WO2018161537A1 - 触控力检测方法、触控力检测装置、触控面板及显示装置 - Google Patents

触控力检测方法、触控力检测装置、触控面板及显示装置 Download PDF

Info

Publication number
WO2018161537A1
WO2018161537A1 PCT/CN2017/103083 CN2017103083W WO2018161537A1 WO 2018161537 A1 WO2018161537 A1 WO 2018161537A1 CN 2017103083 W CN2017103083 W CN 2017103083W WO 2018161537 A1 WO2018161537 A1 WO 2018161537A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
touch
detected
touch force
test
Prior art date
Application number
PCT/CN2017/103083
Other languages
English (en)
French (fr)
Inventor
曹学友
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/765,838 priority Critical patent/US10871862B2/en
Publication of WO2018161537A1 publication Critical patent/WO2018161537A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04186Touch location disambiguation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0447Position sensing using the local deformation of sensor cells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a touch force detecting method, a touch force detecting device, a touch panel, and a display device.
  • the capacitive touch screen detects the touch position by capturing a change in capacitance between the electrodes. Specifically, since the human body is a conductor, when the finger approaches the electrode, the capacitance value between the finger and the electrode increases, and by detecting the amount of capacitance change, the touch position can be confirmed.
  • the touch panel generally adopts a flexible panel that can generate deformation.
  • the entire surface of the panel may be deformed to various degrees at various positions, resulting in difficulty in touching the fingers. The size is tested.
  • the present disclosure provides a touch force detecting method, a touch force detecting device, and a touch force detecting device capable of detecting a touch force of a single or a plurality of fingers.
  • Touch panel and display device capable of detecting a touch force of a single or a plurality of fingers.
  • a touch force detecting method which includes the following steps:
  • Step S1 obtaining the number N of touch points on the panel to be detected, where N is an integer greater than or equal to 1;
  • Step S2 arbitrarily selecting M test positions on the panel to be detected, where M is large Or an integer equal to N, and obtaining a capacitance change amount at each of the test positions, wherein the capacitance change amount is an induction electrode of the panel to be detected at the test position when the panel to be detected is touched The amount of change in capacitance between the reference electrode and the reference electrode;
  • Step S3 obtaining panel shape variables at each of the test positions according to the capacitance change amount at each of the test positions;
  • Step S4 Calculate the touch force at the touch point according to the correspondence between the panel shape variable and the touch force.
  • F is the touch force at the touch point
  • k is a deformation coefficient
  • ⁇ w is a panel shape variable at the test position.
  • step S4 when N ⁇ 2, taking M ⁇ 2, the touch force at each of the touch points can be obtained by solving the following simultaneous equations;
  • w 1 ⁇ w M are the panel shape variables at the first to the Mth test positions; P i is applied to the ith of the touch points on the panel to be detected.
  • the touch force, i 1, 2, . . . , N; f i1 ⁇ f iM is the deformation weight of P i at the first to the Mth test positions, respectively.
  • the inverse calculation can be performed according to the following formula to obtain the panel shape variable at each of the test positions;
  • ⁇ C FT is the amount of capacitance change
  • is the dielectric coefficient
  • A is the unit area between the sensing electrode and the reference electrode
  • w is the original distance between the sensing electrode and the reference electrode
  • ⁇ w is the panel Shape variable.
  • the touch force detecting method may further include the following steps:
  • the test location may include a point or an area having a predetermined area.
  • Two test positions are located on both sides of the center with respect to the center of the panel to be detected and located near another pair of diagonals of the panel to be inspected, and two of the test positions are respectively to be detected
  • the distance between the two centerlines of the panels that are perpendicular to each other and through the center is not equal.
  • the sensing electrode may include a plurality of longitudinal electrode lines and a plurality of lateral electrode lines staggered with each other, the longitudinal electrode lines and the lateral electrode lines are not in the same plane;
  • the amount of capacitance change at the test position is obtained based on the entire longitudinal electrode line or the capacitance on the lateral electrode line.
  • the sensing electrode may include a plurality of longitudinal electrode lines and a plurality of lateral electrode lines staggered with each other, the longitudinal electrode lines and the lateral electrode lines are no longer in the same plane;
  • the amount of capacitance change at the test position is obtained based on the capacitance of the longitudinal electrode line and the lateral electrode line corresponding to the test position.
  • the sensing electrode may include a grid-shaped electrode line
  • the amount of capacitance change at the test position is obtained based on the capacitance on the grid-like electrode line corresponding to the test position.
  • a touch force detecting apparatus including:
  • a touch detection unit configured to obtain a number N of touch points on the panel to be detected, where N is an integer greater than or equal to 1;
  • a capacitance detecting portion configured to arbitrarily select M test positions on the panel to be detected, M is an integer greater than or equal to N, and obtain a capacitance change amount at each of the test positions, wherein the capacitance change amount An amount of change in capacitance between the sensing electrode and the reference electrode of the panel to be detected at the test position when the panel to be detected is touched;
  • a calculation portion configured to vary the amount of capacitance change at each of the test positions, Obtaining a panel shape variable at each of the test positions, and calculating a touch force at the touch point according to the correspondence between the panel shape variable and the touch force.
  • a touch panel including the above-described touch force detecting device is provided.
  • a display device including the above touch panel is provided.
  • FIG. 1 is a flow block diagram of a touch force detecting method according to an exemplary embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a deformation of a touch panel when a touch force is applied
  • FIG. 3A is a schematic view showing a structure of a sensing electrode according to an exemplary embodiment of the present disclosure
  • FIG. 3B is a schematic view showing a structure of another sensing electrode according to an exemplary embodiment of the present disclosure.
  • FIG. 3C is a schematic view showing the structure of still another sensing electrode according to an exemplary embodiment of the present disclosure.
  • 4A is a schematic diagram showing a distribution of touch points and test positions according to an exemplary embodiment of the present disclosure
  • 4B is a graph showing the deformation of the test position A in the observation direction in FIG. 4A;
  • FIG. 5A is a schematic diagram showing a distribution of touch points and test positions according to an exemplary embodiment of the present disclosure
  • FIG. 5B is a schematic diagram showing another distribution of touch points and test locations according to an exemplary embodiment of the present disclosure
  • FIG. 6 is a schematic diagram showing still another distribution of touch points and test positions according to an exemplary embodiment of the present disclosure.
  • FIG. 1 is a block flow diagram of a touch force detecting method according to an exemplary embodiment of the present disclosure.
  • the exemplary embodiment provides a touch force detecting method, which includes the following steps:
  • step S1 the number N of touch points on the panel to be detected is obtained, and N is an integer greater than or equal to 1.
  • the number of touch points can be obtained while detecting the position of the touch point.
  • step S2 M test positions are arbitrarily selected on the panel to be detected, M is an integer greater than or equal to N, and the amount of capacitance change at each test position is obtained.
  • the test location may include a point or an area having a predetermined area.
  • FIG. 2 is a schematic diagram of a deformation of a touch panel when a touch force is applied.
  • the touch panel has a sensing electrode, and the sensing electrode and the reference electrode form a capacitance C FT .
  • the sensing electrode and the ground form a capacitance (self-capacitance).
  • the reference electrode and the sensing electrode are lateral electrodes and longitudinal electrodes which are disposed at intersection, the two form capacitance (mutual capacitance) at the intersection.
  • the sensing electrode When the touch panel F is applied to the panel to be detected, the sensing electrode is deformed, and the original distance w between the panel and the reference electrode is changed.
  • the shape variable at any one of the test positions is ⁇ w, so that the sensing electrode and the reference electrode are
  • the capacitance C FT changes at the test position, that is, a certain amount of capacitance change is generated at the test position.
  • FIG. 3A is a schematic view showing a structure of a sensing electrode according to an exemplary embodiment of the present disclosure.
  • FIG. 3B is a schematic view showing the structure of another sensing electrode according to an exemplary embodiment of the present disclosure.
  • FIG. 3C is a schematic view showing the structure of still another sensing electrode according to an exemplary embodiment of the present disclosure.
  • the sensing electrode includes a plurality of longitudinal electrode lines and a plurality of lateral electrode lines that are staggered with each other, and the two are not in the same plane.
  • the longitudinal electrode line and the lateral electrode line respectively form a capacitance C FT with the ground.
  • the amount of capacitance change at the test position can be obtained based on the capacitance on the entire longitudinal electrode line without referring to the capacitance on the lateral electrode line to avoid lateral direction when detecting the capacitance value of the two electrode lines.
  • the electrode line and the longitudinal electrode line are blocked from each other, and the detected capacitance data is inaccurate.
  • the capacitance on the entire longitudinal electrode line corresponding to the test position is regarded as the capacitance C FT at the test position.
  • the capacitance C FT at the test position it is also possible to obtain the amount of change in capacitance at the test position based on the capacitance on the entire lateral electrode line without referring to the capacitance on the longitudinal electrode line.
  • the sensing electrode includes a plurality of longitudinal electrode lines and a plurality of lateral electrode lines interlaced with each other, which are not in the same plane.
  • the longitudinal electrode line and the lateral electrode line respectively form a capacitance C FT with the ground.
  • the amount of change in capacitance at the test position can also be obtained based on the capacitance C FT on the longitudinal electrode line and the lateral electrode line corresponding to the test position.
  • the capacitance changes of the longitudinal electrode line and the lateral electrode line before and after touching the panel to be detected are respectively detected to determine the lateral coordinate and the longitudinal coordinate of the touch point, and then combined into the touch coordinates of the panel, thereby obtaining each The amount of capacitance change at the test location.
  • the sensing electrode includes a grid-shaped electrode line, and a capacitance C FT formed between the sensing electrode and the reference electrode of the structure fills the entire panel to be detected, and therefore, in step S2 As long as the touch position is determined, the amount of capacitance change at each test position can be obtained according to the touch position.
  • the shape variable ⁇ w at any one of the test positions is a panel shape. variable.
  • a back-calculation calculation may be performed according to the following formula to obtain a panel-shaped variable at each test position.
  • ⁇ C FT is the capacitance change amount
  • is the dielectric coefficient
  • A is the unit area between the sensing electrode and the reference electrode
  • w is the original distance between the sensing electrode and the reference electrode
  • ⁇ w is a panel-shaped variable.
  • ⁇ C FT has been obtained in step S2, and the dielectric constant ⁇ , the unit area A, and the original distance w are all known, whereby these parameters can be substituted into the above formula, and the panel shape variable ⁇ w can be obtained by inverse calculation.
  • S4 calculates the touch force at the touch point according to the correspondence between the panel shape variable and the touch force.
  • the corresponding relationship between the panel shape variable and the touch force is utilized, and after the panel shape variable is obtained, the touch force can be obtained by calculation.
  • the specific implementation manner of calculating the touch force by using the correspondence relationship between the panel shape variable and the touch force will be described in detail below.
  • the deformation characteristics may be generated based on the entire panel. , calculate the touch force at the touch point.
  • F is the touch force at the touch point
  • k is the deformation coefficient
  • ⁇ w is the panel shape variable at the test position.
  • the panel shape variable ⁇ w has been obtained in step S3, and the strain coefficient k is known, whereby these parameters can be substituted into the above formula to calculate the touch force F.
  • any test position is equal to the sum of the shape variables when the panel to be detected is pressed down by the respective force at the corresponding touch point.
  • w 1 ⁇ w M are panel-shaped variables at the first to the Mth test positions;
  • f i1 to f iM are deformation weights of P i at the first to Mth test positions, respectively.
  • FIG. 4A is a schematic diagram showing a distribution of touch points and test positions according to an exemplary embodiment of the present disclosure.
  • Fig. 4B is a graph showing the deformation of the test position A in Fig. 4A in the observation direction.
  • the shape variable at the test position A is equal to the two forces P 1 and The sum of the shape variables when P 2 is applied to the corresponding touch point 1 and touch point 2 respectively.
  • the shape variable at the test position B is equal to the sum of the deformation variables when the two forces P 1 and P 2 are respectively applied to the corresponding touch point 1 and touch point 2 .
  • w 1A and w 1B are the shape variables generated at the test position A and the test position B when the force P 1 is separately applied to the touch point 1; w 2A and w 2B are separately applied to the touch point for the force P 2 At 2 o'clock, the shape variables generated at test position A and test position B, respectively.
  • Equations 1 and 2 above can be rewritten as:
  • f 1A and f1 B are the deformation weights at the test position A and the test position B when the force P 1 is separately applied to the touch point 1; similarly, f 2A and f 2B are separately applied to the force P 2 At point 2, the deformation weights at test position A and test position B, respectively.
  • the correspondence between the position of the touch point and the deformation weight is obtained.
  • a part of the deformation weights may be selected among all the deformation weights according to the specific situation.
  • the deformation weights can be recorded during the sampling measurement or mass production test, and obtained through corresponding analysis, or can be obtained by any other existing methods.
  • FIG. 5A is a schematic diagram showing a distribution of touch points and test positions, according to an exemplary embodiment of the present disclosure.
  • FIG. 5B is a schematic diagram showing another distribution of touch points and test locations, according to an exemplary embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram showing still another distribution of touch points and test positions according to an exemplary embodiment of the present disclosure.
  • the touch point 1 and the touch point 2 are symmetrically located near a pair of diagonals of the panel to be detected with respect to the center of the panel to be detected.
  • the test position A and the test position B are located on both sides of the center with respect to the center of the panel to be inspected and located near the other diagonal pair of the panel to be inspected, and the test position A and the test position B are perpendicular to the panel to be inspected, respectively.
  • the distance between the two centerlines passing through the center is equal. Specifically, as shown in FIG.
  • the distance between the test position A and the horizontal center line x is y a
  • the distance between the test position A and the vertical center line y is x a
  • the distance between the test position B and the horizontal center line x is y a
  • x a is equal to y a .
  • the distance between the test position A and the test position B and the above two center lines may be made unequal.
  • the distance between the test position A and the horizontal center line x is y a
  • the distance between the test position A and the vertical center line y is x a
  • the distance between the test position B and the horizontal center line x is y b
  • the distance between the test position B and the vertical center line y is x b
  • x a is not equal to y a
  • x b is not equal to y b
  • the distance is not equal.
  • M>N is taken to avoid that when the test position A and the test position B are touched, the numerical value cannot be correctly parsed and the solution error is excessive.
  • the above-mentioned simultaneous equation may obtain multiple solutions, and the average value of the solutions is taken at this time.
  • test locations can be arbitrarily set according to specific conditions.
  • the touch force detecting method further includes the following steps:
  • the location information of the N touch points of the panel to be detected may be affected.
  • the stability of the detection method results in the stability of the detection method. For this reason, the above situation is avoided by excluding the position information of the N touch points of the panel to be detected.
  • a touch force detecting device including a touch detecting portion, a capacitance detecting portion, and a calculating portion is further provided.
  • the touch detection unit is configured to obtain the number N of touch points on the panel to be detected, and N is an integer greater than or equal to 1.
  • the number of touch points can be obtained while detecting the position of the touch point.
  • the capacitance detecting portion is configured to arbitrarily select M test positions on the panel to be detected, M is an integer greater than or equal to N, and obtain a capacitance change amount at each test position, wherein the capacitance change amount is when the panel to be detected is touched The amount of change in capacitance between the sensing electrode and the reference electrode of the panel to be inspected at the test location.
  • the calculation unit is configured to obtain the panel shape variable at each test position according to the capacitance change amount at each test position, and calculate the touch force at the touch point according to the corresponding relationship between the panel shape variable and the touch force.
  • the panel shape variable at each test position is obtained according to the capacitance change amount by the calculation portion, and is utilized.
  • the corresponding relationship between the panel shape variable and the touch force calculates the touch force at the touch point, and the touch force of the single or multiple fingers can be detected.
  • a touch panel including the above-described touch force detecting device provided by the present disclosure is further provided.
  • the touch panel provided by the present disclosure can detect the touch force of a single or multiple fingers by using the above-mentioned touch force detecting device provided by the present disclosure.
  • a display device including the above-described touch panel provided by the present disclosure is also provided.
  • the display device provided by the present disclosure can realize the detection of the touch force of a single or multiple fingers by using the above-mentioned touch panel provided by the present disclosure.

Abstract

提供一种触控力检测方法、触控力检测装置、触控面板及显示装置。该触控力检测方法包括:步骤S1,获得待检测面板的触控点数目N,N为大于或等于1的整数;步骤S2,任意选择待检测面板上的M个测试位置,M为大于或等于N的整数,并获得各个测试位置的电容变化量,其中,该电容变化量为当触摸待检测面板时在测试位置处待检测面板的感应电极与参考电极之间的电容的变化量;步骤S3,根据各个测试位置处的所述电容变化量,获得各个测试位置的面板形变量;以及步骤S4,根据面板形变量与触控力的对应关系计算出触控点处的触控力。所述触控力检测方法可以实现对单个或多个手指的触控力进行检测。

Description

触控力检测方法、触控力检测装置、触控面板及显示装置
相关申请的交叉引用
本申请要求2017年3月10日在中国国家知识产权局提交的中国专利申请No.201710144386.7的优先权,该申请的全部内容以引用方式并入本文。
技术领域
本公开涉及显示技术领域,并且具体地涉及一种触控力检测方法、触控力检测装置、触控面板及显示装置。
背景技术
电容式触摸屏通过捕捉电极之间的电容变化来进行触控位置的侦测。具体而言,由于人体是导体,当手指靠近电极时,手指与电极间的电容值会增加,通过检测电容变化量,即可确认触控位置。
目前,触控面板通常采用可产生形变的柔性面板,当单个或多个手指按压柔性面板时,面板的整个表面在各个位置处会产生不同程度的形变,导致很难对各个手指的触控力的大小进行检测。
发明内容
为了至少部分解决现有技术中存在的技术问题而完成了本公开,本公开提供一种能够实现对单个或多个手指的触控力进行检测的触控力检测方法、触控力检测装置、触控面板及显示装置。
根据本公开的一个方面,提供了一种触控力检测方法,其包括以下步骤:
步骤S1,获得待检测面板上的触控点的数目N,N为大于或等于1的整数;
步骤S2,在所述待检测面板上任意选择M个测试位置,M为大 于或等于N的整数,并获得各个所述测试位置处的电容变化量,其中,所述电容变化量为当触摸所述待检测面板时在所述测试位置处所述待检测面板的感应电极与参考电极之间的电容的变化量;
步骤S3,根据各个所述测试位置处的所述电容变化量,获得各个所述测试位置处的面板形变量;以及
步骤S4,根据所述面板形变量与触控力的对应关系计算出所述触控点处的触控力。
在所述步骤S4中,当N=1时,取M=1,可以根据下述公式计算出所述触控点处的触控力;
F=kΔw
其中,F为所述触控点处的触控力;k为形变系数;Δw为所述测试位置处的面板形变量。
在所述步骤S4中,当N≥2时,取M≥2,可以通过求解下述联立方程式获得各个所述触控点处的触控力;
Figure PCTCN2017103083-appb-000001
Figure PCTCN2017103083-appb-000002
Figure PCTCN2017103083-appb-000003
其中,w1~wM为第1个~第M个所述测试位置处的所述面板形变量;Pi为单独在所述待检测面板上的第i个所述触控点处施加的触控力,i=1,2,...,N;fi1~fiM为Pi分别在第1个~第M个所述测试位置处的形变权重。
在所述步骤S3中,可以根据下述公式进行反推计算,获得各个所述测试位置处的面板形变量;
Figure PCTCN2017103083-appb-000004
其中,ΔCFT为电容变化量;ε为介电系数;A为所述感应电极与所述参考电极之间的单位面积;w为所述感应电极与参考电极之间的原始距离;Δw为面板形变量。
在所述步骤S1之后且在所述步骤S3之前,所述触控力检测方法还可以包括以下步骤:
排除所述待检测面板上的N个触控点的位置信息。
所述测试位置可以包括点或者具有预设面积的区域。
当N=2,M=2时,两个所述触控点相对于所述待检测面板的中心对称地位于所述待检测面板的其中一对对角附近;并且
两个所述测试位置相对于所述待检测面板的中心位于所述中心两侧且位于所述待检测面板的其中另一对对角附近,并且两个所述测试位置分别与所述待检测面板的相互垂直且穿过所述中心的两条中线之间的距离不相等。
所述感应电极可以包括相互交错的多条纵向电极线和多条横向电极线,所述纵向电极线与所述横向电极线不在同一平面内;并且
在所述步骤S2中,基于整条所述纵向电极线或者所述横向电极线上的电容,获得所述测试位置处的电容变化量。
所述感应电极可以包括相互交错的多条纵向电极线和多条横向电极线,所述纵向电极线与所述横向电极线不再同一平面内;并且
在所述步骤S2中,基于与所述测试位置相对应的所述纵向电极线和所述横向电极线上的电容,获得所述测试位置处的电容变化量。
所述感应电极可以包括网格状的电极线;并且
在所述步骤S2中,基于与所述测试位置相对应的所述网格状的电极线上的电容,获得所述测试位置处的电容变化量。
根据本公开的另一个方面,提供了一种触控力检测装置,包括:
触控检测部,其构造为获得待检测面板上的触控点的数目N,N为大于或等于1的整数;
电容检测部,其构造为在所述待检测面板上任意选择M个测试位置,M为大于或等于N的整数,并获得各个所述测试位置处的电容变化量,其中,所述电容变化量为当触摸所述待检测面板时在所述测试位置处所述待检测面板的感应电极与参考电极之间的电容的变化量;以及
计算部,其构造为根据各个所述测试位置处的所述电容变化量, 获得各个所述测试位置处的面板形变量,并根据所述面板形变量与触控力的对应关系计算出所述触控点处的触控力。
根据本公开的又一方面,提供了一种触控面板,其包括上述触控力检测装置。
根据本公开的又一方面,提供了一种显示装置,其包括上述触控面板。
附图说明
图1是根据本公开的示例性实施例的触控力检测方法的流程框图;
图2是触控面板在被施加触控力时产生形变的原理图;
图3A是示出了根据本公开的示例性实施例的一种感应电极的结构的示意图;
图3B是示出了根据本公开的示例性实施例的另一种感应电极的结构的示意图;
图3C是示出了根据本公开的示例性实施例的又一种感应电极的结构的示意图;
图4A是示出了根据本公开的示例性实施例的触控点和测试位置的分布的示意图;
图4B是图4A中的测试位置A在观察方向上的形变曲线图;
图5A是示出了根据本公开的示例性实施例的触控点和测试位置的一种分布的示意图;
图5B是示出了根据本公开的示例性实施例的触控点和测试位置的另一种分布的示意图;以及
图6是示出了根据本公开的示例性实施例的触控点和测试位置的又一种分布的示意图。
具体实施方式
为使本领域的技术人员更好地理解本公开的技术方案,下面结合附图来对本公开提供的触控力检测方法、触控力检测装置、触控面 板及显示装置进行详细描述。
图1是根据本公开的示例性实施例的触控力检测方法的流程框图。根据本公开的一个方面,如图1所示,本示例性实施例提供一种触控力检测方法,其包括以下步骤:
步骤S1,获得待检测面板上的触控点的数目N,N为大于或等于1的整数。
在检测触控点位置的同时即可获得触控点的数目。
步骤S2,在待检测面板上任意选择M个测试位置,M为大于或等于N的整数,并获得各个测试位置处的电容变化量。
测试位置可以包括点或者具有预设面积的区域。
图2是触控面板在被施加触控力时产生形变的原理图。如图2所示,触摸面板具有感应电极,感应电极与参考电极构成电容CFT。当参考电极为地时,感应电极与地构成电容(自电容)。当参考电极与感应电极为交叉设置的横向电极与纵向电极时,二者在交叉的地方形成电容(互电容)。
当待检测面板被施加触控力F时,感应电极发生形变,其与参考电极之间的原始距离w发生变化,在任意一个测试位置处的形变量为Δw,从而感应电极与参考电极之间的电容CFT在该测试位置处发生变化,即在该测试位置处产生了一定的电容变化量。
下面针对不同结构的感应电极,对获得各个测试位置处的电容变化量的方法进行详细描述。
图3A是示出了根据本公开的示例性实施例的一种感应电极的结构的示意图。图3B是示出了根据本公开的示例性实施例的另一种感应电极的结构的示意图。图3C是示出了根据本公开的示例性实施例的又一种感应电极的结构的示意图。
如图3A所示,感应电极包括相互交错的多条纵向电极线和多条横向电极线,二者不在同一平面内。以参考电极为地为例,纵向电极线和横向电极线分别与地之间构成电容CFT。在步骤S2中,可以基于整条纵向电极线上的电容,获得测试位置处的电容变化量,而不参考横向电极线上的电容,以避免在检测两个电极线的电容值时,因横 向电极线与纵向电极线相互遮挡,而造成检测出的电容数据不准确。在这种情况下,将与测试位置相对应的整条纵向电极线上的电容视为该测试位置处的电容CFT。当然,也可以基于整条横向电极线上的电容,获得测试位置处的电容变化量,而不参考纵向电极线上的电容。
作为一个选择,如图3B所示,感应电极包括相互交错的多条纵向电极线和多条横向电极线,二者不在同一平面内。以参考电极为地为例,纵向电极线和横向电极线分别与地之间构成电容CFT。在步骤S2中,也可以基于与测试位置相对应的纵向电极线和横向电极线上的电容CFT,获得该测试位置处的电容变化量。具体而言,分别检测纵向电极线和横向电极线在触摸待检测面板前后的电容变化,以分别确定触控点的横向坐标和纵向坐标,然后组合成面板的触摸坐标,以此为根据获得各个测试位置处的电容变化量。
作为另一个选择,如图3C所示,感应电极包括网格状的电极线,这种结构的感应电极与参考电极之间构成的电容CFT布满整个待检测面板,因此,在步骤S2中,只要触控位置确定,即可根据该触控位置获得各个测试位置处的电容变化量。
S3,根据各个测试位置处的电容变化量,获得各个测试位置处的面板形变量。
如图2所示,当待检测面板被施加触控力F时,感应电极发生形变,其与参考电极之间的原始距离w发生变化,在任意一个测试位置处的形变量Δw即为面板形变量。
在本公开的示例性实施例中,可以根据下述公式进行反推计算,获得各个测试位置处的面板形变量。
Figure PCTCN2017103083-appb-000005
其中,ΔCFT为电容变化量;ε为介电系数;A为感应电极与参考电极之间的单位面积;w为感应电极与参考电极之间的原始距离;Δw为面板形变量。
这里,ΔCFT已在步骤S2中获得,介电系数ε、单位面积A和原始距离w均是已知的,由此可以将这些参数代入上述公式,反推计算获得面板形变量Δw。
S4,根据面板形变量与触控力的对应关系计算出触控点处的触控力。
面板形变量与触控力之间具有对应关系,利用该对应关系,在获得面板形变量之后,即可通过计算获得触控力。下面对利用面板形变量与触控力之间的对应关系进行触控力计算的具体实施方式进行详细描述。
具体而言,当N=1,即,单指触摸待检测面板时,由于整个待检测面板均会发生形变,而并不局限于触控点所在位置,因此,可以基于整个面板发生的形变特性,计算出触控点处的触控力。
基于上述原理,可以取M=1,即,任意选择触摸面板上的一点作为测试位置,并根据下述公式计算出触控点处的触控力:
F=kΔw
其中,F为触控点处的触控力;k为形变系数;Δw为测试位置出的面板形变量。
这里,面板形变量Δw已在步骤S3中获得,形变系数k是已知的,由此可以将这些参数代入上述公式,计算获得触控力F。
对于多指触摸待检测面板的情况,即,N≥2时,由于面板形变量与触控力的对应关系是线性的,因此当待检测面板同时受到多个力的下压时,任意测试位置处的形变量等于待检测面板在对应触控点处单独受到各个力下压时的形变量总和。
基于上述原理,取M≥2,并通过求解下述联立方程式获得各个触控点处的触控力:
Figure PCTCN2017103083-appb-000006
Figure PCTCN2017103083-appb-000007
Figure PCTCN2017103083-appb-000008
其中,w1~wM为第1个~第M个测试位置处的面板形变量;Pi为单独在待检测面板上的第i个触控点处施加的触控力,i=1,2,...,N;fi1~fiM为Pi分别在第1个~第M个测试位置处的形变权重。
下面以N=2,M=2为例,对检测多指触摸待检测面板时的触控力的方法进行详细描述。
图4A是示出了根据本公开的示例性实施例的触控点和测试位置的分布的示意图。图4B是图4A中的测试位置A在观察方向上的形变曲线图。
如图4A和图4B所示,当待检测面板上的触控点1和触控点2分别受到两个力P1和P2时,测试位置A处的形变量等于两个力P1和P2各自单独施加在对应的触控点1和触控点2时的形变量之和。同理,测试位置B处的形变量等于两个力P1和P2各自单独施加在对应的触控点1和触控点2时的形变量之和。即:
wA=w1A+w2A   (式1)
wB=w1B+w2B   (式2)
其中,w1A和w1B为力P1单独施加在触控点1时,分别在测试位置A和测试位置B处产生的形变量;w2A和w2B为力P2单独施加在触控点2时,分别在测试位置A和测试位置B处产生的形变量。
根据公式w=f×p,其中,w为形变量;f为形变权重;p为力。可以将上述式1和式2改写为:
wA=f1A×P1+f2A×P2   (式3)
wB=f1B×P1+f2B×P2   (式4)
其中,f1A和f1B为力P1单独施加在触控点1时,分别在测试位置A和测试位置B处的形变权重;同理,f2A和f2B为力P2单独施加在触控点2时,分别在测试位置A和测试位置B处的形变权重。在进行上述步骤S1的同时,获得触控点的位置与形变权重之间的对应关系。针对测试位置的数量大于触控点数目的情况,可以根据具体情况在所有形变权重中选择采用一部分形变权重。在实际应用中,形变权重可以在取样量测或量产测试等过程中进行记录,并通过相应的分析获得,或者也可以采用现有的其他任意方式获得。
通过将上述式3和式4联立求解,即可获得待检测面板上的触控点1和触控点2分别受到的两个力P1和P2
下面对触控点和测试位置的分布情况进行详细描述。
图5A是示出了根据本公开的示例性实施例的触控点和测试位置的一种分布的示意图。图5B是示出了根据本公开的示例性实施例的触控点和测试位置的另一种分布的示意图。图6是示出了根据本公开的示例性实施例的触控点和测试位置的又一种分布的示意图。
如图5A所示,当N=2,M=2时,触控点1和触控点2相对于待检测面板的中心对称地位于待检测面板的其中一对对角附近。测试位置A和测试位置B相对于待检测面板的中心位于该中心两侧且位于待检测面板的其中另一对对角附近,并且测试位置A和测试位置B分别与待检测面板的相互垂直且穿过该中心的两条中线之间的距离相等。具体而言,如图5A所示,测试位置A与水平中线x之间的距离为ya,测试位置A与竖直中线y之间的距离为xa,测试位置B与水平中线x之间的距离为ya,测试位置B与竖直中线y之间的距离为xa,并且xa等于ya。在这种情况下,容易出现无限多组解的情况。
为了防止出现无限多组解的情况,可以使测试位置A和测试位置B分别与上述两条中线之间的距离不相等。具体而言,如图5B所示,测试位置A与水平中线x之间的距离为ya,测试位置A与竖直中线y之间的距离为xa,测试位置B与水平中线x之间的距离为yb,测试位置B与竖直中线y之间的距离为xb,使xa不等于ya且xb不等于yb,即,在上述四个距离中,至少存在两个距离不相等。
在本公开的示例性实施例中,取M>N,以避免当测试位置A和测试位置B被触摸到时,无法正确解析数值而造成求解误差过大。例如,如图6所示,N=2,即具有两个触控点1和2;M=3,即具有三个测试位置A、B、C。另外,针对测试位置的数量大于触控点数目的情况,上述联立方程式可能会获得多个解,此时取解的平均值。
在实际应用中,可以根据具体情况,任意设定测试位置的分布方式。
在本公开的示例性实施例中,在完成步骤S1之后且在进行步骤S3之前,触控力检测方法还包括以下步骤:
排除待检测面板的N个触控点的位置信息。
在实际应用中,待检测面板的N个触控点的位置信息可能会影 响检测方法的结果稳定性并加大检测方法的实施难度。为此,通过排除待检测面板的N个触控点的位置信息,以避免上述情况的发生。
根据本公开的另一个方面,还提供了一种触控力检测装置,其包括触控检测部、电容检测部和计算部。
触控检测部构造为获得待检测面板上的触控点的数目N,N为大于或等于1的整数。
在检测触控点位置的同时即可获得触控点数目。
电容检测部构造为在待检测面板上任意选择M个测试位置,M为大于或等于N的整数,并获得各个测试位置处的电容变化量,其中,该电容变化量为当触摸待检测面板时在测试位置处待检测面板的感应电极与参考电极之间的电容的变化量。
计算部构造为根据各个测试位置处的电容变化量,获得各个测试位置处的面板形变量,并根据面板形变量与触控力的对应关系计算出触控点处的触控力。
通过借助电容检测部在待检测面板上任意选择M个测试位置,并获得各个测试位置处的电容变化量,然后借助计算部根据该电容变化量获得各个测试位置处的面板形变量,并通过利用面板形变量与触控力的对应关系计算出触控点处的触控力,可以实现对单个或多个手指的触控力进行检测。
根据本公开的又一方面,还提供了一种触控面板,其包括本公开提供的上述触控力检测装置。
本公开提供的触摸面板,其通过采用本公开提供的上述触控力检测装置,可以实现对单个或多个手指的触控力进行检测。
根据本公开的又一方面,还提供了一种显示装置,其包括本公开提供的上述触控面板。
本公开提供的显示装置,其通过采用本公开提供的上述触控面板,可以实现对单个或多个手指的触控力进行检测。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做 出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (13)

  1. 一种触控力检测方法,包括以下步骤:
    步骤S1,获得待检测面板上的触控点的数目N,N为大于或等于1的整数;
    步骤S2,在所述待检测面板上任意选择M个测试位置,M为大于或等于N的整数,并获得各个所述测试位置处的电容变化量,其中,所述电容变化量为当触摸所述待检测面板时在所述测试位置处所述待检测面板的感应电极与参考电极之间的电容的变化量;
    步骤S3,根据各个所述测试位置处的所述电容变化量,获得各个所述测试位置处的面板形变量;以及
    步骤S4,根据所述面板形变量与触控力的对应关系计算出所述触控点处的触控力。
  2. 根据权利要求1所述的触控力检测方法,
    其中,在所述步骤S4中,当N=1时,取M=1,根据下述公式计算出所述触控点处的触控力;
    F=kΔw
    其中,F为所述触控点处的触控力;k为形变系数;Δw为所述测试位置处的面板形变量。
  3. 根据权利要求1所述的触控力检测方法,
    其中,在所述步骤S4中,当N≥2时,取M≥2,通过求解下述联立方程式获得各个所述触控点处的触控力;
    Figure PCTCN2017103083-appb-100001
    其中,w1~wM为第1个~第M个所述测试位置处的所述面板形 变量;Pi为单独在所述待检测面板上的第i个所述触控点处施加的触控力,i=1,2,...,N;fi1~fiM为Pi分别在第1个~第M个所述测试位置处的形变权重。
  4. 根据权利要求1所述的触控力检测方法,
    其中,在所述步骤S3中,根据下述公式进行反推计算,获得各个所述测试位置处的面板形变量;
    Figure PCTCN2017103083-appb-100002
    其中,ΔCFT为电容变化量;ε为介电系数;A为所述感应电极与所述参考电极之间的单位面积;w为所述感应电极与参考电极之间的原始距离;Δw为面板形变量。
  5. 根据权利要求1所述的触控力检测方法,
    其中,在所述步骤S1之后且在所述步骤S3之前,所述触控力检测方法还包括以下步骤:
    排除所述待检测面板上的N个触控点的位置信息。
  6. 根据权利要求1所述的触控力检测方法,
    其中,所述测试位置包括点或者具有预设面积的区域。
  7. 根据权利要求1所述的触控力检测方法,
    其中,当N=2,M=2时,两个所述触控点相对于所述待检测面板的中心对称地位于所述待检测面板的其中一对对角附近;并且
    两个所述测试位置相对于所述待检测面板的中心位于所述中心两侧且位于所述待检测面板的其中另一对对角附近,并且两个所述测试位置分别与所述待检测面板的相互垂直且穿过所述中心的两条中线之间的距离不相等。
  8. 根据权利要求1所述的触控力检测方法,
    其中,所述感应电极包括相互交错的多条纵向电极线和多条横 向电极线,所述纵向电极线与所述横向电极线不在同一平面内;并且
    在所述步骤S2中,基于整条所述纵向电极线或者所述横向电极线上的电容,获得所述测试位置处的电容变化量。
  9. 根据权利要求1所述的触控力检测方法,
    其中,所述感应电极包括相互交错的多条纵向电极线和多条横向电极线,所述纵向电极线与所述横向电极线不再同一平面内;并且
    在所述步骤S2中,基于与所述测试位置相对应的所述纵向电极线和所述横向电极线上的电容,获得所述测试位置处的电容变化量。
  10. 根据权利要求1所述的触控力检测方法,
    其中,所述感应电极包括网格状的电极线;并且
    在所述步骤S2中,基于与所述测试位置相对应的所述网格状的电极线上的电容,获得所述测试位置处的电容变化量。
  11. 一种触控力检测装置,包括:
    触控检测部,其构造为获得待检测面板上的触控点的数目N,N为大于或等于1的整数;
    电容检测部,其构造为在所述待检测面板上任意选择M个测试位置,M为大于或等于N的整数,并获得各个所述测试位置处的电容变化量,其中,所述电容变化量为当触摸所述待检测面板时在所述测试位置处所述待检测面板的感应电极与参考电极之间的电容的变化量;以及
    计算部,其构造为根据各个所述测试位置处的所述电容变化量,获得各个所述测试位置处的面板形变量,并根据所述面板形变量与触控力的对应关系计算出所述触控点处的触控力。
  12. 一种触控面板,包括根据权利要求11所述的触控力检测装置。
  13. 一种显示装置,包括根据权利要求12所述的触控面板。
PCT/CN2017/103083 2017-03-10 2017-09-25 触控力检测方法、触控力检测装置、触控面板及显示装置 WO2018161537A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/765,838 US10871862B2 (en) 2017-03-10 2017-09-25 Touch force detecting method and apparatus, touch panel and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710144386.7 2017-03-10
CN201710144386.7A CN106919289B (zh) 2017-03-10 2017-03-10 触控力检测方法、触控力检测装置、触控面板及显示装置

Publications (1)

Publication Number Publication Date
WO2018161537A1 true WO2018161537A1 (zh) 2018-09-13

Family

ID=59461684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103083 WO2018161537A1 (zh) 2017-03-10 2017-09-25 触控力检测方法、触控力检测装置、触控面板及显示装置

Country Status (3)

Country Link
US (1) US10871862B2 (zh)
CN (1) CN106919289B (zh)
WO (1) WO2018161537A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106919289B (zh) * 2017-03-10 2019-06-28 京东方科技集团股份有限公司 触控力检测方法、触控力检测装置、触控面板及显示装置
US11226236B2 (en) * 2017-04-21 2022-01-18 Hewlett-Packard Development Company, L.P. Controlled-emissivity face heated by non-resistive heat source
CN107454950B (zh) * 2017-07-20 2021-10-19 深圳市汇顶科技股份有限公司 检测触摸点的方法和触摸控制器
JP6736796B1 (ja) * 2019-09-04 2020-08-05 三菱電機株式会社 タッチパネル装置、押下力算出方法、及び押下力算出プログラム
TWI786718B (zh) * 2021-07-09 2022-12-11 義隆電子股份有限公司 觸控板及其力感應資訊校正方法
KR20230085322A (ko) * 2021-12-07 2023-06-14 주식회사 엘엑스세미콘 터치 센싱 장치 및 터치 센싱 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130328790A1 (en) * 2012-06-08 2013-12-12 Himax Technologies Limited Touch device and method for detecting touch point thereof
CN104236763A (zh) * 2013-06-08 2014-12-24 奇景光电股份有限公司 测量触碰力量的方法及测量装置
CN105607775A (zh) * 2016-01-18 2016-05-25 京东方科技集团股份有限公司 压力触摸显示装置及压力触控的方法
CN105677130A (zh) * 2016-04-08 2016-06-15 京东方科技集团股份有限公司 压感触控方法、压感触控装置及压感式触摸屏
CN106020555A (zh) * 2016-04-08 2016-10-12 友达光电股份有限公司 触控显示面板与触控力道的检测方法
CN106919289A (zh) * 2017-03-10 2017-07-04 京东方科技集团股份有限公司 触控力检测方法、触控力检测装置、触控面板及显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3022365B1 (fr) * 2014-06-11 2016-05-27 Commissariat Energie Atomique Procede et dispositif pour localiser une interaction sur une surface tactile
CN108885506B (zh) * 2016-04-05 2022-03-01 希迪普公司 压力传感器、含其的触摸输入装置及用其的压力检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130328790A1 (en) * 2012-06-08 2013-12-12 Himax Technologies Limited Touch device and method for detecting touch point thereof
CN104236763A (zh) * 2013-06-08 2014-12-24 奇景光电股份有限公司 测量触碰力量的方法及测量装置
CN105607775A (zh) * 2016-01-18 2016-05-25 京东方科技集团股份有限公司 压力触摸显示装置及压力触控的方法
CN105677130A (zh) * 2016-04-08 2016-06-15 京东方科技集团股份有限公司 压感触控方法、压感触控装置及压感式触摸屏
CN106020555A (zh) * 2016-04-08 2016-10-12 友达光电股份有限公司 触控显示面板与触控力道的检测方法
CN106919289A (zh) * 2017-03-10 2017-07-04 京东方科技集团股份有限公司 触控力检测方法、触控力检测装置、触控面板及显示装置

Also Published As

Publication number Publication date
CN106919289A (zh) 2017-07-04
US20190113998A1 (en) 2019-04-18
CN106919289B (zh) 2019-06-28
US10871862B2 (en) 2020-12-22

Similar Documents

Publication Publication Date Title
WO2018161537A1 (zh) 触控力检测方法、触控力检测装置、触控面板及显示装置
US10545604B2 (en) Apportionment of forces for multi-touch input devices of electronic devices
US8674958B1 (en) Method and apparatus for accurate coordinate calculation of objects in touch applications
CN105247461B (zh) 为触摸屏交互确定俯仰和偏航
US20160070413A1 (en) Method and System for Resolving Multiple Proximate Touches
TWI463390B (zh) 觸控顯示面板的定位方法
KR20120086055A (ko) 터치 압력을 검출할 수 있는 터치 스크린 장치 및 이를 갖는 전자 장치
WO2014080924A1 (ja) 近接・接触センサ
US20140085260A1 (en) Method and system for finger sensing, related screen apparatus and computer program product
US10001887B2 (en) Multi-touch touch screen and its junction area touch sensing method
US9552111B2 (en) Touch sensing device and method of identifying a touched position
US20160077641A1 (en) Adaptive Thresholding for Touch Screen Input
US10466745B2 (en) Operational control method for flexible display device
TW201525800A (zh) 觸控裝置之及其觸控判斷方法
TWI457809B (zh) 顯示裝置及其控制方法以及電子裝置
WO2015154570A1 (zh) 触摸屏感应方法和装置
US10788917B2 (en) Input device, input method and program
CN102945109A (zh) 互电容屏检测触摸区域的方法
US20130201147A1 (en) High resolution non-ghosted gestures
KR101762278B1 (ko) 터치 압력 감도 보정 방법 및 컴퓨터 판독 가능한 기록 매체
TWI470496B (zh) 觸控面板之觸點座標的取樣方法
TWI529577B (zh) The method of updating the touch device and its reference two - dimensional sensing information
TWI570608B (zh) 壓力感測觸控面板、壓力感測方法、壓力感測之電子裝置及其控制單元
US20220229519A1 (en) Touch-sensitive apparatus and method
US20120299842A1 (en) Touch point detecting device and the touch point detecting method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899768

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 18/03/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17899768

Country of ref document: EP

Kind code of ref document: A1