WO2018163447A1 - 呼吸状態推定装置、呼吸状態推定方法、及び、プログラム記録媒体 - Google Patents

呼吸状態推定装置、呼吸状態推定方法、及び、プログラム記録媒体 Download PDF

Info

Publication number
WO2018163447A1
WO2018163447A1 PCT/JP2017/018440 JP2017018440W WO2018163447A1 WO 2018163447 A1 WO2018163447 A1 WO 2018163447A1 JP 2017018440 W JP2017018440 W JP 2017018440W WO 2018163447 A1 WO2018163447 A1 WO 2018163447A1
Authority
WO
WIPO (PCT)
Prior art keywords
respiratory
unit
user
respiratory state
spectrum
Prior art date
Application number
PCT/JP2017/018440
Other languages
English (en)
French (fr)
Inventor
良文 廣瀬
荒木 昭一
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018540095A priority Critical patent/JP6440137B1/ja
Publication of WO2018163447A1 publication Critical patent/WO2018163447A1/ja
Priority to US16/417,737 priority patent/US20190269350A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/352Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0826Detecting or evaluating apnoea events
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/332Portable devices specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6804Garments; Clothes
    • A61B5/6805Vests
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms

Definitions

  • the present disclosure relates to a respiratory state estimation device, a respiratory state estimation method, and a program recording medium that estimate a respiratory state of a person.
  • Patent Document 1 discloses an apnea state determination device that acquires an acoustic signal during sleep and determines a person's apnea state from the acquired acoustic signal.
  • the present disclosure provides a respiratory state estimation device that can estimate a respiratory state without disturbing breathing.
  • the respiratory state estimation device includes an acquisition unit, a detection unit, a calculation unit, an extraction unit, and an estimation unit.
  • An acquisition part acquires a user's electrocardiogram waveform.
  • the detection unit detects the amplitude of the R wave of the electrocardiographic waveform acquired by the acquisition unit.
  • the calculation unit calculates a spectrum of the amplitude detected by the detection unit.
  • the extraction unit extracts a respiratory component in a predetermined frequency band from the spectrum calculated by the calculation unit.
  • the estimation unit estimates the breathing state of the user from the respiratory component extracted by the extraction unit.
  • the respiratory state estimation device can estimate the respiratory state of a person without hindering breathing.
  • FIG. 1 is a schematic diagram showing an outline of a respiratory condition estimation system in the first embodiment.
  • FIG. 2 is a block diagram illustrating an example of a hardware configuration of the respiratory condition estimation apparatus according to the first embodiment.
  • FIG. 3 is a block diagram illustrating an example of a hardware configuration of the wearable terminal according to the first embodiment.
  • FIG. 4 is a block diagram illustrating an example of a functional configuration of the respiratory condition estimation system according to the first embodiment.
  • FIG. 5 is a sequence diagram illustrating an example of a respiratory condition estimation method in the respiratory condition estimation system according to the first embodiment.
  • FIG. 6 is a graph showing an example of an electrocardiogram waveform (electrocardiogram waveform information) measured by the electrocardiogram waveform measurement unit.
  • FIG. 1 is a schematic diagram showing an outline of a respiratory condition estimation system in the first embodiment.
  • FIG. 2 is a block diagram illustrating an example of a hardware configuration of the respiratory condition estimation apparatus according to the first embodiment.
  • FIG. 3 is a block
  • FIG. 7 is a graph showing an enlarged electrocardiographic waveform for two beats from FIG.
  • FIG. 8 is a graph illustrating an example of the R wave amplitude waveform detected by the second detection unit.
  • FIG. 9 is a graph illustrating an example of a spectrum in the respiratory component extracted by the extraction unit.
  • FIG. 10 is a flowchart illustrating details of an example of the estimation process.
  • FIG. 11 is a flowchart illustrating details of another example of the estimation process.
  • FIG. 12 is a block diagram illustrating an example of a hardware configuration of the respiratory condition estimation device according to the second embodiment.
  • FIG. 13 is a block diagram illustrating an example of a functional configuration of the respiratory state estimation device according to the second embodiment.
  • FIG. 14 is a flowchart illustrating an example of a respiratory state estimation method in the respiratory state estimation device according to the second embodiment.
  • FIG. 1 is a schematic diagram showing an outline of a respiratory condition estimation system in the first embodiment.
  • the respiratory state estimation system 1 includes a respiratory state estimation device 10 and a wearable terminal 20. As shown in FIG. 1, the respiratory condition estimation device 10 and the wearable terminal 20 are separated from each other.
  • the respiratory state estimation system 1 is a system that estimates a user's respiratory state by measuring changes in the body (chest) due to the user's breathing from an electrocardiogram waveform.
  • FIG. 2 is a block diagram illustrating an example of a hardware configuration of the respiratory condition estimation apparatus according to the first embodiment.
  • the respiratory state estimation device 10 includes a control device 101, a communication IF (Interface) 102, a display 103, a speaker 104, and an input IF 105.
  • the respiratory state estimation device 10 is a communicable portable terminal such as a smartphone or a tablet terminal.
  • the respiratory state estimation device 10 is a portable terminal, it may be any device that can communicate, and may be an information terminal such as a PC (Personal Computer).
  • the control device 101 includes a processor that executes a control program for operating the respiratory condition estimation device 10, a volatile storage area (main storage device) that is used as a work area used when executing the control program, a control A non-volatile storage area (auxiliary storage device) for storing programs, contents, and the like.
  • the volatile storage area is, for example, a RAM (Random Access Memory).
  • the nonvolatile storage area is, for example, a ROM (Read Only Memory), a flash memory, an HDD (Hard Disk Drive), or the like.
  • the communication IF 102 is a communication interface that communicates with the wearable terminal 20.
  • the communication IF 102 may be a communication interface corresponding to the transmission unit 233 (see FIG. 3) included in the wearable terminal 20.
  • the communication IF 102 is a wireless communication interface that conforms to, for example, the Bluetooth (registered trademark) standard.
  • the communication IF 102 may be a wireless LAN (Local Area Network) interface that conforms to the IEEE 802.11a, b, g, and n standards.
  • the communication IF 102 is a radio that conforms to a communication standard used in a mobile communication system such as the third generation mobile communication system (3G), the fourth generation mobile communication system (4G), or LTE (registered trademark). It may be a communication interface.
  • the display 103 is a display device that displays a processing result in the control device 101.
  • the display 103 is, for example, a liquid crystal display or an organic EL display.
  • the speaker 104 is a speaker that outputs a sound decoded from the audio information.
  • the input IF 105 is, for example, a touch panel that is arranged on the surface of the display 103 and receives input from the user to a UI (User Interface) displayed on the display 103.
  • the input IF 105 may be an input device such as a numeric keypad or a keyboard.
  • FIG. 3 is a block diagram illustrating an example of a hardware configuration of the wearable terminal according to the first embodiment.
  • the wearable terminal 20 includes an attachment unit 21, an electrocardiogram waveform measurement unit 22, and a terminal body 23.
  • the mounting part 21 is mounted on the upper body of the user.
  • the electrocardiogram waveform measurement unit 22 and the terminal main body 23 are arranged in the mounting unit 21.
  • the mounting part 21 is clothes such as a T-shirt, for example.
  • the mounting portion 21 is not limited to clothes, and may be configured by a stretchable belt-like member wound around the chest or abdomen of the user.
  • the electrocardiogram waveform measurement unit 22 includes a first electrode 221 and a second electrode 222.
  • the first electrode 221 and the second electrode 222 are disposed at positions opposite to each other across the position of the user's heart when the user is viewed from the front in a state where the mounting portion 21 is mounted on the upper body of the user. Electrode. Note that the first electrode 221 and the second electrode 222 do not have to be strictly disposed at positions opposite to each other across the user's heart, and may be disposed near the chest of the user.
  • the terminal body 23 includes an electrocardiograph 231, a memory 232, and a transmission unit 233.
  • the terminal body 23 is disposed at a predetermined position of the mounting unit 21.
  • the electrocardiograph 231 is electrically connected to the first electrode 221 and the second electrode 222 and measures the electrocardiographic waveform of the user.
  • the electrocardiograph 231 outputs electrocardiogram waveform information indicating the measured electrocardiogram waveform to the transmission unit 233.
  • the transmission unit 233 is a communication module that communicates with the respiratory condition estimation device 10.
  • the transmission unit 233 may have, for example, a wireless communication interface that conforms to the Bluetooth (registered trademark) standard, or a wireless LAN (Local Area Network) interface that conforms to the IEEE 802.11a, b, g, and n standards. You may have.
  • the memory 232 stores electrocardiographic waveform information indicating the electrocardiographic waveform measured by the electrocardiograph 231.
  • the transmission unit 233 reads the electrocardiographic waveform information stored in the memory 232 and transmits the read electrocardiographic waveform information to the respiratory state estimation device 10. It is good.
  • FIG. 4 is a block diagram illustrating an example of a functional configuration of the respiratory condition estimation system according to the first embodiment.
  • the wearable terminal 20 includes an electrocardiogram waveform measurement unit 22, an electrocardiograph 231 and a transmission unit 233 as functional configurations.
  • the electrocardiogram waveform measurement unit 22 measures the user's electrocardiogram waveform.
  • the electrocardiogram waveform measurement unit 22 measures a user's electrocardiogram waveform and generates electrocardiogram waveform information indicating the electrocardiogram waveform.
  • the electrocardiogram waveform measurement is realized by, for example, the electrocardiogram waveform measurement unit 22, the plurality of electrodes 221 and 222, and the electrocardiograph 231.
  • the transmission unit 233 transmits the generated electrocardiographic waveform information to the respiratory state estimation device 10.
  • the transmission unit 233 transmits the electrocardiographic waveform information stored in the memory 232 to the respiratory state estimation device 10 at a predetermined cycle.
  • the transmission unit 233 is realized by a communication module, for example. That is, the transmission unit 233 transmits the electrocardiographic waveform information to the respiratory state estimation device 10 that is connected by communication using, for example, Bluetooth (registered trademark).
  • the respiratory state estimation device 10 includes an acquisition unit 11, a first detection unit 12, a second detection unit 13, a calculation unit 14, an extraction unit 15, an estimation unit 16, and a presentation unit 17.
  • the acquisition unit 11 receives the electrocardiographic waveform information transmitted by the transmission unit 233 of the wearable terminal 20. That is, the acquisition unit 11 communicates with the wearable terminal 20 worn on the user's body while having the electrocardiograph 231. Thereby, the acquisition part 11 acquires the electrocardiogram waveform information which shows a user's electrocardiogram waveform.
  • the acquisition unit 11 is realized by the control device 101 and the communication IF 102, for example.
  • the first detection unit 12 detects the R wave of the electrocardiogram waveform indicated by the electrocardiogram waveform information acquired by the acquisition unit 11. Specifically, the first detection unit 12 detects a plurality of R waves that appear at different times from among the electrocardiogram waveforms indicated by the electrocardiogram waveform information.
  • the first detection unit 12 is realized by the control device 101, for example.
  • the second detection unit 13 detects the amplitude of the R wave detected by the first detection unit 12. Specifically, the second detection unit 13 detects, for each of the plurality of R waves detected by the first detection unit 12, the amplitude (peak) of the R wave and the time when the amplitude appears. Thus, the amplitude of the R wave associated with the time is detected. The second detection unit 13 outputs the detected amplitude information indicating the amplitudes of the plurality of R waves each associated with the time to the calculation unit 14. In addition, the second detection unit 13 generates an R wave amplitude waveform indicating a change in the amplitude of the R wave by using a plurality of R wave amplitudes associated with time.
  • the 2nd detection part 13 resamples the amplitude of R wave with a predetermined sampling period using R wave amplitude waveform.
  • the second detection unit 13 can obtain a plurality of amplitudes of the R wave at a predetermined sampling period.
  • the second detection unit 13 is realized by the control device 101, for example.
  • the calculation unit 14 calculates the spectrum of the amplitude of the R wave detected by the second detection unit 13. Specifically, the calculation unit 14 performs conversion processing for converting the amplitudes of a plurality of R waves obtained by re-sampling into frequency spectrum information. The calculation unit 14 performs fast Fourier transform (FFT) processing on the amplitude of the R wave to convert it into spectrum information in the frequency domain of the amplitude of the R wave.
  • FFT fast Fourier transform
  • the calculation unit 14 may perform the FFT process with a time width (about 2 [s] to 20 [s]) corresponding to, for example, about 1 to 10 respiratory cycles.
  • This time width indicates each cycle when the FFT processing is repeatedly performed.
  • the time width during which the FFT processing is performed is shortened, the followability of the spectrum information to the change in respiratory rate is increased, but the resistance of the spectrum information to noise such as body movement is reduced (spectrum information is reduced). It reacts sensitively to noise).
  • the time width is increased, the resistance of the spectrum information to noise such as body movement increases, but the followability of the spectrum information to changes in respiratory rate is reduced. Therefore, it is desirable that the time width for performing the FFT process is determined by appropriately adjusting. Further, when performing the FFT processing, it is desirable to use a window function such as a Hanning window.
  • the calculation unit 14 is realized by the control device 101, for example.
  • the extraction unit 15 extracts a respiratory component in a predetermined frequency band from the spectrum calculated by the calculation unit 14.
  • the extraction unit 15 extracts a respiratory component by extracting a preset frequency band in the calculated spectrum. For example, if the respiration rate per minute is 5 to 30 times, the extraction unit 15 extracts a spectrum in a frequency band of 0.08 [Hz] to 0.5 [Hz] as a respiration component. Thus, the extraction unit 15 extracts a respiratory component in a frequency band determined based on the user's breathing. Therefore, the estimation unit 16 can prevent erroneous estimation when noise is mixed outside the frequency band in the next estimation process.
  • the extraction unit 15 is realized by the control device 101, for example.
  • the estimation unit 16 estimates the breathing state of the user from the respiratory component extracted by the extraction unit 15. That is, the estimation unit 16 estimates the breathing state of the user using the respiratory component extracted by the extraction unit 15 as an index value. Specifically, when the peak intensity in the spectrum of the respiratory component extracted by the extraction unit 15 is equal to or higher than a predetermined intensity, the estimation unit 16 may estimate that the respiratory state is deep respiration. Further, the estimation unit 16 may estimate that the respiratory state is hypopnea or apnea when the peak intensity in the spectrum of the respiratory component extracted by the extraction unit 15 is less than a predetermined intensity. Further, the estimation unit 16 may estimate that the respiratory state is deep respiration when the standard deviation in the respiratory component spectrum is equal to or greater than a predetermined standard deviation. Further, the estimation unit 16 may estimate that the respiratory state is hypopnea or apnea when the standard deviation in the spectrum of the respiratory component is less than a predetermined standard deviation.
  • the spectral intensity of the R wave amplitude accompanying the respiratory motion varies depending on various conditions such as the positions of the electrodes 221 and 222, and therefore it is desirable to set appropriately.
  • hypopnea refers to a state where the respiratory ventilation is decreasing. Medically, hypopnea is a condition in which respiratory airflow or respiratory movement is reduced to less than 70% of a predetermined standard, and a respiratory event with a decrease in oxygen saturation of 4% or more lasts for 10 [s] or more. Point to. In the present disclosure, the peak intensity of the spectrum in the respiratory band or the standard deviation in the spectrum is used as an index for detecting such a state. Deep breathing is a state where the above-described exhalation airflow or breathing motion satisfies the predetermined standard.
  • the estimation part 16 is implement
  • the presentation unit 17 displays an image or character information indicating the respiratory state estimated by the estimation unit 16.
  • the presentation unit 17 may output a sound indicating the estimated respiratory state.
  • the presentation unit 17 may be realized by the control device 101 and the display 103, or may be realized by the control device 101 and the speaker 104, for example.
  • FIG. 5 is a sequence diagram illustrating an example of a respiratory state estimation method in the respiratory state estimation system 1 according to the first embodiment.
  • the electrocardiogram waveform measurement unit 22 measures the user's electrocardiogram waveform (S11). Thereby, the electrocardiogram waveform measurement unit 22 acquires, for example, an electrocardiogram waveform as shown in FIG.
  • FIG. 6 is a graph showing an example of an electrocardiogram waveform (electrocardiogram waveform information) measured by the electrocardiogram waveform measurement unit.
  • FIG. 7 is a graph showing an enlarged electrocardiographic waveform for two beats from FIG. 6 and 7, the horizontal axis represents time [s], and the vertical axis represents electrocardiogram (ECG: ElectroCardioGram) [mV].
  • ECG ElectroCardioGram
  • a P wave, a Q wave, an R wave, an S wave, a T wave, and a U wave appear in the electrocardiographic waveform in synchronization with the movement of each heart beat.
  • the R wave has a large amplitude and has a steep change per time, and is therefore used for heartbeat detection.
  • the part designated R is an R wave
  • the RR interval between two Rs is a time for one beat.
  • the transmission unit 233 transmits the electrocardiogram waveform information to the respiratory state estimation device 10 (S12).
  • the acquisition unit 11 receives the electrocardiographic waveform information transmitted from the transmission unit 233 of the wearable terminal 20. Thereby, the acquisition part 11 acquires the electrocardiogram waveform which electrocardiogram waveform information shows (S21).
  • the first detection unit 12 detects the R wave of the electrocardiographic waveform acquired by the acquisition unit 11 (S22).
  • the second detection unit 13 detects the amplitude of the R wave detected by the first detection unit 12 (S23). Specifically, the second detection unit 13 generates an R wave amplitude value sequence indicating a temporal change in the amplitude of the R wave. Thereby, the 2nd detection part 13 produces
  • FIG. 8 is a graph showing an example of the R wave amplitude waveform detected by the second detection unit 13.
  • the horizontal axis represents time [s]
  • the vertical axis represents R wave amplitude [mV].
  • the second detection unit 13 re-samples the amplitude of the R wave at a predetermined sampling period using the R wave amplitude waveform, thereby detecting a plurality of R wave amplitudes at the predetermined sampling period.
  • the calculation unit 14 calculates the spectrum of the amplitude of the R wave detected by the second detection unit 13 (S24).
  • the extraction unit 15 extracts a respiratory component in the frequency band of the user's respiration from the spectrum calculated by the calculation unit 14 (S25). Specifically, the extraction unit 15 extracts a spectrum in a predetermined frequency band (for example, 0.08 [Hz] or more and 0.5 [Hz] or less) of the spectrum calculated by the calculation unit 14 as a respiratory component. To do. Thereby, the extraction part 15 extracts the spectrum in a respiratory component as shown, for example in FIG.
  • a predetermined frequency band for example, 0.08 [Hz] or more and 0.5 [Hz] or less
  • FIG. 9 is a graph showing an example of the spectrum of the respiratory component extracted by the extraction unit 15.
  • the horizontal axis indicates the frequency
  • the vertical axis indicates the intensity.
  • a peak appears between 5 [bpm] and 30 [bpm].
  • the peak intensity at the peak is a value exceeding a predetermined peak intensity (for example, 800).
  • apnea or hypopnea
  • the spectrum is flat and no significant peak appears.
  • the estimation unit 16 estimates the breathing state of the user from the respiratory component extracted by the extraction unit 15 (S26). Details of the estimation process of the respiratory state by the estimation unit 16 will be described with reference to FIGS. 10 and 11.
  • FIG. 10 is a flowchart showing details of an example of the estimation process.
  • the estimation part 16 will determine whether the peak intensity of the spectrum calculated by the calculation part 14 is more than predetermined intensity, if the said step S25 is complete
  • the estimation unit 16 determines that the peak intensity of the spectrum is equal to or higher than the predetermined intensity (Yes in S31)
  • the estimation unit 16 estimates that the user's breathing state is deep breathing (S32).
  • the estimating unit 16 estimates that the user's respiratory state is hypopnea or apnea (S33).
  • estimation unit 16 may perform the estimation process shown in the flowchart of FIG. 11 instead of the flowchart of FIG.
  • FIG. 11 is a flowchart showing details of another example of the estimation process.
  • the estimation part 16 will determine whether the standard deviation of the spectrum calculated by the calculation part 14 is more than a predetermined standard deviation, if the said step S25 is complete
  • the estimating unit 16 estimates that the user's breathing state is deep breathing (S42).
  • the estimation unit 16 determines that the standard deviation of the spectrum is less than the predetermined standard deviation (No in S41), the estimation unit 16 estimates that the user's respiratory state is hypopnea or apnea (S43).
  • the appearance of spectral peaks differs between deep breathing and apnea (or hypopnea). That is, in deep breathing, a peak occurs in the spectrum, but in apnea (or hypopnea), the spectrum becomes flat and no peak occurs. Therefore, by comparing the standard deviation of the spectrum with a predetermined standard deviation, it is possible to determine whether the breathing state from which the spectrum is obtained is deep breathing or apnea (or hypopnea). .
  • the estimation unit 16 may estimate the breathing state of the user using both the flowchart of FIG. 10 and the flowchart of FIG. In this case, for example, when both the flowchart of FIG. 10 and the result of the flowchart of FIG. 11 are deep breaths, the estimation unit 16 may determine that the user's breathing state is deep breathing. Further, when at least one of the results of the flowchart of FIG. 10 and the flowchart of FIG. 11 is apnea (or hypopnea), the estimation unit 16 determines that the user's breathing state is apnea (or hypopnea). May be.
  • the presentation unit 17 presents information (image, character, voice) indicating the breathing state estimated by the estimation unit 16 (S27).
  • the respiratory state estimation device 10 includes the acquisition unit 11, the first detection unit 12, the second detection unit 13, the calculation unit 14, the extraction unit 15, and the estimation unit 16.
  • the acquisition unit 11 acquires a user's electrocardiogram waveform.
  • the first detection unit 12 and the second detection unit 13 detect the amplitude of the R wave of the electrocardiographic waveform acquired by the acquisition unit 11.
  • the calculation unit 14 calculates the spectrum of the amplitude detected by the first detection unit 12 and the second detection unit 13.
  • the extraction unit 15 extracts a respiratory component in a predetermined frequency band from the spectrum calculated by the calculation unit 14.
  • the estimation unit 16 estimates the breathing state of the user from the respiratory component extracted by the extraction unit 15.
  • the estimation part 16 estimates a user's respiratory state by using the respiratory component extracted by the extraction part 15 as an index value.
  • the estimation unit 16 estimates that the respiratory state is deep respiration when the peak intensity in the spectrum of the respiratory component extracted by the extraction unit 15 is equal to or greater than a predetermined intensity. Further, when the peak intensity in the spectrum of the respiratory component extracted by the extraction unit 15 is less than a predetermined intensity, the estimation unit 16 estimates that the respiratory state is hypopnea or apnea.
  • the estimation unit 16 estimates that the respiratory state is deep respiration when the standard deviation in the spectrum of the respiratory component is equal to or greater than a predetermined standard deviation. In addition, when the standard deviation in the spectrum of the respiratory component is less than a predetermined standard deviation, the estimation unit 16 estimates that the respiratory state is hypopnea or apnea.
  • the terminal body 23 is separate from the first electrode 221 and the second electrode 222 disposed in the mounting portion 21, and is electrically connected to the first electrode 221 and the second electrode 222.
  • the terminal main body 23 may be integrated with the first electrode 221 and the second electrode 222 and may have the first electrode 221 and the second electrode 222. In this case, even if the terminal main body 23 integrated with the first electrode 221 and the second electrode 222 is fixed to clothes as the mounting portion 21 owned by the user, the terminal main body 23 functions as the wearable terminal 20. Good.
  • the estimation unit 16 determines whether the peak intensity in the spectrum of the respiratory component extracted by the extraction unit 15 is greater than or equal to a predetermined intensity, or the standard deviation in the spectrum is greater than or equal to a predetermined standard deviation.
  • the user's breathing state is estimated based on whether or not, but the present invention is not limited to this.
  • the estimation unit 16 can obtain the user's information obtained from the processing based on the electrocardiographic waveform measured in a time width (about 2 [s] to 20 [s]) corresponding to about 1 to 10 respiratory cycles.
  • a predetermined time for example, one hour
  • the second respiratory component is data measured in real time in a shorter period than the first respiratory component. Therefore, when the second respiratory component includes a state of hypopnea or apnea, the value of the second respiratory component is significantly different from the value of the first respiratory component. Therefore, when the second peak intensity, which is the peak intensity in the spectrum of the second respiratory component, is equal to or higher than the first peak intensity, which is the peak intensity in the spectrum of the first respiratory component, the estimating unit 16 determines that the user's respiratory state is It may be determined that the patient is in a deep breathing state. In addition, when the second peak intensity is less than the first peak intensity, the estimation unit 16 may determine that the user's breathing state is a hypopnea state or an apnea.
  • the estimating unit 16 has a deep respiratory state of the user. You may determine with being in a respiratory state. In addition, when the second standard deviation is less than the first standard deviation, the estimation unit 16 may determine that the user's breathing state is a hypopnea state or an apnea.
  • the estimation unit 16 is output by processing in the first detection unit 12, the second detection unit 13, the calculation unit 14, and the extraction unit 15 based on the electrocardiogram waveform measured over the first period. Based on the first respiratory component of the user and the electrocardiographic waveform measured over a second period shorter than the first period, the first detection unit 12, the second detection unit 13, the calculation unit 14, and the extraction unit 15 The user's respiratory state in the second period may be estimated by comparing the user's second respiratory component output by the processing.
  • the respiratory state can be determined based on the electrocardiogram waveform acquired from the same user, the determination according to the user's characteristics can be performed. Further, since the first period is longer than the second period, the first respiratory component is averaged over the second respiratory component. Therefore, the estimation unit 16 can estimate the user's respiratory state in the second period by comparing the first respiratory component and the second respiratory component.
  • the respiratory state estimation device 10 includes a first detection unit 12 that detects an R wave of an electrocardiographic waveform acquired by the acquisition unit 11, and an R wave detected by the first detection unit 12.
  • the second detection unit 13 that detects the amplitude is provided, the present disclosure is not limited to this.
  • the respiratory state estimation device 10 may include only one detection unit, and the detection unit may detect the amplitude of the R wave of the electrocardiographic waveform acquired by the acquisition unit 11.
  • the first electrode 221 and the second electrode 222 are arranged on the front surface of the upper body of the user, but the present disclosure is not limited to this.
  • the first electrode 221 is disposed on the front surface of the user's upper body and the second electrode 222 is disposed on the back surface of the user's upper body, so that the plurality of electrodes 221 and 222 are positioned on opposite sides of the user's heart. It may be arranged. That is, the plurality of electrodes 221 and 222 are disposed at positions opposite to each other across the user's heart.
  • the current flowing between the plurality of electrodes 221 and 222 is the user's heart. It is arranged to pass through.
  • the acquisition part 11 acquired the electrocardiogram waveform from the wearable terminal 20, However, This indication is not limited to this.
  • the acquisition unit 11 may acquire an electrocardiogram waveform from a recording medium on which the user's electrocardiogram waveform is recorded.
  • FIG. 12 is a block diagram illustrating an example of a hardware configuration of the respiratory condition estimation device according to the second embodiment.
  • the respiratory condition estimation device 10A performs all the processes in the respiratory condition estimation method. That is, 10 A of respiratory state estimation apparatuses of Embodiment 2 are further provided with the electrocardiograph 106, the 1st electrode 107, and the 2nd electrode 108 compared with the respiratory state estimation apparatus 10 which concerns on Embodiment 1.
  • FIG. The electrocardiograph 106, the first electrode 107, and the second electrode 108 have the same configuration as the electrocardiograph 231, the first electrode 221 and the second electrode 222, respectively.
  • Other configurations are the same as those in the first embodiment, and thus the same reference numerals are given and description thereof is omitted.
  • the respiratory state estimation device 10A may not include the display 103 and the communication IF 102. Moreover, 10 A of respiratory condition estimation apparatuses may be implement
  • FIG. 13 is a block diagram illustrating an example of a functional configuration of the respiratory condition estimation device according to the second embodiment.
  • the acquiring unit 11A is realized by an electrocardiograph 106, a first electrode 107, and a second electrode 108. That is, the acquisition unit 11A acquires the user's electrocardiogram waveform by measuring the user's electrocardiogram waveform.
  • FIG. 14 is a flowchart illustrating an example of a respiratory state estimation method in the respiratory state estimation device according to the second embodiment.
  • step S12 and step S21 are omitted in the sequence diagram described in FIG.
  • the respiratory condition estimation device 10A performs step S22 after performing step S11. Therefore, the respiratory state estimation device 10A performs processing relating to measurement of an electrocardiogram waveform, detection of an R wave, detection of an amplitude of the R wave, calculation of a spectrum, extraction of a respiratory component, and estimation of the respiratory state.
  • the respiratory state estimation device 10A further includes the plurality of electrodes 107 and 108 that are attached to the chest of the user.
  • the acquiring unit 11A acquires the user's electrocardiogram waveform from the plurality of electrodes 107 and 108 attached to the user's chest.
  • the user's electrocardiogram waveform can be acquired with high accuracy.
  • the respiratory state estimation device 10A further includes a mounting portion 21 that is mounted on the upper body of the user.
  • a plurality of electrodes 107 and 108 are disposed on the mounting portion 21 at positions opposite to each other across the heart of the user when mounted on the upper body of the user.
  • the plurality of electrodes 107 and 108 can be arranged at appropriate positions on the chest of the user simply by mounting the mounting portion 21 on the upper body of the user.
  • the plurality of electrodes 107 and 108 are attached to the chest of the user, the present disclosure is not limited to this.
  • the plurality of electrodes 107 and 108 may be attached to the upper body of the user other than the chest.
  • the plurality of electrodes 107 and 108 may be worn on the user's arm or hand.
  • the conversion process to the frequency domain is not limited to the FFT process, and may be a DFT (Discrete Fourier Transform) process, a DCT (Discrete Cosine Transform) process, a wavelet transform process, or the like.
  • DFT Discrete Fourier Transform
  • DCT Discrete Cosine Transform
  • the estimation result of the user's respiratory state estimated as described above may be transmitted to a server or the like (not shown) via a network. Or you may make it accumulate
  • each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • the software that realizes the respiratory condition estimation device of each of the above embodiments is a program as follows.
  • this program causes the computer to acquire an electrocardiogram waveform of the user, a detection step to detect the amplitude of the R wave of the electrocardiogram waveform acquired in the acquisition step, and the amplitude detected in the detection step.
  • the respiratory state estimation method is executed.
  • the present disclosure can be applied to a respiratory state estimation device or the like that can estimate the respiratory state of a person without hindering breathing.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Pulmonology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

呼吸状態推定装置(10)は、取得部(11)と、検出部(12,13)と、算出部(14)と、抽出部(15)と、推定部(16)とを備える。取得部(11)は、ユーザの心電波形を取得する。検出部(12,13)は、取得部(11)により取得された心電波形のR波の振幅を検出する。算出部(14)は、検出部(12,13)により検出された振幅のスペクトルを算出する。抽出部(15)は、算出部(14)により算出されたスペクトルから、所定の周波数帯域における呼吸成分を抽出する。推定部(16)は、抽出部(15)により抽出された呼吸成分からユーザの呼吸状態を推定する。

Description

呼吸状態推定装置、呼吸状態推定方法、及び、プログラム記録媒体
 本開示は、人の呼吸状態を推定する呼吸状態推定装置、呼吸状態推定方法、及び、プログラム記録媒体に関する。
 特許文献1は、睡眠中の音響信号を取得して、取得した音響信号から人の無呼吸状態を判定する無呼吸状態判定装置を開示している。
特開2013-202101号公報
 本開示は、呼吸を妨げることなく、呼吸状態を推定できる呼吸状態推定装置を提供する。
 本開示における呼吸状態推定装置は、取得部と、検出部と、算出部と、抽出部と、推定部とを備える。取得部は、ユーザの心電波形を取得する。検出部は、取得部により取得された心電波形のR波の振幅を検出する。算出部は、検出部により検出された振幅のスペクトルを算出する。抽出部は、算出部により算出されたスペクトルから、所定の周波数帯域における呼吸成分を抽出する。推定部は、抽出部により抽出された呼吸成分からユーザの呼吸状態を推定する。
 なお、これらの全般的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本開示における呼吸状態推定装置は、呼吸を妨げることなく、人の呼吸状態を推定することができる。
図1は、実施の形態1における呼吸状態推定システムの概略を示す模式図である。 図2は、実施の形態1における呼吸状態推定装置のハードウェア構成の一例を示すブロック図である。 図3は、実施の形態1におけるウェアラブル端末のハードウェア構成の一例を示すブロック図である。 図4は、実施の形態1における呼吸状態推定システムの機能構成の一例を示すブロック図である。 図5は、実施の形態1の呼吸状態推定システムにおける呼吸状態推定方法の一例を示すシーケンス図である。 図6は、心電波形測定部により測定された心電波形(心電波形情報)の例を示すグラフである。 図7は、図6から2拍分の心電波形を拡大して表示したグラフである。 図8は、第2検出部により検出されたR波振幅波形の例を示すグラフである。 図9は、抽出部により抽出された呼吸成分におけるスペクトルの例を示すグラフである。 図10は、推定処理の一例の詳細を示すフローチャートである。 図11は、推定処理の他の一例の詳細を示すフローチャートである。 図12は、実施の形態2に係る呼吸状態推定装置のハードウェア構成の一例を示すブロック図である。 図13は、実施の形態2に係る呼吸状態推定装置の機能構成の一例を示すブロック図である。 図14は、実施の形態2に係る呼吸状態推定装置における呼吸状態推定方法の一例を示すフローチャートである。
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、発明者は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。
 (実施の形態1)
 以下、図1~図11を用いて、実施の形態1を説明する。
 [1-1.構成]
 図1は、実施の形態1における呼吸状態推定システムの概略を示す模式図である。
 具体的には、図1に示すように、呼吸状態推定システム1は、呼吸状態推定装置10およびウェアラブル端末20を備える。図1に示すように、呼吸状態推定装置10とウェアラブル端末20とは互いに分離している。
 呼吸状態推定システム1は、ユーザの呼吸による身体(胸部)の変動を心電波形から計測することで、ユーザの呼吸状態を推定するシステムである。
 [1-1-1.呼吸状態推定装置]
 呼吸状態推定装置10のハードウェア構成について図2を用いて説明する。
 図2は、実施の形態1における呼吸状態推定装置のハードウェア構成の一例を示すブロック図である。
 図2に示すように、呼吸状態推定装置10は、制御装置101、通信IF(Interface)102、ディスプレイ103、スピーカ104および入力IF105を備える。呼吸状態推定装置10は、例えば、スマートフォン、タブレット端末などの通信可能な携帯端末である。なお、呼吸状態推定装置10は、携帯端末としたが、通信可能な機器であればよく、PC(Personal Computer)などの情報端末であってもよい。
 制御装置101は、呼吸状態推定装置10を動作させるための制御プログラムを実行するプロセッサと、制御プログラムを実行するときに使用するワークエリアとして用いられる揮発性の記憶領域(主記憶装置)と、制御プログラム、コンテンツなどを記憶している不揮発性の記憶領域(補助記憶装置)とを有する。揮発性の記憶領域は、例えば、RAM(Random Access Memory)である。不揮発性の記憶領域は、例えば、ROM(Read Only Memory)、フラッシュメモリ、HDD(Hard Disk Drive)などである。
 通信IF102は、ウェアラブル端末20と通信する通信インタフェースである。通信IF102は、ウェアラブル端末20が備える送信部233(図3参照)に対応した通信インタフェースであればよい。つまり、通信IF102は、例えば、Bluetooth(登録商標)規格に適合した無線通信インタフェースである。なお、通信IF102は、IEEE802.11a、b、g、n規格に適合した無線LAN(Local Area Network)インタフェースであってもよい。また、通信IF102は、第3世代移動通信システム(3G)、第4世代移動通信システム(4G)、または、LTE(登録商標)などのような移動通信システムで利用される通信規格に適合した無線通信インタフェースであってもよい。
 ディスプレイ103は、制御装置101での処理結果を表示する表示装置である。ディスプレイ103は、例えば、液晶ディスプレイ、または、有機ELディスプレイである。
 スピーカ104は、音声情報から復号された音を出力するスピーカである。
 入力IF105は、例えば、ディスプレイ103の表面に配置され、ディスプレイ103に表示されるUI(User Interface)へのユーザからの入力を受け付けるタッチパネルである。また、入力IF105は、例えば、テンキーやキーボードなどの入力装置であってもよい。
 [1-1-2.ウェアラブル端末]
 図3は、実施の形態1におけるウェアラブル端末のハードウェア構成の一例を示すブロック図である。
 図3に示すように、ウェアラブル端末20は、装着部21と、心電波形測定部22と、端末本体23とを備える。装着部21は、ユーザの上半身に装着される。心電波形測定部22および端末本体23は、装着部21に配置されている。
 装着部21は、例えば、Tシャツなどの衣服である。装着部21は、衣服に限らずに、ユーザの胸部周りまたは腹部周りに巻かれる伸縮自在な帯状の部材により構成されていてもよい。
 心電波形測定部22は、第1電極221と第2電極222とを備える。第1電極221および第2電極222は、ユーザの上半身に装着部21が装着された状態において、ユーザを前方から見た場合、ユーザの心臓の位置を挟んで互いに反対側の位置に配置される電極である。なお、第1電極221および第2電極222は、厳密にユーザの心臓を挟んで互いに反対側の位置に配置されていなくてもよく、ユーザの胸部付近に配置されていればよい。
 端末本体23は、心電計231、メモリ232および送信部233を備える。端末本体23は、装着部21の所定の位置に配置される。
 心電計231は、第1電極221および第2電極222と電気的に接続され、ユーザの心電波形を計測する。心電計231は、計測した心電波形を示す心電波形情報を送信部233に出力する。
 送信部233は、呼吸状態推定装置10と通信する通信モジュールである。送信部233は、例えば、Bluetooth(登録商標)規格に適合した無線通信インタフェースを有していてもよいし、IEEE802.11a、b、g、n規格に適合した無線LAN(Local Area Network)インタフェースを有していてもよい。
 メモリ232は、心電計231により計測された心電波形を示す心電波形情報を記憶する。そして、送信部233が、呼吸状態推定装置10と通信接続された場合に、メモリ232に記憶されている心電波形情報を読み出して、読み出した心電波形情報を呼吸状態推定装置10に送信するとしてもよい。
 [1-2.呼吸状態推定システムの機能構成]
 次に、呼吸状態推定システム1の機能構成について図4を用いて説明する。
 図4は、実施の形態1における呼吸状態推定システムの機能構成の一例を示すブロック図である。
 まず、ウェアラブル端末20の機能構成について説明する。
 ウェアラブル端末20は、機能構成として、心電波形測定部22と、心電計231と、送信部233とを備える。
 心電波形測定部22は、ユーザの心電波形を測定する。心電波形測定部22は、ユーザの心電波形を測定し、心電波形を示す心電波形情報を生成する。心電波形測定は、例えば、心電波形測定部22、複数の電極221、222、および心電計231により実現される。
 送信部233は、生成された心電波形情報を呼吸状態推定装置10に送信する。なお、送信部233は、メモリ232に記憶された心電波形情報を、所定の周期で呼吸状態推定装置10に送信する。送信部233は、例えば、通信モジュールにより実現される。つまり、送信部233は、例えば、Bluetooth(登録商標)により通信接続された呼吸状態推定装置10に、心電波形情報を送信する。
 次に、呼吸状態推定装置10の機能構成について説明する。
 呼吸状態推定装置10は、取得部11と、第1検出部12と、第2検出部13と、算出部14と、抽出部15と、推定部16と、提示部17を備えている。
 取得部11は、ウェアラブル端末20の送信部233により送信された心電波形情報を受信する。つまり、取得部11は、心電計231を有しながら、ユーザの身体に装着されるウェアラブル端末20と通信する。これにより、取得部11は、ユーザの心電波形を示す心電波形情報を取得する。取得部11は、例えば、制御装置101および通信IF102により実現される。
 第1検出部12は、取得部11により取得された心電波形情報により示される心電波形のR波を検出する。第1検出部12は、具体的には、心電波形情報により示される心電波形のうち、異なる時刻で現れる複数のR波を検出する。第1検出部12は、例えば、制御装置101により実現される。
 第2検出部13は、第1検出部12により検出されたR波の振幅を検出する。第2検出部13は、具体的には、第1検出部12により検出された複数のR波のそれぞれについて、当該R波の振幅(ピーク)と、当該振幅が現れた時刻とを検出することで、時刻が対応付けられたR波の振幅を検出する。第2検出部13は、検出した、それぞれが時刻に対応付けられた複数のR波の振幅を示す振幅情報を算出部14に出力する。また、第2検出部13は、複数の、時刻が対応付けられたR波の振幅を用いて、R波の振幅の変化を示すR波振幅波形を生成する。そして、第2検出部13は、R波振幅波形を用いて、所定のサンプリング周期でR波の振幅を再サンプリングする。これにより、第2検出部13は、所定のサンプリング周期でのR波の振幅を複数得ることができる。第2検出部13は、例えば、制御装置101により実現される。
 算出部14は、第2検出部13により検出されたR波の振幅のスペクトルを算出する。算出部14は、具体的には、再サンプリングすることで得られた複数のR波の振幅に対して、周波数スペクトル情報に変換する変換処理を行う。算出部14は、R波の振幅に対して、高速フーリエ変換(Fast Fourier Transform:FFT)処理を行うことにより、R波の振幅の周波数領域のスペクトル情報に変換する。
 算出部14は、例えば、呼吸周期の1周期~10周期分程度に相当する時間幅(2[s]~20[s]程度)で、FFT処理を実施してもよい。なお、この時間幅は、FFT処理が繰り返し実施される場合の各周期を示す。ここで、FFT処理が実施される時間幅を短くすれば、呼吸数変化へのスペクトル情報の追従性が高くなるが、体動などのノイズに対するスペクトル情報の耐性が低くなってしまう(スペクトル情報がノイズに敏感に反応してしまう)。一方、当該時間幅を長くすれば、体動などのノイズに対するスペクトル情報の耐性は高くなるが、呼吸数変化へのスペクトル情報の追従性が低くなってしまう。そのため、FFT処理を実施する時間幅は、適宜調整して決定されることが望ましい。また、FFT処理を実施する際には、ハニング窓などの窓関数が用いられることが望ましい。
 算出部14は、例えば、制御装置101により実現される。
 抽出部15は、算出部14により算出されたスペクトルから、所定の周波数帯域における呼吸成分を抽出する。抽出部15は、算出されたスペクトルのうちの予め設定された周波数帯域を抽出することで呼吸成分を抽出する。抽出部15は、例えば、1分間の呼吸数を5~30回とすると、0.08[Hz]以上0.5[Hz]以下の周波数帯域におけるスペクトルを呼吸成分として抽出する。このように、抽出部15は、ユーザの呼吸に基づき定められる周波数帯域の呼吸成分を抽出する。そのため、推定部16は、次の推定処理において、当該周波数帯域外にノイズが混入した場合の誤推定を防止できる。
 抽出部15は、例えば、制御装置101により実現される。
 推定部16は、抽出部15により抽出された呼吸成分からユーザの呼吸状態を推定する。つまり、推定部16は、抽出部15により抽出された呼吸成分を指標値としてユーザの呼吸状態を推定する。具体的には、推定部16は、抽出部15により抽出された呼吸成分のスペクトルにおけるピーク強度が所定の強度以上である場合、呼吸状態が深い呼吸であると推定してもよい。また、推定部16は、抽出部15により抽出された呼吸成分のスペクトルにおけるピーク強度が所定の強度未満である場合、呼吸状態が低呼吸、または、無呼吸であると推定してもよい。また、推定部16は、呼吸成分のスペクトルにおける標準偏差が所定の標準偏差以上である場合、呼吸状態が深い呼吸であると推定してもよい。また、推定部16は、呼吸成分のスペクトルにおける標準偏差が所定の標準偏差未満である場合、呼吸状態が低呼吸、または、無呼吸であると推定してもよい。
 なお、呼吸運動に伴うR波振幅のスペクトル強度は、各電極221、222の位置等の諸条件によっても異なるため、適宜設定することが望ましい。
 なお、低呼吸とは、呼吸の換気量が低下している状態のことを指す。医学的には、低呼吸とは、呼吸気流あるいは呼吸運動が所定の基準の70%未満に減少し、4%以上の酸素飽和度の低下を伴う呼吸イベントが10[s]以上持続することを指す。本開示においては、このような状態を検出するための指標として、呼吸帯域のスペクトルのピーク強度あるいは、スペクトルにおける標準偏差を用いている。深い呼吸とは、上述の呼気気流或いは呼吸運動が上記所定の基準を満たしている状態のことである。
 推定部16は、例えば、制御装置101により実現される。
 提示部17は、推定部16により推定された呼吸状態を示す画像または文字情報を表示する。提示部17は、推定された呼吸状態を示す音声を出力してもよい。提示部17は、例えば、制御装置101およびディスプレイ103により実現されてもよいし、制御装置101およびスピーカ104により実現されてもよい。
 [1-2.動作]
 以上のように構成された呼吸状態推定システム1について、その動作を以下説明する。つまり、呼吸状態推定システム1において行われる呼吸状態推定方法について説明する。
 図5は、実施の形態1の呼吸状態推定システム1における呼吸状態推定方法の一例を示すシーケンス図である。
 ユーザの身体に装着されたウェアラブル端末20では、心電波形測定部22がユーザの心電波形を測定する(S11)。これにより、心電波形測定部22は、例えば、図6に示すような心電波形を取得する。
 図6は、心電波形測定部により測定された心電波形(心電波形情報)の例を示すグラフである。また、図7は、図6から2拍分の心電波形を拡大して表示したグラフである。図6および図7において、横軸は時間[s]を示し、縦軸は心電位(ECG:ElectroCardioGram)[mV]を示す。一般に心電波形には、心臓の1拍ごとの動きに同期してP波、Q波、R波、S波、T波、U波が現れる。なかでもR波は、振幅が大きく、時間あたりの変化が急峻であるため心拍検出に用いられる。図7において、Rと指示した部分がR波であり、2つのRによるR-R間隔が1拍分の時間である。
 次に、ウェアラブル端末20では、送信部233が心電波形情報を呼吸状態推定装置10に送信する(S12)。
 そして、呼吸状態推定装置10では、取得部11がウェアラブル端末20の送信部233により送信された心電波形情報を受信する。これにより、取得部11が、心電波形情報が示す心電波形を取得する(S21)。
 次に、第1検出部12は、取得部11により取得された心電波形のR波を検出する(S22)。
 次に、第2検出部13は、第1検出部12により検出されたR波の振幅を検出する(S23)。第2検出部13は、具体的には、R波の振幅の時間変化を示すR波振幅値列を生成する。これにより、第2検出部13は、例えば、図8に示すようなR波振幅値列を生成する。
 図8は、第2検出部13により検出されたR波振幅波形の例を示すグラフである。図8において、横軸は時間[s]を示し、縦軸はR波の振幅[mV]を示す。
 図8に示すように、呼吸が行われると、ユーザの胸部が動き、肺の容量が変化することにより、複数の電極221,222間のインピーダンスが変化する。これにより、同じユーザからのR波であっても、呼吸に伴うユーザの胸部の変位に応じて、R波の振幅が異なる値となる。つまり、R波の時間変化を示す波形を生成することで、ユーザの呼吸により生じる胸部の動きを推定することができる。
 さらに、第2検出部13は、R波振幅波形を用いて、所定のサンプリング周期でR波の振幅を再サンプリングすることで、所定のサンプリング周期でのR波の振幅を複数検出する。
 次に、算出部14は、第2検出部13により検出されたR波の振幅のスペクトルを算出する(S24)。
 次に、抽出部15は、算出部14により算出されたスペクトルから、ユーザの呼吸の周波数帯域における呼吸成分を抽出する(S25)。抽出部15は、具体的には、算出部14により算出されたスペクトルのうちの所定の周波数帯域(例えば、0.08[Hz]以上0.5[Hz]以下)のスペクトルを呼吸成分として抽出する。これにより、抽出部15は、例えば、図9に示すような呼吸成分におけるスペクトルを抽出する。
 図9は、抽出部15により抽出された呼吸成分におけるスペクトルの例を示すグラフである。図9において、横軸は周波数を示し、縦軸は強度を示す。
 図9に示すように、ユーザは通常時の呼吸を含む深い呼吸を行っている場合、5[bpm]~30[bpm]の間にピークが現れる。そして、当該ピークにおけるピーク強度は所定のピーク強度(例えば800)を超える値となる。一方で、ユーザは無呼吸(または低呼吸)である場合、スペクトルは平坦となり顕著なピークは現れない。
 次に、推定部16は、抽出部15により抽出された呼吸成分からユーザの呼吸状態を推定する(S26)。推定部16による呼吸状態の推定処理の詳細は、図10および図11を用いて説明する。
 図10は、推定処理の一例の詳細を示すフローチャートである。
 推定部16は、上記ステップS25が終了すれば、算出部14により算出されたスペクトルのピーク強度が所定の強度以上であるか否かを判定する(S31)。
 次に、推定部16は、スペクトルのピーク強度が所定の強度以上であると判定した場合(S31でYes)、ユーザの呼吸状態が深い呼吸であると推定する(S32)。
 一方で、推定部16は、スペクトルのピーク強度が所定の強度未満であると判定した場合(S31でNo)、ユーザの呼吸状態が低呼吸または無呼吸であると推定する(S33)。
 図9に示したように、深い呼吸と無呼吸(または低呼吸)とでは、スペクトルのピーク強度に顕著な差がある。このため、スペクトルのピーク強度を所定のピーク強度と比較することで、当該スペクトルが得られた呼吸の状態が深い呼吸であるか、無呼吸(または低呼吸)であるかを判定することができる。
 また、推定部16は、図10のフローチャートの代わりに、図11のフローチャートで示す推定処理を行なってもよい。
 図11は、推定処理の他の一例の詳細を示すフローチャートである。
 推定部16は、上記ステップS25が終了すれば、算出部14により算出されたスペクトルの標準偏差が所定の標準偏差以上であるか否かを判定する(S41)。
 次に、推定部16は、スペクトルの標準偏差が所定の標準偏差以上であると判定した場合(S41でYes)、ユーザの呼吸状態が深い呼吸であると推定する(S42)。
 一方で、推定部16は、スペクトルの標準偏差が所定の標準偏差未満であると判定した場合(S41でNo)、ユーザの呼吸状態が低呼吸または無呼吸であると推定する(S43)。
 図9に示したように、深い呼吸と無呼吸(または低呼吸)とでは、スペクトルのピークの現れ方が異なる。つまり、深い呼吸では、スペクトルにピークが生じるが、無呼吸(または低呼吸)では、スペクトルが平坦となりピークが生じない。このため、スペクトルの標準偏差を所定の標準偏差と比較することで、当該スペクトルが得られた呼吸の状態が深い呼吸であるか、無呼吸(または低呼吸)であるかを判定することができる。
 なお、推定部16は、図10のフローチャートおよび図11のフローチャートの両方を用いて、ユーザの呼吸状態を推定してもよい。この場合、例えば、図10のフローチャートおよび図11のフローチャートの結果の両方ともが深い呼吸である場合、推定部16はユーザの呼吸状態が深い呼吸であると判定してもよい。また、図10のフローチャートおよび図11のフローチャートの結果の少なくともいずれかが無呼吸(または低呼吸)である場合、推定部16はユーザの呼吸状態が無呼吸(または低呼吸)であると判定してもよい。
 次に、提示部17は、推定部16により推定された呼吸状態を示す情報(画像、文字、音声)を提示する(S27)。
 [1-3.効果等]
 以上のように、本実施の形態において、呼吸状態推定装置10は、取得部11と、第1検出部12と、第2検出部13と、算出部14と、抽出部15と、推定部16とを備える。取得部11は、ユーザの心電波形を取得する。第1検出部12および第2検出部13は、取得部11により取得された心電波形のR波の振幅を検出する。算出部14は、第1検出部12および第2検出部13により検出された振幅のスペクトルを算出する。抽出部15は、算出部14により算出されたスペクトルから、所定の周波数帯域における呼吸成分を抽出する。推定部16は、抽出部15により抽出された呼吸成分からユーザの呼吸状態を推定する。また、推定部16は、抽出部15により抽出された呼吸成分を指標値としてユーザの呼吸状態を推定する。
 このため、呼吸を妨げることなく、ユーザの呼吸状態を推定することができる。
 また、本実施の形態において、推定部16は、抽出部15により抽出された呼吸成分のスペクトルにおけるピーク強度が所定の強度以上である場合、呼吸状態が深い呼吸であると推定する。また、推定部16は、抽出部15により抽出された呼吸成分のスペクトルにおけるピーク強度が所定の強度未満である場合、呼吸状態が低呼吸、または、無呼吸であると推定する。
 このため、効果的にユーザの呼吸状態を推定することができる。
 また、本実施の形態において、推定部16は、呼吸成分のスペクトルにおける標準偏差が所定の標準偏差以上である場合、呼吸状態が深い呼吸であると推定する。また、推定部16は、呼吸成分のスペクトルにおける標準偏差が所定の標準偏差未満である場合、呼吸状態が低呼吸、または、無呼吸であると推定する。
 このため、効果的にユーザの呼吸状態を推定することができる。
 [1-4.変形例1]
 上記実施の形態1では、端末本体23は、装着部21に配置されている第1電極221および第2電極222とは別体であり、当該第1電極221および第2電極222に電気的に接続されている構成であるが、これに限らない。例えば、端末本体23が、第1電極221および第2電極222と一体化されており、当該第1電極221および第2電極222を有する構成であってもよい。この場合、第1電極221および第2電極222と一体化されている端末本体23が、ユーザが所有している装着部21としての服に固定されることで、ウェアラブル端末20として機能してもよい。
 [1-5.変形例2]
 上記実施の形態1では、推定部16は、抽出部15により抽出された呼吸成分のスペクトルにおけるピーク強度が所定の強度以上であるか否か、または、当該スペクトルにおける標準偏差が所定の標準偏差以上であるか否かに基づいて、ユーザの呼吸状態を推定するとしたが、これに限らない。推定部16は、例えば、呼吸周期の1周期~10周期分程度に相当する時間幅(2[s]~20[s]程度)において計測された心電波形に基づく処理から得られたユーザの第2呼吸成分を、それ以前の所定の時間(例えば1時間)以上の期間に亘って計測された心電波形に基づく処理から得られたユーザの第1呼吸成分と比較することで、ユーザの呼吸状態を推定してもよい。
 第2呼吸成分は、第1呼吸成分よりも短い期間でリアルタイムに計測されたデータである。そのため、第2呼吸成分に低呼吸または無呼吸の状態が含まれる場合、第2呼吸成分の値は第1呼吸成分の値と顕著に異なる。このため、推定部16は、第2呼吸成分のスペクトルにおけるピーク強度である第2ピーク強度が、第1呼吸成分のスペクトルにおけるピーク強度である第1ピーク強度以上である場合、ユーザの呼吸状態が深い呼吸状態であると判定してもよい。また、推定部16は、第2ピーク強度が第1ピーク強度未満である場合、ユーザの呼吸状態が低呼吸状態または無呼吸であると判定してもよい。また、推定部16は、第2呼吸成分のスペクトルにおける標準偏差である第2標準偏差が、第1呼吸成分のスペクトルにおける標準偏差である第1標準偏差以上である場合、ユーザの呼吸状態が深い呼吸状態であると判定してもよい。また、推定部16は、第2標準偏差が第1標準偏差未満である場合、ユーザの呼吸状態が低呼吸状態または無呼吸であると判定してもよい。
 このように、推定部16は、第1期間に亘って計測された心電波形に基づいて、第1検出部12、第2検出部13、算出部14および抽出部15における処理により出力されたユーザの第1呼吸成分と、第1期間よりも短い第2期間に亘って計測された心電波形に基づいて、第1検出部12、第2検出部13、算出部14および抽出部15における処理により出力されたユーザの第2呼吸成分と、を比較することで第2期間におけるユーザの呼吸状態を推定してもよい。
 これにより、同一のユーザから取得された心電波形に基づいて呼吸状態を判定できるため、ユーザの特徴に応じた判定を行うことができる。また、第1期間は第2期間よりも長い期間なので、第1呼吸成分は第2呼吸成分よりも平均化されている。そのため、推定部16は、第1呼吸成分と第2呼吸成分とを比較することで、第2期間におけるユーザの呼吸状態を推定できる。
 [1-6.変形例3]
 なお、本実施の形態において、呼吸状態推定装置10は、取得部11により取得された心電波形のR波を検出する第1検出部12と、第1検出部12により検出されたR波の振幅を検出する第2検出部13を備えるとしたが、本開示はこれに限定されない。呼吸状態推定装置10が1つのみの検出部を備え、その検出部が取得部11により取得された心電波形のR波の振幅を検出するとしてもよい。
 [1-7.変形例4]
 なお、本実施の形態において、第1電極221および第2電極222はユーザの上半身の前面に配置されたが、本開示はこれに限定されない。第1電極221がユーザの上半身の前面に配置され、第2電極222がユーザの上半身の背面に配置されることによって、複数の電極221,222がユーザの心臓を挟んで互いに反対側の位置に配置されていてもよい。すなわち、複数の電極221,222がユーザの心臓を挟んで互いに反対側の位置に配置されているとは、複数の電極221,222が、複数の電極221,222間を流れる電流がユーザの心臓を通るように配置されていることを意味する。
 [1-8.変形例5]
 なお、本実施の形態において、取得部11はウェアラブル端末20から心電波形を取得したが、本開示はこれに限定されない。取得部11は、ユーザの心電波形を記録した記録媒体から心電波形を取得してもよい。
 (実施の形態2)
 以下、図12~図14を用いて、実施の形態2を説明する。
 [2-1.構成]
 図12は、実施の形態2に係る呼吸状態推定装置のハードウェア構成の一例を示すブロック図である。
 図12に示すように、実施の形態2では、実施の形態1とは異なり、呼吸状態推定装置10Aが呼吸状態推定方法における全ての処理を行う。つまり、実施の形態2の呼吸状態推定装置10Aは、実施の形態1に係る呼吸状態推定装置10と比較して、さらに、心電計106、第1電極107および第2電極108を備える。心電計106、第1電極107および第2電極108は、それぞれ、心電計231、第1電極221および第2電極222と同様の構成である。また、その他の構成は、実施の形態1と同様であるので同じ符号を付し、説明を省略する。
 また、この場合の呼吸状態推定装置10Aは、ディスプレイ103および通信IF102を備えていなくてもよい。また、呼吸状態推定装置10Aは、図12に示すように、装着部21を含めたウェアラブル端末として実現されてもよい。
 図13は、実施の形態2に係る呼吸状態推定装置の機能構成の一例を示すブロック図である。
 図13に示すように、実施の形態2では、実施の形態1とは異なり、取得部11Aは、心電計106、第1電極107および第2電極108により実現される。つまり、取得部11Aは、ユーザの心電波形を測定することで、ユーザの心電波形を取得する。
 なお、取得部11A以外の構成は、実施の形態1と同様であるので同じ符号を付し、説明を省略する。
 [2-2.動作]
 図14は、実施の形態2に係る呼吸状態推定装置における呼吸状態推定方法の一例を示すフローチャートである。
 図14に示すように、実施の形態2に係る呼吸状態推定装置10Aの動作は、実施の形態1に係る呼吸状態推定システム1の動作と比較して、全て呼吸状態推定装置10Aで処理が完結している点が異なる。つまり、図5で説明したシーケンス図において、ステップS12およびステップS21が省略されている。
 つまり、呼吸状態推定装置10Aは、ステップS11を行った後に、ステップS22を行う。したがって、呼吸状態推定装置10Aは、心電波形の測定、R波の検出、R波の振幅の検出、スペクトルの算出、呼吸成分の抽出、および、呼吸状態の推定に係る処理を行う。
 [2-3.効果]
 以上のように、本実施の形態において、呼吸状態推定装置10Aは、さらに、ユーザの胸部に装着される複数の電極107、108を備える。取得部11Aは、ユーザの胸部に装着された複数の電極107、108からユーザの心電波形を取得する。
 このため、精度よくユーザの心電波形を取得することができる。
 また、本実施の形態において、呼吸状態推定装置10Aは、さらに、ユーザの上半身に装着される装着部21を備える。装着部21には、ユーザの上半身に装着された状態において、ユーザの心臓を挟んで互いに反対側の位置に複数の電極107、108が配置されている。
 このため、装着部21をユーザの上半身に装着するだけで、複数の電極107、108をユーザの胸部の適切な位置に配置することができる。
 なお、複数の電極107、108はユーザの胸部に装着されたが、本開示はこれに限定されない。複数の電極107、108は胸部以外のユーザの上半身に装着されてもよい。例えば、複数の電極107、108はユーザの腕または手に装着されてもよい。
 なお、周波数領域への変換処理は、FFT処理に限定するものではなく、DFT(離散フーリエ変換)処理、DCT(離散コサイン変換)処理、ウェーブレット変換処理などであってもよい。
 以上のようにして推定したユーザの呼吸状態の推定結果を、ネットワークを介して図示しないサーバなどに送信するようにしてもよい。あるいは、図示しない記憶部により蓄積するようにしてもよい。
 なお、上記各実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU(Central Processing Unit)またはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。ここで、上記各実施の形態の呼吸状態推定装置などを実現するソフトウェアは、次のようなプログラムである。
 すなわち、このプログラムは、コンピュータに、ユーザの心電波形を取得する取得ステップと、取得ステップにおいて取得された心電波形のR波の振幅を検出する検出ステップと、検出ステップにおいて検出された振幅のスペクトルを算出する算出ステップと、算出ステップにおいて算出されたスペクトルから、所定の周波数帯域における呼吸成分を抽出する抽出ステップと、抽出ステップにおいて抽出された呼吸成分からユーザの呼吸状態を推定する推定ステップと、を含む呼吸状態推定方法を実行させる。
 以上、本開示の一つまたは複数の態様に係る呼吸状態推定装置などについて、実施の形態に基づいて説明したが、本開示は、この実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本開示の一つまたは複数の態様の範囲内に含まれてもよい。
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示は、呼吸を妨げることなく、人の呼吸状態を推定することができる呼吸状態推定装置等に適用可能である。
  1 呼吸状態推定システム
 10,10A 呼吸状態推定装置
 11,11A 取得部
 12 第1検出部
 13 第2検出部
 14 算出部
 15 抽出部
 16 推定部
 17 提示部
 20 ウェアラブル端末
 22 心電波形測定部
 23 端末本体
101 制御装置
102 通信IF
103 ディスプレイ
104 スピーカ
105 入力IF
106,231 心電計
107,221 第1電極
108,222 第2電極
 21 装着部
232 メモリ
233 送信部

Claims (15)

  1.  ユーザの心電波形を取得する取得部と、
     前記取得部により取得された前記心電波形のR波の振幅を検出する検出部と、
     前記検出部により検出された前記振幅のスペクトルを算出する算出部と、
     前記算出部により算出された前記スペクトルから、所定の周波数帯域における呼吸成分を抽出する抽出部と、
     前記抽出部により抽出された前記呼吸成分から前記ユーザの呼吸状態を推定する推定部と、を備える
     呼吸状態推定装置。
  2.  前記所定の周波数帯域は、前記ユーザの呼吸に基づき定められる
     請求項1に記載の呼吸状態推定装置。
  3.  前記所定の周波数帯域は、0.5Hz以下の周波数帯域である
     請求項1または2に記載の呼吸状態推定装置。
  4.  前記所定の周波数帯域は、0.08Hz以上の周波数帯域である
     請求項1から3のいずれか1項に記載の呼吸状態推定装置。
  5.  前記推定部は、前記抽出部により抽出された前記呼吸成分を指標値として前記ユーザの呼吸状態を推定する
     請求項1から4のいずれか1項に記載の呼吸状態推定装置。
  6.  前記推定部は、前記抽出部により抽出された前記呼吸成分のスペクトルにおけるピーク強度が所定の強度以上である場合、前記呼吸状態が深い呼吸であると推定し、当該ピーク強度が前記所定の強度未満である場合、前記呼吸状態が低呼吸、または、無呼吸であると推定する
     請求項1から5のいずれか1項に記載の呼吸状態推定装置。
  7.  前記推定部は、前記抽出部により抽出された前記呼吸成分のスペクトルにおける標準偏差が所定の標準偏差以上である場合、前記呼吸状態が深い呼吸であると推定し、当該標準偏差が前記所定の標準偏差未満である場合、前記呼吸状態が低呼吸、または、無呼吸であると推定する
     請求項1から5のいずれか1項に記載の呼吸状態推定装置。
  8.  前記取得部は、前記ユーザの心電波形を記録した記録媒体から前記心電波形を取得する
     請求項1から7のいずれか1項に記載の呼吸状態推定装置。
  9.  さらに、
     前記ユーザの上半身に装着される複数の電極を備え、
     前記取得部は、前記複数の電極から前記ユーザの前記心電波形を取得する
     請求項1から7のいずれか1項に記載の呼吸状態推定装置。
  10.  さらに、
     前記ユーザの上半身に装着される装着部であって、前記ユーザの上半身に装着された状態において、前記ユーザの心臓を挟んで互いに反対側の位置に前記複数の電極が配置されている装着部を備える
     請求項9に記載の呼吸状態推定装置。
  11.  前記推定部は、
     第1期間に亘って計測された前記心電波形に基づいて、前記検出部、前記算出部および前記抽出部における処理により出力された前記ユーザの第1呼吸成分と、
     前記第1期間よりも短い第2期間に亘って計測された前記心電波形に基づいて、前記検出部、前記算出部および前記抽出部における処理により出力された前記ユーザの第2呼吸成分と、
     を比較することで前記第2期間における前記ユーザの呼吸状態を推定する
     請求項1から10のいずれか1項に記載の呼吸状態推定装置。
  12.  前記推定部は、
     前記第2呼吸成分のスペクトルにおける第2ピーク強度が前記第1呼吸成分のスペクトルにおける第1ピーク強度以上である場合、前記呼吸状態が深い呼吸であると推定し、
     前記第2ピーク強度が前記第1ピーク強度未満である場合、前記呼吸状態が低呼吸、または、無呼吸であると推定する
     請求項11に記載の呼吸状態推定装置。
  13.  前記推定部は、
     前記第2呼吸成分のスペクトルにおける第2標準偏差が前記第1呼吸成分のスペクトルにおける第1標準偏差以上である場合、前記呼吸状態が深い呼吸であると推定し、
     前記第2標準偏差が前記第1標準偏差未満である場合、前記呼吸状態が低呼吸、または、無呼吸であると推定する
     請求項11に記載の呼吸状態推定装置。
  14.  ユーザの心電波形を取得する取得ステップと、
     前記取得ステップにおいて取得された前記心電波形のR波の振幅を検出する検出ステップと、
     前記検出ステップにおいて検出された前記振幅のスペクトルを算出する算出ステップと、
     前記算出ステップにおいて算出された前記スペクトルから、所定の周波数帯域における呼吸成分を抽出する抽出ステップと、
     前記抽出ステップにおいて抽出された前記呼吸成分から前記ユーザの呼吸状態を推定する推定ステップと、を含む
     呼吸状態推定方法。
  15.  ユーザの心電波形を取得する取得ステップと、
     前記取得ステップにおいて取得された前記心電波形のR波の振幅を検出する検出ステップと、
     前記検出ステップにおいて検出された前記振幅のスペクトルを算出する算出ステップと、
     前記算出ステップにおいて算出された前記スペクトルから、所定の周波数帯域における呼吸成分を抽出する抽出ステップと、
     前記抽出ステップにおいて抽出された前記呼吸成分から前記ユーザの呼吸状態を推定する推定ステップと、を含む呼吸状態推定方法をコンピュータに実行させるためのプログラムを記録した、
     プログラム記録媒体。
PCT/JP2017/018440 2017-03-08 2017-05-17 呼吸状態推定装置、呼吸状態推定方法、及び、プログラム記録媒体 WO2018163447A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018540095A JP6440137B1 (ja) 2017-03-08 2017-05-17 呼吸状態推定装置、呼吸状態推定方法、及び、プログラム記録媒体
US16/417,737 US20190269350A1 (en) 2017-03-08 2019-05-21 Respiratory state estimation apparatus, respiratory state estimation method, and program recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-044264 2017-03-08
JP2017044264 2017-03-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/417,737 Continuation US20190269350A1 (en) 2017-03-08 2019-05-21 Respiratory state estimation apparatus, respiratory state estimation method, and program recording medium

Publications (1)

Publication Number Publication Date
WO2018163447A1 true WO2018163447A1 (ja) 2018-09-13

Family

ID=63447432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018440 WO2018163447A1 (ja) 2017-03-08 2017-05-17 呼吸状態推定装置、呼吸状態推定方法、及び、プログラム記録媒体

Country Status (3)

Country Link
US (1) US20190269350A1 (ja)
JP (1) JP6440137B1 (ja)
WO (1) WO2018163447A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020174901A1 (ja) * 2019-02-26 2020-09-03 日本電気株式会社 光ファイバセンシングシステム、状態検知装置、状態検知方法、及び非一時的なコンピュータ可読媒体
WO2022045174A1 (ja) * 2020-08-31 2022-03-03 学校法人慶應義塾 生体検出装置、生体検出方法、及び、プログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110236528B (zh) * 2019-07-05 2021-07-20 北京理工大学 一种获取呼吸信息的方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04361739A (ja) * 1991-06-06 1992-12-15 Mari Noshiro 呼吸波測定装置
US20060041201A1 (en) * 2004-08-23 2006-02-23 Khosrow Behbehani System, software, and method for detection of sleep-disordered breathing using an electrocardiogram
WO2012052951A1 (en) * 2010-10-22 2012-04-26 Koninklijke Philips Electronics N.V. Respiratory effort assessment through ecg

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04361739A (ja) * 1991-06-06 1992-12-15 Mari Noshiro 呼吸波測定装置
US20060041201A1 (en) * 2004-08-23 2006-02-23 Khosrow Behbehani System, software, and method for detection of sleep-disordered breathing using an electrocardiogram
WO2012052951A1 (en) * 2010-10-22 2012-04-26 Koninklijke Philips Electronics N.V. Respiratory effort assessment through ecg

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020174901A1 (ja) * 2019-02-26 2020-09-03 日本電気株式会社 光ファイバセンシングシステム、状態検知装置、状態検知方法、及び非一時的なコンピュータ可読媒体
CN113473909A (zh) * 2019-02-26 2021-10-01 日本电气株式会社 光纤感测系统、状态检测设备、状态检测方法和非暂时性计算机可读介质
JPWO2020174901A1 (ja) * 2019-02-26 2021-11-25 日本電気株式会社 光ファイバセンシングシステム、状態検知装置、状態検知方法、及びプログラム
US20220151556A1 (en) * 2019-02-26 2022-05-19 Nec Corporation Optical fiber sensing system, state detection device, state detection method, and non-transitory computer-readable medium
JP7238959B2 (ja) 2019-02-26 2023-03-14 日本電気株式会社 光ファイバセンシングシステム、状態検知装置、状態検知方法、及びプログラム
WO2022045174A1 (ja) * 2020-08-31 2022-03-03 学校法人慶應義塾 生体検出装置、生体検出方法、及び、プログラム
JPWO2022045174A1 (ja) * 2020-08-31 2022-03-03
JP7428813B2 (ja) 2020-08-31 2024-02-06 データソリューションズ株式会社 生体検出装置、生体検出方法、及び、プログラム

Also Published As

Publication number Publication date
JP6440137B1 (ja) 2018-12-19
US20190269350A1 (en) 2019-09-05
JPWO2018163447A1 (ja) 2019-03-14

Similar Documents

Publication Publication Date Title
JP6557219B2 (ja) 生理信号を処理する処理装置、処理方法及びシステム
JP6459241B2 (ja) 睡眠状態推定装置、睡眠状態推定方法及びプログラム
Aly et al. Zephyr: Ubiquitous accurate multi-sensor fusion-based respiratory rate estimation using smartphones
EP3381364B1 (en) Respiratory estimation method and device
US9430615B2 (en) Personal electronic devices with unobtrusive EKG-based detection of heart rate and rhythm anomalies
US10058253B2 (en) System, method, and article for heart rate variability monitoring
US20110066042A1 (en) Estimation of blood flow and hemodynamic parameters from a single chest-worn sensor, and other circuits, devices and processes
US9504401B2 (en) Atrial fibrillation analyzer and program
JP2016509870A (ja) 呼吸信号の組合せを使用する呼吸速度測定
JP6440137B1 (ja) 呼吸状態推定装置、呼吸状態推定方法、及び、プログラム記録媒体
JP2017502782A (ja) 呼吸数の検出のための方法とデバイス
US20230091163A1 (en) Heart activity monitoring during physical exercise
JPWO2017135116A1 (ja) 生体信号処理方法および生体信号処理装置
US11076793B2 (en) Respiration estimation method and apparatus
KR102409381B1 (ko) 재귀 추정을 이용한 생체 신호 처리 방법 및 그 장치
US20160128591A1 (en) Measurement system of respiration-related signals and method of operating the same
CN112190242A (zh) 可穿戴设备及心率参数的检测方法
US20200107989A1 (en) System and method of noninvasive blood flow measurement during cardiopulmonary resuscitation using signal gating
JP2016083369A (ja) 心電図解析装置およびその制御方法
Liu et al. RespEar: Earable-Based Robust Respiratory Rate Monitoring
US20210236039A1 (en) Mobile ecg game controller apparatus
Coulter et al. Low power IoT platform for vital signs monitoring
JP6788876B2 (ja) 心電図信号処理装置、個人認証装置及び心電図信号処理方法
JP2016022293A (ja) 生体情報モニタリング装置、方法およびそのプログラム
JP2016043191A (ja) 生体信号解析装置、生体信号解析システム、及び、生体信号解析方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018540095

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17900102

Country of ref document: EP

Kind code of ref document: A1