WO2018161661A1 - 太阳能发电组件用芯片低压封装式接线盒及其加工方法 - Google Patents

太阳能发电组件用芯片低压封装式接线盒及其加工方法 Download PDF

Info

Publication number
WO2018161661A1
WO2018161661A1 PCT/CN2017/114777 CN2017114777W WO2018161661A1 WO 2018161661 A1 WO2018161661 A1 WO 2018161661A1 CN 2017114777 W CN2017114777 W CN 2017114777W WO 2018161661 A1 WO2018161661 A1 WO 2018161661A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
junction box
power generation
copper
solar power
Prior art date
Application number
PCT/CN2017/114777
Other languages
English (en)
French (fr)
Inventor
李前进
朱第保
张道远
蒋李望
Original Assignee
江苏通灵电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏通灵电器股份有限公司 filed Critical 江苏通灵电器股份有限公司
Priority to EP17899848.0A priority Critical patent/EP3595170A4/en
Priority to US16/492,182 priority patent/US11264946B2/en
Priority to JP2019548573A priority patent/JP6876142B2/ja
Publication of WO2018161661A1 publication Critical patent/WO2018161661A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to a junction box for a solar power generation assembly, in particular to a chip low-voltage package type junction box for a solar power generation assembly and a processing method thereof.
  • the junction box for solar power generation components is an important component installed in the solar power generation assembly, and has the functions of providing bypass protection for the battery pieces in the assembly and transmitting the power generated by the components.
  • the solar power generation system realizes high-power generation by serial and parallel connection of several power generation components through the junction box output cable and plug-in in the module, and provides power to the consumers or grid-connected power through electricity storage or inverter.
  • the principle that the junction box provides bypass protection for the battery piece is that the solar power generation component in the solar power station system generates electricity under the normal illumination of sunlight, and outputs electric energy to the outside.
  • the silicon battery piece of the part is changed from the power generation state to the resistance state, and other power generation components connected in series are normally generated under sunlight, and the current passes through the resistor.
  • the state of the battery which generates a large power consumption, causes the battery and the component backplane to burn out. This phenomenon is called the hot spot phenomenon of the component.
  • a bypass diode is connected in parallel in parallel.
  • the diode is forward-conducting, and the current flows through the bypass diode.
  • the external output protects the silicon cell from burnout and safe operation of the power generation components.
  • the bypass diode is designed to be installed in the junction box.
  • three bypass diodes are generally installed in the junction box to provide bypass protection for one-third of the solar panels. Therefore, the junction box for the solar power generation assembly has both bypass protection and power output functions.
  • the junction box has undergone several improvements and developments over the years.
  • the junction box manufactured by the prior art generally comprises a single diode package device, a junction box case (box, cover), an internal copper conductive heat sink (copper conductor), an output cable and a connector.
  • the diodes are assembled into the copper conductive heat sink inside the junction box by snap-fit assembly or by reflow soldering with a chip diode; the copper conductive heat sink assembled with the diode is then mounted to the junction box by plastic hot riveting. Therefore, the production process of the junction box has many manufacturing steps and the manual consumption is large.
  • junction boxes have high entry barriers. Currently, they are implemented in accordance with IEC-61215.
  • the junction boxes produced by the prior art have a solution to the problems of sealing performance, temperature rise performance and internal gas expansion. The difficulty.
  • the solution is to integrate three diode chips into one injection molded body, which simplifies the process steps for junction box manufacturers to solder assembled diodes.
  • the module is still fixed inside the junction box by the installation method. After the solar module manufacturer installs the junction box into the power generation component, the sealing body is still required to be filled in the casing, and the product is in production and application. No obvious advantage.
  • the photovoltaic bypass diode module and the junction box body are fixedly clamped by the plastic tray, so that the limited heat dissipation space inside the junction box cannot be effectively utilized, thereby limiting the working current passing capability. More complex production equipment is required in junction box production applications for automated assembly.
  • Photovoltaic module products have the following defects in actual production and application:
  • the photovoltaic diodes are all based on Schottky process chips.
  • the diode PN junction of the process is located under the aluminum metal layer on the surface of the chip, and the ultrasonic bonding stress acts on the diode chip.
  • a slightly larger size means that the PN junction is easily damaged, which affects the service life of the product. If it is too small, it is prone to false connections. Therefore, it is necessary to use very expensive process equipment to meet the process requirements and stability.
  • thermosetting resin material is wrapped around the soldered chip.
  • the plastic is sprayed into the mold cavity under the action of the injection head with a very high jet velocity and pressure, which directly acts on the diode chip and the connecting aluminum strip, causing the chip to be received from the resin.
  • the compressive stress of the material and the tensile stress of the aluminum strip Due to the stress concentration during the injection molding process, the internal structure of the module is deformed, which reduces the reliability of the module.
  • the reverse leakage current increases, and the leakage current does not saturate, causing the junction temperature of the chip PN junction to rise further, thereby causing the reverse leakage current to increase again.
  • the chip has a vicious cycle of heat generation. When it exceeds the equilibrium point in severe cases, the diode chip will be broken down and the photovoltaic module product will be ineffective.
  • the diode chips of the existing photovoltaic module products are concentrated together and wrapped with thermosetting resin. In the working state, the heat generated by the diode chip cannot be quickly dissipated, which limits the operating current of the junction box.
  • the junction box produced by the prior art has a secondary processing process for the semiconductor device: the single-package diode needs to be connected to the copper conductor by crimping or reflow soldering; the photovoltaic module needs to be press-fitted and the plastic tray in the junction box body. Fixed card joint; the high temperature of reflow soldering causes different expansion of different materials, which will affect the internal stress and compactness of the device; the crimping will cause the device to be affected by external pressure, the photovoltaic module is prone to cracking and fracture of the plastic body, and the pressure is brought Quality hazard;
  • the photovoltaic module needs high development cost, and has a single correspondence with the junction box model, which cannot adapt to the development and development of the junction box.
  • the installation and cooperation requirements between the two are relatively high, which increases the difficulty of development and cooperation between the two parties.
  • the present invention provides a solution to the above problems, and provides a problem that the photovoltaic module has large stress, high local temperature, uneven heat dissipation, low utilization rate of heat dissipation space inside the junction box, and large investment in product development.
  • the technical solution of the present invention comprises: a box body, N chips, N connecting pieces and N+1 copper conductors, N ⁇ 1,
  • the box body is provided with at least one accommodating groove, and the box body is provided with a transverse rib having a top surface height higher than the bottom of the accommodating groove;
  • N copper conductors are in one-to-one correspondence with N chips, N chip conductors are provided with chip placement positions, and N+1 copper conductors are provided with lead-out positions on the top surface of the transverse ribs;
  • the chip is fixedly soldered to the placement position of the copper conductor, and is connected to the connection position of the adjacent copper conductor through the connecting piece;
  • the N+1 copper conductors are connected in series through the chip and the connecting piece to form a bypass circuit having an output end;
  • the placement position of the copper conductor, the chip and the connecting piece are potted and potted in the accommodating groove by the potting glue, and the lead position of the copper conductor is located above the transverse rib, higher than the top of the potting glue surface.
  • a process connection strip is provided between adjacent copper conductors.
  • a process connection ring is disposed between at least two copper conductors.
  • the first and last copper conductors are also provided with connection points for connecting the output terminals.
  • the chips are disposed on both sides of the transverse rib.
  • a horizontal flow guiding hole is disposed on the horizontal rib, and the horizontal guiding hole is inserted through the horizontal rib from a back surface of the casing; the lower opening of the communicating belt through the guiding hole is large and the upper opening is small;
  • the lead-out hole of the copper conductor is provided with a corresponding threading hole of the busbar through-hole.
  • the processing method of the chip low-voltage package type junction box for the solar power generation component comprises the following steps:
  • the process connection structure in step 1) is a process connection strip, and the process connection strip is located on the transverse rib.
  • step 4 the process connection strip between adjacent copper conductors is cut by a punching machine.
  • the process connection structure in step 1) is a process connection ring
  • a positioning post is disposed in the receiving groove of the box body, the positioning post is disposed in the process connecting ring, and the bottom surface of the box body is provided with a tapered blind hole that is consistent with the center line of the positioning post;
  • step 4 the process connection ring between adjacent copper conductors is removed by drilling through a tapered blind hole.
  • thermoplastic glue Also included is a heat sink that is encapsulated within the epoxy glue.
  • the invention designs the box part of the junction box as a plastic body with one or more upper open storage tanks (ie, receiving slots); according to the requirements of various types of junction boxes and heat dissipation requirements, the accommodating slots are provided.
  • the number a box body having two or more accommodating slots, the accommodating slots are arranged in two rows, and the two rows accommodating slots
  • a transverse rib is arranged between the two sides, and a cross-belt is provided with a guiding hole for the busbar.
  • the copper conductor is provided with a threading hole at the lead-out position to facilitate the placement of the busbar according to the customer's application.
  • Such a distributed structure can disperse the heat source of the diode during operation. Use the limited heat dissipation space inside the junction box to reduce the mutual influence.
  • the copper conductor in the invention is provided with a chip placement position and a lead-out position disposed on the top surface of the transverse rib, so that the partial copper conductor of the solder-carrying diode chip is sinked by bending, so that the chip and part of the copper conductor can be embedded into the copper conductor. Corresponding accommodating slots. Then, the high thermal conductivity and high mechanical strength epoxy resin glue is poured into the accommodating groove. After curing, the diode chip is sealed and protected, and the copper conductor is also fixed on the junction box body to form a junction box;
  • the invention uses high thermal conductivity, high mechanical strength epoxy resin glue to pass low pressure watering, static temperature curing, realizes package protection of diode chip, high strength structure fixing of copper conductor and box body, avoids jet of high pressure injection material in production process
  • the mechanical impact generated by the chip and the jet of the high pressure injection molding material deform the copper conductor to generate a pulling force on the chip;
  • the copper conductor of the invention not only provides a circuit path for the junction box, but more importantly, provides a heat dissipation condition for the diode chip, and the copper conductor is subjected to a sinking process to increase the expansion area thereof, thereby providing a fuller operation for the diode chip.
  • Heat dissipation condition ;
  • the epoxy resin filled with the heat-conducting medium such as alumina powder or silicon micro-powder is solidified in contact with the copper conductor from the plane direction and the elevation direction, thereby rapidly reducing the operating temperature of the chip and increasing the current through 30%.
  • N+1 copper conductors are connected in series by chip and connecting piece, in order to eliminate the relative movement between the copper conductors during the manufacturing process, the pulling stress is caused to the chip.
  • a process connecting ring or a process connecting strip is designed between the copper conductors, so that the plurality of copper conductors are temporarily formed as a whole. After the chip soldering and potting are completed, the process connecting ring or the process connecting strip is removed by drilling or punching.
  • the invention spans the packaging manufacturing process of the single-package diode junction box and the photovoltaic module junction box, and omits the work contents of secondary welding and secondary assembly.
  • FIG. 1 is a schematic structural view of a first embodiment of the present invention
  • Figure 2 is a schematic view showing the structure of the casing of Figure 1;
  • Figure 3 is a cross-sectional view taken along line A-A of Figure 2
  • FIG. 4 is a schematic structural view of the copper conductor frame of FIG.
  • Figure 5 is a left side view of Figure 4,
  • FIG. 6 is a schematic view showing the connection structure of the copper conductor frame and the chip of FIG.
  • FIG. 7 is a schematic view showing the connection structure of the copper conductor and the chip in FIG.
  • Figure 8 is a plan view of Figure 7,
  • Figure 9 is a schematic view showing the structure of the potting in the casing of the present invention.
  • Figure 10 is a schematic structural view of an optimized embodiment in the present invention.
  • Figure 11 is a first schematic structural view of the terminal end of the casing of Figure 1;
  • Figure 12 is a second schematic structural view of the leading end of the casing of Figure 1;
  • Figure 13 is a schematic structural view of a second embodiment of the present invention.
  • Figure 14 is a schematic structural view of the casing of Figure 13;
  • Figure 15 is a cross-sectional view taken along line B-B of Figure 14;
  • Figure 16 is a schematic structural view of the copper conductor frame of Figure 13;
  • Figure 17 is a left side view of Figure 16,
  • FIG. 18 is a schematic view showing the connection structure of the copper conductor and the chip in FIG.
  • Figure 19 is a schematic view showing the structure of a third embodiment of the present invention.
  • Figure 20 is a schematic view showing the structure of the casing of Figure 19;
  • Figure 21 is a cross-sectional view taken along line C-C of Figure 20,
  • Figure 22 is a schematic view showing the structure of the copper conductor frame of Figure 19;
  • Figure 23 is a left side view of Figure 22,
  • Figure 24 is a first schematic structural view of the terminal end of the casing of Figure 19,
  • Figure 25 is a second schematic structural view of the leading end of the casing of Figure 19;
  • Figure 26 is a schematic view showing the connection structure of the copper conductor frame and the chip of Figure 19;
  • Figure 27 is a schematic structural view of a fourth embodiment of the present invention.
  • Figure 28 is a schematic structural view of the casing of Figure 27;
  • Figure 29 is a cross-sectional view taken along line D-D of Figure 28,
  • Figure 30 is a schematic view showing the structure of the copper conductor frame of Figure 27;
  • Figure 31 is a left side view of Figure 30,
  • Figure 32 is a first schematic structural view of the leading end of the casing of Figure 27;
  • Figure 33 is a second schematic structural view of the leading end of the casing of Figure 27;
  • Figure 34 is a schematic view showing the connection structure of the copper conductor frame and the chip of Figure 27;
  • 35 is a schematic structural view of ultrasonic aluminum wire bonding in the prior art
  • 36 is a schematic structural view of a high pressure injection process in the prior art
  • 1 is a box body, 11 is a receiving groove, 12 is a transverse rib, 120 is a busbar through hole, 13 is a positioning post, 14 is a tapered blind hole, 2 is a chip, 3 is a connecting piece, 4 is a copper conductor 41 is the placement position, 42 is the outlet position, 420 is the threading hole, 43 is the connection position, 5 is the potting glue, 6 is the process connection strip, 7 is the process connection ring, 8 is the heat sink, 9 is the copper conductor frame, 10 is an ultrasonic welding head.
  • the present invention as shown in FIG. 1-34, includes a casing 1, N chips 2, N connecting pieces 3, and N+1 copper conductors 4, N ⁇ 1, and the casing is provided with at least one receiving groove 11
  • the box body is provided with a transverse rib 12 having a top surface height higher than the bottom of the accommodating groove;
  • the shape of the accommodating groove can be designed into a square shape, an elliptical shape and a polygonal shape according to the product requirements;
  • the distribution of the receiving slots in the junction box is: a junction box containing a receiving slot, the receiving slot is distributed on one side of the junction box; a junction box containing two or more receiving slots, the receiving slots are distributed The sides of the junction box or around; the purpose is to maximize the dispersion of heat sources, the use of limited junction box cooling space;
  • the N copper conductors of the N+1 copper conductors are in one-to-one correspondence with the N chips, and the N copper conductors are provided with chip placement positions 41, and the N+1 copper conductors are provided with the lead-out positions on the top surface of the transverse ribs. 42 such that the copper conductor has at least two faces of unequal height;
  • the diode chip and the copper conductor sinking portion of the diode chip copper conductor are embedded in the casing receiving groove, and are sealed by a high thermal conductivity and high mechanical strength epoxy resin, sealed and fixed in the casing;
  • a chip or a plurality of chips can be embedded and sealed in the groove; can be embedded and sealed, a sinking portion of two copper conductors or a sinking portion of a plurality of copper conductors; a copper conductor containing a plurality of sinking portions, The sinking parts are respectively embedded in different receiving slots in the junction box.
  • the sunken copper conductor is formed by punching and bending of copper, brass or alloy copper.
  • the lower plane after bending is the sinking part, each copper conductor contains one or more sinking parts; the sinking part is distributed on one side of the copper conductor Or several sides, or an intermediate position.
  • the chip is fixedly soldered on the placement position of the copper conductor, and is connected to the connection position 43 of the adjacent copper conductor through the connecting piece;
  • the N+1 copper conductors are connected in series through the chip and the connecting piece to form a bypass circuit having an output end; the N surface of the diode chip in the junction box is soldered on the copper conductor, and the P of the diode chip is connected by the soldering piece and the side
  • the copper conductors are connected in a jumper connection to realize the serial connection and are exported as a node of the copper conductor for the customer to weld the bus bar and connect the output cable.
  • the mounting position of the copper conductor, the chip, the connecting piece and the connecting position of the adjacent copper conductor are potted and potted by the potting compound 5 in the receiving groove, and the lead position of the copper conductor is located above the transverse rib Above the top surface of the potting compound.
  • a process connecting strip 6 is disposed between adjacent copper conductors to temporarily form a plurality of copper conductors in one piece, in order to eliminate the relative movement between the copper conductors during the manufacturing process, causing tensile stress on the chip.
  • a process connection ring 7 is disposed between at least two copper conductors, so that a plurality of copper conductors are temporarily formed as a whole, in order to eliminate the relative movement between the copper conductors during the manufacturing process, causing tensile stress on the chip.
  • the first and last copper conductors are also provided with connection points for connecting the output terminals.
  • a copper conductor is provided with a connection bit connecting the output terminals; generally, when there is only one chip, it is required to be used in combination.
  • a gap is provided between adjacent copper conductors, and is electrically connected by a chip and a connecting piece, wherein the first copper conductor has a positive cable lead end, and the last copper conductor has a negative cable lead end, and the positive cable lead end And the negative cable lead ends are disposed outside the box body;
  • the positive cable is connected to the lead end and the negative cable is connected to the lead end, and the direction is perpendicular to the box body;
  • the positive cable is connected to the lead end and the negative cable is connected to the lead end, and the direction is parallel to the box body;
  • the positive cable is connected to the lead end and the negative cable is connected to the lead end, and the direction is at an arbitrary angle to the box body;
  • the chips are disposed on both sides of the transverse rib.
  • Such a distributed structure can disperse the heat source that generates heat during operation of the diode, and fully utilizes the limited heat dissipation space inside the junction box to reduce the mutual influence.
  • the horizontal rib 12 is provided with a busbar through hole 120, and the busbar through hole penetrates the transverse rib from the back surface of the casing; the lower end of the busbar through the guide hole is large, and the upper opening is small. Play a guiding role to facilitate the placement of the busbar;
  • the lead-out hole 42 of the copper conductor is provided with a threading hole 420 corresponding to the busbar through-hole.
  • the upper stepped plane of the sunken copper conductor (ie, the lead-out position) is provided with a threading hole and a welding disc for the customer to install the welding buster; a copper conductor containing a sinking portion for the customer to install the threading hole of the welding buster and the welding
  • the disk is disposed on one side of the copper conductor; a copper conductor having two or more sinking portions for the customer to install the threading hole of the welding buster and the soldering disk disposed at the intermediate portion of the copper conductor.
  • the processing method of the chip low-voltage package type junction box for the solar power generation component comprises the following steps:
  • the copper sheet is die-cut, forming adjacent copper conductors through the process connection structure integrated, and there is a gap between the copper conductor frame 9;
  • a process connecting ring or a process connecting strip is disposed between each copper conductor, so that each copper conductor is temporarily connected as a whole, and after the chip is soldered, watered, and solidified, the process connecting ring or the process connecting strip is removed;
  • the process connection structure in the step 1) is a process connection bar, the process connection bar is located on the transverse rib, and the process connection bar is connected between the lead-out positions of the adjacent conductors.
  • step 4 the process connection strip between adjacent copper conductors is cut by a punching machine.
  • the invention leaves a space on the transverse rib of the box body, so as to facilitate the punching and removal of the process connecting strip after the epoxy resin in the accommodating groove of the junction box is solidified.
  • the process connection structure in step 1) is a process connection ring
  • a positioning post 13 is disposed in the receiving groove of the box body, and the positioning post is disposed in the process connecting ring, and the bottom surface of the box body is provided with a tapered blind hole that is consistent with the center line of the positioning post. 14;
  • step 4 the process connection ring between adjacent copper conductors is removed by drilling through a tapered blind hole.
  • the invention is provided with a positioning post matched with the copper conductor process connecting ring in the box receiving groove, and a tapered blind hole is arranged at a position corresponding to the positioning column on the back side of the box body, and serves as a guiding function for convenient and accurate drilling. Remove the process connection ring.
  • the heat sink 8 is also encapsulated in the epoxy resin to serve as a heat sink.
  • the heat sink may be a copper sheet, an aluminum sheet or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Connection Or Junction Boxes (AREA)

Abstract

太阳能发电组件用芯片低压封装式接线盒及其加工方法。提供了一种将接线盒的开发制造与半导体封装技术融为一体,提升产品自动化程度的太阳能发电组件用芯片低压封装式接线盒及其加工方法。包括盒体、N个芯片、N个连接片和N+1个铜导体,N≥1,盒体设有至少一个容置槽,盒体上设有一个横筋;N个铜导体上设有芯片安置位,N+1个铜导体上设有位于所述横筋顶面的引出位;芯片固定焊接在所述铜导体的安置位上;N+1个铜导体通过所述芯片、连接片串联连接;所述铜导体的安置位、芯片和连接片被灌封胶浇灌固定封装在所述容置槽内。本发明使接线盒产品结构更加紧凑,物料使用更加合理,产品开发速度更快、更易实现自动化生产,更具有市场竞争力。

Description

太阳能发电组件用芯片低压封装式接线盒及其加工方法 技术领域
本发明涉及太阳能发电组件用接线盒,尤其涉及一种太阳能发电组件用芯片低压封装式接线盒及其加工方法。
背景技术
太阳能发电组件用接线盒是安装在太阳能发电组件中的重要部件,它具有为组件中电池片提供旁路保护作用和将组件所发电能向外传输的作用。太阳能发电系统就是通过组件中接线盒输出电缆及接插将若干块发电组件,进行串、并联连接实现大功率发电,并通过蓄电或者逆变,向用电者提供电力或并网供电的。
接线盒为电池片提供旁路保护的原理是:太阳能电站系统中的太阳能发电组件在阳光的正常照射下发电,向外输出电能。但当照射发电组件中某一个部位的阳光被物体或者物体阴影所遮挡,该部位的硅电池片即由发电状态转变成为电阻状态,与其串联的其它发电组件在阳光照射下正常发电,电流通过电阻状态的电池片,产生较大的功耗发热,使电池片及组件背板烧毁,这种现象称为组件的热斑现象。为防止热斑现象的发生,采用在太阳能发电组件中的每串硅电池片组中,反向并联一只旁路二极管,当热斑条件出现时,二极管正向导通,电流通过旁路二极管向外输出,保护了硅电池片不被烧毁和发电组件的安全工作。
旁路二极管被设计安装在接线盒内,目前常用的接线盒内一般安装有三只旁路二极管,分别为太阳能发电组件中的三分之一电池片提供旁路保护。因此太阳能发电组件用接线盒同时具有旁路保护和电能输出功能。
多年来,接线盒经过了多次的改进和发展。
现有技术制造的接线盒,一般由单体二极管封装器件、接线盒盒体(盒体、盒盖)、内部铜导电散热片(铜导体)、输出电缆线和接插件组成。二极管通过卡接装配或者用贴片式二极管通过回流焊接,组装到接线盒内部的铜导电散热片上;组装好二极管的铜导电散热片再通过塑料热铆安装到接线盒盒体中。因此接线盒生产安装工艺步骤繁多,人工消耗较大。
接线盒的生产、销售有较高的准入门坎,目前按照IEC-61215标准执行,现有技术生产的接线盒在解决密封性能、温升性能和内部气体膨胀等问题,均有一 定的难度。
当前市场上出现了众多用多颗二极管芯片封装的光伏模块产品。
其方案是将三只二极管芯片集成在一个注塑体内,可简化接线盒厂商焊接组装二极管的工艺步骤。但从结构和应用要求看,模块还是用安装的方法固定在接线盒内部,在太阳能组件厂商将接线盒安装到发电组件中后,对盒体内膛仍需要灌注密封胶,产品在生产和应用中无明显优势。
由于光伏模块受结构和工艺的影响,其较大的封装体体积和不同材料在工作中,受温度变化的作用,使材料膨胀对芯片产生应力,会对产品使用寿命存在着一定的影响。
光伏旁路二极管模块与接线盒盒体通过塑料托盘固定卡接,使有限的接线盒内部散热空间不能得到有效的利用,从而限制了工作电流通过能力。在接线盒生产应用中需要较复杂的生产设备,才能进行自动化装配。
光伏模块产品在实际生产和应用中会存在以下缺陷:
1、大多数光伏模块产品采用图35所示的超声波铝丝键合工艺,超声波焊头10将铝丝连接至二极管芯片上和光伏模块的导体上。这种方式存在两点问题,一、光伏二极管均采用肖特基工艺芯片,该工艺的二极管PN结位于芯片的表面铝金属层下方,超声波键合应力会作用在二极管芯片上,其压力和震幅稍大,即容易使PN结受到伤害,影响产品使用寿命,偏小则容易出现假性连接。因此,需要采用非常额昂贵的工艺设备,才能满足工艺要求及稳定性;二、由于采用铝丝作为焊接材料,其导电性和导热性均低于铜、银等金属材料,造成光伏模块产品的压降较高,在工作时,光伏模块产品发热量较高,功耗较高,散热差。
2、采用高压注射的工艺,如图36所示,将热固性树脂材料包裹到焊接好的芯片周围。这种注射工艺在注塑过程中,塑料在注塑头的作用下,以极高的射流速度和压力,喷射到模具腔体内,会直接作用在二极管芯片及连接铝带上,造成芯片受到来自来自树脂材料的压应力,以及铝带的拉应力。由于注塑过程中的应力集中,引起模块内部结构形变,降低了模块的可靠性能。
3、现有光伏模块产品普遍采用将三只二极管芯片分布在铜导体一侧,用热固性树脂材料将该侧密封。在光伏组件局部产生热斑效应时,其中一个或两个芯片开始工作产生热量,由于外封装材料和铜铜导体的导热性,发热芯片的温度会 迅速传替到附近芯片上,使其温度上升。而此时光伏组件未出现热斑效应的局部还在正常发电,其发电电压反向作用于对应的二极管芯片上。基于肖特基二极管芯片的高温特性,此时反向漏电流增加,由于漏电流不会饱和,会引起芯片PN结的结温进一步升高,从而使得反向漏电流再次增加,此时形成二极管芯片发热恶性循环,严重时超过平衡点,二极管芯片会被击穿,光伏模块产品失效。
4、现有光伏模块产品的二极管芯片集中一起,并采用热固性树脂包裹。在工作状态下二极管芯片产生的热量无法快速散开,使接线盒的工作电流受到限制。
5、现有技术生产的接线盒对半导体器件均存在二次加工的过程:单体封装二极管需要通过压接或者回流焊接与铜导体连接;光伏模块需要通过压装与接线盒盒体内的塑料托盘固定卡接;回流焊的高温对不同材料引起不同膨胀,会影响器件的内应力和致密性;压接会使器件受外部压力影响,光伏模块容易出现塑料体崩裂和断裂,以及受压带来的质量隐患;
6、光伏模块需要较高的开发费用,且与接线盒型号对应关系单一,无法适应接线盒的开发和发展,两者之间的安装配合要求较高,增加了双方的开发配合难度。
发明内容
本发明针对以上问题,提供了一种解决光伏模块应力大,局部温度高,散热不均匀、接线盒内部散热空间利用率低、产品开发投入较大的问题。将接线盒的开发制造与半导体封装技术融为一体,有效提升产品性能同时降低产品成本和开发成本,提升产品自动化程度的太阳能发电组件用芯片低压封装式接线盒及其加工方法。
本发明的技术方案是:包括盒体、N个芯片、N个连接片和N+1个铜导体,N≥1,
所述盒体设有至少一个容置槽,所述盒体上设有一个顶面高度高于所述容置槽槽底的横筋;
N+1个铜导体中N个铜导体与N个芯片一一对应,N个铜导体上设有芯片安置位,N+1个铜导体上设有位于所述横筋顶面的引出位;
所述芯片固定焊接在所述铜导体的安置位上、且通过连接片连接在相邻的铜导体的连接位上;
所述N+1个铜导体通过所述芯片、连接片串联连接,形成具有输出端的旁路电路;
所述铜导体的安置位、芯片和连接片被灌封胶浇灌固定封装在所述容置槽内,所述铜导体的引出位位于所述横筋之上、高于所述灌封胶的顶面。
相邻铜导体之间设有工艺连接条。
当N>1时,至少两个铜导体之间设工艺连接环。
当N>1时,第一个和最后一个铜导体上还设有连接输出端的连接位。
当N>2时,所述芯片分设在所述横筋的两侧。
在所述横筋上设有汇流带穿导孔,所述汇流带穿导孔由所述盒体的背面贯穿所述横筋;所述汇流带穿导孔的下口大、上口小;
所述铜导体的引出位上设有汇流带穿导孔相对应的穿线孔。
太阳能发电组件用芯片低压封装式接线盒的加工方法,包括以下步骤:
1)、铜导体加工,将铜片冲切成型,形成相邻铜导体通过工艺连接结构连为一体、且相互之间具有间隙的铜导体框架;
2)、芯片连接,将芯片通过连接片焊接在铜导体上,形成具有旁路电路结构的铜导体框架;
3)、灌封,将上步骤所述的铜导体框架放置在盒体内,往容置槽内浇灌环氧树脂胶,将芯片和连接片封装在环氧树脂胶之内,固化;
4)、切断,切断工艺连接结构,制得。
步骤1)中的工艺连接结构为工艺连接条,所述工艺连接条位于横筋上,
步骤4)中,通过冲切机切断相邻铜导体之间的工艺连接条。
步骤1)中的工艺连接结构为工艺连接环;
步骤3)中,所述盒体的容置槽内设有定位柱,所述定位柱设在工艺连接环内,所述盒体的底面设有与定位柱中心线一致的锥形盲孔;
步骤4)中,通过钻削,穿过锥形盲孔,去除相邻铜导体之间的工艺连接环。
还包括散热片,所述散热片封装在环氧树脂胶之内。
本发明将接线盒的盒体部分,设计成带有一个或多个上部敞开储胶槽(即容置槽)的塑料体;根据接线盒各种型号的要求和散热分布要求,设置容置槽的个数。设有两个或两个以上容置槽的盒体,其容置槽设置为两排分布,两排容置槽 之间设置横筋,横筋上设有汇流带穿导孔,铜导体的引出位上设有穿线孔,便于根据客户应用放置汇流带,这样的分布结构方式可以使二极管工作时发热的热源分散,充分利用接线盒内部有限的散热空间,减小相互之间的影响。
本发明中的铜导体上设有芯片安置位和设于横筋顶面的引出位,使得将焊接承载二极管芯片的局部铜导体,通过折弯进行下沉处理,使芯片和部分铜导体得以嵌入到相应的容置槽内。再用高导热、高机械强度环氧树脂胶浇灌至容置槽内,固化后,二极管芯片得到了密封保护,铜导体亦被固定在接线盒盒体上,形成接线盒;
本发明使用高导热、高机械强度环氧树脂胶通过低压浇灌,静态温度固化,实现对二极管芯片进行封装保护、铜导体与盒体的高强度结构固定,生产过程中避免了高压注塑材料射流对芯片产生的机械冲击,以及高压注塑材料射流使铜导体变形,而产生对芯片的拉扯力;
本发明中的铜导体不仅为接线盒提供电路通道,更重要的是为二极管芯片提供散热条件,铜导体的折弯进行下沉处理,增加了其展开面积,为二极管芯片工作,提供了更加充分的散热条件;
同时,容置槽内充填有氧化铝粉、硅微粉等导热介质的环氧树脂固化后,从平面方向和立面方向充分与铜导体接触,快速降低芯片的工作温度,提高了30%电流通过能力,更加高效的提升了接线盒的产品性能。
N+1个铜导体通过芯片、连接片串联连接,为了消除制造过程中,铜导体之间相对移动,给芯片造成的拉扯应力。本发明在冲制铜导体时,在各铜导体之间设计了工艺连接环或工艺连接条,使多个铜导体暂时形成一个整体。在完成芯片焊接和灌封固化后,用钻削或冲切方式,去除工艺连接环或工艺连接条。
本发明跨越了单体封装二极管接线盒、光伏模块接线盒的封装制作过程,省略了二次焊接、二次装配等工作内容。将接线盒的设计制造与半导体二极管的封装技术合二为一,避免了二次焊接和安装给接线盒产品带来的质量隐患;大大提高了接线盒的开发速度;省略了接线盒制造厂商与半导体二极管封装厂商的相互磨合和调整过程;使接线盒产品结构更加紧凑,物料使用更加合理,产品开发速度更快、更易实现自动化生产,产品制造成本更低,更具有市场竞争力。
附图说明
图1是本发明第一种实施方式的结构示意图,
图2是图1中盒体的结构示意图,
图3是图2中A-A面的剖视图,
图4是图1中铜导体框架的结构示意图,
图5是图4是左视图,
图6是图1中铜导体框架与芯片的连接结构示意图,
图7是图1中铜导体与芯片的连接结构示意图,
图8是图7的俯视图,
图9是本发明中盒体内灌封的结构示意图,
图10是本发明中的优化实施方式的结构示意图,
图11是图1中盒体引出端的结构示意图一,
图12是图1中盒体引出端的结构示意图二,
图13是本发明第二种实施方式的结构示意图,
图14是图13中盒体的结构示意图,
图15是图14中B-B面的剖视图,
图16是图13中铜导体框架的结构示意图,
图17是图16的左视图,
图18是图13中铜导体与芯片的连接结构示意图,
图19是本发明第三种实施方式的结构示意图,
图20是图19中盒体的结构示意图,
图21是图20中C-C面的剖视图,
图22是图19中铜导体框架的结构示意图,
图23是图22的左视图,
图24是图19中盒体引出端的结构示意图一,
图25是图19中盒体引出端的结构示意图二,
图26是图19中铜导体框架和芯片的连接结构示意图,
图27是本发明第四种实施方式的结构示意图,
图28是图27中盒体的结构示意图,
图29是图28中D-D面的剖视图,
图30是图27中铜导体框架的结构示意图,
图31是图30的左视图,
图32是图27中盒体引出端的结构示意图一,
图33是图27中盒体引出端的结构示意图二,
图34是图27中铜导体框架和芯片的连接结构示意图,
图35是现有技术中超声波铝丝键合的结构示意图,
图36是现有技术中高压注射工艺的结构示意图;
图中1是盒体,11是容置槽,12是横筋,120是汇流带穿导孔,13是定位柱,14是锥形盲孔,2是芯片,3是连接片,4是铜导体,41是安置位,42是引出位,420是穿线孔,43是连接位,5是灌封胶,6是工艺连接条,7是工艺连接环,8是散热片,9是铜导体框架,10是超声波焊头。
具体实施方式
本发明如图1-34所示,包括盒体1、N个芯片2、N个连接片3和N+1个铜导体4,N≥1,所述盒体设有至少一个容置槽11,所述盒体上设有一个顶面高度高于所述容置槽槽底的横筋12;
容置槽的形状可根据产品要求设计为方形、椭圆形和多边形状;
容置槽在接线盒中的分布为:含有一个容置槽的接线盒,容置槽分布在接线盒的一侧;含有两个或两个以上容置槽的接线盒,容置槽分布在接线盒两侧或四周;其目的是最大限度的分散发热源、利用有限的接线盒散热空间;
N+1个铜导体4中N个铜导体与N个芯片一一对应,N个铜导体上设有芯片安置位41,N+1个铜导体上设有位于所述横筋顶面的引出位42;使得所述铜导体具有至少两个不等高的面;
这样,焊有二极管芯片铜导体中的二极管芯片和铜导体下沉部位嵌入到盒体容置槽内,通过高导热、高机械强度环氧树脂胶浇灌,密封并固定在盒体内;每个容置槽内可嵌入并密封、固定一颗芯片或多颗芯片;可嵌入并密封、两个铜导体的下沉部位或多个铜导体的下沉部位;含有多个下沉部位的铜导体,其下沉部位分别被嵌入到接线盒中不同的容置槽内。
下沉式铜导体由紫铜、黄铜或合金铜通过冲切折弯形成。折弯后的低位平面为下沉部位,每个铜导体含一个或多个下沉部位;下沉部位分布在铜导体的一侧 或几侧、或中间位置。
如图19、27所示,在只有一个芯片时,两个铜导体,其中,一个铜导体上设有芯片安置位,两个铜导体上均设有引出位;
如图1、13所示,在有三个芯片时,四个铜导体,其中,三个铜导体上设有芯片安置位,四个铜导体上设有均引出位;
所述芯片固定焊接在所述铜导体的安置位上、且通过连接片连接在相邻的铜导体的连接位43上;
所述N+1个铜导体通过所述芯片、连接片串联连接,形成具有输出端的旁路电路;接线盒中二极管芯片的N面焊接在铜导体上,二极管芯片的P通过焊接连接片与旁边铜导体跨接连接,实现串接连接,并以铜导体作为节点导出,供客户焊接汇流带和连接输出电缆之用。
当N=1时,形成一个节点;或当N>1时,形成N+1个节点;
所述铜导体的安置位、芯片、连接片以及相邻的铜导体的连接位被灌封胶5浇灌固定封装在所述容置槽内,所述铜导体的引出位位于所述横筋之上、高于所述灌封胶的顶面。
相邻铜导体之间设有工艺连接条6,使多个铜导体暂时形成一个整体,为了消除制造过程中,铜导体之间相对移动,给芯片造成的拉扯应力。
当N>1时,至少两个铜导体之间设工艺连接环7,使多个铜导体暂时形成一个整体,为了消除制造过程中,铜导体之间相对移动,给芯片造成的拉扯应力。
当N>1时,第一个和最后一个铜导体上还设有连接输出端的连接位。当N=1时,一个铜导体上设有连接输出端的连接位;通常,在只有一个芯片时,需要组合使用。
相邻铜导体之间设有间隙、且通过芯片和连接片进行电相连,其中,第一个铜导体具有正极线缆引出端,最后一个铜导体具有负极线缆引出端,正极线缆引出端和负极线缆引出端均设置在盒体的外部;
正极线缆连接引出端和负极线缆连接引出端的设置,其方向为垂直于盒体;
正极线缆连接引出端和负极线缆连接引出端的设置,其方向为平行于盒体;
正极线缆连接引出端和负极线缆连接引出端的设置,其方向与盒体为任意角度;
当N>2时,所述芯片分设在所述横筋的两侧。这样的分布结构方式可以使二极管工作时发热的热源分散,充分利用接线盒内部有限的散热空间,减小相互之间的影响。
在所述横筋12上设有汇流带穿导孔120,所述汇流带穿导孔由所述盒体的背面贯穿所述横筋;所述汇流带穿导孔的下口大、上口小,起到导向作用,便于汇流带放置;
所述铜导体的引出位42上设有汇流带穿导孔相对应的穿线孔420。
下沉式铜导体的上层阶梯平面(即引出位)设有供客户安装焊接汇流带的穿线孔和焊接盘;含有一个下沉部位的铜导体,其供客户安装焊接汇流带的穿线孔和焊接盘设置在铜导体的一侧;含有两个或两个以上下沉部位的铜导体,其供客户安装焊接汇流带的穿线孔和焊接盘设置在铜导体中间部位。
太阳能发电组件用芯片低压封装式接线盒的加工方法,包括以下步骤:
1)、铜导体加工,将铜片冲切成型,形成相邻铜导体通过工艺连接结构连为一体、且相互之间具有间隙的铜导体框架9;
各铜导体之间设有工艺连接环或工艺连接条,使各铜导体暂时连接为整体,在完成芯片焊接、浇灌、固化后,去除工艺连接环或工艺连接条;
2)、芯片连接,将芯片通过连接片焊接在铜导体上,形成具有旁路电路结构的铜导体框架;
3)、灌封,将上步骤所述的铜导体框架放置在盒体内,往容置槽内浇灌环氧树脂胶,将芯片和连接片封装在环氧树脂胶之内,固化;
4)、切断,切断工艺连接结构,制得。
步骤1)中的工艺连接结构为工艺连接条,所述工艺连接条位于横筋上,工艺连接条连接在相邻导体的引出位之间,
步骤4)中,通过冲切机切断相邻铜导体之间的工艺连接条。
本发明在盒体横筋上留出空间,以方便接线盒上容置槽内环氧树脂固化后,进行工艺连接条的冲切去除。
步骤1)中的工艺连接结构为工艺连接环;
步骤3)中,所述盒体的容置槽内设有定位柱13,所述定位柱设在工艺连接环内,所述盒体的底面设有与定位柱中心线一致的锥形盲孔14;
步骤4)中,通过钻削,穿过锥形盲孔,去除相邻铜导体之间的工艺连接环。
本发明在盒体容置槽内设置了与铜导体工艺连接环相配合的定位柱,并在盒体背面与定位柱对应的位置设置锥形盲孔,起导向作用,以方便精确地通过钻削去除工艺连接环。
还包括散热片8,所述散热片封装在环氧树脂胶之内,起到散热的作用,散热片可为铜片、铝片等。

Claims (10)

  1. 太阳能发电组件用芯片低压封装式接线盒,包括盒体、N个芯片、N个连接片和N+1个铜导体,N≥1,其特征在于,
    所述盒体设有至少一个容置槽,所述盒体上设有一个顶面高度高于所述容置槽槽底的横筋;
    N+1个铜导体中N个铜导体与N个芯片一一对应,N个铜导体上设有芯片安置位,N+1个铜导体上设有位于所述横筋顶面的引出位;
    所述芯片固定焊接在所述铜导体的安置位上、且通过连接片连接在相邻的铜导体的连接位上;
    所述N+1个铜导体通过所述芯片、连接片串联连接,形成具有输出端的旁路电路;
    所述铜导体的安置位、芯片和连接片被灌封胶浇灌固定封装在所述容置槽内,所述铜导体的引出位位于所述横筋之上、高于所述灌封胶的顶面。
  2. 根据权利要求1所述的太阳能发电组件用芯片低压封装式接线盒,其特征在于,相邻铜导体之间设有工艺连接条。
  3. 根据权利要求1所述的太阳能发电组件用芯片低压封装式接线盒,其特征在于,当N>1时,至少两个铜导体之间设工艺连接环。
  4. 根据权利要求1所述的太阳能发电组件用芯片低压封装式接线盒,其特征在于,当N>1时,第一个和最后一个铜导体上还设有连接输出端的连接位。
  5. 根据权利要求1所述的太阳能发电组件用芯片低压封装式接线盒,其特征在于,当N>2时,所述芯片分设在所述横筋的两侧。
  6. 根据权利要求1所述的太阳能发电组件用芯片低压封装式接线盒,其特征在于,在所述横筋上设有汇流带穿导孔,所述汇流带穿导孔由所述盒体的背面贯穿所述横筋;所述汇流带穿导孔的下口大、上口小;
    所述铜导体的引出位上设有汇流带穿导孔相对应的穿线孔。
  7. 太阳能发电组件用芯片低压封装式接线盒的加工方法,其特征在于,包括以下步骤:
    1)、铜导体加工,将铜片冲切成型,形成相邻铜导体通过工艺连接结构 连为一体、且相互之间具有间隙的铜导体框架;
    2)、芯片连接,将芯片通过连接片焊接在铜导体上,形成具有旁路电路结构的铜导体框架;
    3)、灌封,将上步骤所述的铜导体框架放置在盒体内,往容置槽内浇灌环氧树脂胶,将芯片和连接片封装在环氧树脂胶之内,固化;
    4)、切断,切断工艺连接结构,制得。
  8. 根据权利要求7所述的太阳能发电组件用芯片低压封装式接线盒的加工方法,其特征在于,步骤1)中的工艺连接结构为工艺连接条,所述工艺连接条位于横筋上,
    步骤4)中,通过冲切机切断相邻铜导体之间的工艺连接条。
  9. 根据权利要求7所述的太阳能发电组件用芯片低压封装式接线盒的加工方法,其特征在于,步骤1)中的工艺连接结构为工艺连接环;
    步骤3)中,所述盒体的容置槽内设有定位柱,所述定位柱设在工艺连接环内,所述盒体的底面设有与定位柱中心线一致的锥形盲孔;
    步骤4)中,通过钻削,穿过锥形盲孔,去除相邻铜导体之间的工艺连接环。
  10. 根据权利要求7-9中任一所述的太阳能发电组件用芯片低压封装式接线盒的加工方法,其特征在于,还包括散热片,所述散热片封装在环氧树脂胶之内。
PCT/CN2017/114777 2017-03-10 2017-12-06 太阳能发电组件用芯片低压封装式接线盒及其加工方法 WO2018161661A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17899848.0A EP3595170A4 (en) 2017-03-10 2017-12-06 LOW PRESSURE CHIP BOX TYPE JUNCTION BOX AND ITS TREATMENT PROCESS FOR SOLAR ENERGY GENERATION KIT
US16/492,182 US11264946B2 (en) 2017-03-10 2017-12-06 Low-pressure chip packaging type junction box and processing method thereof for solar power generation assembly
JP2019548573A JP6876142B2 (ja) 2017-03-10 2017-12-06 太陽光発電コンポーネント用チップ低電圧パッケージ型ジャンクションボックス及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710142905.6A CN106685342B (zh) 2017-03-10 2017-03-10 太阳能发电组件用芯片低压封装式接线盒及其加工方法
CN201710142905.6 2017-03-10

Publications (1)

Publication Number Publication Date
WO2018161661A1 true WO2018161661A1 (zh) 2018-09-13

Family

ID=58828765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114777 WO2018161661A1 (zh) 2017-03-10 2017-12-06 太阳能发电组件用芯片低压封装式接线盒及其加工方法

Country Status (5)

Country Link
US (1) US11264946B2 (zh)
EP (1) EP3595170A4 (zh)
JP (1) JP6876142B2 (zh)
CN (2) CN106685342B (zh)
WO (1) WO2018161661A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106685342B (zh) 2017-03-10 2018-06-19 江苏通灵电器股份有限公司 太阳能发电组件用芯片低压封装式接线盒及其加工方法
CN113938099A (zh) * 2021-09-15 2022-01-14 中节能太阳能科技(镇江)有限公司 一种具有疏水和散热功能的光伏接线盒
CN115148847B (zh) * 2022-05-23 2023-07-25 江苏瑞晶太阳能科技有限公司 一种光伏组件自动化封装设备
KR102508961B1 (ko) * 2022-09-08 2023-03-14 주식회사 에스앤지코리아 태양광 접속함 및 그 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2256819A1 (de) * 2009-05-25 2010-12-01 Yamaichi Electronics Deutschland GmbH Anschlussdose für ein Solarmodul und ein Solarpaneel
CN202601673U (zh) * 2012-05-04 2012-12-12 苏州快可光伏电子股份有限公司 光伏接线盒
CN104579158A (zh) * 2015-02-05 2015-04-29 蒋罕琦 太阳能发电组件用接线盒及其加工方法
CN106685342A (zh) * 2017-03-10 2017-05-17 江苏通灵电器股份有限公司 太阳能发电组件用芯片低压封装式接线盒及其加工方法
CN206506491U (zh) * 2017-03-10 2017-09-19 江苏通灵电器股份有限公司 太阳能发电组件用芯片低压封装式接线盒

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135169A (ja) * 1997-10-27 1999-05-21 Sumitomo Wiring Syst Ltd 端子の取付方法およびそれに用いる端子連続体
JP2001168368A (ja) * 1999-12-09 2001-06-22 Kanegafuchi Chem Ind Co Ltd 端子ボックス
JP2002252356A (ja) * 2001-02-23 2002-09-06 Sumitomo Wiring Syst Ltd バイパス用整流素子及びこのバイパス用整流素子を用いた太陽電池モジュール用の端子ボックス装置
JP3744458B2 (ja) * 2002-04-10 2006-02-08 住友電装株式会社 太陽電池モジュール用端子ボックス装置
JP4515817B2 (ja) * 2004-05-18 2010-08-04 株式会社三社電機製作所 太陽電池モジュール接続具
JP3775428B2 (ja) * 2005-05-13 2006-05-17 住友電装株式会社 太陽電池モジュール用端子ボックス装置
TW200826340A (en) * 2006-12-01 2008-06-16 Td Hitech Energy Inc Battery assembly plate structure and manufacture method thereof
US20080289681A1 (en) * 2007-02-27 2008-11-27 Adriani Paul M Structures for low cost, reliable solar modules
JP5146406B2 (ja) * 2009-05-27 2013-02-20 住友電装株式会社 太陽電池モジュール用端子ボックス
JP2011109029A (ja) * 2009-11-20 2011-06-02 Sumitomo Wiring Syst Ltd 太陽電池モジュール用端子ボックス及び太陽電池モジュール用端子ボックスの製造方法
CN101963296B (zh) * 2010-07-07 2013-03-20 杨东佐 一种led集成结构的制造方法
CN201830173U (zh) * 2010-09-01 2011-05-11 富士康(昆山)电脑接插件有限公司 接线盒
CN202601657U (zh) * 2012-02-24 2012-12-12 上海泰阳绿色能源有限公司 新型光伏接线盒
CN103227223B (zh) * 2013-04-03 2016-03-23 冯春阳 一种光伏发电组件接线盒
CN104682862A (zh) * 2013-11-29 2015-06-03 江苏通灵电器股份有限公司 串联光伏组件接线盒
CN204013382U (zh) * 2014-06-06 2014-12-10 浙江佳明天和缘光伏科技有限公司 一种太阳能电池接线盒
CN204361988U (zh) * 2015-02-05 2015-05-27 蒋罕琦 太阳能发电组件用接线盒
CN104901619A (zh) * 2015-05-25 2015-09-09 常熟市福莱德连接器科技有限公司 一种光伏接线盒的制造方法
JP2016226198A (ja) * 2015-06-02 2016-12-28 インクス株式会社 太陽光発電システム用の接続箱

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2256819A1 (de) * 2009-05-25 2010-12-01 Yamaichi Electronics Deutschland GmbH Anschlussdose für ein Solarmodul und ein Solarpaneel
CN202601673U (zh) * 2012-05-04 2012-12-12 苏州快可光伏电子股份有限公司 光伏接线盒
CN104579158A (zh) * 2015-02-05 2015-04-29 蒋罕琦 太阳能发电组件用接线盒及其加工方法
CN106685342A (zh) * 2017-03-10 2017-05-17 江苏通灵电器股份有限公司 太阳能发电组件用芯片低压封装式接线盒及其加工方法
CN206506491U (zh) * 2017-03-10 2017-09-19 江苏通灵电器股份有限公司 太阳能发电组件用芯片低压封装式接线盒

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3595170A4 *

Also Published As

Publication number Publication date
EP3595170A4 (en) 2021-01-20
CN108566159A (zh) 2018-09-21
CN108566159B (zh) 2019-07-26
EP3595170A1 (en) 2020-01-15
JP6876142B2 (ja) 2021-05-26
US20210143775A1 (en) 2021-05-13
JP2020510395A (ja) 2020-04-02
CN106685342A (zh) 2017-05-17
CN106685342B (zh) 2018-06-19
US11264946B2 (en) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2018161661A1 (zh) 太阳能发电组件用芯片低压封装式接线盒及其加工方法
JP7046742B2 (ja) パワーモジュール
CN104303299A (zh) 半导体装置的制造方法及半导体装置
TW201413982A (zh) 二極體單元模組
CN103928447B (zh) 一种大功率全气密半导体模块封装结构
EP3166222B1 (en) Photovoltaic junction box
CN104766843A (zh) 一种可用smt工艺贴装的高功率半导体封装结构
WO2017185803A1 (zh) 低结温光伏接线盒及用于低结温光伏接线盒的芯片组件
CN204013385U (zh) 一种器件化的光伏接线盒旁路二极管电路模块
CN103824821B (zh) 一种塑料密闭封装的开关电源模块及其制备方法
JP2007311714A (ja) ダイオードモジュール、太陽電池モジュール用接続具及びその製造方法
CN106130469A (zh) 包封体分段式光伏旁路二极管模块
WO2019227567A1 (zh) 带有微型电源管理模块的超窄光伏接线盒
CN208337498U (zh) 多通道电源管理模块
CN103532490B (zh) 光伏电源管理模块
CN112259517A (zh) 光伏组件旁路元件焊片及旁路保护元件模块及接线盒
CN105448846A (zh) 低电感轻薄型功率模块
CN202259234U (zh) 具有散热器的光伏旁路二极管模块
CN218868196U (zh) 长串型光伏低温浇注芯片线盒
CN114300563B (zh) 一种光伏模块结构及加工工艺
CN220290798U (zh) 一种大功率贴片二极管
CN218182207U (zh) 用于接线盒的二极管模组
CN108599713B (zh) 多通道电源管理模块
CN213212157U (zh) 光伏组件旁路元件焊片及旁路保护元件模块及接线盒
CN209804662U (zh) 一种sod-323型二极管结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899848

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019548573

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017899848

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017899848

Country of ref document: EP

Effective date: 20191010