電流も3相でバランスした電流となる。従って、交流遮断器5に流れる電流は、事故電流とゼロ点補助電流との和となり、交流遮断器5に流れる事故電流のうち、直流成分を相殺することができる。図10に示すように、実線で示す事故相の電流波形は、電流ゼロのラインにクロスするように低減しており、ゼロ点補助電流により地絡電流の直流成分が相殺されていることが確認できる。このように、事故により3相不平衡になっても、電流ゼロ点を作り出すことができ、速やかに遮断することができる。
 また、短絡スイッチ6を直流端子と接続する場合と比べて、印加される電圧が1/2で済むため、短絡スイッチ6の耐圧を低減することができる。
 [3.第3の実施形態]
 第3の実施形態について、図11を用いて説明する。第3の実施形態は、第2の実施形態と基本構成は同じである。よって、第2の実施形態と異なる点のみを説明し、第2の実施形態と同じ部分については同じ符号を付して詳細な説明は省略する。
 図11は、第3の実施形態の電力変換装置の構成を示す図である。第3の実施形態では、短絡スイッチ6と接地点との間にインピーダンス9が挿入されている。インピーダンス9は、例えば抵抗、リアクトル、又はこれらを直列接続して構成することができる。
 このように、短絡スイッチ6と直列にインピーダンス9が挿入されるので、ゼロ点補助電流の大きさを変化させることができる。例えば、ゼロ点補助電流の大きさを大きくしたいときは、インピーダンス9を小さくし、ゼロ点補助電流の大きさを小さくしたいときは、インピーダンス9を大きくする。これにより、交流遮断器5を通過する事故電流を低下させて、電流ゼロ点を作り出すことができる。そのため、交流系統100への影響を最小限に抑えることができる。
 [4.第4の実施形態]
 第4の実施形態について、図12を用いて説明する。第4の実施形態は、第1の実施形態と基本構成は同じである。よって、第1の実施形態と異なる点のみを説明し、第1の実施形態と同じ部分については同じ符号を付して詳細な説明は省略する。
 図12は、第4の実施形態に係る制御装置7のシーケンス図である。制御装置7は、検出部により事故を検出した後、短絡スイッチ制御部が短絡スイッチ6に閉指令を出力し、短絡スイッチ6の閉動作を示す信号を受ける前に、遮断器制御部が交流遮断器5に遮断指令を出力する。遮断器制御部による遮断指令は、短絡スイッチ6の閉状態を示す信号の受信前であれば良い。例えば、図12に示すように、制御装置7は、遮断器制御部及び短絡スイッチ制御部により、交流遮断器5への遮断指令と同時に短絡スイッチ6に閉指令を出力しても良い。
 これにより、交流遮断器5の開動作タイミングと短絡スイッチ6の閉動作タイミングを近づけることができるため、交流遮断器5の事故電流通過時間を短くすることができる。その結果、交流遮断器5での発生熱量を当該遮断器5の発生熱量規定値未満に抑えることができ、交流遮断器5の破壊を防止することができる。
 [5.その他の実施形態]
 本明細書においては、本発明に係る複数の実施形態を説明したが、これらの実施形態は例として提示したものであって、発明の範囲を限定することを意図していない。以上のような実施形態は、その他の様々な形態で実施されることが可能であり、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
 例えば、上記の実施形態では、単位変換器をチョッパセル1としたが、フルブリッジセルとしても良い。図13に示すように、単位変換器を4つのスイッチング素子11a、11bと直流電圧源のコンデンサ13と4つのダイオード12a、12bで構成されるフルブリッジセルにすることにより、直流地絡事故などの事故電流を遮断することができる。
 チョッパセル1のスイッチング素子11a、11bのオンオフのタイミングは、制御装置7が行うようにしたが、別の制御装置が行うようにしても良い。
 第3の実施形態は、第2の実施形態を基本として説明したが、第1の実施形態、その変形例、第4の実施形態に対しても適用可能である。
 第4の実施形態は、第1の実施形態を基本として説明したが、第1の実施形態の変形例、第2の実施形態、及び第3の実施形態に対しても適用可能である。
1         チョッパセル
10a       正側直流端子
10b       負側直流端子
11a、11b   スイッチング素子
12a、12b   ダイオード
13        コンデンサ
2         レグ
2a        正側アーム
2b        負側アーム
3         変圧器
4         バッファリアクトル
5         交流遮断器
6         短絡スイッチ
7         制御装置
8         多巻線変圧器
81        交流系統側巻線
82        第1の直流系統側巻線
83        第2の直流系統側巻線
84        中性線
9         インピーダンス
100       交流系統

Claims (10)

  1.  正側直流端子及び負側直流端子を有する直流端子と3相交流端子との間に設けられ、直流と3相交流との間で相互に電力を変換する電力変換装置であって、
     スイッチング素子とコンデンサとを含む単位変換器がそれぞれ多段接続されてなり、前記正側直流端子と前記負側直流端子との間に直列接続された正側アーム及び負側アームを3相各相に備え、
     前記正側直流端子と前記負側直流端子との間には、前記正側直流端子と前記負側直流端子とを接地点を介して又は直接に接続する短絡スイッチが設けられていること、
     を特徴とする電力変換装置。
  2.  前記負側直流端子が接地され、前記短絡スイッチは、前記正側直流端子と前記接地点とを接続すること、
     を特徴とする請求項1に記載の電力変換装置。
  3.  前記正側直流端子が接地され、前記短絡スイッチは、前記負側直流端子と前記接地点とを接続すること、
     を特徴とする請求項1に記載の電力変換装置。
  4.  前記正側アーム及び前記負側アームとの間に接続された多巻線変圧器を各相に備え、
     前記多巻線変圧器は、
     3相交流系統に接続される交流系統側巻線と、
     前記正側アームと前記負側アームとの間に逆極性で直列接続された第1の直流系統側巻線及び第2の直流系統側巻線と、
     を有すること、
     を特徴とする請求項1~3の何れかに記載の電力変換装置。
  5.  前記正側アーム及び前記負側アームとの間に接続された多巻線変圧器を各相に備え、
     前記多巻線変圧器は、
     3相交流系統に接続される交流系統側巻線と、
     前記正側アームと前記負側アームとの間に逆極性で直列接続された第1の直流系統側巻線及び第2の直流系統側巻線と、
     3相各相の前記第1の直流系統側巻線と前記第2の直流系統側巻線との間から延びる互いに結線された中性線と、
     を有し、
     前記短絡スイッチは、前記中性線と接地点とを接続すること、
     を特徴とする請求項1に記載の電力変換装置。
  6.  前記短絡スイッチと前記接地点との間に抵抗が接続されていること、
     を特徴とする請求項1~5の何れかに記載の電力変換装置。
  7.  前記短絡スイッチと前記接地点との間にリアクトルが接続されていること、
     を特徴とする請求項1~6の何れかに記載の電力変換装置。
  8.  3相交流系統と、前記正側アーム及び前記負側アーム間の接続点との間の交流電路に設けられた交流遮断器に遮断指令を出力する遮断器制御部と、前記短絡スイッチに閉指令を出力する短絡スイッチ制御部とを有する制御装置を備え、
     前記制御装置は、前記短絡スイッチ制御部が前記短絡スイッチに前記閉指令を出力し、前記短絡スイッチの閉状態を示す信号を受けた後、前記遮断器制御部が前記交流遮断器に前記遮断指令を出力すること、
     を特徴とする請求項1~7の何れかに記載の電力変換装置。
  9.  3相交流系統と、前記正側アーム及び前記負側アーム間の接続点との間の交流電路に設けられた交流遮断器に遮断指令を出力する遮断器制御部と、前記短絡スイッチに閉指令を出力する短絡スイッチ制御部とを有する制御装置を備え、
     前記制御装置は、前記短絡スイッチ制御部が前記短絡スイッチに前記閉指令を出力し、前記短絡スイッチの閉状態を示す信号を受ける前に、前記遮断器制御部が前記交流遮断器に前記遮断指令を出力すること、
     を特徴とする請求項1~7の何れかに記載の電力変換装置。
  10.  前記短絡スイッチは、半導体スイッチであること、
     を特徴とする請求項1~9の何れかに記載の電力変換装置。
     
PCT/JP2017/047229 2017-03-06 2017-12-28 電力変換装置 WO2018163582A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17899501.5A EP3595157B1 (en) 2017-03-06 2017-12-28 Power conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017041285A JP6751038B2 (ja) 2017-03-06 2017-03-06 電力変換装置
JP2017-041285 2017-03-06

Publications (1)

Publication Number Publication Date
WO2018163582A1 true WO2018163582A1 (ja) 2018-09-13

Family

ID=63448478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/047229 WO2018163582A1 (ja) 2017-03-06 2017-12-28 電力変換装置

Country Status (3)

Country Link
EP (1) EP3595157B1 (ja)
JP (1) JP6751038B2 (ja)
WO (1) WO2018163582A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3981063A4 (en) * 2019-06-04 2023-01-18 Transgrid Solutions Inc. MODIFIED HALF-BRIDGE SUB-MODULE FOR MULTILEVEL VOLTAGE SUPPORTED CONVERTER WITH DC ERROR SUPPRESSION AND METHOD

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4231518A1 (en) * 2022-02-17 2023-08-23 Maschinenfabrik Reinhausen GmbH Converter and method for discharging a converter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039438A (ja) * 2002-07-03 2004-02-05 Toshiba Corp 燃料電池発電プラントの地絡検出装置
JP2013115837A (ja) 2011-11-24 2013-06-10 Toshiba Corp 電力変換装置
WO2015121983A1 (ja) * 2014-02-14 2015-08-20 三菱電機株式会社 直流送電系統の保護システムおよび交流/直流変換器ならびに直流送電系統の遮断方法
JP2016208743A (ja) * 2015-04-24 2016-12-08 株式会社東芝 電力変換装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103125068B (zh) * 2010-07-30 2015-11-25 Abb技术有限公司 基于单元的电压源转换器中的电容器放电

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039438A (ja) * 2002-07-03 2004-02-05 Toshiba Corp 燃料電池発電プラントの地絡検出装置
JP2013115837A (ja) 2011-11-24 2013-06-10 Toshiba Corp 電力変換装置
WO2015121983A1 (ja) * 2014-02-14 2015-08-20 三菱電機株式会社 直流送電系統の保護システムおよび交流/直流変換器ならびに直流送電系統の遮断方法
JP2016208743A (ja) * 2015-04-24 2016-12-08 株式会社東芝 電力変換装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3595157A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3981063A4 (en) * 2019-06-04 2023-01-18 Transgrid Solutions Inc. MODIFIED HALF-BRIDGE SUB-MODULE FOR MULTILEVEL VOLTAGE SUPPORTED CONVERTER WITH DC ERROR SUPPRESSION AND METHOD

Also Published As

Publication number Publication date
JP6751038B2 (ja) 2020-09-02
EP3595157A4 (en) 2020-11-25
EP3595157B1 (en) 2022-11-23
EP3595157A1 (en) 2020-01-15
JP2018148685A (ja) 2018-09-20

Similar Documents

Publication Publication Date Title
US10326395B2 (en) System and method for magnetizing a transformer in an electrical system prior to energizing the electrical system
Das et al. Grounding of AC and DC low-voltage and medium-voltage drive systems
JP6472799B2 (ja) 直流中間回路の中間点と交流グリッドの中性導体の端子間のスイッチを含むインバータとインバータを動作させる方法
JP6293379B2 (ja) サイリスタバルブを伴うモジュラーマルチレベル変換器
KR20150045462A (ko) 전력 변환 장치
Li et al. Three-level active neutral-point-clamped (ANPC) converter with fault tolerant ability
CN109188278B (zh) 三相不平衡检测电路以及系统
Gowaid et al. Modular multilevel structure of a high power dual active bridge DC transformer with stepped two-level output
Li et al. Analysis of single-phase-to-ground faults at the valve-side of HB-MMCs in bipolar HVDC systems
US11770005B2 (en) Fault handling
WO2018163582A1 (ja) 電力変換装置
Kizilcay et al. Interaction of a HVDC System with 400-kV AC Systems on the Same Tower
WO2022167388A1 (en) Interleaved power converter
CN106797124B (zh) Ac故障处理布置
DK2994984T3 (en) The three-point converter
WO2017167744A1 (en) High voltage direct current switchgear
JP6559907B1 (ja) 電力変換装置、及び定数取得方法
WO2021049016A1 (ja) 電力変換装置
WO2024069750A1 (ja) 電力変換システム
US9711965B2 (en) Circuit arrangement for connection to an electrical circuit and electrical circuit
Shende Open circuit fault detection in PWM voltage source inverter for PMSM drive system
RO133064A2 (ro) Dispozitiv modular parametric de reglaj sub sarcină
CN111293910A (zh) 串联模块化变流装置
US20180331532A1 (en) Alternating-current power switch and method for switching an alternating current
JPS6057296B2 (ja) 変換装置の保護方式

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017899501

Country of ref document: EP

Effective date: 20191007