WO2018161348A1 - 一种具有中空极柱的圆柱锂离子电池 - Google Patents

一种具有中空极柱的圆柱锂离子电池 Download PDF

Info

Publication number
WO2018161348A1
WO2018161348A1 PCT/CN2017/076292 CN2017076292W WO2018161348A1 WO 2018161348 A1 WO2018161348 A1 WO 2018161348A1 CN 2017076292 W CN2017076292 W CN 2017076292W WO 2018161348 A1 WO2018161348 A1 WO 2018161348A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole
current collector
lithium ion
welded
ion battery
Prior art date
Application number
PCT/CN2017/076292
Other languages
English (en)
French (fr)
Inventor
潘险峰
易凌英
Original Assignee
深圳普益电池科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳普益电池科技有限公司 filed Critical 深圳普益电池科技有限公司
Priority to PCT/CN2017/076292 priority Critical patent/WO2018161348A1/zh
Publication of WO2018161348A1 publication Critical patent/WO2018161348A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/654Means for temperature control structurally associated with the cells located inside the innermost case of the cells, e.g. mandrels, electrodes or electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to a lithium ion battery, and more particularly to a cylindrical lithium ion battery having a hollow pole.
  • the technical problem to be solved by the present application is to provide a cylindrical lithium ion battery having a hollow pole for the deficiencies of the prior art.
  • a cylindrical lithium ion battery having a hollow pole comprising a battery core and a casing sleeved on the battery core, the battery core comprising a pole, a positive electrode sheet, a negative electrode sheet and a diaphragm, the pole a hollow cylinder, a material made of the positive electrode sheet, the negative electrode sheet, and the separator is wound around the pole, the outer casing including a cylindrical casing and an end cover disposed at both ends of the casing
  • the positive electrode sheet includes a positive electrode current collector
  • the negative electrode plate includes a negative electrode current collector
  • one of the positive electrode current collector and the negative electrode current collector is welded to the pole, the positive current collector and the negative current collector The other is welded to the inner surface of the casing, and the end cover is sleeved on the pole.
  • the pole is a positive electrode
  • the positive current collector is welded to the positive electrode
  • the negative current collector is welded to an inner surface of the casing.
  • the end cover comprises an insulating plate, a sealing ring and a cover plate, the insulating plate is sleeved on the positive electrode column, the sealing ring is made of an insulating material, and the cover plate is made of a metal material. The cover plate is sleeved on the positive electrode column through the sealing ring.
  • the positive pole is provided with a first limiting groove that cooperates with the sealing ring.
  • the positive pole is provided with a second limiting groove that cooperates with the insulating plate.
  • the end cover is provided with an explosion-proof device.
  • the explosion-proof device is an annular groove provided on the cover plate.
  • the sealing ring is a rubber ring.
  • the cover plate is made of a steel material or an alloy material, and the casing is made of steel,
  • the poles constituting the battery core are hollow cylinders
  • a hollow design is adopted in the axial center portion of the battery where heat is most likely to gather, which increases the surface area of the heat dissipation of the battery core, and the positive electrode.
  • One of the current collector and the negative current collector is welded on the pole, and the other of the positive current collector and the negative current collector is welded on the inner surface of the casing, eliminating the design of the ear, and reducing the electron transport passage of the battery during charging and discharging. Reduce the internal resistance of the cell, which in turn reduces the generation of Joule heat inside the cell.
  • FIG. 1 is a schematic diagram showing the components of the battery of the present application in an embodiment
  • FIG. 2 is a cross-sectional view of a battery of the present application in an embodiment
  • FIG. 3 is a schematic structural view of a positive electrode column and a positive electrode sheet of the present application in an embodiment
  • FIG. 4 is a schematic perspective structural view of a positive electrode column of the present application in an embodiment
  • FIG. 5 is a perspective structural view of a cover plate of the present application in an embodiment
  • FIG. 6 is a cross-sectional view of a cover of the present application in an embodiment
  • the temperature rise of the cell mainly depends on the heat generation rate and the heat dissipation rate of the internal heat.
  • the heat generation rate is higher than the heat sink, the internal temperature of the battery core increases, and when the heat generation rate is slow, the internal temperature of the battery decreases.
  • the heat generation rate of the cell is determined by factors such as the internal ohmic resistance of the cell, the internal resistance of the polarization, and the current. Reducing the internal ohmic resistance of the cell reduces the heat generation rate inside the cell.
  • the tab design structure existing inside the conventional electric core is eliminated, and the current collector is directly connected with the pole or the outer casing to shorten the electron conduction path, and the current collecting area of the current collector and the pole column is increased. , reduce the internal resistance of the battery.
  • the present application optimizes heat dissipation mainly by increasing the surface area of the battery core and improving the heat transfer inside the battery core.
  • the tubular core of aluminum cylinder is optimized in the axial part where the heat of the traditional cylindrical core is most easily collected, and the heat of the center is radiated through the tubular pole.
  • the contact area between the current collector inside the cell and the metal casing and the central tubular post is increased.
  • the heat inside the battery core is transmitted to the tubular positive electrode column and the outer casing through the current collector, thereby improving the heat dissipation efficiency of the battery core.
  • a cylindrical lithium ion battery having a hollow pole of the present application an embodiment thereof includes a battery core and an outer casing, and the outer casing is sleeved on the battery core 100, and the battery core 100 includes
  • the pole, the positive electrode, the negative electrode and the diaphragm, the pole is a hollow cylinder, such as a hollow rectangular parallelepiped, a cube, a prism or a cylinder.
  • the pole is a hollow tubular cylinder.
  • the material made of the positive electrode sheet, the negative electrode sheet and the separator is wound on the pole, the outer casing includes a casing 210 and an end cover, the casing 210 is cylindrical, the pole is inserted in the casing 210, and the end cap is disposed in the casing. Both ends of 210.
  • the housing 210 may be made of metal, and in the present embodiment, the housing 210 is made of steel, aluminum or alloy.
  • the positive electrode sheet includes a positive electrode current collector, the negative electrode plate includes a negative electrode current collector, one of the positive electrode current collector and the negative electrode current collector is welded on the pole, and the other of the positive current collector and the negative current collector is welded.
  • the positive electrode column can be made of aluminum, and the shell can be made of steel.
  • the negative electrode column can be made of metal such as copper or copper alloy, nickel or nickel alloy, and the casing can be made of aluminum or aluminum alloy.
  • the pole column adopts a hollow design and can be made of a metal material.
  • a metal material For example, aluminum is used, and the hollow pole column increases the surface area of the heat dissipation of the battery core on the other hand.
  • Metal materials have better heat transfer capabilities.
  • the current collector is directly welded to the intermediate pole or the outer casing. Since the current collector and the pole and the casing are made of metal, the heat generated on the battery pole piece is more easily passed through the current collector than the conventional connection through the smaller tab. It is transmitted to the positive pole and the casing to accelerate the dissipation of heat inside the battery.
  • FIG. 3 is a schematic view showing the structure of a positive electrode column and a positive electrode sheet welded on the positive electrode column, wherein 120 is a positive electrode sheet and 121 is a positive electrode current collector.
  • the tail of the anode current collector is T-shaped, and the anode current collector and the outer casing 210 are welded by T-junction.
  • a small length of empty foil 121 is reserved at each end of the outermost copper foil current collector of the cell.
  • the assembled cells are loaded into the housing 210, and the end free foil is then welded to the inner surface of the steel shell by ultrasonic welding.
  • the end cover includes an insulating plate 222, a sealing ring 223 and a cover plate 224.
  • the insulating plate 222 is sleeved on the positive electrode column 110, and the sealing ring 223 is made of an insulating material, in this embodiment.
  • the sealing ring 223 is a rubber ring. The rubber ring ensures insulation between the cover plate 224 and the tubular positive electrode column 110.
  • the cover plate 224 is made of a metal material, and as in the present embodiment, the cover plate is made of a steel material or an alloy material.
  • the cover 224 is sleeved on the positive pole by the sealing ring 223, that is, the sealing ring 223 is sleeved on the positive pole 110, the cover 224 is also sleeved on the positive pole 110, and the sealing ring 223 is clamped on the positive pole 110 and the cover. Between plates 224. A gap may be provided between the seal ring 223 and the cover plate 22 4 . In one embodiment, the cover plate 224 can also be provided with a flange 226 that cooperates with the positive pole 110, and the flange 226 can be attached to the positive pole 110.
  • the insulating plate 222 serves as a fixed cell position and the insulating cell is in contact with the upper and lower covers 224 to avoid internal short circuits.
  • the cover plate 224, the sealing ring 223 and the tubular positive electrode column 110 can be press-sealed by rolling, and the cover plate 224 and the housing 210 can be welded by laser welding.
  • the positive pole 110 is provided with a first limiting slot 111, and the first limiting slot 111 is matched with the sealing ring 223, Install the sealing ring 223.
  • the positive pole 110 is provided with a second limiting slot 112.
  • the second limiting slot 112 is matched with the insulating plate 222.
  • the insulating plate 222 can be a plastic plate, and the second limiting slot 112 can be inside.
  • the chamfered structure can be used to position the insulating plate 222.
  • the cover plate 224 of the present application may also be provided with an explosion-proof device.
  • the explosion-proof device is an annular groove 225. When the internal pressure of the battery is too large, the rupture of the groove 225 can relieve the pressure and ensure the safety of the battery.
  • the structure of the present application is more compact, eliminating excessive auxiliary materials inside the battery core, fully utilizing the conductive and thermal conductivity characteristics of the current collector and the metal casing, and obtaining materials in the interior of the battery core. Make the most of it.
  • the internal tab design is eliminated.
  • the positive current collector is directly welded to the central tubular pole, and the negative current collector is directly welded to the outer casing. Reduce the internal ohmic resistance of the battery core and reduce the generation of Joule heat during the use of the battery core.
  • the positive current collector is welded to the central tubular pole, and the negative current collector is welded to the outer casing, which can fully utilize the thermal conductivity of the metal, and transfer the heat inside the battery to the outer casing through the current collector to accelerate the heat transfer inside the battery.
  • the central tubular positive electrode not only functions to conduct electricity and improve the heat dissipation of the core portion of the battery core, but on the other hand, in the process of winding the battery core, it can be used as a winding needle to directly wind the battery core on the tubular positive electrode column.
  • the battery core fabricated according to the solution of the present application does not have the above disadvantages.
  • the annular cover is designed on the cell cover, and the mechanical strength of the groove is low. When the internal pressure of the cell is higher than the groove, the pressure can be withstood. The groove is cracked to release the internal pressure of the battery to ensure the safety of the battery.
  • the same cover plate is used at both ends, and the two grooves are designed to greatly improve the safety performance of the battery core.
  • the superior heat dissipation characteristics of this application can largely ensure the consistency of the internal temperature of the cell and improve battery performance and cycle life.
  • the components of the application have simple structure, simple assembly process, strong practicability and strong market application value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

一种具有中空极柱的圆柱锂离子电池,包括电芯(100)和套设在所述电芯(100)上的外壳,电芯(100)包括极柱,极柱为中空柱体,正极片、负极片和隔膜制成的材料卷绕在极柱上。外壳包括筒状壳体(210),正极集流体和负极集流体之一焊接在极柱上,正极集流体和负极集流体之另一焊接在壳体(210)内表面。由于组成电芯(100)的极柱为中空柱体,在热量最易聚集的电池轴心部位,采用中空设计,增大了电芯散热的表面积。正极集流体和负极集流体之一焊接在极柱上,正极集流体和负极集流体之另一焊接在壳体(210)内表面,取消了极耳设计,减小了电池在充放电过程中的电子传输通道,降低电芯内阻,进而减小了电芯内部焦耳热的产生。

Description

一种具有中空极柱的圆柱锂离子电池 技术领域
[0001] 本申请涉及锂离子电池, 尤其涉及一种具有中空极柱的圆柱锂离子电池。
背景技术
[0002] 自索尼首次将圆柱电池推向市场, 锂离子圆柱电池安全问题一直受到广泛的关 注。 系统分析圆柱电芯引起爆炸的内在最重要的原因, 可归结于电池使用过程 中内部发热、 热量不断聚集且无法散出, 导致电芯内部温度持续升高进而超过 安全温度。 在电芯产热的过程中如何增加散热效率, 降低电芯温度的变化, 不 仅在电芯安全方面至关重要, 而且在动力电池热管理方面具有重要的作用。 技术问题
[0003] 在此处键入技术问题描述段落。
问题的解决方案
技术解决方案
[0004] 发明内容
[0005] 本申请要解决的技术问题是针对现有技术的不足, 提供一种具有中空极柱的圆 柱锂离子电池。
[0006] 本申请要解决的技术问题通过以下技术方案加以解决:
[0007] 一种具有中空极柱的圆柱锂离子电池, 包括电芯和套设在所述电芯上的外壳, 所述电芯包括极柱、 正极片、 负极片和隔膜, 所述极柱为中空柱体, 所述正极 片、 所述负极片和所述隔膜制成的材料卷绕在所述极柱上, 所述外壳包括筒状 壳体和设置在所述壳体两端的端盖, 所述正极片包括正极集流体, 所述负极片 包括负极集流体, 所述正极集流体和所述负极集流体之一焊接在极柱上, 所述 正极集流体和所述负极集流体之另一焊接在所述壳体内表面, 所述端盖套设在 所述极柱上。
[0008] 上述电池, 所述极柱为正极柱, 所述正极集流体焊接在所述正极柱上, 所述负 极集流体焊接在所述壳体内表面。 上述电池, 所述端盖包括绝缘板、 密封圈和盖板, 所述绝缘板套设在所述正极 柱上, 所述密封圈由绝缘材料制成, 所述盖板由金属材料制成, 所述盖板通过 所述密封圈套设在所述正极柱上。
[0010] 上述电池, 所述正极柱上设有与所述密封圈配合的第一限位槽。
[0011] 上述电池, 所述正极柱上设有与所述绝缘板配合的第二限位槽。
[0012] 上述电池, 所述端盖上设有防爆装置。
[0013] 上述电池, 所述防爆装置为设置在所述盖板上的环形凹槽。
[0014] 上述电池, 所述密封圈为橡胶圈。
[0015] 上述电池, 所述盖板由钢材或合金材料制成, 所述壳体由钢材、
成。
发明的有益效果
有益效果
[0016] 由于采用了以上技术方案, 使本申请具备的有益效果在于:
[0017] 在本申请的具体实施方式中, 由于组成电芯的极柱为中空柱体, 在热量最易聚 集的电池轴心部位, 采用中空设计, 增大了电芯的散热的表面积, 正极集流体 和负极集流体之一焊接在极柱上, 正极集流体和负极集流体之另一焊接在壳体 内表面, 取消了极耳设计, 减小了电池在充放电过程中的电子传输通道, 降低 电芯内阻, 进而减小了电芯内部焦耳热的产生。
对附图的简要说明
附图说明
[0018] 图 1为本申请的电池在一种实施方式中的元件分立示意图;
[0019] 图 2为本申请的电池在一种实施方式中的剖示图;
[0020] 图 3为本申请的正极柱及正极片在一种实施方式中的结构示意图;
[0021] 图 4为本申请的正极柱在一种实施方式中的立体结构示意图;
[0022] 图 5为本申请的盖板在一种实施方式中的立体结构示意图;
[0023] 图 6为本申请的盖板在一种实施方式中的剖示图;
[0024] 图 7为图 6中 A的放大示意图。 实施该发明的最佳实施例
本发明的最佳实施方式
[0025] 在此处键入本发明的最佳实施方式描述段落。
本发明的实施方式
[0026] 具体实施方式
[0027] 下面通过具体实施方式结合附图对本申请作进一步详细说明。
[0028] 通过对传统圆柱电芯温度升高的内在机理分析发现, 电芯温度升高主要取决于 内部热量的产热速率和散热速率。 当产热速率大于散热吋电芯内部温度聚集温 度升高, 当产热速率效率散热速率吋电芯内部温度降低。
[0029] 电芯产热速率由电芯内部欧姆电阻、 极化内阻和电流等等因素所决定。 降低电 芯内部欧姆电阻, 可减小电芯内部产热速率。 以此为方向, 在本发明中取消传 统电芯内部存在的极耳设计结构, 直接将集流体与极柱或者外壳连接, 缩短电 子导通路径, 同吋增大了集流体与极柱焊接面积, 降低电芯内部电阻。
[0030] 本申请在改善散热方面, 主要通过增加电芯表面积和改善电芯内部热量的传递 两方面进行优化。 首先在传统的圆柱电芯热量最易聚集的轴心部位优化设计为 管状铝材圆柱, 将中心的热量通过管状极柱进行散热。 在改善内部热传导方面 , 增大电芯内部集流体与金属外壳和中心管状极柱之间的接触面积。 充分利用 金属材料良好导热特性, 将电芯内部热量通过集流体传递给电芯管状正极柱和 外壳, 提高了电芯散热效率。
[0031] 如图 1至图 7所示, 本申请的具有中空极柱的圆柱锂离子电池, 其一种实施方式 , 包括电芯和外壳, 外壳套设在电芯 100上, 电芯 100包括极柱、 正极片、 负极 片和隔膜, 极柱为中空柱体, 如空心长方体、 正方体、 棱柱或圆柱等。 在本实 施方式中, 极柱为中空管状柱体。 正极片、 负极片和隔膜制成的材料卷绕在极 柱上, 外壳包括壳体 210和端盖, 壳体 210为筒状, 极柱穿设在壳体 210中, 端盖 设置在壳体 210的两端。 壳体 210可以由金属制成, 在本实施方式中, 壳体 210由 钢材、 铝材或合金制成。 正极片包括正极集流体, 负极片包括负极集流体, 正 极集流体和负极集流体之一焊接在极柱上, 正极集流体和负极集流体之另一焊 接在壳体 210内表面, 即正极集流体焊接在极柱上, 负极集流体焊接在壳体 210 内表面, 或负极集流体焊接在极柱上, 正极集流体焊接在壳体 210内表面。 端盖 套设在极柱上。 正极柱可采用铝材料, 壳体可采用钢材; 负极柱可以采用铜或 者铜合金、 镍或者镍合金等金属材质, 壳体可采用铝材或者是铝合金等材质。
[0032] 在热量最易聚集的电池轴心部位, 极柱采用中空设计, 可采用金属材料制成, 如选用铝材, 中空极柱一方面增大了电芯的散热的表面积, 另一方面金属材质 拥有更好的热传导能力。 直接将集流体与中间极柱或者外壳焊接, 因集流体与 极柱和壳体均为金属材质, 相较于传统的通过较小的极耳连接, 电池极片上产 生的热量更易于通过集流体传递给正极柱和壳体, 加速电芯内部热量的消散。
[0033] 本申请的具有中空极柱的圆柱锂离子电池, 极柱为正极柱 110, 正极集流体焊 接在正极柱 110上, 负极集流体焊接在壳体 210内表面, 将正极集流体焊接在正 极柱 110上, 负极集流体焊接在壳体 210内表面, 焊接正负极集流和负极集流体 有多种方式, 在本实施方式中, 具体可通过超声焊的方式进行焊接。 图 3为正极 柱与焊接在正极柱上的正极片的结构示意图, 其中, 120为正极片, 121为正极 集流体。 负极集流体的尾部为 T型, 负极集流体与外壳 210通过 T型结焊接。
[0034] 电芯最外层铜箔集流体两端分别预留一小段空箔材 121。 将装配好的电芯装入 壳体 210中, 然后利用超声焊将端部空箔材焊接于钢壳内表面。
[0035] 在一种实施方式中, 端盖包括绝缘板 222、 密封圈 223和盖板 224, 绝缘板 222套 设在正极柱 110上, 密封圈 223由绝缘材料制成, 在本实施方式中, 密封圈 223为 橡胶圈。 橡胶圈可保证盖板 224和管状正极柱 110之间的绝缘性。 盖板 224由金属 材料制成, 如在本实施方式中, 盖板由钢材或合金材料制成。 盖板 224通过密封 圈 223套设在正极柱上, 即密封圈 223套设在正极柱 110上, 盖板 224也套设在正 极柱 110上, 且密封圈 223夹持在正极柱 110和盖板 224之间。 密封圈 223和盖板 22 4之间可设有间隙。 在一种实施方式中, 盖板 224还可设有与正极柱 110配合的折 边 226, 折边 226可贴合在正极柱 110上。 绝缘板 222起到固定电芯位置和隔绝电 芯与上下盖板 224接触, 可避免导致的内部短路。 可通过滚压使得盖板 224、 密 封圈 223和管状正极柱 110压合密封, 盖板 224和壳体 210可通过激光焊进行焊接 [0036] 本申请的具有中空极柱的圆柱锂离子电池, 在一种实施方式中, 正极柱 110上 设有第一限位槽 111, 第一限位槽 111与密封圈 223配合, 用于安装密封圈 223。 在另一种实施方式中, 正极柱 110上设有第二限位槽 112, 第二限位槽 112与绝缘 板 222配合, 绝缘板 222可以是塑料板, 第二限位槽 112可以是内倒角结构, 可用 于对绝缘板 222进行定位。
[0037] 本申请的盖板 224上还可以设有防爆装置, 在一种实施方式中, 该防爆装置为 环形凹槽 225。 当电芯内部压力过大吋, 凹槽 225部位破裂可起到释放压力, 保 证电芯安全性。
[0038] 与现有技术相比, 本申请的结构更加的简洁, 取消了电芯内部过多的辅助材料 , 充分利用集流体和金属壳体的导电和导热特性, 在电芯内部将材料得到最大 限度的利用。 取消内部极耳设计, 如正极集流体直接与中心管状极柱焊接, 负 极集流体直接与外壳焊接。 降低电芯内部欧姆内阻, 减少电芯使用过程中的焦 耳热的产生。 正极集流体与中心管状极柱焊接, 负极集流体与外壳焊接, 可以 充分发挥金属导热特性, 通过集流体将电芯内部热量传递给电芯外壳, 加快电 芯内部热量向外传递。 中心管状正极柱不仅起到导电和改善电芯轴心部位散热 的作用, 另一方面在电芯卷绕在过程中, 可以作为卷针使用, 将电芯直接卷绕 于管状正极柱上。 与传统的卷绕工艺相比, 电芯卷绕完成后, 需要抽出卷针, 导致卷绕电芯轴心部位应力释放, 降低了电芯轴心部位材料的利用率, 增大了 电芯内部不一致性。 根据本申请的方案制作的电芯, 不存在以上缺点。 在电芯 盖板上设计有环形凹槽, 凹槽部位机械强度较低, 当电芯内部压力高于凹槽部 位可承受压力吋, 凹槽幵裂释放电芯内部压力, 保证电芯安全。 本申请中上下 两端均采用相同的盖板, 两处凹槽设计, 极大提升了电芯安全性能。 本申请较 为优异的散热特性可以在很大程度上, 保证电芯内部温度的一致性, 提升电池 性能和循环寿命。 相对于传统的圆柱电芯, 本申请零部件结构简单, 装配工艺 简单, 实用性强, 具有较强的市场应用价值。
[0039]
[0040] 以上内容是结合具体的实施方式对本申请所作的进一步详细说明, 不能认定本 申请的具体实施只局限于这些说明。 对于本申请所属技术领域的普通技术人员 来说, 在不脱离本申请构思的前提下, 还可以做出若干简单推演或替换。

Claims

权利要求书
一种具有中空极柱的圆柱锂离子电池, 包括电芯和套设在所述电芯上 的外壳, 其特征在于, 所述电芯包括极柱、 正极片、 负极片和隔膜, 所述极柱为中空柱体, 所述正极片、 所述负极片和所述隔膜制成的材 料卷绕在所述极柱上, 所述外壳包括筒状壳体和设置在所述壳体两端 的端盖, 所述正极片包括正极集流体, 所述负极片包括负极集流体, 所述正极集流体和所述负极集流体之一焊接在极柱上, 所述正极集流 体和所述负极集流体之另一焊接在所述壳体内表面, 所述端盖套设在 所述极柱上。
如权利要求 1所述的具有中空极柱的圆柱锂离子电池, 其特征在于, 所述极柱为正极柱, 所述正极集流体焊接在所述正极柱上, 所述负极 集流体焊接在所述壳体内表面。
如权利要求 1所述的具有中空极柱的圆柱锂离子电池, 其特征在于, 所述端盖包括绝缘板、 密封圈和盖板, 所述绝缘板套设在所述正极柱 上, 所述密封圈由绝缘材料制成, 所述盖板由金属材料制成, 所述盖 板通过所述密封圈套设在所述正极柱上。
如权利要求 3所述的具有中空极柱的圆柱锂离子电池, 其特征在于, 所述正极柱上设有与所述密封圈配合的第一限位槽。
如权利要求 4所述的具有中空极柱的圆柱锂离子电池, 其特征在于, 所述正极柱上设有与所述绝缘板配合的第二限位槽。
如权利要求 3所述的具有中空极柱的圆柱锂离子电池, 其特征在于, 所述端盖上设有防爆装置。
如权利要求 6所述的具有中空极柱的圆柱锂离子电池, 其特征在于, 所述防爆装置为设置在所述盖板上的环形凹槽。
如权利要求 3所述的具有中空极柱的圆柱锂离子电池, 其特征在于, 所述密封圈为橡胶圈。
如权利要求 3所述的具有中空极柱的圆柱锂离子电池, 其特征在于, 所述盖板由钢材或合金材料制成, 所述壳体由钢材、 铝材或合金制成:
PCT/CN2017/076292 2017-03-10 2017-03-10 一种具有中空极柱的圆柱锂离子电池 WO2018161348A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/076292 WO2018161348A1 (zh) 2017-03-10 2017-03-10 一种具有中空极柱的圆柱锂离子电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/076292 WO2018161348A1 (zh) 2017-03-10 2017-03-10 一种具有中空极柱的圆柱锂离子电池

Publications (1)

Publication Number Publication Date
WO2018161348A1 true WO2018161348A1 (zh) 2018-09-13

Family

ID=63448109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/076292 WO2018161348A1 (zh) 2017-03-10 2017-03-10 一种具有中空极柱的圆柱锂离子电池

Country Status (1)

Country Link
WO (1) WO2018161348A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101202330A (zh) * 2006-12-11 2008-06-18 深圳市比克电池有限公司 圆柱形锂电池
CN101807725A (zh) * 2009-02-18 2010-08-18 东莞新能源科技有限公司 锂离子电池
CN101999185A (zh) * 2008-04-14 2011-03-30 丰田自动车株式会社 电池及其制造方法
CN102055007A (zh) * 2010-12-13 2011-05-11 湖南科力远新能源股份有限公司 具有特殊结构的电池及其制作方法
CN104332648A (zh) * 2014-07-31 2015-02-04 中航锂电(洛阳)有限公司 异型叠片式锂离子电池及电芯
CN205016572U (zh) * 2015-09-24 2016-02-03 青勇 一种电池壳体及电池
CN105826489A (zh) * 2015-01-06 2016-08-03 湘潭银河新能源有限公司 一种新型散热电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101202330A (zh) * 2006-12-11 2008-06-18 深圳市比克电池有限公司 圆柱形锂电池
CN101999185A (zh) * 2008-04-14 2011-03-30 丰田自动车株式会社 电池及其制造方法
CN101807725A (zh) * 2009-02-18 2010-08-18 东莞新能源科技有限公司 锂离子电池
CN102055007A (zh) * 2010-12-13 2011-05-11 湖南科力远新能源股份有限公司 具有特殊结构的电池及其制作方法
CN104332648A (zh) * 2014-07-31 2015-02-04 中航锂电(洛阳)有限公司 异型叠片式锂离子电池及电芯
CN105826489A (zh) * 2015-01-06 2016-08-03 湘潭银河新能源有限公司 一种新型散热电池
CN205016572U (zh) * 2015-09-24 2016-02-03 青勇 一种电池壳体及电池

Similar Documents

Publication Publication Date Title
WO2023185501A1 (zh) 一种高能量密度圆柱型电池及其组装工艺
JP4790732B2 (ja) 金属ケーシングを有する高容量リチウムイオン二次電池
JP5211022B2 (ja) リチウムイオン二次電池
CN206585025U (zh) 具有中空极柱的圆柱锂离子电池
JP5538114B2 (ja) 二次電池
WO2013013592A1 (zh) 一种圆柱型锂离子动力电池
WO2021184521A1 (zh) 一种大容量电池及其制作方法
WO2022242751A1 (zh) 圆柱型锂离子电池
WO2024066234A1 (zh) 一种圆柱型电池及其组装工艺
CN202749463U (zh) 一种高散热性圆柱形锂离子电池
CN111403653B (zh) 一种大容量电池及其制作方法
CN112736325A (zh) 一种锂电池内置热管散热结构
CN102694197B (zh) 环型锂离子电池
CN103730623A (zh) 端面焊的圆柱型锂电池
WO2021000781A1 (zh) 二次电池
CN113224474A (zh) 一种大容量电池的极柱连接结构
CN218867252U (zh) 电池
CN103579669A (zh) 一种大容量圆柱形或方形锂离子电池
TWI416776B (zh) 電池極卷及其中心均熱構件
JP4356209B2 (ja) 高出力用途向け電池
CN111370775A (zh) 一种大容量电池及其制作方法
WO2011035476A1 (zh) 一种圆柱形电池
WO2018161348A1 (zh) 一种具有中空极柱的圆柱锂离子电池
WO2023226190A1 (zh) 电池组件、电池及电动交通工具
WO2023173656A1 (zh) 电池结构组件、电池及电动交通工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14.01.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17899612

Country of ref document: EP

Kind code of ref document: A1