WO2018161869A1 - 一种数据传输方法、装置及雷达设备 - Google Patents

一种数据传输方法、装置及雷达设备 Download PDF

Info

Publication number
WO2018161869A1
WO2018161869A1 PCT/CN2018/077997 CN2018077997W WO2018161869A1 WO 2018161869 A1 WO2018161869 A1 WO 2018161869A1 CN 2018077997 W CN2018077997 W CN 2018077997W WO 2018161869 A1 WO2018161869 A1 WO 2018161869A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
data
preset
measurement
distance
Prior art date
Application number
PCT/CN2018/077997
Other languages
English (en)
French (fr)
Inventor
郭伟卫
虞坤霖
蒋超
Original Assignee
北京猎户星空科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京猎户星空科技有限公司 filed Critical 北京猎户星空科技有限公司
Priority to EP18763152.8A priority Critical patent/EP3595206A4/en
Priority to JP2019549377A priority patent/JP7026695B2/ja
Priority to US16/491,526 priority patent/US10962626B2/en
Publication of WO2018161869A1 publication Critical patent/WO2018161869A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0083Formatting with frames or packets; Protocol or part of protocol for error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a data transmission method, apparatus, and radar device.
  • the radar equipment collects data such as the distance between the object within the measurement range and the center of the radar equipment, and then transmits the collected data.
  • the destination device performs device control based on the received data.
  • the radar device generally collects data in a rotating manner, and the data collected by the device in the process of rotating the set maximum rotation angle from a position forms one frame of data.
  • the radar device generally collects one frame of data and then transmits the entire frame of data to the destination device. After receiving the data, the destination device performs device control in combination with the received data.
  • the device in the above manner can implement device control, since the data received by the destination device is data collected by the radar device during the previous rotation period, when the data is transmitted in the above manner from the perspective of the destination device, when there is data The problem of growing up.
  • the embodiment of the present application discloses a data transmission method, device and radar device to reduce data delay.
  • the embodiment of the present application discloses a data transmission method, which is applied to a radar device, and the method includes:
  • the target data packet is sent to the destination device.
  • the step of obtaining data collected by the radar device during a rotation of a preset angle from the target position includes:
  • the measurement angle collected at one measurement point indicates: the measurement point and the preset
  • the angle between the mechanical zero points, the measured distance collected at one measuring point represents the distance between the object within the preset measuring range and the center of the radar device;
  • the step of performing packet processing on the collected data to generate a target data packet includes:
  • a packet processing is performed on the collected data to generate a target data packet including the first angle, the second angle, and the obtained measured distances.
  • the step of performing packet processing on the collected data to generate a target data packet including the first angle, the second angle, and each obtained measurement distance includes:
  • Determining a length of the data area wherein the data area includes: the first angle, the second angle, and each measured distance obtained;
  • a packet processing is performed on the collected data to generate a target data packet including the length, the first angle, the second angle, and the obtained measured distances.
  • the data transmission method further includes:
  • the data area further includes: the rotation speed;
  • the step of performing packet processing on the collected data to generate a target data packet including the length, the first angle, the second angle, and the obtained measured distances including:
  • the step of the target data packet of the rotating speed comprising:
  • Generating a target data packet including the header, the length, the first angle, the second angle, each measured distance obtained, the rotational speed, and the check code.
  • the method further includes:
  • the measurement distance For each measured distance obtained, when the measurement distance is less than the first preset distance, the measurement distance is set to a first preset value, and when the measurement distance is greater than the second preset distance, the measurement distance is set to a second preset a value is set, wherein the first preset distance is smaller than the second preset distance.
  • the predetermined angle Max A / N, where, N is a positive integer.
  • the determining the starting data collection location includes:
  • the position corresponding to the third angle is determined as a starting data collection location, wherein the third angle is: an end measurement angle included in the data packet sent to the destination device last time.
  • the method further includes:
  • the step of sending the target data packet to the destination device includes:
  • the target data packet is sent to the destination device through a preset serial port.
  • the embodiment of the present application discloses a data transmission device, which is applied to a radar device, and the device includes:
  • a location determining module configured to determine a starting data collection location as a target location
  • a data obtaining module configured to obtain data collected by the radar device during a rotation of the preset angle from the target position, wherein the preset angle is: an angle within a range of (0°, Max A ), Max A Indicates the preset maximum rotation angle;
  • a packet generation module configured to perform packet processing on the collected data to generate a target data packet
  • a packet sending module configured to send the target data packet to a destination device.
  • the data obtaining module is specifically configured to obtain a measurement angle and a measurement distance collected by the radar device at a preset measurement point during a rotation of the preset angle from the target position.
  • the measurement angle acquired at each measurement point indicates: the angle between the measurement point and the preset mechanical zero point
  • the measurement distance collected at one measurement point indicates: the object within the preset measurement range and the center of the radar device Distance between
  • the package generation module includes:
  • An angle determining unit configured to determine an initial measurement angle and an end measurement angle in the obtained measurement angle, as a first angle and a second angle, respectively;
  • a packet generating unit configured to perform a packing process on the collected data, and generate a target data packet including the length, the first angle, the second angle, and each obtained measurement distance.
  • the packet generating unit includes:
  • a length determining subunit configured to determine a length of the data area, wherein the data area includes: the first angle, the second angle, and each measured distance obtained;
  • a packet generation subunit configured to perform a packing process on the collected data, and generate a target data packet including the length, the first angle, the second angle, and each obtained measurement distance.
  • the data transmission device further includes:
  • a speed obtaining module configured to obtain a speed of the radar device
  • the data area further includes: the rotation speed;
  • the packet generation subunit is specifically configured to perform packet processing on the collected data in combination with the rotation speed, and generate the length, the first angle, the second angle, and each obtained measurement distance and the obtained The target data packet of the rotational speed.
  • the packet generation subunit is specifically configured to obtain a packet header, and according to the packet header, the length, the first angle, the second angle, and each measured distance obtained And the rotating speed, generating a check code, and generating a target including the header, the length, the first angle, the second angle, the obtained measured distance, the rotational speed, and the check code data pack.
  • the data transmission device further includes:
  • a distance setting module configured to set a measurement distance to a first preset value when the measurement distance is less than the first preset distance for each measured distance obtained after the data obtaining module obtains the measurement distance, in the measurement
  • the measurement distance is set to a second preset value, wherein the first preset distance is smaller than the second preset distance.
  • the preset angle Max A /N, where N is a positive integer.
  • the location determining module is specifically configured to determine a location corresponding to the third angle as a starting data collection location, where the third angle is: last time
  • the data packet sent by the destination device includes a termination measurement angle.
  • the data obtaining module is further configured to trigger the packet generation module to generate the target data packet in a parallel manner, and the location determining module to redetermine the target location.
  • the packet sending module is specifically configured to send the target data packet to a destination device by using a preset serial port.
  • an embodiment of the present application discloses a radar device, including: a housing, a processor, a memory, a circuit board, and a power supply circuit, wherein the circuit board is disposed inside a space enclosed by the housing, The processor and the memory are disposed on the circuit board; the power circuit is configured to supply power to each circuit or device of the radar device; the memory is used to store executable program code; and the processor operates by reading executable program code stored in the memory The program corresponding to the program code is used to execute the data transmission method provided by the embodiment of the present application.
  • the embodiment of the present application discloses an application program, which is used to execute the data transmission method provided by the embodiment of the present application at runtime.
  • the embodiment of the present application discloses a computer readable storage medium, where the computer readable storage medium stores a computer program, and the computer program is executed by the processor to perform the data transmission method provided by the embodiment of the present application.
  • FIG. 1 is a schematic flowchart of a data transmission method according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of another data transmission method according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a radar device according to an embodiment of the present application.
  • the embodiments of the present application provide a data transmission method, device, and radar device, wherein the data transmission method and device are applied to a radar device.
  • the radar device may be a laser radar device, or may be other types of radar devices, such as a sonar radar, etc., and the type of the radar device is not limited in this application.
  • the radar device can perform data acquisition in a rotating manner, that is, the radar device performs data acquisition while rotating.
  • the maximum angle of rotation can be understood as the maximum angle at which the radar device can rotate from a position, which is a relative angle.
  • the maximum rotation angle of the radar device can be set according to a specific application scenario.
  • the radar device can be rotated from a position 30° from its mechanical zero to a position 270° from its mechanical zero.
  • FIG. 1 is a schematic flowchart diagram of a data transmission method according to an embodiment of the present application, where the method is applied to a radar device.
  • the foregoing data transmission method includes:
  • S101 Determine a starting data collection location as a target location.
  • the radar device can perform data acquisition in a rotating manner, and the radar device generally has a preset mechanical zero point, based on this, the target position can be expressed by an angle between the position and the mechanical zero point.
  • S102 Obtain data collected by the radar device during a rotation of the preset angle from the target position.
  • the radar device when the radar device performs data acquisition in a rotating manner, a certain number of collection points may be set in advance for the radar device, and when the radar device rotates to each collection point, data collection is performed at the collection point.
  • the data collected by the radar device at each collection point may include: an angle between the collection point and the mechanical zero point, a distance between the object within the measurement range and the center of the radar device, and the like.
  • the above measurement range varies depending on the type of radar equipment. For example, some laser radar equipments have a measurement range of 0 to 10 meters and so on. Radar equipment generally has a high measurement accuracy, and the above-mentioned distances collected can reach millimeters.
  • the collection points are distributed along the rotation range, and the collection points may be uniformly distributed in the rotation range or may be non-uniformly distributed in the rotation range, which is not limited in the application.
  • the above range of rotation can be understood as the area over which the radar device can rotate.
  • the values involved in this range can be understood as the angle determined relative to the mechanical zero of the radar device, in which case each integer can be at a distance from the mechanical zero.
  • Set the sampling points at the angle that is, 0°, 1°, 2°, 3°, 4°, 5°... for a total of 360 sampling points.
  • the preset angle is: an angle within a range of (0°, Max A ), and Max A represents a preset maximum rotation angle.
  • Max A may be 360°, 270°, or the like.
  • the predetermined angle may be an integer form of angle, for example, 18°, 36°, etc., and may also be an angle of a decimal form, for example, 18.5°, 20.5°, or the like.
  • the above preset angle can also satisfy the following conditions:
  • Preset angle Max A /N, where N is a positive integer
  • the data obtained in this step is only a part of one frame of data collected by the radar device, and the above N is a positive integer, so that the radar device sequentially rotates N presets.
  • the data collected by the angle can form one frame of data, which is beneficial for the destination device to determine one frame of data according to the data collected by the radar device for device control.
  • S103 Perform packet processing on the collected data to generate a target data packet.
  • the data is packaged, and the generated data exists in the form of a "package", which can be called a data packet.
  • S104 Send the target data packet to the destination device.
  • the target data packet when the target data packet is sent to the destination device, the target data packet may be sent to the destination device through a preset serial port.
  • serial port is the abbreviation of serial interface, also called serial communication interface or serial communication interface (for example, COM interface), which is an extended interface adopting serial communication mode.
  • serial interface also called serial communication interface or serial communication interface (for example, COM interface)
  • COM interface serial communication interface
  • the target data packet can also be sent to the destination device through other types of interfaces, for example, IIC (Inter-Integrated Circuit), SPI (Serial Peripheral Interface), etc. Limited.
  • IIC Inter-Integrated Circuit
  • SPI Serial Peripheral Interface
  • the radar device Since the destination device is controlled by the information according to the distance collected by the radar device, the closer the distance between the information collected by the radar device and the object to the destination device, the better the precise control is achieved, so the radar device can Mounted on the surface of the destination device, or installed in the cavity of the destination device, etc.
  • the above-mentioned destination device may be a device such as a robot.
  • the radar device may also be referred to as a positioning module of the robot.
  • the data packet After receiving the data packet transmitted by the radar device through the preset serial port, the data packet is parsed to obtain the angle, the distance and the like, and then the image for the surrounding environment of the robot can be constructed according to the information, and then The robot motion is controlled based on the constructed image.
  • the radar device can be rotated continuously, and it takes a certain time to generate the target data packet. To ensure that the target data packet is generated, the data collected during the rotation of the subsequent radar device is not delayed.
  • the step of performing packet processing on the collected data to generate the target data packet is performed (S103).
  • the above-described target position is re-determined, and a step of obtaining data acquired during the rotation of the preset angle by the radar device from the target position is performed (S102). In this way, while the target data packet is generated, the data collected by the radar device can still be obtained.
  • the thread 1 can be used to acquire the data collected by the radar device, and the thread 2 performs the packet processing to generate the data packet. After the thread 1 obtains the data collected during the rotation of the preset angle, the data is transmitted to the thread 2, and the thread 2 continues. The packing process is performed, and thread 1 continues to obtain the data acquired during the subsequent rotation.
  • the preset angle mentioned in the above description is: (0°, Max A ), so the data packet sent to the destination device in S104 is only one frame data collected by the radar device. As a part, therefore, transmitting one frame of data to the destination device needs to be implemented by one or more of the above data transmission processes.
  • the target location mentioned in S101 is only the initial collection location corresponding to the process of transmitting the data packet to the destination device once.
  • the foregoing S101 determines a starting data collection location.
  • the initial data collection location may be determined as a target location according to a fixed rotation angle interval.
  • the foregoing S101 determines a starting data collection location, and when the target location is used, the last collection point corresponding to the data packet sent by the destination device to the destination device may be determined as the initial data collection.
  • Location which is the target location.
  • the target data packet sent to the destination device is generated according to data collected during the process of rotating the preset angle of the radar device, and the preset angle is smaller than the maximum rotation angle of the radar device. Therefore, compared with the prior art, when the destination device receives the target data packet, the data delay is smaller than the case where the complete frame data is collected, and therefore, the delay can be reduced.
  • FIG. 2 is a schematic flowchart of another data transmission method according to an embodiment of the present disclosure. Compared with the foregoing embodiment, in this embodiment,
  • Step S102 of obtaining data collected by the radar device during the rotation of the preset angle from the target position comprising:
  • S102A Obtain a measurement angle and a measurement distance acquired at each preset measurement point during a rotation of the preset angle by the radar device from the target position.
  • the measurement angle collected at one measurement point indicates: the angle between the measurement point and the preset mechanical zero point, and the measurement distance collected at one measurement point indicates the distance between the object and the center of the radar device within the preset measurement range. .
  • the foregoing measurement points may be set according to actual application requirements.
  • one collection point may be set every 1°, or one collection point may be set every 2°, which is not limited in this application.
  • Step S103 of performing packet processing on the collected data to generate a target data packet including:
  • S103A Determine the initial measurement angle and the end measurement angle in the obtained measurement angle as the first angle and the second angle, respectively.
  • the initial measurement angle and the end measurement angle in the obtained measurement angle are determined.
  • the initial measurement angle and the end measurement angle can be determined according to the obtained measurement angle, the preset angle, and the rotation direction.
  • the preset angle is 18° and the radar device rotates clockwise.
  • Example 1 The obtained measurement angle is:
  • the angle at which the radar device rotates clockwise from 36° is 17°, involving 18 sampling points.
  • the initial measurement angle is 36°, and the end measurement angle is :53°;
  • Example 2 The obtained measurement angle is:
  • the angle of the radar device rotating clockwise from 350° is 17°, involving 18 sampling points.
  • the initial measurement angle is 350°, and the end measurement angle is :6°.
  • S103B Perform packet processing on the collected data to generate a target data packet including the first angle, the second angle, and the obtained measurement distances.
  • the target data packet does not include the measurement angle corresponding to each sampling point, but only includes the initial measurement angle and the termination measurement angle, the data amount of the data included in the target data packet can be greatly reduced, thereby reducing the target device.
  • the amount of data sent by the data in addition, because the target data packet contains the obtained measurement distances, the destination device can still obtain the distance data collected by the radar device at each sampling point, thereby ensuring the data obtained by the destination device. Data accuracy.
  • each measurement distance can be corresponding to each sampling point, that is, corresponding to the direction of the object in the measurement range, and the target data packet only includes the first angle and the second In the case of an angle, the distribution of each sampling point over the range of rotation can be agreed in advance.
  • the measurement angle 1 in the above table indicates the measurement angle acquired during the rotation of the preset angle of the radar device
  • the measurement distance 1 represents the measurement distance collected during the process of rotating the preset angle of the radar device
  • the measurement angle 2 represents the data sent to the destination device.
  • the measurement angle contained in the packet the measurement distance 2 represents the measurement distance contained in the data packet sent to the target device.
  • Each angle in the measurement angle 1 corresponds one-to-one with each distance in the measurement distance 1.
  • the unit of the distance value in the table can be understood as millimeter.
  • the data volume of the measurement angle included in the data packet sent to the destination device is only 1/9 of the solution provided by the prior art.
  • the target data packet when the collected data is subjected to a packing process to generate a target data packet including the first angle, the second angle, and the obtained measured distance, the target data packet may further include
  • the header information is used to identify the target data packet, may be information describing a target data packet type, or may be only a special character string. It can be seen from the foregoing description that the data information that needs to be transmitted to the destination device in the embodiment of the present application can be understood as data collected by the radar device, including: a first angle, a second angle, and each obtained measurement distance, etc., specific
  • the area in which the above data information is stored may be referred to as a data area.
  • the length of the data area may be determined first, and then The collected data is subjected to a packing process to generate a target data packet including the above length, the first angle, the second angle, and the obtained measured distances.
  • the data area in the implementation manner includes: a first angle, a second angle, and each measured distance obtained.
  • the destination device can know the length of the data area by parsing the length after receiving the target data packet, and does not need to know the length of the data area until the entire target data packet is parsed.
  • radar devices may need to acquire more accurate data, so that radar devices transmit more data to the destination device, and the number of sampling points contained in one packet may also change in the data packet.
  • the corresponding resource is allocated only when the data packet is generated.
  • the destination device parses the data packet, the destination device only needs to allocate the corresponding resource according to the length of the parsed, which is beneficial to adjust the length of the data packet according to the actual situation. The robustness of the above data transmission method is enhanced.
  • the radar device rotates continuously, and the rotation condition can be expressed by the parameter of the rotational speed.
  • the rotational speed can be understood as the arc of one second rotation.
  • the rotational speed of the laser radar can be: 8*360° per second. , 9 * 360 °, 10 * 360 °, etc., that is, 8 circles, 9 circles, 10 rings, etc. per second.
  • the foregoing data transmission method may further include:
  • the above data area also needs to include the above rotation speed
  • the data received by the destination device is incorrect, and the image constructed by the destination device for the environment surrounding the robot is distorted.
  • the amplitude of the target device is generally not within one second. Large, so there is a strong time correlation between each frame data collected by the radar device, so the destination device can determine the subsequent received frame data according to the above-mentioned rotational speed, and then perform the constructed image for the surrounding environment of the robot. Correction to obtain better control effects and reduce the impact of transmission errors or data acquisition errors on device control.
  • the collected data is packaged to generate target data including the length, the first angle, the second angle, the obtained measurement distance, and the rotational speed.
  • the packet header may be obtained first; and then the check code is generated according to the packet header, the length, the first angle, the second angle, the obtained measurement distance and the rotation speed; and the packet header, the length, the first angle, and the The second angle, the obtained measured distance, the rotational speed, and the target data packet of the check code.
  • the check code may be a CRC (Cyclic Redundancy Check) check code, such as a CRC8 check code.
  • CRC Cyclic Redundancy Check
  • the destination device may first verify whether a transmission error has occurred according to the check code, and then use the data contained in the target data packet to perform device control.
  • the foregoing data area does not include a check code.
  • the destination device After the destination device receives the target data packet, it needs to combine the check code contained in the target data packet to check whether the data transmission error occurs during the process of transmitting the target data packet, so only the check code is parsed and the data is processed. After verification, it can be determined whether the data in the target data packet is available. It is known from the foregoing description that the target data packet contains the length of the data area, so the destination device parses out the length of the data area from the target data packet, and is not completed.
  • the check code can be directly found according to the above length and the arrangement format of each data in the target data packet set in advance, and then the check code is parsed. This can greatly improve the data processing speed of the destination device.
  • the measurement range of the radar device is limited due to its own characteristics.
  • the measurement acquired at each preset measurement point during the rotation of the preset angle by the radar device from the target position is obtained. After the distance, each measured distance obtained can also be adjusted.
  • the measurement distance is set to a first preset value
  • the measurement distance is set to a second preset value, wherein the first preset distance is less than the second preset distance.
  • the above setting operation is performed for each measured distance obtained.
  • the radar device When the measurement distance is small, the radar device is close to the object. If the control device is not controlled in time, the target device can easily collide with the object. This situation can be considered as entering the measurement dead zone. In this case, the measurement distance can be adjusted to Smaller values so that the destination device can quickly adjust its motion based on the adjusted distance.
  • the motion state of the destination device may not be changed, and the data collected in this case may be ignored for this purpose.
  • the first preset distance may be: 10 cm
  • the first preset value may be: 0x00
  • the second preset distance may be: 10 meters
  • the second preset value may be: 0xFF.
  • the preset angle Max A /N, where N is a positive integer.
  • the location corresponding to the third angle may be determined as the initial data collection location, where the third angle is: the termination measurement angle included in the data packet sent to the destination device last time.
  • the data obtained in S102 can be understood as the data collected at the target location, and the data packet sent to the destination device last time does not include.
  • the data collected at the target location it can also be understood that the data obtained by S102 does not include the data collected at the target location, and the data packet previously sent to the destination device contains the data collected at the target location.
  • the preset angle is 12°.
  • 0°, 1°, 2°, 3°, 4°, 5°, 6°, 7°, 8°, 9°, 10°, 11°, 12° respectively correspond to one sampling point, and the aforementioned target position corresponds to 0 °, the radar device rotates from 0° to 12°,
  • the data obtained in S102 is data collected at 0°, 1°, 2°, 3°, 4°, 5°, 6°, 7°, 8°, 9°, 10°, 11°.
  • the radar device can be rotated to 11° to complete the above data acquisition;
  • the data obtained by S102 is collected at 1°, 2°, 3°, 4°, 5°, 6°, 7°, 8°, 9°, 10°, 11°, 12°. data.
  • the data packet sent to the destination device only includes the data packet of the initial measurement angle and the termination measurement angle in terms of the measurement angle, and the accuracy of the device obtained by the destination device is ensured. It can effectively reduce the amount of data in the data packet, thereby reducing the bandwidth requirement during data transmission.
  • the bandwidth requirement is required when the data provided by the embodiment of the present application is used to transmit data. Become smaller.
  • the maximum rotation angle of the radar device is 360°, that is, it can rotate in a full circle, and 360 sampling points are set on one circle.
  • the preset angle is 12°, that is, one data packet corresponds to 12 sampling points, and the radar device
  • the data collected by one rotation corresponds to 30 data packets, and the radar device rotates 8 times per second.
  • Baotou 1Byte, length of data area: 2Byte, speed: 2Byte, initial measurement angle: 2Byte, measured distance: 2*12Byte, termination measurement angle: 2Byte, check code: 1Byte
  • the bandwidth resources required for the radar device to transmit data to the destination device are reduced, in the case where the bandwidth resource is limited, more data can be transmitted by using the solution provided by the embodiment of the present application, so that the radar device can transmit high-precision data.
  • the destination device can also receive high-precision data, which in turn facilitates efficient and accurate device control.
  • the data packet transmitted by the radar device to the destination device corresponds to a certain angle, that is, corresponds to one sector, so that the destination device receives the data packet and constructs an image for the environment surrounding the destination device.
  • the splicing can be obtained one by one according to the receiving sequence of the data packet. Therefore, applying the solution provided by the embodiment of the present application for data transmission can provide convenience for the destination device to construct an image.
  • the radar equipment is: Lidar equipment
  • the target equipment is: robot
  • the maximum rotation angle of the laser radar equipment is 360°
  • one sampling point is set for each 1° in the range of [0°, 360°)
  • each sampling The angle corresponding to the point is an integer, that is, the angle corresponding to the sampling point is: 0°, 1°, 2°, 3°, 4°, 5°...359°
  • a total of 360 sampling points the preset angle is 12 °, so that the entire rotation range of the laser radar can be divided into 30 sectors.
  • the laser radar device collects 12 measurement angles and 12 corresponding measurement distances in a process of rotating 11° from the position corresponding to 0°, and then calculates the initial measurement angle. 0°, the length of the data area of the measurement angle of 11° and 12 measurement distances is terminated, and the head is generated according to the initial measurement angle of 0°, the end measurement angle of 11°, the 12 measurement distances, the rotation speed, and the above length, and the toe cap is generated.
  • the embodiment of the present application further provides a data transmission device.
  • FIG. 3 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present disclosure.
  • the apparatus is applied to a radar apparatus, and includes:
  • a location determining module 301 configured to determine a starting data collection location as a target location
  • the data obtaining module 302 is configured to obtain data collected by the radar device during a rotation of the preset angle from the target position, where the preset angle is: an angle within a range of (0°, Max A ), Max A represents the preset maximum rotation angle;
  • a packet generation module 303 configured to perform packet processing on the collected data to generate a target data packet
  • the packet sending module 304 is configured to send the target data packet to the destination device.
  • the data obtaining module 302 may be specifically configured to obtain a measurement angle and a measurement distance collected by each of the preset measurement points during the rotation of the preset angle by the radar device, where
  • the measurement angle of the measurement point acquisition indicates: the angle between the measurement point and the preset mechanical zero point, and the measurement distance collected at one measurement point indicates the distance between the object within the preset measurement range and the center of the radar device;
  • the packet generation module 303 can include:
  • An angle determining unit configured to determine an initial measurement angle and an end measurement angle in the obtained measurement angle, as a first angle and a second angle, respectively;
  • a packet generating unit configured to perform a packing process on the collected data, and generate a target data packet including the first angle, the second angle, and each obtained measurement distance.
  • the packet generating unit may include:
  • a length determining subunit configured to determine a length of the data area, wherein the data area includes: the first angle, the second angle, and each measured distance obtained;
  • a packet generation subunit configured to perform a packing process on the collected data, and generate a target data packet including the length, the first angle, the second angle, and each obtained measurement distance.
  • the foregoing data transmission device may further include:
  • a speed obtaining module configured to obtain a speed of the radar device
  • the data area further includes: the rotation speed;
  • the packet generation subunit is specifically configured to perform packet processing on the collected data in combination with the rotation speed, and generate the length, the first angle, the second angle, and each obtained measurement distance and the obtained The target data packet of the rotational speed.
  • the packet generation subunit may be specifically configured to obtain a packet header, and generate a school according to the packet header, the length, the first angle, the second angle, each measured distance obtained, and the rotation speed.
  • the code check generates a target data packet including the packet header, the length, the first angle, the second angle, the obtained measured distances, the rotational speed, and the check code.
  • the foregoing data transmission device may further include:
  • a distance setting module configured to set a measurement distance to a first preset value when the measurement distance is less than the first preset distance for each measured distance obtained after the data obtaining module obtains the measurement distance, in the measurement
  • the measurement distance is set to a second preset value, wherein the first preset distance is smaller than the second preset distance.
  • the preset angle Max A /N, where N is a positive integer.
  • the location determining module 301 is specifically configured to determine a location corresponding to the third angle as a starting data collection location, where the third angle is: the last time sent to the destination device. The end of the measurement angle contained in the packet.
  • the data obtaining module 302 is further configured to trigger, in a parallel manner, the packet generating module to generate the target data packet and the location determining module to redetermine the target location.
  • the packet sending module 304 may be specifically configured to send the target data packet to the destination device by using a preset serial port.
  • each time the target data packet sent to the destination device is generated according to data collected during the rotation of the preset angle of the radar device, and the preset angle is smaller than the maximum rotation angle of the radar device. Therefore, compared with the prior art, when the destination device receives the target data packet, the data delay is smaller than the case where the complete frame data is collected, and therefore, the delay can be reduced.
  • the embodiment of the present application further provides a radar device.
  • the radar device includes a housing 401, a processor 402, a memory 403, a circuit board 404, and a power circuit 405.
  • the circuit board 404 is disposed in the housing. Inside the space enclosed by 401, the processor 402 and the memory 403 are disposed on the circuit board 404; the power supply circuit 405 is configured to supply power to each circuit or device of the radar device; the memory 403 is configured to store executable program code; the processor 402 passes The executable program code stored in the memory 403 is read to execute a program corresponding to the executable program code for executing the data transmission method provided by the embodiment of the present application.
  • the foregoing data transmission method includes:
  • the target data packet is sent to the destination device.
  • the target data packet sent to the destination device is generated according to data collected during the process of rotating the preset angle of the radar device, and the preset angle is smaller than the maximum rotation angle of the radar device. Therefore, compared with the prior art, when the destination device receives the target data packet, the data delay is smaller than the case where the complete frame data is collected, and therefore, the delay can be reduced.
  • the embodiment of the present application further provides an application program, which is used to execute the data transmission method provided by the embodiment of the present application at runtime.
  • the foregoing data transmission method includes:
  • the target data packet is sent to the destination device.
  • the embodiment of the present application further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, the data transmission method provided by the embodiment of the present application is implemented.
  • the foregoing data transmission method includes:
  • the target data packet is sent to the destination device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本申请实施例公开了一种数据传输方法、装置及雷达设备,涉及通信技术领域,其中,所述方法应用于雷达设备,包括:确定起始数据采集位置,作为目标位置;获得所述雷达设备从所述目标位置起旋转预设角度过程中采集的数据,其中,所述预设角度为:(0 0,Max A)范围内的角度,Max A表示最大旋转角度;针对所采集的数据进行打包处理,生成目标数据包;将所述目标数据包发送至目的设备。应用本申请实施例提供的方案传输数据,减小了数据时延。

Description

一种数据传输方法、装置及雷达设备
本申请要求于2017年3月6日提交中国专利局、申请号为201710129387.4发明名称为“一种数据传输方法、装置及雷达设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种数据传输方法、装置及雷达设备。
背景技术
随着控制技术的快速发展,雷达设备越来越多的应用于设备控制中,具体的,雷达设备采集其测量范围内物体与该雷达设备中心的距离等数据,然后将采集到的上述数据传输给目的设备,目的设备依据接收到的数据进行设备控制。
雷达设备一般是以旋转方式进行数据采集的,该设备从一位置起旋转设定的最大旋转角度的过程中采集到的数据形成一帧数据。
现有技术中,雷达设备一般是采集一帧数据后,将整帧数据发送至目的设备,目的设备接收到上述数据后,结合接收到的数据进行设备控制。
虽然应用上述方式目的设备可以实现设备控制,但是由于目的设备所接收的数据是雷达设备在上一旋转周期采集的数据,所以站在目的设备的角度,采用上述方式进行数据传输时,存在数据时延大的问题。
发明内容
本申请实施例公开了一种数据传输方法、装置及雷达设备,以减小数据时延。
为达到上述目的,本申请实施例公开了一种数据传输方法,应用于雷达设备,所述方法包括:
确定起始数据采集位置,作为目标位置;
获得所述雷达设备从所述目标位置起旋转预设角度过程中采集的数据,其中,所述预设角度为:(0°,Max A)范围内的角度,Max A表示预设的最大旋转角度;
针对所采集的数据进行打包处理,生成目标数据包;
将所述目标数据包发送至目的设备。
在本申请的一种实现方式中,所述获得所述雷达设备从所述目标位置起旋转预设角度过程中采集的数据的步骤,包括:
获得所述雷达设备从所述目标位置起旋转预设角度过程中在每一预设测量点采集的测量角度和测量距离,其中,在一个测量点采集的测量角度表示:该测量点与预设的机械零点之间的角度,在一个测量点采集的测量距离表示:预设测量范围内物体与所述雷达设备中心之间的距离;
所述针对所采集的数据进行打包处理,生成目标数据包的步骤,包括:
确定所获得测量角度中的起始测量角度和终止测量角度,分别作为第一角度和第二角度;
针对所采集的数据进行打包处理,生成包含所述第一角度、所述第二角度和所获得的各个测量距离的目标数据包。
在本申请的一种实现方式中,所述针对所采集的数据进行打包处理,生成包含所述第一角度、所述第二角度和所获得的各个测量距离的目标数据包的步骤,包括:
确定数据区的长度,其中,所述数据区包括:所述第一角度、所述第二角度和所获得的各个测量距离;
针对所采集的数据进行打包处理,生成包含所述长度、所述第一角度、所述第二角度和所获得的各个测量距离的目标数据包。
在本申请的一种实现方式中,所述数据传输方法还包括:
获得所述雷达设备的转速;
所述数据区还包括:所述转速;
所述针对所采集的数据进行打包处理,生成包含所述长度、所述第一角度、所述第二角度和所获得的各个测量距离的目标数据包的步骤,包括:
结合所述转速,针对所采集的数据进行打包处理,生成包含所述长度、 所述第一角度、所述第二角度、所获得的各个测量距离以及所述转速的目标数据包。
在本申请的一种实现方式中,所述结合所述转速,针对所采集的数据进行打包处理,生成包含所述长度、所述第一角度、所述第二角度、所获得的各个测量距离以及所述转速的目标数据包的步骤,包括:
获得包头;
根据所述包头、所述长度、所述第一角度、所述第二角度、所获得的各个测量距离以及所述转速,生成校验码;
生成包含所述包头、所述长度、所述第一角度、所述第二角度、所获得的各个测量距离、所述转速以及所述校验码的目标数据包。
在本申请的一种实现方式中,所述获得所述雷达设备从所述目标位置起旋转预设角度过程中在每一预设测量点采集的测量距离的步骤之后,还包括:
针对所获得的每一测量距离,在测量距离小于第一预设距离时,将测量距离设置为第一预设值,在测量距离大于第二预设距离时,将测量距离设置为第二预设值,其中,所述第一预设距离小于所述第二预设距离。
在本申请的一种实现方式中,所述预设角度=Max A/N,其中,N为正整数。
在本申请的一种实现方式中,所述确定起始数据采集位置的步骤,包括:
将第三角度对应的位置确定为起始数据采集位置,其中,所述第三角度为:上一次向所述目的设备发送的数据包包含的终止测量角度。
在本申请的一种实现方式中,在所述获得所述雷达设备从所述目标位置起旋转预设角度过程中采集的数据的步骤之后,还包括:
以与所述针对所采集的数据进行打包处理,生成目标数据包的步骤并行的方式,重新确定所述目标位置,并执行所述获得所述雷达设备从所述目标位置起旋转预设角度过程中采集的数据的步骤。
在本申请的一种实现方式中,所述将所述目标数据包发送至目的设备的 步骤,包括:
通过预设的串口,将所述目标数据包发送至目的设备。
为达到上述目的,本申请实施例公开了一种数据传输装置,应用于雷达设备,所述装置包括:
位置确定模块,用于确定起始数据采集位置,作为目标位置;
数据获得模块,用于获得所述雷达设备从所述目标位置起旋转预设角度过程中采集的数据,其中,所述预设角度为:(0°,Max A)范围内的角度,Max A表示预设的最大旋转角度;
包生成模块,用于针对所采集的数据进行打包处理,生成目标数据包;
包发送模块,用于将所述目标数据包发送至目的设备。
在本申请的一种实现方式中,所述数据获得模块,具体用于获得所述雷达设备从所述目标位置起旋转预设角度过程中在一个预设测量点采集的测量角度和测量距离,其中,在每一测量点采集的测量角度表示:该测量点与预设的机械零点之间的角度,在一个测量点采集的测量距离表示:预设测量范围内物体与所述雷达设备中心之间的距离;
所述包生成模块,包括:
角度确定单元,用于确定所获得测量角度中的起始测量角度和终止测量角度,分别作为第一角度和第二角度;
包生成单元,用于针对所采集的数据进行打包处理,生成包含所述长度、所述第一角度、所述第二角度和所获得的各个测量距离的目标数据包。
在本申请的一种实现方式中,所述包生成单元,包括:
长度确定子单元,用于确定数据区的长度,其中,所述数据区包括:所述第一角度、所述第二角度和所获得的各个测量距离;
包生成子单元,用于针对所采集的数据进行打包处理,生成包含所述长度、所述第一角度、所述第二角度和所获得的各个测量距离的目标数据包。
在本申请的一种实现方式中,所述数据传输装置还包括:
转速获得模块,用于获得所述雷达设备的转速;
所述数据区还包括:所述转速;
所述包生成子单元,具体用于结合所述转速,针对所采集的数据进行打包处理,生成包含所述长度、所述第一角度、所述第二角度、所获得的各个测量距离以及所述转速的目标数据包。
在本申请的一种实现方式中,所述包生成子单元,具体用于获得包头,根据所述包头、所述长度、所述第一角度、所述第二角度、所获得的各个测量距离以及所述转速,生成校验码,生成包含所述包头、所述长度、所述第一角度、所述第二角度、所获得的各个测量距离、所述转速以及所述校验码的目标数据包。
在本申请的一种实现方式中,所述数据传输装置还包括:
距离设置模块,用于在所述数据获得模块获得测量距离之后,针对所获得的每一测量距离,在测量距离小于第一预设距离时,将测量距离设置为第一预设值,在测量距离大于第二预设距离时,将测量距离设置为第二预设值,其中,所述第一预设距离小于所述第二预设距离。
在本申请的一种实现方式中,
所述预设角度=Max A/N,其中,N为正整数。
在本申请的一种实现方式中,所述位置确定模块,具体用于将第三角度对应的位置确定为起始数据采集位置,作为目标位置,其中,所述第三角度为:上一次向所述目的设备发送的数据包包含的终止测量角度。
在本申请的一种实现方式中,所述数据获得模块,还用于以并行方式触发所述包生成模块生成所述目标数据包和所述位置确定模块重新确定所述目标位置。
在本申请的一种实现方式中,所述包发送模块,具体用于通过预设的串口,将所述目标数据包发送至目的设备。
为达到上述目的,本申请实施例公开了一种雷达设备,所述雷达设备包括:壳体、处理器、存储器、电路板和电源电路,其中,电路板安置在壳体 围成的空间内部,处理器和存储器设置在电路板上;电源电路,用于为雷达设备的各个电路或器件供电;存储器用于存储可执行程序代码;处理器通过读取存储器中存储的可执行程序代码来运行与可执行程序代码对应的程序,以用于执行本申请实施例提供的数据传输方法。
为达到上述目的,本申请实施例公开了一种应用程序,所述应用程序用于在运行时执行本申请实施例提供的数据传输方法。
为达到上述目的,本申请实施例公开了一种计算机可读存储介质,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行本申请实施例提供的数据传输方法。
由以上可见,本申请实施例提供的方案中,每次向目的设备发送的目标数据包是根据雷达设备旋转预设角度过程中采集的数据生成的,而预设角度小于雷达设备的最大旋转角度,所以相对于现有技术而言,目的设备接收到上述目标数据包时,数据时延小于采集完整帧数据后才发送的情况,因此,能够减小时延。
附图说明
为了更清楚地说明本申请实施例和现有技术的技术方案,下面对实施例和现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种数据传输方法的流程示意图;
图2为本申请实施例提供的另一种数据传输方法的流程示意图;
图3为本申请实施例提供的一种数据传输装置的结构示意图;
图4为本申请实施例提供的一种雷达设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案、及优点更加清楚明白,以下参照附图并举实施例,对本申请进一步详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本 申请保护的范围。
为解决现有技术中存在的问题,本申请实施例提供了一种数据传输方法、装置及雷达设备,其中,数据传输方法及装置应用于雷达设备。
具体的,上述雷达设备可以是激光雷达设备,还可以是其他类型的雷达设备,例如,声纳雷达等,本申请并不对雷达设备的类型进行限定。
雷达设备可以是以旋转方式进行数据采集的,也就是说,雷达设备一边旋转一边进行数据采集。
下面先对雷达设备这一工作方式中涉及的概念进行介绍:
最大旋转角度,可以理解为:雷达设备从一位置开始能够旋转过的最大角度,该角度为一相对角度。另外,雷达设备的最大旋转角度可以是依据具体应用场景进行设定的。
例如:雷达设备能够从其机械零点开始旋转360°,则这种情况下最大旋转角度为:360°-0°=360°;
雷达设备能够从距离其机械零点30°的位置旋转至距离其机械零点270°的位置,则这种情况下最大旋转角度为:270°-30°=240°。
需要说明的是,本申请仅仅以上述为例进行说明,并不构成对本申请的限定。
下面通过具体实施例对本申请提供的数据传输方法、装置及雷达设备进行详细说明。
图1为本申请实施例提供的一种数据传输方法的流程示意图,该方法应用于雷达设备。
具体的,上述数据传输方法包括:
S101:确定起始数据采集位置,作为目标位置。
由于雷达设备可以是以旋转方式进行数据采集的,且雷达设备一般有预先设置的机械零点,基于此,上述目标位置可以是以该位置与上述机械零点之间的角度表示的。
S102:获得雷达设备从目标位置起旋转预设角度过程中采集的数据。
可以理解的是,雷达设备以旋转方式进行数据采集时,可以预先为雷达设备设置一定数量的采集点,当雷达设备旋转至每一采集点时,在该采集点上进行数据采集。雷达设备在每一采集点上采集的数据可以包括:该采集点与机械零点之间的角度、测量范围内的物体与雷达设备中心之间的距离等等。
上述测量范围因雷达设备的类型不同而有所不同,例如,一些激光雷达设备的测量范围为:0~10米等等。雷达设备的测量精度一般较高,其所采集的上述距离可以达到毫米级。
具体的,上述采集点沿着旋转范围分布,这些采集点可以均匀的分布于上述旋转范围内,也可以非均匀的分布于上述旋转范围内,本申请并不对此进行限定。上述旋转范围可以理解为:雷达设备能够旋转过的区域。
假设,雷达设备的旋转范围是[0°,360°),该范围中涉及的数值可以理解为相对于该雷达设备机械零点确定的角度,这种情况下,可以在距离机械零点的每一整数角度上设置采样点,也就是0°、1°、2°、3°、4°、5°……,共计360个采样点。
本申请中,上述预设角度为:(0°,Max A)范围内的角度,Max A表示预设的最大旋转角度,例如,Max A可以为360°、270°等。该预设角度可以是整数形式的角度,例如,18°、36°等,还可以是小数形式的角度,例如,18.5°、20.5°等。
另外,上述预设角度还可以满足以下条件:
预设角度=Max A/N,其中,N为正整数,
由于上述预设角度小于预设的最大旋转角度,所以本步骤中所获得的数据仅仅为雷达设备所采集的一帧数据的一部分,而上述N为正整数,这样雷达设备依次旋转N个预设角度所采集的数据可以形成一帧数据,这样有利于目的设备根据雷达设备采集的数据确定一帧数据,进行设备控制。
S103:针对所采集的数据进行打包处理,生成目标数据包。
对数据进行打包处理,生成的数据是以“包”的形式存在的,可以称之 为数据包。
上述打包处理的具体过程受数据传输过程需要遵从的通信协议等因素的影响,这里暂不详述。
S104:将目标数据包发送至目的设备。
可选的,将目标数据包发送至目的设备时,可以通过预设的串口,将目标数据包发送至目的设备。
其中,串口是串行接口的简称,也称串行通信接口或串行通讯接口(例如,COM接口),是采用串行通信方式的扩展接口。
当然,目标数据包也可以通过其他类型的接口发送至目的设备,例如,IIC(Inter-Integrated Circuit,集成电路总线)、SPI(Serial Peripheral Interface,串行外设接口)等,本申请并不对此进行限定。
由于目的设备是根据雷达设备采集的距离等信息进行设备控制的,所以雷达设备所采集的距离等信息与物体到目的设备之间的距离越接近,越有利于实现精准控制,为此雷达设备可以安装于目的设备表面,或者安装于目的设备腔内等等。具体的,上述目的设备可以是机器人等设备,这种情况下,雷达设备也可以称之为该机器人的定位模块。
以机器人为例,其接收到雷达设备通过预设串口传输的数据包后,对该数据包进行解析,获得其中的角度、距离等信息,然后可以根据这些信息构建针对机器人周围环境的图像,进而根据构建出来的图像控制机器人运动。
本领域内技术人员可以理解的是,雷达设备可以是不间断旋转的,生成目标数据包又需要一定时间,为保证生成目标数据包的同时,不耽误获取后续雷达设备旋转过程中采集的数据,在本申请的一种可选实现方式中,获得雷达设备从目标位置起旋转预设角度过程中采集的数据之后,以与针对所采集的数据进行打包处理,生成目标数据包的步骤(S103)并行的方式,重新确定上述目标位置,并执行获得雷达设备从所述目标位置起旋转预设角度过程中采集的数据的步骤(S102)。这样在生成目标数据包的同时,仍然可以获取雷达设备采集的数据。
例如,可以采用线程1获取雷达设备采集的数据,线程2进行打包处理生成数据包,当线程1再次获得旋转预设角度过程中采集的数据后,将这些数据传输给线程2,由线程2继续进行打包处理,而线程1继续获得后续旋转过程中采集的数据。
当然,本申请仅仅以上述为例对并行方式进行说明,实际应用中考虑到线程间数据传输需要消耗资源等因素,具体实现方式并不仅限于上述情况。
需要特别说明的是,前面描述中提及预设角度为:(0°,Max A)范围内的角度,所以S104中每次向目的设备发送的数据包仅仅为雷达设备所采集的一帧数据的一部分,因此向目的设备传输一帧数据需通过一次以上上述数据传输过程实现。另外,S101中提及的目标位置仅仅为上述一次向目的设备发送数据包的过程对应的起始采集位置。
基于上述情况,在本申请的一种可选实现方式中,上述S101确定起始数据采集位置,作为目标位置时,可以按照固定的旋转角度间隔,确定起始数据采集位置,作为目标位置。
在本申请的另一种可选实现方式中,上述S101确定起始数据采集位置,作为目标位置时,还可以将上述一次向目的设备发送的数据包对应的最后采集点确定为起始数据采集位置,也就是目标位置。
由以上可见,本实施例提供的方案中,每次向目的设备发送的目标数据包是根据雷达设备旋转预设角度过程中采集的数据生成的,而预设角度小于雷达设备的最大旋转角度,所以相对于现有技术而言,目的设备接收到上述目标数据包时,数据时延小于采集完整帧数据后才发送的情况,因此,能够减小时延。
图2为本申请实施例提供的另一种数据传输方法的流程示意图,与前述实施例相比,本实施例中,
获得雷达设备从目标位置起旋转预设角度过程中采集的数据的步骤S102,包括:
S102A:获得雷达设备从目标位置起旋转预设角度过程中在每一预设测量点采集的测量角度和测量距离。
其中,在一个测量点采集的测量角度表示:该测量点与预设的机械零点之间的角度,在一个测量点采集的测量距离表示:预设测量范围内物体与雷达设备中心之间的距离。
具体的,上述测量点可以是根据实际应用需求设定的,例如,可以设定每1°设置一个采集点,也可以每2°设置一个采集点,本申请并不对此进行限定。
针对所采集的数据进行打包处理,生成目标数据包的步骤S103,包括:
S103A:确定所获得测量角度中的起始测量角度和终止测量角度,分别作为第一角度和第二角度。
由于雷达设备旋转过程中可以以顺时针旋转、逆时针旋转两种旋转方向旋转,所以,在本申请的一种具体实现方式中,确定所获得测量角度中的起始测量角度和终止测量角度时,可以根据所获得测量角度的大小、上述预设角度以及旋转方向来确定起始测量角度和终止测量角度。
例如,预设角度为:18°,雷达设备顺时针旋转,
实例一:所获得测量角度为:
36°、37°、38°、39°、40°……49°、50°、51°、52°、53°,
根据上述测量角度可知,雷达设备从36°起顺时针旋转过的角度为17°,共涉及18个采样点,与预设角度相对应,则起始测量角度为:36°,终止测量角度为:53°;
实例二:所获得测量角度为:
350°、351°、352°、353°、354°……2°、3°、4°、5°、6°,
根据上述测量角度可知,雷达设备从350°起顺时针旋转过的角度为17°,共涉及18个采样点,与预设角度相对应,则起始测量角度为:350°,终止测量角度为:6°。
S103B:针对所采集的数据进行打包处理,生成包含第一角度、第二角度和所获得的各个测量距离的目标数据包。
由于目标数据包中并未包含每一采样点对应的测量角度,而仅仅包含起 始测量角度和终止测量角度,所以可以大大减少目标数据包所包含数据的数据量,进而减少了向目的设备所发送数据的数据量,另外,又由于目标数据包中包含了所获得的各个测量距离,所以目的设备依然能够获得雷达设备在各个采样点所采集的距离数据,进而能够保证目的设备所获得数据的数据精度。
另外,为保证目的设备接收到上述目标数据包后,能够将每一测量距离与各个采样点对应,也就是与测量范围内物体的方向对应,在目标数据包仅仅包含上述第一角度、第二角度的情况下,可以事先约定各个采样点在旋转范围上的分布情况。
下面通过数据对比方式对本实施例进行说明,参见如下表1:
表1
Figure PCTCN2018077997-appb-000001
其中,上表中测量角度1表示雷达设备旋转预设角度过程中采集的测量角 度,测量距离1表示表示雷达设备旋转预设角度过程中采集的测量距离,测量角度2表示发送至目的设备的数据包中包含的测量角度,测量距离2表示发送至目标设备的数据包中包含的测量距离。测量角度1中各个角度与测量距离1中的各个距离一一对应。表中距离数值的单位可以理解为毫米。
通过对比可见,应用图2所示实施例提供的方案,向目的设备所发送数据包中包含的测量角度的数据量仅仅为现有技术所提供方案的1/9。
在本申请的一种实现方式中,针对所采集的数据进行打包处理,生成包含第一角度、第二角度和所获得的各个测量距离的目标数据包时,所述目标数据包中还可以包括包头信息,所述包头信息用于标识所述目标数据包,可以是描述目标数据包类型的信息,或者可以仅仅是一段特殊字符串。从前述描述可以得知,本申请实施例中需要传输给目的设备的数据信息可以理解为雷达设备采集的数据,包括:第一角度、第二角度和所获得的各个测量距离等等,具体的,可以将存储上述数据信息的区域称之为数据区。
在本申请的一种实现方式中,针对所采集的数据进行打包处理,生成包含第一角度、第二角度和所获得的各个测量距离的目标数据包时,可以先确定数据区的长度,然后针对所采集的数据进行打包处理,生成包含上述长度、第一角度、第二角度和所获得的各个测量距离的目标数据包。
其中,本实现方式中上述数据区包括:第一角度、第二角度和所获得的各个测量距离。
上述目标数据包中包含数据区长度时,目的设备接收到目标数据包后只要对上述长度进行解析后即可知道数据区的长度,而无需待整个目标数据包解析完成才知晓数据区的长度。另外,随着技术进步,雷达设备可能会需要采集更加高精度的数据,这样雷达设备向目的设备传输的数据更多,一个数据包中包含的采样点数量也可能会发生改变,在数据包中包含数据区的长度后,生成数据包时只需根据该长度分配相应的资源,目的设备解析数据包时同样只需根据解析到的该长度分配相应资源,有利于根据实际情况调整数据包的长度,增强了上述数据传输方法的鲁棒性。
可以理解的是,雷达设备是不停旋转的,其旋转情况可以通过转速这一 参数表示,转速可以理解为一秒钟旋转的弧度,例如,激光雷达的转速可以为:每秒8*360°、9*360°、10*360°等等,也就是每秒旋转8圈、9圈、10圈等等。
基于此,在本申请的一种实现方式中,上述数据传输方法还可以包括:
获得雷达设备的转速;
这种情况下,上述数据区还需包括上述转速;
针对所采集的数据进行打包处理,生成包含上述长度、第一角度、第二角度和所获得的各个测量距离的目标数据包时,可以结合转速,针对所采集的数据进行打包处理,生成包含上述长度、第一角度、第二角度、所获得的各个测量距离以及转速的目标数据包。
由于数据传输过程中可能会存在传输错误,导致目的设备接收到的数据错误,进而使得目的设备构建出的针对机器人周围环境的图像存在畸变等情况,然而一秒钟内目的设备的运动幅度一般不大,所以雷达设备所采集的各帧数据之间会存在较强的时间相关性,所以目的设备可以根据上述转速确定后续接收到的各帧数据,进而对已构建的针对机器人周围环境的图像进行矫正,以得到较佳的控制效果,减少传输错误或者数据采集错误等对设备控制的影响。
为进一步保证目的设备能够使用正确的数据进行设备控制,结合转速,针对所采集的数据进行打包处理,生成包含上述长度、第一角度、第二角度、所获得的各个测量距离以及转速的目标数据包时,可以先获得包头;再根据上述包头、上述长度、第一角度、第二角度、所获得的各个测量距离以及转速,生成校验码;生成包含上述包头、上述长度、第一角度、第二角度、所获得的各个测量距离、转速以及校验码的目标数据包。
其中,上述校验码可以是CRC(Cyclic Redundancy Check,循环冗余校验)校验码等,如,CRC8校验码。这样目的设备在接收到目标数据包后,可以先根据校验码验证是否发生了传输错误,验证通过的情况下再采用目标数据包中包含的数据进行设备控制。
需要说明的是,前述数据区不包含校验码。另外,由于目的设备接收到 目标数据包后,需结合目标数据包中包含的校验码,校验传输目标数据包的过程中是否发生数据传输错误,所以只有在解析出校验码并进行数据校验后才能确定目标数据包中的数据是否可用,从前面的描述得知,目标数据包中包含数据区的长度,所以目的设备从目标数据包中解析出数据区的长度后,在未完成数据区所有的数据解析的情况下,可以根据上述长度以及预先设定的目标数据包中各数据的排列格式,直接找到校验码,然后对校验码进行解析。这样可以大大提高目的设备的数据处理速度。
通常情况下,由于雷达设备的自身特性,其测量范围是有限的,鉴于此,一种实现方式中,获得雷达设备从目标位置起旋转预设角度过程中在每一预设测量点采集的测量距离之后,还可以对所获得的每一测量距离进行调整。
具体的,针对所获得的每一测量距离,在测量距离小于第一预设距离时,将测量距离设置为第一预设值,在测量距离大于第二预设距离时,将测量距离设置为第二预设值,其中,第一预设距离小于第二预设距离。
也就是说,对于所获得的每一测量距离,均执行上述设置操作。
当测量距离较小时,说明雷达设备与物体较近,这时若不及时控制,目的设备很容易与物体发生碰撞,这种情况可以认为进入了测量盲区,这种情况下可以将测量距离调整为较小的数值,以使得目的设备可以根据调整后的距离快速调整其运动情况。
另外,当物体与雷达设备之间的距离较远时,由于目的设备不易与物体发生碰撞等情况,所以可以不对目的设备的运动状态加以改变,为此可以忽略这种情况下采集的数据。
例如,上述第一预设距离可以为:10厘米,上述第一预设值可以为:0x00,上述第二预设距离可以为:10米,上述第二预设值可以为:0xFF。
在本申请的一种实现方式中,上述预设角度=Max A/N,其中,N为正整数。
另外,确定起始数据采集位置时,可以将第三角度对应的位置确定为起始数据采集位置,其中,上述第三角度为:上一次向目的设备发送的数据包包含的终止测量角度。
值得一提的是,在上述目标位置正好对应一个采样点的情况下,S102中所获的数据可以理解为包含在上述目标位置采集的数据,而前一次向目的设备发送的数据包中不包含在目标位置采集的数据;还可以理解为S102所获得的数据中不包含在上述目标位置采集的数据,而前一次向目的设备发送的数据包中包含在目标位置采集的数据。不管采用上述哪种方式均能够保证雷达设备在各个采样点采集的数据不会被重复发送至目的设备,进而一定程度上保证既高精度进行数据传输,传输的数据量又小。
例如:假设N=30,则预设角度为12°,
0°、1°、2°、3°、4°、5°、6°、7°、8°、9°、10°、11°、12°分别对应一个采样点,前述目标位置对应于0°,则雷达设备从0°旋转12°的过程中,
一种情况下,S102所获得的数据是在0°、1°、2°、3°、4°、5°、6°、7°、8°、9°、10°、11°采集的数据,这种情况下雷达设备旋转至11°后即可将上述数据采集完整;
另一种情况下,S102所获得的数据是在1°、2°、3°、4°、5°、6°、7°、8°、9°、10°、11°、12°采集的数据。
由以上可见,上述各个实施例提供的方案中,发送至目的设备的数据包,在测量角度方面仅仅包含起始测量角度和终止测量角度的数据包,且保证目的设备所获得设备精度的基础上,能够有效减少数据包的数据量,从而减少了数据传输过程中对带宽的需求。
另外,由于雷达设备每次向目的设备发送的数据包相较于现有技术包含的数据量变小,因此与现有技术相比,应用本申请实施例提供的方案传输数据时,对带宽的需求变小。
发明人经过大量实验发现,与现有技术相比,应用本申请实施例提供的方案进行数据传输时能够节省将近一半带宽资源。下面以具体实例对此进行说明:
假设,雷达设备的最大旋转角度为360°,也就是能够整圈旋转,一圈上设置有360个采样点,上述预设角度为12°,也就是一个数据包对应12个采样点,雷达设备旋转一圈所采集的数据对应30个数据包,该雷达设备每秒旋转8圈。
每一数据包中所包含的数据以及各个数据占用的字节数如下:
包头:1Byte,数据区的长度:2Byte,转速:2Byte,起始测量角度:2Byte,所获得的测量距离:2*12Byte,终止测量角度:2Byte,校验码:1Byte
这样一个数据包对应的字节数为:34Byte,雷达设备每秒向目的设备所传输数据的数据量为:34Byte*8*30=8160Byte=65280bits,也就是应用本申请实施例传输数据时,需要的带宽为:65280bit/s。
采用现有技术进行数据传输时需要的带宽通常为:115200bit/s,可见应用本申请实施例传输数据时需要的带宽仅仅为现有技术所需带宽的65280/115200*100%=56.6%。
再者,由于雷达设备向目的设备传输数据时需要的带宽资源减少,在带宽资源有限的情况,应用本申请实施例提供的方案可以传输更多的数据,这样雷达设备可以将高精度的数据传输至目的设备,而无需进行数据丢弃,这样目的设备也可以接收到高精度的数据,进而有利于实现高效精准的设备控制。
进一步的,应用本申请实施例提供的方案,雷达设备每次向目的设备传输的数据包对应一定角度,也就是对应一个扇区,这样目的设备接收到数据包构建针对目的设备周围环境的图像时,按照数据包的接收顺序逐一进行拼接即可得到,因此应用本申请实施例提供的方案进行数据传输,能够为目的设备构建图像提供便利。
下面以机器人为例,对本申请实施例提供的数据传输方法进行更加详细的介绍。
假设,雷达设备为:激光雷达设备,目的设备为:机器人,激光雷达设备的最大旋转角度为360°,在[0°,360°)范围内每个1°设置一个采样点,且每个采样点对应的角度为整数,也就是采样点对应的角度分别为:0°、1°、2°、3°、4°、5°……359°,共计360个采样点,预设角度为12°,这样激光雷达的整个旋转范围可以被划分为30个扇区。
以上述目标位置对应0°为例,激光雷达设备从0°对应的位置旋转过11°的过程中,采集到12个测量角度和一一对应的12个测量距离,然后计算包含起始测量角度0°、终止测量角度11°、12个测量距离的数据区的长度,根据起始测量角度0°、终止测量角度11°、12个测量距离、转速以及上述长度生成包头,并生成包头、起始测量角度0°、终止测量角度11°、12个测量距离、转速、上述长度对应的校验码,再将包头、起始测量角度0°、终止测量角度11°、12个测量距离、转速、上述长度、校验码按照一定格式生成目标数据包,最后通过预设的串口将目标数据包发送至目的设备。
其中,上述各种数据在目标数据包中的排列格式可以如下表2所示:
表2
包头 长度 转速 起始测量角度 12个测量距离 终止测量角度 校验码
1Byte 2Byte 2Byte 2Byte 12*2Byte 2Byte 1Byte
当然,本申请仅仅以此为例进行说明,数据包中各种数据的排列格式并不仅限于此。
与上述数据传输方法相对应,本申请实施例还提供了一种数据传输装置。
图3为本申请实施例提供的一种数据传输装置的结构示意图,该装置应用于雷达设备,包括:
位置确定模块301,用于确定起始数据采集位置,作为目标位置;
数据获得模块302,用于获得所述雷达设备从所述目标位置起旋转预设角度过程中采集的数据,其中,所述预设角度为:(0°,Max A)范围内的角度,Max A表示预设的最大旋转角度;
包生成模块303,用于针对所采集的数据进行打包处理,生成目标数据包;
包发送模块304,用于将所述目标数据包发送至目的设备。
具体的,所述数据获得模块302,可以具体用于获得所述雷达设备从所述 目标位置起旋转预设角度过程中在每一预设测量点采集的测量角度和测量距离,其中,在一个测量点采集的测量角度表示:该测量点与预设的机械零点之间的角度,在一个测量点采集的测量距离表示:预设测量范围内物体与所述雷达设备中心之间的距离;
所述包生成模块303可以包括:
角度确定单元,用于确定所获得测量角度中的起始测量角度和终止测量角度,分别作为第一角度和第二角度;
包生成单元,用于针对所采集的数据进行打包处理,生成包含所述第一角度、所述第二角度和所获得的各个测量距离的目标数据包。
具体的,所述包生成单元可以包括:
长度确定子单元,用于确定数据区的长度,其中,所述数据区包括:所述第一角度、所述第二角度和所获得的各个测量距离;
包生成子单元,用于针对所采集的数据进行打包处理,生成包含所述长度、所述第一角度、所述第二角度和所获得的各个测量距离的目标数据包。
具体的,上述数据传输装置还可以包括:
转速获得模块,用于获得所述雷达设备的转速;
所述数据区还包括:所述转速;
所述包生成子单元,具体用于结合所述转速,针对所采集的数据进行打包处理,生成包含所述长度、所述第一角度、所述第二角度、所获得的各个测量距离以及所述转速的目标数据包。
具体的,所述包生成子单元可以具体用于获得包头,根据所述包头、所述长度、所述第一角度、所述第二角度、所获得的各个测量距离以及所述转速,生成校验码,生成包含所述包头、所述长度、所述第一角度、所述第二角度、所获得的各个测量距离、所述转速以及所述校验码的目标数据包。
具体的,上述数据传输装置还可以包括:
距离设置模块,用于在所述数据获得模块获得测量距离之后,针对所获 得的每一测量距离,在测量距离小于第一预设距离时,将测量距离设置为第一预设值,在测量距离大于第二预设距离时,将测量距离设置为第二预设值,其中,所述第一预设距离小于所述第二预设距离。
具体的,所述预设角度=Max A/N,其中,N为正整数。
具体的,所述位置确定模块301可以具体用于将第三角度对应的位置确定为起始数据采集位置,作为目标位置,其中,所述第三角度为:上一次向所述目的设备发送的数据包包含的终止测量角度。
具体的,所述数据获得模块302,还可以用于以并行方式触发所述包生成模块生成所述目标数据包和所述位置确定模块重新确定所述目标位置。
具体的,所述包发送模块304,可以具体用于通过预设的串口,将所述目标数据包发送至目的设备。
由以上可见,上述各个实施例提供的方案中,每次向目的设备发送的目标数据包是根据雷达设备旋转预设角度过程中采集的数据生成的,而预设角度小于雷达设备的最大旋转角度,所以相对于现有技术而言,目的设备接收到上述目标数据包时,数据时延小于采集完整帧数据后才发送的情况,因此,能够减小时延。
与上述数据传输方法和装置相对应,本申请实施例还提供了一种雷达设备。
图4为本申请实施例提供的一种雷达设备的结构示意图,该雷达设备包括:壳体401、处理器402、存储器403、电路板404和电源电路405,其中,电路板404安置在壳体401围成的空间内部,处理器402和存储器403设置在电路板404上;电源电路405,用于为雷达设备的各个电路或器件供电;存储器403用于存储可执行程序代码;处理器402通过读取存储器403中存储的可执行程序代码来运行与可执行程序代码对应的程序,以用于执行本申请实施例提供的数据传输方法。
具体的,上述数据传输方法,包括:
确定起始数据采集位置,作为目标位置;
获得所述雷达设备从所述目标位置起旋转预设角度过程中采集的数据,其中,所述预设角度为:(0°,Max A)范围内的角度,Max A表示预设的最大旋转角度;
针对所采集的数据进行打包处理,生成目标数据包;
将所述目标数据包发送至目的设备。
上述数据传输方法对应的其他实施例可参见前述数据传输方法部分,这里不再赘述。
处理器402对上述步骤的具体执行过程以及处理器402通过运行可执行程序代码来进一步执行的步骤,可以参见本申请图1-3所示实施例的描述,在此不再赘述。
由以上可见,本实施例提供的方案中,每次向目的设备发送的目标数据包是根据雷达设备旋转预设角度过程中采集的数据生成的,而预设角度小于雷达设备的最大旋转角度,所以相对于现有技术而言,目的设备接收到上述目标数据包时,数据时延小于采集完整帧数据后才发送的情况,因此,能够减小时延。
本申请实施例还提供了一种应用程序,该应用程序用于在运行时执行本申请实施例提供的数据传输方法。
具体的,上述数据传输方法,包括:
确定起始数据采集位置,作为目标位置;
获得所述雷达设备从所述目标位置起旋转预设角度过程中采集的数据,其中,所述预设角度为:(0°,Max A)范围内的角度,Max A表示预设的最大旋转角度;
针对所采集的数据进行打包处理,生成目标数据包;
将所述目标数据包发送至目的设备。
上述数据传输方法对应的其他实施例可参见前述数据传输方法部分,这里不再赘述。
由以上可见,本实施例提供的方案中,通过运行上述应用程序,每次向目的设备发送的目标数据包是根据雷达设备旋转预设角度过程中采集的数据生成的,而预设角度小于雷达设备的最大旋转角度,所以相对于现有技术而言,目的设备接收到上述目标数据包时,数据时延小于采集完整帧数据后才发送的情况,因此,能够减小时延。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例提供的数据传输方法。
具体的,上述数据传输方法,包括:
确定起始数据采集位置,作为目标位置;
获得所述雷达设备从所述目标位置起旋转预设角度过程中采集的数据,其中,所述预设角度为:(0°,Max A)范围内的角度,Max A表示预设的最大旋转角度;
针对所采集的数据进行打包处理,生成目标数据包;
将所述目标数据包发送至目的设备。
上述数据传输方法对应的其他实施例可参见前述数据传输方法部分,这里不再赘述。
由以上可见,本实施例提供的方案中,通过运行上述计算机可读存储介质中存储的计算机程序,每次向目的设备发送的目标数据包是根据雷达设备旋转预设角度过程中采集的数据生成的,而预设角度小于雷达设备的最大旋转角度,所以相对于现有技术而言,目的设备接收到上述目标数据包时,数据时延小于采集完整帧数据后才发送的情况,因此,能够减小时延。
对于装置、雷达设备、应用程序和计算机可读存储介质实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施 例的部分说明即可。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本领域普通技术人员可以理解实现上述方法实施方式中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,所述的程序可以存储于计算机可读取存储介质中,这里所称得的存储介质,如:ROM/RAM、磁碟、光盘等。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (23)

  1. 一种数据传输方法,其特征在于,应用于雷达设备,所述方法包括:
    确定起始数据采集位置,作为目标位置;
    获得所述雷达设备从所述目标位置起旋转预设角度过程中采集的数据,其中,所述预设角度为:(0 0,Max A)范围内的角度,Max A表示预设的最大旋转角度;
    针对所采集的数据进行打包处理,生成目标数据包;
    将所述目标数据包发送至目的设备。
  2. 根据权利要求1所述的方法,其特征在于,
    所述获得所述雷达设备从所述目标位置起旋转预设角度过程中采集的数据的步骤,包括:
    获得所述雷达设备从所述目标位置起旋转预设角度过程中在每一预设测量点采集的测量角度和测量距离,其中,在一个测量点采集的测量角度表示:该测量点与预设的机械零点之间的角度,在一个测量点采集的测量距离表示:预设测量范围内物体与所述雷达设备中心之间的距离;
    所述针对所采集的数据进行打包处理,生成目标数据包的步骤,包括:
    确定所获得测量角度中的起始测量角度和终止测量角度,分别作为第一角度和第二角度;
    针对所采集的数据进行打包处理,生成包含所述第一角度、所述第二角度和所获得的各个测量距离的目标数据包。
  3. 根据权利要求2所述的方法,其特征在于,所述针对所采集的数据进行打包处理,生成包含所述第一角度、所述第二角度和所获得的各个测量距离的目标数据包的步骤,包括:
    确定数据区的长度,其中,所述数据区包括:所述第一角度、所述第二角度和所获得的各个测量距离;
    针对所采集的数据进行打包处理,生成包含所述长度、所述第一角度、 所述第二角度和所获得的各个测量距离的目标数据包。
  4. 根据权利要求3所述的方法,其特征在于,
    所述方法还包括:
    获得所述雷达设备的转速;
    所述数据区还包括:所述转速;
    所述针对所采集的数据进行打包处理,生成包含所述长度、所述第一角度、所述第二角度和所获得的各个测量距离的目标数据包的步骤,包括:
    结合所述转速,针对所采集的数据进行打包处理,生成包含所述长度、所述第一角度、所述第二角度、所获得的各个测量距离以及所述转速的目标数据包。
  5. 根据权利要求4所述的方法,其特征在于,所述结合所述转速,针对所采集的数据进行打包处理,生成包含所述长度、所述第一角度、所述第二角度、所获得的各个测量距离以及所述转速的目标数据包的步骤,包括:
    获得包头;
    根据所述包头、所述长度、所述第一角度、所述第二角度、所获得的各个测量距离以及所述转速,生成校验码;
    生成包含所述包头、所述长度、所述第一角度、所述第二角度、所获得的各个测量距离、所述转速以及所述校验码的目标数据包。
  6. 根据权利要求2-5中任一项所述的方法,其特征在于,
    所述获得所述雷达设备从所述目标位置起旋转预设角度过程中在每一预设测量点采集的测量距离的步骤之后,还包括:
    针对所获得的每一测量距离,在测量距离小于第一预设距离时,将测量距离设置为第一预设值,在测量距离大于第二预设距离时,将测量距离设置为第二预设值,其中,所述第一预设距离小于所述第二预设距离。
  7. 根据权利要求2-5中任一项所述的方法,其特征在于,
    所述预设角度=Max A/N,其中,N为正整数。
  8. 根据权利要求7所述的方法,其特征在于,所述确定起始数据采集位置的步骤,包括:
    将第三角度对应的位置确定为起始数据采集位置,其中,所述第三角度为:上一次向所述目的设备发送的数据包包含的终止测量角度。
  9. 根据权利要求1所述的方法,其特征在于,在所述获得所述雷达设备从所述目标位置起旋转预设角度过程中采集的数据的步骤之后,还包括:
    以与所述针对所采集的数据进行打包处理,生成目标数据包的步骤并行的方式,重新确定所述目标位置,并执行所述获得所述雷达设备从所述目标位置起旋转预设角度过程中采集的数据的步骤。
  10. 根据权利要求1所述的方法,其特征在于,所述将所述目标数据包发送至目的设备的步骤,包括:
    通过预设的串口,将所述目标数据包发送至目的设备。
  11. 一种数据传输装置,其特征在于,应用于雷达设备,所述装置包括:
    位置确定模块,用于确定起始数据采集位置,作为目标位置;
    数据获得模块,用于获得所述雷达设备从所述目标位置起旋转预设角度过程中采集的数据,其中,所述预设角度为:(0 0,Max A)范围内的角度,Max A表示预设的最大旋转角度;
    包生成模块,用于针对所采集的数据进行打包处理,生成目标数据包;
    包发送模块,用于将所述目标数据包发送至目的设备。
  12. 根据权利要求11所述的装置,其特征在于,
    所述数据获得模块,具体用于获得所述雷达设备从所述目标位置起旋转预设角度过程中在每一预设测量点采集的测量角度和测量距离,其中,在一个测量点采集的测量角度表示:该测量点与预设的机械零点之间的角度,在一个测量点采集的测量距离表示:预设测量范围内物体与所述雷达设备中心之间的距离;
    所述包生成模块,包括:
    角度确定单元,用于确定所获得测量角度中的起始测量角度和终止测量角度,分别作为第一角度和第二角度;
    包生成单元,用于针对所采集的数据进行打包处理,生成包含所述第一角度、所述第二角度和所获得的各个测量距离的目标数据包。
  13. 根据权利要求12所述的装置,其特征在于,所述包生成单元,包括:
    长度确定子单元,用于确定数据区的长度,其中,所述数据区包括:所述第一角度、所述第二角度和所获得的各个测量距离;
    包生成子单元,用于针对所采集的数据进行打包处理,生成包含所述长度、所述第一角度、所述第二角度和所获得的各个测量距离的目标数据包。
  14. 根据权利要求13所述的装置,其特征在于,所述装置还包括:
    转速获得模块,用于获得所述雷达设备的转速;
    所述数据区还包括:所述转速;
    所述包生成子单元,具体用于结合所述转速,针对所采集的数据进行打包处理,生成包含所述长度、所述第一角度、所述第二角度、所获得的各个测量距离以及所述转速的目标数据包。
  15. 根据权利要求14所述的装置,其特征在于,
    所述包生成子单元,具体用于获得包头,根据所述包头、所述长度、所述第一角度、所述第二角度、所获得的各个测量距离以及所述转速,生成校验码,生成包含所述包头、所述长度、所述第一角度、所述第二角度、所获得的各个测量距离、所述转速以及所述校验码的目标数据包。
  16. 根据权利要求12-15中任一项所述的装置,其特征在于,所述装置还包括:
    距离设置模块,用于在所述数据获得模块获得测量距离之后,针对所获得的每一测量距离,在测量距离小于第一预设距离时,将测量距离设置为第一预设值,在测量距离大于第二预设距离时,将测量距离设置为第二预设值, 其中,所述第一预设距离小于所述第二预设距离。
  17. 根据权利要求12-15中任一项所述的装置,其特征在于,
    所述预设角度=Max A/N,其中,N为正整数。
  18. 根据权利要求17所述的装置,其特征在于,所述位置确定模块,具体用于将第三角度对应的位置确定为起始数据采集位置,作为目标位置,其中,所述第三角度为:上一次向所述目的设备发送的数据包包含的终止测量角度。
  19. 根据权利要求11所述的装置,其特征在于,
    所述数据获得模块,还用于以并行方式触发所述包生成模块生成所述目标数据包和所述位置确定模块重新确定所述目标位置。
  20. 根据权利要求11所述的装置,其特征在于,所述包发送模块,具体用于通过预设的串口,将所述目标数据包发送至目的设备。
  21. 一种雷达设备,其特征在于,所述雷达设备包括:壳体、处理器、存储器、电路板和电源电路,其中,电路板安置在壳体围成的空间内部,处理器和存储器设置在电路板上;电源电路,用于为雷达设备的各个电路或器件供电;存储器用于存储可执行程序代码;处理器通过读取存储器中存储的可执行程序代码来运行与可执行程序代码对应的程序,以用于执行权利要求1-10中任一项所述的数据传输方法。
  22. 一种应用程序,其特征在于,所述应用程序用于在运行时执行权利要求1-10中任一项所述的数据传输方法。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-10中任一项所述的数据传输方法。
PCT/CN2018/077997 2017-03-06 2018-03-05 一种数据传输方法、装置及雷达设备 WO2018161869A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18763152.8A EP3595206A4 (en) 2017-03-06 2018-03-05 METHOD, DATA TRANSMISSION DEVICE, AND RADAR APPARATUS
JP2019549377A JP7026695B2 (ja) 2017-03-06 2018-03-05 データ伝送方法、装置及びレーダ装置
US16/491,526 US10962626B2 (en) 2017-03-06 2018-03-05 Data transmission method, device and radar apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710129387.4 2017-03-06
CN201710129387.4A CN107682110B (zh) 2017-03-06 2017-03-06 一种数据传输方法、装置及雷达设备

Publications (1)

Publication Number Publication Date
WO2018161869A1 true WO2018161869A1 (zh) 2018-09-13

Family

ID=61133822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077997 WO2018161869A1 (zh) 2017-03-06 2018-03-05 一种数据传输方法、装置及雷达设备

Country Status (5)

Country Link
US (1) US10962626B2 (zh)
EP (1) EP3595206A4 (zh)
JP (1) JP7026695B2 (zh)
CN (1) CN107682110B (zh)
WO (1) WO2018161869A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111541763A (zh) * 2020-04-20 2020-08-14 腾讯科技(深圳)有限公司 采集运行状态信息的方法、装置、设备及存储介质
CN112799025A (zh) * 2020-12-30 2021-05-14 纵目科技(上海)股份有限公司 获取毫米波雷达与标定平台偏差的方法、系统及电子设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107682110B (zh) 2017-03-06 2020-02-11 北京猎户星空科技有限公司 一种数据传输方法、装置及雷达设备
US10306430B1 (en) * 2018-04-27 2019-05-28 Lyft, Inc. Vehicle-to-infrastructure communication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201974523U (zh) * 2010-12-31 2011-09-14 深圳市华儒科技有限公司 一种运动测量装置
US20150226853A1 (en) * 2014-02-12 2015-08-13 Electronics And Telecommunications Research Institute Laser radar apparatus and method of acquiring image thereof
CN106353765A (zh) * 2016-08-23 2017-01-25 深圳市速腾聚创科技有限公司 二维激光雷达测距装置及方法
CN107682110A (zh) * 2017-03-06 2018-02-09 北京猎户星空科技有限公司 一种数据传输方法、装置及雷达设备

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3184739A (en) * 1960-10-14 1965-05-18 Franklin Frederick Method of tracking radar targets in presence of jamming
US3487462A (en) * 1968-05-01 1969-12-30 Us Army Bistatic radar configuration not requiring reference-data transmission
US3533104A (en) * 1968-05-17 1970-10-06 Ibm Head-up display system
IT1205769B (it) * 1987-03-26 1989-03-31 Selenia Spazio Spa Sistema radar costituito da una schiera di satelliti elementari interconnessi
RU2109402C1 (ru) * 1987-10-27 1998-04-20 Энтон Найсен Пол Устройство для двусторонней связи между блоком передатчика/приемника
US5294930A (en) * 1992-05-01 1994-03-15 Li Ming Chiang Optical RF stereo
JPH0720232A (ja) 1993-06-30 1995-01-24 Casio Comput Co Ltd レーダー装置
US6828922B1 (en) * 1998-02-09 2004-12-07 Honeywell International Inc. Synthetic airborne hazard display
US6104712A (en) * 1999-02-22 2000-08-15 Robert; Bruno G. Wireless communication network including plural migratory access nodes
US6915135B1 (en) * 2001-05-15 2005-07-05 Praxis Technology Group, Inc. Method and system for detecting object presence and its duration in a given area
EP1478943B1 (de) 2002-02-22 2008-02-20 Robert Bosch Gmbh Verfahren und vorrichtung zur übermittlung von messdaten über einen can-bus in einem objekterfassungssystem für kraftfahrzeuge
US7039367B1 (en) * 2003-01-31 2006-05-02 The United States Of America As Represented By The Secretary Of The Navy Communications using unmanned surface vehicles and unmanned micro-aerial vehicles
US7394372B2 (en) * 2003-12-30 2008-07-01 G2 Microsystems Pty. Ltd. Method and apparatus for aggregating and communicating tracking information
US8280430B2 (en) * 2005-11-02 2012-10-02 Qualcomm Incorporated Antenna array calibration for multi-input multi-output wireless communication systems
AU2007259030B2 (en) * 2006-06-13 2011-08-04 Bae Systems Plc Improvements relating to target tracking
US7158072B1 (en) * 2006-09-08 2007-01-02 Rockwell Collins, Inc. Ethernet connection of airborne radar over fiber optic cable
US7868814B1 (en) * 2008-08-27 2011-01-11 Lockheed Martin Corporation Method for transmission of target information over a network
EP2267476A1 (en) * 2009-06-12 2010-12-29 Thales Deutschland Holding GmbH Secondary surveillance radar system for air traffic control
CN102753988A (zh) * 2009-12-07 2012-10-24 科布拉电子有限公司 对来自网络化雷达检测器的数据的分析
US20110148691A1 (en) * 2009-12-18 2011-06-23 Raytheon Company Distributed Sensor SAR Processing System
US8441393B2 (en) * 2010-02-10 2013-05-14 Tialinx, Inc. Orthogonal frequency division multiplexing (OFDM) radio as radar
US8625905B2 (en) * 2011-01-28 2014-01-07 Raytheon Company Classification of target objects in motion
JP6282042B2 (ja) 2013-04-04 2018-02-21 日置電機株式会社 測定データ記録装置
CN103399311B (zh) 2013-08-19 2015-06-24 中国电子科技集团公司第三十八研究所 用于场面监视雷达的实时回波的绘制方法
JP2015194385A (ja) 2014-03-31 2015-11-05 株式会社日立製作所 計算機システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201974523U (zh) * 2010-12-31 2011-09-14 深圳市华儒科技有限公司 一种运动测量装置
US20150226853A1 (en) * 2014-02-12 2015-08-13 Electronics And Telecommunications Research Institute Laser radar apparatus and method of acquiring image thereof
CN106353765A (zh) * 2016-08-23 2017-01-25 深圳市速腾聚创科技有限公司 二维激光雷达测距装置及方法
CN107682110A (zh) * 2017-03-06 2018-02-09 北京猎户星空科技有限公司 一种数据传输方法、装置及雷达设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3595206A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111541763A (zh) * 2020-04-20 2020-08-14 腾讯科技(深圳)有限公司 采集运行状态信息的方法、装置、设备及存储介质
CN111541763B (zh) * 2020-04-20 2023-08-11 腾讯科技(深圳)有限公司 采集运行状态信息的方法、装置、设备及存储介质
CN112799025A (zh) * 2020-12-30 2021-05-14 纵目科技(上海)股份有限公司 获取毫米波雷达与标定平台偏差的方法、系统及电子设备
CN112799025B (zh) * 2020-12-30 2024-03-22 纵目科技(上海)股份有限公司 获取毫米波雷达与标定平台偏差的方法、系统及电子设备

Also Published As

Publication number Publication date
CN107682110B (zh) 2020-02-11
JP2020510840A (ja) 2020-04-09
JP7026695B2 (ja) 2022-02-28
EP3595206A4 (en) 2020-03-04
EP3595206A1 (en) 2020-01-15
US20200049792A1 (en) 2020-02-13
US10962626B2 (en) 2021-03-30
CN107682110A (zh) 2018-02-09

Similar Documents

Publication Publication Date Title
WO2018161869A1 (zh) 一种数据传输方法、装置及雷达设备
US11327920B2 (en) Recalibration of PHY circuitry for the PCI express (pipe) interface based on using a message bus interface
US7917597B1 (en) RDMA network configuration using performance analysis
US9124541B2 (en) Zero copy acceleration for session oriented protocols
US9898230B2 (en) Information processing apparatus, system, and information processing method
US11044183B2 (en) Network interface device
US9264333B1 (en) Checksum trailer in timing protocols
WO2014173267A1 (zh) 时间戳生成方法、装置及系统
US9866639B2 (en) Communication apparatus, information processor, communication method, and computer-readable storage medium
EP3032783A1 (en) Fragmented packet processing resource determination
US11770212B2 (en) Data transmission methods, data transmission device, and data transmission apparatuses
US11483280B2 (en) Method of translating IP packet for tethering service, communication system and electronic device for performing the same
US10708816B2 (en) Communication apparatus, communication method, and non-transitory computer-readable storage medium for performing packetization processing that does not depend on a network interface
US20220360350A1 (en) Method and apparatus for acquiring timestamp of data stream, storage medium, and electronic apparatus
EP2919432A1 (en) Method and device for communication protocol processing
TW201723871A (zh) 延伸等時傳輸通用序列匯流排的傳輸範圍之方法
WO2020001213A1 (zh) 一种报文传输方法、交换装置、无线通讯设备及存储介质
US11082318B2 (en) Network interface controller
US9866465B2 (en) Method of controlling packet transmission interval
US9450746B2 (en) Configurations of a forward error correction decoder
US7426589B2 (en) Network interface card for reducing the number of interrupts and method of generating interrupts
JP2012049883A (ja) 通信装置およびパケット処理方法
US20230315659A1 (en) Interrupt emulation on network devices
CN107315709B (zh) 具有被应用用户定义协议的硬件协议栈和用于对硬件协议栈应用用户定义协议的方法
BR102020019423A2 (pt) aparelho e ponto de acesso para comunicações de múltiplos usuários

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763152

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549377

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018763152

Country of ref document: EP

Effective date: 20191007