WO2018161583A1 - 三维显示系统及方法 - Google Patents

三维显示系统及方法 Download PDF

Info

Publication number
WO2018161583A1
WO2018161583A1 PCT/CN2017/106850 CN2017106850W WO2018161583A1 WO 2018161583 A1 WO2018161583 A1 WO 2018161583A1 CN 2017106850 W CN2017106850 W CN 2017106850W WO 2018161583 A1 WO2018161583 A1 WO 2018161583A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization direction
led
light
dimensional display
wire grid
Prior art date
Application number
PCT/CN2017/106850
Other languages
English (en)
French (fr)
Inventor
王延峰
董学
王丹
邱云
杜渊鑫
吕振华
徐晓玲
王志东
胡伟频
魏从从
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/776,184 priority Critical patent/US11134237B2/en
Publication of WO2018161583A1 publication Critical patent/WO2018161583A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/337Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using polarisation multiplexing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/32Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using arrays of controllable light sources; using moving apertures or moving light sources

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a three-dimensional display system and method.
  • 3D Three Dimensions
  • the principle of 3D display is to make the images seen by the left and right eyes of the viewer different, the left eye sees the image corresponding to the left eye, and the right eye sees the image corresponding to the right eye, so that the two eyes have parallax, and because of the parallax, the person is watching A stereo image will be seen in the process.
  • the currently used 3D liquid crystal display technology adopts a progressive backlight scanning technology, that is, the backlight includes a plurality of LED (Light Emitting Diode) light strips, and the plurality of LED light strips are lit line by line, and the 3D liquid crystal display
  • the technique divides the image into two sets of pictures corresponding to the left eye and the right eye, and continuously displays them alternately, so that the left and right eyes can see the corresponding picture at a predetermined time.
  • the liquid crystal panel displays the 3D image, it is displayed line by line. After the light emitted by one of the LED strips on the backlight passes through the diffuser, it illuminates the corresponding area of the LED strip on the liquid crystal panel, and the input needs to be displayed on the area.
  • the image data that is, the image display of the line is completed, and the display of each frame image needs to complete the display of all the lines from top to bottom, which is called a scan.
  • the next LED strip is illuminated to display the next line of image.
  • the image data displayed on the line remains, and when the next LED strip is lit, the light is not only The liquid crystal panel of the next row will be illuminated, and a part of the light will also be scattered on the liquid crystal panel of the row, so that the retained image data continues to be displayed and processed to form crosstalk.
  • the left and right field of view images of the 3D signal are continuously interlaced, the images of the left eye and the right eye are respectively displayed in two adjacent scans, so that the viewer sees the image of the right eye while seeing the image of the left eye, or Seeing the left eye image while seeing the right eye image will cause crosstalk between the left and right eye views, affecting the 3D viewing effect.
  • the present disclosure provides a three-dimensional display system and method.
  • a three-dimensional display system includes an LED array disposed on a base substrate and a light control layer;
  • the LED array is used to form polarized light of different polarization directions
  • the light control layer is configured to control the light output order of the polarized lights of the different polarization directions.
  • the light control layer controls polarized light that passes through one polarization direction in the same period of time.
  • each of the LED arrays includes:
  • An electrode layer disposed on the p-n diode layer
  • a plurality of wire grids having a plurality of polarization directions are on the same LED, and the plurality of polarization directions are different.
  • a first wire grid of a first polarization direction and a second wire grid of a second polarization direction are on the same LED.
  • the first polarization direction is perpendicular to the second polarization direction.
  • a first wire grid having a first polarization direction, a second wire grid of a second polarization direction, a third wire grid of a third polarization direction, and a fourth polarization direction of the same LED
  • the four-wire grid has different first polarization directions, second polarization directions, third polarization directions, and fourth polarization directions.
  • the LED is a micro LED
  • a wire grid having one polarization direction is formed on the same LED, and the plurality of LEDs form polarized light of different polarization directions.
  • the light control layer includes a first substrate and a second substrate, and a liquid crystal between the first substrate and the second substrate; wherein the light control layer It is configured to transmit light when in the power-on state and opaque when not in the power-on state.
  • the light control layer further includes a spacer or spacer wall in the liquid crystal for controlling liquid crystals in different regions.
  • a three-dimensional display method for a three-dimensional display system as described above comprising:
  • the light-emitting layer is used to control the light-emitting order of the polarized lights of the different polarization directions.
  • the light control layer controls polarized light that passes through one polarization direction in the same period of time.
  • the LED array includes a plurality of LEDs, a first wire grid having a first polarization direction and a second wire grid having a second polarization direction on the same LED, using the light control layer
  • the step of controlling the light output order of the polarized lights of different polarization directions includes:
  • the light control layer corresponding to the first wire grid of the first polarization direction is turned on, The polarized light corresponding to the first polarization direction is closed, and the light control layer corresponding to the second wire grid of the second polarization direction is closed, and the polarized light corresponding to the second polarization direction is not transmitted;
  • the light control layer corresponding to the first wire grid of the first polarization direction is closed, and the polarized light corresponding to the first polarization direction is not transmitted, and the second polarization direction is simultaneously
  • the light control layer corresponding to the second wire grid is opened to transmit the polarized light corresponding to the second polarization direction.
  • a wire grid having one polarization direction is formed on the same LED, and the plurality of LEDs form polarized light of different polarization directions.
  • a three-dimensional display system and method forms polarized light of different polarization directions by an LED array, and the light control layer controls a light-emitting order of polarized light of different polarization directions.
  • FIG. 1 shows a schematic structural view of a three-dimensional display system in an exemplary embodiment of the present disclosure.
  • FIG. 2 shows a schematic structural view of an LED in an exemplary embodiment of the present disclosure.
  • FIG. 3 shows a schematic diagram of a dual polarized LED in an exemplary embodiment of the present disclosure.
  • FIG. 4 shows a schematic diagram of another dual polarized LED in an exemplary embodiment of the present disclosure.
  • FIG. 5 shows a schematic diagram of a four-polarized LED in an exemplary embodiment of the present disclosure.
  • FIG. 6 shows a schematic diagram of another four-polarized LED in an exemplary embodiment of the present disclosure.
  • FIG. 7 shows a schematic diagram of yet another four-polarized LED in an exemplary embodiment of the present disclosure.
  • FIG. 8 shows a schematic diagram of four adjacent different polarization direction LEDs in an exemplary embodiment of the present disclosure.
  • FIG. 9 is a block diagram showing the structure of a light control layer in an exemplary embodiment of the present disclosure.
  • FIG. 10 is a flow chart showing a three-dimensional display method in an exemplary embodiment of the present disclosure.
  • FIG. 11 shows a schematic diagram of a control method based on the dual polarization LED shown in FIG.
  • FIG. 12 shows a schematic diagram of a control method based on the dual polarization LED shown in FIG.
  • FIG. 13 shows a schematic diagram of a control method based on the four-polarized LED shown in FIG. 5.
  • Fig. 14 is a view showing a control method based on the four-polarized LED shown in Fig. 6.
  • Fig. 15 is a view showing a control method based on the four-polarized LED shown in Fig. 7.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments can be embodied in many different forms and should not be construed as limited to the examples set forth herein; the described features, structures, or characteristics It may be combined in one or more embodiments in any suitable manner.
  • numerous specific details are set forth However, one skilled in the art will appreciate that one or more of the specific details may be omitted or other methods, components, devices, steps, etc. may be employed.
  • FIG. 1 shows a schematic structural view of a three-dimensional display system in an exemplary embodiment of the present disclosure.
  • the three-dimensional display system 10 includes an LED array 12 and a light control layer 13 disposed on a base substrate 11.
  • the LED array 12 is configured to form polarized light of different polarization directions; the light control layer 13 is configured to control the light output order of the polarized light of the different polarization directions.
  • the light control layer 13 is equivalent to a switch, and can control the order of light emitted by polarized lights of different polarization directions.
  • the light control layer 13 may control that only polarized light of one polarization direction is allowed to pass through in the same period of time (for example, one frame time), and polarized light of other polarization directions is shielded.
  • the present disclosure is not limited to this.
  • the substrate substrate 11 refers to a substrate structure in an intermediate state in which an LED device is to be fabricated, which may be a substrate structure of glass or other materials, or may be formed with, for example, a TFT (Thin Film Transistor).
  • the substrate structure of the device is not limited in the present invention.
  • the LED array 12 can include a plurality of LEDs 121.
  • FIG. 2 shows a schematic structural view of an LED in an exemplary embodiment of the present disclosure.
  • each of the LEDs 121 may include: a pn diode layer 1212 grown on the growth substrate 1211; and an electrode layer 1213 including a P electrode 1213-2 and an N electrode 1213-1, and the P electrode 1213-2 is disposed on Above the pn diode layer 1212, the N electrode 1213-1 is disposed on the growth substrate 1211.
  • the pn diode layer 1212 can include a composite substrate having a band gap corresponding to a particular region in the spectrum.
  • the pn diode layer 1212 can include one or more layers based on a II-VI material (eg, ZnSe) or a III-V nitride material (eg, GaN, AlN, InN, and alloys thereof).
  • Growth substrate 1211 can comprise any suitable substrate such as, but not limited to, silicon, SiC, GaAs/GaN, and sapphire (Al 2 O 3 ).
  • the growth substrate 1211 may be sapphire and the p-n diode layer is formed of GaN, but the disclosure is not limited thereto.
  • sapphire has a fact that the larger lattice constant and the coefficient of thermal expansion are not matched with respect to GaN, sapphire has a reasonably low cost, is widely available, and its Transparency is compatible with lifting techniques based on reference molecular lasers.
  • another material such as SiC, can be used as the growth substrate for the GaN p-n diode layer.
  • the SiC substrate can be transparent.
  • MOCVD Metal-organic Chemical Vapor Deposition
  • a GaN-based light emitting diode is used to fabricate current GaN-based LED devices on foreign substrate materials by heterogeneous epitaxial generation techniques.
  • a typical wafer level LED device structure can include forming a lower n-doped GaN layer over a sapphire growth substrate, a single quantum well (SWQ) or multiple quantum well (MWQ) and an upper p-doped GaN layer.
  • SWQ single quantum well
  • MWQ multiple quantum well
  • the wafer level LED device structure is patterned into a mesa array on the sapphire growth substrate by etching through the p-doped GaN layer, the quantum well layer, and into the n-doped GaN layer.
  • the upper P electrode is formed on the top p-doped GaN surface of the mesa array, and the N electrode is formed on the portion of the n-doped GaN layer that is in contact with the mesa array.
  • the n-doped GaN can be similarly doped with a donor such as silicon, while the p-doped layer can be doped with a acceptor such as magnesium, and a variety of alternative p-n diode configurations can be used to form the p-n diode layer.
  • multiple single quantum well or multiple quantum well configurations can be used to form quantum wells.
  • various buffer layers may be included depending on the situation.
  • the sapphire growth substrate has a thickness of approximately 200 ⁇ m
  • the n-doped layer has a thickness of approximately 0.1 ⁇ m to 3 ⁇ m
  • the quantum well layer has a thickness less than approximately 0.3 ⁇ m
  • the p-doped layer has approximately 0.1 ⁇ m.
  • a thickness of ⁇ m - 1 ⁇ m is not limited to this.
  • the p-n diode layer 1212 may be sequentially stacked from bottom to top including an n-GaN layer, an InGaN/GaN MQW layer, a p-GaN layer, and a ZnO:Ga(GZO) layer.
  • the electrode layer 1213 may include a P electrode and an N electrode. Wherein the P electrode may include Ti or Au, and the N electrode may include Ti or Ni or Al. However, the present disclosure is not limited to this.
  • the LED 121 can further include a wire grid 1214 disposed over the p-n diode layer 1212.
  • the wire grid 1214 may be a nano wire grid (also referred to as a wire grid polarizer, WGP), which has a polarization function.
  • WGP wire grid polarizer
  • the present disclosure is not limited thereto, and may be other polarizing plates having a polarization function.
  • the nanowire grid is over the p-n diode layer 1212 and is in the same layer as the P electrode.
  • the WGP is composed of parallel metal lines having a nanometer-sized cross section and a macroscopic length and capable of polarizing.
  • the metal wire grid can be prepared by using high-precision photolithography technology or nano imprint technology.
  • the LED 121 may be a micro LED (Micro LED), which refers to a miniature LED whose pixel distance is reduced to a micron level, and each pixel can be addressed and individually driven to illuminate.
  • the micro LED array can constitute a display by using a substrate such as a glass substrate; an integrated LED will be used After the chips of the array are grown, they are transferred to the glass substrate by a transfer method; each of the LEDs has a nanowire grid thereon and has a polarization function.
  • the present disclosure is not limited thereto. For example, it is also possible to directly grow an LED on an array substrate of a display or to form a thin film transistor (TFT) on an epitaxial wafer on which an LED is formed.
  • TFT thin film transistor
  • LCD Liquid Crystal Display
  • Micro LED technology refers to the technology of integrating high-density LED (Light Emitting Diode) arrays in a small size, which can reduce the pixel distance from millimeters to micrometers when applied to the display field.
  • the display device self-illuminates, the optical system is simple, and the overall system volume, weight, and cost can be reduced, and at the same time, low power consumption and rapid response are taken into consideration.
  • micro device may refer to a descriptive dimension of certain devices or structures in accordance with embodiments of the present invention.
  • micro device or structure is meant to refer to a scale from 1 to 100 microns.
  • embodiments of the invention are not necessarily limited thereto, and that certain aspects of the embodiments may be applied to larger and possibly smaller size scales.
  • the micro LED array has a pitch of 10 microns by 10 microns or a pitch of 5 microns by 5 microns.
  • a 6 inch substrate can accommodate approximately 165 million micro LED structures having a 10 micron by 10 micron pitch or approximately 660 million micro LED structures having a 5 micron by 5 micron pitch.
  • the three-dimensional display system of the embodiment of the present invention can realize a better 3D experience based on WGP (Wire Grid Polarizer) and micro LED display.
  • a plurality of wire grids 1214 having a plurality of polarization directions may be on the same LED 121, and the plurality of polarization directions are different, that is, a single LED may emit polarized light of different polarization directions. In this way, the same LED can produce polarized light of different polarization directions.
  • the number of specific polarization directions may be two or more, and may be flexibly configured according to a specific application. Hereinafter, the description will be made by taking the case where the same LED 121 has two polarization directions or four polarization directions, but the present disclosure is not limited thereto.
  • the wire grid on the same LED can be multiple (for example, 2, 3, 4, 5, ..., N, N is a positive integer greater than or equal to 2), corresponding to multiple polarization directions, so that many people can wear different Polarized glasses to see 3D images.
  • a first wire grid of a first polarization direction and a second wire grid of a second polarization direction are on the same LED. That is, the same LED is composed of two wire grids of different polarization directions, and the two polarization directions are different.
  • the polarized light emitted by the LED forms different images of the left and right eyes through the corresponding polarized glasses.
  • the first polarization direction is perpendicular to the second polarization direction.
  • the present disclosure is not limited thereto, and in other embodiments, the first polarization direction is not equal to the second polarization direction.
  • FIG. 3 shows a schematic diagram of a dual polarized LED in an exemplary embodiment of the present disclosure. As shown in FIG. 3, the first wire grid 1 and the second wire grid 2 are arranged up and down.
  • FIG. 4 shows a schematic diagram of another dual polarized LED in an exemplary embodiment of the present disclosure. As shown in FIG. 4, the first wire grid 1 and the second wire grid 2 are arranged horizontally.
  • a first wire grid having a first polarization direction, a second wire grid 2 in a second polarization direction, a third wire grid 3 in a third polarization direction, and a fourth line in a fourth polarization direction on the same LED Gate 4.
  • FIG. 5 shows a schematic diagram of a four-polarized LED in an exemplary embodiment of the present disclosure.
  • the first wire grid 1, the second wire grid 2, the third wire grid 3, and the fourth wire grid 4 are arranged in a matrix.
  • the first polarization direction is 45 degrees to the upper right
  • the second polarization direction is 45 degrees to the upper left
  • the third polarization direction is horizontal to the right
  • the fourth The polarization direction is upward and vertical.
  • the present disclosure is not limited thereto, and in other embodiments, the first polarization direction, the second polarization direction, the third bias direction, and the fourth polarization direction may be different. Thereby, polarized light of four different polarization directions can be generated.
  • FIG. 6 shows a schematic diagram of another four-polarized LED in an exemplary embodiment of the present disclosure.
  • the first wire grid 1, the second wire grid 2, the third wire grid 3, and the fourth wire grid 4 are arranged up and down.
  • the first polarization direction is 45 degrees to the upper right
  • the second polarization direction is horizontal to the right
  • the third polarization direction is 45 degrees to the upper left
  • the fourth The polarization direction is upward and vertical.
  • the present disclosure is not limited thereto, and in other embodiments, the first polarization direction, the second polarization direction, the third bias direction, and the fourth polarization direction may be different. Thereby, polarized light of four different polarization directions can be generated.
  • FIG. 7 shows a schematic diagram of yet another four-polarized LED in an exemplary embodiment of the present disclosure.
  • the first wire grid 1, the second wire grid 2, the third wire grid 3, and the fourth wire grid 4 are arranged horizontally.
  • the first polarization direction is horizontal to the right
  • the second polarization direction is 45 degrees to the upper right
  • the third polarization direction is downward to the vertical direction
  • the fourth The polarization direction is 45 degrees to the lower right.
  • the present disclosure is not limited thereto, and in other embodiments, the first polarization direction, the second polarization direction, the third bias direction, and the fourth polarization direction may be different. Thereby, polarized light of four different polarization directions can be generated.
  • a wire grid having one polarization direction is on the same LED, and the plurality of LEDs form polarized light of different polarization directions. That is to say, in addition to the above-mentioned wire grids having a plurality of different polarization directions on the same LED, different micro LEDs may be used in the LED array, respectively corresponding to different polarization directions.
  • the polarization direction can also be multiple (2, 3, 4, 5, ..., M), so that multiple people wear different polarized glasses to achieve 3D display.
  • FIG. 8 shows a schematic diagram of four adjacent different polarization direction LEDs in an exemplary embodiment of the present disclosure.
  • the wire grid on each of the adjacent first LED 121-1, second LED 121-2, third LED 121-3, and fourth LED 121-4 in the LED array has only one polarization direction
  • the polarization directions of the first to fourth LEDs are all different, so that the LED array can also generate polarized light of four polarization directions.
  • the disclosure is not limited thereto, and the polarization directions of two adjacent LEDs may be selected, or the polarization directions of adjacent three LEDs may be different, and the plurality of LEDs having different polarization directions may have any The right arrangement.
  • the polarization direction of the first LED 121-1 is 45 degrees to the upper right
  • the polarization direction of the second LED 121-2 is 45 degrees to the upper left
  • the polarization direction of the third LED 121-3 is The right direction is horizontal
  • the polarization direction of the fourth LED 121-4 is upward and vertical.
  • the present disclosure is not limited thereto, and in other embodiments, as long as the polarization direction of the first LED 121-1, the polarization direction of the second LED 121-2, the polarization direction of the third LED 121-3, and the fourth LED 121
  • the polarization directions of -4 are not the same.
  • multiple LEDs in an array of LEDs can also be divided into multiple regions, with LEDs in different regions having different polarization directions, while LEDs in the same region have the same polarization direction.
  • multiple LEDs can be included in each area.
  • the LED array can also produce polarized light of a plurality of different polarization directions.
  • FIG. 9 is a block diagram showing the structure of a light control layer in an exemplary embodiment of the present disclosure.
  • the light control layer 13 includes a first substrate 131 and a second substrate 132 and a liquid crystal (not shown) between the first substrate 131 and the second substrate 132.
  • the light control layer 13 transmits light, so that the light of the lower LED corresponding to the light-transmitting light control layer can be transmitted; when the light control layer 13 is not added
  • the light control layer 13 is opaque, so that the light of the lower LED corresponding to the opaque light control layer cannot be transmitted.
  • the liquid crystal includes an EC, that is, an ethyl cellulose liquid crystal material or a ferroelectric liquid crystal material.
  • an EC that is, an ethyl cellulose liquid crystal material or a ferroelectric liquid crystal material.
  • the present disclosure is not limited thereto, and other liquid crystal materials may be employed.
  • the light control layer 13 further includes a spacer space (PS Space) or a spacer wall (133) located in the liquid crystal for controlling liquid crystals in different regions.
  • PSD spacer space
  • the spacer or spacer pillar wall 133 is disposed between the first substrate and the second substrate, and spaces the liquid crystal between the first substrate 131 and the second substrate 132, for example, in every two
  • a spacer column or spacer wall 133 is disposed between adjacent pixel units to perform partition control on the liquid crystal in each pixel unit.
  • electrodes eg, pixel electrodes and/or common electrodes
  • first substrate and/or the second substrate are deposited on the first substrate and/or the second substrate to control liquid crystal material between the substrates.
  • the LED array is capable of generating polarized light of different polarization directions, and controlling polarized light of different polarization directions through the light control layer, thereby providing a better 3D display effect.
  • the light control layer controls the polarization of only one polarization direction at the same time, which solves the image crosstalk problem in the conventional LCD liquid crystal three-dimensional display.
  • LED structures of polarized light of different polarization directions are provided in the embodiments of the present disclosure, and polarized light outputs of different polarization directions may be used on the same LED; or different LEDs may be used to form polarizations of different polarization directions. Light output.
  • an embodiment of the present disclosure further provides a display device, including: the three-dimensional display system as described in the above embodiments.
  • the display device can be any display product, component such as a display panel, a mobile phone, a tablet computer, a television, a notebook computer, a digital photo frame, a navigator, and the like.
  • the display device may further include a display panel.
  • the display panel can be a flat display panel, such as a plasma panel, an organic light emitting diode (OLED) panel, or a thin film transistor liquid crystal display (TFT LCD) panel.
  • OLED organic light emitting diode
  • TFT LCD thin film transistor liquid crystal display
  • the display device provided by the present invention includes the above-described three-dimensional display system, the same technical problem can be solved and the same technical effects are obtained, which will not be further described herein.
  • FIG. 10 is a flow chart showing a three-dimensional display method in an exemplary embodiment of the present disclosure.
  • the three-dimensional display method can be used in the three-dimensional display system of the above embodiment, and can include the following steps.
  • step S10 polarized light of different polarization directions is formed by the LED array.
  • step S20 the light-emitting layer of the polarization directions of the different polarization directions is controlled by the light control layer.
  • the light control layer controls polarized light that passes through one polarization direction during the same period of time.
  • the LED array includes a plurality of LEDs, wherein each LED includes:
  • An electrode layer disposed on the p-n diode layer
  • a plurality of wire grids having a plurality of polarization directions are on the same LED, and the plurality of polarization directions are different.
  • a first wire grid of a first polarization direction and a second wire grid of a second polarization direction are on the same LED.
  • the step of controlling the light output order of the polarized lights of the different polarization directions by using the light control layer includes:
  • the light control layer corresponding to the first wire grid of the first polarization direction is turned on, the polarized light corresponding to the first polarization direction is transmitted, and the second wire grid of the second polarization direction is simultaneously Corresponding light control layer is closed, and the polarized light corresponding to the second polarization direction is not transmitted;
  • the light control layer corresponding to the first wire grid of the first polarization direction is closed, and is not transparent.
  • the polarized light corresponding to the first polarization direction is opened, and the light control layer corresponding to the second wire grid of the second polarization direction is turned on, and the polarized light corresponding to the second polarization direction is transmitted.
  • FIG. 11 shows a schematic diagram of a control method based on the dual polarization LED shown in FIG.
  • the light control layer corresponding to the polarized light of one polarization direction is turned on, and the light control layer corresponding to the polarization light of another polarization direction is turned off, and the light control layer is closed.
  • the upper first grating 1 is transparent, and the lower second grating 2 is opaque.
  • the second frame is the opposite of the above work process.
  • FIG. 12 shows a schematic diagram of a control method based on the dual polarization LED shown in FIG.
  • the first grating 1 on the left side is opaque, and the second grating 2 on the right side is transparent.
  • the second frame is the opposite of the above work process.
  • FIG. 13 shows a schematic diagram of a control method based on the four-polarized LED shown in FIG. 5.
  • the first frame picture, the first grating 1 in the upper left corner is transparent, the second to fourth gratings 2-4 are opaque; the second frame picture, the second grating 2 in the upper right corner is transparent, 1.
  • the third and fourth gratings 1, 3 and 4 are opaque; in the third frame, the third grating 3 in the lower left corner is transparent, and the first, second and fourth gratings are opaque; the fourth frame is The fourth grating 4 in the lower right corner transmits light, and the first to third gratings 1-3 are opaque.
  • Fig. 14 is a view showing a control method based on the four-polarized LED shown in Fig. 6.
  • the first frame picture, the uppermost first grating 1 is transparent, the second to fourth gratings 2-4 are opaque; the second frame picture, the second second second grating 2 is transparent.
  • the first, third and fourth gratings 1, 3 and 4 are opaque; the third frame picture, the third third grating 3 above is transparent, the first, second and fourth gratings 1, 2 and 4 It is opaque; in the fourth frame picture, the lowermost fourth grating 4 transmits light, and the first to third gratings 1 to 3 are opaque.
  • Fig. 15 is a view showing a control method based on the four-polarized LED shown in Fig. 7.
  • the first frame picture, the rightmost fourth grating 4 transmits light, the first to third gratings 1-3 are opaque; the second frame picture, the second right third grating 3 Light transmissive, the first, second and fourth gratings 1, 2 and 4 are opaque; the third frame picture, the second second grating 2 on the left side is transparent, the first, third and fourth gratings 1, 3 and 4 are opaque; in the fourth frame picture, the leftmost first grating 1 transmits light, and the second to fourth gratings 2-4 are opaque.
  • a wire grid having one polarization direction is on the same LED, and the plurality of LEDs form polarized light of different polarization directions.
  • the control method at this time can refer to the manner shown in FIG. 11 to FIG. 15 above, and will not be described in detail herein.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种三维显示系统(10)及方法,该三维显示系统(10)包括:设置于衬底基板(11)上的LED阵列(12)以及控光层(13);其中,所述LED阵列(12)用于形成不同偏振方向的偏振光;所述控光层(13)用于控制所述不同偏振方向的偏振光的出光次序。

Description

三维显示系统及方法
交叉引用
本申请要求于2017年3月06日提交的申请号为201710128354.8、名称为“三维显示系统及方法”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及显示技术领域,具体而言,涉及一种三维显示系统及方法。
背景技术
随着科技的飞速发展,显示行业也经历了从黑白到彩色,高清到3D(Three Dimensions,三维)的技术进步,如今人们已经可以享受到3D显示带来的身临其境的立体感了。3D显示原理是使观看者左右眼看到的图像不相同,左眼看到对应左眼的图像,右眼看到对应右眼的图像,这样两个眼睛就有了视差,由于视差的存在,人在观看的过程中就会看到一个立体的图像。
目前使用的3D液晶显示技术,采用逐行背光扫描技术,即背光源上包括多个LED(Light Emitting Diode,发光二极管)灯条,所述多个LED灯条逐行点亮,该3D液晶显示技术通过把图像分为对应左眼和右眼的两组画面,连续交错显示出来,使左右双眼能够在规定的时刻看到相应画面。液晶面板显示3D图像的时候是逐行显示的,背光源上的其中一个LED灯条发出的光经过扩散板之后,照亮液晶面板上该LED灯条对应的区域,在该区域上输入需要显示的图像数据,即完成该行的图像显示,每一帧图像的显示需要完成从上到下所有行的显示,称为一次扫描。但是在液晶面板的其中一行图像显示完成后,接着点亮下一个LED灯条显示下一行图像,此时该行显示的图像数据仍然保留,当下一个LED灯条被点亮的时候,光线不仅仅会照亮下一行的液晶面板,有一部分光也会散射到该行液晶面板上,使得保留的图像数据继续显示处理,形成串扰。由于3D信号的左右视场图像是连续交错显示的,相邻两次扫描分别显示的左眼和右眼的图像,因此观看者在看到左眼图像的同时也看到右眼图像,或者在看到右眼图像的同时看到左眼图像,这样就会导致左右眼视图串扰,影响3D观看效果。
发明内容
本公开提供一种三维显示系统及方法。
根据本公开的一个方面,提供一种三维显示系统,包括设置于衬底基板上的LED阵列以及控光层;其中,
所述LED阵列用于形成不同偏振方向的偏振光;
所述控光层用于控制所述不同偏振方向的偏振光的出光次序。
在本公开的一种示例性实施例中,所述控光层控制在同一时间段内通过一种偏振方向的偏振光。
在本公开的一种示例性实施例中,所述LED阵列中的每个LED包括:
生长在生长衬底上的p-n二极管层;
设置于所述p-n二极管层之上的电极层;
设置于所述p-n二极管层之上的线栅。
在本公开的一种示例性实施例中,同一LED上具有多个偏振方向的多个线栅,且所述多个偏振方向不同。
在本公开的一种示例性实施例中,同一LED上具有第一偏振方向的第一线栅和第二偏振方向的第二线栅。
在本公开的一种示例性实施例中,所述第一偏振方向垂直于所述第二偏振方向。
在本公开的一种示例性实施例中,同一LED上具有第一偏振方向的第一线栅、第二偏振方向的第二线栅、第三偏振方向的第三线栅和第四偏振方向的第四线栅,所述第一偏振方向、第二偏振方向、第三偏振方向和第四偏振方向均不相同。
在本公开的一种示例性实施例中,所述LED为微LED
在本公开的一种示例性实施例中,同一LED上具有一个偏振方向的线栅,且多个LED形成不同偏振方向的偏振光。
在本公开的一种示例性实施例中,所述控光层包括第一基板和第二基板以及位于所述第一基板和所述第二基板之间的液晶;其中,所述控光层被配置为在加电状态时透光,在不加电状态时不透光。
在本公开的一种示例性实施例中,所述控光层还包括位于所述液晶中的间隔柱或者间隔柱墙,其用于对不同区域内的液晶进行控制。
根据本公开的一个方面,提供一种用于如上所述的三维显示系统的三维显示方法,所述方法包括:
通过所述LED阵列形成不同偏振方向的偏振光;
利用所述控光层控制所述不同偏振方向的偏振光的出光次序。
在本公开的一种示例性实施例中,所述控光层控制在同一时间段内通过一种偏振方向的偏振光。
在本公开的一种示例性实施例中,所述LED阵列包括多个LED,同一LED上具有第一偏振方向的第一线栅和第二偏振方向的第二线栅,利用所述控光层控制所述不同偏振方向的偏振光的出光次序的步骤,包括:
在第n帧画面,将所述第一偏振方向的第一线栅对应的控光层开启,透过所 述第一偏振方向对应的偏振光,同时将所述第二偏振方向的第二线栅对应的控光层关闭,不透过所述第二偏振方向对应的偏振光;
在第n+1帧画面,将所述第一偏振方向的第一线栅对应的控光层关闭,不透过所述第一偏振方向对应的偏振光,同时将所述第二偏振方向的第二线栅对应的控光层开启,透过所述第二偏振方向对应的偏振光。
在本公开的一种示例性实施例中,同一LED上具有一个偏振方向的线栅,且多个LED形成不同偏振方向的偏振光。
本公开的一种实施例的三维显示系统及方法,通过LED阵列形成不同偏振方向的偏振光,控光层控制不同偏振方向的偏振光的出光次序。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出本公开示例性实施例中一种三维显示系统的结构示意图。
图2示出本公开示例性实施例中一种LED的结构示意图。
图3示出本公开示例性实施例中一种双偏振LED的示意图。
图4示出本公开示例性实施例中另一种双偏振LED的示意图。
图5示出本公开示例性实施例中一种四偏振LED的示意图。
图6示出本公开示例性实施例中另一种四偏振LED的示意图。
图7示出本公开示例性实施例中又一种四偏振LED的示意图。
图8示出本公开示例性实施例中四个相邻不同偏振方向LED的示意图。
图9示出本公开示例性实施例中一种控光层的结构示意图。
图10示出本公开示例性实施例中一种三维显示方法的流程示意图。
图11示出基于图3所示的双偏振LED的控制方法示意图。
图12示出基于图4所示的双偏振LED的控制方法示意图。
图13示出基于图5所示的四偏振LED的控制方法示意图。
图14示出基于图6所示的四偏振LED的控制方法示意图。
图15示出基于图7所示的四偏振LED的控制方法示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;所描述的特征、结构或特性 可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本公开的实施方式的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而省略所述特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。
需要指出的是,在附图中,为了图示的清晰可能会夸大层和区域的尺寸。而且可以理解,当元件或层被称为在另一元件或层“上”时,它可以直接在其他元件上,或者可以存在中间的层。另外,可以理解,当元件或层被称为在另一元件或层“下”时,它可以直接在其他元件下,或者可以存在一个以上的中间的层或元件。另外,还可以理解,当层或元件被称为在两层或两个元件“之间”时,它可以为两层或两个元件之间唯一的层,或还可以存在一个以上的中间层或元件。通篇相似的参考标记指示相似的元件。
图1示出本公开示例性实施例中一种三维显示系统的结构示意图。如图1所示,该三维显示系统10包括设置于衬底基板11上的LED阵列12以及控光层13。
其中,所述LED阵列12用于形成不同偏振方向的偏振光;所述控光层13用于控制所述不同偏振方向的偏振光的出光次序。本发明实施例中,控光层13相当于开关,可以控制不同偏振方向的偏振光的出光次序。
在示例性实施例中,所述控光层13可以控制在同一时间段内(例如1帧时间内)只允许一种偏振方向的偏振光通过,而屏蔽其他偏振方向的偏振光。但本公开并不限定于此。
其中,上述衬底基板11指的是即将制作LED器件的中间状态的基板结构,其可以是玻璃或者其他材质的衬底结构,也可以是已经制作形成有例如TFT(Thin Film Transistor,薄膜晶体管)等器件的基板结构,本发明对此不做限制。
下面,将对本示例实施方式中三维显示系统的各部分进行更详细的说明。
继续参考图1,所述LED阵列12可以包括多个LED 121。
图2示出本公开示例性实施例中一种LED的结构示意图。其中,每个LED 121可以包括:生长在生长衬底1211上的p-n二极管层1212;以及电极层1213,电极层1213包括P电极1213-2和N电极1213-1,P电极1213-2设置于所述p-n二极管层1212之上,N电极1213-1设置于生长衬底1211上。
p-n二极管层1212可以包括具有与在光谱中的具体区域对应的带隙的复合衬底。例如p-n二极管层1212可以包括基于II-VI材料(例如ZnSe)或者III-V氮化物材料(例如GaN、AlN、InN及其合金)的一层或者多层。生长衬底1211可以包括任何适当衬底,例如但不限于硅、SiC、GaAs/GaN和蓝宝石(Al2O3)。
在一个具体实施例中,生长衬底1211可以是蓝宝石,并且p-n二极管层由GaN形成,但本公开不限定于此。尽管有蓝宝石具有相对于GaN的更大晶格常数和热膨胀系数未匹配这样的事实,但是蓝宝石有合理低的成本、广泛可用,并且它的 透明性与基于受基准分子激光的提起技术兼容。在另一实施例中,另一材料,例如SiC可以用作GaN p-n二极管层的生长衬底。像蓝宝石一样,SiC衬底可以是透明的。若干生长技术可以用于生长p-n二极管层、比如金属有机化学气相沉积(Metal-organic Chemical Vapor Deposition,MOCVD)。
基于氮化锗(GaN)的发光二极管(LED)通过异构外延生成技术在外来衬底材料上制备当前基于GaN的LED器件。典型晶片级LED器件结构可以包括在蓝宝石生长衬底、单量子阱(SWQ)或者多量子阱(MWQ)和上p掺杂的GaN层之上形成下n掺杂的GaN层。
通过蚀刻经过上p掺杂的GaN层、量子阱层并进入n掺杂的GaN层在蓝宝石生长衬底上将晶片级LED器件结构图案化成台面阵列。上P电极被形成于台面阵列的顶部p掺杂的GaN表面上,并且N电极被形成于n掺杂的GaN层的与台面阵列接触的部分上。n掺杂的GaN可以类似地用供体、比如硅来掺杂,而p掺杂的层可以用受体、比如镁来掺杂,多种备选p-n二极管配置可以用来形成p-n二极管层。类似的,多种单量子阱或者多量子阱配置可以用来形成量子阱。此外,可以根据情况包括各种缓冲层。
在一个实施例中,蓝宝石生长衬底具有近似200μm的厚度,n掺杂的层具有近似0.1μm-3μm的厚度,量子阱层具有小于近似0.3μm的厚度,并且p掺杂的层具有近似0.1μm-1μm的厚度。但本公开并不限定于此。
在图2所示的实施例中,p-n二极管层1212可以从下到上依次堆叠包括n-GaN层,InGaN/GaN MQW层,p-GaN层以及ZnO:Ga(GZO)层。电极层1213可以包括P电极和N电极。其中P电极可以包括Ti或者Au,N电极可以包括Ti或者Ni或者Al。但本公开并不限定于此。
继续参考图2,所述LED 121还可以包括:设置于所述p-n二极管层1212之上的线栅1214。
本发明实施例中,线栅1214可以为纳米线栅(又可以称为金属线栅偏振器,Wire Grid Polarizer,简称WGP),其具有偏振功能。但本公开并不限定于此,其还可以是其他具有偏振功能的偏振片。在一个实施例中,该纳米线栅处于p-n二极管层1212之上且其与P电极同层。
WGP是由平行的金属线条构成,所述金属线条的截面为纳米尺寸,长度为宏观量级,能够进行偏光。通过利用集成于衬底基板的金属线栅,替换额外贴合于衬底基板的偏振片,可以降低器件厚度,以提高产品性能。
具体的,金属线栅的制备可以采用高精度的光刻技术或纳米压印技术。
本发明实施例中,所述LED 121可以是微LED(Micro LED),是指微缩化的LED,其像素点的距离降低至微米级,每一个像素可定址、单独驱动点亮。微LED阵列可以通过以下方式构成显示器:衬底基板采用例如玻璃基板;将集成有LED 阵列的芯片生长成之后,利用转印方法转印到该玻璃基板;每个LED上面具有纳米线栅,具有偏振功能。但本公开并不限定于此,例如还可以直接在显示器的阵列基板上生长LED或者在形成有LED的外延片上制作薄膜晶体管(TFT)。相比于LCD(Liquid Crystal Display)显示,微LED具有响应快及易于控制的特点。
Micro LED技术是指在微小尺寸内集成高密度LED(Light Emitting Diode,发光二极管)阵列的技术,在应用至显示领域中时,其可以将像素点距离从毫米级降低至微米级。相比于其他微显示技术,由于该类显示设备自发光,光学系统简单,可以减少整体系统的体积、重量、成本,同时兼顾低功耗、快速反应等特性。
如这里所用术语“微”器件、“微”p-n二极管或者“微”LED结构可以是指根据本发明的实施例的某些器件或者结构的描述性尺寸。如这里所用,术语“微”器件或者结构意味着是指1至100微米的标度。然而将理解本发明的实施例未必限于此,并且实施例的某些方面可以适用于更大和可能更小尺寸标度。
在一些实施例中,微LED阵列为具有10微米乘以10微米节距或者5微米乘以5微米节距。在这些密度,例如6英寸衬底可以容纳具有10微米乘以10微米节距的近似165百万个微LED结构或者具有5微米乘以5微米节距的近似660百万个微LED结构。
本发明实施例的三维显示系统,基于WGP(Wire Grid Polarizer,金属线栅偏振器)及微LED显示,能够实现更好的3D体验。
在示例性实施例中,同一LED 121上可以具有多个偏振方向的多个线栅1214,且所述多个偏振方向不同,即单个LED可以发出不同偏振方向的偏振光。这样,同一LED即可产生不同偏振方向的偏振光。具体偏振方向的数量可以是2个以上,可以根据具体的应用场合进行灵活配置。下面以同一LED 121具有2个偏振方向或者4个偏振方向为例进行描述,但本公开并不限定于此。这样,同一个LED上面的线栅可以是多个(例如2,3,4,5,……,N,N为大于等于2的正整数),对应多个偏振方向,这样多人可以戴不同的偏振眼镜,看到3D图像。
在示例性实施例中,同一LED上具有第一偏振方向的第一线栅和第二偏振方向的第二线栅。即同一个LED由两种不同偏振方向的线栅构成,两个偏振方向不同。该LED发出的偏振光,经对应的偏振眼镜,形成左右眼不同图像。
在示例性实施例中,所述第一偏振方向垂直于所述第二偏振方向。但本公开并不限定于此,在其他实施例中,只要第一偏振方向不等于第二偏振方向即可。
图3示出本公开示例性实施例中一种双偏振LED的示意图。如图3所示,所述第一线栅1和所述第二线栅2呈上下排布。
图4示出本公开示例性实施例中另一种双偏振LED的示意图。如图4所示,所述第一线栅1和所述第二线栅2呈水平排布。
需要说明的是,双偏振LED的第一线栅1和第二线栅2之间的排布位置关系 并不限于上述图3和图4所示的情况。
在示例性实施例中,同一LED上具有第一偏振方向的第一线栅1、第二偏振方向的第二线栅2、第三偏振方向的第三线栅3以及第四偏振方向的第四线栅4。
图5示出本公开示例性实施例中一种四偏振LED的示意图。
在图5所示的实施例中,第一线栅1、第二线栅2、第三线栅3以及第四线栅4呈矩阵排布。
在图5所示的实施例中,所述第一偏振方向向右上呈45度,所述第二偏振方向向左上呈45度,所述第三偏振方向向右呈水平方向,所述第四偏振方向向上竖直方向。但本公开并不限定于此,在其他实施例中,只要第一偏振方向、第二偏振方向、第三偏置方向和第四偏振方向均不相同即可。由此可以产生四种不同偏振方向的偏振光。
图6示出本公开示例性实施例中另一种四偏振LED的示意图。
在图6所示的实施例中,第一线栅1、第二线栅2、第三线栅3以及第四线栅4呈上下排布。
在图6所示的实施例中,所述第一偏振方向向右上呈45度,所述第二偏振方向向右呈水平方向,所述第三偏振方向向左上呈45度,所述第四偏振方向向上竖直方向。但本公开并不限定于此,在其他实施例中,只要第一偏振方向、第二偏振方向、第三偏置方向和第四偏振方向均不相同即可。由此可以产生四种不同偏振方向的偏振光。
图7示出本公开示例性实施例中又一种四偏振LED的示意图。
在图7所示的实施例中,第一线栅1、第二线栅2、第三线栅3以及第四线栅4呈水平排布。
在图7所示的实施例中,所述第一偏振方向向右呈水平方向,所述第二偏振方向向右上呈45度,所述第三偏振方向向下竖直方向,所述第四偏振方向向右下呈45度。但本公开并不限定于此,在其他实施例中,只要第一偏振方向、第二偏振方向、第三偏置方向和第四偏振方向均不相同即可。由此可以产生四种不同偏振方向的偏振光。
需要说明的是,上述图5、图6和图7中的四种偏振方向之间的方向关系和/或四种不同偏振方向的光栅之间的排布位置关系可以进行的任意的组合或者变形,并不限定于上述实施例。
在示例性实施例中,同一LED上具有一个偏振方向的线栅,且多个LED形成不同偏振方向的偏振光。即除了上述在同一个LED上具有多个不同偏振方向的线栅,也可以在LED阵列中,采用不同的微LED,分别对应不同的偏振方向。偏振方向也可以多个(2,3,4,5,…,M),从而实现多人戴不同的偏光眼镜实现3D显示。具体的LED排布有多种不同方法。4个不同偏振方向的LED排布举例 如下。但偏振方向不同的LED包含但不局限于下述图8中的例子。
图8示出本公开示例性实施例中四个相邻不同偏振方向LED的示意图。例如,假设LED阵列中的相邻的第一LED 121-1,第二LED 121-2,第三LED 121-3和第四LED 121-4中的每个LED上的线栅只有一个偏振方向,但该第一至第四LED的偏振方向又均不相同,这样,该LED阵列同样可以产生四个偏振方向的偏振光。但本公开并不限定于此,可以选择相邻的两个LED的偏振方向,或者相邻的三个LED的偏振方向不同等等,且这些相邻的偏振方向不同的多个LED可以具有任意合适的排布形式。
在图8所示的实施例中,第一LED 121-1的偏振方向向右上呈45度,第二LED 121-2的偏振方向向左上呈45度,第三LED 121-3的偏振方向向右呈水平方向,第四LED 121-4的偏振方向向上竖直方向。但本公开并不限定于此,在其他实施例中,只要第一LED 121-1的偏振方向、第二LED 121-2的偏振方向、第三LED 121-3的偏振方向和第四LED 121-4的偏振方向均不相同即可。
在示例性实施例中,还可以将LED阵列中的多个LED划分为多个区域,其中不同区域中的LED具有不同的偏振方向,而同一区域中的LED具有相同的偏振方向。其中,每个区域中可以包括多个LED。这样,该LED阵列同样可以产生多种不同偏振方向的偏振光。
图9示出本公开示例性实施例中一种控光层的结构示意图。
在示例性实施例中,所述控光层13包括第一基板131和第二基板132以及位于所述第一基板131和所述第二基板132之间的液晶(未显示)。其中,当给控光层13上加电时,所述控光层13透光,由此该透光的控光层对应的下方的LED的光可以透射出来;当不给控光层13加电时,所述控光层13不透光,由此该不透光的控光层对应的下方的LED的光不可以透射出来。
在示例性实施例中,所述液晶包括EC即乙基纤维素液晶材料或者铁电液晶材料。但本公开并不限定于此,其还可以采用其他的液晶材料。
在示例性实施例中,所述控光层13还包括位于所述液晶中的间隔柱(Post Spacer,PS)或者间隔柱墙(PS Wall)133,其用于对不同区域内的液晶进行控制,所述间隔柱或间隔柱墙133设置在第一基板和第二基板之间,将位于所述第一基板131和所述第二基板132之间的液晶间隔开来,例如在每两个相邻的像素单元之间设置间隔柱或间隔柱墙133,对每个像素单元中的液晶进行分区控制。
在示例性实施例中,在第一基板和/或第二基板上沉积有电极(例如像素电极和/或公共电极),对基板之间的液晶材料进行控制。
本公开实施方式提供的三维显示系统,LED阵列能够产生不同偏振方向的偏振光,并通过控光层控制不同偏振方向的偏振光,从而能够提供更好的3D显示效果。
在一些实施例中,同一时刻控光层控制只有一个偏振方向的偏振光出射,解决了现有LCD液晶三维显示中图像串扰问题。
另一些实施例中,本公开实施例中提供不同偏振方向的偏振光的LED结构,可以采用同一LED上可以实现不同偏振方向的偏振光输出;或者也可以采用不同的LED形成不同偏振方向的偏振光输出。
进一步的,本公开实施方式还提供了一种显示装置,包括:如上述实施例中所述的三维显示系统。
该显示装置可以为:显示面板、手机、平板电脑、电视机、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
所述显示装置还可以包括显示面板。显示面板可为平面显示面板,如等离子(Plasma)面板、有机发光二极管(Organic lightemitting diode,OLED)面板、薄膜晶体管液晶(Thin film transistor liquid crystaldisplay,TFT LCD)面板。
本发明提供的显示装置由于包含上述的三维显示系统,因而可以解决同样的技术问题,并取得相同的技术效果,在此不再一一赘述。
图10示出本公开示例性实施例中一种三维显示方法的流程示意图。
如图10所示,该三维显示方法可以用于上述实施例的三维显示系统,可以包括以下步骤。
在步骤S10中,通过所述LED阵列形成不同偏振方向的偏振光。
在步骤S20中,利用所述控光层控制所述不同偏振方向的偏振光的出光次序。
在示例性实施例中,所述控光层控制在同一时间段内通过一种偏振方向的偏振光。
在示例性实施例中,所述LED阵列包括多个LED,其中,每个LED包括:
生长在生长衬底上的p-n二极管层;
设置于所述p-n二极管层之上的电极层;
设置于所述p-n二极管层之上的线栅。
在示例性实施例中,同一LED上具有多个偏振方向的多个线栅,且所述多个偏振方向不同。
在示例性实施例中,同一LED上具有第一偏振方向的第一线栅和第二偏振方向的第二线栅。
在示例性实施例中,利用所述控光层控制所述不同偏振方向的偏振光的出光次序的步骤,包括:
在第n帧画面,将所述第一偏振方向的第一线栅对应的控光层开启,透过所述第一偏振方向对应的偏振光,同时将所述第二偏振方向的第二线栅对应的控光层关闭,不透过所述第二偏振方向对应的偏振光;
在第n+1帧画面,将所述第一偏振方向的第一线栅对应的控光层关闭,不透 过所述第一偏振方向对应的偏振光,同时将所述第二偏振方向的第二线栅对应的控光层开启,透过所述第二偏振方向对应的偏振光。
图11示出基于图3所示的双偏振LED的控制方法示意图。如图11所示,第一帧画面,将其中一个偏振方向的偏振光对应的控光层开启,透过一种偏振光,另外一个偏振方向的偏振光对应的控光层关闭,不透光。例如上方的第一光栅1透光,下方的第二光栅2不透光。第二帧画面,则与上述工作过程相反。
图12示出基于图4所示的双偏振LED的控制方法示意图。如图12所示,第一帧画面,左侧的第一光栅1不透光,右侧的第二光栅2透光。第二帧画面,则与上述工作过程相反。
图13示出基于图5所示的四偏振LED的控制方法示意图。如图13所示,第一帧画面,左上角的第一光栅1透光,第二至第四光栅2-4不透光;第二帧画面,右上角的第二光栅2透光,第一、第三和第四光栅1、3和4不透光;第三帧画面,左下角的第三光栅3透光,第一、第二和第四光栅不透光;第四帧画面,右下角的第四光栅4透光,第一至第三光栅1-3不透光。
图14示出基于图6所示的四偏振LED的控制方法示意图。如图14所示,第一帧画面,最上方的第一光栅1透光,第二至第四光栅2-4不透光;第二帧画面,上方第二个的第二光栅2透光,第一、第三和第四光栅1、3和4不透光;第三帧画面,上方第三个的第三光栅3透光,第一、第二和第四光栅1、2和4不透光;第四帧画面,最下方的第四光栅4透光,第一至第三光栅1至3不透光。
图15示出基于图7所示的四偏振LED的控制方法示意图。如图15所示,第一帧画面,最右侧的第四光栅4透光,第一至第三光栅1-3不透光;第二帧画面,右侧第二个的第三光栅3透光,第一、第二和第四光栅1、2和4不透光;第三帧画面,左侧第二个的第二光栅2透光,第一、第三和第四光栅1、3和4不透光;第四帧画面,最左侧的第一光栅1透光,第二至第四光栅2-4不透光。
在示例性实施例中,同一LED上具有一个偏振方向的线栅,且多个LED形成不同偏振方向的偏振光。此时的控制方法可以参照上述图11至图15所示的方式,在此不再详述。
此外,上述驱动方法法中各步骤的具体细节已经在对应的三维显示系统中进行了详细的描述,因此此处不再赘述。而且,尽管在附图中以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这 些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (15)

  1. 一种三维显示系统,包括设置于衬底基板上的LED阵列以及控光层;其中,
    所述LED阵列用于形成不同偏振方向的偏振光;
    所述控光层用于控制所述不同偏振方向的偏振光的出光次序。
  2. 根据权利要求1所述的三维显示系统,其中,所述控光层控制在同一时间段内通过一种偏振方向的偏振光。
  3. 根据权利要求1所述的三维显示系统,其中,所述LED阵列中的每个LED包括:
    生长在生长衬底上的p-n二极管层;
    设置于所述p-n二极管层之上的电极层;
    设置于所述p-n二极管层之上的线栅。
  4. 根据权利要求3所述的三维显示系统,其中,同一LED上具有多个偏振方向的多个线栅,且所述多个偏振方向不同。
  5. 根据权利要求4所述的三维显示系统,其中,同一LED上具有第一偏振方向的第一线栅和第二偏振方向的第二线栅。
  6. 根据权利要求5所述的三维显示系统,其中,所述第一偏振方向垂直于所述第二偏振方向。
  7. 根据权利要求4所述的三维显示系统,其中,同一LED上具有第一偏振方向的第一线栅、第二偏振方向的第二线栅、第三偏振方向的第三线栅和第四偏振方向的第四线栅,所述第一偏振方向、第二偏振方向、第三偏振方向和第四偏振方向均不相同。
  8. 根据权利要求3所述的三维显示系统,其中,同一LED上具有一个偏振方向的线栅,且多个LED形成不同偏振方向的偏振光。
  9. 根据权利要求1-8中任一所述的三维显示系统,其中所述LED为微LED。
  10. 根据权利要求1所述的三维显示系统,其中,所述控光层包括第一基板和第二基板以及位于所述第一基板和所述第二基板之间的液晶;其中,所述控光层被配置为在加电状态时透光,在不加电状态时不透光。
  11. 根据权利要求9所述的三维显示系统,其中,所述控光层还包括位于所述液晶中的间隔柱或者间隔柱墙,其用于对不同区域内的液晶进行控制。
  12. 一种用于如权利要求1至10中任一项所述的三维显示系统的三维显示方法,其中,所述方法包括:
    通过所述LED阵列形成不同偏振方向的偏振光;
    利用所述控光层控制所述不同偏振方向的偏振光的出光次序。
  13. 根据权利要求11所述的三维显示方法,其中,所述控光层控制在同一时间段内通过一种偏振方向的偏振光。
  14. 根据权利要求11所述的三维显示方法,其中,所述LED阵列包括多个LED,同一LED上具有第一偏振方向的第一线栅和第二偏振方向的第二线栅,利用所述控光层控制所述不同偏振方向的偏振光的出光次序的步骤,包括:
    在第n帧画面,将所述第一偏振方向的第一线栅对应的控光层开启,透过所述第一偏振方向对应的偏振光,同时将所述第二偏振方向的第二线栅对应的控光层关闭,不透过所述第二偏振方向对应的偏振光;
    在第n+1帧画面,将所述第一偏振方向的第一线栅对应的控光层关闭,不透过所述第一偏振方向对应的偏振光,同时将所述第二偏振方向的第二线栅对应的控光层开启,透过所述第二偏振方向对应的偏振光。
  15. 根据权利要求11所述的三维显示方法,其中,同一LED上具有一个偏振方向的线栅,且多个LED形成不同偏振方向的偏振光。
PCT/CN2017/106850 2017-03-06 2017-10-19 三维显示系统及方法 WO2018161583A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/776,184 US11134237B2 (en) 2017-03-06 2017-10-19 Three-dimensional display system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710128354.8A CN106842601B (zh) 2017-03-06 2017-03-06 三维显示系统及方法
CN201710128354.8 2017-03-06

Publications (1)

Publication Number Publication Date
WO2018161583A1 true WO2018161583A1 (zh) 2018-09-13

Family

ID=59138855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106850 WO2018161583A1 (zh) 2017-03-06 2017-10-19 三维显示系统及方法

Country Status (3)

Country Link
US (1) US11134237B2 (zh)
CN (1) CN106842601B (zh)
WO (1) WO2018161583A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106842601B (zh) * 2017-03-06 2019-12-24 京东方科技集团股份有限公司 三维显示系统及方法
WO2020080372A1 (ja) * 2018-10-16 2020-04-23 Scivax株式会社 微細パターン成形方法、インプリント用モールド製造方法およびインプリント用モールド並びに光学デバイス
CN109616019B (zh) * 2019-01-18 2021-05-18 京东方科技集团股份有限公司 显示面板、显示装置、三维显示方法和三维显示系统
CN112510134B (zh) * 2020-11-30 2022-03-18 中南大学 一种间接调制出光偏振模式的led
CN115166994A (zh) * 2022-06-14 2022-10-11 北京邮电大学 三维显示系统及方法
CN115148885A (zh) * 2022-06-27 2022-10-04 上海天马微电子有限公司 显示模组及其制备方法、显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102116939A (zh) * 2009-12-31 2011-07-06 Tcl集团股份有限公司 一种三维显示方法、led显示装置及三维显示系统
CN102620179A (zh) * 2011-01-26 2012-08-01 深圳市奥拓电子股份有限公司 偏振态电可控的led光源、led显示面板及3d显示器
CN103513439A (zh) * 2012-06-21 2014-01-15 联想(北京)有限公司 一种显示方法及显示模组
US20140146251A1 (en) * 2012-11-27 2014-05-29 Samsung Display Co., Ltd. Three-dimensional image display device and driving method thereof
CN105911709A (zh) * 2016-06-22 2016-08-31 深圳市华星光电技术有限公司 3d微发光二极管显示装置
CN106842601A (zh) * 2017-03-06 2017-06-13 京东方科技集团股份有限公司 三维显示系统及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3570104B2 (ja) * 1996-08-22 2004-09-29 ソニー株式会社 液晶表示装置
JP2798081B2 (ja) 1997-06-12 1998-09-17 キヤノン株式会社 画像形成装置
CN101752472B (zh) * 2008-12-18 2014-01-01 财团法人工业技术研究院 发光装置
JP5713002B2 (ja) * 2010-03-11 2015-05-07 日本電気株式会社 発光素子および該発光素子を用いた画像表示装置
CN102263179B (zh) * 2010-05-31 2016-01-20 群创光电股份有限公司 发光二极管、背光模块及液晶显示装置
US20120112218A1 (en) * 2010-11-04 2012-05-10 Agency For Science, Technology And Research Light Emitting Diode with Polarized Light Emission
CN102736255A (zh) * 2012-06-05 2012-10-17 深圳市亿思达显示科技有限公司 立体显示装置及应用于立体显示装置的光栅系统
CN105093547B (zh) * 2015-08-20 2019-06-07 京东方科技集团股份有限公司 3d显示装置及其驱动方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102116939A (zh) * 2009-12-31 2011-07-06 Tcl集团股份有限公司 一种三维显示方法、led显示装置及三维显示系统
CN102620179A (zh) * 2011-01-26 2012-08-01 深圳市奥拓电子股份有限公司 偏振态电可控的led光源、led显示面板及3d显示器
CN103513439A (zh) * 2012-06-21 2014-01-15 联想(北京)有限公司 一种显示方法及显示模组
US20140146251A1 (en) * 2012-11-27 2014-05-29 Samsung Display Co., Ltd. Three-dimensional image display device and driving method thereof
CN105911709A (zh) * 2016-06-22 2016-08-31 深圳市华星光电技术有限公司 3d微发光二极管显示装置
CN106842601A (zh) * 2017-03-06 2017-06-13 京东方科技集团股份有限公司 三维显示系统及方法

Also Published As

Publication number Publication date
US11134237B2 (en) 2021-09-28
CN106842601B (zh) 2019-12-24
US20210176451A1 (en) 2021-06-10
CN106842601A (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
WO2018161583A1 (zh) 三维显示系统及方法
US11121171B2 (en) Display apparatus and method of manufacturing the same
KR102305180B1 (ko) 마이크로 led 디스플레이 장치 및 그 제조방법
CN101339970B (zh) 氮化镓基半导体元件、使用其的光学装置及使用光学装置的图像显示装置
US7173289B1 (en) Light emitting diode structure having photonic crystals
KR20200026845A (ko) 반도체 발광소자를 이용한 디스플레이 장치
CN111029453A (zh) 发光装置、该发光装置的制造方法及显示装置
WO2018126697A1 (zh) 发光二极管显示面板及其制作方法、显示器
US11637219B2 (en) Monolithic integration of different light emitting structures on a same substrate
US20180206299A1 (en) Micro led display device
KR102162739B1 (ko) 반도체 발광소자의 자가조립 장치 및 방법
CN105425469B (zh) 一种背光模组及其制作方法、显示装置
CN109742200A (zh) 一种显示面板的制备方法、显示面板及显示装置
KR20210005454A (ko) 발광소자 패키지 제조방법 및 이를 이용한 디스플레이 패널 제조방법
KR20200023328A (ko) 반도체 발광소자를 이용한 디스플레이 장치
TW201212282A (en) Light emitting device, light emitting device package and lighting apparatus
CN108133910B (zh) Led制造方法及led、显示屏和电子设备
US10622513B2 (en) Light emitting device
KR102054951B1 (ko) 디스플레이 장치 및 서브 마이크로 발광 다이오드 디스플레이의 제조 방법
US11776988B2 (en) Micro light-emitting display apparatus and method of manufacturing the same
US20220166194A1 (en) Light emitting apparatus and projector
KR20220058113A (ko) 질화물 반도체 발광소자 및 이를 이용한 디스플레이 장치
US20180190863A1 (en) Semiconductor light-emitting device
US20240014364A1 (en) Wafer-level full-color display device and method for manufacturing the same
US20240038822A1 (en) Light emitting structure, display apparatus, and method of manufacturing the display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17900089

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 18.03.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17900089

Country of ref document: EP

Kind code of ref document: A1