WO2018161644A1 - 复合材料及其制备方法 - Google Patents

复合材料及其制备方法 Download PDF

Info

Publication number
WO2018161644A1
WO2018161644A1 PCT/CN2017/113207 CN2017113207W WO2018161644A1 WO 2018161644 A1 WO2018161644 A1 WO 2018161644A1 CN 2017113207 W CN2017113207 W CN 2017113207W WO 2018161644 A1 WO2018161644 A1 WO 2018161644A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
transition metal
composite material
metal oxide
hydrogen
Prior art date
Application number
PCT/CN2017/113207
Other languages
English (en)
French (fr)
Inventor
于浦
李卓璐
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2018161644A1 publication Critical patent/WO2018161644A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/66Cobaltates containing alkaline earth metals, e.g. SrCoO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0081Mixed oxides or hydroxides containing iron in unusual valence state [IV, V, VI]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM

Definitions

  • the present application relates to the field of material technology, and in particular to a composite material and a preparation method thereof.
  • a composite material is a composite of two or more different properties in a specific structure, and the properties of the various materials are complemented or coupled to make the composite superior to the original component.
  • Composite materials can be used as nano-coating materials, high-mechanical materials, magnetic materials, optical materials, high dielectric materials, biomimetic materials and catalytic materials due to their superior properties. It has a wide range of applications in various fields such as industry, life, medical, military, and aerospace.
  • a composite material comprising a first component and a second component in contact with the first component, the first component being mixed with the second component and having a contact interface;
  • the first component comprises a hydrogen-containing transition metal oxide, and the structural formula of the hydrogen-containing transition metal oxide is ABO x H y , wherein A is one or more of an alkaline earth metal element and a rare earth metal element, B For one or more of the transition metal elements, x ranges from 1-3, and y ranges from 0-3.
  • the second component comprises one or more of a metal element, a metal oxide, an alloy.
  • the second component comprises a nanomaterial comprising zero-dimensional clusters, artificial atoms, nanoparticles; one-dimensional nanowires, nanotubes, nanorods, nanofibers; two-dimensional Nano-belts, ultra-thin films, multilayer films.
  • the second component comprises an organic functional material, including an organic material having mechanical functions, an organic material having chemical functions, an organic material having physicochemical functions, and having biochemical work. Organic materials and organic materials with electrical functions.
  • y in the hydrogen-containing transition metal oxide ABO x H y is greater than 0 and less than or equal to 3.
  • the first component and the second component are layered alternately.
  • the first component is distributed in a block-like arrangement
  • the second component is in a block shape and alternately layered in a vertical direction with the first component to form a block array.
  • the composite material further includes a third component
  • the material of the third component may be selected from the material of the second component, and different from the material of the second component
  • the first component is distributed in a block shape
  • the second component is in a block shape and alternately layered in a vertical direction with the first component to form a block array
  • the third component is distributed in A block array gap formed by the first component and the second component.
  • one of the first component and the second component is wrapped by another component.
  • a method of preparing a composite material comprising:
  • A is an alkaline earth metal element and a rare earth metal element
  • B is one or more of transition metal elements
  • z is greater than or equal to 2 and less than or equal to 3;
  • the S200 includes:
  • the hydrogen-containing reaction gas generates hydrogen radicals under the action of the metal catalyst, and the hydrogen radicals are diffused into the intermediate product to obtain the composite material.
  • the S200 includes:
  • a method of preparing a composite material comprising:
  • the first component comprising a hydrogen-containing transition metal oxide of the formula ABO x H y , wherein A is one or more of an alkaline earth metal element and a rare earth metal element, B is one or more of transition metal elements, x ranges from 1-3, and y ranges from 0 to 3;
  • the S110 further includes:
  • S111 providing a transition metal oxide of the formula ABO z , wherein A is one or more of an alkaline earth metal element and a rare earth metal element, and B is one or more of transition metal elements, and z is greater than Equal to 2 and less than or equal to 3;
  • the hydrogen-containing reaction gas generates hydrogen radicals under the action of the metal catalyst, and the hydrogen radicals are diffused into the transition metal oxide to obtain the hydrogen-containing transition metal oxide.
  • the S110 further includes:
  • A is one or more of an alkaline earth metal element and a rare earth metal element
  • B is one or more of transition metal elements
  • z is greater than Equal to 2 and less than or equal to 3;
  • the composite material provided herein includes a first component and a second component.
  • the first component is in contact with the second component, the first component is mixed with the second component and has a contact interface.
  • the first component comprises a hydrogen-containing transition metal oxide, and the structural formula of the hydrogen-containing transition metal oxide is ABO x H y , wherein A is one or more of an alkaline earth metal element and a rare earth metal element, B For one or more of the transition metal elements, x ranges from 1-3, and y ranges from 0-3.
  • the lattice constant of the first component can be effectively regulated by the injection and extraction of hydrogen ions and oxygen ions. Further, the change in the lattice constant of the first component can affect the lattice constant of the second component by the coupling effect of the interface, thereby achieving effective regulation of the properties of the composite.
  • 1a, 1b, 1c, and 1d are schematic views of the structures 2-2, 0-0, 1-3, and 0-3 of the composite material provided by one embodiment, respectively;
  • FIG. 2 is a flow chart of a method for preparing a composite material provided by an embodiment
  • FIG. 3 is a schematic view showing the preparation of the composite material by a method for hydrogenating a metal catalyst provided by an embodiment
  • FIG. 4 is a schematic diagram of preparing a composite material by using an ionic liquid plus a gate voltage according to an embodiment
  • FIG. 5 is a flow chart of a method for preparing a composite material provided by another embodiment
  • FIG. 6 is a schematic diagram of the template provided by an embodiment
  • 7a and 7b are respectively a nano-array topography diagram of the second component and a nano-array height variation diagram of the second component in the intermediate product of the composite material provided by one embodiment;
  • Figure 8 is an X-ray photoelectron spectroscopy of the second component provided by one embodiment
  • Figure 9 is a characteristic peak of the second component Pt4f electrons provided by an embodiment
  • Figure 10 is a topographical view of an intermediate product of the composite material provided by one embodiment
  • Figure 11 is an X-ray diffraction pattern of an intermediate product of the composite material provided by one embodiment
  • 12a and 12b are respectively a nano-array topography diagram of the second component and a nano-array height variation diagram of the second component provided by another embodiment;
  • Figure 13 is a topographical view of an intermediate product of the composite material provided by another embodiment
  • Figure 14 is an X-ray diffraction pattern of an intermediate product of the composite material provided by another embodiment
  • 15 is an X-ray diffraction diagram of an intermediate product of the composite material before and after a phase change process according to another embodiment
  • 16 is a partial enlarged view of an X-ray diffraction pattern of an intermediate product of the composite material before and after a phase change process according to another embodiment
  • Figure 17 is an X-ray diffraction diagram of an intermediate product of the composite material before and after another phase change process according to another embodiment
  • Figure 18 is a partial enlarged view of an X-ray diffraction pattern of an intermediate product of the composite material before and after another phase change process according to another embodiment
  • Figure 19 is a topographical view of an intermediate product of the composite material provided by still another embodiment.
  • Figure 20 is an X-ray diffraction pattern of an intermediate product of the composite material provided by still another embodiment
  • Figure 21 is an in-situ X-ray diffraction pattern of an intermediate product during the phase change regulation of the composite material provided by still another embodiment.
  • an embodiment of the present application provides a composite material 100 comprising a first component 110 and a second component 120.
  • the first component 110 is mixed with the second component 120 and has a contact interface.
  • the contact interface that is, the contact surface of the first component 110 and the second component 120, and the size and shape of the contact interface are not specifically limited.
  • the contact interface may be a regular shape or an irregular shape.
  • the shape of the contact interface can be determined according to the configuration of the composite material 100.
  • the first component 110 can regulate the physical properties of the second component 120 by hydrogenation, as described below.
  • the first component 110 comprises a hydrogen-containing transition metal oxide of the formula ABO x H y .
  • A is one or more of an alkaline earth metal element and a rare earth metal element
  • B is one or more of transition metal elements
  • x has a value ranging from 1-3
  • y has a value range of 0- 3.
  • the value of x ranges from 1-3
  • the range of y ranges from greater than 0 to less than or equal to 3.
  • the ratio of A and B in ABO x H y is not necessarily strictly 1:1, and deviation may occur due to the presence of vacancies and interstitial atoms in ABO x H y .
  • the alkaline earth metal may include one or more of Be, Mg, Ca, Sr, Ba.
  • the rare earth metal element may include one or more of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb.
  • the transition group element may include one or more of Co, Cr, Fe, Mn, Ni, Cu, Ti, Zn, Sc, and V. It can be understood that A can also be a mixture of an alkaline earth metal and a rare earth metal, and B can also be a mixture of a transition metal and a main group metal.
  • the first component 110 can be a hydrogen-containing transition metal oxide of the formula ABO x H y .
  • the second component 120 comprises one or more of a metal element, a metal oxide, an alloy.
  • the second component 120 is a simple substance of metal.
  • the metal element includes one or more of potassium, calcium, sodium, magnesium, aluminum, zinc, iron, copper, lead, and nickel. It can be understood that the metal element can be any metal element and is not exhaustive here.
  • the second component 120 is a simple substance of metal.
  • the atomic arrangement of the first component 110 and the second component 120 at the contact interface of the composite material 100 in the present application is tightly coupled together.
  • the contact interface is the same as the interface obtained by directly growing the film on the substrate, and even if some defects are present, the connection between the first component 110 and the second component 120 is tight, so that when When the lattice constant of the component changes, the arrangement pitch of the atoms at the interface changes, and the arrangement pitch of the atoms at the interface of the other component also changes, thereby realizing the application of stress and also the change of the lattice constant.
  • the properties of the composite material 100 can be effectively changed by changing the lattice constant of the first component 110 in this embodiment.
  • the ductility, electrical conductivity, and thermal conductivity of the metal element can be changed by changing the lattice constant of the first component 110.
  • the second component 120 is a metal oxide.
  • the metal oxide is a binary compound composed of an oxygen element and another metal chemical element such as iron oxide (Fe 2 O 3 ), sodium oxide (Na 2 O) or the like.
  • An important role of the metal oxide is as a catalyst, which plays an important role in different reactions.
  • the first component 110 is a hydrogen-containing transition metal oxide
  • the second component 120 is a metal oxide to form the composite material 100.
  • the catalytic efficiency of the composite material 100 is increased by changing the lattice constant of the first component 110 to further improve the catalytic efficiency of the composite material 100.
  • the second component 120 is an alloy.
  • the alloy is a material having metal characteristics synthesized by a certain method from two or more metals and metals or nonmetals. Alloys can be divided into: mixture alloys (eutectic mixtures), solid solution alloys, and intermetallic compounds.
  • the alloy of the mixture (co-melting mixture) is an alloy formed by crystallizing the components of the alloy when the liquid alloy is solidified, such as solder, cadmium-cadmium alloy or the like.
  • the solid solution alloy An alloy in which a solid solution is formed when gold is solidified, such as a gold-silver alloy.
  • the intermetallic compound that is, an alloy in which the components form a compound with each other, such as brass composed of copper or zinc ( ⁇ -brass, ⁇ -brass, and ⁇ -brass).
  • the first component 110 is a hydrogen-containing transition metal oxide
  • the second component 120 is an alloy
  • the composite material 100 is formed.
  • the second component 120 comprises a nanomaterial.
  • the nanomaterial is based on a nanoscale material unit, and a new system is constructed or assembled according to a certain rule.
  • the nanomaterials can be divided into blocks, films, multilayer films, and nanostructures.
  • the basic constituent units of the nano material are: zero-dimensional clusters, artificial atoms, nanoparticles; one-dimensional nanowires, nanotubes, nanorods, nanofibers; two-dimensional nanobelts, ultrathin films, multilayer films.
  • the nanostructures are in contact with the hydrogen-containing transition metal oxide, and the interatomic interaction at the interface causes the atoms to be only coupled together, and when the lattice constant of the hydrogen-containing transition metal oxide changes, the The nanostructures change such that the properties of the composite 100 change. Since some properties of the nanomaterial depend on its energy level structure, when the lattice constant of the first component 110 is changed, the lattice constant of the second component 120 also changes, thereby affecting the second The energy level structure of component 120 allows the second component 120 to exhibit superior performance. For example, high optical nonlinearity, light absorption, light reflection and light transport properties, specific catalytic properties, strong oxidative properties and reducibility.
  • the nanomaterials may include graphene and carbon nanotubes.
  • the first component 110 is the hydrogen-containing transition metal oxide and the second component 120 is graphene.
  • the lattice constant of the first component 110 in the composite material 100 the ability of the graphene to withstand pressure and electrical conductivity can be varied.
  • the first component 110 is a hydrogen-containing transition metal oxide
  • the second component 120 is a nanostructure
  • the composite material 100 is formed.
  • the lattice constant of the first component 110 can be effectively regulated by the injection and extraction of hydrogen ions and oxygen ions. Further, the change in the lattice constant of the first component 110 can affect the lattice constant of the second component 120 by the coupling effect of the interface, thereby achieving effective regulation of the properties of the composite 100.
  • the electrical and magnetic properties of the composite material 100 can be further altered by varying the lattice constant of the first component 110 to increase the application value of the composite material 100.
  • the second component 120 comprises an organic functional material.
  • the organic functional material refers to organic small molecules, supramolecular and polymeric materials having unique physical and chemical properties (functions).
  • the main functional types of the organic functional materials are: mechanical function, chemical function, physical and chemical function, biochemical function, and electrical function.
  • the organic functional material, the function of the material is a function of inputting an energy to the material, passing through a process of transferring or converting the material, and then providing the output as an output.
  • Organic functional materials such as: liquid crystal materials, laser dyes, photochromic materials, photoconductive materials, solar cell materials, organic dielectric materials.
  • the organic dielectric material such as polyvinylidene fluoride (PVDF), has a change in dielectric properties under applied stress.
  • PVDF polyvinylidene fluoride
  • the first component 110 is a hydrogen-containing transition metal oxide
  • the second component 120 is an organic dielectric material PVDF
  • the composite material 100 is formed.
  • the lattice constant of the first component 110 thereby changing the dielectric properties of the PVDF, further changing the electrical characteristics of the composite material 100, and improving the application value of the composite material 100.
  • Organic materials have good chemical inertness, good toughness and wide application. Therefore, the composite materials can improve the performance of organic functional materials, so that they can be better applied.
  • the first component 110 and the second component 120 are layered alternately.
  • FIG. 1a a schematic view of a 2-2 type structure of the composite material 100 provided by an embodiment of the present application is shown.
  • the thickness of the layer is not limited. The thickness of each layer of the composite material 100 may be set according to the nature of the use of the composite material 100 during use.
  • the first component 110 is distributed in a block-like arrangement
  • the second component 120 is identical in shape to the first component 110
  • the second component 120 is in a first group
  • the points 110 are alternately layered in the vertical direction.
  • the composite 100 further includes a third component 130 distributed in a bulk array formed by the first component 110 and the second component 120.
  • a 0-0 type structure of the composite material 100 provided by an embodiment of the present application is shown. It can be understood that the first component 110 and the second component 120 are alternately layered in the vertical direction, which are alternately stacked one above the other in the vertical direction.
  • first component 110 and the second component 120 constitute a layered array, and a gap is formed between one of the layered arrays and the other of the layered arrays.
  • a third component 130 is distributed at the spacing between the layered array of the first component 110 and the second component 120. Specifically, a third component 130 is distributed between adjacent first components 110 and between adjacent second components 120.
  • the third component 130 includes one or more of a metal element, a metal oxide, and an alloy.
  • the third component 130 can be a conductive material in a metal oxide, such as SrRuO 3 .
  • SrRuO 3 is added at the interval between the first component 110 and the layered array formed by the second component 120, hydrogenation or dehydrogenation of the ionic liquid is performed.
  • the surface electrodes of the composite material 100 are connected to the entire sample, so that the entire composite material 100 is at a low potential, thereby making the phase change process faster and more thorough.
  • the mixing of the first component 110 and the second component 120 achieves a coupling of two physical properties.
  • the third component 130 can be further added to the composite material 100 to achieve coupling of three physical properties.
  • the first component 110 is the hydrogen-containing transition metal oxide and the second component 120 is a magnetostrictive material.
  • the magnetic change of the composite material 100 is achieved by applying an electric field ionic liquid control, thereby realizing magnetoelectric coupling.
  • the material of the third component 130 is then selected.
  • the third component 130 may be selected by a material whose lattice constant is changed, such as a photostrictive material of lead zirconate titanate (PLZT) ceramic, thereby realizing coupling of three physical properties of light, magnetism and electricity, thereby Get more novel materials.
  • PZT lead zirconate titanate
  • the composite 100 further includes a third component 130. Said in said composite material 100 The addition of three components 130 achieves coupling of three physical properties.
  • the material of the third component 130 may be selected from the material of the second component 120 and is different from the material of the second component 120. That is, the third component 130 may include one or more of a simple substance of a metal, a metal oxide, and an alloy.
  • the third component 130 may include one or more of a nano material or an organic functional material.
  • the second component 120 and the third component 130 can be selected from different materials.
  • the second component 120 and the third component 130 may also select different materials of the same type of material.
  • the first components 110 are distributed in a block-like interval.
  • the second component 120 is in a block shape and alternately layered in a vertical direction with the first component 110 to form a block array.
  • the third component 130 is distributed in a block array gap formed by the first component 110 and the second component 120.
  • the second component 120 can be regulated by the change of the lattice constant of the first component 110. Physical properties of the third component 130.
  • one of the first component 110 and the second component 120 is wrapped by another component. It may be that the second component 120 wraps the first component 110. It is also possible that the first component 110 wraps the second component 120.
  • the first component 110 is dispersed in the second component 120 in a punctiform, linear, planar or bulk configuration. It will be appreciated that the first component 110 is dispersed in the second component 120 in a different shape.
  • the shape and configuration of the first component 110 are not particularly limited as long as the first component 110 and the second component 120 have a contact interface such that the second component 120 can rely on the first component
  • the change of the component 110 may be changed.
  • the first component 110 forms an array
  • the second component 120 encapsulates the first component 110
  • the array includes the first component 110 in a columnar shape.
  • FIG. 1c is a schematic diagram of a 1-3 type structure of a composite material 100 according to an embodiment of the present application. It can be seen in Figure 1c that the first component 110 is an intermediate columnar array and the first component 110 is the hydrogen-containing transition metal oxide.
  • the second component 120 is in contact with the first component 110, and the first component 110 and the second component 120 have a contact interface capable of being altered by the first component 110, The regulation of the different physical properties of the second component 120 is achieved.
  • the first component 110 forms an array
  • the second component 120 encases the first component 110
  • the array includes the first component 110 in a block shape.
  • FIG. 1d is a schematic structural view of a 0-3 type composite material 100 according to an embodiment of the present application. It can be seen in Figure 1d that the first component 110 is an intermediate block array and the first component 110 is the hydrogen-containing transition metal oxide.
  • the second component 120 is in contact with the first component 110, and the first component 110 and the second component 120 have a contact interface capable of being altered by the first component 110, The regulation of the different physical properties of the second component 120 is achieved.
  • the contact interface between the first component 110 and the second component 120 is relatively large, and the corresponding physical property control capability is relatively strong.
  • the composite material 100 in any of the four configurations may be further determined according to different needs in a specific application process.
  • the second component 120 is dispersed in the first component 110 in a punctiform, linear, planar or bulk configuration. It will be appreciated that the second component 120 is dispersed in the first component 110 in a different shape.
  • the shape and configuration of the second component 120 are not particularly limited as long as the first component 110 and the second component 120 have a contact interface such that the second component 120 can rely on the first component
  • the change of the component 110 may be changed.
  • the second component 120 forms an array
  • the first component 110 wraps the second component 120
  • the array includes the second component 120 in a columnar shape.
  • FIG. 1c is a schematic diagram of a 1-3 type structure of the composite material 100 according to an embodiment of the present application. It can be seen in Figure 1c that the second component 120 is an intermediate columnar array and the first component 110 is the hydrogen-containing transition metal oxide. The second component 120 is in contact with the first component 110, and the first component 110 and the second component 120 have a contact interface capable of being altered by the first component 110, The regulation of the different physical properties of the second component 120 is achieved.
  • the second component 120 forms an array
  • the first component 110 wraps the second component 120
  • the array includes the second component 120 in a block shape.
  • FIG. 1d is a schematic diagram of a 0-3 type structure of the composite material 100 according to an embodiment of the present application. It can be seen in Figure 1d that the second component 120 is an intermediate block array and the first component 110 is the hydrogen-containing transition metal oxide.
  • the second component 120 is in contact with the first component 110, and the first component 110 and the second component 120 have a contact interface capable of being altered by the first component 110, The regulation of the different physical properties of the second component 120 is achieved.
  • the contact interface between the first component 110 and the second component 120 is relatively large, and the corresponding physical property control capability is relatively strong.
  • the composite material 100 in any of the four configurations may be further determined according to different needs in a specific application process.
  • a method for preparing a composite material 100 includes: S100, providing a transition metal oxide of the formula ABO z and the second component 120, and the second component 120 The transition metal oxide is mixed to form an intermediate product 200, wherein A is one or more of an alkaline earth metal element and a rare earth metal element, and B is one or more of transition metal elements, and z is greater than or equal to 2 and Less than or equal to 3.
  • A is one or more of an alkaline earth metal and a transition group element.
  • B is one or more of transition metal elements Co, Cr, Fe, Mn, Ni, Cu, Ti, Zn, Sc, and V.
  • the alkaline earth metal includes Be, Mg, Ca, Sr, Ba.
  • the rare earth metal element includes one or more of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb.
  • A is a mixture of one or more of the alkaline earth metal elements Ca, Sr, and Ba
  • B is a mixture of one or more of the transition metal elements Co, Fe, Mn.
  • the structural formula is a transition metal oxide is not limited to a structure of the ABO z, it may be a film, powder, body material, or a composite nanoparticles with other materials.
  • the transition metal oxide of the formula ABO z is a thin film. It can be understood that the method for preparing the transition metal oxide as a film is not limited and can be prepared by various methods.
  • the process of mixing the second component 120 with the transition metal oxide is not limited, and mixing of the two can be achieved in any manner.
  • the mixed form of the first component 110 and the second component 120 is also not limited to be in FIG. 1
  • the above four configurations shown may also be other irregular or non-uniform configurations.
  • the S100 may include: S101, the transition metal oxide as a first target, the second component 120 as a second target, the first target and the A reaction chamber in which the second target is grown. S103, controlling the first target and the second target to alternately grow in the reaction cavity to form the intermediate product 200.
  • the composite material 100 is prepared by a source exchange method.
  • the exchange method that is, the transition metal oxide and the second component 120 are separately grown using different targets.
  • the composite material 100 of the 2-2 type structure and the 1-3 type structure can be prepared by a source exchange method.
  • the S100 can include: S102, mixing the transition metal oxide and the second component 120 into a third target, providing a reaction chamber for growing the third target. S104, controlling the growth of the third target in the reaction chamber to form the intermediate product 200.
  • the transition metal oxide and the second component 120 are mixed to form a third target.
  • the mixing ratio of the transition metal oxide and the second component 120 is not limited and may be determined according to the needs of the prepared composite material 100. Compared with the above-mentioned exchange method for preparing the transition metal oxide and the second component 120, the mixing method in this embodiment is simpler and easier to implement in the method.
  • the S100 may include: S105, providing a substrate 140.
  • the substrate 140 is not limited and may be one of the ceramic substrate 140, the silicon substrate 140, the glass substrate 140, the metal substrate 140, or the polymer substrate 140, as long as the substrate 140 that can be used for film formation can be applied to the S105.
  • S106 depositing a transition metal oxide film on the surface of the substrate 140.
  • the method of forming the thin film of the transition metal oxide is not limited, and may be various film forming methods such as ion sputtering, chemical vapor deposition, magnetron sputtering, gel method, laser pulse deposition, and the like.
  • the S106 is epitaxially grown on the substrate 140 by a method of pulsed laser deposition to obtain the transition metal oxide film.
  • the thickness of the grown transition metal oxide film is not limited, and it is preferable that the transition metal oxide film has a thickness of 5 nm to 200 nm.
  • the S200 includes: S205, providing a template to grow the second component 120 or the transition metal oxide in a shape of the template to make the second component 120
  • the transition metal oxide is mixed to form the intermediate product 200.
  • the composite material 100 is grown by a templating method. Different templates may be selected depending on the different types of the composite material 100 being grown.
  • FIG. 3 is a schematic diagram of the preparation of the composite material 100 by a method of hydrogenating a metal catalyst.
  • the S200 includes: S201, providing a metal catalyst 201 and contacting the metal catalyst 201 with a surface of the intermediate product 200.
  • the specific form of the metal catalyst 201 is not limited as long as it can catalyze the decomposition of hydrogen to generate hydrogen radicals.
  • the material of the metal catalyst 201 may be various metals such as platinum, palladium, gold, silver or aluminum.
  • the metal catalyst 201 may be platinum or palladium.
  • the specific form of the metal catalyst 201 is not limited, and the metal catalyst 201 may be a metal nano film, a nano particle or a strip electrode.
  • the metal catalyst 201 is in contact with the surface of the intermediate product 200 to facilitate insertion of the hydrogen radical into the intermediate product 200.
  • the transition metal oxide becomes the first component 110 is ABO x H y , wherein x ranges from 1-3, and y ranges from 0 to 3.
  • the hydrogen-containing reaction gas may be formed in a reaction chamber.
  • the specific form of the reaction chamber is not limited as long as various reaction conditions for preparing the hydrogen-containing transition metal oxide can be satisfied.
  • the reaction chamber is a sphere having an opening for taking a test sample.
  • the reaction chamber also has a charging and discharging port, an observation window, a heating device and a vacuuming device.
  • the hydrogen atmosphere may be created by introducing a hydrogen-containing reaction gas into the reaction chamber.
  • the hydrogen-containing reaction gas is charged into the reaction chamber, and the reaction chamber can maintain a dynamically balanced pressure.
  • the hydrogen-containing reaction gas may be pure hydrogen.
  • the hydrogen gas that is introduced may also be a mixed gas of different ratios of hydrogen gas and slow-release gas.
  • the sustained release gas may be nitrogen, helium, neon, argon, helium, neon or xenon.
  • the volume content of the hydrogen gas is 3% to 100%.
  • the sustained release gas is selected from argon.
  • a mixed gas of hydrogen gas and argon in a volume ratio of 5:95 is used.
  • the hydrogen-containing reaction gas generates hydrogen radicals under the action of the metal catalyst 201, and the hydrogen radicals are diffused into the intermediate product 200 to obtain the composite material 100.
  • the transition metal oxide can be hydrogenated under the action of a catalyst at room temperature, but in order to accelerate the hydrogenation rate, the system is generally heated at a low temperature. Heating the reaction chamber raises the temperature of the reaction chamber to raise the temperature of the hydrogen atmosphere. In the heating process, the heating temperature is not particularly limited as long as the generation of the hydrogen radicals can be promoted.
  • the hydrogen atmosphere has a temperature ranging from 20 degrees Celsius to 200 degrees Celsius. Preferably, the temperature of the hydrogen atmosphere is 150 degrees Celsius.
  • the method of preparing the composite material 100 further includes separating the metal catalyst 201 from the composite material 100.
  • separating the metal catalyst 201 from the composite material 100 there are various methods for separating the metal catalyst 201 from the composite material 100.
  • the catalyst having a loose and mesoporous structure plated on the surface of the metal oxide is separated by ultrasonication.
  • the catalyst on the surface can be removed by adhesion using a polymer having a strong adhesion ability, such as polydimethylsiloxane (PDMS).
  • PDMS polydimethylsiloxane
  • the method of separating the metal catalyst 201 and the composite material 100 is not limited as long as the composite material 100 can be separated and can be successfully realized in the industry.
  • the composite material 100 is prepared by a method of hydrogenating a metal catalyst.
  • the transition metal oxide in the intermediate product 200 is converted to the hydrogen-containing transition metal oxide ABO x H y .
  • the range of x is 1-3, and the range of y is 0-3.
  • the method of hydrogenating the metal catalyst in this embodiment produces the hydrogen radical more rapidly, and the hydrogen radical is diffused into the intermediate product 200.
  • the intermediate product 200 is converted to the composite material 100.
  • FIG. 4 is a schematic diagram of preparing the composite material 100 by using an ionic liquid plus a gate voltage.
  • the S300 includes: S202, immersing the intermediate product 200 in an ionic liquid 202, the ionic liquid 202 comprising hydrogen ions and oxygen ions.
  • the first electrode 210 is formed on the surface of the intermediate product 200.
  • the surface of the intermediate product 200 forming the first electrode 210 forms a layer of ionic liquid 202.
  • the ionic liquid 202 may be various types of ionic liquid 202 as long as the desired hydrogen and oxygen ions can be supplied by hydrolysis or other means and the transition metal oxide can be covered.
  • hydrogen ions and oxygen ions in the ionic liquid 202 can be controlled to be inserted into the transition metal oxide or vice versa by the direction of the electric field.
  • the amount of water in the ionic liquid 202 is not limited, and experiments have confirmed that the above-described movement of hydrogen ions and oxygen ions can be achieved as long as the ionic liquid 202 has a small amount of water (>100 ppm).
  • the S202 further includes: providing a second electrode 220 and a power source 230; and the second electrode The first electrode 210 is spaced apart from the first electrode 210 and electrically connected to the power source 230, respectively.
  • S204 applying an electric field to the intermediate product 200 to insert hydrogen ions in the ionic liquid 202 into the intermediate product 200 to form the composite material 100.
  • the S204 may further include: immersing the second electrode 220 in the ionic liquid 202, and applying an electric field from the second electrode 220 toward the first electrode 210 through the power source 230.
  • the shape of the second electrode 220 is not limited, and may be a parallel plate electrode, a rod electrode, or a metal mesh electrode. In one embodiment, the second electrode 220 is an electrode composed of a spring-like wire.
  • the power source 230 can be various DC, AC power sources 230, and the like. The voltage of the power source 230 is adjustable and can be used to control the reaction time. In one embodiment, the power source 230 is a DC power source 230.
  • the second electrode 220 is spaced apart from the first electrode 210 such that a directional electric field can be formed between the second electrode 220 and the first electrode 210.
  • the second electrode 220 and the first electrode 210 are connected to the DC power source 230 in an unrestricted manner, and a voltage may be applied to the second electrode 220 and the second electrode 220 by switch control.
  • the second electrode 220 is immersed in the ionic liquid 202.
  • the first electrode 210 and the second electrode 220 are energized, the first electrode 210 can be connected to the DC power source 230.
  • the second electrode 220 is connected to the anode of the DC power source 230.
  • an electric field from the second electrode 220 toward the first electrode 210 can be generated between the first electrode 210 and the second electrode 220.
  • the ionic liquid 202 is between the first electrode 210 and the second electrode 220, the positively charged hydrogen ions in the ionic liquid 202 will be directed toward the first electrode 210 under the action of an electric field.
  • transition metal oxide is inserted to obtain the composite material 100 composed of a hydrogen-containing transition metal oxide and the second component 120.
  • the negatively charged oxygen ions will be precipitated from the sample and injected into the ionic liquid 202. It can be understood that when the electric field is turned over, the above ion change process will achieve a corresponding inversion. Therefore, the above process is a reversible process in the direction of the electric field.
  • the composite material 100 is prepared by using an ionic liquid plus a gate voltage.
  • the transition metal oxide in the intermediate product 200 is converted to the hydrogen-containing transition metal oxide.
  • the first component 110 is ABO x H y , wherein x ranges from 1-3, and y ranges from 0-3. It will be appreciated that there are two directions to choose from when an electric field is applied to the intermediate product 200. That is, the first electrode 210 serves as a positive electrode and the second electrode 220 serves as a negative electrode, or the first electrode 210 serves as a negative electrode and the second electrode 220 serves as a positive electrode.
  • the intermediate product 200 may be subjected to hydrogen ionization, or the intermediate product 200 may be subjected to oxygenated ions to precipitate hydrogen ions.
  • the method of adding the gate voltage to the ionic liquid can achieve both the formation of the composite material 100 and the different phase transition processes of the composite material 100.
  • a method for preparing a composite material 100 includes: S110, providing the first component 110, the first component 110 comprising a hydrogen-containing transition metal of the formula ABO x H y An oxide, wherein A is one or more of an alkaline earth metal element and a rare earth metal element, and B is one or more of a transition metal element, and x has a value ranging from 1-3, and a range of values of y It is 0-3.
  • S210 the second component 120 is provided, and the first component 110 is mixed with the second component 120 to obtain the composite material 100.
  • the first component 110 is directly provided with a hydrogen-containing transition metal oxide of the formula ABO x H y , wherein x ranges from 1-3, and y ranges from 0 to 3.
  • the first component 110 is then mixed with the second component 120.
  • the mixing mode is not specifically limited as in the above embodiment, and the specific configuration of the composite material 100 is not limited.
  • the S110 further includes: S111, providing a transition metal oxide of the formula ABO z , wherein A is one or more of an alkaline earth metal element and a rare earth metal element, and B is a transition group. One or more of the metal elements, z being greater than or equal to 2 and less than or equal to 3.
  • S113 a metal catalyst 201 is provided, and the metal catalyst 201 is brought into contact with a surface of the transition metal oxide.
  • S115, the transition metal oxide and the metal catalyst 201 are placed in a hydrogen-containing reaction gas.
  • the hydrogen-containing reaction gas generates hydrogen radicals under the action of the metal catalyst 201, and the hydrogen radicals are diffused into the transition metal oxide to obtain the hydrogen-containing transition metal oxide.
  • the hydrogen-containing transition metal oxide of the formula ABO x H y is prepared by a method of hydrogenating a metal catalyst.
  • the preparation method herein is the same as the above-mentioned preparation method for preparing the composite material 100 by the method of hydrogenating a metal catalyst, except that the object of action in the present embodiment is the transition metal oxide ABO z .
  • the transition metal oxide ABO z is made into the hydrogen-containing transition metal oxide ABO x H y .
  • Specific experiments schematic embodiment of the present embodiment may refer to FIG. 3, the intermediate product of Example 200 in the transducer to make the transition metal oxide ABO z of the present embodiment.
  • the S110 further includes: S112, providing a transition metal oxide of the formula ABO z , wherein A is one or more of an alkaline earth metal element and a rare earth metal element, and B is a transition group. One or more of the metal elements, z being greater than or equal to 2 and less than or equal to 3.
  • S114 immersing the transition metal oxide in an ionic liquid, the ionic liquid comprising hydrogen ions and oxygen ions.
  • S116 applying an electric field to the transition metal oxide to insert hydrogen ions in the ionic liquid into the transition metal oxide to form the hydrogen-containing transition metal oxide.
  • the hydrogen-containing transition metal oxide of the formula ABO x H y is prepared by an ionic liquid plus gate voltage method. It can be understood that the preparation method herein is the same as the above-mentioned preparation method of preparing the composite material 100 by the method of applying an ionic liquid plus a gate voltage, except that the object of action in the present embodiment is the transition metal oxide ABO z .
  • the transition metal oxide ABO z is made into the hydrogen-containing transition metal oxide ABO x H y .
  • Specific experiments schematic embodiment of the present embodiment may refer to FIG. 4, in the embodiment the intermediate 200 for doing the transition metal oxide ABO z of the present embodiment.
  • Embodiment 1 provides a specific step and structural characterization of the intermediate product SrCoO 2.5 -Pt by a template method.
  • FIG. 6 is a schematic diagram of the template selected in an embodiment of the present application.
  • the template is an ultra-thin two-pass AAO template having a film thickness of 150 nm, the template having through holes, a pitch of the through holes of 125 nm, and a diameter of the through holes of 75 nm.
  • the AAO template is placed on the substrate 140, placed in an ion sputtering apparatus at room temperature, and argon gas is simultaneously evacuated, so that the sputtering cavity is maintained at 6-8 Pa, and sputtering is about 5 nm.
  • the characteristic peak of Pt cannot be characterized by an X-ray diffractometer. Therefore, an X-ray photoelectron spectrometer was used to determine the composition of the second component 120 when SrCoO 2.5 was not covered, as shown in FIG. In Figure 8, the material composition of the surface of the whole sample is observed at a depth of a few nanometers. The spectral intensity is composed of the background strength of the background and the peak intensity of the element. The position of the characteristic peak of the element is indicated in the figure, so that the surface of the composite 100 can be seen.
  • the characteristic peak of Pt 4f was measured in detail as shown in FIG. In Fig. 9, the characteristic peak of the Pt 4f has been marked above the peak in the figure, and the surface topography of the atomic force microscope of Fig. 10 can be used to prove that the nano column of the sample is grown on the SrTiO 3 .
  • Embodiment 2 provides a specific step and structural characterization of the intermediate product SrCoO 2.5 -CoFe 2 O 4 by a template method.
  • barium titanate (SrTiO 3 ) is selected as the substrate 140, and a CoFe 2 O 4 nano-array is deposited on the barium titanate (SrTiO 3 ) covering the AAO template.
  • the AAO template was peeled off by a tape and a layer of 30 nm thick SrCoO 2.5 was grown at 750 ° C, 10 Pa, 2 Hz, annealed oxygen pressure of 10 Pa, and finally the transition metal oxide SrCoO 2.5 and the second component 120 CoFe were obtained.
  • the intermediate product 200 is mixed with 2 O 4 .
  • FIG. 12a is a topographical view of a nano-array formed by the second component 120 in one embodiment.
  • the black and white color in Fig. 12a represents the undulating height of the surface of the nano array, and the right side of Fig. 12a gives the height corresponding to black and white, white is high and black is low.
  • the surface of the nano-array formed by the second component 120 is a periodically arranged cylindrical nano-array, that is, the second component 120CoFe 2 O 4 forms a cylindrical array on a flat substrate.
  • Figure 12b shows the variation in the height of the white line in FIG.
  • Figure 13 is a topographical view of the intermediate product 200 of the present embodiment. As shown in Figure 13, the entire surface of the intermediate product 200 is very flat and undulates on the order of a few hundred pm, indicating that SrCoO 2.5 has completely covered the CoFe 2 O 4 array.
  • FIG. 14 is an X-ray diffraction diagram of the intermediate product 200SrCoO 2.5 -CoFe 2 O 4 in one embodiment of the present application.
  • Figure 14 can clearly characterize the structural components of the intermediate product 200SrCoO 2.5 -CoFe 2 O 4 .
  • the asterisk indicates the peak of the substrate 140SrTiO 3 barium titanate
  • the inverted triangle is the peak of the substrate 140SrCoO 2.5
  • the dot indicates the peak of the second component 120CoFe 2 O 4 , whereby the transition metal oxidation can be seen.
  • Both the object and the second component 120 are structurally intact.
  • Embodiment 3 This embodiment provides structural characterization of the intermediate product SrCoO 2.5 -CoFe 2 O 4 grown by a source exchange method and the intermediate product SrCoO 2.5 -CoFe 2 O 4 or the composite under different phase transformation processes. The change in material 100.
  • FIG. 15 is an X-ray diffraction spectrum of the intermediate product SrCoO 2.5 -CoFe 2 O 4 before and after annealing in ozone.
  • the lower one of Fig. 15 is an X-ray diffraction pattern of the intermediate product 200SrCoO 2.5 -CoFe 2 O 4 grown by a mixing method.
  • the upper curve in Fig. 15 is an X-ray diffraction pattern of the intermediate product SrCoO 2.5 -CoFe 2 O 4 after ozone annealing.
  • Fig. 15 is an X-ray diffraction spectrum of the intermediate product SrCoO 2.5 -CoFe 2 O 4 before and after annealing in ozone.
  • the peak indicated by the triangle is the characteristic peak of SrCoO 2.5
  • the peak indicated by the dot is the characteristic peak of CoFe 2 O 4
  • the asterisk is the characteristic peak of the substrate 140.
  • SrCoO 2.5 becomes SrCoO 3- ⁇ after ozone annealing
  • the hollow triangle number indicates SrCoO 3- ⁇ . That is, the transition metal oxide undergoes a phase transition, and the SrCoO 2.5 phase changes to the SrCoO 3- ⁇ phase.
  • the line of the intermediate product SrCoO 2.5 -CoFe 2 O 4 at 40 ° - 50 ° as shown in Fig. 15 was enlarged to obtain Fig. 16.
  • FIG. 17 is an X-ray diffraction spectrum of the intermediate product SrCoO 2.5 -CoFe 2 O 4 before and after hydrogenation of the metal catalyst 201.
  • a lower curve is an X-ray diffraction pattern of the intermediate product SrCoO 2.5 -CoFe 2 O 4 grown by a feed exchange method.
  • the upper curve in Fig. 17 is an X-ray diffraction pattern of the intermediate product SrCoO 2.5 -CoFe 2 O 4 after hydrogenation of the metal catalyst 201.
  • the peak indicated by the triangle number is the characteristic peak of SrCoO 2.5
  • the dot indicates the peak of CoFe 2 O 4
  • the asterisk is the peak of the base 140.
  • Figure 18 is a line of the intermediate product SrCoO 2.5 -CoFe 2 O 4 magnified at 40 ° - 50 °, and the peak change of the SrCoO 2.5 phase transition in Figure 18 can be seen, thereby calculating the increase in the out-of-plane lattice constant.
  • the 6.22% that is, 6.22% tensile stress is provided, while the peak position of CoFe 2 O 4 shifts to the left, and its lattice constant increases by 0.40% due to the stress applied by SrCoO 2.5 .
  • the composite material 100 can also be prepared by a mixing method.
  • Embodiment 4 This embodiment provides a specific step of preparing the intermediate product NiFe 2 O 4 —SrCoO 2.5 by a source exchange method, structural characterization, and the intermediate product NiFe 2 O 4 —SrCoO 2.5 or the phase change process. Changes in composite material 100:
  • the X-ray diffractometer (XRD) data plot is shown in Figure 20. It can be seen that the peak marked with "*" is the peak of the base 140SrTiO 3 (002), the peak indicated by the triangle on the left side of the base 140 is the peak of SrCoO 2.5 , and the peak marked by the circle is NiFe 2 O 4 peak. It can be seen that the two components are structurally correct and complete.
  • the change in the composite material 100 when the ionic liquid is applied in situ by XRD is measured as shown in FIG. It can be seen from Fig. 21 that the ionic liquid is regulated to hydrogenate when a positive voltage is applied, and the out-of-plane lattice constants of NiFe 2 O 4 and SrCoO 2.5 in the composite material 100 are simultaneously increased, and after the addition of a negative voltage, the ions are added.
  • the liquid is dehydrogenated by oxygen, and the out-of-plane lattice constant of NiFe 2 O 4 and SrCoO 2.5 in the composite material 100 first returns to the initial value and then continues to decrease.
  • the embodiment in the present application gives a change in the lattice constant of the composite material 100 to achieve regulation of the physical properties of the device.
  • a change in the lattice constant of the composite material 100 as a whole causes a structural change in the composite material 100, which is an extremely important and fundamental change.
  • the structural changes of the composite material 100 bring about various changes in the electronic structure, the coordination environment, and the like, which are fundamental to the change in properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Catalysts (AREA)
  • Laminated Bodies (AREA)

Abstract

本申请提供一种复合材料及其制备方法。所述复合材料,包括第一组分和与所述第一组分相互接触的第二组分,所述第一组分与所述第二组分混合并且具有接触界面。所述第一组分包括含氢过渡金属氧化物,所述含氢过渡金属氧化物的结构式为ABOxHy。其中,A为碱土金属元素和稀土金属元素中的一种或多种,B为过渡族金属元素的一种或多种,x的取值范围为1-3,y的取值范围为0-3。所述第一组分的晶格常数可以通过氢离子和氧离子的注入和抽取而实现有效的调节。进一步第一组分晶格常数的改变可以借由界面的耦合效应影响第二组分的晶格常数,从而实现对于所述复合材料的性质的有效调控。

Description

复合材料及其制备方法
相关申请
本申请要求2017年3月6日申请的,申请号为2017101280376,名称为“复合材料及其制备方法”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及材料技术领域,特别是涉及一种复合材料及其制备方法。
背景技术
复合材料是两种或两种以上不同性质的材料以特定结构复合组成,各种材料的性能取长补短或产生耦合从而使得复合材料性能优于原组分材料。复合材料因其优越的性能可以用作纳米涂层材料,高力学性能材料,磁性材料,光学材料,高介电材料、仿生材料及催化材料。在工业、生活、医疗、军事、航天等各个领域都有着广泛的应用。
但是,复合材料一旦固定组分结构,其制作合成之后的性能参数就确定不变了。这使得复合材料在可调器件中的应用中受到很大的限制。
发明内容
基于此,有必要针对上述技术问题,提供一种可以多次重复的、性质可调的复合材料。
一种复合材料,包括第一组分和与所述第一组分相互接触的第二组分,所述第一组分与所述第二组分混合并且具有接触界面;
所述第一组分包括含氢过渡金属氧化物,所述含氢过渡金属氧化物的结构式为ABOxHy,其中,A为碱土金属元素和稀土金属元素中的一种或多种,B为过渡族金属元素的一种或多种,x的取值范围为1-3,y的取值范围为0-3。
在一个实施例中,所述第二组分包括金属单质、金属氧化物、合金中的一种或几种。
在一个实施例中,所述第二组分包括纳米材料,所述纳米材料包括零维的团簇、人造原子、纳米微粒;一维的纳米线、纳米管、纳米棒、纳米纤维;二维的纳米带、超薄膜、多层膜。
在一个实施例中,所述第二组分包括有机功能材料,所述有机功能材料包括具有力学功能的有机材料、具有化学功能的有机材料、具有物理化学功能的有机材料、具有生物化学功 能的有机材料、具有电学功能的有机材料。
在一个实施例中,所述含氢过渡金属氧化物ABOxHy中y大于0且小于等于3。
在一个实施例中,所述第一组分和所述第二组分层状交替分布。
在一个实施例中,所述第一组分呈块状间隔分布,所述第二组分呈块状并与所述第一组分在垂直方向上层状交替分布,形成块状阵列。
在一个实施例中,所述复合材料还包括第三组分,所述第三组分的材料可选自所述第二组分的材料,且与所述第二组分的材料不同,所述第一组分呈块状间隔分布,所述第二组分呈块状并与所述第一组分在垂直方向上层状交替分布,形成块状阵列,所述第三组分分布于所述第一组分和所述第二组分形成的块状阵列间隙。
在一个实施例中,所述第一组分和所述第二组分的其中之一被另一组分包裹。
一种复合材料的制备方法,包括:
S100,提供结构式为ABOz的过渡金属氧化物和第二组分,将所述第二组分与所述过渡金属氧化物混合形成中间产物,其中,A为碱土金属元素和稀土金属元素中的一种或多种,B为过渡族金属元素中的一种或多种,z大于等于2且小于等于3;
S200,对所述中间产物进行加氢处理使得所述过渡金属氧化物变成所述第一组分,得到所述复合材料。
在一个实施例中,所述S200包括:
S201,提供金属催化剂,并使所述金属催化剂与所述中间产物的表面接触;
S203,将所述中间产物与所述金属催化剂放置于含氢反应气体中;
S205,所述含氢反应气体在所述金属催化剂的作用下产生氢自由基,所述氢自由基扩散插入所述中间产物中以获得所述复合材料。
在一个实施例中,所述S200包括:
S202,将所述中间产物浸入离子液体中,所述离子液体包含氢离子和氧离子;
S204,对所述中间产物施加电场,使离子液体中的氢离子插入所述中间产物以形成所述复合材料。
一种复合材料的制备方法,包括:
S110,提供所述第一组分,所述第一组分包括结构式为ABOxHy的含氢过渡金属氧化物,其中,A为碱土金属元素和稀土金属元素中的一种或多种,B为过渡族金属元素的一种或多种,x的取值范围为1-3,y的取值范围为0-3;
S210,提供所述第二组分,将所述第一组分与所述第二组分混合,得到所述复合材料。
在一个实施例中,所述S110进一步包括:
S111,提供一种结构式为ABOz的过渡金属氧化物,其中,A为碱土金属元素和稀土金属元素中的一种或多种,B为过渡族金属元素中的一种或多种,z大于等于2且小于等于3;
S113,提供金属催化剂,并使所述金属催化剂与所述过渡金属氧化物的表面接触;
S115,将所述过渡金属氧化物与所述金属催化剂放置于含氢反应气体中;
S117,所述含氢反应气体在所述金属催化剂的作用下产生氢自由基,所述氢自由基扩散插入所述过渡金属氧化物中以获得所述含氢过渡金属氧化物。
在一个实施例中,所述S110进一步包括:
S112,提供一种结构式为ABOz的过渡金属氧化物,其中,A为碱土金属元素和稀土金属元素中的一种或多种,B为过渡族金属元素中的一种或多种,z大于等于2且小于等于3;
S114,将所述过渡金属氧化物浸入离子液体中,所述离子液体包含氢离子和氧离子;
S116,对所述过渡金属氧化物施加电场,使离子液体中的氢离子插入所述过渡金属氧化物以形成所述含氢过渡金属氧化物。
本申请提供的复合材料,所述复合材料包括第一组分和第二组分。所述第一组分与所述第二组分相互接触,所述第一组分与所述第二组分混合并且具有接触界面。所述第一组分包括含氢过渡金属氧化物,所述含氢过渡金属氧化物的结构式为ABOxHy,其中,A为碱土金属元素和稀土金属元素中的一种或多种,B为过渡族金属元素的一种或多种,x的取值范围为1-3,y的取值范围为0-3。所述第一组分的晶格常数可以通过氢离子和氧离子的注入和抽取而实现有效的调节。进一步所述第一组分的晶格常数的改变可以借由界面的耦合效应影响所述第二组分的晶格常数,从而实现对于所述复合材料的性质的有效调控。
附图说明
图1a、图1b、图1c和图1d分别为一个实施例提供的复合材料的2-2型、0-0型、1-3型和0-3型结构示意图;
图2为一个实施例提供的复合材料的制备方法的流程图;
图3为一个实施例提供的采用金属催化剂加氢的方法制备所述复合材料的示意图;
图4为一个实施例提供的采用离子液体加栅极电压的方法制备所述复合材料的示意图;
图5为另一个实施例提供的复合材料的制备方法的流程图;
图6为一个实施例提供的所述模板的示意图;
图7a和图7b分别为一个实施例提供的所述复合材料的中间产物中所述第二组分的纳米阵列形貌图和所述第二组分的纳米阵列高度变化图;
图8为一个实施例提供的所述第二组分的X射线光电子能谱;
图9为一个实施例提供的所述第二组分Pt4f电子的特征峰;
图10为一个实施例提供的所述复合材料的中间产物的表面形貌图;
图11为一个实施例提供的所述复合材料的中间产物的X射线衍射图;
图12a和图12b分别为另一个实施例提供的所述第二组分的纳米阵列形貌图和所述第二组分的纳米阵列高度变化图;
图13为另一个实施例提供的所述复合材料的中间产物的表面形貌图;
图14为另一个实施例提供的所述复合材料的中间产物的X射线衍射图;
图15为另一个实施例提供的所述复合材料的中间产物在相变过程前后的X射线衍射图;
图16为另一个实施例提供的所述复合材料的中间产物在相变过程前后的X射线衍射图的部分放大图;
图17为另一个实施例提供的所述复合材料的中间产物在另一个相变过程前后的X射线衍射图;
图18为另一个实施例提供的所述复合材料的中间产物在另一个相变过程前后的X射线衍射图的部分放大图;
图19为再一个实施例提供的所述复合材料的中间产物的表面形貌图;
图20为再一个实施例提供的所述复合材料的中间产物的X射线衍射图;
图21为再一个实施例提供的所述复合材料的中间产物调控相变过程中的原位X射线衍射图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本申请的复合材料及其制备方法进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
请参见图1a、图1b、图1c和图1d,本申请实施例提供一种复合材料100,包括第一组分110和第二组分120。所述第一组分110与所述第二组分120混合并且具有接触界面。所述接触界面即所述第一组分110和所述第二组分120的接触面,具体的所述接触界面的大小、形状并不具体限定。所述接触界面可以是规则形状,也可以是不规则形状的。所述接触界面的形状可以根据所述复合材料100的构型来确定。通过所述接触界面,所述第一组分110可以通过加氢的方式来调控所述第二组分120的物理性质,具体在下面介绍。
所述第一组分110包括结构式为ABOxHy的含氢过渡金属氧化物。其中,A为碱土金属元素和稀土金属元素中的一种或多种,B为过渡族金属元素的一种或多种,x的取值范围为 1-3,y的取值范围为0-3。在一个实施例中,所述含氢过渡金属氧化物ABOxHy中,所述x的取值范围为1-3,所述y的取值范围大于0小于等于3。具体的,A与B在ABOxHy中的比例不一定是严格的1:1,可以因为ABOxHy中存在空位和填隙原子等而产生偏离。因此,可以理解,所有的A与B的比例接近1:1的所述含氢过渡金属氧化物均在本申请保护范围之内。所述碱土金属可以包括Be、Mg、Ca、Sr、Ba中的一种或多种。所述稀土金属元素可以包括La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb中的一种或多种。所述过渡族元素可以包括Co、Cr、Fe、Mn、Ni、Cu、Ti、Zn、Sc和V中的一种或多种。可以理解,A还可以是碱土金属与稀土金属的混合,B还可以是过渡金属和主族金属的混合。在一个实施例中,所述第一组分110可以为所述结构式为ABOxHy的含氢过渡金属氧化物。
在一个实施例中,所述第二组分120包括金属单质、金属氧化物、合金中的一种或几种。在一个实施例中,所述第二组分120为金属单质。所述金属单质包括钾、钙、钠、镁、铝、锌、铁、铜、铅、镍中的一种或多种。可以理解,所述金属单质可以为任意的金属单质,此处不再穷举。
在一个实施例中,所述第二组分120为金属单质。本申请中的所述复合材料100的所述接触界面处的所述第一组分110和所述第二组分120的原子排列是紧紧连接在一起的。所述接触界面处和在基底上直接生长薄膜得到的界面一样,即使会有一些缺陷存在,但所述第一组分110和所述第二组分120之间的连接很紧,使得当一个组分的晶格常数变化,其界面处的原子排列间距会变化,另一组分界面处的原子排列间距也会随之变化,从而实现应力的施加,同时也是晶格常数的改变。在本实施例中能够通过改变所述第一组分110的晶格常数来有效地改变所述复合材料100的性质。如:可以通过改变所述第一组分110的晶格常数来改变所述金属单质的延展性、导电性和导热性。
在一个实施例中,所述第二组分120为金属氧化物。所述金属氧化物是氧元素与另外一种金属化学元素组成的二元化合物,如氧化铁(Fe2O3)、氧化钠(Na2O)等。所述金属氧化物一个重要的作用是作为催化剂,在不同的反应中起到重要作用。本实施例中,所述第一组分110为含氢过渡金属氧化物,所述第二组分120为金属氧化物制成所述复合材料100。通过改变所述第一组分110的晶格常数,进一步改变所述复合材料100的催化性质,提高所述复合材料100的催化效率。
在一个实施例中,所述第二组分120为合金。所述合金是由两种或两种以上的金属与金属或非金属经一定方法所合成的具有金属特性的物质。合金可以分为:混合物合金(共熔混合物)、固熔体合金、金属互化物合金。所述混合物合金(共熔混合物)当液态合金凝固时,构成合金的各组分分别结晶而成的合金,如焊锡、铋镉合金等。所述固熔体合金即当液态合 金凝固时形成固溶体的合金,如金银合金等。所述金属互化物合金,即各组分相互形成化合物的合金,如铜、锌组成的黄铜(β-黄铜、γ-黄铜和ε-黄铜)。本实施例中,所述第一组分110为含氢过渡金属氧化物,所述第二组分120为合金,制成所述复合材料100。通过改变所述第一组分110的晶格常数,进一步改变所述复合材料100的导电性能,导热性能,抗腐蚀性能,提高所述复合材料100的应用价值。
在一个实施例中,所述第二组分120包括纳米材料。所述纳米材料即以纳米尺度的物质单元为基础,按一定规律构筑或组装一种新的体系。所述纳米材料可分为块体、薄膜、多层膜、以及纳米结构。所述纳米材料的基本组成单元有:零维的团簇、人造原子、纳米微粒;一维的纳米线、纳米管、纳米棒、纳米纤维;二维的纳米带、超薄膜、多层膜。所述纳米结构与所述含氢过渡金属氧化物接触,在界面处的原子间相互作用使得原子仅仅耦合在一起,当时所述含氢过渡金属氧化物晶格常数发生变化时,会带动所述纳米结构发生变化,从而使所述复合材料100的性质发生改变。因为纳米材料的一些性质依赖于其能级结构,所以当改变所述第一组分110的晶格常数时,所述第二组分120的晶格常数也会改变,从而影响所述第二组分120的能级结构,使所述第二组分120表现出更优越的性能。例如高的光学非线性,光吸收、光反射和光输运性能,特异的催化性、强氧化性和还原性等。所述纳米材料可以包括石墨烯和碳纳米管。在一个实施例中,所述第一组分110为所述含氢过渡金属氧化物,所述第二组分120为石墨烯。从而,通过改变所述复合材料100中所述第一组分110的晶格常数,就能够改变所述石墨烯承受压力的能力和导电性能。
本实施例中,所述第一组分110为含氢过渡金属氧化物,所述第二组分120为纳米结构,制成所述复合材料100。所述第一组分110的晶格常数可以通过氢离子和氧离子的注入和抽取而实现有效的调节。进一步所述第一组分110的晶格常数的改变可以借由界面的耦合效应影响所述第二组分120的晶格常数,从而实现对于所述复合材料100的性质的有效调控。可以通过改变所述第一组分110的晶格常数,进一步改变所述复合材料100的电学特性和磁学特性,提高所述复合材料100的应用价值。
在一个实施例中,所述第二组分120包括有机功能材料。所述有机功能材料是指具有独特的物理及化学性质(功能)的有机小分子、超分子及高分子材料。所述有机功能材料的主要功能类型有:力学功能、化学功能、物理化学功能、生物化学功能、电学功能。所述有机功能材料,材料功能的是指向材料输入某种能量,经过材料的传输或转换等过程,再作为输出而提供给外部的一种作用。有机功能材料如:液晶材料、激光染料、光致变色材料、光导材料、太阳能电池材料、有机介电材料。所述有机介电材料如聚偏氟乙稀(PVDF),在外加应力下其介电性能会有变化。在一个实施例中,所述第一组分110为含氢过渡金属氧化物, 所述第二组分120为有机介电材料PVDF,制成所述复合材料100。通过改变所述第一组分110的晶格常数,从而改变所述PVDF的介电性能,进一步改变所述复合材料100的电学特性,提高所述复合材料100的应用价值。有机材料化学惰性好,韧性好,且应用广泛,因此复合材料对有机功能材料性能的提升,使其能得到更好的应用。
在一个实施例中,所述第一组分110和所述第二组分120层状交替分布。如图1a所示,为本申请一个实施例提供的所述复合材料100的2-2型结构示意图。所述第一组分110和所述第二组分120层状交替分布时,所述层状的厚度并不限制。可以根据使用过程中,所述复合材料100的性质要求对其每层的厚度进行设置。
在一个实施例中,所述第一组分110呈块状间隔分布,所述第二组分120与所述第一组分110形状相同,所述第二组分120与所述第一组分110在垂直方向上层状交替分布。所述复合材料100还包括第三组分130,所述第三组分130分布于所述第一组分110和所述第二组分120形成的块状阵列中。如图1b所示,为本申请一个实施例提供的复合材料100的0-0型结构示意图。可以理解所述第一组分110和所述第二组分120在垂直方向上层状交替分布,其在垂直方向上是交替的一层一层向上累加的。而在水平方向上间隔分布,即所述第一组分110和所述第二组分120组成了层状阵列,一个所述层状阵列与另一个所述层状阵列之间形成间隙。在所述第一组分110与所述第二组分120形成的层状阵列之间的所述间隔处分布有第三组分130。具体的,在相邻的所述第一组分110之间以及相邻的所述第二组分120之间分布有第三组分130。
所述第三组分130包括金属单质、金属氧化物、合金中的一种或几种。在一个实施例中,所述第三组分130可以为金属氧化物中的导电材料,比如SrRuO3。在所述第一组分110与所述第二组分120形成的层状阵列之间的所述间隔处加入所述导电材料SrRuO3后,再实施离子液体加氢或去氢。加氧或去氧过程中,使得所述复合材料100的表面电极连通整个样品,使整个所述复合材料100都处于低电势,从而使得相变过程更快速彻底。
所述第一组分110和所述第二组分120的混合实现了两种物理性质的耦合。可以在所述复合材料100中进一步加入所述第三组分130,以实现三种物理性质的耦合。例如:所述第一组分110为所述含氢过渡金属氧化物,所述第二组分120为磁致伸缩材料。通过加电场离子液体调控实现对所述复合材料100的磁性改变,进而实现了磁电耦合。此时再选择所述第三组分130的材料。所述第三组分130的选择可以是受晶格常数改变的材料,比如光致伸缩材料锆钛酸铅镧(PLZT)陶瓷,就可以实现光、磁、电三种物理性质的耦合,从而得到更具新颖性的材料。
在一个实施例中,所述复合材料100还包括第三组分130。所述复合材料100中所述第 三组分130的加入,实现了三种物理性质的耦合。所述第三组分130的材料可选自所述第二组分120的材料,且与所述第二组分120的材料不同。即所述第三组分130可以包括金属单质、金属氧化物、合金中的一种或几种。所述第三组分130可以包括纳米材料或有机功能材料中的一种或几种。所述第二组分120和所述第三组分130可以选择不同类材料。所述第二组分120和所述第三组分130也可以选择同一类材料中的不同种材料。所述第一组分110呈块状间隔分布。所述第二组分120呈块状并与所述第一组分110在垂直方向上层状交替分布,形成块状阵列。所述第三组分130分布于所述第一组分110和所述第二组分120形成的块状阵列间隙。本实施例中,在所述复合材料100中加入所述第三组分130后,能通过所述第一组分110的晶格常数的改变,来调控所述第二组分120和所述第三组分130的物理性能。
在一个实施例中,所述第一组分110和所述第二组分120的其中之一被另一组分包裹。可以是所述第二组分120将所述第一组分110包裹。也可以是所述第一组分110将所述第二组分120包裹。
在一个实施例中,所述第一组分110呈点状、线状、面状或体状分散于所述第二组分120。可以理解,所述第一组分110呈不同的形状分散于所述第二组分120。所述第一组分110的形状和构造并不具体限定,只要所述第一组分110和所述第二组分120具有接触界面,使得所述第二组分120能够依赖所述第一组分110的变化而变化即可。
在一个实施例中,所述第一组分110形成阵列,所述第二组分120将所述第一组分110包裹,所述阵列包括柱状的所述第一组分110。图1c为本申请一个实施例提供的复合材料100的1-3型结构示意图。图1c中可以看出所述第一组分110为中间的柱状阵列,所述第一组分110为所述含氢过渡金属氧化物。所述第二组分120与所述第一组分110接触,并且所述第一组分110和所述第二组分120具有接触界面,能够通过对所述第一组分110的改变,而实现所述第二组分120的不同物理性质的调控。
在一个实施例中,所述第一组分110形成阵列,所述第二组分120将所述第一组分110包裹,所述阵列包括块状的所述第一组分110。图1d为本申请一个实施例提供的复合材料100的0-3型结构示意图。图1d中可以看出所述第一组分110为中间的块状阵列,所述第一组分110为所述含氢过渡金属氧化物。所述第二组分120与所述第一组分110接触,并且所述第一组分110和所述第二组分120具有接触界面,能够通过对所述第一组分110的改变,而实现所述第二组分120的不同物理性质的调控。本实施例中,所述第一组分110和所述第二组分120的接触界面比较大,相应的物理性质调控能力会比较强。具体应用过程中可以根据不同的需求来进一步确定采用任意的四种构型的所述复合材料100。
在一个实施例中,所述第二组分120呈点状、线状、面状或体状分散于所述第一组分110。 可以理解,所述第二组分120呈不同的形状分散于所述第一组分110。所述第二组分120的形状和构造并不具体限定,只要所述第一组分110和所述第二组分120具有接触界面,使得所述第二组分120能够依赖所述第一组分110的变化而变化即可。
在一个实施例中,所述第二组分120形成阵列,所述第一组分110将所述第二组分120包裹,所述阵列包括柱状的所述第二组分120。图1c为本申请一个实施例提供的所述复合材料100的1-3型结构示意图。图1c中可以看出所述第二组分120为中间的柱状阵列,所述第一组分110为所述含氢过渡金属氧化物。所述第二组分120与所述第一组分110接触,并且所述第一组分110和所述第二组分120具有接触界面,能够通过对所述第一组分110的改变,而实现所述第二组分120的不同物理性质的调控。
在一个实施例中,所述第二组分120形成阵列,所述第一组分110将所述第二组分120包裹,所述阵列包括块状的所述第二组分120。图1d为本申请一个实施例提供的所述复合材料100的0-3型结构示意图。图1d中可以看出所述第二组分120为中间的块状阵列,所述第一组分110为所述含氢过渡金属氧化物。所述第二组分120与所述第一组分110接触,并且所述第一组分110和所述第二组分120具有接触界面,能够通过对所述第一组分110的改变,而实现所述第二组分120的不同物理性质的调控。本实施例中,所述第一组分110和所述第二组分120的接触界面比较大,相应的物理性质调控能力会比较强。具体应用过程中可以根据不同的需求来进一步确定采用任意的四种构型的所述复合材料100。
请参阅图2,本申请提供的一种复合材料100的制备方法,包括:S100,提供结构式为ABOz的过渡金属氧化物和所述第二组分120,将所述第二组分120与所述过渡金属氧化物混合形成中间产物200,其中,A为碱土金属元素和稀土金属元素中的一种或多种,B为过渡族金属元素中的一种或多种,z大于等于2且小于等于3。
所述过渡金属氧化物ABOz中,A为碱土金属和过渡族元素中的一种或多种。B为过渡族金属元素Co、Cr、Fe、Mn、Ni、Cu、Ti、Zn、Sc、V中的一种或多种。所述碱土金属包括Be、Mg、Ca、Sr、Ba。所述稀土金属元素包括La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb中的一种或多种。在一个实施例中,A为碱土金属元素Ca、Sr和Ba中的一种或者几种的混合物,B为过渡金属元素Co,Fe,Mn中的一种或者几种的混合物。所述结构式为ABOz的过渡金属氧化物的结构不限,可以是薄膜、粉末、体材、纳米颗粒或者与其他材料的复合材料。在一个实施例中,所述结构式为ABOz的过渡金属氧化物为薄膜。可以理解所述过渡金属氧化物为薄膜的制备方法不限,可以采用各种方法制备。
所述第二组分120与所述过渡金属氧化物混合的过程并不限制,可以采用任意的方式实现两者的混合。所述第一组分110和所述第二组分120的混合形式也并不限定可以是图1中 所示的以上4种构型,也可以是其他的不规则或不均匀的构型。
S200,对所述中间产物200进行加氢处理使得所述过渡金属氧化物变成所述第一组分110,得到所述复合材料100。对所述中间产物200进行加氢处理,加氢处理的具体过程也不作具体限定,只要实现所述过渡金属氧化物变成所述第一组分110即可。
在一个实施例中,所述S100可以包括:S101,将所述过渡金属氧化物作为第一靶材,所述第二组分120作为第二靶材,提供所述第一靶材和所述第二靶材生长的反应腔体。S103,在所述反应腔体中控制所述第一靶材与所述第二靶材交替生长,形成所述中间产物200。上述实施例中,采用换源法制备所述复合材料100。换源法即所述过渡金属氧化物和所述第二组分120采用不同的靶材分别生长。采用换源法可以制备所述2-2型结构和1-3型结构的复合材料100。
在一个实施例中,所述S100可以包括:S102,将所述过渡金属氧化物和所述第二组分120混合制作成第三靶材,提供生长所述第三靶材的反应腔体。S104,在所述反应腔体中控制所述第三靶材生长,形成所述中间产物200。将所述过渡金属氧化物和所述第二组分120混合制作成第三靶材。所述过渡金属氧化物和所述第二组分120的混合比例并不限制,可以根据制备的所述复合材料100的需要进行确定。相较于上述制备所述过渡金属氧化物和所述第二组分120两个靶材的换源法,本实施例中的混合法,在方法上更简单、更容易实施。
在一个实施例中,所述S100可以包括:S105,提供基底140。所述基底140不限,可以为陶瓷基底140、硅基底140、玻璃基底140、金属基底140或者聚合物基底140中的一种,只要可以用于成膜的基底140都可以应用于S105中。S106,在所述基底140表面沉积形成过渡金属氧化物薄膜。形成所述过渡金属氧化物的薄膜的方法不限,可以是各种成膜方法,如离子溅射法、化学气相沉积法、磁控溅射法、凝胶法、激光脉冲沉积等。在一个实施例中,所述S106通过脉冲激光沉积的方法在所述基底140上外延生长获得所述过渡金属氧化物薄膜。生长的过渡金属氧化物薄膜厚度不限,优选地所述过渡金属氧化物薄膜的厚度为5纳米至200纳米。
在一个实施例中,所述S200包括:S205,提供模板,使所述第二组分120或所述过渡金属氧化物以所述模板的形状生长,以使所述第二组分120与所述过渡金属氧化物混合形成所述中间产物200。本实施例中,采用模板法生长所述复合材料100。可以根据生长的所述复合材料100的不同类型来选择不同的模板。
请参阅图3,图3为采用金属催化剂加氢的方法制备所述复合材料100的示意图。在一个实施例中,所述S200包括:S201,提供金属催化剂201,并使所述金属催化剂201与所述中间产物200的表面接触。所述S201中,所述金属催化剂201的具体形式并不限制,只要能 催化氢气分解产生氢自由基即可。所述金属催化剂201的材质可以是各种金属,如铂、钯、金、银或铝。优选地,所述金属催化剂201可以是铂或钯。所述金属催化剂201的具体形式并不限制,所述金属催化剂201可以是金属的纳米薄膜、纳米颗粒或条状电极。所述金属催化剂201与所述中间产物200的表面接触,能够促进所述氢自由基插入所述中间产物200。从而使得所述过渡金属氧化物变为所述第一组分110为ABOxHy,其中x的取值范围为1-3,y的取值范围为0-3。
S203,将所述中间产物200与所述金属催化剂201放置于含氢反应气体中。所述S203中,所述含氢反应气体可以形成于一反应腔中。所述反应腔的具体形式不限,只要能够满足制备所述含氢过渡金属氧化物的而各种反应条件即可。在一个实施例中,所述反应腔为球体,具有开口以便放取试验样品。所述反应腔还具有充、放气口,观察窗,加热装置以及抽真空装置。所述氢气氛围的营造可以是向所述反应腔中通入含氢反应气体。所述含氢反应气体的充入所述反应腔体,所述反应腔可以保持动态平衡的压强。所述含氢反应气体可以为纯氢气。为了安全起见和隔绝空气中的氧气,可以在氢气中混合缓释气体。因此,通入的所述氢气,也可以是氢气和缓释气体不同比例的混合气体。所述缓释气体可以为氮气、氦气、氖气、氩气、氪气、氙气、氡气。所述氢气与所述缓释气体的混合气体中,所述氢气的体积含量是3%-100%。在一个实施例中,所述缓释气体选择氩气。优选地,采用氢气和氩气的体积比为5:95的混合气体。
S205,所述含氢反应气体在所述金属催化剂201的作用下产生氢自由基,所述氢自由基扩散插入所述中间产物200中以获得所述复合材料100。一般室温下氢气在催化剂的作用下就可以对过渡金属氧化物进行氢化,但为了加快氢化速率,一般对其体系进行低温加热。加热所述反应腔使所述反应腔的温度升高以使所述氢气氛围的温度升高。所述升温过程,对于加热温度并不作具体限定只要能促进所述氢自由基的产生即可。在一个实施例中,所述氢气氛围的温度范围为20摄氏度至200摄氏度。优选地,所述氢气氛围的温度是150摄氏度。
在一个实施例中,所述复合材料100的制备方法,进一步包括,分离所述金属催化剂201与所述复合材料100。可以理解,将所述金属催化剂201与所述复合材料100的分离方法有多种。如:利用超声的方法将镀在金属氧化物表面的具有疏松和介孔结构的催化剂进行分离。或是利用具有很强粘附能力的聚合物,如聚二甲基硅氧烷(PDMS)将表面的催化剂粘附去除。分离所述金属催化剂201与所述复合材料100的方法并不限制,只要能够使所述复合材料100能够分离并在产业中能够成功实现即可。
本实施例中,采用金属催化剂加氢的方法制备所述复合材料100。将所述中间产物200中的所述过渡金属氧化物转化为所述含氢过渡金属氧化物ABOxHy。其中x的取值范围为 1-3,y的取值范围为0-3。本实施例中所述金属催化剂加氢的方法更快速的产生所述氢自由基,使所述氢自由基扩散插入所述中间产物200。以使所述中间产物200转化为所述复合材料100。
请参阅图4,图4为采用离子液体加栅极电压的方法制备所述复合材料100的示意图。在一个实施例中,所述S300包括:S202,将所述中间产物200浸入离子液体202中,所述离子液体202包含氢离子和氧离子。所述S202中,在所述中间产物200的表面形成第一电极210。将形成所述第一电极210的所述中间产物200的表面形成一层离子液体202层。所述离子液体202可以是各种类型的离子液体202,只要能够通过水解或者其它途径提供所需氢和氧离子并将所述过渡金属氧化物覆盖即可。当将所述中间产物200和所述离子液体202处于电场中时,可以通过电场的方向来控制离子液体202中的氢离子和氧离子插入所述过渡金属氧化物中或者反之析出。所述离子液体202中的水的量不限制,实验证实,只要所述离子液体202中具有少量的水(>100ppm)就可以实现上述氢离子和氧离子的移动。
可以理解,所述S202中,给所述中间产物200施加电场的方法可以有多种,在一个实施例中,所述S202进一步包括:提供第二电极220以及电源230;将所述第二电极220与所述第一电极210间隔设置并分别与所述电源230电连接。S204,对所述中间产物200施加电场,使所述离子液体202中的氢离子插入所述中间产物200以形成所述复合材料100。所述S204可以进一步包括:将所述第二电极220浸入所述离子液体202中,并通过所述电源230施加从所述第二电极220向所述第一电极210方向的电场。所述第二电极220的形状不限,可以是平行板电极、棒状电极、金属网电极。在一个实施例中,所述第二电极220为弹簧状金属丝构成的电极。所述电源230可以为各种直流、交流电源230等。所述电源230的电压可调,可以用来控制反应的时间。在一个实施例中,所述电源230为直流电源230。
在一个实施例中,所述第二电极220与所述第一电极210间隔相对设置,从而可以在所述第二电极220与所述第一电极210之间形成定向的电场。所述第二电极220、所述第一电极210与所述直流电源230的连接方式不限,可以通过开关控制对所述第二电极220以及所述第二电极220施加电压。
在一个实施例中,所述第二电极220浸入所述离子液体202中,当给所述第一电极210以及所述第二电极220通电时,可以使得所述第一电极210接直流电源230的负极,所述第二电极220接直流电源230的正极。从而可以在所述第一电极210与所述第二电极220之间产生由所述第二电极220向所述第一电极210方向的电场。由于所述第一电极210与所述第二电极220之间具有所述离子液体202,在电场的作用下所述离子液体202中的带正电的氢离子将会向着所述第一电极210的方向移动,从而聚集在所述中间产物200的表面,进一步 插入所述过渡金属氧化物中,从而获得由含氢过渡金属氧化物和所述第二组分120组成的所述复合材料100。而带负电的氧离子将从样品中析出,注入到所述离子液体202中。可以理解,而当翻转电场时候,上述离子变化过程将实现相应的反转。因此,在电场方向变化下,上述过程是可逆过程。
本实施例中,采用离子液体加栅极电压的方法制备所述复合材料100。将所述中间产物200中的所述过渡金属氧化物转化为所述含氢过渡金属氧化物。从而使得所述第一组分110为ABOxHy,其中x的取值范围为1-3,y的取值范围为0-3。可以理解,此处对所述中间产物200施加电场时有两个方向可以选择。即所述第一电极210作为正极和所述第二电极220作为负极,或者所述第一电极210作为负极和所述第二电极220作为正极。这样可以对所述中间产物200进行加氢离子,也可以对所述中间产物200进行加氧离子,析出氢离子。离子液体加栅极电压的方法既可以实现形成所述复合材料100,又能够实现所述复合材料100的不同相变过程。
请参阅图5,本申请提供的一种复合材料100的制备方法,包括:S110,提供所述第一组分110,所述第一组分110包括结构式为ABOxHy的含氢过渡金属氧化物,其中,A为碱土金属元素和稀土金属元素中的一种或多种,B为过渡族金属元素的一种或多种,x的取值范围为1-3,y的取值范围为0-3。S210,提供所述第二组分120,将所述第一组分110与所述第二组分120混合,得到所述复合材料100。本实施例中,直接提供所述第一组分110,结构式为ABOxHy的含氢过渡金属氧化物,其中x的取值范围为1-3,y的取值范围为0-3。然后将所述第一组分110与所述第二组分120混合。同上述实施例相同,所述混合方式也不过具体的限定,所述复合材料100的具体构型也并不限定。
在一个实施例中,所述S110进一步包括:S111,提供一种结构式为ABOz的过渡金属氧化物,其中,A为碱土金属元素和稀土金属元素中的一种或多种,B为过渡族金属元素中的一种或多种,z大于等于2且小于等于3。S113,提供金属催化剂201,并使所述金属催化剂201与所述过渡金属氧化物的表面接触。S115,将所述过渡金属氧化物与所述金属催化剂201放置于含氢反应气体中。S117,所述含氢反应气体在所述金属催化剂201的作用下产生氢自由基,所述氢自由基扩散插入所述过渡金属氧化物中以获得所述含氢过渡金属氧化物。
本实施例中,采用金属催化剂加氢的方法制备结构式为ABOxHy的所述含氢过渡金属氧化物。可以理解,此处的制备方法与上述的采用金属催化剂加氢的方法制备所述复合材料100的制备方法相同,只是在本实施例中的作用对象为所述过渡金属氧化物ABOz。即将所述过渡金属氧化物ABOz制成所述含氢过渡金属氧化物ABOxHy。本实施例的具体实验示意图可以参考图3,本实施例中将所述中间产物200换做所述过渡金属氧化物ABOz
在一个实施例中,所述S110进一步包括:S112,提供一种结构式为ABOz的过渡金属氧化物,其中,A为碱土金属元素和稀土金属元素中的一种或多种,B为过渡族金属元素中的一种或多种,z大于等于2且小于等于3。S114,将所述过渡金属氧化物浸入离子液体中,所述离子液体包含氢离子和氧离子。S116,对所述过渡金属氧化物施加电场,使离子液体中的氢离子插入所述过渡金属氧化物以形成所述含氢过渡金属氧化物。
本实施例中,采用离子液体加栅极电压的方法制备结构式为ABOxHy的所述含氢过渡金属氧化物。可以理解,此处的制备方法与上述的采用离子液体加栅极电压的方法制备所述复合材料100的制备方法相同,只是在本实施例中的作用对象为所述过渡金属氧化物ABOz。即将所述过渡金属氧化物ABOz制成所述含氢过渡金属氧化物ABOxHy。本实施例的具体实验示意图可以参考图4,本实施例中将所述中间产物200换做所述过渡金属氧化物ABOz
以下提供制备所述复合材料100的具体实施例。
实施例一:本实施例提供了采用模板法制备所述中间产物SrCoO2.5-Pt的具体步骤、结构表征。请参阅图6,图6为本申请的一个实施例中选用的所述模板的示意图。所述模板为超薄双通AAO模板,所述模板的膜厚为150nm,所述模板具有通孔,所述通孔的间距为125nm,所述通孔的直径为75nm。本实施例中,将所述AAO模板盖在基底140上,在室温下放置在离子溅射仪中,通入氩气同时抽气,使得溅射腔体保持在6-8Pa,溅射约5nm厚的Pt之后通入大气取出样品。去除所述样品表面的所述AAO模板,得到Pt的纳米柱。所述Pt纳米柱的表面形貌如图7a所示,图7a中划线处的高度曲线如图7b所示。可以看出图7b较为平滑,上下波动仅在2nm范围内。这说明所述Pt纳米柱生长较为均匀。由于原子力显微镜测试的针尖大小要比Pt纳米柱间距要大很多,所以在Pt纳米柱之间探针没有办法完全触底,测量得到的高度要比实际高度要小。
由于Pt非晶,用X射线衍射仪并不能表征Pt的特征峰。所以采用X射线光电子能谱仪来测定未覆盖SrCoO2.5时所述第二组分120的成分,如图8所示。图8中看到了整个样品表面几个纳米左右深度的材料成分,谱强由背底强度和元素特征峰强组成,图中标出了元素特征峰所在的位置,由此可见所述复合材料100表面几个纳米左右深度范围内只含有O,Ti,C,Sr,Pt,而其中C是该项测量会引入的元素,不属于所述复合材料100本身的元素,所以可以判断所述复合材料100的表面一部分是Pt,一部分是裸露出来的SrTiO3基底。
进一步地,将Pt 4f的特征峰细致测量,如图9所示。图9中,所述Pt 4f的特征峰已经在图中峰值的上方标出,再结合图10原子力显微镜的表面形貌图可以证明样品是Pt的纳米柱生长在SrTiO3上。
在此基础上用脉冲激光沉积的方式生长20nm厚的SrCoO2.5,得到的所述中间产物
SrCoO2.5-Pt的表面形貌如图10所示。图10可以看出,所述中间产物SrCoO2.5-Pt的表面平整,说明SrCoO2.5已经完全将Pt纳米柱覆盖。进一步测量完整样品的X射线衍射图,如图11所示。由于Pt非晶,所以X射线衍射图中没有Pt的特征峰,但是可以看到三角号标明的SrCoO2.5特征峰,也证明了SrCoO2.5组分结构的正确。因此,可以说明,制备出了1-3型的、Pt作为纳米柱的所述中间产物200。在此基础上,可以加氢处理得到所述含氢过渡金属氧化物
SrCoO2.5H和金属Pt的复合材料100。
实施例二:本实施例提供了采用模板法制备所述中间产物SrCoO2.5-CoFe2O4的具体步骤及结构表征。在一个实施例中,选取钛酸锶(SrTiO3)作为基底140,在覆盖所述AAO模板的所述钛酸锶(SrTiO3)上沉积CoFe2O4纳米阵列。然后,通过胶带撕去AAO模板并以750℃,10Pa,2Hz,退火氧压10Pa的条件生长一层厚30nm的SrCoO2.5,最后得到所述过渡金属氧化物SrCoO2.5和所述第二组分120CoFe2O4混合的所述中间产物200。
请参阅图12,图12a为一个实施例中所述第二组分120形成的纳米阵列的形貌图。图12a中的黑白颜色代表纳米阵列表面的起伏高度,图12a的右侧给出了黑白对应的高度,白色是高,黑色是低。由此可以看出所述第二组分120形成的纳米阵列的表面是周期性排列的圆柱状纳米阵列,也即所述第二组分120CoFe2O4在平整的基底上形成了圆柱阵列。图12b给出了图12a白线处高度的变化,从而证明了纳米阵列的高度,但由于纳米柱之间的间距很近,原子力显微镜的探针无法深入到最低处,所以所述CoFe2O4纳米阵列的高度要高过12nm。在得到所述中间产物200后,通过原子力显微镜扫描所述中间产物200的表面得到图13。图13为本实施例中所述中间产物200的表面形貌图。如图13所示,所述中间产物200的整个表面十分平整,起伏在几百pm量级,说明SrCoO2.5已经把CoFe2O4阵列完整的覆盖了。
请参阅图14,图14为本申请一个实施例中,所述中间产物200SrCoO2.5-CoFe2O4的X射线衍射图。图14可以明确表征所述中间产物200SrCoO2.5-CoFe2O4的结构组分。星号表示所述基底140SrTiO3钛酸锶的峰,倒三角号是所述基底140SrCoO2.5的峰,圆点表示所述第二组分120CoFe2O4的峰,由此可见所述过渡金属氧化物和所述第二组分120都结构完整。
通过上述实施例可以理解,采用模板法能够制备出所述复合材料100。实施例三:本实施例提供了采用换源法生长的所述中间产物SrCoO2.5-CoFe2O4的结构表征及不同相变过程下所述中间产物SrCoO2.5-CoFe2O4或所述复合材料100的变化情况。
请参阅图15,图15为所述中间产物SrCoO2.5-CoFe2O4在臭氧中退火前后的X射线衍射图谱。图15中处于下方的一条曲线是采用混合法生长的所述中间产物200SrCoO2.5-CoFe2O4的X射线衍射图。图15中处于上方的一条曲线是经过臭氧退火之后所述中间产物SrCoO2.5-CoFe2O4的X射线衍射图。图15中,三角号标出的峰是SrCoO2.5的特征峰,圆点标出的峰是 CoFe2O4的特征峰,星号是基底140的特征峰。这说明经过臭氧退火之后SrCoO2.5变成SrCoO3-δ,空心的三角号标出的是SrCoO3-δ。即所述过渡金属氧化物发生了相变,由SrCoO2.5相变为SrCoO3-δ相。为了能够清晰的辨认上述变化的发生,对图15中所述中间产物SrCoO2.5-CoFe2O4在40°-50°处的谱线进行了放大处理,得到图16。图16为所述中间产物SrCoO2.5-CoFe2O4在40°-50°处放大的谱线,可以看到图16中SrCoO2.5相变后峰值变化,从而计算得到其面外晶格常数减小了3.53%,也即提供了3.53%的挤压应力,而图16中也可以看到CoFe2O4的峰位向右移动,其晶格常数因SrCoO2.5施加的应力而变小了0.97%。
请参阅图17,图17为所述中间产物SrCoO2.5-CoFe2O4采用金属催化剂201加氢前后的X射线衍射图谱。如图17所示,处于下方的一条曲线是采用换源法生长的所述中间产物SrCoO2.5-CoFe2O4的X射线衍射图。图17中处于上方的一条曲线是金属催化剂201加氢后所述中间产物SrCoO2.5-CoFe2O4的X射线衍射图。其中三角号标出的峰是SrCoO2.5的特征峰,圆点标出的是CoFe2O4的峰,星号是基底140的峰,经过金属催化剂201加氢后变成上方的这条曲线,空心的三角号标出的是SrCoO2.5H。这说明了所述复合材料100的整体结构发生了变化,体现在面外方向的晶格常数变化,由于CoFe2O4是磁致伸缩材料,因此理论上磁性会发生相应的变化。所述过渡金属氧化物发生了相变,由SrCoO2.5相变为SrCoO2.5H相。为了能够清晰的辨认上述变化的发生,对图17中所述中间产物SrCoO2.5-CoFe2O4在40°-50°处的谱线进行了放大处理,得到图18。图18为所述中间产物SrCoO2.5-CoFe2O4在40°-50°处放大的谱线,可以看到图18中SrCoO2.5相变后峰值变化,从而计算得到其面外晶格常数增加了6.22%,也即提供了6.22%的拉伸应力,而CoFe2O4的峰位向左移动,其晶格常数因SrCoO2.5施加的应力而增加了0.40%。
通过上述实施例可以理解,采用混合法也能够制备出所述复合材料100。
实施例四:本实施例提供了采用换源法制备所述中间产物NiFe2O4-SrCoO2.5的具体步骤、结构表征及相变过程中所述中间产物NiFe2O4-SrCoO2.5或所述复合材料100的变化情况:
采用交换靶材生长的方式制作1-3型NiFe2O4-SrCoO2.5复合结构,先生长SrCoO2.5,固定激光脉冲数是生长一层等效赝立方SrCoO2.5的80%,旋转靶材至NiFe2O4,固定激光脉冲数是生长一层的20%。反复重复100次从而形成厚度约为40nm的复合材料100,表征形貌的原子力显微镜(AFM)形貌图如图19所示。AFM图的明暗表示样品表面的高低,亮的高,暗的低,而下图亮的部分且形成矩形是NiFe2O4,其他暗且平整的地方是SrCoO2.5。X射线衍射仪(XRD)数据图如图20所示。可以看到用“*”标出的峰为基底140SrTiO3(002)的峰,基底140左侧用三角号标出的峰是SrCoO2.5的峰,用圆标出的峰是NiFe2O4的峰。可以看出这两种组分结构正确完整。
在采用XRD原位测量离子液体加电压时所述复合材料100的变化,如图21所示。从图21中可以看出,加正电压时离子液体调控加氢,所述复合材料100中NiFe2O4和SrCoO2.5的面外晶格常数同时增大,而加负电压后,随着离子液体调控去氢加氧,所述复合材料100中NiFe2O4和SrCoO2.5的面外晶格常数先回复初始值后再继续减小。再次施加正电压,两种组分的面外晶格常数都能回复初始,说明此过程可以反复进行。SrCoO2.5相变的峰位从初始的46.2°变到44.2°,再变到47.8°,SrCoO2.5的晶格常数从初始态拉伸了3.1%,再相对于初始态压缩了4.3%,因此相对应的对所述第二组分120初始态3.1%的拉伸应力,以及4.3%的拉伸应力,从而导致所述第二组分120相对于初始态(本身也处在一个应力态下,晶格常数拉伸1.415%)晶格常数增加了0.42%以及反过来相对于初始态晶格常数缩小了1.51%,总体变化达1.93%。
由于此处不可能穷举所有的实施例,因此可以实现的都应该包括在内。本申请中的实施例给出了,所述复合材料100的晶格常数的变化,从而实现对器件的物理特性调控。所述复合材料100整体的晶格常数变化就会引起所述复合材料100的结构变化,这是极为重要且根源的变化。所述复合材料100的结构变化,会带来电子结构,配位环境等各种变化,这些都是导致性质变化的根本所在。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种复合材料,其特征在于,包括第一组分和与所述第一组分相互接触的第二组分,所述第一组分与所述第二组分混合并且具有接触界面;
    所述第一组分包括含氢过渡金属氧化物,所述含氢过渡金属氧化物的结构式为ABOxHy,其中,A为碱土金属元素和稀土金属元素中的一种或多种,B为过渡族金属元素的一种或多种,x的取值范围为1-3,y的取值范围为0-3。
  2. 如权利要求1所述的复合材料,其特征在于,所述第二组分包括金属单质、金属氧化物、合金中的一种或几种。
  3. 如权利要求1所述的复合材料,其特征在于,所述第二组分包括纳米材料,所述纳米材料包括零维的团簇、人造原子、纳米微粒;一维的纳米线、纳米管、纳米棒、纳米纤维;二维的纳米带、超薄膜、多层膜。
  4. 如权利要求1所述的复合材料,其特征在于,所述第二组分包括有机功能材料,所述有机功能材料包括具有力学功能的有机材料、具有化学功能的有机材料、具有物理化学功能的有机材料、具有生物化学功能的有机材料、具有电学功能的有机材料。
  5. 如权利要求1所述的复合材料,其特征在于,所述含氢过渡金属氧化物ABOxHy中y大于0且小于等于3。
  6. 如权利要求1-5中任一项所述的复合材料,其特征在于,所述第一组分和所述第二组分层状交替分布。
  7. 如权利要求1-5中任一项所述的复合材料,其特征在于,所述第一组分呈块状间隔分布,所述第二组分呈块状并与所述第一组分在垂直方向上层状交替分布,形成块状阵列。
  8. 如权利要求1-5中任一项所述的复合材料,其特征在于,所述复合材料还包括第三组分,所述第三组分的材料可选自所述第二组分的材料,且与所述第二组分的材料不同,所述第一组分呈块状间隔分布,所述第二组分呈块状并与所述第一组分在垂直方向上层状交替分布,形成块状阵列,所述第三组分分布于所述第一组分和所述第二组分形成的块状阵列间隙。
  9. 如权利要求1-5中任一项所述的复合材料,其特征在于,所述第一组分和所述第二组分的其中之一被另一组分包裹。
  10. 一种如权利要求1-5中任一项所述的复合材料的制备方法,包括:
    S100,提供结构式为ABOz的过渡金属氧化物和第二组分,将所述第二组分与所述过渡金属氧化物混合形成中间产物,其中,A为碱土金属元素和稀土金属元素中的一种或多种,B为过渡族金属元素中的一种或多种,z大于等于2且小于等于3;
    S200,对所述中间产物进行加氢处理使得所述过渡金属氧化物变成所述第一组分,得到 所述复合材料。
  11. 如权利要求10所述的复合材料的制备方法,其特征在于,所述S200包括:
    S201,提供金属催化剂,并使所述金属催化剂与所述中间产物的表面接触;
    S203,将所述中间产物与所述金属催化剂放置于含氢反应气体中;
    S205,所述含氢反应气体在所述金属催化剂的作用下产生氢自由基,所述氢自由基扩散插入所述中间产物中以获得所述复合材料。
  12. 如权利要求10所述的复合材料的制备方法,其特征在于,所述S200包括:
    S202,将所述中间产物浸入离子液体中,所述离子液体包含氢离子和氧离子;
    S204,对所述中间产物施加电场,使离子液体中的氢离子插入所述中间产物以形成所述复合材料。
  13. 一种如权利要求1-5中任一项所述的复合材料的制备方法,包括:
    S110,提供所述第一组分,所述第一组分包括结构式为ABOxHy的含氢过渡金属氧化物,其中,A为碱土金属元素和稀土金属元素中的一种或多种,B为过渡族金属元素的一种或多种,x的取值范围为1-3,y的取值范围为0-3;
    S210,提供所述第二组分,将所述第一组分与所述第二组分混合,得到所述复合材料。
  14. 如权利要求13所述的复合材料的制备方法,其特征在于,所述S110进一步包括:
    S111,提供一种结构式为ABOz的过渡金属氧化物,其中,A为碱土金属元素和稀土金属元素中的一种或多种,B为过渡族金属元素中的一种或多种,z大于等于2且小于等于3;
    S113,提供金属催化剂,并使所述金属催化剂与所述过渡金属氧化物的表面接触;
    S115,将所述过渡金属氧化物与所述金属催化剂放置于含氢反应气体中;
    S117,所述含氢反应气体在所述金属催化剂的作用下产生氢自由基,所述氢自由基扩散插入所述过渡金属氧化物中以获得所述含氢过渡金属氧化物。
  15. 如权利要求13所述的复合材料的制备方法,其特征在于,所述S110进一步包括:
    S112,提供一种结构式为ABOz的过渡金属氧化物,其中,A为碱土金属元素和稀土金属元素中的一种或多种,B为过渡族金属元素中的一种或多种,z大于等于2且小于等于3;
    S114,将所述过渡金属氧化物浸入离子液体中,所述离子液体包含氢离子和氧离子;
    S116,对所述过渡金属氧化物施加电场,使离子液体中的氢离子插入所述过渡金属氧化物以形成所述含氢过渡金属氧化物。
PCT/CN2017/113207 2017-03-06 2017-11-27 复合材料及其制备方法 WO2018161644A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710128037.6 2017-03-06
CN201710128037.6A CN108529685B (zh) 2017-03-06 2017-03-06 复合材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2018161644A1 true WO2018161644A1 (zh) 2018-09-13

Family

ID=63447302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113207 WO2018161644A1 (zh) 2017-03-06 2017-11-27 复合材料及其制备方法

Country Status (2)

Country Link
CN (1) CN108529685B (zh)
WO (1) WO2018161644A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110970549B (zh) * 2018-09-30 2021-10-12 清华大学 含氢钌氧化物、电子器件及钌氧化物物性的调控方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1391982A (zh) * 2002-08-01 2003-01-22 上海交通大学 桥架层状结构纳米复合材料的制备方法
CN1903423A (zh) * 2006-07-11 2007-01-31 南开大学 镁-过渡金属氧化物复合储氢材料及其制备方法和应用
CN105206846A (zh) * 2015-09-14 2015-12-30 山西宇翔信息技术有限公司 一种镍镧复合材料阴极及其直接碳燃料电池和制备方法
CN105396601A (zh) * 2015-12-02 2016-03-16 宋玉军 一种多棱角梯度结构纳米催化剂及其制备方法
CN106129374A (zh) * 2016-08-26 2016-11-16 深圳博磊达新能源科技有限公司 一种过渡金属氧化物/二元碳网正极复合材料及铝离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1391982A (zh) * 2002-08-01 2003-01-22 上海交通大学 桥架层状结构纳米复合材料的制备方法
CN1903423A (zh) * 2006-07-11 2007-01-31 南开大学 镁-过渡金属氧化物复合储氢材料及其制备方法和应用
CN105206846A (zh) * 2015-09-14 2015-12-30 山西宇翔信息技术有限公司 一种镍镧复合材料阴极及其直接碳燃料电池和制备方法
CN105396601A (zh) * 2015-12-02 2016-03-16 宋玉军 一种多棱角梯度结构纳米催化剂及其制备方法
CN106129374A (zh) * 2016-08-26 2016-11-16 深圳博磊达新能源科技有限公司 一种过渡金属氧化物/二元碳网正极复合材料及铝离子电池

Also Published As

Publication number Publication date
CN108529685A (zh) 2018-09-14
CN108529685B (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
Kwon et al. Enhanced ethanol sensing properties of TiO2 nanotube sensors
JP4303794B2 (ja) 多孔質フィルムとその調製方法
Kubicek et al. Tensile lattice strain accelerates oxygen surface exchange and diffusion in La1–x Sr x CoO3− δ thin films
Vayssieres et al. Purpose-built metal oxide nanomaterials. The emergence of a new generation of smart materials
Ma et al. Hierarchical NiO microflake films with high coloration efficiency, cyclic stability and low power consumption for applications in a complementary electrochromic device
JP4435874B2 (ja) 多孔性金属をベースとする材料及びその製造方法
Oka et al. Nonvolatile bipolar resistive memory switching in single crystalline NiO heterostructured nanowires
Biswas et al. Selective enhancement in phonon scattering leads to a high thermoelectric figure-of-merit in graphene oxide-encapsulated ZnO nanocomposites
Bayansal et al. Nano-structured CuO films prepared by simple solution methods: plate-like, needle-like and network-like architectures
Zhang et al. Aligned ZnO nanorods with tunable size and field emission on native Si substrate achieved via simple electrodeposition
Pinisetty et al. Fabrication and characterization of electrodeposited antimony telluride crystalline nanowires and nanotubes
Portehault et al. Beyond the compositional threshold of nanoparticle-based materials
Chandrappa et al. Electrochemical bulk synthesis and characterisation of hexagonal-shaped CuO nanoparticles
Proenca et al. Tailoring Bi-Te based nanomaterials by electrodeposition: Morphology and crystalline structure
Vijayalakshmi et al. Novel two-step process for the fabrication of MnO2 nanostructures on tantalum for enhanced electrochemical H2O2 detection
Xu et al. Template synthesis of heterostructured polyaniline/Bi2Te3 nanowires
Wang et al. Engineering Co vacancies for tuning electrical properties of p-type semiconducting Co3O4 films
Xu et al. Nanoparticle exsolution via electrochemical switching in perovskite fibers for solid oxide fuel cell electrodes
Taeño et al. Self-organized NiO microcavity arrays fabricated by thermal treatments
Rahman et al. Comprehensive review of micro/nanostructured ZnSnO 3: characteristics, synthesis, and diverse applications
WO2018161643A1 (zh) 应力调控方法
Moazami et al. Synthesis of manganese dioxide nanosheets and charge storage evaluation
Zhang et al. A rapid-response humidity sensor based on BaNbO3 nanocrystals
Hsieh et al. Low temperature growth of ZnO nanorods on flexible polymeric substrates
WO2018161644A1 (zh) 复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899422

Country of ref document: EP

Kind code of ref document: A1