WO2018162374A1 - Films polymériques nanostructurés et leur procédé de préparation - Google Patents

Films polymériques nanostructurés et leur procédé de préparation Download PDF

Info

Publication number
WO2018162374A1
WO2018162374A1 PCT/EP2018/055273 EP2018055273W WO2018162374A1 WO 2018162374 A1 WO2018162374 A1 WO 2018162374A1 EP 2018055273 W EP2018055273 W EP 2018055273W WO 2018162374 A1 WO2018162374 A1 WO 2018162374A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polymer
spherical particles
particles
substrate
Prior art date
Application number
PCT/EP2018/055273
Other languages
English (en)
Inventor
Sophie FASQUEL
Stéphane RECULUSA
Frédéric GUILLAIN
Original Assignee
Université De Bordeaux
Institut Polytechnique De Bordeaux
Centre National De La Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Université De Bordeaux, Institut Polytechnique De Bordeaux, Centre National De La Recherche Scientifique filed Critical Université De Bordeaux
Publication of WO2018162374A1 publication Critical patent/WO2018162374A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/10Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. casting around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/58Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres
    • B29C70/64Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres the filler influencing the surface characteristics of the material, e.g. by concentrating near the surface or by incorporating in the surface by force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C2059/023Microembossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C2059/028Incorporating particles by impact in the surface, e.g. using fluid jets or explosive forces to implant particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould

Definitions

  • the subject of the present invention is nanostructured polymeric films as well as their method of preparation. It also relates to their use in particular in the field of biology, optics surfaces, mechanical sensors and microfluidics.
  • Particle assembly techniques on surfaces are particularly targeted to date due to potential applications in particular in the fields of electronics and optics.
  • the present invention therefore aims to provide new nanostructured polymeric films in a simple process to implement and inexpensive.
  • micro-or nanostructured polymeric films for increasing the active area and therefore the sensitivity. It is another object of the present invention to provide flexible micro- or nanostructured polymeric films which can be thin (i.e., of a thickness of a few tens of microns).
  • Another object of the present invention is to provide transparent or biocompatible micro- or nanostructured polymeric films, which can for example be used in the field of biology.
  • the present invention relates to a process for preparing a film of a polymer M1 containing spherical particles of a material M2, said method comprising a step of impregnating a substrate with a solution, said substrate consisting of a support of material M3 comprising at least one layer of spherical particles on its surface, said substrate being obtained by the deposition of said particles on said support by the Langmuir-Blodgett technique, and said solution comprising at least one oligomer and optionally at least one a crosslinking agent.
  • the invention therefore relates to a novel process for producing micro- and nanostructured polymer films.
  • These polymeric films in particular of the polydimethylsiloxane (PDMS) type
  • PDMS polydimethylsiloxane
  • These polymeric films are transparent, flexible, and of controllable thickness (ranging from a few tens of microns to a few centimeters). They contain a 2D or 3D structure, formed by one or more layers of monodisperse particles, preferentially inorganic, selfassembled in a compact hexagonal network.
  • the monolayers or multilayers of particles "trapped" in the polymer are produced by the Langmuir-Blodgett technique which makes it possible to compact particles of sizes ranging from 10 nm to 20 microns, preferably from 100 nm to 2 microns, and then to deposit them on a support of big surface by controlling very precisely the number of layers.
  • the present invention therefore consists in particular in preparing a polymeric film containing spherical particles, commonly called “beads".
  • the film thus obtained is based on the above-mentioned polymer M1 in which "spherical" particles are "trapped".
  • the method of the invention can be considered as comprising a step of molding the spherical particles and this via their assembly with the film.
  • the film obtained according to the process of the invention therefore comprises spherical particles, in particular at least one layer of spherical particles, covered by a film of polymer M1.
  • the film obtained according to the process of the invention can be considered as a composite product comprising on the one hand a polymeric film (based on polymer M1) and spherical particles.
  • the film obtained according to the process of the invention can be considered as a composite product comprising on the one hand a polymeric film (based on polymer M1) and spherical particles, all of which is deposited on a support.
  • the process of the invention makes it possible, at low cost, to produce micro- and nanostructured polymeric films adapted to large areas (tens of cm 2 ) and to different geometries (flat, cylindrical, etc.).
  • the polymer M1 is obtained by polymerization from at least one oligomer selected from the group consisting of styrene, siloxanes, and mixtures thereof. Mention may also be made of UV-activated resins or heat resins, epoxy resins or else methyl methacrylate.
  • the polymer M1 is polystyrene or PDMS, optionally loaded with nanoparticles or nanowires.
  • the polymer M1 can also be a polymerized resin or poly (methyl methacrylate) (PMMA).
  • the film thickness of the polymer M1 is greater than or equal to 10 ⁇ , preferably greater than or equal to 40 ⁇ .
  • the thickness of the film of the polymer M1 is less than or equal to 10 cm, preferably less than or equal to 5 cm.
  • the method of the invention comprises the implementation of spherical particles. These particles may also be referred to as "beads”.
  • size refers to the diameter, in particular the average diameter, of the particles.
  • the diameter of the spherical particles (or balls) mentioned above is between 10 nm and 20 ⁇ m, preferably between 100 nm and 2 ⁇ m.
  • the spherical particles according to the invention consist of a material M2.
  • the material M2 is silicon dioxide (SiO 2 ).
  • the materials M2 mention may also be made of organic polymers, preferentially crosslinked, for example polystyrene-co-divinylbenzene.
  • the spherical particles can be functionalized or surface-modified.
  • they can be modified by grafting chemical molecules and / or nanoparticles.
  • the method of the invention comprises a step of impregnating a substrate as defined in more detail below with a solution comprising at least one oligomer.
  • This impregnation step may consist of pouring said solution on the substrate or immersing the substrate in said solution.
  • said solution further comprises at least one crosslinking agent.
  • This crosslinking agent is chosen from crosslinking agents well known to those skilled in the art, depending on the oligomer used, and more particularly divinylbenzene (in the case of styrene oligomer) or a branched siloxane chain (such as component B presented in example 1 below for siloxane oligomers).
  • the method of the invention comprises a step of UV radiation or heating in order to obtain a resin polymerized from the oligomer.
  • the above-mentioned solution does not comprise a crosslinking agent, but it is the UV radiation or the heat that plays this role and makes it possible to obtain a crosslinked resin.
  • the substrate used in the process of the invention consists of a support made of a material M3 covered with at least one layer of spherical particles of M2.
  • the substrate therefore comprises at least one layer of spherical M2 particles on the surface.
  • the substrate comprises a layer of material M3 covered on its surface with a deposit comprising at least one layer of spherical particles.
  • the material M3 is selected from naturally hydrophilic materials, or whose surface can be rendered hydrophilic by a suitable physical or chemical treatment.
  • the material M3 is chosen from glass, plastic materials and metallic or semiconductor materials. More particularly, the material M3 can be silicon, gold, copper, platinum, nickel or zinc.
  • the support has a plane or cylindrical, hollow or solid geometry.
  • the support used for the process of the invention may have a flat surface or be a hollow or solid cylinder.
  • the support used for the method of the invention is a capillary, the section of which may be for example circular, square or rectangular.
  • the substrate according to the invention is obtained by the Langmuir-Blodgett technique, which is well known to those skilled in the art.
  • the Langmuir-Blodgett technique is a method that has been used to deposit multilayer surfactant molecules on a substrate.
  • the general principle is:
  • This method can, however, be implemented using larger size amphiphilic objects, in particular nanoparticles or organic or inorganic particles of sub-micron or micron size.
  • the Langmuir-Blodgett method provides homogeneous, large-scale, crack-free deposits with object sizes larger than one micron, and can be precisely controlled - layer-by-layer - including substrates of large dimensions and planar or cylindrical geometry.
  • the silica particles required for manufacturing were also synthesized and functionalized in situ.
  • the substrate used for the process of the invention comprises from 1 to 100, preferably from 1 to 20, layers of spherical beads.
  • the method of the invention is particularly advantageous in that it allows to control the number and nature of the layers.
  • the method of the invention comprises the following steps:
  • the aforementioned impregnation step thus corresponds to a step of impregnating the deposit covering the support with said solution, as detailed above.
  • the step of preparing the abovementioned solution comprises a step of mixing at least one oligomer and at least one crosslinking agent, followed, if appropriate, by a step of degassing the mixture thus obtained .
  • This degassing step may for example be carried out by placing said mixture in a desiccator.
  • the method of the invention comprises the use of a mold to place the substrate before adding the solution.
  • the substrate as obtained by the Langmuir-Blodgett technique, is in a suitable mold then the solution is poured onto the substrate placed in the mold.
  • the use of the mold then makes it possible to obtain a defined and chosen shape for the polymeric film obtained at the end of the process.
  • This step may also be followed by an additional step of degassing, in particular by placing the assembly in a desiccator.
  • the method of the invention thus makes it possible in particular to obtain a support covered with a polymer film M1 containing spherical particles as defined above.
  • the method of the invention then further comprises a step of recovering the film of the polymer M1 containing the spherical particles, in particular by separating it from the support. Such a step therefore consists in detaching said film from the support.
  • the film can be considered to raise the film by a corner.
  • Another possibility is to place the support covered with said film in deionized water or in a suitable solvent such as acetone or hexane, and to subject the assembly to sonication, for example for 30 minutes. Then, the film can be cut on the edges and then lift a corner of the polymeric film.
  • the method of the invention further comprises a step of dissolving at least a portion of the spherical particles, preferably all the spherical particles.
  • This embodiment then makes it possible to obtain the polymeric film without part of the spherical particles or even the polymeric film without the spherical particles.
  • the polymeric film without the spherical particles can then be likened to a porous film whose pores correspond to the imprint of the spherical particles.
  • the method of the invention may also comprise a post-functionalization step of the polymer M1, for example by surface functionalization or by impregnation.
  • the surface properties of the polymer M1 can be modified by a physical or chemical treatment, in particular by modifying its surface tension, for example by UV / ozone treatment, Piranha treatment, or by grafting new chemical functions. as for example -NH 2 .
  • the present invention also relates to a film of a polymer M1 as defined above containing spherical particles of a material M2 as defined above, obtainable by the aforementioned method.
  • the method of the invention may also comprise a surface post-functionalization step of the M2 material particles.
  • the spherical particles form a compact stack, each of the particles being in contact with at least one of the other particles of said stack.
  • the present invention also relates to a micro- or nanostructured film comprising spherical pores, said pores being organized in compact form and at least one of the pores intercepting or flush with at least one surface of the film.
  • micro- or nanostructured film means a polymer including, in all or part of its volume or surface, particles of nanometric or micrometric size, or a combination of the two, these particles possibly being capable of being selectively dissolved for finally obtain a porous material having a greater specific surface area.
  • the main feature of this film is that the spherical particles form a compact stack at least locally or by domains (because of the Langmuir-Blodgett deposition technique). Each of the particles is in contact with at least one other particle in the film. The particles intercept or are flush with at least one of the surfaces of the polymer film. The particles are limited to a given thickness in the film (there are none everywhere since they exclusively form layers).
  • the aforementioned film further comprises a metal film deposited on its surface, for example a gold film. This metal film is deposited on the surface of the aforementioned pores.
  • the present invention also relates to a method for preparing a film of a polymer M1, comprising a step of thermal or chemical treatment, of a film of a polymer M1 containing spherical particles of a material M2, capable of be obtained according to the aforementioned method, whereby the spherical particles are dissolved.
  • This thermal or chemical treatment step therefore consists of dissolving the spherical particles and thus makes it possible to obtain the polymer film alone.
  • a step may for example consist in treating the film of a polymer M1 containing spherical particles of a material M2 with an organic solvent or with a strong acid.
  • this step consists of treatment with hydrofluoric acid when M2 is SiO 2 .
  • the present invention also relates to a polymeric film, obtainable by the method as described above.
  • the films obtained according to the invention can be used in the field of biology, surface optics (photonic crystal effect, plasmonic), mechanical sensors and microfluidics.
  • the method of the invention makes it possible to obtain micro- and / or nanostructured films and this structuring makes it possible to impart an optical effect to the films.
  • Figures 1, 2, 3 and 4 are microstructured PDMS SEM micrographs.
  • Figure 1 shows a PDMS film with 10 layers of silica beads of 1, 2 ⁇ diameter trapped inside.
  • Figure 2 shows a PDMS film with 10 layers of "pores" (after treatment with HF).
  • Figure 3 shows a structured channel in PDMS with 5 layers of beads.
  • Figure 4 shows a structured channel in PDMS with 5 layers of "pores” (after treatment with HF).
  • Figure 5 shows an embodiment of the process of the invention in which silica beads and PDMS are used.
  • Figures 6 and 7 show different embodiments of the method of the invention depending on the geometry of the support used (respectively flat surface and cylinder).
  • Example 1 Manufacture of PDMS films
  • a Langmuir film of silica particles (SiO 2 ) is prepared as follows: The silica particles used are synthesized according to the procedures described in the references Stober et al. J. Colloid Interface Sci. 1968, 26, 62-69; Reculusa et al. Chem. Mater., 2002, 14 (5), pp 2354-2359 or Reculusa et al. Chem. Mater., 2003, 15 (2), pp 598-605, from TetraEthoxysilane in a strongly basic hydroalcoholic medium. These are then functionalized on the surface by an agent of the aminopropyltriethoxysilane type which confers on the particles an amphiphilic character suitable for the formation of the Langmuir film. These particles can be stored as an aqueous suspension.
  • the particles present on the surface are compressed using moving barriers to form a compact monolayer, generally obtained when a change in the imposed surface pressure no longer induces movement of the barriers. mobile.
  • this value of the surface pressure is between 6 and 10 mN.m -1 .
  • the support on which it is desired to deposit the particles is then treated differently according to its nature.
  • the flat or cylindrical glass supports described here they were used without pre-washing because they were kept away from dust and organic contaminants.
  • exposure to an oxygen plasma soaking in an acid solution (Piranha type) or solvent degreasing (ethanol, acetone, chloroform) can be used to ensure the cleanliness of the surface.
  • the support is then positioned on the articulated arm or the dipping system before being immersed quickly and vertically through the Langmuir film (usually 50mm.min-1).
  • the support is then raised slowly (generally 1 to 2 mm per minute) while maintaining a constant surface pressure to allow the transfer of the monolayer.
  • the PDMS that has been used is Sylgard 184 (Dow Corning) prepared from two components, an oligomer A and a crosslinking agent B, in a weight ratio A: B of 10: 1.
  • a first preparation step the two components were added in the desired proportions (10 g of A and 1 g of B) in a suitably sized container.
  • the A / B precursor mixture was then stirred vigorously for 5 minutes and then degassed in a desiccator by vacuum stripping until the bubbles had completely disappeared to become perfectly translucent. It is then ready to be used. 4. Formatting the PDMS:
  • the blade is placed in a larger plastic container such as a plastic square petri dish.
  • the substrate is laid flat so that the bead layer is on the upper face.
  • the appropriate volume (equal to L x I xe with L the width of the container, the length of the container and the thickness of the polymer film) of the A / B mixture is then poured into the container so as to completely cover the surface. of the substrate.
  • conventional coating techniques such as spin-coating to form the finest films (tens of microns) (see Figure 5);
  • the substrate • in the case of cylindrical glass capillaries 5 cm long and 0.5 to 1 mm in diameter, the substrate, the surface of which is covered with particles, is placed in a plastic parallelepipedic tank of dimensions 10mm * 10mm * 50mm and maintained as vertically as possible. The tank is then filled with the A / B mixture to the proper height (for this example, 4 mL of mixture was added).
  • the assembly is returned to degassing in order to remove any air which may have been incorporated and to allow the mixture to infiltrate the deposition of particles.
  • a heat treatment is then performed to promote the crosslinking of the monomer and form the PDMS itself. The duration of this heat treatment is directly related to its temperature and corresponds to the following values:
  • demoulding is simple. At first, the substrate was detached from the container (following the contours of the substrate with a scalpel) and then a corner of the take off slowly from its support. If the desired thickness of PDMS is 1 to 2 mm, the film is easily deformable.
  • the PDMS block is first demolded by breaking the plastic bowl. Then, the block is immersed in a solvent such as hexane or THF. After a residence time of about 1 hour, the PDMS matrix is sufficiently swollen with solvent so that it is sufficient to gently pull the capillary to detach it from the block. In order for it to regain its original size, the evaporation of the solvent can be accelerated by placing it in a vacuum oven for 1 hour at 100 ° C.
  • a solvent such as hexane or THF.
  • the silica particles that were initially present on the surface of the substrates are trapped in the PDMS film or block. It is, however, possible to selectively dissolve the silica particles by briefly exposing them to dilute hydrofluoric acid. For this, a few drops of an aqueous solution of HF at 5% by volume are deposited on the surface of the film (in planar geometry) or the acid solution is brought up in the capillary channel (cylindrical geometry) and the acid is left at particle contact for a few minutes. The time is variable depending on the thickness of the silica deposit but a few minutes are enough.
  • the PDMS is rinsed in water and then ethanol in order to dry the material well.
  • Scanning Electron Microscopy makes it possible to ensure that the silica particles that were present before the treatment disappeared after this one (see Figures 2 and 4).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

La présente invention concerne un procédé de préparation d'un film d'un polymère M1 contenant des particules sphériques d'un matériau M2, ledit procédé comprenant une étape d'imprégnation d'un substrat par une solution, ledit substrat étant constitué d'un support en matériau M3 comprenant au moins une couche de particules sphériques, ledit substrat étant obtenu par le dépôt desdites particules sur ledit support par la technique de Langmuir-Blodgett, et ladite solution comprenant au moins un oligomère et optionnellement au moins un agent réticulant.

Description

FILMS POLYMÉRIQUES NANOSTRUCTURÉS ET LEUR PROCÉDÉ DE PRÉPARATION
La présente invention a pour objet des films polymériques nanostructurés ainsi que leur procédé de préparation. Elle a également pour objet leur utilisation notamment dans le domaine de la biologie, de l'optique des surfaces, des capteurs mécaniques et de la microfluidique.
Les techniques d'assemblage de particules sur des surfaces sont particulièrement visées à ce jour en raison des applications potentielles notamment dans les domaines de l'électronique et de l'optique.
Parmi ces techniques, on peut par exemple citer les techniques suivantes : enduction par immersion ("dip-coating" en anglais), enduction par centrifugation ("spin-coating" en anglais) ou encore l'évaporation contrôlée. Toutefois, ces techniques présentent l'inconvénient de limiter en tailles les billes utilisables ainsi que la surface de l'échantillon et sa géométrie. En outre, l'épaisseur obtenue sur la surface traitée n'est pas homogène et on constate souvent la présence de fissures (notamment lors du séchage).
Parmi les techniques de nanostructuration classique, on peut également citer la lithographie électronique. Cependant, une telle technique présente de nombreux inconvénients notamment en termes de coût.
Les méthodes existantes à ce jour présentent donc de nombreux inconvénients comme le coût élevé, le traitement de faibles surfaces mais également une structuration uniquement bidimensionnelle ainsi qu'une durée de mise en œuvre trop élevée.
A ce jour, il existe donc un besoin pour un procédé à faible coût et simple permettant d'obtenir des films nano- ou micro-structurés et pouvant être appliqués à des grandes surfaces.
La présente invention a donc pour but de fournir de nouveaux films polymériques nanostructurés selon un procédé simple à mettre en œuvre et peu coûteux.
Elle a également pour but de fournir des films polymériques micro- ou nanostructurés permettant d'augmenter la surface active et donc la sensibilité. La présente invention a également pour but de fournir des films polymériques micro- ou nanostructurés flexibles, pouvant être fins (c'est-à-dire d'une épaisseur de quelques dizaines de microns).
La présente invention a également pour but de fournir des films polymériques micro- ou nanostructurés transparents et biocompatibles, pouvant donc par exemple être utilisés dans le domaine de la biologie.
Ainsi, la présente invention concerne un procédé de préparation d'un film d'un polymère M1 contenant des particules sphériques d'un matériau M2, ledit procédé comprenant une étape d'imprégnation d'un substrat par une solution, ledit substrat étant constitué d'un support en matériau M3 comprenant au moins une couche de particules sphériques à sa surface, ledit substrat étant obtenu par le dépôt desdites particules sur ledit support par la technique de Langmuir-Blodgett, et ladite solution comprenant au moins un oligomère et optionnellement au moins un agent réticulant.
L'invention concerne donc un nouveau procédé de fabrication de films en polymère micro- et nanostructurés. Ces films polymériques (notamment de type polydiméthylsiloxane (PDMS)) sont transparents, flexibles, et d'épaisseur contrôlable (allant de quelques dizaines de microns à quelques centimètres). Ils contiennent une structuration 2D ou 3D, formée par une ou plusieurs couches de particules monodisperses, préférentiellement inorganiques, autoassemblées en réseau hexagonal compact.
Les monocouches ou multicouches de particules "emprisonnées" dans le polymère sont réalisées par la technique de Langmuir-Blodgett qui permet d'organiser de manière compacte des particules de tailles allant de 10 nm à 20 microns, préférentiellement de 100 nm à 2 microns, puis de les déposer sur un support de grande surface en contrôlant très précisément le nombre de couches.
La présente invention consiste donc notamment à préparer un film polymérique contenant des particules sphériques, communément appelées « billes ». Le film ainsi obtenu est à base de polymère M1 susmentionné dans lequel sont "piégées" des particules sphériques.
Le procédé de l'invention peut être considéré comme comprenant une étape de moulage des particules sphériques et ce via leur assemblage avec le film.
Le film obtenu selon le procédé de l'invention comprend donc des particules sphériques, notamment au moins une couche de particules sphériques, recouvertes par un film de polymère M1 . Le film obtenu selon le procédé de l'invention peut être considéré comme un produit composite comprenant d'une part un film polymérique (à base de polymère M1 ) et des particules sphériques.
Le film obtenu selon le procédé de l'invention peut être considéré comme un produit composite comprenant d'une part un film polymérique (à base de polymère M1 ) et des particules sphériques, le tout étant déposé sur un support.
Le procédé de l'invention permet, à faible coût, de réaliser des films polymériques micro- et nanostructurés adaptés à de grandes surfaces (dizaines de cm2) et à différentes géométries (planes, cylindriques...).
Selon un mode de réalisation, le polymère M1 est obtenu par polymérisation à partir d'au moins un oligomère choisi dans le groupe constitué du styrène, des siloxanes, et de leurs mélanges. On peut également citer les résines activées par UV ou par la chaleur, les résines époxy ou encore le méthacrylate de méthyle.
De préférence, le polymère M1 est le polystyrène ou le PDMS, éventuellement chargé avec des nanoparticules ou des nanofils. Le polymère M1 peut également être une résine polymérisée ou du poly(méthacrylate de méthyle)(PMMA).
Selon un mode de réalisation, l'épaisseur du film du polymère M1 est supérieure ou égale à 10 μηι, de préférence supérieure ou égale à 40 μηι.
Selon un mode de réalisation, l'épaisseur du film du polymère M1 est inférieure ou égale à 10 cm, de préférence inférieure ou égale à 5 cm.
Comme indiqué ci-dessus, le procédé de l'invention comprend la mise en œuvre de particules sphériques. Ces particules peuvent également être désignées par le terme « billes ».
Dans le cadre de la présente invention, le terme "taille" désigne le diamètre, notamment le diamètre moyen, des particules.
De préférence, le diamètre des particules (ou billes) sphériques susmentionnées est compris entre 10 nm et 20 μηι, de préférence entre 100 nm et 2 μηι.
Les particules sphériques selon l'invention sont constituées d'un matériau M2. De préférence, le matériau M2 est du dioxyde de silicium (Si02). Parmi les matériaux M2, on peut également citer les polymères organiques, préférentiellement réticulés, comme par exemple le polystyrène-co-divinylbenzène.
Selon l'invention, les particules sphériques peuvent être fonctionnalisées ou modifiées en surface. Par exemple, elles peuvent être modifiées par greffage de molécules chimiques et/ou de nanoparticules.
Le procédé de l'invention comprend une étape d'imprégnation d'un substrat tel que défini plus en détail ci-après avec une solution comprenant au moins un oligomère.
Cette étape d'imprégnation peut consister à faire couler ladite solution sur le substrat ou à immerger le substrat dans ladite solution.
Selon un mode de réalisation, ladite solution comprend en outre au moins un agent réticulant. Cet agent réticulant est choisi parmi les agents réticulants bien connus de l'homme du métier, en fonction de l'oligomère utilisé, et plus particulièrement le divinylbenzène (dans le cas de l'oligomère styrène) ou encore une chaîne siloxane ramifiée (tel que le composant B présenté dans l'exemple 1 ci- après pour des oligomères de type siloxanes).
Selon un mode de réalisation, lorsque le polymère M1 est obtenu à partir d'un oligomère choisi parmi les résines activées par rayonnement UV ou par la chaleur, le procédé de l'invention comprend une étape de rayonnement UV ou de chauffage afin d'obtenir une résine polymérisée à partir de l'oligomère. Selon ce mode de réalisation, la solution susmentionnée ne comprend pas d'agent réticulant mais c'est le rayonnement UV ou la chaleur qui joue ce rôle et permet d'obtenir une résine réticulée.
Le substrat mis en œuvre dans le procédé de l'invention est constitué d'un support fait d'un matériau M3 recouvert d'au moins une couche de particules sphériques de M2. Le substrat comprend donc au moins une couche de particules sphériques de M2 en surface. En d'autres termes, le substrat comprend une couche de matériau M3 recouvert, à sa surface, d'un dépôt comprenant au moins une couche de particules sphériques. Selon un mode de réalisation, le matériau M3 est choisi parmi des matériaux naturellement hydrophiles, ou dont la surface peut être rendue hydrophile par un traitement physique ou chimique adapté.
De préférence, le matériau M3 est choisi parmi le verre, les matériaux plastiques et les matériaux métalliques ou semi-conducteurs. Plus particulièrement, le matériau M3 peut être du silicium, de l'or, du cuivre, du platine, du nickel ou du zinc.
Selon un mode de réalisation, le support a une géométrie plane ou cylindrique, creuse ou pleine. En d'autres termes, le support utilisé pour le procédé de l'invention peut avoir une surface plane ou être un cylindre, creux ou plein.
Selon un mode de réalisation, le support utilisé pour le procédé de l'invention est un capillaire, dont la section peut être par exemple circulaire, carrée ou rectangulaire.
Comme indiqué ci-dessus, le substrat selon l'invention est obtenu par la technique de Langmuir-Blodgett, bien connue de l'homme du métier.
Historiquement, la technique de Langmuir-Blodgett est un procédé qui a été utilisé pour déposer sur un substrat des multicouches de molécules tensioactives. Le principe général est le suivant :
- épandage à une interface plane (gaz-liquide ou liquide-liquide) d'une solution contenant des molécules « amphiphiles » présentant des affinités pour les deux phases en contact (en général, air et eau) ;
- après évaporation du solvant de dispersion, compression des molécules à l'aide d'une barrière mobile afin de les organiser en film bidimensionnel plus ou moins compact (dit « film de Langmuir ») ;
- immersion d'un substrat au travers de l'interface, en général de manière perpendiculaire, et transfert sur sa surface du film préalablement formé (en ajustant des paramètres tels que vitesse d'immersion, vitesse d'émersion, nombre de cycles).
Ce procédé peut toutefois être mis en œuvre en utilisant des objets amphiphiles de taille plus grande, notamment des nanoparticules ou des particules organiques ou inorganiques de taille submicronique ou micronique.
La méthode de Langmuir-Blodgett permet d'obtenir des dépôts homogènes à grande échelle, sans fissure, avec des tailles d'objets supérieures au micron, et dont l'épaisseur peut être contrôlée très précisément - à la couche près - y compris sur des substrats de grandes dimensions et de géométrie plane ou cylindrique. Les particules de silice nécessaires à la fabrication ont été également synthétisées et fonctionnalisées in situ.
Selon un mode de réalisation, le substrat utilisé pour le procédé de l'invention comprend de 1 à 100, de préférence de 1 à 20, couches de billes sphériques.
En effet, le procédé de l'invention est particulièrement avantageux en ce qu'il permet de contrôler le nombre et la nature des couches.
Selon un mode de réalisation préféré, le procédé de l'invention comprend les étapes suivantes :
- une étape de préparation par la technique de Langmuir-Blodgett d'un substrat constitué d'un support en matériau M3 recouvert par au moins une couche de particules sphériques d'un matériau M2 ;
- une étape de préparation d'une solution comprenant au moins un oligomère et optionnellement au moins un agent réticulant ; et
- une étape d'imprégnation du substrat par ladite solution.
L'étape d'imprégnation susmentionnée correspond donc à une étape d'imprégnation du dépôt recouvrant le support par ladite solution, et ce comme détaillé plus haut.
Selon un mode de réalisation spécifique, l'étape de préparation de la solution susmentionnée comprend une étape de mélange d'au moins un oligomère et d'au moins un agent réticulant, suivie le cas échéant d'une étape de dégazage du mélange ainsi obtenu. Cette étape de dégazage peut être par exemple être effectuée en plaçant ledit mélange dans un dessiccateur.
Selon un mode de réalisation, le procédé de l'invention comprend l'utilisation d'un moule pour y placer le substrat avant addition de la solution. Selon ce mode de réalisation, le substrat, tel qu'obtenu par la technique de Langmuir-Blodgett, est dans un moule approprié puis la solution est coulée sur le substrat placé dans le moule. L'utilisation du moule permet alors d'obtenir une forme définie et choisie pour le film polymérique obtenu à l'issue du procédé.
Cette étape peut également être suivie d'une étape supplémentaire de dégazage, notamment par placement de l'ensemble dans un dessiccateur. Le procédé de l'invention permet donc notamment d'obtenir un support recouvert d'un film de polymère M1 contenant des particules sphériques telles que définies ci-dessus.
Il permet également d'obtenir un film de polymère M1 contenant des particules sphériques telles que définies ci-dessus. Pour obtenir le film de polymère M1 contenant des particules sphériques telles que définies ci-dessus, le procédé de l'invention comprend alors en outre une étape de récupération du film du polymère M1 contenant les particules sphériques, notamment en le désolidarisant du support. Une telle étape consiste donc à détacher ledit film du support.
Pour détacher ou désolidariser le film du support, il peut être envisagé de soulever le film par un coin. Une autre possibilité consiste à placer le support recouvert dudit film dans de l'eau déionisée ou dans un solvant adapté comme l'acétone ou l'hexane, et à soumettre l'ensemble à un traitement aux ultrasons, par exemple pendant 30 minutes. Ensuite, le film peut être découpé sur les bords pour ensuite soulever un coin du film polymérique.
Selon un mode de réalisation, le procédé de l'invention comprend en outre une étape de dissolution d'au moins une partie des particules sphériques, de préférence de toutes les particules sphériques.
Ce mode de réalisation permet alors d'obtenir le film polymérique sans une partie des particules sphériques voire le film polymérique sans les particules sphériques.
Le film polymérique sans les particules sphériques peut alors être assimilé à un film poreux dont les pores correspondent à l'empreinte des particules sphériques.
Le procédé de l'invention peut également comprendre une étape de post- fonctionnalisation du polymère M1 , par exemple par fonctionnalisation de surface ou par imprégnation.
Selon un mode de réalisation, les propriétés de surface du polymère M1 peuvent être modifiées par un traitement physique ou chimique, en particulier en modifiant sa tension de surface, par exemple par traitement UV/ozone, traitement Piranha, ou par greffage de nouvelles fonctions chimiques comme par exemple -NH2. La présente invention concerne également un film d'un polymère M1 tel que défini ci-dessus contenant des particules sphériques d'un matériau M2 tel que défini ci-dessus, susceptible d'être obtenu selon le procédé susmentionné. Le procédé de l'invention peut également comprendre une étape de post-fonctionnalisation de surface des particules en matériau M2.
Selon un mode de réalisation, dans le film susmentionné, les particules sphériques forment un empilement compact, chacune des particules étant en contact avec au moins une des autres particules dudit empilement.
La présente invention concerne également un film micro- ou nanostructuré comprenant des pores sphériques, lesdits pores étant organisés sous forme compacte et au moins un des pores interceptant ou affleurant à au moins une surface du film.
Le terme « film micro- ou nanostructuré » désigne un polymère incluant, dans tout ou partie de son volume ou de sa surface, des particules de taille nanométrique ou micrométrique, ou une combinaison des deux, ces particules pouvant éventuellement être dissoutes de manière sélective pour obtenir finalement un matériau poreux présentant une plus grande surface spécifique.
La caractéristique principale de ce film est que les particules sphériques forment un empilement compact au moins localement ou par domaines (à cause de la technique de dépôt de Langmuir-Blodgett). Chacune des particules est en contact avec au moins une autre particule dans le film. Les particules interceptent ou affleurent à au moins une des surfaces du film de polymère. Les particules sont limitées à une épaisseur donnée dans le film (il n'y en a pas partout puisqu'elles forment exclusivement des couches).
Selon un mode de réalisation, le film susmentionné comprend en outre un film métallique déposé à sa surface, par exemple un film d'or. Ce film métallique est notamment déposé à la surface des pores susmentionnés.
La présente invention concerne également un procédé de préparation d'un film d'un polymère M1 , comprenant une étape de traitement thermique ou chimique, d'un film d'un polymère M1 contenant des particules sphériques d'un matériau M2, susceptible d'être obtenu selon le procédé susmentionné, ce par quoi les particules sphériques sont dissoutes.
Cette étape de traitement thermique ou chimique consiste donc à dissoudre les particules sphériques et donc permet d'obtenir le film polymérique seul. Une telle étape peut par exemple consister à traiter le film d'un polymère M1 contenant des particules sphériques d'un matériau M2 par un solvant organique ou par un acide fort. De préférence, cette étape consiste en un traitement par de l'acide fluorhydrique lorsque M2 est du Si02.
La présente invention concerne également un film polymérique, susceptible d'être obtenu selon le procédé tel que décrit ci-dessus.
Les films obtenus selon l'invention peuvent être utilisés dans le domaine de la biologie, de l'optique des surfaces (effet cristal photonique, plasmonique), des capteurs mécaniques et de la microfluidique.
Le procédé de l'invention permet en effet l'obtention de films micro- et/ou nanostructurés et cette structuration permet de conférer un effet optique aux films.
DESCRIPTION DES FIGURES
Les Figures 1 , 2, 3 et 4 sont des clichés MEB de PDMS microstructuré.
La Figure 1 représente un film de PDMS avec 10 couches de billes de silice de 1 ,2 μηι de diamètre piégées à l'intérieur. La Figure 2 représente un film de PDMS avec 10 couches de « pores » (après traitement par du HF). La Figure 3 représente un canal structuré en PDMS avec 5 couches de billes. La Figure 4 représente un canal structuré en PDMS avec 5 couches de « pores » (après traitement par du HF).
La Figure 5 représente un mode de réalisation du procédé de l'invention dans lequel on utilise des billes de silice et du PDMS.
Les Figures 6 et 7 représentent différents modes de réalisation du procédé de l'invention en fonction de la géométrie du support utilisé (respectivement surface plane et cylindre). EXEMPLES
Exemple 1 : Fabrication de films de PDMS
1. Obtention d'un film de Langmuir de particules de silice :
Un film de Langmuir de particules de silice (Si02) est préparé comme suit : Les particules de silice utilisées sont synthétisées selon des modes opératoires décrits dans les références Stober et al. J. Colloid Interface Sci. 1968, 26, 62-69 ; Reculusa et al. Chem. Mater., 2002, 14 (5), pp 2354-2359 ou Reculusa et al. Chem. Mater., 2003, 15 (2), pp 598-605, à partir de TetraEthoxysilane en milieu hydroalcoolique fortement basique. Celles-ci sont ensuite fonctionnalisées en surface par un agent de type aminopropyltriéthoxysilane qui confère aux particules un caractère amphiphile adéquat pour la formation du film de Langmuir. Ces particules peuvent être conservées sous forme de suspension aqueuse.
Dans ce qui suit, on a utilisé des objets de 1 ,2 micron de diamètre obtenus par un procédé en deux étapes tel que celui décrit dans Reculusa et al. Chem. Mater., 2002, 14 (5), pp 2354-2359.
La masse de billes nécessaire pour former un film compact d'aire souhaitée est prélevée, lavée à l'éthanol plusieurs fois par des cycles de centrifugation puis redispersée in fine dans un mélange éthanol/chloroforme (20/80 v/v). Ainsi, pour des billes de 1 ,2 μηι de diamètre, 80 mg de particules représentent une surface d'environ 500 cm2. Le volume de suspension, environ 5 mL, est ensuite épandu (déposé goutte à goutte) à la surface d'une cuve de Langmuir (« Alternate layer Langmuir-Blodgett trough » de NIMA, modèle 622) remplie d'eau distillée dont l'aire de travail maximale est de 1200 cm2.
Après évaporation du solvant, les particules présentes à la surface sont comprimées à l'aide de barrières mobiles jusqu'à former une monocouche compacte, obtenue en général lorsque qu'une modification de la pression de surface imposée n'induit plus de mouvement des barrières mobiles. Usuellement, cette valeur de la pression de surface est comprise entre 6 et 10 mN.m"1.
2. Dépôt du film sur un substrat par technique de Langmuir-Blodgett :
Le support sur lequel on souhaite déposer les particules est ensuite traité différemment selon sa nature. Dans le cas des supports en verre plans ou cylindriques décrits ici, ils ont été utilisés sans prélavage car ils étaient conservés à l'abri de la poussière et de contaminants organiques. Par précaution, une exposition à un plasma d'oxygène, un trempage dans une solution acide (type Piranha) ou un dégraissage au solvant (éthanol, acétone, chloroforme) peut être mise en œuvre pour s'assurer de la propreté de la surface.
Le support est ensuite positionné sur le bras articulé ou le système de trempage avant d'être immergé rapidement et à la verticale au travers du film de Langmuir (en général 50mm.min-1 ). Le support est ensuite remonté lentement (en général, 1 à 2 mm par minute) tout en maintenant une pression de surface constante pour permettre le transfert de la monocouche. En répétant le processus n fois, on peut par ailleurs déposer n couches de particules sur le support considéré, par exemple avec n=5 ou n=10 sur un capillaire cylindrique (cf. Figures 1 et 3).
3. Préparation du PDMS :
Dans les exemples présentés ci-après, le PDMS qui a été utilisé est du Sylgard 184 (Dow Corning) préparé à partir de deux composants, un oligomère A et un agent réticulant B, dans un ratio massique A:B de 10:1 . Il est toutefois possible d'incorporer davantage d'agent réticulant (ratios 10:2 ou 10:3, par exemple) pour obtenir un matériau final plus dur.
Figure imgf000013_0001
Dans une première étape de préparation, les deux composants ont été ajoutés dans les proportions voulues (10g de A et 1 g de B) dans un récipient de taille convenable. Le mélange de précurseurs A/B a ensuite été agité vigoureusement pendant 5min puis mis à dégazer dans un dessiccateur en tirant sous vide jusqu'à disparition complète des bulles de sorte qu'il devienne parfaitement translucide. Il est alors prêt à être utilisé. 4. Mise en forme du PDMS :
Deux méthodes ont été utilisées selon la géométrie et la dimension du substrat :
• dans le cas de lames de verre de dimension 7cm*5cm, la lame est placée dans un récipient en plastique de taille plus grande telle qu'une boîte de pétri carrée en plastique. Le substrat est posé à plat de telle sorte que la couche de billes soit sur la face supérieure. Le volume adéquat (égal à L x I x e avec L la largeur du récipient, I la longueur du récipient et e l'épaisseur du film de polymère) de mélange A/B est ensuite versé dans le récipient de façon à recouvrir complètement la surface du substrat. Il est également possible d'utiliser des techniques d'enduction classique tels que l'enduction centrifuge (spin-coating) pour former les films les plus fins (dizaines de micron) (cf. Figure 5) ;
• dans le cas de capillaires cylindriques en verre de 5cm de long et de 0,5 à 1 mm de diamètre, le substrat, dont la surface est recouverte de particules, est placé dans une cuve parallélépipédique en plastique de dimensions 10mm*10mm*50mm et maintenu aussi verticalement que possible. La cuve est alors remplie du mélange A/B jusqu'à la hauteur convenable (pour cet exemple, 4 mL de mélange ont été ajoutés).
Une fois la mise en contact du substrat avec le mélange A/B, l'ensemble est remis à dégazer afin de retirer l'air qui se serait éventuellement incorporé et de permettre au mélange de bien infiltrer le dépôt de particules. Un traitement thermique est alors réalisé pour favoriser la réticulation du monomère et former le PDMS proprement dit. La durée de ce traitement thermique est directement liée à sa température et correspond aux valeurs suivantes :
- 48 à 72h à température ambiante (20-25°C)
- 4h à 60°C
- 2h à 80°C
- 1 h à 100°C
5. Démoulage du PDMS :
Pour les structures planes le démoulage est simple. Dans un premier temps, on a détaché le substrat du récipient (en suivant les contours du substrat à l'aide d'un scalpel) et ensuite on a soulevé un coin du film polymère pour pouvoir le décoller lentement de son support. Si l'épaisseur de PDMS voulue est de 1 à 2 mm, le film est aisément déformable.
Pour les capillaires, on procède d'abord au démoulage du bloc de PDMS en cassant la cuve en plastique. Ensuite, le bloc est plongé dans un solvant comme l'hexane ou le THF. Au bout d'un temps de séjour d'environ 1 h, la matrice en PDMS est suffisamment gonflée de solvant de sorte qu'il suffit de tirer délicatement sur le capillaire pour le détacher du bloc. Afin que celui-ci retrouve sa dimension initiale, on peut accélérer l'évaporation du solvant en plaçant le tout dans une étuve sous vide pendant 1 h à 100°C.
Exemple 2 : Traitements ultérieurs des matériaux en PDMS
Selon les protocoles détaillés ci-dessus, les particules de silice qui étaient initialement présentes à la surface des substrats se retrouvent piégées dans le film ou le bloc de PDMS. Il est toutefois possible de dissoudre sélectivement les particules de silice en les exposant brièvement à de l'acide fluorhydrique dilué. Pour cela, on dépose quelques gouttes d'une solution aqueuse de HF à 5% volumique sur la surface du film (en géométrie plane) ou on fait remonter la solution acide dans le canal capillaire (géométrie cylindrique) et on laisse l'acide au contact des particules pendant quelques minutes. Le temps est variable selon l'épaisseur du dépôt de silice mais quelques minutes à peine suffisent.
Une fois le traitement terminé, on procède au rinçage du PDMS dans de l'eau puis de l'éthanol afin de bien sécher le matériau. Quelle que soit la géométrie de l'échantillon, la Microscopie Electronique à Balayage permet de s'assurer que les particules de silice qui étaient présentes avant le traitement ont bien disparu après celui-ci (cf. Figures 2 et 4).
Il est possible de former des nanoparticules d'or à la surface du PDMS microstructuré en mettant en contact ce dernier avec une solution à 10mg/ml_ de HAuCI4,3H20 dans l'éthanol (ou H20 ou THF). Ainsi, en faisant circuler, au moyen d'une pompe péristaltique, dans le canal en PDMS - ou, dans le cas des géométries planes, en recouvrant la surface avec une solution à 10mg/ml_ de HAuCI4,3H20 dans l'éthanol (ou H20 ou THF) - , on obtient au bout de quelques minutes une coloration violette qui traduit la formation de ces nanoparticules que l'on peut ensuite exploiter pour former une couche d'or plus épaisse. Il suffit pour cela de faire circuler en continu, toujours au moyen d'une pompe péristaltique - ou de recouvrir la surface avec - une solution dite de dépôt autocatalytique (electroless plating) préparée à partir des constituants suivants :
o sel d'or (HAuCI4,3H20) à raison de 5mg/ml_
o hydrogénocarbonate de potassium KHC03 à raison de 50mg/ml_
o glucose à raison de 5mg/ml_
o hydroxyde de potassium KOH (5,6.10 mg/mL) afin d'ajuster le pH vers 10

Claims

REVENDICATIONS
1. Procédé de préparation d'un film d'un polymère M1 contenant des particules sphériques d'un matériau M2, ledit procédé comprenant une étape d'imprégnation d'un substrat par une solution, ledit substrat étant constitué d'un support en matériau M3 comprenant au moins une couche de particules sphériques à sa surface, ledit substrat étant obtenu par le dépôt desdites particules sur ledit support par la technique de Langmuir-Blodgett, et ladite solution comprenant au moins un oligomère et optionnellement au moins un agent réticulant.
2. Procédé selon la revendication 1 , dans lequel le matériau M3 est choisi parmi le verre, les matériaux plastiques et les matériaux métalliques ou semiconducteurs tels que le silicium, l'or, le cuivre, le platine, le nickel ou le zinc.
3. Procédé selon l'une quelconque des revendications 1 ou 2, dans lequel le polymère M1 est obtenu par polymérisation à partir d'au moins un oligomère choisi dans le groupe constitué du styrène, des siloxanes, et de leurs mélanges, et est par exemple le polystyrène ou le PDMS, éventuellement chargé avec des nanoparticules ou des nanofils.
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel l'épaisseur du film du polymère M1 est supérieure ou égale à 10 μηι, de préférence supérieure ou égale à 40 μηι.
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel le matériau M2 est du dioxyde de silicium (Si02) ou un polymère organique, les particules étant éventuellement fonctionnalisées ou modifiées en surface.
6. Procédé selon l'une quelconque des revendications 1 à 5, comprenant les étapes suivantes :
- une étape de préparation par la technique de Langmuir-Blodgett d'un substrat constitué d'un support en matériau M3 recouvert par au moins une couche de particules sphériques d'un matériau M2 ;
- une étape de préparation d'une solution comprenant au moins un oligomère et optionnellement au moins un agent réticulant ; et - une étape d'imprégnation du dépôt recouvrant le substrat par ladite solution.
7. Procédé selon l'une quelconque des revendications 1 à 6, comprenant en outre une étape de récupération du film du polymère M1 contenant les particules sphériques, notamment en le désolidarisant du support.
8. Film d'un polymère M1 contenant des particules sphériques d'un matériau M2, susceptible d'être obtenu selon le procédé selon l'une quelconque des revendications 1 à 7.
9. Film micro- ou nanostructuré comprenant des pores sphériques, lesdits pores étant organisés sous forme compacte et au moins un des pores interceptant ou affleurant à au moins une surface du film.
10. Procédé de préparation d'un film d'un polymère M1 , comprenant une étape de traitement thermique ou chimique, d'un film d'un polymère M1 contenant des particules sphériques d'un matériau M2, susceptible d'être obtenu selon le procédé selon l'une quelconque des revendications 1 à 7, ce par quoi les particules sphériques sont dissoutes.
PCT/EP2018/055273 2017-03-06 2018-03-05 Films polymériques nanostructurés et leur procédé de préparation WO2018162374A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1751810 2017-03-06
FR1751810A FR3063443A1 (fr) 2017-03-06 2017-03-06 Films polymeriques nanostructures et leur procede de preparation

Publications (1)

Publication Number Publication Date
WO2018162374A1 true WO2018162374A1 (fr) 2018-09-13

Family

ID=60382260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/055273 WO2018162374A1 (fr) 2017-03-06 2018-03-05 Films polymériques nanostructurés et leur procédé de préparation

Country Status (2)

Country Link
FR (1) FR3063443A1 (fr)
WO (1) WO2018162374A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100107304A1 (en) * 2007-03-30 2010-05-06 Kazutaka Matsunobu Method for forming resin surface, method for manufacturing article which forms recessed portions different in size randomly on surface thereof and article manufactured by the method, and method for manufacturing gloves and gloves manufactured by the method
US20110217544A1 (en) * 2008-08-21 2011-09-08 Innova Dynamics, Inc. Enhanced surfaces, coatings, and related methods
EP2991136A1 (fr) * 2014-08-29 2016-03-02 Centre National De La Recherche Scientifique Procédé de fabrication d'une cellule électrochimique miniaturisée
EP3121875A1 (fr) * 2015-07-20 2017-01-25 Centre National De La Recherche Scientifique Procédé de fabrication d'une cellule électrochimique miniaturisée et ladite cellule

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100107304A1 (en) * 2007-03-30 2010-05-06 Kazutaka Matsunobu Method for forming resin surface, method for manufacturing article which forms recessed portions different in size randomly on surface thereof and article manufactured by the method, and method for manufacturing gloves and gloves manufactured by the method
US20110217544A1 (en) * 2008-08-21 2011-09-08 Innova Dynamics, Inc. Enhanced surfaces, coatings, and related methods
EP2991136A1 (fr) * 2014-08-29 2016-03-02 Centre National De La Recherche Scientifique Procédé de fabrication d'une cellule électrochimique miniaturisée
EP3121875A1 (fr) * 2015-07-20 2017-01-25 Centre National De La Recherche Scientifique Procédé de fabrication d'une cellule électrochimique miniaturisée et ladite cellule

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
RECULUSA ET AL., CHEM. MATER., vol. 14, no. 5, 2002, pages 2354 - 2359
RECULUSA ET AL., CHEM. MATER., vol. 15, no. 2, 2003, pages 598 - 605
STÔBER ET AL., J. COLLOID INTERFACE SCI., vol. 26, 1968, pages 62 - 69

Also Published As

Publication number Publication date
FR3063443A1 (fr) 2018-09-07

Similar Documents

Publication Publication Date Title
Zhang et al. Breath figure: a nature-inspired preparation method for ordered porous films
EP2271438B1 (fr) Recouvrement d'un substrat par un film de polymere stable en milieu liquide
Munoz-Bonilla et al. Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach
Escalé et al. Recent advances in honeycomb-structured porous polymer films prepared via breath figures
CN110300630B (zh) 用于使用两亲性嵌段共聚物在固体支撑体上制造多层膜的方法
Yu et al. Controlled grafting of well-defined polymers on hydrogen-terminated silicon substrates by surface-initiated atom transfer radical polymerization
EP2595932B1 (fr) Procede de fabrication d'un depot de nanoparticules inorganiques, comportant des micros-vides, sur un support transparent a la lumiere
Yeo et al. Multiscale-architectured functional membranes utilizing inverse opal structures
US9566609B2 (en) Surface nanoreplication using polymer nanomasks
CA2569222C (fr) Procede de fabrication de nanoparticule ou de nanostructure en utilisant un materiau nanoporeux
JP7076834B2 (ja) 三次元規則多孔マイクロ構造の製造方法およびこの方法で製造されるモノリシックカラム
US11118024B2 (en) Method for producing three-dimensional ordered porous microstructure and monolithic column produced thereby
Li et al. Phase separation of silicon-containing polymer/polystyrene blends in spin-coated films
EP2547637A1 (fr) Procede de preparation de bicouches ceramiques poreuses nanostructurees, bicouches ceramiques obtenues par ce procede et applications
FR2926162A1 (fr) Procede de modification localisee de l'energie de surface d'un substrat
WO2003078505A2 (fr) Aerogel a base d'un polymere ou copolymere hydrocarbone et leur procede de preparation.
Kim et al. Self-assembled morphologies of lamella-forming block copolymers confined in conical nanopores
WO2018162374A1 (fr) Films polymériques nanostructurés et leur procédé de préparation
EP1750789B1 (fr) Composition de polymeres moulables a caractere hydrophile durable, canaux pour fluides aqueux a base de cette composition, systeme microfluidique incorporant ces canaux et son procede de fabrication
TWI695030B (zh) 三維有序多孔微結構的製造方法以及由此方法所製成的整體柱
FR2973391A1 (fr) Procédé de formation de motifs d'objets sur la surface d'un substrat
US20190077102A1 (en) Methods for producing three-dimensional ordered porous microstructure and monolithic column produced thereby
EP2951336B1 (fr) Procede de fabrication d'elements moules en diamant monocristallin ou a tres faible densite de joints de grain de tailles micro, submicro ou nanometriques
CN109407185B (zh) 三维有序多孔微结构的制造方法以及由此方法所制成的整体柱
Park et al. Flow Behaviors of Polymer Colloids and Curing Resins Affect Pore Diameters and Heights of Periodic Porous Polymer Films to Direct Their Surface and Optical Characteristics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18707384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18707384

Country of ref document: EP

Kind code of ref document: A1