WO2018159965A1 - Method for producing polyhydroxyalkanoate using 2-hydroxyisocaproate-coa transferase - Google Patents

Method for producing polyhydroxyalkanoate using 2-hydroxyisocaproate-coa transferase Download PDF

Info

Publication number
WO2018159965A1
WO2018159965A1 PCT/KR2018/002305 KR2018002305W WO2018159965A1 WO 2018159965 A1 WO2018159965 A1 WO 2018159965A1 KR 2018002305 W KR2018002305 W KR 2018002305W WO 2018159965 A1 WO2018159965 A1 WO 2018159965A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene encoding
monomer
amino acid
polyhydroxyalkanoate
acid sequence
Prior art date
Application number
PCT/KR2018/002305
Other languages
French (fr)
Korean (ko)
Inventor
이상엽
양정은
박시재
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170172899A external-priority patent/KR102036828B1/en
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to CN201880014308.8A priority Critical patent/CN110382699B/en
Priority to BR112019017457A priority patent/BR112019017457A2/en
Priority to US16/483,426 priority patent/US10961521B2/en
Priority to EP18760488.9A priority patent/EP3594350A4/en
Priority to JP2019545788A priority patent/JP6854909B2/en
Publication of WO2018159965A1 publication Critical patent/WO2018159965A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/688Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters

Definitions

  • the present invention relates to a method for producing a polyhydroxyalkanoate containing an aromatic monomer or a long-chain 2-hydroxyalkanoate (2-HA) as a monomer, more particularly 2-hydroxyiso.
  • a gene encoding a caproate-CoA transferase and a gene encoding a polyhydroxyalkanoate synthetase have been introduced, and have a polyhydroxyalkanoate generating ability containing an aromatic monomer or a long chain 2-HA as a monomer.
  • PHAs Polyhydroxyalkanoates
  • These polymers are thermoplastics with biodegradable and biocompatible properties, and can have similar industrial properties as petroleum-based polymers, enabling a variety of industrial biomedical applications and resulting from renewable resources (Lee, SY Biotechnol. Bioeng . 49: 1 1996).
  • PHAs are classified into short-chain-length PHAs (SCL-PHAs) having a short carbon number and medium-chain-length PHAs (MCL-PHAs) having a long carbon number according to side chain lengths.
  • SCL-PHAs short-chain-length PHAs
  • MCL-PHAs medium-chain-length PHAs
  • Suitable examples of copolymers of certain two monomers include poly PHB-co-3-hydroxyhexanoate (Brandl et al., Int. J. Biol. Macromol . 11:49, 1989; A mos & McInerey, Arch Microbiol. , 155: 103, 1991; US 5,292,860).
  • Biosynthesis of PHA undergoes a process in which hydroxy acids are converted to hydroxyacyl-CoA by CoA-transferase or CoA-ligase, and the converted hydroxyacyl-CoA is polymerized by PHA synthase.
  • the activity for 2-hydroxyacyl-CoA is much lower than for 3-hydroxyacyl-CoA.
  • the inventors of Pseudomonas sp. 6-19 PHA synthase was genetically engineered to use lactyl-CoA, a type of 2-hydroxyacyl-CoA, as a substrate (WO08 / 062996; Yang et al., Biotechnol.
  • PhaC1ps6-19 has a wide variety of substrate specificities and converts various types of 2-hydroxy acids to 2-hydroxyacyl-CoA because it can use lactyl-CoA, a type of 2-hydroxyacyl-CoA, as a substrate. Developing a feasible system would allow the synthesis of new PHAs containing different types of 2-hydroxy acids.
  • the present inventors have made intensive efforts to develop a method for biosynthesis of PHA containing a new 2-hydroxy acid.
  • the enzyme converts 2-hydroxy acid using acetyl-CoA into 2-hydroxyacyl-CoA.
  • screening and using the enzyme it was confirmed that it is possible to produce a variety of 2-hydroxyacyl-CoA under in vitro conditions, it was confirmed that it is possible to produce a variety of PHA by using this, to complete the present invention .
  • An object of the present invention is to provide a recombinant microorganism having a polyhydroxyalkanoate producing ability containing an aromatic monomer or a long chain 2-HA as a monomer.
  • Another object of the present invention to provide a method for producing a polyhydroxyalkanoate containing an aromatic monomer or a long chain 2-HA as a monomer using the recombinant microorganism.
  • the present invention provides a gene encoding 2-hydroxyisocaproate-CoA transferase and a gene encoding polyhydroxyalkanoate synthase in a microorganism having acetyl-CoA generating ability from a carbon source.
  • a recombinant microorganism having a polyhydroxyalkanoate-producing ability which is introduced and contains an aromatic monomer or a long chain 2-HA as a monomer.
  • the present invention also comprises the steps of (a) culturing the recombinant microorganism to produce a polyhydroxyalkanoate containing an aromatic monomer or a long chain 2-HA as a monomer; And (b) obtaining a polyhydroxyalkanoate containing the produced aromatic monomer or long chain 2-HA as a monomer.
  • the present invention also relates to a gene encoding 2-hydroxyisocaproate-CoA transferase, a gene encoding polyhydroxyalkanoate synthase, DAHP (3-de) in a microorganism having acetyl-CoA generating ability from a carbon source.
  • Oxy-D-arabino-heptulsonate-7-phosphate) synthetase gene encoding corismate mutase / prephenate dehydrogenase and D-lactate dehydrogenase
  • a recombinant microorganism having a polyhydroxyalkanoate-producing ability containing a phenyl lactate as a monomer and amplified gene is provided.
  • the present invention also comprises the steps of (a) culturing the recombinant microorganism, to produce a polyhydroxyalkanoate containing phenyl lactate as a monomer; And (b) obtaining a polyhydroxyalkanoate containing the produced phenyllactate as a monomer. It provides a method for producing polyhydroxyalkanoate containing a phenyllactate as a monomer.
  • the present invention also relates to a gene encoding 2-hydroxyisocaproate-CoA transferase, a gene encoding polyhydroxyalkanoate synthase, DAHP (3-de) in a microorganism having acetyl-CoA generating ability from a carbon source.
  • Oxy-D-arabino-heptulsonate-7-phosphate) synthetase gene encoding corismate mutase / prephenate dehydrogenase and D-lactate dehydrogenase
  • a recombinant microorganism having hydroxyalkanoate producing ability.
  • the present invention also comprises the steps of (a) culturing the recombinant microorganism to produce a polyhydroxyalkanoate containing mandelate as a monomer; And (b) obtaining a polyhydroxyalkanoate containing the produced mandelate as a monomer, thereby providing a method for preparing polyhydroxyalkanoate containing a mandelate as a monomer.
  • Figure 1 shows the biosynthetic metabolic pathway of the aromatic polyester according to the present invention
  • A is the metabolic pathway when using FldA (cinnamoyl-CoA: phenyllactate CoA-transferase)
  • B is HadA (2- Metabolic pathways using hydroxyisocaproate-CoA transferase).
  • Figure 2 shows the result of comparing the amino acid sequence homology of HadA and FldA.
  • Figure 4 shows that HadA uses acetyl-CoA as CoA donor, mandelate, 4-hydroxymandelate, phenyllactate, 4-hydroxyphenyllactate, 2-hydroxy-4-phenylbutyrate, 3-hydroxy
  • acetyl-CoA as CoA donor
  • mandelate 4-hydroxymandelate
  • phenyllactate 4-hydroxyphenyllactate
  • 2-hydroxy-4-phenylbutyrate 3-hydroxy
  • the conversion of oxy-3-phenylpropionate and 4-hydroxy benzoic acid to the corresponding CoA derivatives was confirmed by LC-MS analysis after in vitro enzyme assay.
  • Figure 6 shows the results of increasing the production of D-phenyl lactate by performing metabolic analysis according to in silico genome scale metabolic flux analysis.
  • Figure 7 shows the results of the analysis of poly (3HB-co-D-phenyl lactate) produced by E. coli XB201TBAL.
  • 10A and 10B show the production of poly (3HB-co-D-phenyllactate) by fed-batch fermentation of E. coli XB201TBAL strain expressing AroGfbr, PheAfbr, FldH, HadA and PhaC1437 in MR medium containing 3HB.
  • C and d are fed by a fed-batch fermentation of the E. coli XB201TBAL strain expressing PhaAB under the AroGfbr, PheAfbr, FldH, HadA, PhaC1437 and BBa_J23114 promoters without addition of 3HB to obtain poly (3HB-co-D-phenyllactate).
  • Aromatic polyesters are essential plastics produced mainly from petroleum.
  • an aromatic polyester or a long chain 2-hydroxyalkanoate is prepared from glucose by metabolic engineering E. coli expressing polyhydroxyalkanoate (PHA) synthase and coenzyme A (CoA) transferase.
  • PHA polyhydroxyalkanoate
  • CoA coenzyme A
  • cinnamoyl-CoA phenyllactate CoA-transferase (FldA) and 4-Cuma have been identified by in vitro assays to produce PHAs containing phenyllactate as aromatic polyesters.
  • an E. coli engineered to have an optimal metabolic pathway for D-phenyllactate production in order to prepare an E. coli engineered to have an optimal metabolic pathway for D-phenyllactate production, over-expression of feedback resistance aroG, pheA and fldH genes in tyrR deficient E. coli, and competitive metabolism
  • the pathways (pflB, poxB, adhE and frdB) were deleted and the tyrB and aspC genes were further deleted following in silico genome scale metabolic flux analysis.
  • the metabolically engineered Escherichia coli produced 1.62 g / L of D-phenyllactate.
  • the present invention in a microorganism having the ability to produce acetyl-CoA from a carbon source, a gene encoding 2-hydroxyisocaproate-CoA transferase and a gene encoding a polyhydroxyalkanoate synthase is introduced
  • the present invention relates to a recombinant microorganism having a polyhydroxyalkanoate generating ability containing an aromatic monomer or a long chain 2-HA as a monomer.
  • the long chain 2-HA means 2-hydroxyalkanoate having 6 to 8 carbon atoms.
  • the aromatic monomer or long-chain 2-HA monomer is 2-hydroxyisocaproate, 2-hydroxyhexanoate, 2-hydroxyoctanoate, phenyl lactate, 2-hydroxy-4 It may be characterized in that it is selected from the group consisting of -phenylbutyrate, 3-hydroxy-3-phenylpropionate, 4-hydroxybenzoic acid and mandelate.
  • the polyhydroxyalkanoate synthase is Ralstonia eutropha, Pseudomonas, Bacillus and Pseudomonas sp. It may be characterized as a PHA synthase derived from a strain selected from the group consisting of 6-19 or a variant enzyme of PHA synthase having an amino acid sequence selected from:
  • amino acid sequence comprising one or more variants selected from the group consisting of E130D, S325T, L412M, S477R, S477H, S477F, S477Y, S477G, Q481M, Q481K and Q481R in the amino acid sequence of SEQ ID NO: 2;
  • Amino acid sequence (C1335) wherein E130D, S325T, L412M, S477G and Q481M are mutated in amino acid sequence of SEQ ID NO: 2;
  • the 2-hydroxyisocaproate-CoA transferase may be characterized as hadA derived from Clostridium difficile 630.
  • the 2-hydroxyisocaproate-CoA transferase may be characterized by using acetyl-CoA as CoA donor.
  • the microorganism of the present invention is a gene encoding ⁇ -ketothiolase involved in 3-hydroxybutyryl-CoA biosynthesis and a gene encoding acetoacetyl-CoA reductase in order to produce a polymer without externally supplying 3HB. It may be characterized by being introduced further.
  • the present invention comprises the steps of (a) culturing the recombinant microorganism to produce a polyhydroxyalkanoate containing an aromatic monomer or long chain 2-HA as a monomer; And (b) obtaining a polyhydroxyalkanoate containing the produced aromatic monomer or long chain 2-HA as a monomer. It relates to a method for producing a canoate.
  • Pct Propionyl-CoA transferase
  • Pctcp Propionyl-CoA transferase
  • polyesters comprising 2-hydroxy acids such as glycolic acid, lactic acid, 2-hydroxybutyl acid, 2-hydroxyisovalorate and various hydroxy acids. Since it is used, Pct540 can be said to have a broad substrate spectrum with respect to carbon number and hydroxyl position.
  • Pct540 was found to have no catalytic activity for phenyllactate and mandelate, and therefore, in the present invention, for the production of aromatic copolymers, a novel CoA-transition capable of activating CoA derivatives corresponding to aromatic compounds We wanted to find an enzyme.
  • Cinnamoyl-CoA Phenyllactate CoA-transferase (FldA) of Clostridium sporogenes has been reported to convert phenyllactate to phenyllactyl-CoA using cinnamoyl-CoA as a CoA donor (Dickert, S. et al., Eur. J. Biochem . 267: 3874, 2000). Cinnamoyl-CoA is a non-natural metabolite of Escherichia coli. Therefore, to confirm the use of acetyl-CoA, a rich metabolite in cells, as a CoA donor, Clostridium botulinum A str. FldA from ATCC 3502 was tested. However, C. botulinum A str. It was confirmed that FldA of ATCC 3502 does not have the catalytic activity of generating phenyllactyl-CoA using acetyl-CoA as CoA donor.
  • CoA ligase (4CL) plays an important role in phenylpropanoid metabolism, which produces precursors of plant secondary metabolites such as lignin, flavonoids and phytoalexin (Kaneko, M. et al, J. Bacteriol. 185: 20, 2003). Therefore, in one aspect of the present invention, a biosynthetic pathway for synthesizing cinnamoyl-CoA from cinnamate was designed by introducing 4CL.
  • the 4CL variant was used to convert cinnamates to cinnamoyl-CoA and cinnamoyl-CoA was used as CoA donor of FldA for phenyllactyl-CoA formation.
  • phenyllactyl-CoA was successfully synthesized by sequential reaction of 4CL and FldA in vitro .
  • 4CL and FldA could be used for the production of phenyllactyl-CoA and that it could be used for producing aromatic polyesters.
  • 4-hydroxyphenyllactate another promising aromatic monomer, was also converted to 4-hydroxyphenyllactyl-CoA by in vitro sequential reaction of 4CL variant with FldA.
  • Pseudomonas sp. MBEL 6-19 PHA synthase (PhaCPs6-19) variants were expressed in Escherichia coli XL1-Blue overexpressing AroGfbr, PAL, 4CL, FldA and Pct540.
  • the prepared recombinant strain was cultured in MR medium to which 20 g / L glucose, 1 g / L D-phenyllactate and 1 g / L sodium 3-hydroxybutyrate (3HB) were added.
  • Sodium 3-hydroxybutyrate (3HB) was converted by Pct540 to 3HB-CoA, which is the preferred substrate of PhaC, and was added to enhance the production of the polymer because it allows the production of sufficient amounts of PHA.
  • E. coli XL1-Blue which expresses different PHA synthase variants, can produce varying amounts of poly (D-lactate-co-3HB-co-D-phenyllactate) with different monomer compositions.
  • PhaC1437 containing four amino acid substitutions (E130D, S325T, S477G and Q481K) in the PhaC variant was poly (18.3 mol% D-lactate-co-76.9 mol% 3HB-co-4.8 mol% D-phenyl Lactate) was produced at 7.8% by weight of the dry cell weight to identify the most suitable PhaC variant.
  • E. coli was manipulated to generate D- phenyllactate from glucose in vivo .
  • Biosynthesis of aromatic compounds begins with the synthesis of 3-deoxy-D-arabino-heptulsonate-7-phosphate (DAHP), which is combined with phosphoenolpyruvate (PEP) by DAHP synthase. It is produced by the condensation of ellithrose-4-phosphate (E4P). The resulting DAHP is converted to phenylpyruvate (PPA) followed by D-lactate dihydrogenase (FldH) to D-phenyllactate (FIG. 1). Metabolic pathways for aromatic compound biosynthesis are known to be complexly controlled by various inhibitory mechanisms.
  • AroGfbr AroG (D146N)] and PheAfbr [PheA (T326P)] were constructed to release feedback inhibition by L-phenylalanine (Zhou, HY et al., Bioresour. Technol. 101: 4151, 2010; Kikuchi, Y. et al., Appl. Environ.Microbiol. 63: 761, 1997).
  • Escherichia coli XL1-Blue expressing FldH of ATCC 3502 produced 0.372 g / L of D-phenyllactate from 15.2 g / L of glucose.
  • Overexpression of PAL, 4CL, FldA, Pct540 and PhaC1437 of the strain was poly (16.8 mol% D-lactate-co-80.8 mol% 3HB-co-1.6 mol% D-phenyllactate-co-0.8 mol% D -4-hydroxyphenyllactate) was increased to 12.8% by weight of the dry cell weight.
  • an enzyme having a broad spectrum of aromatic substrate was found using acetyl-CoA as CoA donor.
  • An array similarity analysis was performed to identify homologous enzymes for FldA and 2-isocaprenoyl-CoA: 2-hydroxyisocapronate of Clostridium difficile having at least 48% amino acid sequence identity with FldA among various FldAs of different origins.
  • CoA-transferase (HadA) was screened (FIG. 2).
  • HadA is an enzyme known to convert CoA into 2-hydroxyisocaproate using isocaprenoyl-CoA as a CoA donor
  • the present invention investigated whether HadA can use acetyl-CoA as a CoA donor ( 3).
  • In vitro enzyme analysis showed that HadA was able to activate phenyllactate as phenyllactyl-CoA using acetyl-CoA as a CoA donor (FIG. 4).
  • HadA also contains mandelate, 4-hydroxymandelate, phenyllactate, 4-hydroxyphenyllactate, 2-hydroxy-4-phenylbutyrate, 3-hydroxy-3-phenylpropionate and 4 It was confirmed through LC-MS analysis after in vitro assay that hydroxy benzoic acid can be converted into the corresponding CoA derivative (FIGS. 4 and 5). Therefore, HadA has the potential to produce various aromatic polyesters more efficiently by using acetyl-CoA as a CoA donor.
  • E. coli XL1-Blue strain without TyrR deletion To eliminate a path conflict with D-phenyllactate biosynthesis, in E. coli XBT, poxB (a gene encoding pyruvate oxidase), a pyruvate oxidase), pflB (a gene encoding pyruvate formate lyase), Escherichia coli XB201T was constructed by deleting adhE (gene encoding acetaldehyde dehydrogenase / alcohol dehydrogenase) and frdB (gene encoding fumarate reductase).
  • adhE gene encoding acetaldehyde dehydrogenase / alcohol dehydrogenase
  • frdB Gene encoding fumarate reductase
  • coli XB201T strains expressing AroGfbr, PheAfbr and FldH produced 0.55 g / L of D-phenyllactate from 15.7 g / L of glucose, indicating a 10% higher yield than E. coli XBT.
  • Escherichia coli XB201TBAL expressing AroGfbr, PheAfbr, FldH, PhaC1437 and HadA was incubated in a medium containing 20 g / L glucose and 1 g / L sodium 3HB to obtain poly (52.1 mol% 3HB-co-47.9 mol% D-phenyllactate).
  • Poly 52.1 mol% 3HB-co-47.9 mol% D-phenyllactate
  • the present invention provides a gene encoding 2-hydroxyisocaproate-CoA transferase, a gene encoding polyhydroxyalkanoate synthase, in a microorganism having acetyl-CoA generating ability from a carbon source, Gene encoding DAHP (3-deoxy-D-arabino-heptulsonate-7-phosphate) synthase, gene encoding corismate mutase / prephenate dehydrogenase and D-lactate di
  • the present invention relates to a recombinant microorganism having a polyhydroxyalkanoate-producing ability, in which a gene encoding a hydrogenase has been introduced and containing phenyllactate as a monomer.
  • the 2-hydroxyisocaproate-CoA transferase may be characterized as hadA derived from Clostridium difficile 630, the hydroxyalkanoate synthase is Ralstonia eutropha, Pseudomonas, Bacillus and Pseudomonas sp . It may be characterized as a PHA synthase derived from a strain selected from the group consisting of 6-19 or a variant enzyme of PHA synthase having an amino acid sequence selected from:
  • amino acid sequence comprising one or more variants selected from the group consisting of E130D, S325T, L412M, S477R, S477H, S477F, S477Y, S477G, Q481M, Q481K and Q481R in the amino acid sequence of SEQ ID NO: 2;
  • Amino acid sequence (C1335) wherein E130D, S325T, L412M, S477G and Q481M are mutated in amino acid sequence of SEQ ID NO: 2;
  • the gene encoding the DAHP (3-deoxy-D-arabino-heptulsonate-7-phosphate) synthase is a gene encoding the amino acid sequence represented by SEQ ID NO: 8
  • the gene encoding the corismate mutase / prephenate dehydrogenase may be a gene encoding an amino acid sequence represented by SEQ ID NO: 9, wherein the D-lactate dehydrogeze
  • the gene encoding the claw may be a gene encoding the amino acid sequence represented by SEQ ID NO: 10.
  • the gene encoding the introduced D-lactate dehydrogenase may be characterized as being a fldH gene that replaces the ldhA gene.
  • the microorganism of the present invention is a gene encoding ⁇ -ketothiolase involved in 3-hydroxybutyryl-CoA biosynthesis and a gene encoding acetoacetyl-CoA reductase in order to produce a polymer without externally supplying 3HB. It may be characterized by being introduced further.
  • the recombinant microorganism is a tyrR gene, a gene encoding pyruvate oxidase, a gene encoding pyruvate formate lyase, a gene encoding acetaldehyde dehydrogenase, a gene encoding fumarate reductase, tyrosine amino
  • a gene encoding the transferase and a gene encoding the aspartic acid aminotransferase may be deleted.
  • the present invention relates to a method for preparing polyhydroxyalkanoate containing a phenyllactate as a monomer.
  • mandelate was tested using monomers. This is because polymandelate, the single polymer of mandelate, is a pyrolysis resistant polymer having a relatively high Tg of 100 ° C., while the material properties are similar to polystyrene. Polymandelate is chemically synthesized by ring-opening polymerization of cyclic dimer of mandelate produced in the petroleum industry.
  • Escherichia coli XB201TBAL expressing AroGfbr, PheAfbr, FldH, PhaC1437 and HadA was cultured in a medium containing 1 g / L sodium 3HB and 0.5 g / L D-mandelate to obtain poly (55.2 mol% 3HB-co-43 mol% D-phenyl Lactate-co-1.8 mol% D-mandelate) was prepared at a 11.6 wt% content of dry cell weight (FIGS. 8 a, b).
  • an aromatic copolymer including D-mandelate was successfully prepared using D-mandelate as a substrate, and then, to produce D-mandelate in vivo by metabolic engineering.
  • HmaS Amycolatopsis orientalis-derived hydroxymandelate synthetase
  • S. coelicolor Hydrolysis of Amycolatopsis orientalis-derived hydroxymandelate synthetase (HmaS), S. coelicolor, in E. coli XB201TBAL expressing AroGfbr, PheAfbr, FldH, PhaC1437 and HadA to produce an aromatic copolymer comprising D-mandelate from glucose Roxymandelate oxidase (Hmo) and D-mandelate dehydrogenase (Dmd) from Rhodotorula graminis were expressed.
  • Hmo glucose Roxymandelate oxidase
  • Dmd D-mandelate dehydrogenase
  • the present invention provides a gene encoding 2-hydroxyisocaproate-CoA transferase, a gene encoding polyhydroxyalkanoate synthase, in a microorganism having acetyl-CoA generating ability from a carbon source, Gene encoding DAHP (3-deoxy-D-arabino-heptulsonate-7-phosphate) synthase, gene encoding corismate mutase / prephenate dehydrogenase and D-lactate di Genes encoding hydrogenase, genes encoding hydroxymandelate synthase, genes encoding hydroxymandelate oxidase and genes encoding D-mandelate dehydrogenase have been introduced.
  • the present invention relates to a recombinant microorganism having a polyhydroxyalkanoate producing ability contained as a monomer.
  • the 2-hydroxyisocaproate-CoA transferase may be characterized as hadA derived from Clostridium difficile 630, the hydroxyalkanoate synthase is Ralstonia eutropha, Pseudomonas, Bacillus and Pseudomonas sp . It may be characterized as a PHA synthase derived from a strain selected from the group consisting of 6-19 or a variant enzyme of PHA synthase having an amino acid sequence selected from:
  • amino acid sequence comprising one or more variants selected from the group consisting of E130D, S325T, L412M, S477R, S477H, S477F, S477Y, S477G, Q481M, Q481K and Q481R in the amino acid sequence of SEQ ID NO: 2;
  • Amino acid sequence (C1335) wherein E130D, S325T, L412M, S477G and Q481M are mutated in amino acid sequence of SEQ ID NO: 2;
  • the gene encoding the DAHP (3-deoxy-D-arabino-heptulsonate-7-phosphate) synthase is a gene encoding the amino acid sequence represented by SEQ ID NO: 8
  • the gene encoding the corismate mutase / prephenate dehydrogenase may be a gene encoding an amino acid sequence represented by SEQ ID NO: 9, wherein the D-lactate dehydrogeze
  • the gene encoding the claw may be a gene encoding the amino acid sequence represented by SEQ ID NO: 10.
  • the gene encoding the hydroxymandelate synthetase may be a gene encoding the amino acid sequence represented by SEQ ID NO: 11
  • the gene encoding the hydroxymandelate oxidase May be a gene encoding an amino acid sequence represented by SEQ ID NO: 12
  • the gene encoding the D-mandelate dehydrogenase may be a gene encoding an amino acid sequence represented by SEQ ID NO: 13 Can be.
  • the microorganism of the present invention is a gene encoding ⁇ -ketothiolase involved in 3-hydroxybutyryl-CoA biosynthesis and a gene encoding acetoacetyl-CoA reductase in order to produce a polymer without externally supplying 3HB. It may be characterized by being introduced further.
  • the present invention provides a method for producing a polyhydroxyalkanoate containing mandelate as a monomer by culturing the recombinant microorganism; And (b) obtaining a polyhydroxyalkanoate containing the produced mandelate as a monomer.
  • 2-hydroxyisocapro which is a long-chain 2-HA monomer 8 (2HIC), 2-hydroxyhexanoate (2HH) and 2-hydroxyoctanoate (2HO) were used as monomers to confirm polymer production capacity.
  • 2-hydroxyisocaproate It was confirmed that a copolymer containing 2-hydroxyhexanoate or 2-hydroxyoctanoate was produced, and as the concentration of 2-HA contained in the medium increased, the mole fraction of the monomer contained in the copolymer increased. was confirmed (Table 4, Table 5 and Table 6).
  • the present invention provides a recombinant microorganism having the ability to produce polyhydroxyalkanoate containing the aromatic monomer or the long-chain 2-HA as a monomer, in a further aspect, 2-hydroxyisocaproate, 2-hydroxy.
  • a bacterial platform system has been developed for the production of various aromatic polyesters.
  • the aromatic polymer production system of the present invention identifies CoA-transferases having a new broad substrate range for activating aromatic compounds into their CoA derivatives, and in vivo, PHA synthase variants capable of polymerizing their aromatic CoA derivatives.
  • the pathway to overproduce aromatic monomers was established through the design and optimization of metabolism.
  • HadA or related enzymes
  • PHA synthetase can be engineered to accommodate the desired aromatic monomer.
  • the bacterial platform system developed in the present invention can contribute to establishing a bioprocess for the production of aromatic polyesters from renewable non-food biomass.
  • vector refers to a DNA preparation containing a DNA sequence operably linked to a suitable regulatory sequence capable of expressing DNA in a suitable host.
  • the vector may be a plasmid, phage particles, or simply a potential genomic insert. Once transformed into the appropriate host, the vector can replicate and function independently of the host genome, or in some cases can be integrated into the genome itself. Since plasmids are the most commonly used form of current vectors, “plasmid” and “vector” are sometimes used interchangeably in the context of the present invention. For the purposes of the present invention, it is preferred to use plasmid vectors.
  • Typical plasmid vectors that can be used for this purpose include (a) a replication initiation point that allows for efficient replication to include hundreds of plasmid vectors per host cell, and (b) host cells transformed with the plasmid vector. It has a structure comprising an antibiotic resistance gene and (c) a restriction enzyme cleavage site into which foreign DNA fragments can be inserted. Although no appropriate restriction enzyme cleavage site is present, the use of synthetic oligonucleotide adapters or linkers according to conventional methods facilitates ligation of the vector and foreign DNA.
  • the vector should be transformed into the appropriate host cell.
  • preferred host cells are prokaryotic cells.
  • Suitable prokaryotic host cells include E. coli DH5 ⁇ , E. col JM101, E. coli K12, E. coli W3110, E. coli X1776, E. coli XL-1Blue (Stratagene), E. coli B, E. coli B21, and the like. It includes. However, E. coli strains such as FMB101, NM522, NM538 and NM539 and other prokaryotic species and genera may also be used. In addition to the aforementioned E.
  • strains of the genus Agrobacterium such as Agrobacterium A4, bacilli, such as Bacillus subtilis, Salmonella typhimurium or Serratia marghesen Still other enterobacteria such as marcescens and various Pseudomonas strains can be used as host cells.
  • Prokaryotic transformation can be readily accomplished using the calcium chloride method described in section 1.82 of Sambrook et al., Supra. Alternatively, electroporation (Neumann et al., EMBO J., 1: 841, 1982) can also be used for transformation of these cells.
  • an expression vector known in the art may be used, and it is preferable to use a pET family vector (Novagen).
  • a pET family vector Novagen
  • histidine groups are bound to the ends of the expressed protein, and thus the protein can be effectively purified.
  • a general method known in the art may be used, and specifically, it may be separated by a chromatographic method using Ni-NTA His-binding resin (Novagen).
  • the recombinant vector may be characterized in that the pET-SLTI66, the host cell may be characterized in that E. coli or Agrobacterium.
  • expression “expression control sequence” in the present invention means a DNA sequence essential for the expression of a coding sequence operably linked in a particular host organism.
  • regulatory sequences include promoters for performing transcription, any operator sequence for regulating such transcription, sequences encoding suitable mRNA ribosomal binding sites, and sequences that control the termination of transcription and translation.
  • suitable control sequences for prokaryotes include promoters, optionally operator sequences, and ribosomal binding sites.
  • Eukaryotic cells include promoters, polyadenylation signals, and enhancers. The factor that most influences the amount of gene expression in the plasmid is the promoter.
  • an SR ⁇ promoter As the promoter for high expression, an SR ⁇ promoter, a promoter derived from cytomegalovirus, and the like are preferably used.
  • any of a wide variety of expression control sequences can be used in the vector.
  • Useful expression control sequences include, for example, early and late promoters of SV40 or adenovirus, lac system, trp system, TAC or TRC system, T3 and T7 promoters, major operator and promoter regions of phage lambda, fd code protein Regulatory region of, promoter for 3-phosphoglycerate kinase or other glycolysis enzymes, promoters of the phosphatase such as Pho5, promoter of yeast alpha-crossing system and gene expression of prokaryotic or eukaryotic cells or viruses Other sequences known to modulate and various combinations thereof.
  • the T7 promoter can be usefully used to express the proteins of the invention in E. coli.
  • Nucleic acids are "operably linked” when placed in a functional relationship with other nucleic acid sequences. This may be genes and regulatory sequence (s) linked in such a way as to allow gene expression when appropriate molecules (eg, transcriptional activating proteins) bind to regulatory sequence (s).
  • the DNA for a pre-sequence or secretion leader is operably linked to the DNA for the polypeptide when expressed as a shear protein that participates in the secretion of the polypeptide;
  • a promoter or enhancer is operably linked to a coding sequence when it affects the transcription of the sequence;
  • the ribosomal binding site is operably linked to a coding sequence when it affects the transcription of the sequence;
  • the ribosomal binding site is operably linked to a coding sequence when positioned to facilitate translation.
  • "operably linked” means that the linked DNA sequence is in contact, and in the case of a secretory leader, is in contact and present within the reading frame.
  • enhancers do not need to touch. Linking of these sequences is performed by ligation (linking) at convenient restriction enzyme sites. If such sites do not exist, synthetic oligonucleotide adapters or linkers according to conventional methods are used.
  • heterologous DNA refers to heterologous DNA, which is DNA not naturally found in host cells. Once the expression vector is in the host cell, it can replicate independently of the host chromosomal DNA and several copies of the vector and the inserted (heterologous) DNA can be produced.
  • the gene must be operably linked to transcriptional and translational expression control sequences that function in the selected expression host.
  • the expression control sequence and the gene of interest are included in one expression vector including the bacterial selection marker and the replication origin. If the host cell is a eukaryotic cell, the expression vector must further comprise an expression marker useful in the eukaryotic expression host.
  • Host cells transformed or transfected with the expression vectors described above constitute another aspect of the present invention.
  • transformation means introducing DNA into a host so that the DNA is replicable as an extrachromosomal factor or by chromosomal integration.
  • transfection means that the expression vector is accepted by the host cell whether or not any coding sequence is actually expressed.
  • the relative strength of the sequence, the controllability, and the compatibility with the DNA sequences of the present invention should be considered, particularly with regard to possible secondary structures.
  • Single cell hosts may be selected from a host for the selected vector, the toxicity of the product encoded by the DNA sequence of the invention, the secretory properties, the ability to accurately fold the protein, the culture and fermentation requirements, the product encoded by the DNA sequence of the invention from the host. It should be selected in consideration of factors such as the ease of purification.
  • one skilled in the art can select a variety of vector / expression control sequence / host combinations capable of expressing the DNA sequences of the invention in fermentation or large scale animal culture.
  • a binding method binding method
  • a panning method a panning method
  • a film emulsion method and the like can be applied.
  • E. coli was used as a recombinant microorganism, but any microorganism that produces acetyl-CoA from a carbon source can be used without limitation, and includes genus Alcaligenes, Pseudomonas, Escherichia, Ralstonia genus, Bacillus genus, Corynebacterium and the like can be used.
  • Recombinant strains, plasmids and primers used or produced in the present invention are shown in Tables 1-3.
  • Acetyl-CoA was used as CoA donor to find enzymes with broad spectrum of aromatic substrates.
  • An array similarity assay was performed to identify homologous enzymes for FldA and 2-isocaprenoyl-CoA: 2-hydroxyisocaproate of Clostridium difficile having at least 48% amino acid sequence identity with FldA among various FldAs of different origins.
  • CoA-transferase (HadA, SEQ ID NO: 1) was screened (FIG. 2).
  • a recombinant vector containing a gene encoding HadA the chromosomal DNA of Clostridium diffsile 630 strain was used as a template, and PCR was performed using HadA-hisF and HadA-hisR primers to obtain a C terminus.
  • the prepared his_HadA fragment was treated with restriction enzymes (NdeI and NotI) to the pET22b plasmid undergoing strong gene expression of the T7 promoter, followed by T4 DNA ligase, and his_HadA fragment digested with restriction enzyme and pET22b plasmid was conjugated to prepare a recombinant plasmid pET22b_hisHadA (FIG. 2).
  • restriction enzymes NdeI and NotI
  • the pET22b_hisHadA was introduced into Escherichia coli XL1-Blue (Stratagene Cloning Systems, USA), cultured, and IPTG was added to induce HadA expression, followed by Ni-NTA spin kit (Quiagen, Germany) using His-tag. HadA was purified from the culture medium at (Fig. 3a).
  • Figure 5 shows the molecular formula of the CoA conversion reaction of the various substrates that HadA can convert.
  • E. coli was engineered to produce D-phenyllactate from glucose in vivo.
  • Biosynthesis of aromatic compounds begins with the synthesis of 3-deoxy-D-arabino-heptulsonate-7-phosphate (DAHP), which is combined with phosphoenolpyruvate (PEP) by DAHP synthase. It is produced by the condensation of erythrose-4-phosphate (E4P). The resulting DAHP is converted to phenylpyruvate (PPA) followed by D-lactate dihydrogenase (FldH) to D-phenyllactate (FIG. 1). Metabolic pathways for aromatic compound biosynthesis are known to be complexly controlled by various inhibitory mechanisms.
  • the feedback inhibition resistance mutants AroGfbr [AroG (D146N)] and PheAfbr [PheA (T326P)] were constructed to release feedback inhibition by L-phenylalanine (Zhou, HY et al., Bioresour. Technol . 101: 4151, 2010; Kikuchi, Y. et al., Appl. Environ.Microbiol . 63: 761, 1997).
  • E. coli XL1-Blue expressing the FldH of ATCC 3502 was constructed.
  • 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase gene (aroG), a feedback inhibition resistance mutation, was constructed using primers AroG-F and AroG-R to construct pKM212-AroGfbr.
  • PCR product was prepared using the plasmid pTyr-a (Na, D. et al., Nature Biotechnol. 31: 170, 2013) as a template, and the PCR product was purified using pKM212 using restriction enzymes (EcoRI / HidIII).
  • PKM212-AroGfbr was constructed in conjunction with -MCS (Park, SJ et al., Metab. Eng . 20:20, 2013).
  • the pKM212-AroGfbrPheAfbr plasmid was constructed as follows. First, 991 bp DNA fragments from genomic DNA of Escherichia coli were amplified by PCR using primers PheA-F and PheAmut-R of a single mutated base (T976G). Second, a 200 bp DNA fragment was amplified from genomic DNA of Escherichia coli using a single mutated base (A976C) and PheAmut-F primer of PheA-R.
  • a DNA fragment of 1161bp was amplified by the primers PheA-F and PheA-R by overlap PCR.
  • the PCR product was linked to pKM212-AroGfbr prepared above using restriction enzyme (HindIII).
  • fldH D-lactate dehydrogenase
  • Codon usage frequency of the fldH gene was carried out using E. coli-optimized E. coli codon-optimized fldH gene using primers FldH-F and FldH-R and pUC57-FldHopt (GenScript, Piscataway, NJ, USA) as a template.
  • the PCR product was linked with pTrc99A (Pharmacia, Biotech, Sweden) using restriction enzymes (BamHI / HindIII) to prepare pTrc-FldH.
  • the fldH gene coupled to the trc promoter and rrnB terminator was amplified by PCR using primers Trc-F and Ter-R using pTrc-FldH as a template.
  • the amplified PCR product was linked with pACYC184KS (Korean Patent Publication No. 2015-0142304) using restriction enzymes (XhoI / SacI) to obtain pACYC-FldH.
  • PKM212-AroGfbrPheAfbr and pACYC-FldH prepared above were introduced into E. coli XL1-Blue to prepare recombinant E. coli expressing AroGfbr, PheAfbr and FldH.
  • the Escherichia coli produced 0.372 g / L of D-phenyllactate when incubated in MR medium containing 15.2 g / L of glucose.
  • the MR medium comprises 6.67 g KH 2 PO 4, 4 g (NH 4) 2 HPO 4, 0.8 g MgSO 4 .7H 2 O, 0.8 g citrate and 5 ml of trace metal solution, the trace metal solution being 0.5 M HCl: 10 g FeSO 4 ⁇ 7H 2 O, 2g CaCl 2, 2.2g ZnSO 4 .7H 2 O, 0.5g MnSO 4 .4H 2 O, 1g CuSO 4 .5H 2 O, 0.1g (NH 4) 6 Mo 7 O 24 .4H 2 O and 0.02 g Na 2 B 4 O 7 .10H 2 O.
  • E. coli XL1-Blue strains expressing the AroGfbr, PheAfbr and FldH producing small amounts of D-phenyllactate (0.372 g / L) from glucose were subjected to metabolic engineering. Yield was increased through.
  • E. coli XBT strains expressing AroGfbr, PheAfbr and FldH, which deleted TyrR, a dual transcription regulator that regulates aromatic amino acid biosynthesis were prepared.
  • the E. coli XBT strain was cultured in MR medium containing 16.4 g / L glucose and produced 0.5 g / L D-phenyllactate, which was 30% higher than the E. coli XL1-Blue strain without tyrR. Productivity was shown.
  • poxB a gene encoding pyruvate oxidase
  • pflB a gene encoding pyruvate formate lyase
  • adhE acetaldehyde dehydrogenase / alcohol dehydrogenase
  • E. coli XB201T strain produced 0.55 g / L of D-phenyllactate from 15.7 g / L of glucose, indicating a 10% higher yield than E. coli XBT.
  • metabolic analysis was performed according to in silico genome scale metabolic flux analysis to further increase D-phenyllactate production.
  • the tyrB gene encoding tyrosine aminotransferase and the aspC gene encoding aspartic acid aminotransferase were removed from the E. coli XB201T strain, and L-phenylalanine biosynthesis was reduced to D-phenyllactate. The carbon flow to the furnace was enhanced.
  • the E. coli XB201TBA strain produced as a result of the in silico flux response analysis produced 1.62 g / L of D-phenyllactate from 18.5 g / L of glucose, which greatly increased the yield of E. coli expressing AroGfbr, PheAfbr and FldH. It is 4.35 times higher than D-phenyllactate production of XL1-Blue strain.
  • chromosomal DNA of Clostridium difficile 630 strain was used as a template, and PCR was performed using HadA-sbF and HadA-ndR primers to prepare a recombinant vector.
  • a hadA gene segment encoding isocaproate-CoA transferase was constructed.
  • the amplified PCR product was linked with p619C1437-pct540 (Yang, TH et al. Biotechnol Bioeng 105: 150, 2010) using restriction enzymes (SbfI / NdeI) to obtain p619C1437-HadA.
  • P619C1437-HadA prepared above was introduced into E. coli XB201TBAL to prepare recombinant E. coli expressing AroGfbr, PheAfbr, FldH, PhaC1437 and HadA.
  • the E. coli was cultured in MR medium containing 20 g / L glucose and 1 g / L sodium 3HB to convert poly (52.1 mol% 3HB-co-47.9 mol% D-phenyllactate) to a content of 15.8% by weight of the dry cell weight.
  • Produced (FIG. 7).
  • Fed-batch also produced poly (52.3 mol% 3HB-co-47.7 mol% D-phenyllactate) at a 24.3 wt% content of dry cell weight (FIGS. 10a, b).
  • Escherichia coli XB201TBAL expressing AroGfbr, PheAfbr, FldH, PhaC1437 and HadA was incubated in MR medium containing 1 g / L sodium 3HB and 0.5 g / L D-mandelate, resulting in poly (55.2 mol% 3HB-co-43.0 mol % D-phenyllactate-co-1.8 mol% D-mandelate) was prepared in an amount of 11.6% by weight of the dry cell weight (FIG. 8a, b), containing D-mandelate using D-mandelate as a substrate. Aromatic polymers have been successfully prepared.
  • D-mandelate was produced in vivo by metabolic engineering.
  • Amycolatopsis orientalis-derived hydroxymandelate synthetase (HmaS), S. coelicolor, hydroxymandelate oxidase in E. coli XB201TBAL expressing AroGfbr, PheAfbr, FldH, PhaC1437 and HadA to produce D-mandelate from glucose (Hmo) and D-mandelate dehydrogenase (Dmd) from Rhodotorula graminis.
  • hmaS hydroxymandelic acid synthase gene from A. orientalis was used and the codon was cloned into a synthetic vector in Escherichia coli to construct plasmid pUC57-HmaSopt (GenScript, Piscataway, NJ, USA). ).
  • the pUC57-HmaSopt was linked to pKM212-MCS using restriction enzymes (EcoRI / KpnI).
  • EcoRI / KpnI restriction enzymes
  • To construct pKM212-HmaSHmo S. coelicolor's hydroxymandelate oxidase gene (hmo) was synthesized by codon-optimized hmo gene (GenScript, Piscataway, NJ, USA), and primers Hmo-F and Hmo-R were used. Amplified by PCR. The PCR product was linked to pKM212-HmaS using restriction enzymes (KpnI / BamHI) to prepare pKM212-HmaSHmo.
  • pUC57-Dmd containing the E. coli codon optimized dmd gene was synthesized to generate pKM212-HmaSHmoDmd (GenScript, Piscataway, NJ, USA) and E. coli codon optimized by PCR with primers Dmd-F and Dmd-R R. graminis D-mandelate dehydrogenase gene (dmd) was amplified.
  • the PCR product was linked to pKM212-HmaSHmo using restriction enzymes (BamHI / SbfI) to prepare pKM212-HmaSHmoDmd.
  • PKM212-HmaSHmoDmd prepared above was introduced into E. coli XB201TBAL expressing AroGfbr, PheAfbr, FldH, PhaC1437 and HadA, to prepare a recombinant strain having mandelate production capacity.
  • Aromatic polymer production was confirmed using 3-hydroxy-3-phenylpropionate (3HPh) as another possible aromatic monomer.
  • Escherichia coli XB201TBAL strains were cultured in a medium containing 20 g / L glucose, 0.5 g / L 3-hydroxy-3-phenylpropionic acid and 1 g / L sodium 3HB to obtain a poly (33.3 mol% 3HB-co-18.0 mol% D-phenyl Lactate-co-48.7 mol% 3HPh) was confirmed to produce 14.7 wt% of the dry cell weight (Figure 8c, d).
  • Copolymers containing hydroxyisocaproate, 2-hydroxyhexanoate or 2-hydroxyoctanoate were produced.
  • concentration of 2-HA contained in the medium increases, the mole fraction of the monomer contained in the copolymer increases (Table 4, Table 5 and Table 6).
  • PhaAB Five different plasmids expressing PhaAB were constructed under five promoters of different intensities (SEQ ID NOs: 89-93) and introduced into XB201TBAL strains expressing AroGfbr, PheAfbr, FldH, PhaC1437 and HadA.
  • pH-stat culture of E. coli XB201TBAL strain expressing PhaAB under the AroGfbr, PheAfbr, FldH, HadA, PhaC1437 and BBa_J23114 promoters was performed without 3HB feeding.
  • poly (67.6 mol% 3HB-co-32.4 mol% D-phenyllactate) having a polymer content of 43.8 wt% of dry cell weight was produced at 2.5 g / L (FIG. 10C, d).
  • the ldhA gene of the E. coli XB201TBA chromosome was replaced with the fldH gene to further optimize the production of aromatic polyhydroxyalkanoate to optimize the gene expression system.
  • the native promoter of the ldhA gene was replaced with a strong trc promoter to increase the expression of the fldH gene.
  • a fed-batch fermentation was performed using a pulse feeding method to supply glucose.
  • coli XB201TBAF strains expressing PhaAB under the AroGfbr, PheAfbr, FldH, HadA, PhaC1437, and BBa_J23114 promoters are poly (69.1 mol% 3HB-co-38.1 mol% D-phenyllactate) having a polymer content of 55.0% by weight of dry cell weight.
  • PHA Polyhydroxyalkanoate
  • monomer composition were determined by GC or GC-MS.
  • the collected cells were washed three times with distilled water, and then lyophilized for 24 hours, and the PHAs of the lyophilized cells were converted to the corresponding hydroxymethyl esters by acid catalyzed metanolysis.
  • the resulting methyl ester was obtained using GC (Agilent 6890N, Agilent, USA) equipped with an Agilent 7683 autoinjector, frame ionization detector and fused silica capillary column (ATTM-Wax, 30 m, ID 0.53 mm, thickness 1.20 ⁇ m, Alltech, USA). Analyzed.
  • the polymer was extracted by chloroform extraction and purified in cells using solvent extraction.
  • the structure, molecular weight and thermal properties of the polymers were measured using nuclear magnetic resonance (NMR), gel permeation chromatography (GPC) and differential scanning calorimetry (DSC), respectively.
  • Figure 7 shows the results of the analysis of the poly (3HB-co-D-phenyl lactate) produced by E. coli XB201TBAL
  • Figure 8 shows the poly (3HB-co-D- produced by E. coli XB201TBAL Phenyllactate-co-D-mandelate) is shown.
  • a biodegradable polymer containing an aromatic monomer or a long chain 2-HA as a monomer can be produced.

Abstract

The present invention relates to a recombinant microorganism to which a gene coding for 2-hydroxyisocaproate-CoA transferase and a gene coding for polyhydroxyalkanoate synthase are introduced and which has a potential of producing polyhydroxyalkanoate bearing an aromatic monomer or a long-chain 2-HA monomer and a method for producing polyhydroxyalkanoate bearing an aromatic monomer or a long-chain 2-HA monomer, using the recombinant microorganism. According to the present invention, a biodegradable polymer bearing an aromatic monomer or a long-chain 2-HA monomer can be produced.

Description

2-하이드록시이소카프로에이트-CoA 전이효소를 이용한 폴리하이드록시알카노에이트의 제조방법Method for preparing polyhydroxyalkanoate using 2-hydroxyisocaproate-CoA transferase
본 발명은 방향족 단량체 또는 장사슬 2-하이트록시알카노에이트(2-hydroxyalkanoate; 2-HA)를 단량체로 함유하는 폴리하이드록시알카노에이트의 제조방법에 관한 것으로, 더욱 자세하게는 2-하이드록시이소카프로에이트-CoA 전이효소를 코딩하는 유전자 및 폴리하이드록시알카노에이트 합성효소를 코딩하는 유전자가 도입되어 있으며, 방향족 단량체 또는 장사슬 2-HA를 단량체로 함유하는 폴리하이드록시알카노에이트 생성능을 가지는 재조합 미생물 및 상기 재조합 미생물을 이용한 방향족 단량체 또는 장사슬 2-HA를 단량체로 함유하는 폴리하이드록시알카노에이트의 제조방법에 관한 것이다.The present invention relates to a method for producing a polyhydroxyalkanoate containing an aromatic monomer or a long-chain 2-hydroxyalkanoate (2-HA) as a monomer, more particularly 2-hydroxyiso. A gene encoding a caproate-CoA transferase and a gene encoding a polyhydroxyalkanoate synthetase have been introduced, and have a polyhydroxyalkanoate generating ability containing an aromatic monomer or a long chain 2-HA as a monomer. A method for producing a polyhydroxyalkanoate containing a recombinant microorganism and an aromatic monomer or a long chain 2-HA using the recombinant microorganism as a monomer.
폴리하이드록시알카노에이트(polyhydroxyalkanoates; PHAs)는 다양한 미생물에 의해 합성되는 생물학적 폴리에스테르(polyester)이다. 이들 폴리머는 생분해성과 생체적합성 특성을 갖는 열가소성 물질이며, 석유 기반 고분자와 유사한 물성을 가질 수 있기 때문에 다양한 산업적 생의학적 응용이 가능하고, 재생 자원으로부터 생성된다(Lee, S. Y. Biotechnol. Bioeng. 49:1 1996). Polyhydroxyalkanoates (PHAs) are biological polyesters synthesized by a variety of microorganisms. These polymers are thermoplastics with biodegradable and biocompatible properties, and can have similar industrial properties as petroleum-based polymers, enabling a variety of industrial biomedical applications and resulting from renewable resources (Lee, SY Biotechnol. Bioeng . 49: 1 1996).
PHAs는 사이드 체인의 길이에 따라 짧은 탄소수를 가지는 SCL-PHA(short-chain-length PHA)와 긴 탄소수를 가지는 MCL-PHA(medium-chain-length PHA)로 구분되어진다. Ralstonia eutropha, pseudomonas, Bacillus 등의 미생물 유래의 PHA 합성 유전자를 클로닝하여 재조합 미생물을 제작하고 이를 통해 다양한 PHA가 합성된 바 있다(Qi et al., FEMS Microbiol. Lett., 157:155, 1997; Qi et al., FEMS Microbiol. Lett., 167:89, 1998; Langenbach et al., FEMS Microbiol. Lett., 150:303, 1997; WO 01/55436; US 6,143,952; WO 98/54329; WO 99/61624). PHAs are classified into short-chain-length PHAs (SCL-PHAs) having a short carbon number and medium-chain-length PHAs (MCL-PHAs) having a long carbon number according to side chain lengths. Cloning of PHA synthetic genes derived from microorganisms such as Ralstonia eutropha, pseudomonas, Bacillus, etc. to produce recombinant microorganisms through which various PHAs were synthesized (Qi et al., FEMS Microbiol. Lett., 157: 155, 1997; Qi et al., FEMS Microbiol. Lett ., 167: 89, 1998; Langenbach et al., FEMS Microbiol. Lett., 150: 303, 1997; WO 01/55436; US 6,143,952; WO 98/54329; WO 99/61624 ).
R-3-하이드록시부티르산(R-3-hydroxy butyric acid)의 호모 폴리머인 PHB와 같은 짧은 사이드 체인을 갖는 것들은 결정체의 열가소성 물질이며 잘 부러지는 저탄성의 특성을 갖고 있다. 반면에 긴 사이드 체인을 갖는 MCL-PHA는 보다 높은 탄성을 갖는다. PHB는 알려진 지 약 70년 정도 되었다(Lemoigne & Roukhelman, 1925). 반면에 MCL-PHA는 비교적 최근에 알려졌다(deSmet et al., J. Bacteriol.154:870-78 1983). 이들 공중합체는 PHB-co-HX(여기서 X는 3 하이드록시알카노에이트 또는 알카노에이트 또는 6 내지 그 이상의 탄소의 알케노에이트를 말한다)로 나타낼 수 있다. 특정 두 가지 단량체의 공중합체의 적당한 예로 폴리 PHB-co-3-하이드록시헥사노에이트가 있다(Brandl et al., Int.J. Biol. Macromol. 11:49, 1989; A mos & McInerey, Arch. Microbiol., 155:103, 1991; US 5,292,860).Those with short side chains, such as PHB, a homopolymer of R-3-hydroxy butyric acid, are crystalline thermoplastics and have low-elastic properties that break well. On the other hand, MCL-PHA with long side chains has higher elasticity. PHB has been known for about 70 years (Lemoigne & Roukhelman, 1925). MCL-PHA, on the other hand, is relatively recently known (deSmet et al., J. Bacteriol . 154: 870-78 1983). These copolymers may be represented by PHB-co-HX, where X refers to 3 hydroxyalkanoate or alkanoate or an alkenoate of 6 to more carbons. Suitable examples of copolymers of certain two monomers include poly PHB-co-3-hydroxyhexanoate (Brandl et al., Int. J. Biol. Macromol . 11:49, 1989; A mos & McInerey, Arch Microbiol. , 155: 103, 1991; US 5,292,860).
PHA의 생합성은 CoA-transferase나 CoA-ligase에 의해 하이드록시산이 하이드록시아실-CoA로 전환되고, 전환된 하이드록시아실-CoA가 PHA synthase에 의해 고분자화되는 과정을 거친다. 천연 PHA synthase의 경우 2-하이드록시아실-CoA에 대한 활성이 3-하이드록시아실-CoA보다 매우 낮다. 그러나, 최근 본 발명자들은 Pseudomonas sp. 6-19의 PHA synthase (PhaC1ps6-19)를 유전자 조작하여 2-하이드록시아실-CoA의 한 종류인 락틸-CoA를 기질로 사용할 수 있도록 개발하였다(WO08/062996; Yang et al., Biotechnol. Bioeng., 105:150, 2010; Jung et al., Biotechnol. Bioeng., 105:161, 2010). PhaC1ps6-19는 매우 다양한 기질특이성을 가지고, 2-하이드록시아실-CoA의 한 종류인 락틸-CoA를 기질로 사용할 수 있기 때문에 다양한 종류의 2-하이드록시산을 2-하이드록시아실-CoA로 전환할 수 있는 시스템을 개발한다면 여러 종류의 2-하이드록시산을 함유한 새로운 PHA의 합성이 가능할 것이다.Biosynthesis of PHA undergoes a process in which hydroxy acids are converted to hydroxyacyl-CoA by CoA-transferase or CoA-ligase, and the converted hydroxyacyl-CoA is polymerized by PHA synthase. For natural PHA synthase, the activity for 2-hydroxyacyl-CoA is much lower than for 3-hydroxyacyl-CoA. Recently, however, the inventors of Pseudomonas sp. 6-19 PHA synthase (PhaC1ps6-19) was genetically engineered to use lactyl-CoA, a type of 2-hydroxyacyl-CoA, as a substrate (WO08 / 062996; Yang et al., Biotechnol. Bioeng , 105: 150, 2010; Jung et al., Biotechnol. Bioeng ., 105: 161, 2010). PhaC1ps6-19 has a wide variety of substrate specificities and converts various types of 2-hydroxy acids to 2-hydroxyacyl-CoA because it can use lactyl-CoA, a type of 2-hydroxyacyl-CoA, as a substrate. Developing a feasible system would allow the synthesis of new PHAs containing different types of 2-hydroxy acids.
이에, 본 발명자들은 새로운 2-하이드록시산을 함유한 PHA를 생합성하기 위한 방법을 개발하고자 예의 노력한 결과, 아세틸-CoA를 사용하는 2-하이드록시산을 2-하이드록시아실-CoA로 전환하는 효소를 스크리닝하고, 상기 효소를 사용하는 경우, in vitro 조건에서 다양한 종류의 2-하이드록시아실-CoA를 생산할 수 있고, 이를 이용하여 다양한 PHA의 생산이 가능하다는 것을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors have made intensive efforts to develop a method for biosynthesis of PHA containing a new 2-hydroxy acid. As a result, the enzyme converts 2-hydroxy acid using acetyl-CoA into 2-hydroxyacyl-CoA. When screening and using the enzyme, it was confirmed that it is possible to produce a variety of 2-hydroxyacyl-CoA under in vitro conditions, it was confirmed that it is possible to produce a variety of PHA by using this, to complete the present invention .
발명의 요약Summary of the Invention
본 발명의 목적은 방향족 단량체 또는 장사슬 2-HA를 단량체로 함유하는 폴리하이드록시알카노에이트 생성능을 가지는 재조합 미생물을 제공하는데 있다. An object of the present invention is to provide a recombinant microorganism having a polyhydroxyalkanoate producing ability containing an aromatic monomer or a long chain 2-HA as a monomer.
본 발명의 다른 목적은 상기 재조합 미생물을 이용하여, 방향족 단량체 또는 장사슬 2-HA를 단량체로를 함유하는 폴리하이드록시알카노에이트를 제조하는 방법을 제공하는데 있다.Another object of the present invention to provide a method for producing a polyhydroxyalkanoate containing an aromatic monomer or a long chain 2-HA as a monomer using the recombinant microorganism.
상기 목적을 달성하기 위하여, 본 발명은 탄소원으로부터 아세틸-CoA 생성능을 가지는 미생물에서, 2-하이드록시이소카프로에이트-CoA 전이효소를 코딩하는 유전자 및 폴리하이드록시알카노에이트 합성효소를 코딩하는 유전자가 도입되어 있으며, 방향족 단량체 또는 장사슬 2-HA를 단량체로 함유하는 폴리하이드록시알카노에이트 생성능을 가지는 재조합 미생물을 제공한다.In order to achieve the above object, the present invention provides a gene encoding 2-hydroxyisocaproate-CoA transferase and a gene encoding polyhydroxyalkanoate synthase in a microorganism having acetyl-CoA generating ability from a carbon source. Provided is a recombinant microorganism having a polyhydroxyalkanoate-producing ability, which is introduced and contains an aromatic monomer or a long chain 2-HA as a monomer.
본 발명은 또한, (a) 상기 재조합 미생물을 배양하여 방향족 단량체 또는 장사슬 2-HA를 단량체로 함유하는 폴리하이드록시알카노에이트를 생성시키는 단계; 및 (b) 상기 생성된 방향족 단량체 또는 장사슬 2-HA를 단량체로 함유하는 폴리하이드록시알카노에이트를 수득하는 단계를 포함하는 방향족 단량체 또는 장사슬 2-HA를 단량체로 함유하는 폴리하이드록시알카노에이트의 제조방법을 제공한다.The present invention also comprises the steps of (a) culturing the recombinant microorganism to produce a polyhydroxyalkanoate containing an aromatic monomer or a long chain 2-HA as a monomer; And (b) obtaining a polyhydroxyalkanoate containing the produced aromatic monomer or long chain 2-HA as a monomer. Provided are methods for preparing canoate.
본 발명은 또한, 탄소원으로부터 아세틸-CoA 생성능을 가지는 미생물에서, 2-하이드록시이소카프로에이트-CoA 전이효소를 코딩하는 유전자, 폴리하이드록시알카노에이트 합성효소를 코딩하는 유전자, DAHP(3-데옥시-D-아라비노-헵툴로소네이트-7-인산) 합성효소를 코딩하는 유전자, 코리스메이트 뮤타아제/프레페네이트 디하이드로게네이즈를 코딩하는 유전자 및 D-락테이트 디하이드로게네이즈를 코딩하는 유전자가 증폭되어 있고, 페닐락테이트를 단량체로 함유하는 폴리하이드록시알카노에이트 생성능을 가지는 재조합 미생물을 제공한다.The present invention also relates to a gene encoding 2-hydroxyisocaproate-CoA transferase, a gene encoding polyhydroxyalkanoate synthase, DAHP (3-de) in a microorganism having acetyl-CoA generating ability from a carbon source. Oxy-D-arabino-heptulsonate-7-phosphate) synthetase, gene encoding corismate mutase / prephenate dehydrogenase and D-lactate dehydrogenase A recombinant microorganism having a polyhydroxyalkanoate-producing ability containing a phenyl lactate as a monomer and amplified gene is provided.
본 발명은 또한, (a) 상기 재조합 미생물을 배양하여, 페닐락테이트를 단량체로 함유하는 폴리하이드록시알카노에이트를 생성시키는 단계; 및 (b) 상기 생성된 페닐락테이트를 단량체로 함유하는 폴리하이드록시알카노에이트를 수득하는 단계를 포함하는 페닐락테이트를 단량체로 함유하는 폴리하이드록시알카노에이트의 제조방법을 제공한다.The present invention also comprises the steps of (a) culturing the recombinant microorganism, to produce a polyhydroxyalkanoate containing phenyl lactate as a monomer; And (b) obtaining a polyhydroxyalkanoate containing the produced phenyllactate as a monomer. It provides a method for producing polyhydroxyalkanoate containing a phenyllactate as a monomer.
본 발명은 또한, 탄소원으로부터 아세틸-CoA 생성능을 가지는 미생물에서, 2-하이드록시이소카프로에이트-CoA 전이효소를 코딩하는 유전자, 폴리하이드록시알카노에이트 합성효소를 코딩하는 유전자, DAHP(3-데옥시-D-아라비노-헵툴로소네이트-7-인산) 합성효소를 코딩하는 유전자, 코리스메이트 뮤타아제/프레페네이트 디하이드로게네이즈를 코딩하는 유전자 및 D-락테이트 디하이드로게네이즈를 코딩하는 유전자, 하이드록시만델레이트 합성효소를 코딩하는 유전자, 하이드록시만델레이트 산화효소를 코딩하는 유전자 및 D-만델레이트 탈수소효소를 코딩하는 유전자가 증폭되어 있고, 만델레이트를 단량체로 함유하는 폴리하이드록시알카노에이트 생성능을 가지는 재조합 미생물을 제공한다.The present invention also relates to a gene encoding 2-hydroxyisocaproate-CoA transferase, a gene encoding polyhydroxyalkanoate synthase, DAHP (3-de) in a microorganism having acetyl-CoA generating ability from a carbon source. Oxy-D-arabino-heptulsonate-7-phosphate) synthetase, gene encoding corismate mutase / prephenate dehydrogenase and D-lactate dehydrogenase A gene encoding a hydroxymandelate synthase, a gene encoding a hydroxymandelate oxidase, and a gene encoding a D-mandelate dehydrogenase, and containing a mandelate as a monomer. Provided is a recombinant microorganism having hydroxyalkanoate producing ability.
본 발명은 또한, (a) 상기 재조합 미생물을 배양하여 만델레이트를 단량체로 함유하는 폴리하이드록시알카노에이트를 생성시키는 단계; 및 (b) 상기 생성된 만델레이트를 단량체로 함유하는 폴리하이드록시알카노에이트를 수득하는 단계를 포함하는 만델레이트를 단량체로 함유하는 폴리하이드록시알카노에이트의 제조방법을 제공한다.The present invention also comprises the steps of (a) culturing the recombinant microorganism to produce a polyhydroxyalkanoate containing mandelate as a monomer; And (b) obtaining a polyhydroxyalkanoate containing the produced mandelate as a monomer, thereby providing a method for preparing polyhydroxyalkanoate containing a mandelate as a monomer.
도 1은 본 발명에 따른 방향족 폴리에스테르의 생합성 대사 경로를 나타낸 것으로, A는 FldA(신나모일-CoA:페닐락테이트 CoA-전이효소)를 사용하였을 때의 대사경로이고, B는 HadA(2-하이드록시이소카프로에이트-CoA 전이효소)를 사용하였을 때의 대사경로를 나타낸 것이다.Figure 1 shows the biosynthetic metabolic pathway of the aromatic polyester according to the present invention, A is the metabolic pathway when using FldA (cinnamoyl-CoA: phenyllactate CoA-transferase), B is HadA (2- Metabolic pathways using hydroxyisocaproate-CoA transferase).
도 2는 HadA와 FldA의 아미노산 서열 상동성을 비교한 결과를 나타낸 것이다. Figure 2 shows the result of comparing the amino acid sequence homology of HadA and FldA.
도 3의 a는 His-tag을 이용하여 HadA를 정제한 결과를 나타낸 것이고, b는 HadA가 아세틸-CoA를 CoA 공여체로 사용할 수 있는지 여부를 확인한 결과를 나타낸 것이다. 3 shows the result of purifying HadA using His-tag, and b shows the result confirming whether HadA can use acetyl-CoA as a CoA donor.
도 4는 HadA가 아세틸-CoA를 CoA 공여체로 사용하여 만델레이트, 4-하이드록시만델레이트, 페닐락테이트, 4-하이드록시페닐락테이트, 2-하이드록시-4-페닐부티레이트, 3-하이드록시-3-페닐프로피오네이트 및 4-하이드록시 벤조산을 해당 CoA 유도체로 전환할 있는지를 in vitro 효소 어세이 후 LC-MS 분석으로 확인한 결과를 나타낸 것이다. Figure 4 shows that HadA uses acetyl-CoA as CoA donor, mandelate, 4-hydroxymandelate, phenyllactate, 4-hydroxyphenyllactate, 2-hydroxy-4-phenylbutyrate, 3-hydroxy The conversion of oxy-3-phenylpropionate and 4-hydroxy benzoic acid to the corresponding CoA derivatives was confirmed by LC-MS analysis after in vitro enzyme assay.
도 5는 HadA가 전환할 수 있는 다양한 기질들의 CoA 전환 반응을 분자식으로 나타낸 것이다. 5 is a molecular formula of the CoA conversion reaction of various substrates that HadA can convert.
도 6은 in silico 게놈 규모 대사 플럭스 분석에 따른 대사공학 분석을 실시하여, D-페닐락테이트 생산을 증가시킨 결과를 나타낸 것이다. Figure 6 shows the results of increasing the production of D-phenyl lactate by performing metabolic analysis according to in silico genome scale metabolic flux analysis.
도 7은 대장균 XB201TBAL에 의하여 생산된 폴리(3HB-co-D-페닐락테이트)를 분석한 결과를 나타낸 것이다. Figure 7 shows the results of the analysis of poly (3HB-co-D-phenyl lactate) produced by E. coli XB201TBAL.
도 8 대장균 XB201TBAL에 의하여 생산된 폴리 (3HB-co-D-페닐락테이트-co-3-하이드록시-3-페닐프로피오네이트)와 폴리(3HB-co-D-페닐락테이트-co-D-만델레이트)를 분석한 결과를 나타낸 것이다. Figure 8 Poly (3HB-co-D-phenyllactate-co-3-hydroxy-3-phenylpropionate) and poly (3HB-co-D-phenyllactate-co-D produced by Escherichia coli XB201TBAL -Mandelate) shows the result of analysis.
도 9는 상이한 강도의 5 가지 프로모터 하에서 PhaAB를 발현하는 대장균 XB201TBAL 균주에서 폴리(3HB-co-D-페닐락테이트) 생산 결과를 나타낸 것이다. 9 shows the results of poly (3HB-co-D-phenyllactate) production in E. coli XB201TBAL strains expressing PhaAB under five promoters of different intensities.
도 10의 a 및 b는 AroGfbr, PheAfbr, FldH, HadA 및 PhaC1437를 발현하는 대장균 XB201TBAL 균주를 3HB를 함유한 MR 배지에서 유가식 발효하여 폴리(3HB-co-D-페닐락테이트)를 생산한 결과를 나타낸 것이고, c 및 d는 AroGfbr, PheAfbr, FldH, HadA, PhaC1437 및 BBa_J23114 프로모터 하에서 PhaAB를 발현하는 대장균 XB201TBAL 균주를 3HB 첨가없이 유가식 발효하여, 폴리(3HB-co-D-페닐락테이트)를 생산한 결과를 나타낸 것이며, e 및 f는 AroGfbr, PheAfbr, FldH, HadA, PhaC1437 및 BBa_J23114 프로모터 하에서 PhaAB를 발현하는 대장균 XB201TBAF 균주를 3HB 첨가없이 유가식 발효하여, 폴리(3HB-co-D-페닐락테이트)를 생산한 결과를 나타낸 것이다.10A and 10B show the production of poly (3HB-co-D-phenyllactate) by fed-batch fermentation of E. coli XB201TBAL strain expressing AroGfbr, PheAfbr, FldH, HadA and PhaC1437 in MR medium containing 3HB. C and d are fed by a fed-batch fermentation of the E. coli XB201TBAL strain expressing PhaAB under the AroGfbr, PheAfbr, FldH, HadA, PhaC1437 and BBa_J23114 promoters without addition of 3HB to obtain poly (3HB-co-D-phenyllactate). Production results are shown, and e and f are fed by a fed-batch fermentation of the E. coli XB201TBAF strain expressing PhaAB under the AroGfbr, PheAfbr, FldH, HadA, PhaC1437 and BBa_J23114 promoters without addition of 3HB, and thus poly (3HB-co-D-phenyllac Tate) is produced.
발명의 상세한 설명 및 바람직한 구현예Detailed Description of the Invention and Preferred Embodiments
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.
방향족 폴리에스테르는 주로 석유에서 생산되는 필수 플라스틱이다. 본 발명에서는 폴리하이드록시알카노에이트(PHA) 합성효소 및 조효소 A (CoA) 전이효소를 발현하는 대사공학적으로 조작된 대장균에 의하여, 글루코오스로부터 방향족 폴리에스테르 또는 장사슬 2-하이드록시알카노에이트를 단량체로 하는 폴리머를 원스탭으로 생산하는 방법을 확립하였다. Aromatic polyesters are essential plastics produced mainly from petroleum. In the present invention, an aromatic polyester or a long chain 2-hydroxyalkanoate is prepared from glucose by metabolic engineering E. coli expressing polyhydroxyalkanoate (PHA) synthase and coenzyme A (CoA) transferase. The method of producing the monomer polymer by one-step was established.
본 발명의 일양태에서는 방향족 폴리에스테르로 페닐락테이트를 함유하는 PHA를 생산하기 위하여, in vitro 분석에 의해 활성이 확인된 신나모일-CoA:페닐락테이트 CoA-전이효소(FldA) 및 4-쿠마레이트:CoA 리가제(4CL)를 PHA 합성효소와 함께 D-페닐락테이트 생산 대장균 균주에서 발현시켰다. 상기 균주는 in vivo에서 생성된 신나모일-CoA를 CoA 공여체로 사용하여 폴리(16.8 mol% D-락테이트-co-80.8 mol% 3HB-co-1.6mol % D-페닐락테이트-co-0.8mol % D-4-하이드록시페닐락테이트) 폴리머를 건조 세포 무게의 12.8 중량%의 함량으로 생산하였다. In one embodiment of the present invention, cinnamoyl-CoA: phenyllactate CoA-transferase (FldA) and 4-Cuma have been identified by in vitro assays to produce PHAs containing phenyllactate as aromatic polyesters. Rate: CoA ligase (4CL) was expressed in D-phenyllactate producing E. coli strains along with PHA synthase. The strain was prepared using poly (16.8 mol% D-lactate-co-80.8 mol% 3HB-co-1.6mol% D-phenyllactate-co-0.8mol using Cinnamoyl-CoA generated in vivo as a CoA donor. % D-4-hydroxyphenyllactate) polymer was produced at a content of 12.8% by weight of dry cell weight.
그러나, 페닐락테이트 CoA-전이효소(FldA)의 방향족 기질 이용 범위는 매우 좁기 때문에 CoA 공여체로서 아세틸-CoA를 이용하여 다양한 방향족 하이드록시아실 CoA를 생성할 수 있는 2-이소카프레노일-CoA:2-하이드록시이소카프로에이트 CoA-transferase (HadA)을 확인하고 이를 선택하여 방향족 PHA 생산에 이용하였다. 높은 몰분율의 D-페닐락테이트를 포함하는 방향족 PHA를 대량 생산하기 위하여, 먼저 단량체인 D-페닐락테이트를 과잉 생성하도록 최적의 대사 경로를 설계하였다. However, since the range of aromatic substrate use of phenyllactate CoA-transferase (FldA) is very narrow, 2-isocaprenoyl-CoA capable of producing various aromatic hydroxyacyl CoAs using acetyl-CoA as CoA donor: 2-hydroxyisocaproate CoA-transferase (HadA) was identified and selected for use in aromatic PHA production. In order to mass produce aromatic PHAs containing high mole fractions of D-phenyllactate, an optimal metabolic pathway was first designed to overproduce the monomer D-phenyllactate.
본 발명의 일 양태에서는, D-페닐락테이트 생산에 최적의 대사경로를 가지도록 대사공학적으로 조작된 대장균을 제조하기 위하여, tyrR 결손 대장균에서 피드백 저항 aroG, pheA와 fldH 유전자를 과발현시키고, 경쟁 대사경로(pflB, poxB, adhE 및 frdB)를 결실시켰으며, in silico 게놈 규모 대사 플럭스 분석에 따라 tyrB 및 aspC 유전자를 더 결실시켰다. 상기 대사공학적으로 조작된 대장균은 1.62g/L의 D-페닐락테이트를 생산하였다. 상기 D-페닐락테이트 과잉 생산 균주에 HadA와 PHA 합성효소를 발현시킨 경우, 건조 세포 무게의 15.8 중량%의 폴리(52.1mol % 3HB-co-47.9mol % D-페닐락테이트)이 생성되는 것을 확인하였다. 또한 4-하이드록시페닐락테이트, 만델레이트(mandelate) 및 3-하이드록시-3-페닐프로피오네이트를 포함하는 폴리에스테르를 제조함으로써 다양한 방향족 폴리에스테르를 제조할 수 있는 가능성을 확인하였다.In one aspect of the present invention, in order to prepare an E. coli engineered to have an optimal metabolic pathway for D-phenyllactate production, over-expression of feedback resistance aroG, pheA and fldH genes in tyrR deficient E. coli, and competitive metabolism The pathways (pflB, poxB, adhE and frdB) were deleted and the tyrB and aspC genes were further deleted following in silico genome scale metabolic flux analysis. The metabolically engineered Escherichia coli produced 1.62 g / L of D-phenyllactate. When HadA and PHA synthase were expressed in the D-phenyllactate over-producing strain, 15.8% by weight of poly (52.1 mol% 3HB-co-47.9 mol% D-phenyllactate) of dry cell weight was produced. Confirmed. In addition, by making polyesters comprising 4-hydroxyphenyllactate, mandelate and 3-hydroxy-3-phenylpropionate, the possibility of producing various aromatic polyesters was confirmed.
따라서, 본 발명은 일 관점에서, 탄소원으로부터 아세틸-CoA 생성능을 가지는 미생물에서, 2-하이드록시이소카프로에이트-CoA 전이효소를 코딩하는 유전자 및 폴리하이드록시알카노에이트 합성효소를 코딩하는 유전자가 도입되어 있으며, 방향족 단량체 또는 장사슬 2-HA를 단량체로 함유하는 폴리하이드록시알카노에이트 생성능을 가지는 재조합 미생물에 관한 것이다.Therefore, in one aspect, the present invention, in a microorganism having the ability to produce acetyl-CoA from a carbon source, a gene encoding 2-hydroxyisocaproate-CoA transferase and a gene encoding a polyhydroxyalkanoate synthase is introduced The present invention relates to a recombinant microorganism having a polyhydroxyalkanoate generating ability containing an aromatic monomer or a long chain 2-HA as a monomer.
본 발명에 있어서, 장사슬 2-HA는 탄소수 6~8의 2-하이드록시알카노에이트를 의미한다. In the present invention, the long chain 2-HA means 2-hydroxyalkanoate having 6 to 8 carbon atoms.
본 발명에 있어서, 상기 방향족 단량체 또는 장사슬 2-HA 단량체는 2-하이드록시이소카프로에이트, 2-하이드록시헥사노에이트, 2-하이드록시옥타노에이트, 페닐락테이트, 2-하이드록시-4-페닐부티레이트, 3-하이드록시-3-페닐프로피오네이트, 4-하이드록시벤조산 및 만델레이트로 구성된 군에서 선택되는 것을 특징으로 할 수 있다. In the present invention, the aromatic monomer or long-chain 2-HA monomer is 2-hydroxyisocaproate, 2-hydroxyhexanoate, 2-hydroxyoctanoate, phenyl lactate, 2-hydroxy-4 It may be characterized in that it is selected from the group consisting of -phenylbutyrate, 3-hydroxy-3-phenylpropionate, 4-hydroxybenzoic acid and mandelate.
본 발명에 있어서, 상기 폴리하이드록시알카노에이트 합성효소는 Ralstonia eutropha, Pseudomonas, Bacillus 및 Pseudomonas sp. 6-19으로 구성된 군에서 선택되는 균주 유래의 PHA synthase 또는 하기에서 선택되는 아미노산 서열을 가지는 PHA synthase의 변이효소인 것을 특징으로 할 수 있다:In the present invention, the polyhydroxyalkanoate synthase is Ralstonia eutropha, Pseudomonas, Bacillus and Pseudomonas sp. It may be characterized as a PHA synthase derived from a strain selected from the group consisting of 6-19 or a variant enzyme of PHA synthase having an amino acid sequence selected from:
서열번호 2의 아미노산 서열에서 E130D, S325T, L412M, S477R, S477H, S477F, S477Y, S477G, Q481M, Q481K 및 Q481R로 구성되는 군으로부터 선택되는 하나 이상의 변이를 포함하는 아미노산 서열;An amino acid sequence comprising one or more variants selected from the group consisting of E130D, S325T, L412M, S477R, S477H, S477F, S477Y, S477G, Q481M, Q481K and Q481R in the amino acid sequence of SEQ ID NO: 2;
서열번호 2의 아미노산 서열에서 E130D, S325T, L412M, S477G 및 Q481M이 변이된 아미노산 서열(C1335);Amino acid sequence (C1335) wherein E130D, S325T, L412M, S477G and Q481M are mutated in amino acid sequence of SEQ ID NO: 2;
서열번호 2의 아미노산 서열에서 E130D, S477F 및 Q481K가 변이된 아미노산 서열(C1310); 및Amino acid sequence (C1310) wherein E130D, S477F and Q481K are mutated in the amino acid sequence of SEQ ID NO: 2; And
서열번호 2의 아미노산 서열에서 E130D, S477F 및 Q481R이 변이된 아미노산 서열(C1312).The amino acid sequence of E130D, S477F and Q481R having a mutated amino acid sequence of SEQ ID NO: 2 (C1312).
본 발명에 있어서, 상기 2-하이드록시이소카프로에이트-CoA 전이효소는 Clostridium difficile 630 유래의 hadA인 것을 특징으로 할 수 있다.In the present invention, the 2-hydroxyisocaproate-CoA transferase may be characterized as hadA derived from Clostridium difficile 630.
본 발명에 있어서, 상기 2-하이드록시이소카프로에이트-CoA 전이효소는 아세틸-CoA를 CoA 공여체로 사용하는 것을 특징으로 할 수 있다.In the present invention, the 2-hydroxyisocaproate-CoA transferase may be characterized by using acetyl-CoA as CoA donor.
본 발명의 미생물은 외부에서 3HB의 공급이 없이도 폴리머를 생산하기 위하여, 3-hydroxybutyryl-CoA 생합성에 관여하는 β-케토티올레이즈를 코딩하는 유전자와 아세토아세틸-CoA 리덕테이즈를 코딩하는 유전자가 추가로 도입되어 있는 것을 특징으로 할 수 있다. The microorganism of the present invention is a gene encoding β-ketothiolase involved in 3-hydroxybutyryl-CoA biosynthesis and a gene encoding acetoacetyl-CoA reductase in order to produce a polymer without externally supplying 3HB. It may be characterized by being introduced further.
다른 관점에서, 본 발명은 (a) 상기 재조합 미생물을 배양하여 방향족 단량체 또는 장사슬 2-HA를 단량체로 함유하는 폴리하이드록시알카노에이트를 생성시키는 단계; 및 (b) 상기 생성된 방향족 단량체 또는 장사슬 2-HA를 단량체로 함유하는 폴리하이드록시알카노에이트를 수득하는 단계를 포함하는 방향족 단량체 또는 장사슬 2-HA를 단량체로 함유하는 폴리하이드록시알카노에이트의 제조방법에 관한 것이다. In another aspect, the present invention comprises the steps of (a) culturing the recombinant microorganism to produce a polyhydroxyalkanoate containing an aromatic monomer or long chain 2-HA as a monomer; And (b) obtaining a polyhydroxyalkanoate containing the produced aromatic monomer or long chain 2-HA as a monomer. It relates to a method for producing a canoate.
본 발명의 일 양태에서는 폴리하이드록시알카노에이트 합성에 사용되는 Pct(Propionyl-CoA transferase)가 페닐락테이트와 만델레이트를 각각 페닐락틸-CoA와 만델릴-CoA로 활성화할 수 있는지 여부를 확인하였다. Pctcp의 돌연변이(Pct540)는 글리콜산, 젖산, 2-하이드록시부틸산, 2-하이드록시이소발러레이트 및 각종 하이드록시산 등의 2-하이드록시산을 포함하는 폴리에스테르의 생체 내 생산에 성공적으로 사용되고 있기 때문에, Pct540은 탄소수 및 수산기 위치에 대하여, 넓은 기질 스펙트럼을 가진다고 할 수 있다. 그러나, Pct540은 페닐락테이트 및 만델레이트에 대한 촉매 활성은 가지고 있지 않는 것을 확인하였으며, 따라서, 본 발명에서는 방향족 공중합체 생산을 위하여, 방향족 화합물에 대응하는 CoA 유도체를 활성화할 수 있는 신규 CoA-전이효소를 찾고자 하였다.In one embodiment of the present invention, whether Pct (Propionyl-CoA transferase) used for polyhydroxyalkanoate synthesis can activate phenyllactate and mandelate with phenyllactyl-CoA and mandelyl-CoA, respectively. . Mutation of Pctcp (Pct540) has been successful in in vivo production of polyesters comprising 2-hydroxy acids such as glycolic acid, lactic acid, 2-hydroxybutyl acid, 2-hydroxyisovalorate and various hydroxy acids. Since it is used, Pct540 can be said to have a broad substrate spectrum with respect to carbon number and hydroxyl position. However, Pct540 was found to have no catalytic activity for phenyllactate and mandelate, and therefore, in the present invention, for the production of aromatic copolymers, a novel CoA-transition capable of activating CoA derivatives corresponding to aromatic compounds We wanted to find an enzyme.
Clostridium sporogenes의 신나모일-CoA : 페닐락테이트 CoA-전이효소(FldA)는 신나모일-CoA를 CoA 공여체로 사용하여 페닐락테이트를 페닐락틸-CoA로 변환할 수 있는 것으로 보고되었다(Dickert, S. et al., Eur. J. Biochem. 267:3874, 2000). 신나모일-CoA는 대장균의 비천연 대사 물질이기 때문에 세포 내에 풍부한 대사산물인 아세틸-CoA를 CoA 공여체로 사용하는지 확인하기 위하여 C. sporogenes의 FldA와 99.0 %의 상동성을 가지는 Clostridium botulinum A str. ATCC 3502 유래의 FldA를 테스트하였다. 그러나 C. botulinum A str. ATCC 3502의 FldA는 CoA 공여체로서 아세틸-CoA를 이용하여 페닐락틸-CoA를 생성하는 촉매 활성을 갖지 않는 것을 확인하였다. Cinnamoyl-CoA: Phenyllactate CoA-transferase (FldA) of Clostridium sporogenes has been reported to convert phenyllactate to phenyllactyl-CoA using cinnamoyl-CoA as a CoA donor (Dickert, S. et al., Eur. J. Biochem . 267: 3874, 2000). Cinnamoyl-CoA is a non-natural metabolite of Escherichia coli. Therefore, to confirm the use of acetyl-CoA, a rich metabolite in cells, as a CoA donor, Clostridium botulinum A str. FldA from ATCC 3502 was tested. However, C. botulinum A str. It was confirmed that FldA of ATCC 3502 does not have the catalytic activity of generating phenyllactyl-CoA using acetyl-CoA as CoA donor.
한편, Streptomyces coelicolor 4-coumarate:CoA 리가아제(4CL)가 리그닌, 플라보노이드, 파이토알렉신 등 식물의 2차 대사물질의 전구체를 생산하는 페닐프로파노이드 대사에 중요한 역할을 한다는 것이 알려져 있다(Kaneko, M.et al, J. Bacteriol. 185:20,2003). 따라서, 본 발명의 일 양태에서는 4CL을 도입함으로써 신나메이트에서 신나모일-CoA를 합성하는 생합성 경로를 설계하였다. 4CL 변이체를 사용하여, 신나메이트를 신나모일-CoA로 전환하는데 사용하였으며, 신나모일-CoA는 페닐락틸-CoA 형성을 위한 FldA의 CoA 공여체로 사용하였다. 그 결과, in vitro에서 4CL과 FldA의 순차적 반응에 의해 페닐락틸-CoA를 성공적으로 합성하였다. 이러한 결과는 4CL 및 FldA를 페닐락틸-CoA의 생성에 사용할 수 있는 것과 방향족 폴리에스테르 제조에 사용될 가능성을 확인하였다. 마찬가지로 다른 유망한 방향족 단량체인 4-하이드록시페닐락테이트도 4CL 변이체와 FldA의 in vitro 순차 반응에 의해 4-하이드록시페닐락틸-CoA로 변환되는 것을 확인하였다.On the other hand, it is known that Streptomyces coelicolor 4-coumarate: CoA ligase (4CL) plays an important role in phenylpropanoid metabolism, which produces precursors of plant secondary metabolites such as lignin, flavonoids and phytoalexin (Kaneko, M. et al, J. Bacteriol. 185: 20, 2003). Therefore, in one aspect of the present invention, a biosynthetic pathway for synthesizing cinnamoyl-CoA from cinnamate was designed by introducing 4CL. The 4CL variant was used to convert cinnamates to cinnamoyl-CoA and cinnamoyl-CoA was used as CoA donor of FldA for phenyllactyl-CoA formation. As a result, phenyllactyl-CoA was successfully synthesized by sequential reaction of 4CL and FldA in vitro . These results confirmed that 4CL and FldA could be used for the production of phenyllactyl-CoA and that it could be used for producing aromatic polyesters. Similarly, it was confirmed that 4-hydroxyphenyllactate, another promising aromatic monomer, was also converted to 4-hydroxyphenyllactyl-CoA by in vitro sequential reaction of 4CL variant with FldA.
비천연 폴리에스테르의 제조에 있어서는 해당 CoA 기질의 중합을 위한 PHA 합성효소의 변이체를 선택하는 것이 중요하므로, 다양한 PHA 합성효소의 성능을 알아보기 위해 Pseudomonas sp. MBEL 6-19 PHA 합성효소 (PhaCPs6-19) 변이체를 AroGfbr, PAL, 4CL, FldA 및 Pct540을 과잉 발현하는 대장균 XL1-Blue 에서 발현시켰다. 제작된 재조합 균주를 20g/L 글루코오스, 1g/L D-페닐락테이트 및 1g/L 소듐 3-하이드록시부티레이트(3HB)을 첨가한 MR 배지에서 배양하였다. 소듐 3-하이드록시부티레이트(3HB)는 Pct540 의해 PhaC의 선호 기질인 3HB-CoA로 전환되고, 충분한 양의 PHA의 생산을 가능하게 하기 때문에 폴리머의 생산을 강화하기 위하여 첨가하였다. 다른 PHA 합성효소 변이체를 발현하는 대장균 XL1-Blue는 다른 모노머 조성을 갖는 다양한 양의 폴리(D-락테이트-co-3HB-co-D-페닐락테이트)를 생산할 수 있다. In the preparation of non-natural polyesters, it is important to select a variant of PHA synthase for polymerization of the corresponding CoA substrate. Therefore, Pseudomonas sp. MBEL 6-19 PHA synthase (PhaCPs6-19) variants were expressed in Escherichia coli XL1-Blue overexpressing AroGfbr, PAL, 4CL, FldA and Pct540. The prepared recombinant strain was cultured in MR medium to which 20 g / L glucose, 1 g / L D-phenyllactate and 1 g / L sodium 3-hydroxybutyrate (3HB) were added. Sodium 3-hydroxybutyrate (3HB) was converted by Pct540 to 3HB-CoA, which is the preferred substrate of PhaC, and was added to enhance the production of the polymer because it allows the production of sufficient amounts of PHA. E. coli XL1-Blue, which expresses different PHA synthase variants, can produce varying amounts of poly (D-lactate-co-3HB-co-D-phenyllactate) with different monomer compositions.
상기 실험 결과, PhaC 변이체에서 4개의 아미노산 치환(E130D, S325T, S477G 및 Q481K)을 포함하는 PhaC1437이 폴리(18.3 mol% D-락테이트-co-76.9 mol% 3HB-co-4.8 mol% D-페닐락테이트)를 건조 세포 무게의 7.8중량%로 생산하여 가장 적합한 PhaC 변이체인 것으로 확인되었다. As a result of this experiment, PhaC1437 containing four amino acid substitutions (E130D, S325T, S477G and Q481K) in the PhaC variant was poly (18.3 mol% D-lactate-co-76.9 mol% 3HB-co-4.8 mol% D-phenyl Lactate) was produced at 7.8% by weight of the dry cell weight to identify the most suitable PhaC variant.
다음으로, in vivo에서 글루코오스로부터 D-페닐락테이트를 생성하도록 대장균을 조작하였다. 방향족 화합물의 생합성은 3-데옥시-D-아라비노-헵툴로소네이트-7-인산(DAHP)의 합성에서 시작되며, 상기 DAHP는 DAHP 합성효소에 의한 포스포에놀피루베이트(PEP)와 엘리쓰로즈-4-인산(E4P)의 축합으로 생성된다. 생성된 DAHP는 페닐피루베이트(PPA)로 전환된 후, D-락테이트 디하이드로게네이즈(FldH)에 의해 D-페닐락테이트로 전환된다(도 1). 방향족 화합물 생합성을 위한 대사경로는 다양한 저해기구에 의해 복잡하게 제어되는 것으로 알려져 있다. aroG에 의해 코딩되는 DAHP 합성효소와 pheA에 의하여 코딩되는 코리스메이트 뮤타아제/프레페네이트 디하이드로게네이즈의 발현은 L-페닐알라닌에 의하여 저해된다(ribe, D. E. et al., J. Bacteriol. 127:1085, 1976).Next, E. coli was manipulated to generate D- phenyllactate from glucose in vivo . Biosynthesis of aromatic compounds begins with the synthesis of 3-deoxy-D-arabino-heptulsonate-7-phosphate (DAHP), which is combined with phosphoenolpyruvate (PEP) by DAHP synthase. It is produced by the condensation of ellithrose-4-phosphate (E4P). The resulting DAHP is converted to phenylpyruvate (PPA) followed by D-lactate dihydrogenase (FldH) to D-phenyllactate (FIG. 1). Metabolic pathways for aromatic compound biosynthesis are known to be complexly controlled by various inhibitory mechanisms. Expression of DAHP synthase encoded by aroG and corismate mutase / prephenate dehydrogenase encoded by pheA is inhibited by L-phenylalanine (ribe, DE et al., J. Bacteriol. 127: 1085, 1976).
본 발명에서는 L-페닐알라닌에 의한 피드백 저해를 해제하기 위해 피드백 저해 내성 돌연변이 AroGfbr [AroG (D146N)] 및 PheAfbr [PheA (T326P)]를 구축하였다(Zhou, H. Y. et al., Bioresour. Technol. 101:4151, 2010; Kikuchi, Y. et al., Appl. Environ. Microbiol. 63:761, 1997). AroGfbr, PheAfbr 및 C. botulinum A str. ATCC 3502의 FldH를 발현하는 대장균 XL1-Blue는 글루코오스 15.2g/L로부터 D-페닐락테이트 0.372g/L를 생성하였다. 상기 균주의 PAL, 4CL, FldA, Pct540 및 PhaC1437의 과잉발현은 폴리(16.8 mol% D-락테이트-co-80.8 mol% 3HB-co-1.6 mol% D-페닐락테이트-co-0.8 mol% D-4-하이드록시페닐락테이트)를 건조세포 무게의 12.8 중량% 까지 증가시켰다. D-페닐락테이트를 포함하는 방향족 PHA를 제조하는 데에는 두가지의 문제가 있으며, 첫째는 고분자 합성의 효율 및 방향족 단량체의 함량이 매우 낮다는 것으로, 이는 신나모일-CoA를 CoA 공여체로 사용하는 FldA의 비효율성에 의한 것으로 생각되었다. 두번째는 방향족 PHA의 모노머 스펙트럼이 매우 좁다는 것이다. in vitro 효소 분석 결과, FldA가 CoA를 페닐락테이트 및 4-하이드록시페닐락테이트에 옮길 수 있지만, 만델레이트, 2-하이드록시-4-페닐부틸레이트, 3-하이드록시-3-페닐프로피오네이트 및 4-하이드록시 벤조산과 같은 기질로는 옮길 수 없다는 것을 확인하였다.In the present invention, feedback inhibition resistance mutations AroGfbr [AroG (D146N)] and PheAfbr [PheA (T326P)] were constructed to release feedback inhibition by L-phenylalanine (Zhou, HY et al., Bioresour. Technol. 101: 4151, 2010; Kikuchi, Y. et al., Appl. Environ.Microbiol. 63: 761, 1997). AroGfbr, PheAfbr and C. botulinum A str. Escherichia coli XL1-Blue expressing FldH of ATCC 3502 produced 0.372 g / L of D-phenyllactate from 15.2 g / L of glucose. Overexpression of PAL, 4CL, FldA, Pct540 and PhaC1437 of the strain was poly (16.8 mol% D-lactate-co-80.8 mol% 3HB-co-1.6 mol% D-phenyllactate-co-0.8 mol% D -4-hydroxyphenyllactate) was increased to 12.8% by weight of the dry cell weight. There are two problems in preparing aromatic PHA containing D-phenyllactate. Firstly, the efficiency of polymer synthesis and the content of aromatic monomers are very low, which is due to the fact that FldA using Cinnamoyl-CoA as a CoA donor. It was thought to be due to inefficiency. The second is that the monomer spectrum of aromatic PHAs is very narrow. In vitro enzyme analysis showed that FldA can transfer CoA to phenyllactate and 4-hydroxyphenyllactate, but mandelate, 2-hydroxy-4-phenylbutylate, 3-hydroxy-3-phenylpropio It was confirmed that it could not be transferred to substrates such as nate and 4-hydroxy benzoic acid.
본 발명에서는 상기 문제를 해결하기 위하여, CoA 공여체로서 아세틸-CoA를 사용하여 방향족 기질의 스펙트럼이 넓은 효소를 찾아내었다. FldA 대한 상동 효소를 식별하기 위해 배열 유사성 분석을 실시하였으며, 다른 기원의 다양한 FldA 중 FldA와 48% 이상의 아미노산 서열 동일성을 갖는 Clostridium difficile의 2-이소카프레노일-CoA:2-하이드록시이소카프로네이트 CoA-전이효소(HadA)를 스크리닝하였다(도 2). HadA는 CoA 공여체로 isocaprenoyl-CoA를 이용하여 CoA를 2-하이드록시이소카프로에이트로 전환하는 것으로 알려져 있는 효소이기 때문에, 본 발명에서는 HadA가 아세틸-CoA를 CoA 공여체로 사용할 수 있는지 여부를 조사하였다(도 3). in vitro 효소 분석 결과, 흥미롭게도 HadA가 아세틸-CoA를 CoA 공여체로 사용하여 페닐락테이트를 페닐락틸-CoA로 활성화할 수 있는 것을 확인하였다(도 4). In the present invention, in order to solve the above problem, an enzyme having a broad spectrum of aromatic substrate was found using acetyl-CoA as CoA donor. An array similarity analysis was performed to identify homologous enzymes for FldA and 2-isocaprenoyl-CoA: 2-hydroxyisocapronate of Clostridium difficile having at least 48% amino acid sequence identity with FldA among various FldAs of different origins. CoA-transferase (HadA) was screened (FIG. 2). Since HadA is an enzyme known to convert CoA into 2-hydroxyisocaproate using isocaprenoyl-CoA as a CoA donor, the present invention investigated whether HadA can use acetyl-CoA as a CoA donor ( 3). In vitro enzyme analysis showed that HadA was able to activate phenyllactate as phenyllactyl-CoA using acetyl-CoA as a CoA donor (FIG. 4).
또한, HadA는 만델레이트, 4-하이드록시만델레이트, 페닐락테이트, 4-하이드록시페닐락테이트, 2-하이드록시-4-페닐부티레이트, 3-하이드록시-3-페닐프로피오네이트 및 4-하이드록시 벤조산을 해당 CoA 유도체로 변환할 수 있다는 것을 in vitro 어세이 후 LC-MS 분석을 통하여 확인하였다(도 4 및 도 5). 따라서 HadA는 아세틸-CoA를 CoA 공여체로 사용하여 다양한 방향족 폴리에스테르를 보다 효율적으로 생산할 수 있는 가능성을 가지고 있다.HadA also contains mandelate, 4-hydroxymandelate, phenyllactate, 4-hydroxyphenyllactate, 2-hydroxy-4-phenylbutyrate, 3-hydroxy-3-phenylpropionate and 4 It was confirmed through LC-MS analysis after in vitro assay that hydroxy benzoic acid can be converted into the corresponding CoA derivative (FIGS. 4 and 5). Therefore, HadA has the potential to produce various aromatic polyesters more efficiently by using acetyl-CoA as a CoA donor.
다음으로, 대사공학에 의해 방향족 단량체의 생성량을 증가시키기 위하여, 글루코오스로부터 D-페닐락테이트를 소량 생산(0.372g/L) 생산하는 AroGfbr, PheAfbr 및 FldH를 발현하는 대장균 XL1-Blue 균주를 대사공학적 조작을 통하여 수율을 상승시켰다. 방향족 아미노산 생합성을 억제하도록 조절하는 이중 전사조절 인자인 TyrR을 결실시킨 AroGfbr, PheAfbr 및 FldH를 발현하는 대장균 XBT 균주를 제작하였으며, 상기 대장균 XBT 균주는 16.4g/L의 글루코오스로부터 0.5g/L의 D-페닐락테이트를 생산하여, TyrR을 결실시키지 않은 상기 대장균 XL1-Blue 균주보다 30% 높은 생산성을 나타내었다. D-페닐락테이트 생합성과 충돌하는 경로를 제거하기 위하여, 대장균 XBT에서 poxB(피루브산 산화효소를 코딩하는 유전자), 피루브산 산화효소를 코딩하는 유전자), pflB(피루브산 포메이트 리아제를 코딩하는 유전자), adhE(아세트알데히드탈수소효소/ 알코올탈수소효소를 코딩하는 유전자) 및 frdB(푸마레이트 리덕테이즈를 코딩하는 유전자)를 결실시킨 대장균 XB201T를 제작하였다. AroGfbr, PheAfbr 및 FldH를 발현하는 대장균 XB201T 균주는 15.7g/L의 글루코오스로부터 0.55g/L의 D-페닐락테이트를 생산하였고, 이는 대장균 XBT보다 10% 높은 수율을 나타내는 것이다.Next, E. coli XL1-Blue strains expressing AroGfbr, PheAfbr and FldH, which produce a small amount of D-phenyllactate (0.372 g / L) from glucose, were used to increase the amount of aromatic monomer produced by metabolic engineering. The yield was raised through the operation. E. coli XBT strains expressing AroGfbr, PheAfbr and FldH, which deleted TyrR, a dual transcriptional regulator that regulates aromatic amino acid biosynthesis, were prepared, and the E. coli XBT strain was 0.5 g / L D from 16.4 g / L glucose. -Phenyllactate produced 30% higher productivity than the E. coli XL1-Blue strain without TyrR deletion. To eliminate a path conflict with D-phenyllactate biosynthesis, in E. coli XBT, poxB (a gene encoding pyruvate oxidase), a pyruvate oxidase), pflB (a gene encoding pyruvate formate lyase), Escherichia coli XB201T was constructed by deleting adhE (gene encoding acetaldehyde dehydrogenase / alcohol dehydrogenase) and frdB (gene encoding fumarate reductase). E. coli XB201T strains expressing AroGfbr, PheAfbr and FldH produced 0.55 g / L of D-phenyllactate from 15.7 g / L of glucose, indicating a 10% higher yield than E. coli XBT.
추가적으로, in silico 게놈 규모 대사 플럭스 분석에 따른 대사공학 분석을 실시하여, D-페닐락테이트 생산을 더욱 증가시켰다(도 6). 티로신 아미노전이효소를 코딩하는 tyrB 유전자 및 아스파라긴산 아미노전이효소를 코딩하는 aspC 유전자를 상기 대장균 XB201T 균주에 제거하고, L-페닐알라닌 생합성을 감소시켜 D-페닐락테이트로의 탄소 흐름을 강화하였다. 그 결과로 제작된 AroGfbr, PheAfbr 및 FldH를 발현하는 대장균 XB201TBA 균주는 18.5g/L의 글루코오스로부터 1.62g/L의 D-페닐락테이트를 생산하여 수율이 크게 높아졌으며, 이는 동일한 유전자를 발현하는 대장균 XL1 Blue 균주의 D-페닐락테이트 생산량보다 4.35 배 높아진 것이다. In addition, metabolic analysis according to in silico genome scale metabolic flux analysis was performed to further increase D-phenyllactate production (FIG. 6). The tyrB gene encoding tyrosine aminotransferase and the aspC gene encoding aspartic acid aminotransferase were removed from the E. coli XB201T strain, reducing L-phenylalanine biosynthesis to enhance carbon flow to D-phenyllactate. The resulting E. coli XB201TBA strain expressing AroGfbr, PheAfbr and FldH produced 1.62 g / L of D-phenyllactate from 18.5 g / L of glucose, which greatly increased the yield of E. coli. It is 4.35 times higher than D-phenyllactate production of XL1 Blue strain.
AroGfbr, PheAfbr, FldH, PhaC1437 및 HadA를 발현하는 대장균 XB201TBAL를 20g/L 글루코오스 및 1g/L 소듐 3HB를 함유하는 배지에서 배양하면 폴리(52.1 mol% 3HB-co-47.9 mol% D-페닐락테이트)를 건조 세포 무게의 15.8 중량% 함량으로 생산하였다(도 7).Escherichia coli XB201TBAL expressing AroGfbr, PheAfbr, FldH, PhaC1437 and HadA was incubated in a medium containing 20 g / L glucose and 1 g / L sodium 3HB to obtain poly (52.1 mol% 3HB-co-47.9 mol% D-phenyllactate). Was produced at a content of 15.8% by weight of dry cell weight (FIG. 7).
따라서, 본 발명은 또다른 관점에서, 탄소원으로부터 아세틸-CoA 생성능을 가지는 미생물에서, 2-하이드록시이소카프로에이트-CoA 전이효소를 코딩하는 유전자, 폴리하이드록시알카노에이트 합성효소를 코딩하는 유전자, DAHP(3-데옥시-D-아라비노-헵툴로소네이트-7-인산) 합성효소를 코딩하는 유전자, 코리스메이트 뮤타아제/프레페네이트 디하이드로게네이즈를 코딩하는 유전자 및 D-락테이트 디하이드로게네이즈를 코딩하는 유전자가 도입되어 있고, 페닐락테이트를 단량체로 함유하는 폴리하이드록시알카노에이트 생성능을 가지는 재조합 미생물에 관한 것이다.Therefore, in another aspect, the present invention provides a gene encoding 2-hydroxyisocaproate-CoA transferase, a gene encoding polyhydroxyalkanoate synthase, in a microorganism having acetyl-CoA generating ability from a carbon source, Gene encoding DAHP (3-deoxy-D-arabino-heptulsonate-7-phosphate) synthase, gene encoding corismate mutase / prephenate dehydrogenase and D-lactate di The present invention relates to a recombinant microorganism having a polyhydroxyalkanoate-producing ability, in which a gene encoding a hydrogenase has been introduced and containing phenyllactate as a monomer.
본 발명에 있어서, 상기 2-하이드록시이소카프로에이트-CoA 전이효소는 Clostridium difficile 630 유래의 hadA인 것을 특징으로 할 수 있고, 상기 하이드록시알카노에이트 합성효소는 Ralstonia eutropha, Pseudomonas, Bacillus 및 Pseudomonas sp. 6-19으로 구성된 군에서 선택되는 균주 유래의 PHA synthase 또는 하기에서 선택되는 아미노산 서열을 가지는 PHA synthase의 변이효소인 것을 특징으로 할 수 있다:In the present invention, the 2-hydroxyisocaproate-CoA transferase may be characterized as hadA derived from Clostridium difficile 630, the hydroxyalkanoate synthase is Ralstonia eutropha, Pseudomonas, Bacillus and Pseudomonas sp . It may be characterized as a PHA synthase derived from a strain selected from the group consisting of 6-19 or a variant enzyme of PHA synthase having an amino acid sequence selected from:
서열번호 2의 아미노산 서열에서 E130D, S325T, L412M, S477R, S477H, S477F, S477Y, S477G, Q481M, Q481K 및 Q481R로 구성되는 군으로부터 선택되는 하나 이상의 변이를 포함하는 아미노산 서열;An amino acid sequence comprising one or more variants selected from the group consisting of E130D, S325T, L412M, S477R, S477H, S477F, S477Y, S477G, Q481M, Q481K and Q481R in the amino acid sequence of SEQ ID NO: 2;
서열번호 2의 아미노산 서열에서 E130D, S325T, L412M, S477G 및 Q481M이 변이된 아미노산 서열(C1335);Amino acid sequence (C1335) wherein E130D, S325T, L412M, S477G and Q481M are mutated in amino acid sequence of SEQ ID NO: 2;
서열번호 2의 아미노산 서열에서 E130D, S477F 및 Q481K가 변이된 아미노산 서열(C1310); 및Amino acid sequence (C1310) wherein E130D, S477F and Q481K are mutated in the amino acid sequence of SEQ ID NO: 2; And
서열번호 2의 아미노산 서열에서 E130D, S477F 및 Q481R이 변이된 아미노산 서열(C1312).The amino acid sequence of E130D, S477F and Q481R having a mutated amino acid sequence of SEQ ID NO: 2 (C1312).
본 발명에 있어서, 상기 DAHP(3-데옥시-D-아라비노-헵툴로소네이트-7-인산) 합성효소를 코딩하는 유전자는 서열번호 8로 표시되는 아미노산 서열을 코딩하는 유전자인 것을 특징으로 할 수 있고, 상기 코리스메이트 뮤타아제/프레페네이트 디하이드로게네이즈를 코딩하는 유전자는 서열번호 9로 표시되는 아미노산 서열을 코딩하는 유전자인 것을 특징으로 할 수 있으며, 상기 D-락테이트 디하이드로게네이즈를 코딩하는 유전자는 서열번호 10으로 표시되는 아미노산 서열을 코딩하는 유전자인 것을 특징으로 할 수 있다. In the present invention, the gene encoding the DAHP (3-deoxy-D-arabino-heptulsonate-7-phosphate) synthase is a gene encoding the amino acid sequence represented by SEQ ID NO: 8 The gene encoding the corismate mutase / prephenate dehydrogenase may be a gene encoding an amino acid sequence represented by SEQ ID NO: 9, wherein the D-lactate dehydrogeze The gene encoding the naze may be a gene encoding the amino acid sequence represented by SEQ ID NO: 10.
본 발명에서 상기 도입되는 D-락테이트 디하이드로게네이즈를 코딩하는 유전자는 ldhA 유전자를 대체하는 fldH 유전자인 것을 특징으로 할 수 있다. In the present invention, the gene encoding the introduced D-lactate dehydrogenase may be characterized as being a fldH gene that replaces the ldhA gene.
본 발명의 미생물은 외부에서 3HB의 공급이 없이도 폴리머를 생산하기 위하여, 3-hydroxybutyryl-CoA 생합성에 관여하는 β-케토티올레이즈를 코딩하는 유전자와 아세토아세틸-CoA 리덕테이즈를 코딩하는 유전자가 추가로 도입되어 있는 것을 특징으로 할 수 있다. The microorganism of the present invention is a gene encoding β-ketothiolase involved in 3-hydroxybutyryl-CoA biosynthesis and a gene encoding acetoacetyl-CoA reductase in order to produce a polymer without externally supplying 3HB. It may be characterized by being introduced further.
본 발명에서 도입되는 β-케토티올레이즈를 코딩하는 유전자(phaA)와 아세토아세틸-CoA 리덕테이즈를 코딩하는 유전자(phaB)의 발현량을 프로모터의 강도를 통하여 조절하는 경우, PHA에 함유되는 D-페닐락테이트 단량체 몰분율을 조절할 수 있다. When the expression level of the gene (phaA) encoding β-ketothiolase and gene (phaB) encoding acetoacetyl-CoA reductase introduced in the present invention is controlled through the strength of the promoter, The mole fraction of D-phenyllactate monomer can be controlled.
본 발명의 일양태에서는 상이한 강도의 5 가지 프로모터 하에서 PhaAB를 발현하는 5 개의 상이한 플라스미드를 제작하고 AroGfbr, PheAfbr, FldH, PhaC1437 및 HadA를 발현하는 XB201TBAL 균주에 도입하였으며, PhaAB 발현이 감소함에 따라 D-페닐락테이트 단량체 몰분율은 증가하는 것을 확인하였다(도 9a, b 및 표 7). 이러한 결과는 대사 플럭스를 조절함으로써 다양한 방향족 단량체 몰분율을 갖는 방향족 폴리에스테르가 생성될 수 있음을 시사한다.In one embodiment of the present invention, five different plasmids expressing PhaAB under five promoters of different intensities were constructed and introduced into XB201TBAL strains expressing AroGfbr, PheAfbr, FldH, PhaC1437 and HadA, and D- with decreasing PhaAB expression. The molar fraction of phenyllactate monomer was found to increase (Figures 9a, b and Table 7). These results suggest that by controlling the metabolic flux, aromatic polyesters with various aromatic monomer mole fractions can be produced.
본 발명에 있어서, 상기 재조합 미생물은 tyrR 유전자, 피루브산 산화효소를 코딩하는 유전자, 피루브산 포메이트 리아제를 코딩하는 유전자, 아세트알데히드 탈수소효소를 코딩하는 유전자, 푸마레이트 리덕테이즈를 코딩하는 유전자, 티로신 아미노전이효소를 코딩하는 유전자, 및 아스파라긴산 아미노전이효소를 코딩하는 유전자로 구성된 군에서 선택되는 하나 이상의 유전자가 결실되어 있는 것을 특징으로 할 수 있다. In the present invention, the recombinant microorganism is a tyrR gene, a gene encoding pyruvate oxidase, a gene encoding pyruvate formate lyase, a gene encoding acetaldehyde dehydrogenase, a gene encoding fumarate reductase, tyrosine amino One or more genes selected from the group consisting of a gene encoding the transferase and a gene encoding the aspartic acid aminotransferase may be deleted.
본 발명은 또 다른 관점에서, (a) 상기 재조합 미생물을 배양하여, 페닐락테이트를 단량체로 함유하는 폴리하이드록시알카노에이트를 생성시키는 단계; 및 (b) 상기 생성된 페닐락테이트를 단량체로 함유하는 폴리하이드록시알카노에이트를 수득하는 단계를 포함하는 페닐락테이트를 단량체로 함유하는 폴리하이드록시알카노에이트의 제조방법에 관한 것이다.In another aspect, (a) culturing the recombinant microorganism, to produce a polyhydroxyalkanoate containing phenyl lactate as a monomer; And (b) obtaining a polyhydroxyalkanoate containing the produced phenyllactate as a monomer. The present invention relates to a method for preparing polyhydroxyalkanoate containing a phenyllactate as a monomer.
상기 방법이 다양한 방향족 중합체의 제조에 사용할 수 있는지를 확인하기 위하여, 만델레이트를 모노머로 사용하여 시험하였다. 만델레이트의 단일 폴리머 인 폴리만델레이트가 100℃의 비교적 높은 Tg를 갖는 열분해 저항성 폴리머이면서, 물질 특성은 폴리스티렌과 유사하기 때문이다. 폴리만델레이트는 석유산업에서 생산되는 만델레이트의 환상 이량체의 개환 중합에 의하여 화학적으로 합성되고 있다. AroGfbr, PheAfbr, FldH, PhaC1437 및 HadA를 발현하는 대장균 XB201TBAL을 1g/L 소듐 3HB 및 0.5g/L D-만델레이트을 함유하는 배지에서 배양하면 폴리(55.2 mol% 3HB-co-43 mol% D-페닐락테이트-co-1.8 mol% D-만델레이트)를 건조세포 무게의 11.6 중량% 함량으로 제조하였다(도 8a, b). 본 발명에서는 D-만델레이트를 기질로 하여 D-만델레이트를 포함하는 방향족 공중합체를 성공적으로 제조하였으며, 다음으로, 대사공학에 의해 D-만델레이트를 in vivo에서 생산하고자 하였다. 글루코오스로부터 D-만델레이트를 포함하는 방향족 공중합체를 생산하기 위해 AroGfbr, PheAfbr, FldH, PhaC1437 및 HadA를 발현하는 대장균 XB201TBAL에서 Amycolatopsis orientalis 유래 하이드록시만델레이트 합성효소(HmaS), S. coelicolor의 하이드록시만델레이트 산화효소(Hmo) 및 Rhodotorula graminis의 D-만델레이트 탈수소효소(Dmd)를 발현시켰다. 상기 조작된 균주를 20g/L의 글루코오스와 1g/L의 소듐 3HB를 함유하는 배지에서 배양하는 경우, 건조 세포 무게의 16.4 중량%의 폴리(92.9 mol%의 3HB-co-6.3 mol% D-페닐락테이트-co-0.8 mol% D-만델레이트)를 생산하였다.In order to confirm that the method can be used for the preparation of various aromatic polymers, mandelate was tested using monomers. This is because polymandelate, the single polymer of mandelate, is a pyrolysis resistant polymer having a relatively high Tg of 100 ° C., while the material properties are similar to polystyrene. Polymandelate is chemically synthesized by ring-opening polymerization of cyclic dimer of mandelate produced in the petroleum industry. Escherichia coli XB201TBAL expressing AroGfbr, PheAfbr, FldH, PhaC1437 and HadA was cultured in a medium containing 1 g / L sodium 3HB and 0.5 g / L D-mandelate to obtain poly (55.2 mol% 3HB-co-43 mol% D-phenyl Lactate-co-1.8 mol% D-mandelate) was prepared at a 11.6 wt% content of dry cell weight (FIGS. 8 a, b). In the present invention, an aromatic copolymer including D-mandelate was successfully prepared using D-mandelate as a substrate, and then, to produce D-mandelate in vivo by metabolic engineering. Hydrolysis of Amycolatopsis orientalis-derived hydroxymandelate synthetase (HmaS), S. coelicolor, in E. coli XB201TBAL expressing AroGfbr, PheAfbr, FldH, PhaC1437 and HadA to produce an aromatic copolymer comprising D-mandelate from glucose Roxymandelate oxidase (Hmo) and D-mandelate dehydrogenase (Dmd) from Rhodotorula graminis were expressed. When the engineered strains were cultured in a medium containing 20 g / L glucose and 1 g / L sodium 3HB, 16.4% by weight of poly (92.9 mol% 3HB-co-6.3 mol% D-phenyl) Lactate-co-0.8 mol% D-mandelate).
따라서, 본 발명은 또다른 관점에서, 탄소원으로부터 아세틸-CoA 생성능을 가지는 미생물에서, 2-하이드록시이소카프로에이트-CoA 전이효소를 코딩하는 유전자, 폴리하이드록시알카노에이트 합성효소를 코딩하는 유전자, DAHP(3-데옥시-D-아라비노-헵툴로소네이트-7-인산) 합성효소를 코딩하는 유전자, 코리스메이트 뮤타아제/프레페네이트 디하이드로게네이즈를 코딩하는 유전자 및 D-락테이트 디하이드로게네이즈를 코딩하는 유전자, 하이드록시만델레이트합성효소를 코딩하는 유전자, 하이드록시만델레이트 산화효소를 코딩하는 유전자 및 D-만델레이트 탈수소효소를 코딩하는 유전자가 도입되어 있고, 만델레이트를 단량체로 함유하는 폴리하이드록시알카노에이트 생성능을 가지는 재조합 미생물에 관한 것이다. Therefore, in another aspect, the present invention provides a gene encoding 2-hydroxyisocaproate-CoA transferase, a gene encoding polyhydroxyalkanoate synthase, in a microorganism having acetyl-CoA generating ability from a carbon source, Gene encoding DAHP (3-deoxy-D-arabino-heptulsonate-7-phosphate) synthase, gene encoding corismate mutase / prephenate dehydrogenase and D-lactate di Genes encoding hydrogenase, genes encoding hydroxymandelate synthase, genes encoding hydroxymandelate oxidase and genes encoding D-mandelate dehydrogenase have been introduced. The present invention relates to a recombinant microorganism having a polyhydroxyalkanoate producing ability contained as a monomer.
본 발명에 있어서, 상기 2-하이드록시이소카프로에이트-CoA 전이효소는 Clostridium difficile 630 유래의 hadA인 것을 특징으로 할 수 있고, 상기 하이드록시알카노에이트 합성효소는 Ralstonia eutropha, Pseudomonas, BacillusPseudomonas sp. 6-19으로 구성된 군에서 선택되는 균주 유래의 PHA synthase 또는 하기에서 선택되는 아미노산 서열을 가지는 PHA synthase의 변이효소인 것을 특징으로 할 수 있다:In the present invention, the 2-hydroxyisocaproate-CoA transferase may be characterized as hadA derived from Clostridium difficile 630, the hydroxyalkanoate synthase is Ralstonia eutropha, Pseudomonas, Bacillus and Pseudomonas sp . It may be characterized as a PHA synthase derived from a strain selected from the group consisting of 6-19 or a variant enzyme of PHA synthase having an amino acid sequence selected from:
서열번호 2의 아미노산 서열에서 E130D, S325T, L412M, S477R, S477H, S477F, S477Y, S477G, Q481M, Q481K 및 Q481R로 구성되는 군으로부터 선택되는 하나 이상의 변이를 포함하는 아미노산 서열;An amino acid sequence comprising one or more variants selected from the group consisting of E130D, S325T, L412M, S477R, S477H, S477F, S477Y, S477G, Q481M, Q481K and Q481R in the amino acid sequence of SEQ ID NO: 2;
서열번호 2의 아미노산 서열에서 E130D, S325T, L412M, S477G 및 Q481M이 변이된 아미노산 서열(C1335);Amino acid sequence (C1335) wherein E130D, S325T, L412M, S477G and Q481M are mutated in amino acid sequence of SEQ ID NO: 2;
서열번호 2의 아미노산 서열에서 E130D, S477F 및 Q481K가 변이된 아미노산 서열(C1310); 및Amino acid sequence (C1310) wherein E130D, S477F and Q481K are mutated in the amino acid sequence of SEQ ID NO: 2; And
서열번호 2의 아미노산 서열에서 E130D, S477F 및 Q481R이 변이된 아미노산 서열(C1312).The amino acid sequence of E130D, S477F and Q481R having a mutated amino acid sequence of SEQ ID NO: 2 (C1312).
본 발명에 있어서, 상기 DAHP(3-데옥시-D-아라비노-헵툴로소네이트-7-인산) 합성효소를 코딩하는 유전자는 서열번호 8로 표시되는 아미노산 서열을 코딩하는 유전자인 것을 특징으로 할 수 있고, 상기 코리스메이트 뮤타아제/프레페네이트 디하이드로게네이즈를 코딩하는 유전자는 서열번호 9로 표시되는 아미노산 서열을 코딩하는 유전자인 것을 특징으로 할 수 있으며, 상기 D-락테이트 디하이드로게네이즈를 코딩하는 유전자는 서열번호 10으로 표시되는 아미노산 서열을 코딩하는 유전자인 것을 특징으로 할 수 있다. In the present invention, the gene encoding the DAHP (3-deoxy-D-arabino-heptulsonate-7-phosphate) synthase is a gene encoding the amino acid sequence represented by SEQ ID NO: 8 The gene encoding the corismate mutase / prephenate dehydrogenase may be a gene encoding an amino acid sequence represented by SEQ ID NO: 9, wherein the D-lactate dehydrogeze The gene encoding the naze may be a gene encoding the amino acid sequence represented by SEQ ID NO: 10.
본 발명에 있어서, 상기 하이드록시만델레이트합성효소를 코딩하는 유전자는 서열번호 11로 표시되는 아미노산 서열을 코딩하는 유전자인 것을 특징으로 할 수 있고, 상기 하이드록시만델레이트 산화효소를 코딩하는 유전자는 서열번호 12로 표시되는 아미노산 서열을 코딩하는 유전자인 것을 특징으로 할 수 있고, 상기 D-만델레이트 탈수소효소를 코딩하는 유전자는 서열번호 13으로 표시되는 아미노산 서열을 코딩하는 유전자인 것을 특징으로 할 수 있다.In the present invention, the gene encoding the hydroxymandelate synthetase may be a gene encoding the amino acid sequence represented by SEQ ID NO: 11, the gene encoding the hydroxymandelate oxidase May be a gene encoding an amino acid sequence represented by SEQ ID NO: 12, and the gene encoding the D-mandelate dehydrogenase may be a gene encoding an amino acid sequence represented by SEQ ID NO: 13 Can be.
본 발명의 미생물은 외부에서 3HB의 공급이 없이도 폴리머를 생산하기 위하여, 3-hydroxybutyryl-CoA 생합성에 관여하는 β-케토티올레이즈를 코딩하는 유전자와 아세토아세틸-CoA 리덕테이즈를 코딩하는 유전자가 추가로 도입되어 있는 것을 특징으로 할 수 있다. The microorganism of the present invention is a gene encoding β-ketothiolase involved in 3-hydroxybutyryl-CoA biosynthesis and a gene encoding acetoacetyl-CoA reductase in order to produce a polymer without externally supplying 3HB. It may be characterized by being introduced further.
본 발명은 또다른 관점에서, (a) 상기 재조합 미생물을 배양하여 만델레이트를 단량체로 함유하는 폴리하이드록시알카노에이트를 생성시키는 단계; 및 (b) 상기 생성된 만델레이트를 단량체로 함유하는 폴리하이드록시알카노에이트를 수득하는 단계를 포함하는 만델레이트를 단량체로 함유하는 폴리하이드록시알카노에이트의 제조방법에 관한 것이다. In another aspect, the present invention provides a method for producing a polyhydroxyalkanoate containing mandelate as a monomer by culturing the recombinant microorganism; And (b) obtaining a polyhydroxyalkanoate containing the produced mandelate as a monomer.
아울러, 본 발명에서는 본 발명의 재조합 균주를 이용하여, 다양한 장사슬 2-HA를 함유하는 폴리하이드록시알카노에이트의 제조가 가능한지 확인하기 위하여, 장사슬 2-HA 모노머인 2-하이드록시이소카프로에이트(2HIC), 2-하이드록시헥사노에이트(2HH) 및 2-하이드록시옥타노에이트(2HO)를 단량체로 사용하여, 폴리머 생산능을 확인하였으며, 그 결과, 2-하이드록시이소카프로에이트, 2-하이드록시헥사노에이트 혹은 2-하이드록시옥타노에이트를 함유하는 공중합체를 생성하는 것을 확인하였으며, 배지 내에 함유된 2-HA의 농도가 증가할수록 공중합체 내에 함유하는 단량체의 몰분율이 증가하는 것을 확인하였다 (표 4, 표 5 및 표 6).In addition, in the present invention, in order to determine whether the production of polyhydroxyalkanoate containing various long-chain 2-HA is possible using the recombinant strain of the present invention, 2-hydroxyisocapro which is a long-chain 2-HA monomer 8 (2HIC), 2-hydroxyhexanoate (2HH) and 2-hydroxyoctanoate (2HO) were used as monomers to confirm polymer production capacity. As a result, 2-hydroxyisocaproate, It was confirmed that a copolymer containing 2-hydroxyhexanoate or 2-hydroxyoctanoate was produced, and as the concentration of 2-HA contained in the medium increased, the mole fraction of the monomer contained in the copolymer increased. Was confirmed (Table 4, Table 5 and Table 6).
따라서, 본 발명은 또 다른 관점에서, (a) 상기 방향족 단량체 또는 장사슬 2-HA를 단량체로 함유하는 폴리하이드록시알카노에이트 생성능을 가지는 재조합 미생물을 2-하이드록시이소카프로에이트, 2-하이드록시헥사노에이트 및 2-하이드록시옥타노에이트로 구성되는 군에서 선택되는 화합물을 함유하는 배지에서 배양하는 단계; 및 (b) 2-하이드록시이소카프로에이트, 2-하이드록시헥사노에이트 및 2-하이드록시옥타노에이트로 구성되는 군에서 선택되는 화합물을 단량체로 함유하는 폴리하이드록시알카노에이트를 수득하는 단계를 포함하는 2-하이드록시이소카프로에이트, 2-하이드록시헥사노에이트 및 2-하이드록시옥타노에이트로 구성되는 군에서 선택되는 화합물을 단량체로 함유하는 폴리하이드록시알카노에이트의 제조방법에 관한 것이다.Accordingly, the present invention provides a recombinant microorganism having the ability to produce polyhydroxyalkanoate containing the aromatic monomer or the long-chain 2-HA as a monomer, in a further aspect, 2-hydroxyisocaproate, 2-hydroxy. Culturing in a medium containing a compound selected from the group consisting of oxyhexanoate and 2-hydroxyoctanoate; And (b) obtaining a polyhydroxyalkanoate containing as a monomer a compound selected from the group consisting of 2-hydroxyisocaproate, 2-hydroxyhexanoate and 2-hydroxyoctanoate Regarding a method for producing polyhydroxyalkanoate containing as a monomer a compound selected from the group consisting of 2-hydroxyisocaproate, 2-hydroxyhexanoate and 2-hydroxyoctanoate will be.
본 발명에서는 PHA 생성이 가능한 다른 방향족 단량체로서 3-하이드록시-3-페닐프로피오네이트(3HPh)를 사용하여 방향족 폴리머 생산을 확인하였다. 대장균 XB201TBA 균주를 20g/L 글루코오스, 0.5g/L 3-하이드록시-3-페닐프로피온산 및 1g/L 소듐 3HB를 함유하는 배지에서 배양하면 폴리 (33.3 mol% 3HB-co-18 mol% D-페닐락테이트-co-48.7 mol% 3HPh)를 건조세포 무게의 14.7 중량%로 생산하는 것을 확인하였다(도 8c, d). 이러한 결과는 본 발명에서 개발된 HadA와 변이된 PHA 합성 효소가 다양한 방향족 폴리에스테르의 제조에 널리 사용할 수 있음을 시사한다.In the present invention, aromatic polymer production was confirmed using 3-hydroxy-3-phenylpropionate (3HPh) as another aromatic monomer capable of generating PHA. Escherichia coli XB201TBA strains were cultured in a medium containing 20 g / L glucose, 0.5 g / L 3-hydroxy-3-phenylpropionic acid, and 1 g / L sodium 3HB to obtain a poly (33.3 mol% 3HB-co-18 mol% D-phenyl Lactate-co-48.7 mol% 3HPh) was confirmed to produce 14.7% by weight of the dry cell weight (Fig. 8c, d). These results suggest that the HadA and mutated PHA synthase developed in the present invention can be widely used in the preparation of various aromatic polyesters.
마지막으로, 대사적으로 조작된 대장균에 의해 생산되는 방향족 PHA의 물질 특성을 조사하였다. 폴리(52.1 mol% 3HB-co-47.9 mol% D-페닐락테이트)는 무정형이었으며, 공중합체 중의 D-페닐락테이트의 몰 분율이 증가함에 따라 분자량의 감소에도 불구하고 Tg는 23.86℃까지 크게 증가하였다. 또한, 폴리머 중에 방향족을 포함하는 공중합체는 결정화도가 감소하였다. 폴리머의 방향족 고리가 P(3HB)의 결정화를 방해하는 것으로 추측된다. P(3HB)의 경우, 강한 결정성으로 인해 높은 취성(brittleness)을 나타내는 것에 비해, 생성된 공중합체의 경우 결정화도의 저하 및 Tg의 향상으로 인해 기계적 인성의 향상을 초래하였다. Finally, the material properties of aromatic PHA produced by metabolically engineered Escherichia coli were investigated. Poly (52.1 mol% 3HB-co-47.9 mol% D-phenyllactate) was amorphous, and the Tg increased significantly to 23.86 ° C. despite decreasing molecular weight as the mole fraction of D-phenyllactate in the copolymer increased It was. In addition, copolymers containing aromatics in the polymers reduced crystallinity. It is assumed that the aromatic ring of the polymer interferes with the crystallization of P (3HB). In the case of P (3HB), the resultant copolymer exhibited high brittleness due to the strong crystallinity, whereas in the resulted copolymer, the crystallinity was lowered and the Tg was improved to improve the mechanical toughness.
본 발명에서는 다양한 방향족 폴리에스테르의 제조를 위하여, 세균 플랫폼 시스템을 개발하였다. 본 발명의 방향족 고분자 생산 시스템은 방향족 화합물을 그 CoA 유도체로 활성화하기 위한 새로운 광범위한 기질 범위를 가지는 CoA-전이효소를 확인하고, 이들의 방향족 CoA 유도체를 중합할 수 있는 PHA 합성효소 변이체 및 생체 내에서 방향족 단량체를 과잉 생성하는 경로를 대사의 설계 및 최적화를 통하여 수립하였다. In the present invention, a bacterial platform system has been developed for the production of various aromatic polyesters. The aromatic polymer production system of the present invention identifies CoA-transferases having a new broad substrate range for activating aromatic compounds into their CoA derivatives, and in vivo, PHA synthase variants capable of polymerizing their aromatic CoA derivatives. The pathway to overproduce aromatic monomers was established through the design and optimization of metabolism.
본 발명의 여러 양태에서 몇가지 방향족 모노머를 사용하여, 입증한 바와 같이 이러한 시스템은 다양한 방향족 중합체의 제조에 사용될 수 있다. 예를 들어, 본 발명에 따르면, HadA(또는 관련 효소) 및 PHA 합성효소가 원하는 방향족 모노머를 수용하도록 조작 할 수 있다. 본 발명에서 개발된 박테리아 플랫폼 시스템은 재생 가능한 비식량 바이오매스로부터 방향족 폴리에스테르의 제조를 위한 바이오 프로세스를 확립하는데 기여할 수 있다. Using several aromatic monomers in various embodiments of the present invention, as demonstrated, such systems can be used for the preparation of various aromatic polymers. For example, according to the present invention, HadA (or related enzymes) and PHA synthetase can be engineered to accommodate the desired aromatic monomer. The bacterial platform system developed in the present invention can contribute to establishing a bioprocess for the production of aromatic polyesters from renewable non-food biomass.
본 발명에서, "벡터(vector)"는 적합한 숙주 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 함유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자, 또는 간단하게 잠재적 게놈 삽입물일 수 있다. 적당한 숙주로 형질전환되면, 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 플라스미드가 현재 벡터의 가장 통상적으로 사용되는 형태이므로, 본 발명의 명세서에서 "플라스미드(plasmid)" 및 "벡터(vector)"는 때로 상호 교환적으로 사용된다. 본 발명의 목적상, 플라스미드 벡터를 이용하는게 바람직하다. 이러한 목적에 사용될 수 있는 전형적인 플라스미드 벡터는 (a) 숙주세포당 수백 개의 플라스미드 벡터를 포함하도록 복제가 효율적으로 이루어지도록 하는 복제 개시점, (b) 플라스미드 벡터로 형질전환된 숙주세포가 선발될 수 있도록 하는 항생제 내성 유전자 및 (c) 외래 DNA 절편이 삽입될 수 있는 제한효소 절단부위를 포함하는 구조를 지니고 있다. 적절한 제한효소 절단부위가 존재하지 않을지라도, 통상의 방법에 따른 합성 올리고뉴클레오타이드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용하면 벡터와 외래 DNA를 용이하게 라이게이션(ligation)할 수 있다.  In the present invention, "vector" refers to a DNA preparation containing a DNA sequence operably linked to a suitable regulatory sequence capable of expressing DNA in a suitable host. The vector may be a plasmid, phage particles, or simply a potential genomic insert. Once transformed into the appropriate host, the vector can replicate and function independently of the host genome, or in some cases can be integrated into the genome itself. Since plasmids are the most commonly used form of current vectors, "plasmid" and "vector" are sometimes used interchangeably in the context of the present invention. For the purposes of the present invention, it is preferred to use plasmid vectors. Typical plasmid vectors that can be used for this purpose include (a) a replication initiation point that allows for efficient replication to include hundreds of plasmid vectors per host cell, and (b) host cells transformed with the plasmid vector. It has a structure comprising an antibiotic resistance gene and (c) a restriction enzyme cleavage site into which foreign DNA fragments can be inserted. Although no appropriate restriction enzyme cleavage site is present, the use of synthetic oligonucleotide adapters or linkers according to conventional methods facilitates ligation of the vector and foreign DNA.
라이게이션 후에, 벡터는 적절한 숙주세포로 형질전환 되어야 한다. 본 발명에 있어서, 선호되는 숙주세포는 원핵세포이다. 적합한 원핵 숙주세포는 E. coli DH5α, E. col JM101, E. coli K12, E. coli W3110, E. coli X1776, E. coli XL-1Blue(Stratagene), E. coli B, E. coli B21 등을 포함한다. 그러나 FMB101, NM522, NM538 및 NM539와 같은 E. coli 균주 및 다른 원핵생물의 종(speices) 및 속(genera)등이 또한 사용될 수 있다. 전술한 E. coli에 덧붙여, 아그로박테리움 A4와 같은 아그로박테리움 속 균주, 바실루스 섭틸리스(Bacillus subtilis)와 같은 바실리(bacilli), 살모넬라 타이피뮤리움(Salmonella typhimurium) 또는 세라티아 마르게센스(Serratia marcescens)와 같은 또 다른 장내세균 및 다양한 슈도모나스(Pseudomonas) 속 균주가 숙주세포로서 이용될 수 있다.After ligation, the vector should be transformed into the appropriate host cell. In the present invention, preferred host cells are prokaryotic cells. Suitable prokaryotic host cells include E. coli DH5α, E. col JM101, E. coli K12, E. coli W3110, E. coli X1776, E. coli XL-1Blue (Stratagene), E. coli B, E. coli B21, and the like. It includes. However, E. coli strains such as FMB101, NM522, NM538 and NM539 and other prokaryotic species and genera may also be used. In addition to the aforementioned E. coli, strains of the genus Agrobacterium, such as Agrobacterium A4, bacilli, such as Bacillus subtilis, Salmonella typhimurium or Serratia marghesen Still other enterobacteria such as marcescens and various Pseudomonas strains can be used as host cells.
원핵세포의 형질전환은 Sambrook et al., supra의 1.82 섹션에 기술된 칼슘 클로라이드 방법을 사용해서 용이하게 달성될 수 있다. 선택적으로, 전기천공법(electroporation)(Neumann et al., EMBO J., 1:841, 1982) 또한 이러한 세포들의 형질전환에 사용될 수 있다.Prokaryotic transformation can be readily accomplished using the calcium chloride method described in section 1.82 of Sambrook et al., Supra. Alternatively, electroporation (Neumann et al., EMBO J., 1: 841, 1982) can also be used for transformation of these cells.
본 발명에 따른 유전자의 과발현을 위하여 사용되는 벡터는 당업계에 공지된 발현 벡터가 사용될 수 있으며, pET 계열 벡터(Novagen)를 사용하는 것이 바람직하다. 상기 pET 계열 벡터를 사용하여 클로닝을 수행하면, 발현되는 단백질의 말단에 히스티딘기들이 결합되어 나오므로, 상기 단백질을 효과적으로 정제할 수 있다. 클로닝된 유전자로부터 발현된 단백질을 분리하기 위해서는 당업계에 공지된 일반적인 방법이 이용될 수 있으며, 구체적으로, Ni-NTA His-결합 레진(Novagen)을 사용하는 크로마토그래피 방법을 이용하여 분리할 수 있다. 본 발명에 있어서, 상기 재조합벡터는 pET-SLTI66인 것을 특징으로 할 수 있고, 상기 숙주세포는 대장균 또는 아그로박테리움인 것을 특징으로 할 수 있다.As the vector used for overexpression of the gene according to the present invention, an expression vector known in the art may be used, and it is preferable to use a pET family vector (Novagen). When the cloning is performed using the pET family vector, histidine groups are bound to the ends of the expressed protein, and thus the protein can be effectively purified. In order to separate the expressed protein from the cloned gene, a general method known in the art may be used, and specifically, it may be separated by a chromatographic method using Ni-NTA His-binding resin (Novagen). . In the present invention, the recombinant vector may be characterized in that the pET-SLTI66, the host cell may be characterized in that E. coli or Agrobacterium.
본 발명에서 "발현 조절 서열 (expression control sequence)"이라는 표현은 특정한 숙주 생물에서 작동가능하게 연결된 코딩 서열의 발현에 필수적인 DNA 서열을 의미한다. 이러한 조절 서열은 전사를 실시하기 위한 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 코딩하는 서열 및 전사 및 해독의 종결을 조절하는 서열을 포함한다. 예를 들면, 원핵생물에 적합한 조절 서열은 프로모터, 임의로 오퍼레이터 서열 및 리보좀 결합 부위를 포함한다. 진핵세포는 프로모터, 폴리아데닐화 시그날 및 인핸서가 이에 포함된다. 플라스미드에서 유전자의 발현 양에 가장 영향을 미치는 인자는 프로모터이다. 고 발현용의 프로모터로서 SRα 프로모터와 사이토메가로바이러스 (cytomegalovirus) 유래 프로모터 등이 바람직하게 사용된다. 본 발명의 DNA 서열을 발현시키기 위하여, 매우 다양한 발현 조절 서열중 어느 것이라도 벡터에 사용될 수 있다. 유용한 발현 조절서열에는, 예를 들어, SV40 또는 아데노바이러스의 초기 및 후기 프로모터들, lac 시스템, trp 시스템, TAC 또는 TRC 시스템, T3 및 T7 프로모터들, 파지 람다의 주요 오퍼레이터 및 프로모터 영역, fd 코드 단백질의 조절 영역, 3-포스포글리세레이트 키나제 또는 다른 글리콜분해 효소에 대한 프로모터, 상기 포스파타제의 프로모터들, 예를 들어, Pho5, 효모 알파-교배 시스템의 프로모터 및 원핵세포 또는 진핵 세포 또는 바이러스의 유전자 발현을 조절하는 것으로 알려진 기타 다른 서열 및 이들의 여러 조합이 포함된다. T7 프로모터는 대장균에서 본 발명의 단백질을 발현시키는데 유용하게 사용될 수 있다.The expression “expression control sequence” in the present invention means a DNA sequence essential for the expression of a coding sequence operably linked in a particular host organism. Such regulatory sequences include promoters for performing transcription, any operator sequence for regulating such transcription, sequences encoding suitable mRNA ribosomal binding sites, and sequences that control the termination of transcription and translation. For example, suitable control sequences for prokaryotes include promoters, optionally operator sequences, and ribosomal binding sites. Eukaryotic cells include promoters, polyadenylation signals, and enhancers. The factor that most influences the amount of gene expression in the plasmid is the promoter. As the promoter for high expression, an SRα promoter, a promoter derived from cytomegalovirus, and the like are preferably used. To express the DNA sequences of the invention, any of a wide variety of expression control sequences can be used in the vector. Useful expression control sequences include, for example, early and late promoters of SV40 or adenovirus, lac system, trp system, TAC or TRC system, T3 and T7 promoters, major operator and promoter regions of phage lambda, fd code protein Regulatory region of, promoter for 3-phosphoglycerate kinase or other glycolysis enzymes, promoters of the phosphatase such as Pho5, promoter of yeast alpha-crossing system and gene expression of prokaryotic or eukaryotic cells or viruses Other sequences known to modulate and various combinations thereof. The T7 promoter can be usefully used to express the proteins of the invention in E. coli.
핵산은 다른 핵산 서열과 기능적 관계로 배치될 때 "작동가능하게 연결 (operably linked)"된다. 이것은 적절한 분자 (예를 들면, 전사 활성화 단백질)은 조절 서열(들)에 결합될 때 유전자 발현을 가능하게 하는 방식으로 연결된 유전자 및 조절 서열(들)일 수 있다. 예를 들면, 전서열(pre-sequence) 또는 분비 리더 (leader)에 대한 DNA는 폴리펩타이드의 분비에 참여하는 전단백질로서 발현되는 경우 폴리펩타이드에 대한 DNA에 작동가능하게 연결되고; 프로모터 또는 인핸서는 서열의 전사에 영향을 끼치는 경우 코딩서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 서열의 전사에 영향을 끼치는 경우 코딩 서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 번역을 용이하게 하도록 배치되는 경우 코딩 서열에 작동가능하게 연결된다. 일반적으로, "작동가능하게 연결된"은 연결된 DNA 서열이 접촉하고, 또한 분비 리더의 경우 접촉하고 리딩 프레임 내에 존재하는것을 의미한다. 그러나, 인핸서 (enhancer)는 접촉할 필요가 없다. 이들 서열의 연결은 편리한 제한 효소 부위에서 라이게이션(연결)에 의해 수행된다. 그러한 부위가 존재하지 않는 경우, 통상의 방법에 따른 합성 올리고뉴클레오티드 어댑터 (oligonucleotide adaptor) 또는 링커(linker)를 사용한다. Nucleic acids are "operably linked" when placed in a functional relationship with other nucleic acid sequences. This may be genes and regulatory sequence (s) linked in such a way as to allow gene expression when appropriate molecules (eg, transcriptional activating proteins) bind to regulatory sequence (s). For example, the DNA for a pre-sequence or secretion leader is operably linked to the DNA for the polypeptide when expressed as a shear protein that participates in the secretion of the polypeptide; A promoter or enhancer is operably linked to a coding sequence when it affects the transcription of the sequence; Or the ribosomal binding site is operably linked to a coding sequence when it affects the transcription of the sequence; Or the ribosomal binding site is operably linked to a coding sequence when positioned to facilitate translation. In general, "operably linked" means that the linked DNA sequence is in contact, and in the case of a secretory leader, is in contact and present within the reading frame. However, enhancers do not need to touch. Linking of these sequences is performed by ligation (linking) at convenient restriction enzyme sites. If such sites do not exist, synthetic oligonucleotide adapters or linkers according to conventional methods are used.
본원 명세서에 사용된 용어 "발현 벡터"는 통상 이종의 DNA의 단편이 삽입된 재조합 캐리어 (recombinant carrier)로서 일반적으로 이중 가닥의 DNA의 단편을 의미한다. 여기서, 이종 DNA는 숙주 세포에서 천연적으로 발견되지 않는 DNA인 이형 DNA를 의미한다. 발현 벡터는 일단 숙주 세포내에 있으면 숙주 염색체 DNA와 무관하게 복제할 수 있으며 벡터의 수 개의 카피 및 그의 삽입된(이종) DNA가 생성될 수 있다.As used herein, the term “expression vector” generally refers to a fragment of DNA that is generally double stranded as a recombinant carrier into which fragments of heterologous DNA have been inserted. Here, heterologous DNA refers to heterologous DNA, which is DNA not naturally found in host cells. Once the expression vector is in the host cell, it can replicate independently of the host chromosomal DNA and several copies of the vector and the inserted (heterologous) DNA can be produced.
당업계에 주지된 바와 같이, 숙주세포에서 형질감염 유전자의 발현 수준을 높이기 위해서는, 해당 유전자가, 선택된 발현 숙주 내에서 기능을 발휘하는 전사 및 해독 발현 조절 서열에 작동가능하도록 연결되어야만 한다. 바람직하게는 발현 조절서열 및 해당 유전자는 세균 선택 마커 및 복제 개시점(replication origin)을 같이 포함하고 있는 하나의 발현 벡터 내에 포함되게 된다. 숙주세포가 진핵세포인 경우에는, 발현 벡터는 진핵 발현 숙주 내에서 유용한 발현 마커를 더 포함하여야만 한다.As is well known in the art, to raise the expression level of a transfected gene in a host cell, the gene must be operably linked to transcriptional and translational expression control sequences that function in the selected expression host. Preferably, the expression control sequence and the gene of interest are included in one expression vector including the bacterial selection marker and the replication origin. If the host cell is a eukaryotic cell, the expression vector must further comprise an expression marker useful in the eukaryotic expression host.
상술한 발현 벡터에 의해 형질전환 또는 형질감염된 숙주 세포는 본 발명의 또 다른 측면을 구성한다. 본원 명세서에 사용된 용어 "형질전환"은 DNA를 숙주로 도입하여 DNA가 염색체외 인자로서 또는 염색체 통합완성에 의해 복제 가능하게 되는 것을 의미한다. 본원 명세서에 사용된 용어 "형질감염"은 임의의 코딩 서열이 실제로 발현되든 아니든 발현 벡터가 숙주 세포에 의해 수용되는 것을 의미한다. Host cells transformed or transfected with the expression vectors described above constitute another aspect of the present invention. As used herein, the term “transformation” means introducing DNA into a host so that the DNA is replicable as an extrachromosomal factor or by chromosomal integration. As used herein, the term "transfection" means that the expression vector is accepted by the host cell whether or not any coding sequence is actually expressed.
물론 모든 벡터와 발현 조절 서열이 본 발명의 DNA 서열을 발현하는데 모두 동등하게 기능을 발휘하지는 않는다는 것을 이해하여야만 한다. 마찬가지로 모든 숙주가 동일한 발현 시스템에 대해 동일하게 기능을 발휘하지는 않는다. 그러나, 당업자라면 과도한 실험적 부담없이 본 발명의 범위를 벗어나지 않는 채로 여러 벡터, 발현 조절 서열 및 숙주 중에서 적절한 선택을 할 수 있다. 예를 들어, 벡터를 선택함에 있어서는 숙주를 고려하여야 하는데, 이는 벡터가 그 안에서 복제되어야만 하기 때문이다. 벡터의 복제 수, 복제 수를 조절할 수 있는 능력 및 당해 벡터에 의해 코딩되는 다른 단백질, 예를 들어 항생제 마커의 발현도 또한 고려되어야만 한다. 발현 조절 서열을 선정함에 있어서도, 여러 가지 인자들을 고려하여야만 한다. 예를 들어, 서열의 상대적 강도, 조절가능성 및 본 발명의 DNA 서열과의 상용성 등, 특히 가능성있는 이차 구조와 관련하여 고려하여야 한다. 단세포 숙주는 선정된 벡터, 본 발명의 DNA 서열에 의해 코딩되는 산물의 독성, 분비 특성, 단백질을 정확하게 폴딩시킬 수 있는 능력, 배양 및 발효 요건들, 본 발명 DNA 서열에 의해 코딩되는 산물을 숙주로부터 정제하는 것의 용이성 등의 인자를 고려하여 선정되어야만 한다. 이들 변수의 범위내에서, 당업자는 본 발명의 DNA 서열을 발효 또는 대규모 동물 배양에서 발현시킬 수 있는 각종 벡터/발현 조절 서열/숙주 조합을 선정할 수 있다. 발현 클로닝에 의해 본 발명에 따른 단백질의 cDNA를 클로닝하려고 할 때의 스크리닝법으로서 바인딩법(binding법), 페닝법(panning법), 필름에멀션법(film emulsion 법)등이 적용될 수 있다.Of course, it should be understood that not all vectors and expression control sequences function equally in expressing the DNA sequences of the present invention. Likewise not all hosts function equally for the same expression system. However, those skilled in the art can make appropriate choices among various vectors, expression control sequences and hosts without departing from the scope of the present invention without undue experimental burden. For example, in selecting a vector, the host must be considered, since the vector must be replicated in it. The number of copies of the vector, the ability to control the number of copies, and the expression of other proteins encoded by the vector, such as antibiotic markers, must also be considered. In selecting expression control sequences, several factors must be considered. For example, the relative strength of the sequence, the controllability, and the compatibility with the DNA sequences of the present invention should be considered, particularly with regard to possible secondary structures. Single cell hosts may be selected from a host for the selected vector, the toxicity of the product encoded by the DNA sequence of the invention, the secretory properties, the ability to accurately fold the protein, the culture and fermentation requirements, the product encoded by the DNA sequence of the invention from the host. It should be selected in consideration of factors such as the ease of purification. Within the scope of these variables, one skilled in the art can select a variety of vector / expression control sequence / host combinations capable of expressing the DNA sequences of the invention in fermentation or large scale animal culture. As a screening method when cloning the cDNA of a protein according to the present invention by expression cloning, a binding method (binding method), a panning method, a film emulsion method and the like can be applied.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.
하기 실시예에서는 재조합 미생물로 대장균을 사용하였으나, 탄소원으로 부터 아세틸-CoA를 생성하는 미생물이라면 제한없이 사용할 수 있으며, 알칼리제네스(Alcaligenes)속, 슈도모나스(Pseudomonas)속, 에스케리치아(Escherichia)속, 랄스토니아(Ralstonia)속, 바실러스(Bacillus)속, 코리네박테리움(Corynebacterium) 등을 사용할 수 있다. In the following examples, E. coli was used as a recombinant microorganism, but any microorganism that produces acetyl-CoA from a carbon source can be used without limitation, and includes genus Alcaligenes, Pseudomonas, Escherichia, Ralstonia genus, Bacillus genus, Corynebacterium and the like can be used.
본 발명에서 사용 또는 제작된 재조합 균주, 플라스미드 및 프라이머를 표 1~3에 나타내었다. Recombinant strains, plasmids and primers used or produced in the present invention are shown in Tables 1-3.
Figure PCTKR2018002305-appb-T000001
Figure PCTKR2018002305-appb-T000001
Figure PCTKR2018002305-appb-T000002
Figure PCTKR2018002305-appb-T000002
Figure PCTKR2018002305-appb-I000001
Figure PCTKR2018002305-appb-I000001
Figure PCTKR2018002305-appb-I000002
Figure PCTKR2018002305-appb-I000002
Figure PCTKR2018002305-appb-I000003
Figure PCTKR2018002305-appb-I000003
Figure PCTKR2018002305-appb-I000004
Figure PCTKR2018002305-appb-I000004
Figure PCTKR2018002305-appb-I000005
Figure PCTKR2018002305-appb-I000005
Figure PCTKR2018002305-appb-I000006
Figure PCTKR2018002305-appb-I000006
Figure PCTKR2018002305-appb-I000007
Figure PCTKR2018002305-appb-I000007
Figure PCTKR2018002305-appb-I000008
Figure PCTKR2018002305-appb-I000008
Figure PCTKR2018002305-appb-I000009
Figure PCTKR2018002305-appb-I000009
1 Datsenko, K. A. & Wanner, B. P Natl Acad Sci USA 97:6640, 2000.1 Datsenko, K. A. & Wanner, B. P Natl Acad Sci USA 97: 6640, 2000.
2 Lee, K. H. et al., Molecular Systems Biology 3, doi:ARTN 149 10.1038/msb4100196, 2007.2 Lee, KH et al., Molecular Systems Biology 3, doi: ARTN 149 10.1038 / msb4100196, 2007.
3 Palmeros, B. et al. Gene 247:255, 2000.3 Palmeros, B. et al. Gene 247: 255, 2000.
4 Park, S. J. et al., Metab Eng 20, 20, 2013.4 Park, SJ et al., Metab Eng 20, 20, 2013.
5 Yang, T. H. et al. Biotechnol Bioeng 105:150, 2010.5 Yang, TH et al. Biotechnol Bioeng 105: 150, 2010.
6 Yang, T. H. et al., Appl Microbiol Biotechnol 90:603, 2011.6 Yang, TH et al., Appl Microbiol Biotechnol 90: 603, 2011.
7 Choi, S. Y. et al., Nat Biotechnol 34:435, 2016.7 Choi, SY et al., Nat Biotechnol 34: 435, 2016.
8 Knobloch, K. H. & Hahlbrock, K., Archives of Biochemistry and Biophysics 184: 237, 1977.8 Knobloch, K. H. & Hahlbrock, K., Archives of Biochemistry and Biophysics 184: 237, 1977.
9 Kaneko, M. et al., J Bacteriol 185:20, 2003.9 Kaneko, M. et al., J Bacteriol 185: 20, 2003.
Figure PCTKR2018002305-appb-T000003
Figure PCTKR2018002305-appb-T000003
Figure PCTKR2018002305-appb-I000010
Figure PCTKR2018002305-appb-I000010
Figure PCTKR2018002305-appb-I000011
Figure PCTKR2018002305-appb-I000011
Figure PCTKR2018002305-appb-I000012
Figure PCTKR2018002305-appb-I000012
Figure PCTKR2018002305-appb-I000013
Figure PCTKR2018002305-appb-I000013
Figure PCTKR2018002305-appb-I000014
Figure PCTKR2018002305-appb-I000014
Figure PCTKR2018002305-appb-I000015
Figure PCTKR2018002305-appb-I000015
Figure PCTKR2018002305-appb-I000016
Figure PCTKR2018002305-appb-I000016
실시예 1: 재조합 2-하이드록시이소카프로네이트 CoA-전이효소의 제작Example 1 Construction of Recombinant 2-hydroxyisocapronate CoA-Transferase
CoA 공여체로서 아세틸-CoA를 사용하여 방향족 기질의 스펙트럼이 넓은 효소를 찾아내었다. FldA 대한 상동 효소를 식별하기 위해 배열 유사성 분석을 실시하였으며, 다른 기원의 다양한 FldA 중 FldA와 48% 이상의 아미노산 서열 동일성을 갖는 Clostridium difficile의 2-이소카프레노일-CoA:2-하이드록시이소카프로에이트 CoA-전이효소(HadA, 서열번호 1)를 스크리닝하였다(도 2). Acetyl-CoA was used as CoA donor to find enzymes with broad spectrum of aromatic substrates. An array similarity assay was performed to identify homologous enzymes for FldA and 2-isocaprenoyl-CoA: 2-hydroxyisocaproate of Clostridium difficile having at least 48% amino acid sequence identity with FldA among various FldAs of different origins. CoA-transferase (HadA, SEQ ID NO: 1) was screened (FIG. 2).
HadA를 코딩하는 유전자를 포함하는 재조합 벡터를 제작하기 위하여, 클로스트리듐 Clostridium difficile 630 균주의 염색체 DNA를 주형으로 하고, HadA-hisF, HadA-hisR 프라이머로 PCR을 수행하여, C 말단(C terminus)에 his-tag이 달린 2-하이드록시이소카프로에이트-CoA 전이효소를 코딩하는 his_HadA 유전자 절편을 제작하였다.In order to prepare a recombinant vector containing a gene encoding HadA, the chromosomal DNA of Clostridium diffsile 630 strain was used as a template, and PCR was performed using HadA-hisF and HadA-hisR primers to obtain a C terminus. A his_HadA gene segment encoding 2-hydroxyisocaproate-CoA transferase with his-tag was constructed.
다음으로, 상기 제조된 his_HadA 절편을 T7 프로모터의 강한 유전자 발현을 진행하는 pET22b 플라스미드에 제한효소(NdeI 및 NotI)를 처리한 후, T4 DNA 라이게이즈를 처리하여, 제한효소로 절단된 his_HadA절편 및 pET22b 플라스미드를 접합시킴으로써, 재조합 플라스미드인 pET22b_hisHadA 를 제작하였다 (도 2). Next, the prepared his_HadA fragment was treated with restriction enzymes (NdeI and NotI) to the pET22b plasmid undergoing strong gene expression of the T7 promoter, followed by T4 DNA ligase, and his_HadA fragment digested with restriction enzyme and pET22b plasmid was conjugated to prepare a recombinant plasmid pET22b_hisHadA (FIG. 2).
상기 pET22b_hisHadA를 대장균 XL1-Blue(Stratagene Cloning Systems, USA)에 도입시킨 후, 배양하고, IPTG를 첨가하여, HadA 발현을 유도한 후, His-tag을 이용하여 Ni-NTA 스핀 키트(Quiagen, Germany)에서 배양액으로 부터 HadA를 정제하였다(도 3 a). The pET22b_hisHadA was introduced into Escherichia coli XL1-Blue (Stratagene Cloning Systems, USA), cultured, and IPTG was added to induce HadA expression, followed by Ni-NTA spin kit (Quiagen, Germany) using His-tag. HadA was purified from the culture medium at (Fig. 3a).
실시예 2: 2-하이드록시이소카프로에이트 CoA-전이효소의 기질 다양성 확인Example 2: Determination of Substrate Diversity of 2-hydroxyisocaproate CoA-Transferase
HadA가 아세틸-CoA를 공여체로 사용할 수 있는지 확인하기 위하여, 실시예 1에서 제조한 HadA를 사용하여, in vitro 어세이를 수행하였다. In order to confirm that HadA can use acetyl-CoA as a donor, an in vitro assay was performed using HadA prepared in Example 1.
10μg의 HadA를 0.1mM 아세틸-CoA 및 10mM 기질을 포함하는 50mM 인산 완충액(pH7.5)에 첨가하고, 30℃에서 10분간 반응을 수행하였다. 반응 후, 0.1mM의 옥살아세트산, 5μg citrate synthase 및 0.5mM의 5.5'-dithiobis-(2-nitrobenzoic acid)(DTNB)을 첨가하였다. 그 후, 유리된 CoA의 양을 412nm에서의 흡광도를 측정하여 분석하였다(도 3b). 10 μg of HadA was added to 50 mM phosphate buffer (pH 7.5) containing 0.1 mM acetyl-CoA and 10 mM substrate and the reaction was performed at 30 ° C. for 10 minutes. After the reaction, 0.1 mM oxal acetic acid, 5 μg citrate synthase and 0.5 mM 5.5'-dithiobis- (2-nitrobenzoic acid) (DTNB) were added. The amount of free CoA was then analyzed by measuring the absorbance at 412 nm (FIG. 3B).
생성되는 지방족 및 방향족 아실-CoA의 분석은 Eclipse XDB-C18 컬럼 (5μm, 4.6 x 150mm, Agilent)를 갖춘 LC-MS (Agilent 1100 시리즈 및 LC / MSD VL, Agilent)에서 수행하였다. Analysis of the resulting aliphatic and aromatic acyl-CoA was performed on LC-MS (Agilent 1100 series and LC / MSD VL, Agilent) equipped with Eclipse XDB-C18 column (5 μm, 4.6 × 150 mm, Agilent).
그 결과, 도 4에 나타난 바와 같이, HadA가 아세틸-CoA를 CoA 공여체로 사용하여 만델레이트, 4-하이드록시만델레이트, 페닐락테이트, 4-하이드록시페닐락테이트, 2-하이드록시-4-페닐부티레이트, 3-하이드록시-3-페닐프로피오네이트 및 4-하이드록시 벤조산을 기질로 사용하여, 상기 기질을 해당 CoA 유도체로 전환할 수 있는 것을 확인하였다. As a result, as shown in FIG. 4, HadA was treated with acetyl-CoA as CoA donor, mandelate, 4-hydroxymandelate, phenyllactate, 4-hydroxyphenyllactate, 2-hydroxy-4 Using -phenylbutyrate, 3-hydroxy-3-phenylpropionate and 4-hydroxy benzoic acid as substrates, it was confirmed that the substrate can be converted to the corresponding CoA derivative.
도 5에는 HadA가 전환할 수 있는 다양한 기질들의 CoA 전환 반응을 분자식으로 나타내었다. Figure 5 shows the molecular formula of the CoA conversion reaction of the various substrates that HadA can convert.
실시예 3: 방향족 단량체 생성이 증가된 재조합 균주의 제작Example 3: Construction of Recombinant Strains with Increased Aromatic Monomer Production
in vivo에서 글루코오스로부터 D-페닐락테이트를 생성하도록 대장균을 조작하였다. 방향족 화합물의 생합성은 3-데옥시-D-아라비노-헵툴로소네이트-7-인산(DAHP)의 합성에서 시작되며, 상기 DAHP는 DAHP 합성효소에 의한 포스포에놀피루베이트(PEP)와 에리쓰로즈-4-인산(E4P)의 축합으로 생성된다. 생성된 DAHP는 페닐피루베이트(PPA)로 전환된 후, D-락테이트 디하이드로게네이즈(FldH)에 의해 D-페닐락테이트로 전환된다(도 1). 방향족 화합물 생합성을 위한 대사경로는 다양한 저해기구에 의해 복잡하게 제어되는 것으로 알려져 있다. aroG에 의해 코딩되는 DAHP 합성효소와 pheA에 의하여 코딩되는 코리스메이트 뮤타아제/프레페네이트 디하이드로게네이즈의 발현은 L-페닐알라닌에 의하여 저해된다(ribe, D. E. et al., J. Bacteriol. 127:1085, 1976).E. coli was engineered to produce D-phenyllactate from glucose in vivo. Biosynthesis of aromatic compounds begins with the synthesis of 3-deoxy-D-arabino-heptulsonate-7-phosphate (DAHP), which is combined with phosphoenolpyruvate (PEP) by DAHP synthase. It is produced by the condensation of erythrose-4-phosphate (E4P). The resulting DAHP is converted to phenylpyruvate (PPA) followed by D-lactate dihydrogenase (FldH) to D-phenyllactate (FIG. 1). Metabolic pathways for aromatic compound biosynthesis are known to be complexly controlled by various inhibitory mechanisms. Expression of DAHP synthase encoded by aroG and corismate mutase / prephenate dehydrogenase encoded by pheA is inhibited by L-phenylalanine (ribe, DE et al., J. Bacteriol. 127: 1085, 1976).
본 발명에서는 L-페닐알라닌에 의한 피드백 저해를 해제하기 위해 피드백 저해 내성 돌연변이 AroGfbr [AroG (D146N)] 및 PheAfbr [PheA (T326P)]를 구축하였다(Zhou, H. Y. et al., Bioresour. Technol. 101:4151, 2010; Kikuchi, Y. et al., Appl. Environ. Microbiol. 63:761, 1997). AroGfbr, PheAfbr 및 C. botulinum A str. ATCC 3502의 FldH를 발현하는 대장균 XL1-Blue를 제작하였다. In the present invention, the feedback inhibition resistance mutants AroGfbr [AroG (D146N)] and PheAfbr [PheA (T326P)] were constructed to release feedback inhibition by L-phenylalanine (Zhou, HY et al., Bioresour. Technol . 101: 4151, 2010; Kikuchi, Y. et al., Appl. Environ.Microbiol . 63: 761, 1997). AroGfbr, PheAfbr and C. botulinum A str. E. coli XL1-Blue expressing the FldH of ATCC 3502 was constructed.
pKM212-AroGfbr를 구축하기 위해 피드백 저해 내성 돌연변이인 3-데옥시-D-아라비노-헵툴로소네이트(heptulosonate)-7-인산 합성효소 유전자(aroG)를 프라이머 AroG-F 및 AroG-R을 이용하여 플라스미드 pTyr-a(Na, D. et al., Nature Biotechnol. 31:170, 2013)를 주형으로하여, PCR 산물을 제조하고, 상기 PCR 산물을 제한효소(EcoRI/HidIII)를 이용하여, pKM212-MCS(Park, S. J. et al., Metab. Eng. 20:20, 2013)와 연결하여, pKM212-AroGfbr를 제작하였다. 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase gene (aroG), a feedback inhibition resistance mutation, was constructed using primers AroG-F and AroG-R to construct pKM212-AroGfbr. PCR product was prepared using the plasmid pTyr-a (Na, D. et al., Nature Biotechnol. 31: 170, 2013) as a template, and the PCR product was purified using pKM212 using restriction enzymes (EcoRI / HidIII). PKM212-AroGfbr was constructed in conjunction with -MCS (Park, SJ et al., Metab. Eng . 20:20, 2013).
pKM212-AroGfbrPheAfbr 플라스미드를 다음과 같이 구축하였다. 첫째, 단일변이된 염기(T976G)의 프라이머 PheA-F 및 PheAmut-R을 이용하여 대장균의 게놈 DNA로부터 991bp의 DNA 단편을 PCR로 증폭했다. 둘째, 단일변이된 염기 (A976C) 및 PheA-R의 프라이머 PheAmut-F를 이용하여 대장균의 게놈 DNA로부터 200bp의 DNA 단편을 증폭하였다. The pKM212-AroGfbrPheAfbr plasmid was constructed as follows. First, 991 bp DNA fragments from genomic DNA of Escherichia coli were amplified by PCR using primers PheA-F and PheAmut-R of a single mutated base (T976G). Second, a 200 bp DNA fragment was amplified from genomic DNA of Escherichia coli using a single mutated base (A976C) and PheAmut-F primer of PheA-R.
이어, 혼합한 2개의 단편을 주형으로 사용하여 1161bp의 DNA조각을 오버랩 PCR로 프라이머 PheA-F 및 PheA-R로 증폭했다. PCR 산물을 제한효소(HindIII)를 사용하여, 상기 제작된 pKM212-AroGfbr와 연결하였다. Then, using the mixed two fragments as a template, a DNA fragment of 1161bp was amplified by the primers PheA-F and PheA-R by overlap PCR. The PCR product was linked to pKM212-AroGfbr prepared above using restriction enzyme (HindIII).
pACYC-FldH 구축을 위해 C. botulinum A str. ATCC 3502의 D-락테이트 디하이드로게네이즈(fldH)를 사용 하였다. fldH 유전자의 코돈 사용 빈도는 대장균 에 최적화 대장균 코돈 최적화 fldH 유전자를 프라이머 FldH- F 및 FldH-R를 사용하고, 주형으로 pUC57-FldHopt(GenScript, Piscataway, NJ, USA)를 이용하여 실시하였다.To construct pACYC-FldH, C. botulinum A str. D-lactate dehydrogenase (fldH) of ATCC 3502 was used. Codon usage frequency of the fldH gene was carried out using E. coli-optimized E. coli codon-optimized fldH gene using primers FldH-F and FldH-R and pUC57-FldHopt (GenScript, Piscataway, NJ, USA) as a template.
PCR 산물을 제한효소(BamHI/HindIII)를 사용하여, pTrc99A(Pharmacia, Biotech, Sweden)와 연결하여 pTrc-FldH를 제작하였다. 다음은 trc 프로모터 및 rrnB 터미네이터 결합한 fldH 유전자를 pTrc-FldH를 주형으로 프라이머 Trc-F 및 Ter-R을 이용한 PCR로 증폭했다. 증폭된 PCR 산물을 제한효소(XhoI/SacI)를 사용하여 pACYC184KS(한국특허공개 2015-0142304)와 연결하고 pACYC-FldH을 얻었다. The PCR product was linked with pTrc99A (Pharmacia, Biotech, Sweden) using restriction enzymes (BamHI / HindIII) to prepare pTrc-FldH. Next, the fldH gene coupled to the trc promoter and rrnB terminator was amplified by PCR using primers Trc-F and Ter-R using pTrc-FldH as a template. The amplified PCR product was linked with pACYC184KS (Korean Patent Publication No. 2015-0142304) using restriction enzymes (XhoI / SacI) to obtain pACYC-FldH.
상기 제작된 pKM212-AroGfbrPheAfbr, pACYC-FldH를 대장균 XL1-Blue에 도입하여, AroGfbr, PheAfbr 및 FldH를 발현하는 재조합 대장균을 제작하였다. PKM212-AroGfbrPheAfbr and pACYC-FldH prepared above were introduced into E. coli XL1-Blue to prepare recombinant E. coli expressing AroGfbr, PheAfbr and FldH.
상기 대장균은 15.2g/L의 글루코오스를 포함하는 MR 배지에서 배양하였을 때, 0.372g/L의 D-페닐락테이트를 생산하였다. The Escherichia coli produced 0.372 g / L of D-phenyllactate when incubated in MR medium containing 15.2 g / L of glucose.
상기 MR 배지는 1L 당 6.67g KH2PO4,4g (NH4)2HPO4,0.8g MgSO4·7H2O, 0.8g citrate 및 5ml의 미량금속 용액을 포함하며, 상기 미량금속 용액은 0.5M HCl:10g FeSO4·7H2 O, 2g CaCl2, 2.2g ZnSO4·7H2O, 0.5g MnSO4·4H2O, 1g CuSO4·5H2O, 0.1g(NH4)6 Mo7O24·4H2O 및 0.02 g Na2B4O7·10H2O를 포함한다.The MR medium comprises 6.67 g KH 2 PO 4, 4 g (NH 4) 2 HPO 4, 0.8 g MgSO 4 .7H 2 O, 0.8 g citrate and 5 ml of trace metal solution, the trace metal solution being 0.5 M HCl: 10 g FeSO 4 · 7H 2 O, 2g CaCl 2, 2.2g ZnSO 4 .7H 2 O, 0.5g MnSO 4 .4H 2 O, 1g CuSO 4 .5H 2 O, 0.1g (NH 4) 6 Mo 7 O 24 .4H 2 O and 0.02 g Na 2 B 4 O 7 .10H 2 O.
대사공학에 의해 방향족 단량체의 생성량을 증가시키기 위하여, 글루코오스로부터 D-페닐락테이트를 소량 생산(0.372g/L) 생산하는 상기 AroGfbr, PheAfbr 및 FldH를 발현하는 대장균 XL1-Blue 균주를 대사공학적 조작을 통하여 수율을 상승시켰다. 방향족 아미노산 생합성을 억제하도록 조절하는 이중 전사조절 인자인 TyrR을 결실시킨 AroGfbr, PheAfbr 및 FldH를 발현하는 대장균 XBT 균주를 제작하였다.In order to increase the amount of aromatic monomer produced by metabolic engineering, E. coli XL1-Blue strains expressing the AroGfbr, PheAfbr and FldH producing small amounts of D-phenyllactate (0.372 g / L) from glucose were subjected to metabolic engineering. Yield was increased through. E. coli XBT strains expressing AroGfbr, PheAfbr and FldH, which deleted TyrR, a dual transcription regulator that regulates aromatic amino acid biosynthesis, were prepared.
상기 AroGfbr, PheAfbr 및 FldH를 발현하는 대장균에서 tyrR 유전자의 결실은 원 스텝 불활성화 방법을 사용하여 수행하였다(Datsenko, K. A. et al., Proc. Natl Acad. Sci. USA 97:6640, 2000). Deletion of the tyrR gene in E. coli expressing AroGfbr, PheAfbr and FldH was performed using a one step inactivation method (Datsenko, KA et al., Proc. Natl Acad. Sci. USA 97: 6640, 2000).
상기 대장균 XBT 균주는 16.4g/L의 글루코오스를 포함하는 MR 배지에서 배양한 결과, 0.5g/L의 D-페닐락테이트를 생산하여, tyrR을 결실시키지 않은 상기 대장균 XL1-Blue 균주보다 30% 높은 생산성을 나타내었다. The E. coli XBT strain was cultured in MR medium containing 16.4 g / L glucose and produced 0.5 g / L D-phenyllactate, which was 30% higher than the E. coli XL1-Blue strain without tyrR. Productivity was shown.
D-페닐락테이트 생합성과 충돌하는 경로를 제거하기 위하여, 대장균 XBT에서 poxB(피루브산 산화효소를 코딩하는 유전자), pflB(피루브산 포메이트 리아제를 코딩하는 유전자), adhE(아세트알데히드탈수소효소/ 알코올탈수소효소를 코딩하는 유전자) 및 frdB(푸마레이트 리덕테이즈를 코딩하는 유전자)를 결실시킨 대장균 XB201T를 제작하였다. To eliminate pathways that conflict with D-phenyllactate biosynthesis, poxB (a gene encoding pyruvate oxidase), pflB (a gene encoding pyruvate formate lyase), adhE (acetaldehyde dehydrogenase / alcohol dehydrogenase) in E. coli XBT E. coli XB201T was deleted, which deleted the enzyme encoding the gene) and frdB (the gene encoding fumarate reductase).
대장균 XB201T 균주는 15.7g/L의 글루코오스로부터 0.55g/L의 D-페닐락테이트를 생산하였고, 이는 대장균 XBT보다 10% 높은 수율을 나타내는 것이다.E. coli XB201T strain produced 0.55 g / L of D-phenyllactate from 15.7 g / L of glucose, indicating a 10% higher yield than E. coli XBT.
추가적으로, in silico 게놈 규모 대사 플럭스 분석에 따른 대사공학 분석을 실시하여, D-페닐락테이트 생산을 더욱 증가시키고자 하였다. In addition, metabolic analysis was performed according to in silico genome scale metabolic flux analysis to further increase D-phenyllactate production.
in silico 플럭스 응답 분석을 위해서는 2251개 대사 반응과 1135개 대사산물로 구성되는 대장균 iJO1366 게놈 스케일 모델을 사용하였으며, D-페닐락테이트 생산에 미치는 중심 및 방향족 아미노산 생합성 반응의 영향을 조사하였다. 본 발명의 XB201T 균주에 반영하기 위하여, D-페닐락테이트 생합성의 이종 대사 반응(fldH 유전자)을 모델에 더 부가하고 해당 플럭스를 제로로 설정함으로써 유전자 녹아웃을 모델에 반영시켰다. D-페닐락테이트 생성 속도는 목적 함수로 극대화시킨 반면, 중심 아미노산 및 방향족 아미노산 생합성 반응 플럭스 값은 최소값에서 최대값까지 서서히 증가시켰다. 시뮬레이션 중 글루코오스 반응속도는 시간당 건조세포 무게 1g 당 10mmol로 설정하였다. 모든 시뮬레이션은 Gurobi Optimizer 6.0 및 GurobiPy 패키지(Gurobi Optimization, Inc. Houston, TX)를 사용하여 Python 환경에서 실행하였다. COBRApy32를 사용하여, COBRA 호환 SBML 파일의 읽기, 쓰기 및 작업을 수행하였다. For in silico flux response analysis, the E. coli iJO1366 genome scale model consisting of 2251 metabolites and 1135 metabolites was used, and the effects of central and aromatic amino acid biosynthesis reactions on D-phenyllactate production were investigated. To reflect the XB201T strain of the present invention, gene knockout was reflected in the model by further adding the heterologous metabolic response (fldH gene) of D-phenyllactate biosynthesis to the model and setting the flux to zero. The rate of D-phenyllactate production was maximized as the objective function, while the central and aromatic amino acid biosynthetic reaction flux values slowly increased from minimum to maximum. The glucose response rate during the simulation was set to 10 mmol per 1 g of dry cell weight per hour. All simulations were run in a Python environment using the Gurobi Optimizer 6.0 and GurobiPy packages (Gurobi Optimization, Inc. Houston, TX). COBRApy32 was used to read, write, and work with COBRA-compliant SBML files.
그 결과, 도 6에 나타낸 바와 같이, 티로신 아미노전이효소를 코딩하는 tyrB 유전자 및 아스파라긴산 아미노전이효소를 코딩하는 aspC 유전자를 상기 대장균 XB201T 균주에 제거하고, L-페닐알라닌 생합성을 감소시켜 D-페닐락테이트로의 탄소 흐름을 강화하였다.As a result, as shown in FIG. 6, the tyrB gene encoding tyrosine aminotransferase and the aspC gene encoding aspartic acid aminotransferase were removed from the E. coli XB201T strain, and L-phenylalanine biosynthesis was reduced to D-phenyllactate. The carbon flow to the furnace was enhanced.
상기 in silico 플럭스 응답 분석 결과로 제작된 대장균 XB201TBA 균주는 18.5g/L의 글루코오스로부터 1.62g/L의 D-페닐락테이트를 생산하여 수율이 크게 높아졌으며, 이는 AroGfbr, PheAfbr 및 FldH를 발현하는 대장균 XL1-Blue 균주의 D-페닐락테이트 생산량보다 4.35 배 높아진 것이다.The E. coli XB201TBA strain produced as a result of the in silico flux response analysis produced 1.62 g / L of D-phenyllactate from 18.5 g / L of glucose, which greatly increased the yield of E. coli expressing AroGfbr, PheAfbr and FldH. It is 4.35 times higher than D-phenyllactate production of XL1-Blue strain.
실시예 4: 재조합 균주를 이용한 방향족 단량체를 함유하는 폴리하이드록시알카노에이트의 제조Example 4 Preparation of Polyhydroxyalkanoate Containing Aromatic Monomer Using Recombinant Strains
XB201TBA에서 D-락테이트 형성을 방지하기 위해 ldhA 유전자를 추가로 결실하여 XB201TBAL 균주를 제작하였다. 방향족 단량체를 함유하는 폴리하이드록시알카노에이트를 제조하기 위하여, 대장균 XB201TBAL 균주에서 PhaC1437 및 HadA를 발현시켰다. In order to prevent D-lactate formation in XB201TBA, an additional deletion of the ldhA gene was made to produce the XB201TBAL strain. To prepare polyhydroxyalkanoates containing aromatic monomers, PhaC1437 and HadA were expressed in E. coli XB201TBAL strain.
PhaC1437과 HadA를 코딩하는 유전자들을 포함하는 재조합 벡터를 제작하기 위하여, 클로스트리듐 Clostridium difficile 630 균주의 염색체 DNA를 주형으로 하고, HadA-sbF, HadA-ndR 프라이머로 PCR을 수행하여, 2-하이드록시이소카프로에이트-CoA 전이효소를 코딩하는 hadA 유전자 절편을 제작하였다. 증폭된 PCR 산물을 제한효소(SbfI/NdeI)를 사용하여 p619C1437-pct540(Yang, T. H. et al. Biotechnol Bioeng 105: 150, 2010)과 연결하고 p619C1437-HadA를 얻었다. 상기 제작된 p619C1437-HadA를 대장균 XB201TBAL에 도입하여, AroGfbr, PheAfbr, FldH, PhaC1437 및 HadA를 발현하는 재조합 대장균을 제작하였다. 상기 대장균을 20g/L 글루코오스 및 1g/L 소듐 3HB를 함유하는 MR 배지에서 배양하여, 폴리(52.1 mol% 3HB-co-47.9 mol% D-페닐락테이트)를 건조 세포 무게의 15.8 중량% 함량으로 생산하였다(도 7). 또한, 유가식 발효(fed-batch)를 통해 폴리(52.3mol % 3HB-co-47.7mol % D-페닐락테이트)를 건조 세포 무게의 24.3 중량% 함량으로 생산하였다(도 10a, b).In order to prepare a recombinant vector containing genes encoding PhaC1437 and HadA, chromosomal DNA of Clostridium difficile 630 strain was used as a template, and PCR was performed using HadA-sbF and HadA-ndR primers to prepare a recombinant vector. A hadA gene segment encoding isocaproate-CoA transferase was constructed. The amplified PCR product was linked with p619C1437-pct540 (Yang, TH et al. Biotechnol Bioeng 105: 150, 2010) using restriction enzymes (SbfI / NdeI) to obtain p619C1437-HadA. P619C1437-HadA prepared above was introduced into E. coli XB201TBAL to prepare recombinant E. coli expressing AroGfbr, PheAfbr, FldH, PhaC1437 and HadA. The E. coli was cultured in MR medium containing 20 g / L glucose and 1 g / L sodium 3HB to convert poly (52.1 mol% 3HB-co-47.9 mol% D-phenyllactate) to a content of 15.8% by weight of the dry cell weight. Produced (FIG. 7). Fed-batch also produced poly (52.3 mol% 3HB-co-47.7 mol% D-phenyllactate) at a 24.3 wt% content of dry cell weight (FIGS. 10a, b).
실시예 5: 재조합 균주를 이용한 다양한 방향족 단량체를 함유하는 폴리하이드록시알카노에이트의 제조Example 5 Preparation of Polyhydroxyalkanoates Containing Various Aromatic Monomers Using Recombinant Strains
대장균 XB201TBAL을 이용한 시스템이 다양한 방향족 공중합체의 제조에 사용할 수 있는지를 확인하기 위하여, 만델레이트를 모노머로 사용하여 시험하였다. In order to confirm that the system using E. coli XB201TBAL can be used for the preparation of various aromatic copolymers, mandelate was tested as a monomer.
AroGfbr, PheAfbr, FldH, PhaC1437 및 HadA를 발현하는 대장균 XB201TBAL을 1g/L의 소듐 3HB 및 0.5g/L D-만델레이트을 함유하는 MR 배지에서 배양한 결과, 폴리(55.2 mol% 3HB-co-43.0 mol% D-페닐락테이트-co-1.8 mol% D-만델레이트)를 건조세포 무게의 11.6 중량% 함량으로 제조하여(도 8a, b), D-만델레이트를 기질로 하여 D-만델레이트를 포함하는 방향족 중합체를 성공적으로 제조하였다. Escherichia coli XB201TBAL expressing AroGfbr, PheAfbr, FldH, PhaC1437 and HadA was incubated in MR medium containing 1 g / L sodium 3HB and 0.5 g / L D-mandelate, resulting in poly (55.2 mol% 3HB-co-43.0 mol % D-phenyllactate-co-1.8 mol% D-mandelate) was prepared in an amount of 11.6% by weight of the dry cell weight (FIG. 8a, b), containing D-mandelate using D-mandelate as a substrate. Aromatic polymers have been successfully prepared.
다음으로, 대사공학에 의해 D-만델레이트를 in vivo에서 생산하고자 하였다. 글루코오스로부터 D-만델레이트를 생산하기 위해 AroGfbr, PheAfbr, FldH, PhaC1437 및 HadA를 발현하는 대장균 XB201TBAL에서 Amycolatopsis orientalis 유래 하이드록시만델레이트 합성효소(HmaS), S. coelicolor의 하이드록시만델레이트 산화효소(Hmo) 및 Rhodotorula graminis의 D-만델레이트 탈수소효소(Dmd)를 발현시켰다. Next, D-mandelate was produced in vivo by metabolic engineering. Amycolatopsis orientalis-derived hydroxymandelate synthetase (HmaS), S. coelicolor, hydroxymandelate oxidase in E. coli XB201TBAL expressing AroGfbr, PheAfbr, FldH, PhaC1437 and HadA to produce D-mandelate from glucose (Hmo) and D-mandelate dehydrogenase (Dmd) from Rhodotorula graminis.
pKM212-HmaS의 구축을 위해, A. orientalis의 하이드록시만델산 합성효소 유전자(hmaS)를 사용하고 그 코돈을 대장균에서 합성 벡터에 클로닝하여 플라스미드 pUC57-HmaSopt를 제작하였다(GenScript, Piscataway, NJ, USA). To construct pKM212-HmaS, the hydroxymandelic acid synthase gene (hmaS) from A. orientalis was used and the codon was cloned into a synthetic vector in Escherichia coli to construct plasmid pUC57-HmaSopt (GenScript, Piscataway, NJ, USA). ).
상기 pUC57-HmaSopt를 제한효소(EcoRI/KpnI)를 사용하여, pKM212-MCS에 연결하였다. pKM212-HmaSHmo을 제작하기 위해 S. coelicolor의 하이드록시만델레이트 산화효소 유전자(hmo)를 코돈 최적화 hmo 유전자를 합성하고(GenScript, Piscataway, NJ, USA), 프라이머 Hmo-F 및 Hmo-R을 이용한 PCR에 의해 증폭했다. PCR 산물을 제한효소(KpnI/BamHI)를 이용하여, pKM212-HmaS와 연결하여, pKM212-HmaSHmo를 제작하였다. The pUC57-HmaSopt was linked to pKM212-MCS using restriction enzymes (EcoRI / KpnI). To construct pKM212-HmaSHmo, S. coelicolor's hydroxymandelate oxidase gene (hmo) was synthesized by codon-optimized hmo gene (GenScript, Piscataway, NJ, USA), and primers Hmo-F and Hmo-R were used. Amplified by PCR. The PCR product was linked to pKM212-HmaS using restriction enzymes (KpnI / BamHI) to prepare pKM212-HmaSHmo.
pKM212-HmaSHmoDmd를 구축하기 위해 대장균 코돈 최적화 dmd 유전자를 함유하는 pUC57-Dmd를 합성하고(GenScript, Piscataway, NJ, USA), 프라이머 Dmd-F 및 Dmd-R을 이용한 PCR에 의해 대장균 코돈 최적화 R. graminis D-만델레이트 디하이드로게네이즈 유전자(dmd)를 증폭하였다. PCR 산물을 제한효소(BamHI/SbfI)를 사용하여, pKM212-HmaSHmo와 연결하여, pKM212-HmaSHmoDmd를 제작하였다.pUC57-Dmd containing the E. coli codon optimized dmd gene was synthesized to generate pKM212-HmaSHmoDmd (GenScript, Piscataway, NJ, USA) and E. coli codon optimized by PCR with primers Dmd-F and Dmd-R R. graminis D-mandelate dehydrogenase gene (dmd) was amplified. The PCR product was linked to pKM212-HmaSHmo using restriction enzymes (BamHI / SbfI) to prepare pKM212-HmaSHmoDmd.
상기 제작된 pKM212-HmaSHmoDmd를 AroGfbr, PheAfbr, FldH, PhaC1437 및 HadA를 발현하는 대장균 XB201TBAL에 도입하여, 만델레이트 생산능을 가지는 재조합 균주를 제작하였다. PKM212-HmaSHmoDmd prepared above was introduced into E. coli XB201TBAL expressing AroGfbr, PheAfbr, FldH, PhaC1437 and HadA, to prepare a recombinant strain having mandelate production capacity.
상기 제작된 만델리에트 생산능을 가지는 재조합 균주를 20g/L의 글루코오스와 1g/L의 소듐 3HB를 함유하는 배지에서 배양한 결과, 건조 세포 무게의 16.4 중량%의 폴리(92.9 mol%의 3HB-co-6.3 mol% D-페닐락테이트-co-0.8 mol% D-만델레이트)를 생산하였다.As a result of culturing the recombinant strain having the above-described mandelyte production capacity in a medium containing 20 g / L glucose and 1 g / L sodium 3HB, 16.4 wt% poly (92.9 mol% 3HB-) of dry cell weight was obtained. co-6.3 mol% D-phenyllactate-co-0.8 mol% D-mandelate).
다른 가능한 방향족 단량체로서 3-하이드록시-3-페닐프로피오네이트(3HPh)를 사용하여 방향족 폴리머 생산을 확인하였다. 대장균 XB201TBAL 균주를 20g/L 글루코오스, 0.5g/L 3-하이드록시-3-페닐프로피온산 및 1g/L 소듐 3HB를 함유하는 배지에서 배양하면 폴리(33.3 mol% 3HB-co-18.0 mol% D-페닐락테이트-co-48.7 mol% 3HPh)를 건조 세포 무게의 14.7 중량%로 생산하는 것을 확인하였다 (도 8c, d). 이러한 결과는 본 발명에서 개발된 2-하이드록시이소카프로에이트-CoA 전이효소를 이용한 시스템이 다양한 방향족 폴리에스테르의 제조에 널리 사용할 수 있음을 시사한다.Aromatic polymer production was confirmed using 3-hydroxy-3-phenylpropionate (3HPh) as another possible aromatic monomer. Escherichia coli XB201TBAL strains were cultured in a medium containing 20 g / L glucose, 0.5 g / L 3-hydroxy-3-phenylpropionic acid and 1 g / L sodium 3HB to obtain a poly (33.3 mol% 3HB-co-18.0 mol% D-phenyl Lactate-co-48.7 mol% 3HPh) was confirmed to produce 14.7 wt% of the dry cell weight (Figure 8c, d). These results suggest that the system using the 2-hydroxyisocaproate-CoA transferase developed in the present invention can be widely used for the preparation of various aromatic polyesters.
실시예 6: 재조합 균주를 이용한 다양한 장사슬 2-HA를 함유하는 폴리하이드록시알카노에이트의 제조Example 6: Preparation of Polyhydroxyalkanoates Containing Various Long Chain 2-HAs Using Recombinant Strains
본 발명의 2-하이드록시이소카프로에이트-CoA 전이효소를 이용한 시스템이 다양한 장사슬 2-HA를 함유하는 폴리하이드록시알카노에이트의 제조에 사용할 수 있는지를 확인하기 위하여, 다양한 장사슬 2-HA 모노머[2-하이드록시이소카프로에이트(2HIC), 2-하이드록시헥사노에이트(2HH) 및 2-하이드록시옥타노에이트(2HO)]를 단량체로 사용하여, 폴리머 생산능을 확인하였다. PhaC1437 및 HadA를 발현하는 대장균 XL1-Blue를 1g/L의 3HB, 20g/L의 글루코오스 및 농도별(0.25, 0.5 및 1g/L) 장사슬 2-HA를 함유하는 MR 배지에서 배양한 결과, 2-하이드록시이소카프로에이트, 2-하이드록시헥사노에이트 혹은 2-하이드록시옥타노에이트를 함유하는 공중합체를 생성하였다. 또한, 배지 내에 함유된 2-HA의 농도가 증가할수록 공중합체 내에 함유하는 단량체의 몰분율이 증가하는 것을 확인할 수 있었다 (표 4, 표 5 및 표 6).In order to confirm that the system using the 2-hydroxyisocaproate-CoA transferase of the present invention can be used for the preparation of polyhydroxyalkanoate containing various long chain 2-HA, various long chain 2-HA Polymer production capability was confirmed using monomers [2-hydroxyisocaproate (2HIC), 2-hydroxyhexanoate (2HH) and 2-hydroxyoctanoate (2HO)] as monomers. Escherichia coli XL1-Blue expressing PhaC1437 and HadA was cultured in MR medium containing 1 g / L of 3HB, 20 g / L of glucose and concentration-specific (0.25, 0.5 and 1 g / L) long chain 2-HA. Copolymers containing hydroxyisocaproate, 2-hydroxyhexanoate or 2-hydroxyoctanoate were produced. In addition, it was confirmed that as the concentration of 2-HA contained in the medium increases, the mole fraction of the monomer contained in the copolymer increases (Table 4, Table 5 and Table 6).
Figure PCTKR2018002305-appb-T000004
Figure PCTKR2018002305-appb-T000004
Figure PCTKR2018002305-appb-T000005
Figure PCTKR2018002305-appb-T000005
Figure PCTKR2018002305-appb-T000006
Figure PCTKR2018002305-appb-T000006
실시예 7: 합성 프로모터 기반 플럭스 조절을 통한 다양한 몰분율의 방향족 단량체를 함유하는 폴리하이드록시알카노에이트의 제조Example 7 Preparation of Polyhydroxyalkanoates Containing Various Molar Fractions of Aromatic Monomers Through Synthetic Promoter-Based Flux Control
외부로부터 3HB를 첨가하지 않고도, 방향족 PHA를 생산하는 균주를 제작하기 위하여, XB201TBAL 균주에서 R. eutropha β-ketothiolase (PhaA)와 acetoacetyl-CoA reductase (PhaB)를 추가로 발현시키고, 3HB 보충없이 글루코오스에서 방향족 PHA를 생산하는지 확인하였다. In order to prepare a strain producing aromatic PHA without external addition of 3HB, R. eutropha β-ketothiolase (PhaA) and acetoacetyl-CoA reductase (PhaB) were further expressed in XB201TBAL strain, and in glucose without 3HB supplementation. It was confirmed to produce aromatic PHA.
그 결과, 예상대로, AroGfbr, PheAfbr, FldH, PhaC1437 및 HadA를 발현하는 XB201TBAL 균주는 MR 배지에서 폴리 (86.2 mol% 3HB-co-13.8 mol% D-페닐락테이트)를 건조세포 무게의 18.0 중량%로 20g/L의 글루코오스로부터 생산하였다. 또한, 산업적 응용에 중요한 다양한 단량체 몰분율을 갖는 방향족 PHA의 생산을 합성 Anderson 프로모터(http://parts.igem.org/)를 사용하여 PhaAB의 대사 플럭스를 조절하여 시도하였다. 상이한 강도의 5 가지 프로모터(서열번호 89~93) 하에서 PhaAB를 발현하는 5 개의 상이한 플라스미드를 제작하고 AroGfbr, PheAfbr, FldH, PhaC1437 및 HadA를 발현하는 XB201TBAL 균주에 도입 하였다.As a result, as expected, XB201TBAL strains expressing AroGfbr, PheAfbr, FldH, PhaC1437 and HadA resulted in poly (86.2 mol% 3HB-co-13.8 mol% D-phenyllactate) in MR medium at 18.0% by weight of dry cell weight. From 20 g / L glucose. In addition, the production of aromatic PHAs with various monomer mole fractions important for industrial applications was attempted by controlling the metabolic flux of PhaAB using a synthetic Anderson promoter (http://parts.igem.org/). Five different plasmids expressing PhaAB were constructed under five promoters of different intensities (SEQ ID NOs: 89-93) and introduced into XB201TBAL strains expressing AroGfbr, PheAfbr, FldH, PhaC1437 and HadA.
PhaAB 발현이 감소함에 따라 D-페닐락테이트 단량체 몰분율은 증가하였다; 각각 11.0 mol%, 15.8 mol%, 20.0 mol%, 70.8 mol% 및 84.5 mol%의 D-페닐락테이트를 갖는 공중합체를 제조할 수 있었다(도 9a, b 및 표 7); BBa_J23103 프로모터 하에서 PhaAB를 발현시킴으로써, 폴리(15.5 mol% 3HB-co-84.5 mol% D-페닐락테이트)를 건조세포 무게의 4.3 중량%로 생산하였다(도 9b). 이러한 결과는 대사 플럭스를 조절함으로써 다양한 방향족 단량체 몰분율을 갖는 방향족 폴리에스테르가 생성될 수 있음을 시사한다.As PhaAB expression decreased, the mole fraction of D-phenyllactate monomer increased; Copolymers with D-phenyllactate of 11.0 mol%, 15.8 mol%, 20.0 mol%, 70.8 mol% and 84.5 mol%, respectively, could be prepared (FIGS. 9 a, b and table 7); By expressing PhaAB under the BBa_J23103 promoter, poly (15.5 mol% 3HB-co-84.5 mol% D-phenyllactate) was produced at 4.3% by weight of dry cell weight (FIG. 9B). These results suggest that by controlling the metabolic flux, aromatic polyesters with various aromatic monomer mole fractions can be produced.
Figure PCTKR2018002305-appb-T000007
Figure PCTKR2018002305-appb-T000007
실시예 8: 유가식 발효를 통한 방향족 폴리하이드록시알카노에이트의 제조 Example 8 Preparation of Aromatic Polyhydroxyalkanoates Through Fed-Batch Fermentation
본 실시예에서는 AroGfbr, PheAfbr, FldH, HadA, PhaC1437 및 BBa_J23114 프로모터 하에서 PhaAB를 발현하는 대장균 XB201TBAL 균주의 pH-stat 배양을 3HB 공급없이 수행하였다. 배양 96시간 후 중합체 함량이 건조세포 무게의 43.8 중량%인 폴리 (67.6 mol% 3HB-co-32.4 mol % D-페닐락테이트)를 2.5g/L로 생산하였다(도 10c, d). In this example, pH-stat culture of E. coli XB201TBAL strain expressing PhaAB under the AroGfbr, PheAfbr, FldH, HadA, PhaC1437 and BBa_J23114 promoters was performed without 3HB feeding. After 96 hours of incubation, poly (67.6 mol% 3HB-co-32.4 mol% D-phenyllactate) having a polymer content of 43.8 wt% of dry cell weight was produced at 2.5 g / L (FIG. 10C, d).
또한, 방향족 폴리하이드록시알카노에이트의 생산을 더욱 향상시키기 위해 대장균 XB201TBA 염색체의 ldhA 유전자를 fldH 유전자로 대체하여 유전자 발현 시스템을 최적화했다. 또한, ldhA 유전자의 천연 프로모터를 강한 trc 프로모터로 대체하여 fldH 유전자의 발현을 증가시켰다. 펄스 공급 방법을 사용하여서 글루코오스를 공급하는 유가식 발효를 진행하였다. AroGfbr, PheAfbr, FldH, HadA, PhaC1437 및 BBa_J23114 프로모터 하에서 PhaAB를 발현하는 대장균 XB201TBAF 균주는 중합체 함량이 건조세포 무게의 55.0 중량%인 폴리(69.1 mol% 3HB-co-38.1 mol % D-페닐락테이트)를 13.9g/L로 유가식 발효를 통해 생산하였으며(도 10e, f), 생산량은 13.9g/L로, AroGfbr, PheAfbr, FldH, HadA, PhaC1437 및 BBa_J23114 프로모터 하에서 PhaAB를 발현하는 대장균 XB201TBAL 균주에서의 생산량인 2.5g/L 보다 5.56배 높았으며 글루코오스 및 3HB가 첨가된 배지에서 AroGfbr, PheAfbr, FldH, HadA 및 PhaC1437를 발현하는 대장균 XB201TBAL 균주의 유가식 배양으로 수득된 것 보다 훨씬 높았다. 이러한 결과는 방향족 폴리하이드록시알카노에이트가 조작된 균주 (AroGfbr, PheAfbr, FldH, HadA, PhaC1437 및 BBa_J23114 프로모터 하에서 PhaAB를 발현하는 대장균 XB201TBAF 균주)의 유가식 배양을 통해 고농도로 성공적으로 생산될 수 있음을 보여준다. In addition, the ldhA gene of the E. coli XB201TBA chromosome was replaced with the fldH gene to further optimize the production of aromatic polyhydroxyalkanoate to optimize the gene expression system. In addition, the native promoter of the ldhA gene was replaced with a strong trc promoter to increase the expression of the fldH gene. A fed-batch fermentation was performed using a pulse feeding method to supply glucose. E. coli XB201TBAF strains expressing PhaAB under the AroGfbr, PheAfbr, FldH, HadA, PhaC1437, and BBa_J23114 promoters are poly (69.1 mol% 3HB-co-38.1 mol% D-phenyllactate) having a polymer content of 55.0% by weight of dry cell weight. Was produced through fed-batch fermentation at 13.9 g / L (FIG. 10e, f), and the yield was 13.9 g / L in E. coli XB201TBAL strain expressing PhaAB under the AroGfbr, PheAfbr, FldH, HadA, PhaC1437 and BBa_J23114 promoters. It was 5.56 times higher than the yield of 2.5 g / L and much higher than that obtained by fed-batch culture of E. coli XB201TBAL strain expressing AroGfbr, PheAfbr, FldH, HadA, and PhaC1437 in medium supplemented with glucose and 3HB. These results can be successfully produced at high concentration through fed-batch culture of aromatic polyhydroxyalkanoate engineered strains (E. coli XB201TBAF strain expressing PhaAB under the AroGfbr, PheAfbr, FldH, HadA, PhaC1437 and BBa_J23114 promoters). Shows.
실시예 9: 방향족 단량체를 함유하는 폴리하이드록시알카노에이트의 물성 분석Example 9: Physical property analysis of polyhydroxyalkanoate containing aromatic monomer
마지막으로, 대사적으로 조작된 대장균에 의해 생산되는 방향족 PHA의 물질 특성을 조사하였다. Finally, the material properties of aromatic PHA produced by metabolically engineered Escherichia coli were investigated.
폴리하이드록시알카노에이트(PHA) 함량 및 모노머 조성은 GC 또는 GC-MS에 의해 결정하였다. 채취 한 세포를 증류수로 3 회 세척 한 다음, 24시간 동결 건조하고, 동결 건조 세포의 PHA는 산 촉매된 메타노라이시스(methanolysis) 의해 대응하는 하이드록시메틸에스테르로 전환하였다. 얻어진 메틸에스테르는 Agilent 7683 자동 주입기, 프레임 이온화 검출기 및 용융 실리카 모세관 컬럼(ATTM-Wax, 30m, ID 0.53mm, 두께 1.20μm, Alltech, 미국)를 갖춘 GC (Agilent 6890N, Agilent, 미국) 을 이용하여 분석하였다. 폴리머는 클로로포름 추출법에 의해 추출하였고, 용매 추출법을 이용하여, 세포에서 정제하였다. 폴리머의 구조, 분자량 및 열적 성질은 각각 핵자기 공명법(NMR), 겔 퍼미에이션 크로마토그래피(GPC) 및 시차 주사 열량계 (DSC)를 이용하여 측정하였다. Polyhydroxyalkanoate (PHA) content and monomer composition were determined by GC or GC-MS. The collected cells were washed three times with distilled water, and then lyophilized for 24 hours, and the PHAs of the lyophilized cells were converted to the corresponding hydroxymethyl esters by acid catalyzed metanolysis. The resulting methyl ester was obtained using GC (Agilent 6890N, Agilent, USA) equipped with an Agilent 7683 autoinjector, frame ionization detector and fused silica capillary column (ATTM-Wax, 30 m, ID 0.53 mm, thickness 1.20 μm, Alltech, USA). Analyzed. The polymer was extracted by chloroform extraction and purified in cells using solvent extraction. The structure, molecular weight and thermal properties of the polymers were measured using nuclear magnetic resonance (NMR), gel permeation chromatography (GPC) and differential scanning calorimetry (DSC), respectively.
그 결과, 도 7은 대장균 XB201TBAL에 의하여 생산된 폴리 (3HB-co-D-페닐락테이트)를 분석한 결과를 나타내었으며, 도 8은에는 대장균 XB201TBAL에 의하여 생산된 폴리(3HB-co-D-페닐락테이트-co-D-만델레이트)를 분석한 결과를 나타내었다. As a result, Figure 7 shows the results of the analysis of the poly (3HB-co-D-phenyl lactate) produced by E. coli XB201TBAL, Figure 8 shows the poly (3HB-co-D- produced by E. coli XB201TBAL Phenyllactate-co-D-mandelate) is shown.
폴리(52.1 mol% 3HB-co-47.9 mol% D-페닐락테이트)는 무정형이었으며, 공중합체 중의 D-페닐락테이트의 몰 분율이 증가함에 따라 분자량의 감소에도 불구하고 Tg는 23.86℃까지 크게 증가하였다. 또한, 폴리머 중에 방향족을 포함하는 공중합체는 결정화도가 감소하였다. 폴리머의 방향족 고리가 P(3HB) (입체 화학에 의해 유도된)의 결정화를 방해하는 것으로 추측된다. P(3HB)의 경우 강한 결정성으로 인해 높은 취성(brittleness)을 나타내는 것에 비해, 생성된 공중합체의 경우 결정화도의 저하 및 Tg의 향상으로 인해 기계적 인성의 향상을 초래하였다.Poly (52.1 mol% 3HB-co-47.9 mol% D-phenyllactate) was amorphous, and the Tg increased significantly to 23.86 ° C. despite decreasing molecular weight as the mole fraction of D-phenyllactate in the copolymer increased It was. In addition, copolymers containing aromatics in the polymers reduced crystallinity. It is assumed that the aromatic ring of the polymer interferes with the crystallization of P (3HB) (derived by stereochemistry). In the case of P (3HB), it showed high brittleness due to the strong crystallinity, whereas in the resultant copolymer, the decrease of crystallinity and the improvement of Tg resulted in the improvement of mechanical toughness.
구체적 구성을 참조하여 본 발명을 상세하게 기재하였으나, 이러한 기재는 바람직한 구현예에 관한 것이고, 발명의 범위를 제한하지 않음은 당업자에 자명한 것이다. 이에, 본 발명의 실질적 범위는 출원된 청구항 및 그 등가물에 의해 정의된다 할 것이다.Although the present invention has been described in detail with reference to specific configurations, such description is directed to the preferred embodiments and will be apparent to those skilled in the art without limiting the scope of the invention. Thus, the substantial scope of the present invention will be defined by the claims and their equivalents.
본 발명에 따르면, 방향족 단량체 또는 장사슬 2-HA를 단량체로 함유하는 생분해성 폴리머를 제조할 수 있다.According to the present invention, a biodegradable polymer containing an aromatic monomer or a long chain 2-HA as a monomer can be produced.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Having described the specific part of the present invention in detail, it is obvious to those skilled in the art that such a specific description is only a preferred embodiment, thereby not limiting the scope of the present invention. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.
전자파일 첨부하였음.Electronic file attached.

Claims (32)

  1. 탄소원으로부터 아세틸-CoA 생성능을 가지는 미생물에서, 2-하이드록시이소카프로에이트-CoA 전이효소를 코딩하는 유전자 및 폴리하이드록시알카노에이트 합성효소를 코딩하는 유전자가 도입되어 있으며, 방향족 단량체 또는 장사슬 2-HA를 단량체로 함유하는 폴리하이드록시알카노에이트 생성능을 가지는 재조합 미생물.In microorganisms having the ability to produce acetyl-CoA from a carbon source, a gene encoding 2-hydroxyisocaproate-CoA transferase and a gene encoding polyhydroxyalkanoate synthetase are introduced, and an aromatic monomer or a long chain 2 A recombinant microorganism having a polyhydroxyalkanoate generating ability containing -HA as a monomer.
  2. 제1항에 있어서, 상기 폴리하이드록시알카노에이트 합성효소는 Ralstonia eutropha, Pseudomonas, Bacillus 및 Pseudomonas sp. 6-19으로 구성된 군에서 선택되는 균주 유래의 PHA synthase 또는 하기에서 선택되는 아미노산 서열을 가지는 PHA synthase의 변이효소인 것을 특징으로 하는 재조합 미생물:According to claim 1, wherein the polyhydroxyalkanoate synthase is Ralstonia eutropha, Pseudomonas, Bacillus and Pseudomonas sp. Recombinant microorganisms characterized in that the PHA synthase derived from a strain selected from the group consisting of 6-19 or a variant enzyme of PHA synthase having an amino acid sequence selected from the following:
    서열번호 2의 아미노산 서열에서 E130D, S325T, L412M, S477R, S477H, S477F, S477Y, S477G, Q481M, Q481K 및 Q481R로 구성되는 군으로부터 선택되는 하나 이상의 변이를 포함하는 아미노산 서열;An amino acid sequence comprising one or more variants selected from the group consisting of E130D, S325T, L412M, S477R, S477H, S477F, S477Y, S477G, Q481M, Q481K and Q481R in the amino acid sequence of SEQ ID NO: 2;
    서열번호 2의 아미노산 서열에서 E130D, S325T, L412M, S477G 및 Q481M이 변이된 아미노산 서열(C1335);Amino acid sequence (C1335) wherein E130D, S325T, L412M, S477G and Q481M are mutated in amino acid sequence of SEQ ID NO: 2;
    서열번호 2의 아미노산 서열에서 E130D, S477F 및 Q481K가 변이된 아미노산 서열(C1310); 및Amino acid sequence (C1310) wherein E130D, S477F and Q481K are mutated in the amino acid sequence of SEQ ID NO: 2; And
    서열번호 2의 아미노산 서열에서 E130D, S477F 및 Q481R이 변이된 아미노산 서열(C1312).The amino acid sequence of E130D, S477F and Q481R having a mutated amino acid sequence of SEQ ID NO: 2 (C1312).
  3. 제1항에 있어서, 상기 2-하이드록시이소카프로에이트-CoA 전이효소는 Clostridium difficile 630 유래의 hadA인 것을 특징으로 하는 재조합 미생물. The recombinant microorganism of claim 1, wherein the 2-hydroxyisocaproate-CoA transferase is hadA derived from Clostridium difficile 630.
  4. 제1항 또는 제2항에 있어서, 상기 2-하이드록시이소카프로에이트-CoA 전이효소는 아세틸-CoA를 CoA 공여체로 사용하는 것을 특징으로 하는 재조합 미생물. The recombinant microorganism of claim 1 or 2, wherein the 2-hydroxyisocaproate-CoA transferase uses acetyl-CoA as a CoA donor.
  5. 제1항에 있어서, 상기 방향족 단량체 또는 장사슬 2-HA 단량체는 2-하이드록시이소카프로에이트, 2-하이드록시헥사노에이트, 2-하이드록시옥타노에이트, 페닐락테이트, 2-하이드록시-4-페닐부티레이트, 3-하이드록시-3-페닐프로피오네이트, 4-하이드록시벤조산 및 만델레이트로 구성된 군에서 선택되는 것을 특징으로 하는 재조합 미생물.The method of claim 1, wherein the aromatic monomer or long-chain 2-HA monomer is 2-hydroxyisocaproate, 2-hydroxyhexanoate, 2-hydroxyoctanoate, phenyllactate, 2-hydroxy- Recombinant microorganism, characterized in that selected from the group consisting of 4-phenylbutyrate, 3-hydroxy-3-phenylpropionate, 4-hydroxybenzoic acid and mandelate.
  6. 제1항에 있어서, β-케토티올레이즈를 코딩하는 유전자와 아세토아세틸-CoA 리덕테이즈를 코딩하는 유전자가 추가로 도입되어 있는 것을 특징으로 하는 재조합 미생물.The recombinant microorganism according to claim 1, wherein a gene encoding β-ketothiolase and a gene encoding acetoacetyl-CoA reductase are further introduced.
  7. 다음 단계를 포함하는 방향족 단량체 또는 장사슬 2-HA를 단량체로 함유하는 폴리하이드록시알카노에이트의 제조방법:A process for preparing polyhydroxyalkanoate containing as an monomer an aromatic monomer or a long chain 2-HA comprising the following steps:
    (a) 제1항 내지 제6항 중 어느 한 항의 재조합 미생물을 배양하여 방향족 단량체 또는 장사슬 2-HA를 단량체로 함유하는 폴리하이드록시알카노에이트를 생성시키는 단계; 및(a) culturing the recombinant microorganism of any one of claims 1 to 6 to produce a polyhydroxyalkanoate containing an aromatic monomer or a long chain 2-HA as a monomer; And
    (b) 상기 생성된 방향족 단량체 또는 장사슬 2-HA를 단량체로 함유하는 폴리하이드록시알카노에이트를 수득하는 단계.(b) obtaining a polyhydroxyalkanoate containing the produced aromatic monomer or long chain 2-HA as a monomer.
  8. 제7항에 있어서, 상기 재조합 미생물을 방향족 단량체 또는 장사슬 2-HA를 단량체로 함유하는 배지에서 배양하는 것을 특징으로 하는 폴리하이드록시알카노에이트의 제조방법.The method for producing polyhydroxyalkanoate according to claim 7, wherein the recombinant microorganism is cultured in a medium containing an aromatic monomer or a long chain 2-HA as a monomer.
  9. 제7항에 있어서, 상기 방향족 단량체 또는 장사슬 2-HA를 단량체는 2-하이드록시이소카프로에이트, 2-하이드록시헥사노에이트, 2-하이드록시옥타노에이트, 페닐락테이트, 2-하이드록시-4-페닐부티레이트, 3-하이드록시-3-페닐프로피오네이트, 4-하이드록시벤조산 및 만델레이트로 구성된 군에서 선택되는 것을 특징으로 하는 폴리하이드록시알카노에이트의 제조방법.The method of claim 7, wherein the aromatic monomer or the long-chain 2-HA monomer is 2-hydroxyisocaproate, 2-hydroxyhexanoate, 2-hydroxyoctanoate, phenyl lactate, 2-hydroxy A process for producing polyhydroxyalkanoate, characterized in that it is selected from the group consisting of -4-phenylbutyrate, 3-hydroxy-3-phenylpropionate, 4-hydroxybenzoic acid and mandelate.
  10. 탄소원으로부터 아세틸-CoA 생성능을 가지는 미생물에서, 2-하이드록시이소카프로에이트-CoA 전이효소를 코딩하는 유전자, 폴리하이드록시알카노에이트 합성효소를 코딩하는 유전자, DAHP(3-데옥시-D-아라비노-헵툴로소네이트-7-인산) 합성효소를 코딩하는 유전자, 코리스메이트 뮤타아제/프레페네이트 디하이드로게네이즈를 코딩하는 유전자 및 D-락테이트 디하이드로게네이즈를 코딩하는 유전자가 도입되어 있고, 페닐락테이트를 단량체로 함유하는 폴리하이드록시알카노에이트 생성능을 가지는 재조합 미생물.In microorganisms having the ability to produce acetyl-CoA from a carbon source, a gene encoding 2-hydroxyisocaproate-CoA transferase, a gene encoding polyhydroxyalkanoate synthase, DAHP (3-deoxy-D-ara) The gene encoding the Vino-heptulsonate-7-phosphate) synthetase, the gene encoding the corismate mutase / prephenate dehydrogenase and the gene encoding the D-lactate dehydrogenase were introduced. And a recombinant microorganism having a polyhydroxyalkanoate-generating ability, containing phenyl lactate as a monomer.
  11. 제10항에 있어서, 상기 2-하이드록시이소카프로에이트-CoA 전이효소는 Clostridium difficile 630 유래의 hadA인 것을 특징으로 하는 페닐락테이트를 단량체로 함유하는 폴리하이드록시알카노에이트 생성능을 가지는 재조합 미생물. The recombinant microorganism having polyhydroxyalkanoate-producing ability according to claim 10, wherein the 2-hydroxyisocaproate-CoA transferase is hadA derived from Clostridium difficile 630.
  12. 제10항에 있어서, 상기 폴리하이드록시알카노에이트 합성효소는 Ralstonia eutropha, Pseudomonas, Bacillus 및 Pseudomonas sp. 6-19으로 구성된 군에서 선택되는 균주 유래의 PHA synthase 또는 하기에서 선택되는 아미노산 서열을 가지는 PHA synthase의 변이효소인 것을 특징으로 하는 페닐락테이트를 단량체로 함유하는 폴리하이드록시알카노에이트 생성능을 가지는 재조합 미생물:The method of claim 10, wherein the polyhydroxyalkanoate synthase is Ralstonia eutropha, Pseudomonas, Bacillus and Pseudomonas sp. PHA synthase derived from a strain selected from the group consisting of 6-19 or a polyhydroxyalkanoate producing ability containing a phenyl lactate as a monomer, characterized in that the mutant enzyme of PHA synthase having an amino acid sequence selected below Recombinant Microorganisms:
    서열번호 2의 아미노산 서열에서 E130D, S325T, L412M, S477R, S477H, S477F, S477Y, S477G, Q481M, Q481K 및 Q481R로 구성되는 군으로부터 선택되는 하나 이상의 변이를 포함하는 아미노산 서열;An amino acid sequence comprising one or more variants selected from the group consisting of E130D, S325T, L412M, S477R, S477H, S477F, S477Y, S477G, Q481M, Q481K and Q481R in the amino acid sequence of SEQ ID NO: 2;
    서열번호 2의 아미노산 서열에서 E130D, S325T, L412M, S477G 및 Q481M이 변이된 아미노산 서열(C1335);Amino acid sequence (C1335) wherein E130D, S325T, L412M, S477G and Q481M are mutated in amino acid sequence of SEQ ID NO: 2;
    서열번호 2의 아미노산 서열에서 E130D, S477F 및 Q481K가 변이된 아미노산 서열(C1310); 및Amino acid sequence (C1310) wherein E130D, S477F and Q481K are mutated in the amino acid sequence of SEQ ID NO: 2; And
    서열번호 2의 아미노산 서열에서 E130D, S477F 및 Q481R이 변이된 아미노산 서열(C1312).The amino acid sequence of E130D, S477F and Q481R having a mutated amino acid sequence of SEQ ID NO: 2 (C1312).
  13. 제10항에 있어서, 상기 DAHP(3-데옥시-D-아라비노-헵툴로소네이트-7-인산) 합성효소를 코딩하는 유전자는 서열번호 8으로 표시되는 아미노산 서열을 코딩하는 유전자인 것을 특징으로 하는 페닐락테이트를 단량체로 함유하는 폴리하이드록시알카노에이트 생성능을 가지는 재조합 미생물.The gene encoding the DAHP (3-deoxy-D-arabino-heptulsonate-7-phosphate) synthase is a gene encoding an amino acid sequence represented by SEQ ID NO: 11. A recombinant microorganism having a polyhydroxyalkanoate-generating ability, containing a phenyl lactate as a monomer.
  14. 제10항에 있어서, 상기 코리스메이트 뮤타아제/프레페네이트 디하이드로게네이즈를 코딩하는 유전자는 서열번호 9으로 표시되는 아미노산 서열을 코딩하는 유전자인 것을 특징으로 하는 페닐락테이트를 단량체로 함유하는 폴리하이드록시알카노에이트 생성능을 가지는 재조합 미생물.The poly-containing monomer of phenyl lactate according to claim 10, wherein the gene encoding the corismate mutase / prephenate dehydrogenase is a gene encoding an amino acid sequence represented by SEQ ID NO: 9. Recombinant microorganism having hydroxyalkanoate producing ability.
  15. 제10항에 있어서, 상기 D-락테이트 디하이드로게네이즈를 코딩하는 유전자는 서열번호 10으로 표시되는 아미노산 서열을 코딩하는 유전자인 것을 특징으로 하는 페닐락테이트를 단량체로 함유하는 폴리하이드록시알카노에이트 생성능을 가지는 재조합 미생물.The polyhydroxyalkano containing a phenyl lactate as a monomer according to claim 10, wherein the gene encoding the D-lactate dehydrogenase is a gene encoding an amino acid sequence represented by SEQ ID NO: 10. Recombinant microorganisms having the ability to produce.
  16. 제10항에 있어서, 상기 D-락테이트 디하이드로게네이즈를 코딩하는 유전자는 fldH 유전자인 것을 특징으로 하는 페닐락테이트를 단량체로 폴리하이드록시알카노에이트 생성능을 가지는 재조합 미생물.The recombinant microorganism having a polyhydroxyalkanoate-producing ability with phenyllactate as a monomer according to claim 10, wherein the gene encoding the D-lactate dehydrogenase is a fldH gene.
  17. 제10항에 있어서, β-케토티올레이즈를 코딩하는 유전자와 아세토아세틸-CoA 리덕테이즈를 코딩하는 유전자가 추가로 도입되어 있는 것을 특징으로 하는 폴리하이드록시알카노에이트 생성능을 가지는 재조합 미생물.The recombinant microorganism having a polyhydroxyalkanoate-producing ability according to claim 10, wherein a gene encoding β-ketothiolase and a gene encoding acetoacetyl-CoA reductase are further introduced.
  18. 제10항에 있어서, tyrR 유전자, 피루브산 산화효소를 코딩하는 유전자, 피루브산 포메이트 리아제를 코딩하는 유전자, 아세트알데히드 탈수소효소를 코딩하는 유전자, 푸마레이트 리덕테이즈를 코딩하는 유전자, 티로신 아미노전이효소를 코딩하는 유전자, 및 아스파라긴산 아미노전이효소를 코딩하는 유전자로 구성된 군에서 선택되는 하나 이상의 유전자가 결실되어 있는 것을 특징으로 하는 페닐락테이트를 단량체로 함유하는 폴리하이드록시알카노에이트 생성능을 가지는 재조합 미생물.The tyrR gene, a gene encoding pyruvate oxidase, a gene encoding pyruvate formate lyase, a gene encoding acetaldehyde dehydrogenase, a gene encoding fumarate reductase, a tyrosine aminotransferase A recombinant microorganism having a polyhydroxyalkanoate-producing ability containing a phenyl lactate as a monomer, wherein at least one gene selected from the group consisting of a gene encoding the gene and a gene encoding aspartic acid aminotransferase is deleted.
  19. 다음 단계를 포함하는 페닐락테이트를 단량체로 함유하는 폴리하이드록시알카노에이트의 제조방법;A method for preparing polyhydroxyalkanoate containing phenyl lactate as a monomer, comprising the following steps;
    (a) 제10항 내지 제18항 중 어느 한 항의 재조합 미생물을 배양하여 페닐락테이트를 단량체로 함유하는 폴리하이드록시알카노에이트를 생성시키는 단계; 및(a) culturing the recombinant microorganism of any one of claims 10 to 18 to produce a polyhydroxyalkanoate containing phenyllactate as a monomer; And
    (b) 상기 생성된 페닐락테이트를 단량체로 함유하는 폴리하이드록시알카노에이트를 수득하는 단계.(b) obtaining a polyhydroxyalkanoate containing the produced phenyl lactate as a monomer.
  20. 탄소원으로부터 아세틸-CoA 생성능을 가지는 미생물에서, 2-하이드록시이소카프로에이트-CoA 전이효소를 코딩하는 유전자, 폴리하이드록시알카노에이트 합성효소를 코딩하는 유전자, DAHP(3-데옥시-D-아라비노-헵툴로소네이트-7-인산) 합성효소를 코딩하는 유전자, 코리스메이트 뮤타아제/프레페네이트 디하이드로게네이즈를 코딩하는 유전자 및 D-락테이트 디하이드로게네이즈를 코딩하는 유전자, 하이드록시만델레이트합성효소를 코딩하는 유전자, 하이드록시만델레이트 산화효소를 코딩하는 유전자 및 D-만델레이트 탈수소효소를 코딩하는 유전자가 도입되어 있고, 만델레이트를 단량체로 함유하는 폴리하이드록시알카노에이트 생성능을 가지는 재조합 미생물.In microorganisms having the ability to produce acetyl-CoA from a carbon source, a gene encoding 2-hydroxyisocaproate-CoA transferase, a gene encoding polyhydroxyalkanoate synthase, DAHP (3-deoxy-D-ara) Gene encoding the Vino-heptulsonate-7-phosphate) synthetase, gene encoding corismate mutase / prephenate dehydrogenase and gene encoding D-lactate dehydrogenase, hydroxy A gene encoding mandelate synthase, a gene encoding hydroxymandelate oxidase, and a gene encoding D-mandelate dehydrogenase are introduced, and polyhydroxyalkanoate containing mandelate as a monomer Recombinant microorganisms having the ability to produce.
  21. 제20항에 있어서, 상기 2-하이드록시이소카프로에이트-CoA 전이효소는 Clostridium difficile 630 유래의 hadA인 것을 특징으로 하는 만델레이트를 단량체로 함유하는 폴리하이드록시알카노에이트 생성능을 가지는 재조합 미생물. 21. The recombinant microorganism having polyhydroxyalkanoate producing ability according to claim 20, wherein the 2-hydroxyisocaproate-CoA transferase is hadA derived from Clostridium difficile 630.
  22. 제20항에 있어서, 상기 폴리하이드록시알카노에이트 합성효소는 Ralstonia eutropha, Pseudomonas, Bacillus 및 Pseudomonas sp. 6-19으로 구성된 군에서 선택되는 균주 유래의 PHA synthase 또는 하기에서 선택되는 아미노산 서열을 가지는 PHA synthase의 변이효소인 것을 특징으로 하는 만델레이트를 단량체로 함유하는 폴리하이드록시알카노에이트 생성능을 가지는 재조합 미생물:The method of claim 20, wherein the polyhydroxyalkanoate synthase is Ralstonia eutropha, Pseudomonas, Bacillus and Pseudomonas sp. PHA synthase derived from a strain selected from the group consisting of 6-19 or a mutant enzyme of PHA synthase having an amino acid sequence selected from the following. Recombinant having polyhydroxyalkanoate-producing ability containing a mandelate as a monomer microbe:
    서열번호 2의 아미노산 서열에서 E130D, S325T, L412M, S477R, S477H, S477F, S477Y, S477G, Q481M, Q481K 및 Q481R로 구성되는 군으로부터 선택되는 하나 이상의 변이를 포함하는 아미노산 서열;An amino acid sequence comprising one or more variants selected from the group consisting of E130D, S325T, L412M, S477R, S477H, S477F, S477Y, S477G, Q481M, Q481K and Q481R in the amino acid sequence of SEQ ID NO: 2;
    서열번호 2의 아미노산 서열에서 E130D, S325T, L412M, S477G 및 Q481M이 변이된 아미노산 서열(C1335);Amino acid sequence (C1335) wherein E130D, S325T, L412M, S477G and Q481M are mutated in amino acid sequence of SEQ ID NO: 2;
    서열번호 2의 아미노산 서열에서 E130D, S477F 및 Q481K가 변이된 아미노산 서열(C1310); 및Amino acid sequence (C1310) wherein E130D, S477F and Q481K are mutated in the amino acid sequence of SEQ ID NO: 2; And
    서열번호 2의 아미노산 서열에서 E130D, S477F 및 Q481R이 변이된 아미노산 서열(C1312).The amino acid sequence of E130D, S477F and Q481R having a mutated amino acid sequence of SEQ ID NO: 2 (C1312).
  23. 제20항에 있어서, 상기 DAHP(3-데옥시-D-아라비노-헵툴로소네이트-7-인산) 합성효소를 코딩하는 유전자는 서열번호 8로 표시되는 아미노산 서열을 코딩하는 유전자인 것을 특징으로 하는 만델레이트를 단량체로 함유하는 폴리하이드록시알카노에이트 생성능을 가지는 재조합 미생물.The gene encoding the DAHP (3-deoxy-D-arabino-heptulsonate-7-phosphate) synthase is a gene encoding an amino acid sequence represented by SEQ ID NO: 22. A recombinant microorganism having a polyhydroxyalkanoate generating ability containing a mandelate as a monomer.
  24. 제20항에 있어서, 상기 코리스메이트 뮤타아제/프레페네이트 디하이드로게네이즈를 코딩하는 유전자는 서열번호 9로 표시되는 아미노산 서열을 코딩하는 유전자인 것을 특징으로 하는 만델레이트를 단량체로 함유하는 폴리하이드록시알카노에이트 생성능을 가지는 재조합 미생물.The polyhydrate containing mandelate as a monomer according to claim 20, wherein the gene encoding the corismate mutase / prephenate dehydrogenase is a gene encoding an amino acid sequence represented by SEQ ID NO: 9. Recombinant microorganism having the ability to produce oxyalkanoate.
  25. 제20항에 있어서, 상기 D-락테이트 디하이드로게네이즈를 코딩하는 유전자는 서열번호 10로 표시되는 아미노산 서열을 코딩하는 유전자인 것을 특징으로 하는 만델레이트를 단량체로 함유하는 폴리하이드록시알카노에이트 생성능을 가지는 재조합 미생물.The polyhydroxyalkanoate containing mandelate as a monomer according to claim 20, wherein the gene encoding the D-lactate dehydrogenase is a gene encoding the amino acid sequence represented by SEQ ID NO: 10. Recombinant microorganisms having the ability to produce.
  26. 제20항에 있어서, 상기 하이드록시만델레이트합성효소를 코딩하는 유전자는 서열번호 11로 표시되는 아미노산 서열을 코딩하는 유전자인 것을 특징으로 하는 만델레이트를 단량체로 함유하는 폴리하이드록시알카노에이트 생성능을 가지는 재조합 미생물.21. The polyhydroxyalkanoate-producing ability according to claim 20, wherein the gene encoding the hydroxymandelate synthase is a gene encoding the amino acid sequence represented by SEQ ID NO: 11. Recombinant microorganisms.
  27. 제20항에 있어서, 상기 하이드록시만델레이트 산화효소를 코딩하는 유전자는 서열번호 12로 표시되는 아미노산 서열을 코딩하는 유전자인 것을 특징으로 하는 만델레이트를 단량체로 함유하는 폴리하이드록시알카노에이트 생성능을 가지는 재조합 미생물.21. The polyhydroxyalkanoate-producing ability of claim 20, wherein the gene encoding the hydroxymandelate oxidase is a gene encoding the amino acid sequence represented by SEQ ID NO: 12. Recombinant microorganisms.
  28. 제20항에 있어서, 상기 D-만델레이트 탈수소효소를 코딩하는 유전자는 서열번호 13으로 표시되는 아미노산 서열을 코딩하는 유전자인 것을 특징으로 하는 만델레이트를 단량체로 함유하는 폴리하이드록시알카노에이트 생성능을 가지는 재조합 미생물.21. The polyhydroxyalkanoate-producing ability of claim 20, wherein the gene encoding the D-mandelate dehydrogenase is a gene encoding the amino acid sequence represented by SEQ ID NO: 13. Branched recombinant microorganism.
  29. 제20항에 있어서, 상기 D-락테이트 디하이드로게네이즈를 코딩하는 유전자는 fldH 유전자인 것을 특징으로 하는 만델레이트를 단량체로 함유하는 폴리하이드록시알카노에이트 생성능을 가지는 재조합 미생물.The recombinant microorganism having polyhydroxyalkanoate-producing ability according to claim 20, wherein the gene encoding the D-lactate dehydrogenase is a fldH gene.
  30. 제20항에 있어서, β-케토티올레이즈를 코딩하는 유전자와 아세토아세틸-CoA 리덕테이즈를 코딩하는 유전자가 추가로 도입되어 있는 것을 특징으로 하는 만델레이트를 단량체로 함유하는 폴리하이드록시알카노에이트 생성능을 가지는 재조합 미생물.21. The polyhydroxyalkano containing monomer as a monomer according to claim 20, wherein a gene encoding β-ketothiolase and a gene encoding acetoacetyl-CoA reductase are further introduced. Recombinant microorganisms having the ability to produce.
  31. 다음 단계를 포함하는 만델레이트를 단량체로 함유하는 폴리하이드록시알카노에이트의 제조방법;A method for preparing polyhydroxyalkanoate containing mandelate as a monomer comprising the following steps;
    (a) 제20항 내지 제30항 중 어느 한 항의 재조합 미생물을 배양하여 만델레이트를 단량체로 함유하는 폴리하이드록시알카노에이트를 생성시키는 단계; 및(a) culturing the recombinant microorganism of any one of claims 20 to 30 to produce a polyhydroxyalkanoate containing mandelate as a monomer; And
    (b) 상기 생성된 만델레이트를 단량체로 함유하는 폴리하이드록시알카노에이트를 수득하는 단계.(b) obtaining a polyhydroxyalkanoate containing the produced mandelate as a monomer.
  32. 다음 단계를 포함하는 2-하이드록시이소카프로에이트, 2-하이드록시헥사노에이트 및 2-하이드록시옥타노에이트로 구성되는 군에서 선택되는 화합물을 단량체로 함유하는 폴리하이드록시알카노에이트의 제조방법;Method for producing polyhydroxyalkanoate containing as monomer a compound selected from the group consisting of 2-hydroxyisocaproate, 2-hydroxyhexanoate and 2-hydroxyoctanoate ;
    (a) 제1항 내지 제6항 중 어느 한 항의 재조합 미생물을 2-하이드록시이소카프로에이트, 2-하이드록시헥사노에이트 및 2-하이드록시옥타노에이트로 구성되는 군에서 선택되는 화합물을 함유하는 배지에서 배양하는 단계; 및(a) The recombinant microorganism of any one of claims 1 to 6 contains a compound selected from the group consisting of 2-hydroxyisocaproate, 2-hydroxyhexanoate and 2-hydroxyoctanoate. Culturing in a medium; And
    (b) 2-하이드록시이소카프로에이트, 2-하이드록시헥사노에이트 및 2-하이드록시옥타노에이트로 구성되는 군에서 선택되는 화합물을 단량체로 함유하는 폴리하이드록시알카노에이트를 수득하는 단계.(b) obtaining a polyhydroxyalkanoate containing as a monomer a compound selected from the group consisting of 2-hydroxyisocaproate, 2-hydroxyhexanoate and 2-hydroxyoctanoate.
PCT/KR2018/002305 2017-02-28 2018-02-26 Method for producing polyhydroxyalkanoate using 2-hydroxyisocaproate-coa transferase WO2018159965A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880014308.8A CN110382699B (en) 2017-02-28 2018-02-26 Methods of producing polyhydroxyalkanoates using 2-hydroxyisocaproate-CoA transferase
BR112019017457A BR112019017457A2 (en) 2017-02-28 2018-02-26 recombinant microorganism and method for the production of polyhydroxyalkanoate transferase
US16/483,426 US10961521B2 (en) 2017-02-28 2018-02-26 Recombinant microorganism for producing polyhydroxyalkanoate
EP18760488.9A EP3594350A4 (en) 2017-02-28 2018-02-26 Method for producing polyhydroxyalkanoate using 2-hydroxyisocaproate-coa transferase
JP2019545788A JP6854909B2 (en) 2017-02-28 2018-02-26 Method for producing polyhydroxyalkanoate using 2-hydroxyisocaproate-CoA transferase

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0026266 2017-02-28
KR20170026266 2017-02-28
KR10-2017-0172899 2017-12-15
KR1020170172899A KR102036828B1 (en) 2017-02-28 2017-12-15 Method for Preparing Polyhydroxyalkanoates Using 2-Hydroxyisocaproate-CoA Transferase

Publications (1)

Publication Number Publication Date
WO2018159965A1 true WO2018159965A1 (en) 2018-09-07

Family

ID=63370443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002305 WO2018159965A1 (en) 2017-02-28 2018-02-26 Method for producing polyhydroxyalkanoate using 2-hydroxyisocaproate-coa transferase

Country Status (1)

Country Link
WO (1) WO2018159965A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5292860A (en) 1991-09-17 1994-03-08 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Copolymer and method for production thereof
WO1998054329A1 (en) 1997-05-28 1998-12-03 Eidgenössische Technische Hochschule Zürich Institut Für Biotechnologie Production of medium chain length poly-3-hydroxy alkanoates in escherichia coli, and monomers derived therefrom
WO1999061624A2 (en) 1998-05-22 1999-12-02 Metabolix, Inc. Polyhydroxyalkanoate biopolymer compositions
US6143952A (en) 1998-03-31 2000-11-07 Regents Of The University Of Minnesota Modified pseudomonas oleovorans phaC1 nucleic acids encoding bispecific polyhydroxyalkanoate polymerase
WO2001055436A1 (en) 2000-01-31 2001-08-02 The Procter & Gamble Company Medium chain length pha copolymer and process for producing same
WO2008062996A1 (en) 2006-11-21 2008-05-29 Lg Chem, Ltd. Copolymer containing 3-hydroxyalkanoate unit and lactate unit, and its manufacturing method
KR101273599B1 (en) * 2011-06-08 2013-06-11 한국화학연구원 Method for Preparing Polyhydroxyalkanoate Containing 2-Hydroxybutyrate
US20130288325A1 (en) * 2010-11-03 2013-10-31 The Regents Of The University Of California Biofuel and chemical production by recombinant microorganisms via fermentation of proteinaceous biomass
KR20150142304A (en) 2014-06-11 2015-12-22 한국과학기술원 Method for Fine-Tuning Gene Expression Using Synthetic Regulatory Small RNA

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5292860A (en) 1991-09-17 1994-03-08 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Copolymer and method for production thereof
WO1998054329A1 (en) 1997-05-28 1998-12-03 Eidgenössische Technische Hochschule Zürich Institut Für Biotechnologie Production of medium chain length poly-3-hydroxy alkanoates in escherichia coli, and monomers derived therefrom
US6143952A (en) 1998-03-31 2000-11-07 Regents Of The University Of Minnesota Modified pseudomonas oleovorans phaC1 nucleic acids encoding bispecific polyhydroxyalkanoate polymerase
WO1999061624A2 (en) 1998-05-22 1999-12-02 Metabolix, Inc. Polyhydroxyalkanoate biopolymer compositions
WO2001055436A1 (en) 2000-01-31 2001-08-02 The Procter & Gamble Company Medium chain length pha copolymer and process for producing same
WO2008062996A1 (en) 2006-11-21 2008-05-29 Lg Chem, Ltd. Copolymer containing 3-hydroxyalkanoate unit and lactate unit, and its manufacturing method
US20130288325A1 (en) * 2010-11-03 2013-10-31 The Regents Of The University Of California Biofuel and chemical production by recombinant microorganisms via fermentation of proteinaceous biomass
KR101273599B1 (en) * 2011-06-08 2013-06-11 한국화학연구원 Method for Preparing Polyhydroxyalkanoate Containing 2-Hydroxybutyrate
KR20150142304A (en) 2014-06-11 2015-12-22 한국과학기술원 Method for Fine-Tuning Gene Expression Using Synthetic Regulatory Small RNA

Non-Patent Citations (25)

* Cited by examiner, † Cited by third party
Title
AMOS, MCLNERNEY, ARCH. MICROBIOL., vol. 155, 1991, pages 103
BRANDL ET AL., INT. J. BIOL. MACROMOL., vol. 11, 1989, pages 49
DATABASE GenBank Database accession no. ACT66712.1 *
DATABASE GenBank Database accession no. ANJ44374.1 *
DATABASE GenBank Database accession no. CAA11761.1 *
DATABASE NCBI Database accession no. NP 415275.1 *
DATABASE NCBI Database accession no. WP_045540971.1 *
DATSENKO, K. A. ET AL., PROC. NATL ACAD SCI. USA, vol. 97, 2000, pages 6640
DESMET ET AL., J. BACTERIOL., vol. 154, 1983, pages 870 - 78
DICKERT, S. ET AL., EUR. J. BIOCHEM., vol. 267, 2000, pages 3874
DOROSHENKO, V. G.: "Metabolic engineering of Escherichia coli for the production of phenylalanine and related compounds", APPLIED BIOCHEMISTRY AND MICROBIOLOGY, vol. 51, no. 7, December 2015 (2015-12-01), pages 733 - 750, XP055544354 *
KANEKO, M. ET AL., J. BACTERIOL., vol. 185, 2003, pages 20
KIKUCHI, Y. ET AL., APPL. ENVIRON. MICROBIOL., vol. 63, 1997, pages 761
LANGENBACH ET AL., FEMS MICROBIOL. LETT., vol. 150, 1997, pages 303
LEE, S. Y., BIOTECHNOL. BIOENG., vol. 49, 1996, pages 1
NA, D. ET AL., NATURE BIOTECHNOL., vol. 31, 2013, pages 170
NEUMANN ET AL., EMBO J., vol. 1, 1982, pages 841
PARK, SJ ET AL., METAB. ENG., vol. 20, 2013, pages 20
QI ET AL., FEMS MICROBIOL. LETT., vol. 167, 1998, pages 89
RIBE, D. E. ET AL., J. BACTERIOL., vol. 127, 1976, pages 1085
See also references of EP3594350A4 *
VACHIERI, S.G: "Crystal structure of the apo forms of Rhodotorula graminis D- mandelate dehydrogenase at 1.8A", PDB: 2W2K_A: CHAIN A , CRYSTAL STRUCTURE OF THE APO FORMS OF RHODOTORULA GRAMINIS D-MANDELATE DEHYDROGENASE AT 1.8A, 10 October 2012 (2012-10-10), XP009516488, DOI: 10.2210/pdb2W2K/pdb *
YANG, JUNG EUN: "One-step fermentative production of aromatic polyesters from glucose by metabolically engineered Escherichia coli strains", NATURE COMMUNICATIONS, vol. 9, no. 79, 8 January 2018 (2018-01-08), pages 1 - 10, XP055544358, Retrieved from the Internet <URL:DOI:10.1038/s41467-017-02498-w> *
YANG, T. H. ET AL., BIOTECHNOL. BIOENG., vol. 105, 2010, pages 150
ZHOU, H. Y. ET AL., BIORESOUR. TECHNOL., vol. 101, 2010, pages 4151

Similar Documents

Publication Publication Date Title
WO2011002220A2 (en) Preparation method of lactate polymers and lactate copolymers using polyhydroxyalkanoate synthase mutants
KR101293886B1 (en) Recombinant Ralstonia eutropha Having an Producing Ability of Polylactate or Its Copolymers and Method for Preparing Polylactate or Its Copolymers Using the Same
WO2016153221A1 (en) Mutant microorganism producing l-aspartic acid derivatives, and method for producing l-aspartic acid derivatives using same
WO2012169819A2 (en) Method for producing polyhydroxyalkanoate containing 2-hydroxybutyrate as the monomer
US20100136637A1 (en) Recombinant microorganism having a producing ability of polylactate or its copolymers and method for preparing polyactate or its copolymers using the same
WO2019203435A1 (en) Novel promoter derived from organic acid-resistant yeast and method for expression of target gene by using same
KR101630003B1 (en) Method of preparing for 2-hydroxyalkanoate polymer
WO2009157702A2 (en) Method for preparing polylactate and copolymer thereof using a mutant microorganism with enhanced polylactate, and the copolymer producing capability thereof
KR101587618B1 (en) Mutants Having a High Producing Ability of 4-Hydroxybutyrate and Preparing Method for 4-Hydroxybutyrate Using the Same
EP1208208A2 (en) Transgenic systems for the manufacture of poly(3-hydroxy -butyrate -co -3- hydroxyhexanoate)
WO2013103246A2 (en) Recombinant microorganism producing quinolinic acid and production method of quinolinic acid using same
US8669379B2 (en) Microbial production of 3,4-dihydroxybutyrate (3,4-DHBA), 2,3-dihydroxybutyrate (2,3-DHBA) and 3-hydroxybutyrolactone (3-HBL)
WO2021215685A1 (en) Low-temperature processible aliphatic polyester
McGregor et al. Biosynthesis of poly (3HB-co-3HP) with variable monomer composition in recombinant Cupriavidus necator H16
WO2018159965A1 (en) Method for producing polyhydroxyalkanoate using 2-hydroxyisocaproate-coa transferase
WO2019004779A2 (en) Novel o-succinyl homoserine transferase mutant and method for producing o-succinyl homoserine using same
KR102036828B1 (en) Method for Preparing Polyhydroxyalkanoates Using 2-Hydroxyisocaproate-CoA Transferase
WO2020075943A1 (en) Succinic acid-producing mutant microorganism into which high activity malate dehydrogenase is introduced, and method for preparing succinic acid by using same
WO2011074842A2 (en) Recombinant microorganism for producing polylactic acid or a polylactic acid copolymer from glycerol and method for producing polylactic acid or a polylactic acid copolymer from glycerol using the microorganism
WO2017131342A1 (en) Recombinant microorganism having ability to produce poly(lactate-co-glycolate) or copolymer thereof from xylose and method for preparing poly(lactate-co-glycolate) or copolymer thereof by using same
WO2019004780A2 (en) Novel o-succinyl homoserine transferase mutant and method for producing o-succinyl homoserine using same
WO2015060649A1 (en) Microorganism producing o-succinyl homoserine and method for producing o-succinyl homoserine by using same
KR100447532B1 (en) (R)-Hydroxycarboxylic Acid Producing Recombinant Microorganism and Process for Preparing (R)-Hydroxycarboxylic Acid Using the Same
WO2017126861A1 (en) Recombinant mutant microorganisms having acrylic acid productivity and method for producing acrylic acid using same
US10570379B2 (en) Polypeptides for carbon-carbon bond formation and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760488

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019545788

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019017457

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018760488

Country of ref document: EP

Effective date: 20190930

ENP Entry into the national phase

Ref document number: 112019017457

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190821