WO2011074842A2 - Recombinant microorganism for producing polylactic acid or a polylactic acid copolymer from glycerol and method for producing polylactic acid or a polylactic acid copolymer from glycerol using the microorganism - Google Patents

Recombinant microorganism for producing polylactic acid or a polylactic acid copolymer from glycerol and method for producing polylactic acid or a polylactic acid copolymer from glycerol using the microorganism Download PDF

Info

Publication number
WO2011074842A2
WO2011074842A2 PCT/KR2010/008901 KR2010008901W WO2011074842A2 WO 2011074842 A2 WO2011074842 A2 WO 2011074842A2 KR 2010008901 W KR2010008901 W KR 2010008901W WO 2011074842 A2 WO2011074842 A2 WO 2011074842A2
Authority
WO
WIPO (PCT)
Prior art keywords
acid
hydroxy
seq
coa
lactate
Prior art date
Application number
PCT/KR2010/008901
Other languages
French (fr)
Korean (ko)
Other versions
WO2011074842A3 (en
Inventor
김태완
강혜옥
양택호
Original Assignee
(주)Lg화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)Lg화학 filed Critical (주)Lg화학
Priority claimed from KR1020100127101A external-priority patent/KR101260187B1/en
Publication of WO2011074842A2 publication Critical patent/WO2011074842A2/en
Publication of WO2011074842A3 publication Critical patent/WO2011074842A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/32Processes using, or culture media containing, lower alkanols, i.e. C1 to C6
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • C12P7/625Polyesters of hydroxy carboxylic acids

Definitions

  • the present invention relates to recombinant microorganisms capable of producing polylactic acid or polylactic acid copolymers from glycerol and to methods of producing polylactic acid or lactic acid copolymers from glycerol using such microorganisms.
  • Polylactate (PLA) is a representative biodegradable polymer derived from lactate and is a polymer having high applicability as a general purpose polymer or a medical polymer.
  • PLA is produced by polymerizing lactate produced by microbial fermentation, but only low molecular weight (1000-5000 Daltons) PLA is produced by the direct polymerization of lactate.
  • the addition of ring agents complicates the process and also has the disadvantage that it is not easy to remove them.
  • commercially available high molecular weight PLA production process is used to convert the lactate to lactide (lactide), and then synthesize the PLA through the ring-opening condensation reaction of the lactide ring.
  • PLA homopolymers can be easily obtained when PLA is synthesized using lactate through chemical synthesis, but the synthesis of PLA copolymers having various monomer compositions is difficult and commercially useful.
  • polyhydroxyalkanoaste is a polyester (microorganisms) that accumulate inside as energy or carbon storage material when there is an excessive carbon source and lacks other nutrients such as phosphorus, nitrogen, magnesium and oxygen. polyester). PHA is regarded as a material to replace conventional synthetic plastics because it has properties similar to synthetic polymers derived from petroleum and shows complete biodegradability.
  • the problem to be solved by the present invention is to provide a microorganism capable of producing a lactate polymer or copolymer using glycerol as a substrate and a method for producing a lactate polymer or copolymer using these microorganisms.
  • the present invention includes the gene of the enzyme for converting lactate to lactyl-CoA and the gene of polyhydroxyalkanoate (PHA) synthase using lactyl-CoA as a substrate,
  • Cells or plants having the ability to produce lactate polymers or hydroxyalkanoate-lactate copolymers capable of using glycerol as substrates include lactate and glycerol; Or cultivated or grown in an environment containing lactate, glycerol and hydroxyalkanoate;
  • the inventors of the present invention have found that polyhydroxyalcohol of Pseudomonas sp. 6-19 using propionyl-CoA transferase derived from Clostridium propionicum to provide lactyl-CoA and lactyl-CoA produced thereby as a substrate. Variants of canoate synthase have been used to successfully synthesize lactate polymers and copolymers (Korean Patent Application No. 10-2006-0116234).
  • the present inventors was to prepare a lactate polymer and a copolymer using a matrix of glycerol, a low cost for the economical production of the biodegradable polymer, and thus, the present inventors have found that the E. coli using the substrate, glycerol-cost Clostridium propionicum It was transformed with a plasmid expressing propionyl-CoA transferase derived from polyhydroxyalkanoate synthase of Pseudomonas sp. 6-19 and transformed with E. coli. It was confirmed from the present invention that lactate polymers and copolymers can be efficiently produced, thereby completing the present invention.
  • the polylactate or lactate copolymer (hydroxyalkanoate-lactate copolymer: a cell or plant having a poly (hydroxyalkanoate-co-lactate) production ability (a) converts lactate to lactyl-CoA A cell or plant that does not contain any one or more of the gene of the enzyme and (b) the gene of PHA synthase using r-lactyl-CoA as a substrate, the gene of any one or more of (a) and (b) Can be obtained by transforming a cell or plant without (a) and (b) genes into (a) and (b) genes, or (a) without a gene (b) A cell or plant having a gene may be obtained by transformation with the gene (a), but is not limited thereto, for example, in a cell having any one of the above (a) and (b) genes. Amplifying genes and children It is also within the scope of the present invention to transform into other genes.
  • the hydroxyalkanoate in the hydroxyalkanoate-lactate copolymer is 3-hydroxybutyrate, 3-hydroxyvalerate, 4-hydroxy 4-hydroxybutyrate, medium chain length (D) -3-hydroxycarboxylic acid with 6 to 14 carbon atoms, 2-hydroxypropionic acid , 3-hydroxypropionic acid, 3-hydroxyhexanoic acid, 3-hydroxyheptanoic acid, 3-hydroxyoctanoic acid ), 3-hydroxynonanoic acid, 3-hydroxydecanoic acid, 3-hydroxyundecanoic acid, 3-hydroxydodecanoic acid (3 -hydroxydodecanoic acid, 3-hydroxytetradecanoic acid, 3-hydroxyhexadecanoic acid (3-hydroxyhexadecanoic acid), 4-hydroxyvaleric acid, 4-hydroxyhexanoic acid, 4-hydroxyheptanoic acid, 4-hydroxy Octanoic acid (4-hydroxyoctanoic acid), 4-hydroxydecanoic acid, 5-hydroxyvaleric acid, 5-hydroxy
  • propionyl-CoA transferase gene ( pct ) may be used, and more specifically, such lactate may be lactyl-CoA.
  • the gene of the enzyme converting to may be a propionyl-CoA transferase gene derived from Clostridium propionicum .
  • the gene of the enzyme for converting lactate to lactyl-CoA is the nucleotide sequence of SEQ ID NO: 1 (CpPCT); Nucleotide sequences of which T78C, T669C, A1125G and T1158C are mutated in the nucleotide sequence of SEQ ID NO: 1 (CpPCT522); A nucleotide sequence of A1200G mutated from the nucleotide sequence of SEQ ID NO: 1 (CpPCT512); A1200G is mutated in the nucleotide sequence of SEQ ID NO: 1 and Gly335Asp is mutated in the amino acid sequence of SEQ ID NO: 2 (CpPCT531); A base sequence (CpPCT533) in which T669C, A1125G and T1158C are mutated in the nucleotide sequence of SEQ ID NO: 1, and Asp65Gly is mutated in the amino acid sequence of SEQ
  • the CpPct540 gene is a gene of the Clostridium propionicum- derived propionyl-CoA transferase variant which is more preferred for producing lactate polymers or copolymers using glycerol.
  • the cell or plant according to the invention also comprises a gene of PHA synthase (Polyhydroxyalkanoate synthase) using the lactyl-CoA as a substrate.
  • PHA synthase genes include the amino acid sequence of SEQ ID NO: 4 which is a PHA synthase derived from Pseudomonas genus 6-19; Or a gene having a base sequence corresponding to an amino acid sequence comprising one or more mutations selected from the group consisting of E130D, S325T, S477R, S477H, S477F, S477Y, S477G, Q481M, Q481K, and Q481R in the amino acid sequence of SEQ ID NO: 4 And the like can be used.
  • the phaC1 Ps6-19 337 gene is a gene of the PHA synthase variant derived from Pseudomonas 6-19 which is more preferable for producing lactate polymers or copolymers using glycerol.
  • the cell or plant according to the present invention may further include a gene of an enzyme that generates hydroxyacyl-CoA from glycerol.
  • Recombinant cells or plants that additionally contain the gene of the enzyme that produces hydroxyacyl-CoA from glycerol can produce hydroxyacyl-CoA by itself, so do not include hydroxyalkanoate in the medium. If not, it is possible to produce hydroxyalkanoate-lactate copolymers in high yields.
  • the enzyme for producing hydroxyacyl-CoA from the glycerol may be ketothiolase and acetoacetyl-CoA reductase, but is not limited thereto.
  • the ketothiolase and acetoacetyl-CoA reductase are preferably derived from Ralstonia eutropha .
  • the cells having the ability to produce lactate polymers or hydroxyalkanoate-lactate copolymers can be bacteria, in particular E. coli.
  • the invention also relates to lactate polymers or copolymers comprising genes of enzymes that convert lactate to lactyl-CoA and genes of polyhydroxyalkanoate (PHA) synthase using lactyl-CoA as a substrate.
  • lactate polymers or copolymers comprising genes of enzymes that convert lactate to lactyl-CoA and genes of polyhydroxyalkanoate (PHA) synthase using lactyl-CoA as a substrate.
  • PHA polyhydroxyalkanoate
  • vector refers to a DNA preparation containing a DNA sequence operably linked to a suitable regulatory sequence capable of expressing the DNA in a suitable host.
  • a plasmid vector a bacteriophage vector, a cosmid vector, a YAC (Yeast Artificial Chromosome) vector, and the like may be used. Preference is given to using plasmid vectors for the purposes of the present invention.
  • Typical plasmid vectors that can be used for such purposes include (a) a replication initiation point that allows for efficient replication to include hundreds of plasmid vectors per host cell, and (b) host cells transformed with the plasmid vector.
  • Preferred host cells for the present invention may be prokaryotic or eukaryotic cells.
  • Preferred host cells are prokaryotic cells. Suitable prokaryotic cells can be used as well as microorganisms having any of the three genes described above, as well as microorganisms which do not have all of these genes such as E. coli.
  • Preferred E. coli include E. coli DH5a, E. coli JM101, E. coli K12, E. coli W3110, E. coli X1776, E. coli XL1-Blue (Stratagene), E. coli B and the like. However, E.
  • coli strains such as FMB101, NM522, NM538 and NM539 and other prokaryotic species and genera may also be used.
  • Agrobacterium A4 and Agrobacterium sp Bacillus subtilis (Bacillus subtilis) and Bashile (bacilli)
  • S. typhimurium Salmonella such as Another enterobacteria such as typhimurium
  • Serratia marcescens may be used as the host cell.
  • eukaryotic host cells such as yeast and fungi, insect cells such as Spodoptera fruitgiper (SF9), animal cells such as CHO and mouse cells, tissue cultured human cells and plant cells can also be used.
  • yeast and fungi insect cells such as Spodoptera fruitgiper (SF9)
  • animal cells such as CHO and mouse cells
  • tissue cultured human cells and plant cells can also be used.
  • the vector Once transformed into the appropriate host, the vector can replicate and function independently of the host genome, or in some cases integrate into the genome itself.
  • the gene in order to raise the expression level of a transgene in a host cell, the gene must be operably linked to transcriptional and translational expression control sequences that function within the selected host.
  • the expression control sequence and the gene of interest are included in one expression vector containing the bacterial selection marker and the replication origin together. If the expression host is a eukaryotic cell, the expression vector must further comprise an expression marker useful in the eukaryotic expression host.
  • expression control sequence refers to a DNA sequence essential for the expression of a coding sequence operably linked in a particular host organism.
  • regulatory sequences include promoters for performing transcription, any operator sequence for regulating such transcription, sequences encoding suitable mRNA ribosomal binding sites, and sequences that control termination of transcription and translation.
  • suitable control sequences for prokaryotes include promoters, optionally operator sequences, and ribosomal binding sites.
  • Eukaryotic cells include promoters, polyadenylation signals, and enhancers. The factor that most influences the amount of gene expression in the plasmid is the promoter.
  • an SR ⁇ promoter a promoter derived from cytomegalovirus, and the like are preferably used.
  • any of a wide variety of expression control sequences can be used in the vector.
  • useful expression control sequences include, for example, early and late promoters of SV40 or adenovirus, lac system, trp system, TAC or TRC system, T3 and T7 promoters, major operator and promoter region of phage lambda, fd Regulatory regions of the code protein, promoters for 3-phosphoglycerate kinase or other glycolysis enzymes, promoters of the phosphatase such as Pho5, promoters of the yeast alpha-crossing system and prokaryotic or eukaryotic cells or viruses thereof And other sequences of constitution and induction known to modulate the expression of the genes, and various combinations thereof.
  • Nucleic acids are "operably linked” when placed in a functional relationship with other nucleic acid sequences. This may be genes and regulatory sequence (s) linked in such a way as to enable gene expression when appropriate molecules (eg, transcriptional activating proteins) bind to regulatory sequence (s).
  • the DNA for a pre-sequence or secretion leader is operably linked to the DNA for the polypeptide when expressed as a shear protein that participates in the secretion of the polypeptide;
  • a promoter or enhancer is operably linked to a coding sequence when it affects the transcription of the sequence;
  • the ribosomal binding site is operably linked to a coding sequence when it affects the transcription of the sequence;
  • the ribosomal binding site is operably linked to a coding sequence when positioned to facilitate translation.
  • "operably linked” means that the linked DNA sequence is in contact, and in the case of a secretory leader, is in contact and present within the reading frame.
  • enhancers do not need to touch. Linking of these sequences is performed by ligation (linking) at convenient restriction enzyme sites. If such sites do not exist, synthetic oligonucleotide adapters or linkers according to conventional methods are used as described above.
  • prokaryotic transformation can be readily accomplished using the calcium chloride method described in section 1.82 of Sambrook et al ., Supra.
  • electroporation (Neumann et al., EMBO J., 1: 841 (1982)) can also be used to transform these cells.
  • transformation of plants can be achieved by conventional methods using Agrobacterium, viral vectors and the like.
  • the transformed plant after transforming the microorganism of the genus Agrobacterium with a recombinant vector containing the gene according to the present invention, the transformed plant can be obtained by infecting the transformed Agrobacterium microorganisms in the tissues of the target plant.
  • a transgenic plant suitable for the present invention can be obtained by the same or similar method as in the prior patent (WO 94/11519; US 6,103,956) for producing PHA using the transformed plant.
  • the term "explant” refers to a slice of tissue cut out of a plant, and includes cotyledon or hypocotyl.
  • the explants of the plant used in the method of the present invention may be cotyledons or hypocotyls, it is more preferable to use the cotyledons obtained by germinating in MS medium after disinfecting and washing the seeds of the plants.
  • Plants to be transformed usable in the present invention include tobacco, tomato, pepper, soybean, rice, corn, and the like, but is not limited thereto.
  • plant used for transformation is a sexually propagating plant, it will be apparent to those skilled in the art that it can be repeatedly reproduced by tissue culture or the like.
  • the present invention provides cells or plants capable of efficiently producing lactate polymers or copolymers from glycerol, which is a low-cost substrate, and the production of lactate polymers or copolymers comprising cultivating or culturing such cells or plants. Provide a method.
  • Figure 1 shows the pPs619C1337-CPPCT540 vector.
  • pPs619C1337CPPCT540 plasmid and pMCS104ReAB were prepared, respectively.
  • the pPs619C1337CPPCT540 plasmid and pMCS104ReAB were designed to express two major enzymes. These enzymes are essential enzymes for the biosynthesis of the biodegradable polymers polylactate and poly (3-hydroxybutyrate-co-lactate) in Escherichia coli, Pseudomonas sp.
  • PhaC1 Ps6-19 337 a polymer polymerase derived from 6-19 (KCTC 11027BP), propionyl-CoA transferase derived from Clostridium propionicum , an enzyme that transfers CoA from acetyl-CoA to lactate and converts it into lactic-CoA (propionyl-CoA transferase, CPPCT), and ketothiolase (phaA RE ) and acetoacetyl-CoA reductase (phaB RE ) from Ralstonia eutropha , enzymes that synthesize 3-hydroxybutyl-CoA from glycerol.
  • propionyl-CoA transferase derived from Clostridium propionicum
  • ketothiolase phaA RE
  • the pPs619C1337CPPCT540 plasmid contains phaC1 Ps6-19 337 and CPPCT540 genes (FIG. 1), and the pMCS104ReAB plasmid contains phaA RE and phaB RE genes (FIG. 2).
  • SEQ ID NO: 3 Pseudomonas sp. PHA synthase derived from phaC1 Ps6-19 gene and propionyl-CoA transferase (CPPCT) gene derived from Clostridium propionicum of SEQ ID NO: 1 genes mutated to favor lactate polymer and copolymer, respectively . All of the genes contained on each plasmid were constructed to be constitutively expressed in recombinant E. coli.
  • Example 1-1 Pseudomonas sp. Substrate Specificity Variation of 6-19-derived PHA Synthetase
  • Type II PHA synthase is known as medium-chain-length PHA synthase that polymerizes relatively long carbon substrates, and this MCL-PHA synthase produces lactate copolymers. It is expected to be very useful.
  • Pseudomonas sp. Highly homologous to phaC1 Ps6-19 synthase obtained in the present invention.
  • 61-3-derived phaC1 synthase is a Type II synthase, but has been reported to have a relatively broad range of substrate specificities (Matsusaki et al ., J. Bacteriol ., 180: 6459, 1998), and SCL-PHA (short-chain).
  • Pseudomonas sp To isolate PHA synthase (phaC1 Ps6-19 ) gene from 6-19 (KCTC 11027BP), Pseudomonas sp. To extract the entire DNA of 6-19, to prepare a primer having the base sequence of SEQ ID NO: 5 and 6 based on the phaC1 Ps6-19 base sequence (Song Aejin, Master's Thesis, Department of Chemical and Biomolecular Engineering, KAIST, 2004) , PCR was performed to obtain phaC1 Ps6-19 gene.
  • DNA fragments containing PHB-producing operons from Ralstonia eutropha H16 from pSYL105 vector were digested with BamHI / EcoRI and BamHI from pBluescript II (Stratagene) PReCAB recombinant vector was prepared by inserting in / EcoRI recognition site.
  • the pReCAB vector is known to express PHA synthase (phaC RE ) and monomer feeder enzymes (phaA RE & phaB RE ) at all times by the PHB operon promoter and to work well in Escherichia coli (Lee et al ., Biotech. Bioeng . , 1994, 44: 1337-1347.
  • the pReCAB vector was digested with BstBI / SbfI to remove R.eutropha H16 PHA synthase (phaC RE ), and then the pPs619C1-ReAB recombinant vector was prepared by inserting the phaC1 Ps6-19 gene obtained above into the BstBI / SbfI recognition site. .
  • the nucleotide sequence of the phaC1 Ps6-19 gene of the prepared pPs619C1-ReAB recombinant vector was confirmed by sequencing, and is represented by SEQ ID NO: 3, and the amino acid sequence encoded thereby is shown in SEQ ID NO: 4.
  • PPs619C1-ReAB recombinant vector was transformed into E. coli XL-1Blue (Stratagene) to confirm PHB synthesis of the phaC1 Ps6-19 synthase , and this was detected by PHB detection medium (LB agar, glucose 20g / L, Nile red). At 0.5 ⁇ g / ml), no PHB production was observed.
  • Propionyl-CoA derived from Clostridium propionicum to construct a system of constant expression of the operon form in which CP-PCT is expressed together to provide lactyl-CoA, which is a monomer required for the synthesis of PLA and PLA copolymers.
  • Transferase CP-PCT
  • cp-pct used a fragment obtained by PCR chromosomal DNA of Clostridium propionicum using primers of SEQ ID NO: 19 and SEQ ID NO: 20, at this time, for ease of cloning the Nde I site existing in the wild type CP-PCT. It was removed using the SDM method.
  • SEQ ID NO: 19 5-ggaattcATGAGAAAGGTTCCCATTATTACCGCAGATGA
  • SEQ ID NO: 20 5-gc tctaga tta gga ctt cat ttc ctt cag acc cat taa gcc ttc tg
  • overlapping PCR was performed using primers having the nucleotide sequences of SEQ ID NOs: 21 and 22 to add Sbf I / Nde I recognition sites.
  • phaC1 Ps6-19 synthase remove the SCL mutant of phaC1 Ps6-19 300 a pPs619C1300-ReAB by cutting the vector with Sbf I / Nde I Ralstonia eutrophus H16 monomer feed enzymes (phaA RE & phaB RE) of origin containing the following, the The pPs619C1300-CPPCT recombinant vector was prepared by inserting the PCR cloned CP-PCT gene into the Sbf I / Nde I recognition site.
  • SEQ ID NO: 28 5'- gat atg ccc aaa gct cga cag cac gaa ttc-3 '
  • CP-PCT is known to be highly toxic due to severe metabolic disorders when expressed in E. coli.
  • the expression of CP-PCT by IPTG using the tac promoter or T7 promoter, which is widely used for expression of recombinant proteins, is recombined simultaneously with the addition of inducers. E. coli all died. This has led to the success of the synthesis of lactate polymers and lactate copolymers using a constitutive expression system that is weakly expressed but continuously expressed as the microorganism grows.
  • pPs619C1300-CPPCT Korean Patent Application No.
  • PCR was performed under normal conditions using the primers SEQ ID NOs: 39 and 40 to amplify the PCR fragment containing the random mutation.
  • phaC1 Ps6-19 synthase SCL mutant of phaC1 by cutting a pPs619C1300-CPPCT vector containing Ps6-19 300 with Sbf I / Nde I to remove the wild-type cp-pct, the amplified mutant PCR fragment Sbf I / Nde I
  • a ligation mixture was inserted into the recognition site and introduced into E. coli JM109 to produce a CP-PCT library of ⁇ 10 ⁇ 5 scale.
  • the prepared CP-PCT library was grown in polymer detection medium (LB agar, glucose 20g / L, 3HB 1g / L, Nile red 0.5 ⁇ g / ml) for 3 days and then screened to determine whether the polymer was produced. More than 80 candidates were selected first. These candidates were subjected to liquid culture (LB agar, glucose 20g / L, 3HB 1g / L, ampicillin 100mg / L, 37 ° C) for 4 days under conditions in which the polymers were produced, and FACS (Florescence Activated Cell Sorting) analysis to analyze the final two individuals. Selected. Gene sequencing was performed to find the mutation position of the prepared CP-PCT variant. The results are shown in Table 6 below.
  • PCR was performed under normal conditions using the primers SEQ ID NOs: 39 and 40 to amplify the PCR fragment containing the CpPct540 mutation.
  • the pPs619C1300-CPPCT vector Sbf I / Nde I was cut to remove the portion CPPCT, the amplified PCR fragments CpPct540 Sbf I / Nde I made the ligation mixture was inserted into the recognition site to prepare a pPs619C1300-CPPCT540 vector.
  • the phaC1 Ps6-19 synthase variant using (phaC1 Ps6-19 300) E130D, S325T , S477G , and Pseudomonas in 6-19-derived PHA having the amino acid sequence of the mutant Q481K synthase variant was prepared using the SDM method using the primers SEQ ID NOs: 31 and 32, and SEQ ID NOs: 33 and 34, and the pPs619C1337-CPPCT540 vector was constructed using the gene (FIG. 1).
  • the recombinant vector (pPs619C1337-CPPCT540) thus obtained was transformed into E. coli JM109, and then transformed into 3HB-containing polymer detecting medium (LB agar, glucose 20g / L, 3HB 2g / L, Nile red 0.5 ⁇ g / ml). As a result of the growth, the formation of the polymer was confirmed.
  • 3HB-containing polymer detecting medium LB agar, glucose 20g / L, 3HB 2g / L, Nile red 0.5 ⁇ g / ml
  • a plasmid pMCS104ReAB was prepared to provide ⁇ -ketothiolase (PhaA) and acetoacetyl-CoA reductase (PhaB) derived from R. eutropha (Pak Si Jae, PhD thesis, Department of Chemical and Biomolecular Engineering). , KAIST, 2003).
  • p10499A Park et al ., FEMS Microbiol. Lett ., 214: 217, 2002
  • cleaving phaAB gene obtained by cleaving pSYL105 (Lee et al . Biotechnol. Bioeng. 44: 1337, 1994) with PstI.
  • p10499PhaAB was produced.
  • the p10499PhaAB plasmid was digested with SspI to obtain a gene fragment containing 104 promoter and phaAB gene, and then inserted into pBBR1MCS plasmid digested with EcoRV to prepare pMCS104ReAB plasmid (FIG. 2).
  • PLA homopolymer can be biosynthesized from glycerol.
  • PLA homopolymer can be prepared from glycerol through the recombinant E. coli according to the present invention.
  • Table 9 badge Early temperament Biosynthetic Polymer Type Polymer content (weight ratio) LA content in the polymer (molar ratio) MR G2 * PLA 6.48 100 MR G2, NaL + PLA 10.00 100 MR G5 ** PLA 1.85 100 MR G5, NaL PLA 5.75 100
  • 1 mL of the culture was inoculated into 100 mL of MR medium containing 100 mg / L ampicillin and 34 mg / L chloramphenicol and 20 g / L or 50 g / L glycerol, which was then subjected to 200 rpm at 30 ° C.
  • the main culture was started while incubating at a stirring speed.
  • the culture was carried out for 4 days.
  • the initial pH was adjusted to 7 using 10 N NaOH.
  • the medium used for this culture is shown in Table 10 below.
  • Table 11 badge Early temperament Biosynthetic Polymer Type Polymer content (weight ratio) LA content in the polymer (molar ratio) MR G2 * P (3HB-LA) 53.08 64.75 MR G2, NaL + P (3HB-LA) 51.38 69.92 MR G5 ** P (3HB-LA) 40.11 53.13 MR G5, NaL P (3HB-LA) 53.37 51.94

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a recombinant microorganism for producing a lactate copolymer or a copolymer using glycerol and to a method for producing a lactate copolymer or a copolymer using glycerol as one of substrates and using the microorganism. According to the present invention, genes of the enzyme which converts lactate into lactile-CoA, and genes of polyhydroxyalkanoate (PHA) synthase which uses lactile-CoA as a substrate are introduced to the microorganism which can use glycerol as a substrate, and the microorganism is then cultured using the glycerol as a substrate to efficiently produce a lactate copolymer and a copolymer.

Description

글리세롤로부터 폴리락틱산 또는 폴리락틱산 공중합체를 제조할 수 있는 재조합 미생물 및 이러한 미생물을 이용하여 글리세롤로부터 폴리락틱산 또는 락틱산 공중합체를 제조하는 방법Recombinant microorganisms capable of producing polylactic acid or polylactic acid copolymers from glycerol and methods of preparing polylactic acid or lactic acid copolymers from glycerol using such microorganisms
본 발명은 글리세롤로부터 폴리락틱산 또는 폴리락틱산 공중합체를 제조할 수 있는 재조합 미생물 및 이러한 미생물을 이용하여 글리세롤로부터 폴리락틱산 또는 락틱산 공중합체를 제조하는 방법에 관한 것이다. The present invention relates to recombinant microorganisms capable of producing polylactic acid or polylactic acid copolymers from glycerol and to methods of producing polylactic acid or lactic acid copolymers from glycerol using such microorganisms.
폴리락테이트(PLA)는 락테이트(lactate)로부터 유래된 대표적인 생분해성 고분자로서 범용고분자 혹은 의료용 고분자로서의 응용성이 높은 고분자이다. 현재 PLA는 미생물 발효에 의해 생산된 락테이트를 중합하여 제조되고 있으나, 락테이트의 직접중합에 의해서는 낮은 분자량(1000-5000 달톤)의 PLA만이 생성된다. 100,000 달톤 이상의 PLA를 합성하기 위해서는 락테이트의 직접중합으로 얻어진 낮은 분자량의 PLA로부터 연쇄커플링제(chain coupling agent)를 이용하여 보다 분자량이 큰 PLA로 중합하는 방법이 있으나 유기용제(solvent)나 연쇄커플링제의 첨가로 인해 공정이 복잡해지고, 또한 이들을 제거가 쉽지 않다는 단점이 있다. 현재 상용화되어 있는 고분자량 PLA 생산공정은 락테이트를 락타이드(lactide)로 전환한 다음, 락타이드 링의 개환축합반응을 통해 PLA를 합성하는 방법이 사용되고 있다.Polylactate (PLA) is a representative biodegradable polymer derived from lactate and is a polymer having high applicability as a general purpose polymer or a medical polymer. Currently, PLA is produced by polymerizing lactate produced by microbial fermentation, but only low molecular weight (1000-5000 Daltons) PLA is produced by the direct polymerization of lactate. In order to synthesize more than 100,000 Daltons of PLA, there is a method of polymerizing from PLA of low molecular weight obtained by direct polymerization of lactate to PLA of higher molecular weight using a chain coupling agent, but using an organic solvent or a chain couple. The addition of ring agents complicates the process and also has the disadvantage that it is not easy to remove them. Currently commercially available high molecular weight PLA production process is used to convert the lactate to lactide (lactide), and then synthesize the PLA through the ring-opening condensation reaction of the lactide ring.
화학합성을 통하여 락테이트를 이용하여 PLA를 합성할 경우 PLA 호모폴리머는 쉽게 수득할 수 있지만 다양한 모노머 조성을 지닌 PLA 공중합체의 합성은 어렵고 상업적으로 효용성이 매우 떨어지는 단점이 있다.PLA homopolymers can be easily obtained when PLA is synthesized using lactate through chemical synthesis, but the synthesis of PLA copolymers having various monomer compositions is difficult and commercially useful.
한편, 폴리하이드록시알카노에이트(polyhydroxyalkanoaste, PHA)는 과도한 탄소원이 존재하면서 인, 질소, 마그네슘, 산소 등의 다른 영양분이 부족할 때, 미생물이 에너지나 탄소원 저장물질로 그 내부에 축적하는 폴리에스터(polyester)이다. PHA는 기존의 석유로부터 유래된 합성고분자와 비슷한 물성을 가지면서 완전한 생분해성을 보이기 때문에 기존의 합성 플라스틱을 대체할 물질로 인식되고 있다.On the other hand, polyhydroxyalkanoaste (PHA) is a polyester (microorganisms) that accumulate inside as energy or carbon storage material when there is an excessive carbon source and lacks other nutrients such as phosphorus, nitrogen, magnesium and oxygen. polyester). PHA is regarded as a material to replace conventional synthetic plastics because it has properties similar to synthetic polymers derived from petroleum and shows complete biodegradability.
미생물에서 PHA를 생산하기 위해서는 미생물의 대사산물을 PHA 모노머로 전환해 주는 효소와 PHA 모노머를 이용하여 PHA 고분자를 합성하는 PHA 합성효소(synthase)가 필수적이다. 미생물을 이용하여 PLA 및 LA 공중합체를 합성할 때도 같은 시스템이 필요하며 원래의 PHA 합성효소의 기질인 하이드록시아실-CoA(hydroxyacyl-CoA)를 제공할 수 있는 효소 이외에 추가로 락틸-CoA(lactyl-CoA)를 제공할 수 있는 효소가 필요하다.In order to produce PHA in microorganisms, enzymes for converting metabolites of microorganisms to PHA monomers and PHA synthase synthesizing PHA polymers using PHA monomers are essential. The same system is required when synthesizing PLA and LA copolymers using microorganisms and in addition to enzymes that can provide hydroxyacyl-CoA, the substrate of the original PHA synthase, in addition to lactyl-CoA (lactyl). There is a need for an enzyme capable of providing -CoA).
더 나아가 생분해성 고분자의 경제적인 생산을 위해서는 저가의 기질을 사용하는 것이 매우 중요하며, 특히 저가의 기질인 글리세롤을 이용하여 락테이트 중합체 또는 락테이트 공중합체를 제조할 수 있는 기술이 필요한 실정이다.Furthermore, it is very important to use a low-cost substrate for the economic production of biodegradable polymers, and in particular, a technique for preparing a lactate polymer or a lactate copolymer using a low-cost substrate glycerol is required.
따라서 본 발명이 해결하고자 하는 과제는 글리세롤을 기질로 이용하여 락테이트 중합체 또는 공중합체를 생산할 수 있는 미생물 및 이러한 미생물을 이용한 락테이트 중합체 또는 공중합체의 제조방법을 제공하는 것이다. Therefore, the problem to be solved by the present invention is to provide a microorganism capable of producing a lactate polymer or copolymer using glycerol as a substrate and a method for producing a lactate polymer or copolymer using these microorganisms.
상기 과제를 달성하기 위하여, 본 발명은 락테이트를 락틸-CoA로 전환하는 효소의 유전자 및 락틸-CoA를 기질로 사용하는 폴리하이드록시알카노에이트(polyhydroxyalkanoate: PHA) 합성효소의 유전자를 포함하며, 기질로 글리세롤을 사용할 수 있는 락테이트 중합체 또는 하이드록시알카노에이트-락테이트 공중합체 생성능을 가지는 세포 또는 식물을 락테이트 및 글리세롤; 또는 락테이트, 글리세롤 및 하이드록시알카노에이트를 함유하는 환경 하에서 배양 또는 재배하고;In order to achieve the above object, the present invention includes the gene of the enzyme for converting lactate to lactyl-CoA and the gene of polyhydroxyalkanoate (PHA) synthase using lactyl-CoA as a substrate, Cells or plants having the ability to produce lactate polymers or hydroxyalkanoate-lactate copolymers capable of using glycerol as substrates include lactate and glycerol; Or cultivated or grown in an environment containing lactate, glycerol and hydroxyalkanoate;
상기 세포 또는 식물로부터 락테이트 중합체 또는 하이드록시알카노에이트-락테이트 공중합체를 회수하는 것을 포함하는 Recovering the lactate polymer or hydroxyalkanoate-lactate copolymer from the cell or plant
글리세롤로부터 락테이트 중합체 또는 하이드록시알카노에이트-락테이트 공중합체를 제조하는 방법을 제공한다.Provided are methods for preparing lactate polymers or hydroxyalkanoate-lactate copolymers from glycerol.
본 발명자들은 락틸-CoA를 제공하기 위한 Clostridium propionicum 유래의 프로피오닐-CoA 트랜스퍼라아제 및 이에 의해 만들어진 락틸-CoA를 기질로 이용하는 슈도모나스 속 6-19(Pseudomonas sp. 6-19)의 폴리하이드록시알카노에이트 합성효소(synthase)의 변이체를 사용하여 성공적으로 락테이트 중합체 및 공중합체를 합성할 수 있었다(대한민국 특허출원 제10-2006-0116234호).The inventors of the present invention have found that polyhydroxyalcohol of Pseudomonas sp. 6-19 using propionyl-CoA transferase derived from Clostridium propionicum to provide lactyl-CoA and lactyl-CoA produced thereby as a substrate. Variants of canoate synthase have been used to successfully synthesize lactate polymers and copolymers (Korean Patent Application No. 10-2006-0116234).
더 나아가 본 발명자들은 생분해성 고분자의 경제적인 생산을 위해서 저가의 기질인 글리세롤을 이용하여 락테이트 중합체 및 공중합체를 제조하고자 하였고, 이에, 본 발명자들은 저가의 기질인 글리세롤을 사용하는 대장균을 Clostridium propionicum 유래의 프로피오닐-CoA 트랜스퍼라아제와 슈도모나스 속 6-19(Pseudomonas sp. 6-19)의 폴리하이드록시알카노에이트 합성효소를 발현하는 플라스미드로 형질전환하였으며, 형질전환된 재조합 대장균을 이용하여 글리세롤로부터 락테이트 중합체 및 공중합체를 효율적으로 제조할 수 있다는 것을 확인하고 본 발명을 완성하게 되었다.Furthermore, the present inventors was to prepare a lactate polymer and a copolymer using a matrix of glycerol, a low cost for the economical production of the biodegradable polymer, and thus, the present inventors have found that the E. coli using the substrate, glycerol-cost Clostridium propionicum It was transformed with a plasmid expressing propionyl-CoA transferase derived from polyhydroxyalkanoate synthase of Pseudomonas sp. 6-19 and transformed with E. coli. It was confirmed from the present invention that lactate polymers and copolymers can be efficiently produced, thereby completing the present invention.
상기 폴리락테이트(polylactate) 또는 락테이트 공중합체(하이드록시알카노에이트-락테이트 공중합체: poly(hydroxyalkanoate-co-lactate) 생성능을 가지는 세포 또는 식물은 (a) 락테이트를 락틸-CoA로 전환하는 효소의 유전자 및 (b) ㄹ-락틸-CoA를 기질로 사용하는 PHA 합성효소의 유전자 중 어느 하나 이상을 포함하지 않는 세포 또는 식물을 상기 (a) 및 (b) 중 어느 하나 이상의 유전자로 형질전환하여 얻어질 수 있다. 즉, (a) 및 (b) 유전자를 가지지 않는 세포 또는 식물을 (a) 및 (b) 유전자로 형질전환하여 수득되거나, (a) 유전자를 가지지 않으면서 (b) 유전자를 가지고 있는 세포 또는 식물을 (a) 유전자로 형질전환하여 수득할 수 있으나, 이에 한정되는 것은 아니다. 또한 예를 들어, 상기 (a) 및 (b) 유전자 중 어느 하나를 가지고 있는 세포에서 그 유전자를 증폭시킴과 아울러 다른 한 개의 유전자로 형질전환시킨 것도 본 발명의 범위에 속한다.The polylactate or lactate copolymer (hydroxyalkanoate-lactate copolymer: a cell or plant having a poly (hydroxyalkanoate-co-lactate) production ability (a) converts lactate to lactyl-CoA A cell or plant that does not contain any one or more of the gene of the enzyme and (b) the gene of PHA synthase using r-lactyl-CoA as a substrate, the gene of any one or more of (a) and (b) Can be obtained by transforming a cell or plant without (a) and (b) genes into (a) and (b) genes, or (a) without a gene (b) A cell or plant having a gene may be obtained by transformation with the gene (a), but is not limited thereto, for example, in a cell having any one of the above (a) and (b) genes. Amplifying genes and children It is also within the scope of the present invention to transform into other genes.
본 발명에 있어서, 상기 하이드록시알카노에이트-락테이트 공중합체 중의 하이드록시알카노에이트는 3-하이드록시부티레이트(3-hydroxybutyrate), 3-하이드록시발레르산(3-hydroxyvalerate), 4-하이드록시부티레이트(4-hydroxybutyrate), 탄소수가 6∼14개인 중간사슬 길이의 (D)-3-하이드록시카르복실산((D)-3-hydroxycarboxylic acid), 2-하이드록시프로피온산(2-hydroxypropionic acid), 3-하이드록시프로피온산(3-hydroxypropionic acid), 3-하이드록시헥산산(3-hydroxyhexanoic acid), 3-하이드록시헵탄산(3-hydroxyheptanoic acid), 3-하이드록시옥탄산(3-hydroxyoctanoic acid), 3-하이드록시노난산(3-hydroxynonanoic acid), 3-하이드록시데칸산(3-hydroxydecanoic acid), 3-하이드록시운데칸산(3-hydroxyundecanoic acid), 3-하이드록시도데칸산(3-hydroxydodecanoic acid), 3-하이드록시테트라데칸산(3-hydroxytetradecanoic acid), 3-하이드록시헥사데칸산(3-hydroxyhexadecanoic acid), 4-하이드록시발레르산(4-hydroxyvaleric acid), 4-하이드록시헥산산(4-hydroxyhexanoic acid), 4-하이드록시헵탄산(4-hydroxyheptanoic acid), 4-하이드록시옥탄산(4-hydroxyoctanoic acid), 4-하이드록시데칸산(4-hydroxydecanoic acid), 5-하이드록시발레르산(5-hydroxyvaleric acid), 5-하이드록시헥산산(5-hydroxyhexanoic acid), 6-하이드록시도데칸산(6-hydroxydodecanoic acid), 3-하이드록시-4-펜텐산(3-hydroxy-pentenoic acid), 3-하이드록시-4-trans-헥센산(3-hydroxy-4-trans-hexenoic acid), 3-하이드록시-4-cis-헥센산(3-hydroxy-4-cis-hexenoic acid), 3-하이드록시-5-헥센산(3-hydroxy-5-hexenoic acid), 3-하이드록시-6-trans-옥텐산(3-hydroxy-6-trans-octenoic acid), 3-하이드록시-6-cis-옥텐산(3-hydroxy-6-cis-octenoic acid), 3-하이드록시-7-옥텐산(3-hydroxy-7-octenoic acid), 3-하이드록시-8-노넨산(3-hydroxy-8-nonenoic acid), 3-하이드록시-9-데센산(3-hydroxy-9-decenoic acid), 3-하이드록시-5-cis-도데센산(3-hydroxy-5-cis-dodecenoic acid), 3-하이드록시-6-cis-도데센산(3-hydroxy-6-cis dodecenoic acid), 3-하이드록시-5-cis-테트라데센산(3-hydroxy-5-cis tetradecenoic acid), 3-하이드록시-7-cis-테트라데센산(3-hydroxy-7-cis tetradecenoic acid), 3-하이드록시-5,8-cis-cis-테트라데센산(3-hydroxy-5,8-cis-cis tetradecenoic acid), 3-하이드록시-4-메틸발레르산(3-hydroxy-4-methylvaleric acid), 3-하이드록시-4-메틸헥산산(3-hydroxy-4-methylhexanoic acid), 3-하이드록시-5-메틸헥산산(3-hydroxy-5-methylhexanoic acid), 3-하이드록시-6-메틸헵탄산(3-hydroxy-6-methylheptanoic acid), 3-하이드록시-4-메틸옥탄산(3-hydroxy-4-methyloctanoic acid), 3-하이드록시-5-메틸옥탄산(3-hydroxy-5-methyloctanoic acid), 3-하이드록시-6-메틸옥탄산(3-hydroxy-6-methyloctanoic acid), 3-하이드록시-7-메틸옥탄산(3-hydroxy-7-methyloctanoic acid), 3-하이드록시-6-메틸노난산(3-hydroxy-6-methylnonanoic acid), 3-하이드록시-7-메틸노난산(3-hydroxy-7-methylnonanoic acid), 3-하이드록시-8-메틸노난산(3-hydroxy-8-methylnonanoic acid), 3-하이드록시-7-메틸데칸산(3-hydroxy-7-methyldecanoic acid), 3-하이드록시-9-메틸데칸산(3-hydroxy-9-methyldecanoic acid), 3-하이드록시-7-메틸-6-옥텐산(3-hydroxy-7-methyl-6-octenoic acid), 말산(malic acid), 3-하이드록시숙신산-메틸에스테르(3-hydroxysuccinic acid-methyl ester), 3-하이드록시아디핀산-메틸에스테르(3-hydroxyadipinic acid-methyl ester), 3-하이드록시스베린산-메틸에스테르(3-hydroxysuberic acid-methyl ester), 3-하이드록시아젤라인산-메틸에스테르(3-hydroxyazelaic acid-methyl ester), 3-하이드록시세바신산-메틸에스테르(3-hydroxysebacic acid-methyl ester), 3-하이드록시스베린산-에틸에스테르(3-hydroxysuberic acid-ethyl ester), 3-하이드록시세바신산-에틸에스테르(3-hydroxysebacic acid-ethyl ester), 3-하이드록시피메린산-프로필에스테르(3-hydroxypimelic acid-propyl ester), 3-하이드록시세바신산-벤질에스테르(3-hydroxysebacic acid-benzil ester), 3-하이드록시-8-아세톡시옥탄산(3-hydroxy-8-acetoxyoctanoic acid), 3-하이드록시-9-아세톡시노난산(3-hydroxy-9-acetoxynonanoic acid), 페녹시-3-하이드록시부티레이트(phenoxy-3-hydroxybutyric acid), 페녹시-3-하이드록시발레르산(phenoxy-3-hydroxyvaleric acid), 페녹시-3-하이드록시헵탄산(phenoxy-3-hydroxyheptanoic acid), 페녹시-3-하이드록시옥탄산(phenoxy-3-hydroxyoctanoic acid), para-시아노페녹시-3-하이드록시부티레이트(para-cyanophenoxy-3-hydroxybutyric acid), para-시아노페녹시-3-하이드록시발레르산(para-cyanophenoxy-3-hydroxyvaleric acid), para-시아노페녹시-3-하이드록시헥산산(para-cyanophenoxy-3-hydroxyhexanoic acid), para-니트로페녹시-3-하이드록시헥산산(para-nitrophenoxy-3-hydroxyhexanoic acid), 3-하이드록시-5-페닐발레르산(3-hydroxy-5-phenylvaleric acid), 3-하이드록시-5-시클로헥실부티레이트(3-hydroxy-5-cyclohexylbutyric acid), 3,12-디하이드록시도데칸산(3, 12-dihydroxydodecanoic acid), 3,8-디하이드록시-5-cis-테트라데센산(3,8-dihydroxy-5-cis-tetradecenoic acid), 3-하이드록시-4,5-에폭시데칸산(3-hydroxy-4,5-epoxydecanoic acid), 3-하이드록시-6,7-에폭시도데칸산(3-hydroxy-6,7-epoxydodecanoic acid), 3-하이드록시-8,9-에폭시-5,6-cis-테트라데칸산(3-hydroxy-8,9-epoxy-5,6-cis-tetradecanoic acid), 7-시아노-3-하이드록시헵탄산(7-cyano-3-hydroxyheptanoic acid), 9-시아노-3-하이드록시노난산(9-cyano-3-hydroxynonanoic acid), 3-하이드록시-7-플루오로헵탄산(3-hydroxy-7-fluoroheptanoic acid), 3-하이드록시-9-플루오로노난산(3-hydroxy-9-fluorononanoic acid), 3-하이드록시-6-클로로헥산산(3-hydroxy-6-chlorohexanoic acid), 3-하이드록시-8-클로로옥탄산(3-hydroxy-8-chlorooctanoic acid), 3-하이드록시-6-브로모헥산산(3-hydroxy-6-bromohexanoic acid), 3-하이드록시-8-브로모옥탄산(3-hydroxy-8-bromooctanoic acid), 3-하이드록시-11-브로모운데칸산(3-hydroxy-11-bromoundecanoic acid), 3-하이드록시-2-부텐산(3-hydroxy-2-butenoic acid), 6-하이드록시-3-도데센산(6-hydroxy-3-dodecenoic acid), 3-하이드록시-2-메틸부티레이트(3-hydroxy-2-methylbutyric acid), 3-하이드록시-2-메틸발레르산(3-hydroxy-2-methylvaleric acid), 및 3-하이드록시-2,6-디메틸-5-헵텐산(3-hydroxy-2,6-heptenoic acid)로 구성되는 군으로부터 선택되는 하나 이상의 하이드록시알카노에이트일 수 있으나 이에 한정되는 것은 아니다.In the present invention, the hydroxyalkanoate in the hydroxyalkanoate-lactate copolymer is 3-hydroxybutyrate, 3-hydroxyvalerate, 4-hydroxy 4-hydroxybutyrate, medium chain length (D) -3-hydroxycarboxylic acid with 6 to 14 carbon atoms, 2-hydroxypropionic acid , 3-hydroxypropionic acid, 3-hydroxyhexanoic acid, 3-hydroxyheptanoic acid, 3-hydroxyoctanoic acid ), 3-hydroxynonanoic acid, 3-hydroxydecanoic acid, 3-hydroxyundecanoic acid, 3-hydroxydodecanoic acid (3 -hydroxydodecanoic acid, 3-hydroxytetradecanoic acid, 3-hydroxyhexadecanoic acid (3-hydroxyhexadecanoic acid), 4-hydroxyvaleric acid, 4-hydroxyhexanoic acid, 4-hydroxyheptanoic acid, 4-hydroxy Octanoic acid (4-hydroxyoctanoic acid), 4-hydroxydecanoic acid, 5-hydroxyvaleric acid, 5-hydroxyhexanoic acid, 6- 6-hydroxydodecanoic acid, 3-hydroxy-4-pentenoic acid, 3-hydroxy-4-trans-hexenoic acid (3-hydroxy-4-trans- hexenoic acid), 3-hydroxy-4-cis-hexenoic acid, 3-hydroxy-5-hexenoic acid, 3- 3-hydroxy-6-trans-octenoic acid, 3-hydroxy-6-cis-octenoic acid, 3-hydroxy 3-hydroxy-7-octenoic acid, 3-hydroxy-8-nonenoic acid, 3-hydroxy-9-decenoic acid 9 -decenoic acid), 3-hydroxy-5-cis-dodecenoic acid, 3-hydroxy-6-cis-dodecenoic acid ), 3-hydroxy-5-cis-tetradecenoic acid, 3-hydroxy-7-cis-tetradecenoic acid, 3-hydroxy-5,8-cis-cis-tetradecenoic acid, 3-hydroxy-4-methylvaleric acid acid), 3-hydroxy-4-methylhexanoic acid, 3-hydroxy-5-methylhexanoic acid, 3-hydroxy- 3-hydroxy-6-methylheptanoic acid, 3-hydroxy-4-methyloctanoic acid, 3-hydroxy-5-methyloctanoic acid hydroxy-5-methyloctanoic acid, 3-hydroxy-6-methyloctanoic acid, 3-hydroxy-7-methyloctanoic acid, 3-hydroxy-6-methyl 3-hydroxy-6-methylnonanoic acid, 3-hydroxy-7-methylnonanoic acid, 3-hydroxy-8-methylnonanoic acid -methylnonanoic acid, 3-hydroxy-7-methyldecanoic acid, 3-hydroxy-9-methyldecanoic acid, 3-hydroxy 3-hydroxy-7-methyl-6-octennoic acid, malic acid, 3-hydroxysuccinic acid-methyl ester, 3 3-hydroxyadipinic acid-methyl ester, 3-hydroxysuberic acid-methyl ester, 3-hydroxyazelinic acid methyl ester hydroxyazelaic acid-methyl ester, 3-hydroxysebacic acid-methyl ester, 3-hydroxysuberic acid-ethyl ester, 3-hydroxy Sebacic acid-ethyl ester (3-hydroxysebac ic acid-ethyl ester, 3-hydroxypimelic acid-propyl ester, 3-hydroxysebacic acid-benzil ester, 3-hydroxy 3-hydroxy-8-acetoxyoctanoic acid, 3-hydroxy-9-acetoxynonanoic acid, phenoxy-3-hydroxybutyrate -3-hydroxybutyric acid, phenoxy-3-hydroxyvaleric acid, phenoxy-3-hydroxyheptanoic acid, phenoxy-3-hydroxy Phenoxy-3-hydroxyoctanoic acid, para-cyanophenoxy-3-hydroxybutyric acid, para-cyanophenoxy-3-hydroxyvaleric acid cyanophenoxy-3-hydroxyvaleric acid), para-cyanophenoxy-3-hydroxyhexanoic acid, para-nitrophenoxy-3-hydroxyhexanoic acid (para-nitrophenoxy-3 -h ydroxyhexanoic acid), 3-hydroxy-5-phenylvaleric acid, 3-hydroxy-5-cyclohexylbutyric acid, 3,12- Dihydroxydodecanoic acid, 3,8-dihydroxy-5-cis-tetradecenoic acid, 3-hydroxy- 3-hydroxy-4,5-epoxydecanoic acid, 3-hydroxy-6,7-epoxydodecanoic acid, 3-hydroxy 3-hydroxy-8,9-epoxy-5,6-cis-tetradecanoic acid, 7-cyano-3-hydroxyheptanoic acid -cyano-3-hydroxyheptanoic acid), 9-cyano-3-hydroxynonanoic acid, 3-hydroxy-7-fluoroheptanoic acid acid), 3-hydroxy-9-fluorononanoic acid, 3-hydroxy-6-chlorohexanoic acid, 3-hydroxy acid -8-clock 3-hydroxy-8-chlorooctanoic acid, 3-hydroxy-6-bromohexanoic acid, 3-hydroxy-8-bromooctanoic acid 8-bromooctanoic acid), 3-hydroxy-11-bromoundecanoic acid, 3-hydroxy-2-butenoic acid, 6- 6-hydroxy-3-dodecenoic acid, 3-hydroxy-2-methylbutyric acid, 3-hydroxy-2-methylvaleric acid (3 -hydroxy-2-methylvaleric acid), and at least one hydroxyalkano selected from the group consisting of 3-hydroxy-2,6-dimethyl-5-heptenic acid. It may be an eight but is not limited thereto.
본 발명에 있어서 상기 락테이트를 락틸-CoA로 전환하는 효소의 유전자는 프로피오닐-CoA 트렌스퍼라아제(propionyl-CoA transferase) 유전자(pct)가 사용될 수 있으며, 보다 구체적으로 이러한 락테이트를 락틸-CoA로 전환하는 효소의 유전자는 Clostridium propionicum 유래 프로피오닐-CoA 트렌스퍼라아제 유전자일 수 있다. 본 발명의 한 구체예에서, 상기 락테이트를 락틸-CoA로 전환하는 효소의 유전자는 서열번호 1의 염기 서열(CpPCT); 서열번호 1의 염기 서열에서 T78C, T669C, A1125G 및 T1158C가 변이된 염기 서열(CpPCT522); 서열번호 1의 염기 서열에서 A1200G가 변이된 염기 서열(CpPCT512); 서열번호 1의 염기 서열에서 A1200G가 변이되고, 서열번호 2의 아미노산 서열에서 Gly335Asp가 변이된 염기 서열(CpPCT531); 서열번호 1의 염기 서열에서 T669C, A1125G 및 T1158C가 변이되고, 서열번호 2의 아미노산 서열에서 Asp65Gly이 변이된 염기 서열(CpPCT533); 서열번호 1의 염기 서열에서 T669C, A1125G 및 T1158C가 변이되고, 서열번호 2의 아미노산 서열에서 Asp65Asn이 변이된 염기 서열(CpPCT535); 서열번호 1의 염기 서열에서 T669C, A1125G 및 T1158C가 변이되고, 서열번호 2의 아미노산 서열에서 Thr199Ile이 변이된 염기 서열(CpPCT537); 서열번호 1의 염기 서열에서 A1200G가 변이되고, 서열번호 2의 염기 서열에서 Ala243Thr이 변이된 염기 서열(CpPCT532); 서열번호 1의 염기 서열에서 A1200G가 변이되고, 서열번호 2의 염기 서열에서 Asp257Asn이 변이된 염기 서열(CpPCT534); 서열번호 1의 염기 서열에서 T78C, T669C, A1125G 및 T1158C가 변이되고, 서열번호 2의 아미노산 서열에서 Val193Ala이 변이된 염기 서열(CpPCT540)을 갖는 유전자일 수 있다. In the present invention, as the gene of the enzyme for converting lactate to lactyl-CoA, propionyl-CoA transferase gene ( pct ) may be used, and more specifically, such lactate may be lactyl-CoA. The gene of the enzyme converting to may be a propionyl-CoA transferase gene derived from Clostridium propionicum . In one embodiment of the invention, the gene of the enzyme for converting lactate to lactyl-CoA is the nucleotide sequence of SEQ ID NO: 1 (CpPCT); Nucleotide sequences of which T78C, T669C, A1125G and T1158C are mutated in the nucleotide sequence of SEQ ID NO: 1 (CpPCT522); A nucleotide sequence of A1200G mutated from the nucleotide sequence of SEQ ID NO: 1 (CpPCT512); A1200G is mutated in the nucleotide sequence of SEQ ID NO: 1 and Gly335Asp is mutated in the amino acid sequence of SEQ ID NO: 2 (CpPCT531); A base sequence (CpPCT533) in which T669C, A1125G and T1158C are mutated in the nucleotide sequence of SEQ ID NO: 1, and Asp65Gly is mutated in the amino acid sequence of SEQ ID NO: 2; A base sequence (CpPCT535) in which T669C, A1125G and T1158C are mutated in the nucleotide sequence of SEQ ID NO: 1, and Asp65Asn is mutated in the amino acid sequence of SEQ ID NO: 2; A base sequence (CpPCT537) in which T669C, A1125G and T1158C are mutated in the nucleotide sequence of SEQ ID NO: 1, and Thr199Ile is mutated in the amino acid sequence of SEQ ID NO: 2; A1200G is mutated in the nucleotide sequence of SEQ ID NO: 1, and Ala243Thr is mutated in the nucleotide sequence of SEQ ID NO: 2 (CpPCT532); A nucleotide sequence in which A1200G is mutated in the nucleotide sequence of SEQ ID NO: 1 and Asp257Asn is mutated in the nucleotide sequence of SEQ ID NO: 2 (CpPCT534); T78C, T669C, A1125G and T1158C are modified in the nucleotide sequence of SEQ ID NO: 1, and Val193Ala in the amino acid sequence of SEQ ID NO: 2 may be a gene having a nucleotide sequence (CpPCT540).
특히, CpPct540 유전자가 글리세롤을 이용하여 락테이트 중합체 또는 공중합체를 생산하는데 있어 더욱 바람직한 Clostridium propionicum 유래 propionyl-CoA transferase 변이체의 유전자이다.In particular, the CpPct540 gene is a gene of the Clostridium propionicum- derived propionyl-CoA transferase variant which is more preferred for producing lactate polymers or copolymers using glycerol.
본 발명에 따른 세포 또는 식물은 또한 상기 락틸-CoA를 기질로 사용하는 PHA 합성효소(Polyhydroxyalkanoate synthase)의 유전자를 포함한다. 이러한 PHA 합성효소 유전자로는 슈도모나스(Pseudomonas) 속 6-19 유래 PHA 합성효소인 서열번호 4의 아미노산 서열; 또는 서열번호 4의 아미노산 서열에서 E130D, S325T, S477R, S477H, S477F, S477Y, S477G, Q481M, Q481K 및 Q481R로 구성되는 군으로부터 선택되는 하나 이상의 변이를 포함하는 아미노산 서열에 대응하는 염기 서열을 갖는 유전자 등이 이용될 수 있다.The cell or plant according to the invention also comprises a gene of PHA synthase (Polyhydroxyalkanoate synthase) using the lactyl-CoA as a substrate. Such PHA synthase genes include the amino acid sequence of SEQ ID NO: 4 which is a PHA synthase derived from Pseudomonas genus 6-19; Or a gene having a base sequence corresponding to an amino acid sequence comprising one or more mutations selected from the group consisting of E130D, S325T, S477R, S477H, S477F, S477Y, S477G, Q481M, Q481K, and Q481R in the amino acid sequence of SEQ ID NO: 4 And the like can be used.
특히 상기 phaC1Ps6-19337 유전자가 글리세롤을 이용하여 락테이트 중합체 또는 공중합체를 생산하는데 있어 더욱 바람직한 Pseudomonas 속 6-19 유래 PHA 합성효소 변이체의 유전자이다.In particular, the phaC1 Ps6-19 337 gene is a gene of the PHA synthase variant derived from Pseudomonas 6-19 which is more preferable for producing lactate polymers or copolymers using glycerol.
또한 본 발명에 따른 세포 또는 식물은 글리세롤로부터 하이드록시아실-CoA(hydroxyacyl-CoA)를 생성하는 효소의 유전자를 추가로 포함할 수 있다. 글리세롤로부터 하이드록시아실-CoA(hydroxyacyl-CoA)를 생성하는 효소의 유전자를 추가로 포함하는 재조합 세포 또는 식물은 하이드록시아실-CoA를 자체적으로 생산할 수 있으므로, 하이드록시알카노에이트를 배지에 포함시키지 않더라도 하이드록시알카노에이트-락테이트 공중합체를 높은 수율로 생산할 수 있게 한다. 본 발명의 한 구체예에서, 상기 글리세롤로부터 하이드록시아실-CoA를 생성하는 효소는 케토티올라제 및 아세토아세틸-CoA 리덕타제일 수 있으나, 이에 한정되는 것은 아니다. 상기 케토티올라제 및 아세토아세틸-CoA 리덕타제는 Ralstonia eutropha에서 유래한 것이 바람직하다.In addition, the cell or plant according to the present invention may further include a gene of an enzyme that generates hydroxyacyl-CoA from glycerol. Recombinant cells or plants that additionally contain the gene of the enzyme that produces hydroxyacyl-CoA from glycerol can produce hydroxyacyl-CoA by itself, so do not include hydroxyalkanoate in the medium. If not, it is possible to produce hydroxyalkanoate-lactate copolymers in high yields. In one embodiment of the present invention, the enzyme for producing hydroxyacyl-CoA from the glycerol may be ketothiolase and acetoacetyl-CoA reductase, but is not limited thereto. The ketothiolase and acetoacetyl-CoA reductase are preferably derived from Ralstonia eutropha .
본 발명의 한 구체예에서, 상기 락테이트 중합체 또는 하이드록시알카노에이트-락테이트 공중합체 생성능을 가지는 세포는 박테리아, 특히, 대장균일 수 있다. In one embodiment of the invention, the cells having the ability to produce lactate polymers or hydroxyalkanoate-lactate copolymers can be bacteria, in particular E. coli.
본 발명은 또한 락테이트를 락틸-CoA로 전환하는 효소의 유전자 및 락틸l-CoA를 기질로 사용하는 폴리하이드록시알카노에이트(polyhydroxyalkanoate: PHA) 합성효소의 유전자를 포함하는 락테이트 중합체 또는 공중합체 제조용 재조합 벡터로 형질전환된 글리세롤을 기질로 사용할 수 있는 세포 또는 식물을 제공한다. 상기 세포 또는 식물은 글리세롤로부터 3-하이드록시부틸-CoA를 생성하는 효소의 유전자를 추가로 포함할 수 있다. The invention also relates to lactate polymers or copolymers comprising genes of enzymes that convert lactate to lactyl-CoA and genes of polyhydroxyalkanoate (PHA) synthase using lactyl-CoA as a substrate. Provided are cells or plants which can use glycerol transformed with a recombinant vector for preparation as a substrate. The cell or plant may further comprise a gene of an enzyme that produces 3-hydroxybutyl-CoA from glycerol.
용어 "벡터"는 적합한 숙주 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 함유하는 DNA 제조물을 의미한다. 본 발명에서, 상기 벡터로는 플라스미드 벡터, 박테리오파지 벡터, 코스미드 벡터, YAC(Yeast Artificial Chromosome) 벡터 등이 사용될 수 있다. 본 발명의 목적상 플라스미드 벡터를 이용하는 것이 바람직하다. 그러한 목적에 사용될 수 있는 전형적인 플라스미드 벡터는 (a) 숙주세포당 수백 개의 플라스미드 벡터를 포함하도록 복제가 효율적으로 이루어지도록 하는 복제 개시점, (b) 플라스미드 벡터로 형질전환된 숙주세포가 선발될 수 있도록 하는 항생제 내성 유전자 및 (c) 외래 DNA 절편이 삽입될 수 있는 제한효소 절단부위를 포함하는 구조를 지니고 있다. 적절한 제한효소 절단부위가 존재하지 않을지라도, 통상의 방법에 따른 합성 올리고뉴클레오타이드 어댑터(adaptor) 또는 링커(linker)를 사용하면 벡터와 외래 DNA를 용이하게 라이게이션(ligation)할 수 있다.The term "vector" refers to a DNA preparation containing a DNA sequence operably linked to a suitable regulatory sequence capable of expressing the DNA in a suitable host. In the present invention, a plasmid vector, a bacteriophage vector, a cosmid vector, a YAC (Yeast Artificial Chromosome) vector, and the like may be used. Preference is given to using plasmid vectors for the purposes of the present invention. Typical plasmid vectors that can be used for such purposes include (a) a replication initiation point that allows for efficient replication to include hundreds of plasmid vectors per host cell, and (b) host cells transformed with the plasmid vector. It has a structure comprising an antibiotic resistance gene and (c) a restriction enzyme cleavage site into which foreign DNA fragments can be inserted. Although no appropriate restriction enzyme cleavage site is present, the use of synthetic oligonucleotide adapters or linkers according to conventional methods facilitates ligation of the vector and foreign DNA.
라이게이션 후에, 벡터는 적절한 숙주세포로 형질전환되어야 한다. 본 발명에 바람직한 숙주세포는 원핵 또는 진핵생물 세포일 수 있다. 선호되는 숙주세포는 원핵세포이다. 적합한 원핵세포는 전술한 세 가지 유전자들 중 어느 하나의 유전자를 가지는 미생물뿐만 아니라, 대장균과 같이 상기 유전자 모두를 가지지 않는 미생물 또한 사용 가능하다. 바람직한 대장균은 E.coli DH5a, E.coli JM101, E.coli K12, E.coli W3110, E.coli X1776, E.coli XL1-Blue(Stratagene), E.coli B 등을 포함한다. 그러나 FMB101, NM522, NM538 및 NM539와 같은 E. coli 균주 및 다른 원핵생물의 종(speices) 및 속(genera)도 또한 사용될 수 있다. 전술한 E. coli 및 PHA 합성효소의 유전자를 가지는 미생물에 덧붙여, 아그로박테리움 A4와 같은 아그로박테리움 속 균주, 바실루스 섭틸리스(Bacillus subtilis)와 같은 바실리(bacilli), 살모넬라 타이피뮤리움(Salmonella typhimurium) 또는 세라티아 마르게센스(Serratia marcescens)와 같은 또 다른 장내세균 등이 숙주세포로서 이용될 수 있다. 효모와 곰팡이 같은 주지의 진핵숙주세포, 스포도프테라 프루기페르다(SF9)와 같은 곤충세포, CHO 및 생쥐 세포와 같은 동물세포, 조직배양된 인간세포 및 식물세포도 사용될 수 있다. 적당한 숙주로 형질전환되면 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다.After ligation, the vector should be transformed into the appropriate host cell. Preferred host cells for the present invention may be prokaryotic or eukaryotic cells. Preferred host cells are prokaryotic cells. Suitable prokaryotic cells can be used as well as microorganisms having any of the three genes described above, as well as microorganisms which do not have all of these genes such as E. coli. Preferred E. coli include E. coli DH5a, E. coli JM101, E. coli K12, E. coli W3110, E. coli X1776, E. coli XL1-Blue (Stratagene), E. coli B and the like. However, E. coli strains such as FMB101, NM522, NM538 and NM539 and other prokaryotic species and genera may also be used. In addition to the microorganism having the gene of E. coli and PHA synthase described above, Agrobacterium A4 and Agrobacterium sp, Bacillus subtilis (Bacillus subtilis) and Bashile (bacilli), S. typhimurium (Salmonella such as Another enterobacteria such as typhimurium ) or Serratia marcescens may be used as the host cell. Known eukaryotic host cells such as yeast and fungi, insect cells such as Spodoptera fruitgiper (SF9), animal cells such as CHO and mouse cells, tissue cultured human cells and plant cells can also be used. Once transformed into the appropriate host, the vector can replicate and function independently of the host genome, or in some cases integrate into the genome itself.
당업계에 주지된 바와 같이, 숙주세포에서 형질전환 유전자의 발현 수준을 높이기 위해서는 해당 유전자가 선택된 발현숙주 내에서 기능을 발휘하는 전사 및 해독 발현 조절 서열에 작동가능하도록 연결되어야만 한다. 바람직하게는 발현 조절 서열 및 해당 유전자는 세균 선택 마커 및 복제 개시점 (replication origin)을 같이 포함하고 있는 하나의 발현 벡터 내에 포함되게 된다. 발현 숙주가 진핵세포인 경우에는, 발현 벡터는 진핵 발현 숙주 내에서 유용한 발현 마커를 더 포함하여야만 한다.As is well known in the art, in order to raise the expression level of a transgene in a host cell, the gene must be operably linked to transcriptional and translational expression control sequences that function within the selected host. Preferably, the expression control sequence and the gene of interest are included in one expression vector containing the bacterial selection marker and the replication origin together. If the expression host is a eukaryotic cell, the expression vector must further comprise an expression marker useful in the eukaryotic expression host.
상기 "발현 조절 서열(expression control sequence)"이라는 표현은 특정한 숙주 생물에서 작동가능하게 연결된 코딩 서열의 발현에 필수적인 DNA 서열을 의미한다. 그러한 조절 서열은 전사를 실시하기 위한 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 코딩하는 서열 및 전사 및 해독의 종결을 조절하는 서열을 포함한다. 예를 들면, 원핵생물에 적합한 조절 서열은 프로모터, 임의로 오퍼레이터 서열 및 리보좀 결합 부위를 포함한다. 진핵세포는 프로모터, 폴리아데닐화 시그날 및 인핸서가 이에 포함된다. 플라스미드에서 유전자의 발현 양에 가장 영향을 미치는 인자는 프로모터이다. 고 발현용의 프로모터로서 SRα 프로모터와 사이토메가로바이러스 (cytomegalovirus) 유래 프로모터 등이 바람직하게 사용된다. The expression “expression control sequence” refers to a DNA sequence essential for the expression of a coding sequence operably linked in a particular host organism. Such regulatory sequences include promoters for performing transcription, any operator sequence for regulating such transcription, sequences encoding suitable mRNA ribosomal binding sites, and sequences that control termination of transcription and translation. For example, suitable control sequences for prokaryotes include promoters, optionally operator sequences, and ribosomal binding sites. Eukaryotic cells include promoters, polyadenylation signals, and enhancers. The factor that most influences the amount of gene expression in the plasmid is the promoter. As the promoter for high expression, an SRα promoter, a promoter derived from cytomegalovirus, and the like are preferably used.
본 발명의 DNA 서열을 발현시키기 위하여, 매우 다양한 발현 조절 서열 중 어느 것이라도 벡터에 사용될 수 있다. 유용한 발현 조절 서열의 예로는, 예를 들어, SV40 또는 아데노바이러스의 초기 및 후기 프로모터들, lac 시스템, trp 시스템, TAC 또는 TRC 시스템, T3 및 T7 프로모터들, 파지 람다의 주요 오퍼레이터 및 프로모터 영역, fd 코드 단백질의 조절 영역, 3-포스포글리세레이트 키나제 또는 다른 글리콜분해 효소에 대한 프로모터, 상기 포스파타제의 프로모터들, 예를 들어 Pho5, 효모 알파-교배 시스템의 프로모터 및 원핵세포 또는 진핵 세포 또는 이들의 바이러스의 유전자의 발현을 조절하는 것으로 알려진 구성과 유도의 기타 다른 서열 및 이들의 여러 조합이 포함된다.To express the DNA sequences of the present invention, any of a wide variety of expression control sequences can be used in the vector. Examples of useful expression control sequences include, for example, early and late promoters of SV40 or adenovirus, lac system, trp system, TAC or TRC system, T3 and T7 promoters, major operator and promoter region of phage lambda, fd Regulatory regions of the code protein, promoters for 3-phosphoglycerate kinase or other glycolysis enzymes, promoters of the phosphatase such as Pho5, promoters of the yeast alpha-crossing system and prokaryotic or eukaryotic cells or viruses thereof And other sequences of constitution and induction known to modulate the expression of the genes, and various combinations thereof.
핵산은 다른 핵산 서열과 기능적 관계로 배치될 때 "작동가능하게 연결(operably linked)"된다. 이것은 적절한 분자(예를 들면, 전사 활성화 단백질)가 조절 서열(들)에 결합될 때 유전자 발현을 가능하게 하는 방식으로 연결된 유전자 및 조절 서열(들)일 수 있다. 예를 들면, 전서열(pre-sequence) 또는 분비 리더 (leader)에 대한 DNA는 폴리펩타이드의 분비에 참여하는 전단백질로서 발현되는 경우 폴리펩타이드에 대한 DNA에 작동가능하게 연결되고; 프로모터 또는 인핸서는 서열의 전사에 영향을 끼치는 경우 코딩서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 서열의 전사에 영향을 끼치는 경우 코딩 서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 번역을 용이하게 하도록 배치되는 경우 코딩 서열에 작동가능하게 연결된다. 일반적으로, "작동가능하게 연결된"은 연결된 DNA 서열이 접촉하고, 또한 분비 리더의 경우 접촉하고 리딩 프레임 내에 존재하는 것을 의미한다. 그러나, 인핸서(enhancer)는 접촉할 필요가 없다. 이들 서열의 연결은 편리한 제한 효소 부위에서 라이게이션(연결)에 의해 수행된다. 그러한 부위가 존재하지 않는 경우, 전술한 바와 같이 통상의 방법에 따른 합성 올리고뉴클레오티드 어댑터 (oligonucleotide adaptor) 또는 링커(linker)를 사용한다.Nucleic acids are "operably linked" when placed in a functional relationship with other nucleic acid sequences. This may be genes and regulatory sequence (s) linked in such a way as to enable gene expression when appropriate molecules (eg, transcriptional activating proteins) bind to regulatory sequence (s). For example, the DNA for a pre-sequence or secretion leader is operably linked to the DNA for the polypeptide when expressed as a shear protein that participates in the secretion of the polypeptide; A promoter or enhancer is operably linked to a coding sequence when it affects the transcription of the sequence; Or the ribosomal binding site is operably linked to a coding sequence when it affects the transcription of the sequence; Or the ribosomal binding site is operably linked to a coding sequence when positioned to facilitate translation. In general, "operably linked" means that the linked DNA sequence is in contact, and in the case of a secretory leader, is in contact and present within the reading frame. However, enhancers do not need to touch. Linking of these sequences is performed by ligation (linking) at convenient restriction enzyme sites. If such sites do not exist, synthetic oligonucleotide adapters or linkers according to conventional methods are used as described above.
물론 모든 벡터와 발현 조절 서열이 본 발명의 DNA 서열을 발현하는데 모두 동등하게 기능을 발휘하지는 않는다는 것을 이해하여야만 한다. 마찬가지로 모든 숙주가 동일한 발현 시스템에 대해 동일하게 기능을 발휘하지는 않는다. 그러나, 당업자라면 과도한 실험적 부담없이 본 발명의 범위를 벗어나지 않는 채로 여러 벡터, 발현 조절 서열 및 숙주 중에서 적절한 선택을 할 수 있다. 예를 들어, 벡터를 선택함에 있어서는 숙주를 고려하여야 하는데, 이는 벡터가 그 안에서 복제되어야만 하기 때문이다. 벡터의 복제 수, 복제 수를 조절할 수 있는 능력 및 당해 벡터에 의해 코딩되는 다른 단백질, 예를 들어 항생제 마커의 발현도 또한 고려되어야만 한다. 이들 변수의 범위내에서, 당업자는 본 발명에 적합한 각종 벡터/발현 조절 서열/숙주 조합을 선정할 수 있다.Of course, it should be understood that not all vectors and expression control sequences function equally in expressing the DNA sequences of the present invention. Likewise not all hosts function equally for the same expression system. However, those skilled in the art can make appropriate choices among various vectors, expression control sequences and hosts without departing from the scope of the present invention without undue experimental burden. For example, in selecting a vector, the host must be considered, since the vector must be replicated in it. The number of copies of the vector, the ability to control the number of copies, and the expression of other proteins encoded by the vector, such as antibiotic markers, must also be considered. Within the scope of these variables, one skilled in the art can select various vector / expression control sequence / host combinations suitable for the present invention.
또한, 원핵세포의 형질전환은 Sambrook et al., supra의 1.82 섹션에 기술된 칼슘 클로라이드 방법을 사용해서 용이하게 달성될 수 있다. 선택적으로, 전기천공법(electroporation)(Neumann et al., EMBO J., 1: 841(1982))이 또한 이러한 세포들을 형질전환하는데 사용될 수 있다.In addition, prokaryotic transformation can be readily accomplished using the calcium chloride method described in section 1.82 of Sambrook et al ., Supra. Optionally, electroporation (Neumann et al., EMBO J., 1: 841 (1982)) can also be used to transform these cells.
한편, 식물체의 형질전환은 아그로박테리움이나 바이러스 벡터 등을 이용한 통상의 방법에 의해 달성할 수 있다. 예컨대, 본 발명에 따른 유전자를 함유하는 재조합벡터로 아그로박테리움 속 미생물을 형질전환시킨 다음, 상기 형질전환된 아그로박테리움 속 미생물을 대상 식물의 조직 등에 감염시켜 형질전환 식물을 수득할 수 있다. 예를 들면, 형질전환된 식물을 이용하여 PHA를 제조하는 것에 관한 선행특허(WO 94/11519; US 6,103,956)와 동일 내지 유사한 방법으로 본 발명에 적합한 형질전환 식물을 수득할 수 있다. 보다 구체적으로, (a) 대상 식물의 외식체(explant)를 전 배양(pre-culture)한 다음, 이를 상기 형질전환된 아그로박테리움과 공동배양하여 형질감염시키는 단계; (b) 형질감염된 외식체를 캘러스 유도배지에서 배양하여, 캘러스를 수득하는 단계; 및 (c) 수득된 캘러스를 절단하고, 이를 신초 유도배지에서 배양하여 신초를 형성시키는 단계를 거쳐 형질감염된 식물을 제조할 수 있다.On the other hand, transformation of plants can be achieved by conventional methods using Agrobacterium, viral vectors and the like. For example, after transforming the microorganism of the genus Agrobacterium with a recombinant vector containing the gene according to the present invention, the transformed plant can be obtained by infecting the transformed Agrobacterium microorganisms in the tissues of the target plant. For example, a transgenic plant suitable for the present invention can be obtained by the same or similar method as in the prior patent (WO 94/11519; US 6,103,956) for producing PHA using the transformed plant. More specifically, (a) pre-culture the explant of the plant (preplant), and then transfected by co-culture with the transformed Agrobacterium; (b) culturing the transfected explants in a callus induction medium to obtain callus; And (c) cutting the obtained callus, and culturing it in shoot induction medium to form shoots, thereby producing a transfected plant.
본 발명에서 '외식체(explant)'라 함은 식물체에서 잘라낸 조직의 절편을 말하는 것으로, 자엽(cotyledon) 또는 하배축(hypocotyl)을 포함한다. 본 발명의 방법에 사용되는 식물의 외식체로는 자엽 또는 하배축을 사용할 수 있으며, 식물의 종자를 소독하고 세척한 후, MS 배지에서 발아시켜 얻은 자엽을 사용하는 것이 보다 바람직하다.In the present invention, the term "explant" refers to a slice of tissue cut out of a plant, and includes cotyledon or hypocotyl. The explants of the plant used in the method of the present invention may be cotyledons or hypocotyls, it is more preferable to use the cotyledons obtained by germinating in MS medium after disinfecting and washing the seeds of the plants.
본 발명에서 이용가능한 형질전환 대상 식물로는 담배, 토마토, 고추, 콩, 벼, 옥수수 등을 들 수 있으나, 이에 한정되는 것은 아니다. 또한, 형질전환에 사용되는 식물이 유성번식 식물이라 할지라도, 조직배양 등에 의해 무성적으로 반복생식 시킬 수 있다는 것은 당업자에게 자명하다 할 것이다.Plants to be transformed usable in the present invention include tobacco, tomato, pepper, soybean, rice, corn, and the like, but is not limited thereto. In addition, even if the plant used for transformation is a sexually propagating plant, it will be apparent to those skilled in the art that it can be repeatedly reproduced by tissue culture or the like.
본 발명은 저가의 기질인 글리세롤로부터 락테이트 중합체 또는 공중합체를 효율적으로 제조할 수 있는 세포 또는 식물을 제공하며, 이러한 세포 또는 식물을 재배 또는 배양하는 것을 특징으로 하는 락테이트 중합체 또는 공중합체의 제조방법을 제공한다. The present invention provides cells or plants capable of efficiently producing lactate polymers or copolymers from glycerol, which is a low-cost substrate, and the production of lactate polymers or copolymers comprising cultivating or culturing such cells or plants. Provide a method.
도 1은 pPs619C1337-CPPCT540벡터를 도시한 것이다.Figure 1 shows the pPs619C1337-CPPCT540 vector.
도 2는 pMCS104ReAB 플라스미드를 도시한 것이다.2 depicts the pMCS104ReAB plasmid.
이하 본 발명을 실시예에 의하여 더욱 상세하게 설명한다. 이들 실시예는 단지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited to these examples.
<실시예 1> 재조합 대장균의 제작Example 1 Preparation of Recombinant E. Coli
pPs619C1337CPPCT540 플라스미드로 형질전환된 재조합 대장균 XL1-Blue 와 pPs619C1337CPPCT540 및 pMCS104ReAB 등 두 개의 플라스미드로 형질전환된 재조합 대장균 XL1-Blue를 각각 제작하였다. 본 연구를 위해 제작된 pPs619C1337CPPCT540 플라스미드와 pMCS104ReAB는 각각 두 종류의 주요 효소가 발현되도록 구성되어 있다. 이들 효소들은 대장균 내에서 생분해성 고분자인 폴리락테이트 및 폴리(3-하이드록시부티레이트-co-락테이트)가 생합성되기 위한 필수 효소들로서, Pseudomonas sp. 6-19 (KCTC 11027BP) 유래의 고분자 중합효소인 phaC1Ps6-19337, 아세틸-CoA로부터 CoA를 락테이트로 전달시켜 릭틸-CoA로 전환시켜주는 효소인 Clostridium propionicum 유래의 프로피오닐-CoA 트렌스퍼라아제(propionyl-CoA transferase, CPPCT), 그리고 글리세롤로부터 3-하이드록시부틸-CoA를 합성하는 효소인 Ralstonia eutropha 유래의 ketothiolase(phaARE) 및 acetoacetyl-CoA reductase(phaBRE)이다. 본 pPs619C1337CPPCT540 플라스미드에는 phaC1Ps6-19337, CPPCT540 유전자들을 포함하고 있고 (도 1), pMCS104ReAB 플라스미드에는 phaARE 및 phaBRE 유전자들을 포함하고 있다 (도 2).Recombinant Escherichia coli XL1-Blue transformed with pPs619C1337CPPCT540 plasmid and recombinant plasmid Escherichia coli XL1-Blue transformed with two plasmids, pPs619C1337CPPCT540 and pMCS104ReAB, were prepared, respectively. The pPs619C1337CPPCT540 plasmid and pMCS104ReAB were designed to express two major enzymes. These enzymes are essential enzymes for the biosynthesis of the biodegradable polymers polylactate and poly (3-hydroxybutyrate-co-lactate) in Escherichia coli, Pseudomonas sp. PhaC1 Ps6-19 337, a polymer polymerase derived from 6-19 (KCTC 11027BP), propionyl-CoA transferase derived from Clostridium propionicum , an enzyme that transfers CoA from acetyl-CoA to lactate and converts it into lactic-CoA (propionyl-CoA transferase, CPPCT), and ketothiolase (phaA RE ) and acetoacetyl-CoA reductase (phaB RE ) from Ralstonia eutropha , enzymes that synthesize 3-hydroxybutyl-CoA from glycerol. The pPs619C1337CPPCT540 plasmid contains phaC1 Ps6-19 337 and CPPCT540 genes (FIG. 1), and the pMCS104ReAB plasmid contains phaA RE and phaB RE genes (FIG. 2).
또한 phaC1Ps6-19337 유전자와 CPPCT540 유전자의 경우, 서열번호 3 Pseudomonas sp. 유래의 PHA synthase인 phaC1Ps6-19 유전자와 서열번호 1의 Clostridium propionicum 유래의 프로피오닐-CoA 트랜스퍼라아제(propionyl-CoA transferase, CPPCT) 유전자로부터 각각 락테이트 중합체 및 공중합체에 유리하도록 변이된 유전자들이다. 각 플라스미드 상에서 포함된 유전자 모두는 재조합 대장균 내에서 콘스티튜티브(constitutive)하게 발현되도록 제작되었다.In addition, for the phaC1 Ps6-19 337 gene and the CPPCT540 gene, SEQ ID NO: 3 Pseudomonas sp. PHA synthase derived from phaC1 Ps6-19 gene and propionyl-CoA transferase (CPPCT) gene derived from Clostridium propionicum of SEQ ID NO: 1 genes mutated to favor lactate polymer and copolymer, respectively . All of the genes contained on each plasmid were constructed to be constitutively expressed in recombinant E. coli.
<실시예 1-1> Pseudomonas sp. 6-19 유래 PHA 합성효소의 기질 특이성 변이체 제작Example 1-1 Pseudomonas sp. Substrate Specificity Variation of 6-19-derived PHA Synthetase
다양한 종류의 PHA 합성효소 중에서 Type II PHA 합성효소는 비교적 탄소수가 긴 기질을 중합시키는 MCL-PHA(medium-chain-length PHA) 합성효소로 알려져 있고, 이 MCL-PHA 합성효소는 락테이트 공중합체 생산에 매우 유용할 것으로 기대되고 있다. 본 발명에서 획득한 phaC1Ps6-19 합성효소와 매우 상동성이 높은 Pseudomonas sp. 61-3 유래 phaC1 합성효소는 Type II 합성효소이지만, 비교적 넓은 범위의 기질 특이성을 가진다고 보고되어 있고(Matsusaki et al., J. Bacteriol., 180:6459, 1998), SCL-PHA(short-chain-length PHA) 생산에 적합한 돌연변이체에 관한 연구 결과가 보고되어 있다(Takase et al., Biomacromolecules, 5:480, 2004). 이를 바탕으로 본 발명인들은 SCL 활성에 영향을 미치는 아미노산을 SDM 방법을 이용하여 phaC1Ps6-19 합성효소 변이체들을 만든바 있다(국내특허 출원번호 10-2006-0116234).Among various types of PHA synthase, Type II PHA synthase is known as medium-chain-length PHA synthase that polymerizes relatively long carbon substrates, and this MCL-PHA synthase produces lactate copolymers. It is expected to be very useful. Pseudomonas sp. Highly homologous to phaC1 Ps6-19 synthase obtained in the present invention. 61-3-derived phaC1 synthase is a Type II synthase, but has been reported to have a relatively broad range of substrate specificities (Matsusaki et al ., J. Bacteriol ., 180: 6459, 1998), and SCL-PHA (short-chain). The results of studies on mutants suitable for the production of -length PHA) have been reported (Takase et al ., Biomacromolecules , 5: 480, 2004). Based on this, the inventors have made phaC1 Ps6-19 synthetase variants using SDM method of amino acids affecting SCL activity (Domestic Patent Application No. 10-2006-0116234).
보다 구체적으로는 다음과 같이 제조하였다. Pseudomonas sp. 6-19(KCTC 11027BP) 유래 PHA 합성효소(phaC1Ps6-19) 유전자를 분리하기 위해 Pseudomonas sp. 6-19의 전체 DNA를 추출하고, phaC1Ps6-19 염기 서열(송애진, Master's Thesis, Department of Chemical and Biomolecular Engineering, KAIST, 2004)에 기반한 서열번호 5 및 6의 염기서열을 가지는 프라이머를 제작하고, PCR을 수행하여 phaC1Ps6-19 유전자를 수득하였다.More specifically, it was prepared as follows. Pseudomonas sp. To isolate PHA synthase (phaC1 Ps6-19 ) gene from 6-19 (KCTC 11027BP), Pseudomonas sp. To extract the entire DNA of 6-19, to prepare a primer having the base sequence of SEQ ID NO: 5 and 6 based on the phaC1 Ps6-19 base sequence (Song Aejin, Master's Thesis, Department of Chemical and Biomolecular Engineering, KAIST, 2004) , PCR was performed to obtain phaC1 Ps6-19 gene.
서열번호 5: 5'- GAG AGA CAA TCA AAT CAT GAG TAA CAA GAG TAA CG -3'SEQ ID NO: 5'- GAG AGA CAA TCA AAT CAT GAG TAA CAA GAG TAA CG-3 '
서열번호 6: 5'- CAC TCA TGC AAG CGT CAC CGT TCG TGC ACG TAC -3'SEQ ID NO: 5'- CAC TCA TGC AAG CGT CAC CGT TCG TGC ACG TAC-3 '
PCR 반응물을 아가로오스 젤 전기영동 한 결과, phaC1Ps6-19 유전자에 해당하는 1.7kbp 크기의 유전자 절편을 확인하였다. phaC1Ps6-19 합성효소의 발현을 위해서 단량체(monomer) 공급 효소와 합성효소가 같이 발현되는 오페론 형태의 항시적 발현 시스템을 도입하였다. Agarose gel electrophoresis of the PCR reactions confirmed a 1.7kbp gene fragment corresponding to the phaC1 Ps6-19 gene. For the expression of phaC1 Ps6-19 synthase, an operon-type constitutive expression system in which a monomer feed enzyme and a synthetase are expressed is introduced.
pSYL105 벡터(Lee et al., Biotech. Bioeng., 1994, 44:1337-1347)에서 Ralstonia eutropha H16 유래의 PHB 생산 오페론이 함유된 DNA 절편을 BamHI/EcoRI으로 절단하여, pBluescript II (Stratagene)의 BamHI/EcoRI 인식부위에 삽입함으로써 pReCAB 재조합 벡터를 제조하였다.DNA fragments containing PHB-producing operons from Ralstonia eutropha H16 from pSYL105 vector (Lee et al., Biotech. Bioeng., 1994, 44: 1337-1347) were digested with BamHI / EcoRI and BamHI from pBluescript II (Stratagene) PReCAB recombinant vector was prepared by inserting in / EcoRI recognition site.
pReCAB 벡터는 PHA 합성효소 (phaCRE)와 단량체 공급효소 (phaARE & phaBRE)가 PHB 오페론 프로모터에 의해 항시적으로 발현되며, 대장균에서도 잘 작동된다고 알려져 있다(Lee et al., Biotech. Bioeng., 1994, 44:1337-1347). pReCAB 벡터를 BstBI/SbfI으로 절단하여 R.eutropha H16 PHA 합성효소 (phaCRE)를 제거한 다음, 상기에서 수득한 phaC1Ps6-19 유전자를 BstBI/SbfI 인식부위에 삽입함으로써 pPs619C1-ReAB 재조합 벡터를 제조하였다. The pReCAB vector is known to express PHA synthase (phaC RE ) and monomer feeder enzymes (phaA RE & phaB RE ) at all times by the PHB operon promoter and to work well in Escherichia coli (Lee et al ., Biotech. Bioeng . , 1994, 44: 1337-1347. The pReCAB vector was digested with BstBI / SbfI to remove R.eutropha H16 PHA synthase (phaC RE ), and then the pPs619C1-ReAB recombinant vector was prepared by inserting the phaC1 Ps6-19 gene obtained above into the BstBI / SbfI recognition site. .
BstBI/SbfI 인식부위가 각각 양끝에 하나씩만 포함된 phaC1Ps6-19 합성효소 유전자 절편을 만들기 위해 우선 내재하고 있는 BstBI 위치를 SDM(site directed mutagenesis) 방법으로 아미노산의 변환 없이 제거하였고, BstBI/SbfI 인식부위를 첨가하기 위해 서열번호 7 및 8, 서열번호 9 및 10, 서열번호 11 및 서열번호 12의 염기서열을 가지는 프라이머를 이용하여 오버랩핑 PCR을 수행하였다. In order to make a phaC1 Ps6-19 synthase gene fragment containing only one BstBI / SbfI recognition site at each end, the BstBI position, which is inherent in the BstBI / SbfI recognition region, was first removed without using amino acid conversion by SDM (site directed mutagenesis) method. In order to add a site, overlapping PCR was performed using primers having the nucleotide sequences of SEQ ID NOs: 7 and 8, SEQ ID NOs: 9 and 10, SEQ ID NO: 11, and SEQ ID NO: 12.
서열번호 7: 5'- atg ccc gga gcc ggt tcg aa - 3'SEQ ID NO: 5'- atg ccc gga gcc ggt tcg aa-3 '
서열번호 8: 5'- CGT TAC TCT TGT TAC TCA TGA TTT GAT TGT CTC TC - 3'SEQ ID NO: 5'- CGT TAC TCT TGT TAC TCA TGA TTT GAT TGT CTC TC-3 '
서열번호 9: 5'- GAG AGA CAA TCA AAT CAT GAG TAA CAA GAG TAA CG - 3'SEQ ID NO: 5'- GAG AGA CAA TCA AAT CAT GAG TAA CAA GAG TAA CG-3 '
서열번호 10: 5'- CAC TCA TGC AAG CGT CAC CGT TCG TGC ACG TAC - 3'SEQ ID NO: 10'-5'-CAC TCA TGC AAG CGT CAC CGT TCG TGC ACG TAC-3 '
서열번호 11: 5'- GTA CGT GCA CGA ACG GTG ACG CTT GCA TGA GTG - 3'SEQ ID NO: 5'- GTA CGT GCA CGA ACG GTG ACG CTT GCA TGA GTG-3 '
*서열번호 12: 5'- aac ggg agg gaa cct gca gg - 3'* SEQ ID NO 12: 5'- aac ggg agg gaa cct gca gg-3 '
상기 제작한 pPs619C1-ReAB 재조합 벡터의 phaC1Ps6-19 유전자의 염기 서열은 시퀀싱을 통해 확인하여, 서열번호 3로 나타내었으며, 이에 의해 코딩되는 아미노산 서열을 서열번호 4에 나타내었다.The nucleotide sequence of the phaC1 Ps6-19 gene of the prepared pPs619C1-ReAB recombinant vector was confirmed by sequencing, and is represented by SEQ ID NO: 3, and the amino acid sequence encoded thereby is shown in SEQ ID NO: 4.
상기 phaC1Ps6-19 합성효소의 PHB 합성 여부를 확인하기 위해 pPs619C1-ReAB 재조합 벡터를 E.coli XL-1Blue(Stratagene)에 형질전환 시키고, 이를 PHB 검출배지(LB agar, glucose 20g/L, Nile red 0.5μg/ml)에서 생육 시킨 결과 PHB 생성이 관찰되지 않았다. PPs619C1-ReAB recombinant vector was transformed into E. coli XL-1Blue (Stratagene) to confirm PHB synthesis of the phaC1 Ps6-19 synthase , and this was detected by PHB detection medium (LB agar, glucose 20g / L, Nile red). At 0.5 μg / ml), no PHB production was observed.
SCL(short chain length) 활성에 영향을 미치는 아미노산 위치 3 곳을 아미노산 서열 배열 분석을 통해 찾았고, 서열번호 13 내지 18의 프라이머를 사용한 SDM 방법을 이용하여 다음 표 1과 같은 phaC1Ps6-19 합성효소 변이체들을 만들었다.Three amino acid positions affecting SCL (short chain length) activity were found through amino acid sequence analysis, and the phaC1 Ps6-19 synthetase variants shown in Table 1 were obtained using the SDM method using the primers of SEQ ID NOs: 13-18. Made them.
표 1
재조합 벡터 핵산 치환 아미노산 치환 프라이머
pPs619C1200-ReAB AGC →ACC S325T 서열번호 13/14
CAG →ATG Q481M 서열번호 15/16
pPs619C1300-ReAB GAA →GAT E130D 서열번호 17/18
AGC →ACC S325T 서열번호 13/14
CAG →ATG Q481M 서열번호 15/16
Table 1
Recombinant vector Nucleic Acid Substitution Amino acid substitutions primer
pPs619C1200-ReAB AGC → ACC S325T SEQ ID NO: 13/14
CAG → ATG Q481M SEQ ID NO: 15/16
pPs619C1300-ReAB GAA → GAT E130D SEQ ID NO: 17/18
AGC → ACC S325T SEQ ID NO: 13/14
CAG → ATG Q481M SEQ ID NO: 15/16
S325TS325T
서열번호 13: 5- CTG ACC TTG CTG GTG ACC GTG CTT GAT ACC ACC- 3 SEQ ID NO: 5- CTG ACC TTG CTG GTG ACC GTG CTT GAT ACC ACC- 3
서열번호 14: 5- GGT GGT ATC AAG CAC GGT CAC CAG CAA GGT CAG- 3 SEQ ID NO: 14 5- GGT GGT ATC AAG CAC GGT CAC CAG CAA GGT CAG- 3
Q481MQ481M
서열번호 15: 5- CGA GCA GCG GGC ATA TC A TGA GCA TCC TGA ACC CGC- 3 SEQ ID NO: 15 5-CGA GCA GCG GGC ATA TC A TGA GCA TCC TGA ACC CGC- 3
서열번호 16: 5- GCG GGT TCA GGA TGC TCA TGA TAT GCC CGC TGC TCG- 3 SEQ ID NO: 5- GCG GGT TCA GGA TGC TCA TGA TAT GCC CGC TGC TCG- 3
E130DE130D
서열번호 17: 5- atc aac ctc atg acc gat gcg atg gcg ccg acc- 3 SEQ ID NO: 17 5- atc aac ctc atg acc gat gcg atg gcg ccg acc-3
서열번호 18: 5- ggt cgg cgc cat cgc atc ggt cat gag gtt gat- 3 SEQ ID NO: 18 5- ggt cgg cgc cat cgc atc ggt cat gag gtt gat- 3
이들 재조합 벡터를 E.coli XL1-Blue에 형질전환 시키고, 이를 PHB 검출배지 (LB agar, glucose 20g/L, Nile red 0.5μg/ml)에서 생육 시킨 결과, pPs619C1200-ReAB로 형질전환된 E.coli XL1-Blue와 pPs619C1300-ReAB로 형질전환된 E.coli XL1-Blue에서 모두 PHB 생성을 확인할 수 있었다. 즉, 단량체 공급효소인 phaARE와 phaBRE 에 의해 글루코스로부터 3HB-CoA가 생성되고, 이를 기질로 하여 phaC1Ps6-19 합성효소 SCL 변이체들(phaC1Ps6-19200 & phaC1Ps6-19300)이 PHB를 합성한 것이다.These recombinant vectors were transformed into E. coli XL1-Blue, and grown in PHB detection medium (LB agar, glucose 20 g / L, Nile red 0.5 μg / ml), resulting in E. coli transformed with pPs619C1200-ReAB. PHB production was confirmed in both XL1-Blue and E. coli XL1-Blue transformed with pPs619C1300-ReAB. That is, 3HB-CoA is generated from glucose by the monomer supply enzymes phaA RE and phaB RE , and phaC1 Ps6-19 synthase SCL variants (phaC1 Ps6-19 200 & phaC1 Ps6-19 300) are used as the substrates. Is synthesized.
여기에 PLA 및 PLA 공중합체 합성 시 필요한 단량체인 락틸-CoA를 제공하기 위한 CP-PCT가 같이 발현되는 오페론 형태의 항시적 발현되는 시스템을 구축하기 위하여 클로스트리듐 프로피오니쿰 유래의 프로피오닐-CoA 트랜스퍼라아제(CP-PCT)를 사용하였다. cp-pctClostridium propionicum의 염색체 DNA를 서열번호 19 및 서열번호 20의 프라이머를 이용하여 PCR하여 얻어진 단편을 사용하였으며, 이 때, 원래 야생형 CP-PCT에 존재하는 NdeI site를 cloning의 용이성을 위해 SDM방법을 이용하여 제거하였다.Propionyl-CoA derived from Clostridium propionicum to construct a system of constant expression of the operon form in which CP-PCT is expressed together to provide lactyl-CoA, which is a monomer required for the synthesis of PLA and PLA copolymers. Transferase (CP-PCT) was used. cp-pct used a fragment obtained by PCR chromosomal DNA of Clostridium propionicum using primers of SEQ ID NO: 19 and SEQ ID NO: 20, at this time, for ease of cloning the Nde I site existing in the wild type CP-PCT. It was removed using the SDM method.
서열번호 19: 5-ggaattcATGAGAAAGGTTCCCATTATTACCGCAGATGASEQ ID NO: 19: 5-ggaattcATGAGAAAGGTTCCCATTATTACCGCAGATGA
서열번호 20: 5-gc tctaga tta gga ctt cat ttc ctt cag acc cat taa gcc ttc tgSEQ ID NO: 20: 5-gc tctaga tta gga ctt cat ttc ctt cag acc cat taa gcc ttc tg
또한, SbfI/NdeI 인식부위를 첨가하기 위해 서열번호 21과 22의 염기서열을 가지는 프라이머를 이용하여 오버랩핑 PCR을 수행하였다.In addition, overlapping PCR was performed using primers having the nucleotide sequences of SEQ ID NOs: 21 and 22 to add Sbf I / Nde I recognition sites.
서열번호 21: 5-agg cct gca ggc gga taa caa ttt cac aca gg- 3 SEQ ID NO: 21 5-agg cct gca ggc gga taa caa ttt cac aca gg- 3
서열번호 22: 5-gcc cat atg tct aga tta gga ctt cat ttc c- 3 SEQ ID NO: 22 5-gcc cat atg tct aga tta gga ctt cat ttc c- 3
phaC1Ps6-19 합성효소 SCL 변이체인 phaC1Ps6-19300를 함유한 pPs619C1300-ReAB 벡터를 SbfI/NdeI으로 절단하여 Ralstonia eutrophus H16 유래의 단량체 공급효소 (phaARE & phaBRE)를 제거한 다음, 상기 PCR 클로닝한 CP-PCT 유전자를 SbfI/NdeI 인식부위에 삽입함으로써 pPs619C1300-CPPCT 재조합 벡터를 제조하였다.phaC1 Ps6-19 synthase remove the SCL mutant of phaC1 Ps6-19 300 a pPs619C1300-ReAB by cutting the vector with Sbf I / Nde I Ralstonia eutrophus H16 monomer feed enzymes (phaA RE & phaB RE) of origin containing the following, the The pPs619C1300-CPPCT recombinant vector was prepared by inserting the PCR cloned CP-PCT gene into the Sbf I / Nde I recognition site.
위와 유사한 방법으로 하기 프라이머들을 이용하여 다양한 PHA 합성효소 변이체들을 제작하였다. 제작된 변이체들을 하기 표 2 내지 5에 종합하여 나타내었다. In a similar manner to the above, various PHA synthase variants were prepared using the following primers. The prepared variants are shown in the following Tables 2 to 5.
E130D E130D
서열번호 17: 5'-atc aac ctc atg acc gat gcg atg gcg ccg acc- 3' SEQ ID NO: 17'-atc aac ctc atg acc gat gcg atg gcg ccg acc-3 '
서열번호 18: 5' -ggt cgg cgc cat cgc atc ggt cat gag gtt gat- 3' SEQ ID NO: 18'-ggt cgg cgc cat cgc atc ggt cat gag gtt gat-3 '
S325T S325T
서열번호 13: 5'-CTG ACC TTG CTG GTG ACC GTG CTT GAT ACC ACC- 3' SEQ ID NO: 5'-CTG ACC TTG CTG GTG ACC GTG CTT GAT ACC ACC-3 '
서열번호 14: 5'- GGT GGT ATC AAG CAC GGT CAC CAG CAA GGT CAG- 3' SEQ ID NO: 14 '5'- GGT GGT ATC AAG CAC GGT CAC CAG CAA GGT CAG-3'
S477R S477R
서열번호 23: 5'-gaa ttc gtg ctg tcg agc cgc ggg cat atc- 3' SEQ ID NO: 23'-gaa ttc gtg ctg tcg agc cgc ggg cat atc- 3 '
서열번호 24: 5'-gat atg ccc gcg gct cga cag cac gaa ttc- 3' SEQ ID NO: 24 '5'-gat atg ccc gcg gct cga cag cac gaa ttc-3'
S477H S477H
서열번호 25: 5'-gaa ttc gtg ctg tcg agc cat ggg cat atc- 3' SEQ ID NO: 25'-gaa ttc gtg ctg tcg agc cat ggg cat atc-3 '
서열번호 26: 5'-gat atg ccc atg gct cga cag cac gaa ttc- 3' SEQ ID NO: 26'-gat atg ccc atg gct cga cag cac gaa ttc-3 '
S477F S477F
서열번호 27: 5'- gaa ttc gtg ctg tcg agc ttt ggg cat atc- 3' SEQ ID NO: 27'-gaa ttc gtg ctg tcg agc ttt ggg cat atc-3 '
서열번호 28: 5'- gat atg ccc aaa gct cga cag cac gaa ttc- 3' SEQ ID NO: 28: 5'- gat atg ccc aaa gct cga cag cac gaa ttc-3 '
S477Y S477Y
서열번호 29: 5'-gaa ttc gtg ctg tcg agc tat ggg cat atc- 3' SEQ ID NO: 29 '5'-gaa ttc gtg ctg tcg agc tat ggg cat atc'
서열번호 30: 5'-gat atg ccc ata gct cga cag cac gaa ttc- 3' SEQ ID NO: 30'-gat atg ccc ata gct cga cag cac gaa ttc-3 '
S477G S477G
서열번호 31: 5'-gaa ttc gtg ctg tcg agc ggc ggg cat atc- 3' SEQ ID NO: 31 5'-gaa ttc gtg ctg tcg agc ggc ggg cat atc-3 '
서열번호 32: 5'-gat atg ccc gcc gct cga cag cac gaa ttc- 3' SEQ ID NO: 32 5'-gat atg ccc gcc gct cga cag cac gaa ttc-3 '
Q481K Q481K
서열번호 33: 5'-ggg cat atc aaa agc atc ctg aac ccg c- 3' SEQ ID NO: 33 5'-ggg cat atc aaa agc atc ctg aac ccg c-3 '
서열번호 34: 5'-gcg ggt tca gga tgc ttt tga tat gcc c- 3' SEQ ID NO: 34: 5'-gcg ggt tca gga tgc ttt tga tat gcc c-3 '
Q481M Q481M
서열번호 35: 5'-ggg cat atc atg agc atc ctg aac ccg c- 3' SEQ ID NO: 35'-ggg cat atc atg agc atc ctg aac ccg c-3 '
서열번호 36: 5'-gcg ggt tca gga tgc tca tga tat gcc c- 3' SEQ ID NO: 36'-gcg ggt tca gga tgc tca tga tat gcc c-3 '
Q481R Q481R
서열번호 37: 5'-ggg cat atc cgc agc atc ctg aac ccg c- 3' SEQ ID NO: 37: 5'-ggg cat atc cgc agc atc ctg aac ccg c-3 '
서열번호 38: 5'-gcg ggt tca gga tgc tgc gga tat gcc c- 3' SEQ ID NO: 38'-gcg ggt tca gga tgc tgc gga tat gcc c-3 '
표 2
재조합 합성효소 핵산 치환 아미노산 치환 프라이머
pPs619C1200 AGC → ACC S325T 서열번호 13, 14
CAG → ATG Q481M 서열번호 35, 36
pPs619C1202 GAA → GAT E130D 서열번호 17, 18
CAG → AAA Q481K 서열번호 33, 34
pPs619C1203 AGC → ACC S325T 서열번호 13, 14
CAG → AAA Q481K 서열번호 33, 34
pPs619C1204 GAA → GAT E130D 서열번호 17, 18
CAG → ATG Q481M 서열번호 35, 36
pPs619C1205 GAA → GAT E130D 서열번호 17, 18
CAG → CGC Q481R 서열번호 37, 38
TABLE 2
Recombinant synthetase Nucleic Acid Substitution Amino acid substitutions primer
pPs619C1200 AGC → ACC S325T SEQ ID NOs: 13, 14
CAG → ATG Q481M SEQ ID NOs: 35, 36
pPs619C1202 GAA → GAT E130D SEQ ID NOs: 17, 18
CAG → AAA Q481K SEQ ID NOs: 33, 34
pPs619C1203 AGC → ACC S325T SEQ ID NOs: 13, 14
CAG → AAA Q481K SEQ ID NOs: 33, 34
pPs619C1204 GAA → GAT E130D SEQ ID NOs: 17, 18
CAG → ATG Q481M SEQ ID NOs: 35, 36
pPs619C1205 GAA → GAT E130D SEQ ID NOs: 17, 18
CAG → CGC Q481R SEQ ID NOs: 37, 38
표 3
재조합 합성효소 핵산 치환 아미노산 치환 프라이머
pPs619C1300 GAA → GAT E130D 서열번호 17, 18
AGC → ACC S325T 서열번호 13, 14
CAG → ATG Q481M 서열번호 35, 36
pPs619C1301 GAA → GAT E130D 서열번호 17, 18
AGC → ACC S325T 서열번호 13, 14
CAG → AAA Q481K 서열번호 33, 34
pPs619C1304 GAA → GAT E130D 서열번호 17, 18
AGC → CGC S477R 서열번호 23, 24
CAG → AAA Q481K 서열번호 33, 34
pPs619C1305 GAA → GAT E130D 서열번호 17, 18
AGC → CGC S477R 서열번호 23, 24
CAG → ATG Q481M 서열번호 35, 36
pPs619C1306 GAA → GAT E130D 서열번호 17, 18
AGC → CGC S477R 서열번호 23, 24
CAG → CGC Q481R 서열번호 37, 38
pPs619C1307 GAA → GAT E130D 서열번호 17, 18
AGC → CAT S477H 서열번호 25, 26
CAG → AAA Q481K 서열번호 33, 34
pPs619C1308 GAA → GAT E130D 서열번호 17, 18
AGC → CAT S477H 서열번호 25, 26
CAG → ATG Q481M 서열번호 35, 36
pPs619C1309 GAA → GAT E130D 서열번호 17, 18
AGC → CAT S477H 서열번호 25, 26
CAG → CGC Q481R 서열번호 37, 38
pPs619C1310 GAA → GAT E130D 서열번호 17, 18
AGC → TTT S477F 서열번호 27, 28
CAG → AAA Q481K 서열번호 33, 34
TABLE 3
Recombinant synthetase Nucleic Acid Substitution Amino acid substitutions primer
pPs619C1300 GAA → GAT E130D SEQ ID NOs: 17, 18
AGC → ACC S325T SEQ ID NOs: 13, 14
CAG → ATG Q481M SEQ ID NOs: 35, 36
pPs619C1301 GAA → GAT E130D SEQ ID NOs: 17, 18
AGC → ACC S325T SEQ ID NOs: 13, 14
CAG → AAA Q481K SEQ ID NOs: 33, 34
pPs619C1304 GAA → GAT E130D SEQ ID NOs: 17, 18
AGC → CGC S477R SEQ ID NOs: 23, 24
CAG → AAA Q481K SEQ ID NOs: 33, 34
pPs619C1305 GAA → GAT E130D SEQ ID NOs: 17, 18
AGC → CGC S477R SEQ ID NOs: 23, 24
CAG → ATG Q481M SEQ ID NOs: 35, 36
pPs619C1306 GAA → GAT E130D SEQ ID NOs: 17, 18
AGC → CGC S477R SEQ ID NOs: 23, 24
CAG → CGC Q481R SEQ ID NOs: 37, 38
pPs619C1307 GAA → GAT E130D SEQ ID NOs: 17, 18
AGC → CAT S477H SEQ ID NOs: 25, 26
CAG → AAA Q481K SEQ ID NOs: 33, 34
pPs619C1308 GAA → GAT E130D SEQ ID NOs: 17, 18
AGC → CAT S477H SEQ ID NOs: 25, 26
CAG → ATG Q481M SEQ ID NOs: 35, 36
pPs619C1309 GAA → GAT E130D SEQ ID NOs: 17, 18
AGC → CAT S477H SEQ ID NOs: 25, 26
CAG → CGC Q481R SEQ ID NOs: 37, 38
pPs619C1310 GAA → GAT E130D SEQ ID NOs: 17, 18
AGC → TTT S477F SEQ ID NOs: 27, 28
CAG → AAA Q481K SEQ ID NOs: 33, 34
표 4
재조합 합성효소 핵산 치환 아미노산 치환 프라이머
pPs619C1311 GAA → GAT E130D 서열번호 17, 18
AGC → TTT S477F 서열번호 27, 28
CAG → ATG Q481M 서열번호 35, 36
pPs619C1312 GAA → GAT E130D 서열번호 17, 18
AGC → TTT S477F 서열번호 27, 28
CAG → CGC Q481R 서열번호 37, 38
pPs619C1313 GAA → GAT E130D 서열번호 17, 18
AGC → TAT S477Y 서열번호 29, 30
CAG → AAA Q481K 서열번호 33, 34
pPs619C1314 GAA → GAT E130D 서열번호 17, 18
AGC → TAT S477Y 서열번호 29, 30
CAG → ATG Q481M 서열번호 35, 36
pPs619C1315 GAA → GAT E130D 서열번호 17, 18
AGC → TAT S477Y 서열번호 29, 30
CAG → CGC Q481R 서열번호 37, 38
Table 4
Recombinant synthetase Nucleic Acid Substitution Amino acid substitutions primer
pPs619C1311 GAA → GAT E130D SEQ ID NOs: 17, 18
AGC → TTT S477F SEQ ID NOs: 27, 28
CAG → ATG Q481M SEQ ID NOs: 35, 36
pPs619C1312 GAA → GAT E130D SEQ ID NOs: 17, 18
AGC → TTT S477F SEQ ID NOs: 27, 28
CAG → CGC Q481R SEQ ID NOs: 37, 38
pPs619C1313 GAA → GAT E130D SEQ ID NOs: 17, 18
AGC → TAT S477Y SEQ ID NOs: 29, 30
CAG → AAA Q481K SEQ ID NOs: 33, 34
pPs619C1314 GAA → GAT E130D SEQ ID NOs: 17, 18
AGC → TAT S477Y SEQ ID NOs: 29, 30
CAG → ATG Q481M SEQ ID NOs: 35, 36
pPs619C1315 GAA → GAT E130D SEQ ID NOs: 17, 18
AGC → TAT S477Y SEQ ID NOs: 29, 30
CAG → CGC Q481R SEQ ID NOs: 37, 38
표 5
재조합 합성효소 핵산 치환 아미노산 치환 프라이머
pPs619C1400 GAA → GAT E130D 서열번호 17, 18
AGC → ACC S325T 서열번호 13, 14
AGC → CGC S477R 서열번호 23, 24
CAG → ATG Q481M 서열번호 35, 36
pPs619C1401 GAA → GAT E130D 서열번호 17, 18
AGC → ACC S325T 서열번호 13, 14
AGC → CGC S477R 서열번호 23, 24
CAG → AAA Q481K 서열번호 33, 34
pPs619C1334 GAA → GAT E130D 서열번호 17, 18
AGC → ACC S325T 서열번호 13, 14
AGC → TTT S477F 서열번호 27, 28
CAG → ATG Q481M 서열번호 35, 36
pPs619C1336 GAA → GAT E130D 서열번호 17, 18
AGC → ACC S325T 서열번호 13, 14
AGC → GGC S477G 서열번호 31, 32
CAG → ATG Q481M 서열번호 35, 36
pPs619C1337 GAA → GAT E130D 서열번호 17, 18
AGC → ACC S325T 서열번호 13, 14
AGC → GGC S477G 서열번호 31, 32
CAG → AAA Q481K 서열번호 33, 34
pPs619C1339 GAA → GAT E130D 서열번호 17, 18
AGC → ACC S325T 서열번호 13, 14
AGC → TTT S477F 서열번호 27, 28
CAG → AAA Q481K 서열번호 33, 34
Table 5
Recombinant synthetase Nucleic Acid Substitution Amino acid substitutions primer
pPs619C1400 GAA → GAT E130D SEQ ID NOs: 17, 18
AGC → ACC S325T SEQ ID NOs: 13, 14
AGC → CGC S477R SEQ ID NOs: 23, 24
CAG → ATG Q481M SEQ ID NOs: 35, 36
pPs619C1401 GAA → GAT E130D SEQ ID NOs: 17, 18
AGC → ACC S325T SEQ ID NOs: 13, 14
AGC → CGC S477R SEQ ID NOs: 23, 24
CAG → AAA Q481K SEQ ID NOs: 33, 34
pPs619C1334 GAA → GAT E130D SEQ ID NOs: 17, 18
AGC → ACC S325T SEQ ID NOs: 13, 14
AGC → TTT S477F SEQ ID NOs: 27, 28
CAG → ATG Q481M SEQ ID NOs: 35, 36
pPs619C1336 GAA → GAT E130D SEQ ID NOs: 17, 18
AGC → ACC S325T SEQ ID NOs: 13, 14
AGC → GGC S477G SEQ ID NOs: 31, 32
CAG → ATG Q481M SEQ ID NOs: 35, 36
pPs619C1337 GAA → GAT E130D SEQ ID NOs: 17, 18
AGC → ACC S325T SEQ ID NOs: 13, 14
AGC → GGC S477G SEQ ID NOs: 31, 32
CAG → AAA Q481K SEQ ID NOs: 33, 34
pPs619C1339 GAA → GAT E130D SEQ ID NOs: 17, 18
AGC → ACC S325T SEQ ID NOs: 13, 14
AGC → TTT S477F SEQ ID NOs: 27, 28
CAG → AAA Q481K SEQ ID NOs: 33, 34
<실시예 1-2> Clostridium propionicum 유래의 프로피오닐-CoA 트랜스퍼라아제 돌연변이체 라이브러리 제작 및 스크리닝Example 1-2 Preparation and Screening of Propionyl-CoA Transferase Mutant Library from Clostridium propionicum
CP-PCT의 경우 대장균에서 고발현될 경우 심각한 대사 장애를 일으켜 독성을 나타낸다고 알려져 있는데, 일반적으로 재조합 단백질 발현에 널리 사용되는 tac 프로모터나 T7 프로모터를 사용한 IPTG에 의한 발현유도 시스템에서는 유도제 첨가와 동시에 재조합 대장균이 모두 사멸하였다. 이 때문에 약하게 발현되지만 미생물 성장에 따라 지속적으로 발현되는 항시적 발현 시스템을 사용하여 락테이트 중합체 및 락테이트 공중합체 합성에 성공하였다. cp-pct에 무작위적 돌연변이를 도입하기 위해 pPs619C1300-CPPCT(대한민국 특허출원 제10-2006-0116234호)를 주형으로 하고, 서열번호 39 및 40의 프라이머를 이용하여 Mn2+이 첨가되고 dNTPs의 농도 차이가 존재하는 조건에서 Error-prone PCR을 실시하였다.CP-PCT is known to be highly toxic due to severe metabolic disorders when expressed in E. coli. In general, the expression of CP-PCT by IPTG using the tac promoter or T7 promoter, which is widely used for expression of recombinant proteins, is recombined simultaneously with the addition of inducers. E. coli all died. This has led to the success of the synthesis of lactate polymers and lactate copolymers using a constitutive expression system that is weakly expressed but continuously expressed as the microorganism grows. pPs619C1300-CPPCT (Korean Patent Application No. 10-2006-0116234) was used as a template to introduce random mutations into cp-pct , Mn 2+ was added using primers SEQ ID NOs: 39 and 40, and the concentration of dNTPs Error-prone PCR was performed in the presence of a difference.
서열번호 39: 5'- cgc cgg cag gcc tgc agg - 3'SEQ ID NO: 39 '5'-cgc cgg cag gcc tgc agg-3'
서열번호 40: 5'- ggc agg tca gcc cat atg tc - 3'SEQ ID NO: 40'-5'-ggc agg tca gcc cat atg tc-3 '
그 후, 무작위적 돌연변이가 포함된 PCR 단편을 증폭하기 위해 상기 서열번호 39 및 40의 프라이머를 이용하여 일반 조건에서 PCR하였다. phaC1Ps6-19 합성효소 SCL 변이체인 phaC1Ps6-19300를 함유한 pPs619C1300-CPPCT 벡터를 SbfI/NdeI으로 절단하여 야생형 cp-pct를 제거한 후, 상기 증폭된 돌연변이 PCR 단편을 SbfI/NdeI 인식부위에 삽입시킨 ligation mixture를 만들어 E. coli JM109에 도입하여 ~10^5 정도 규모의 CP-PCT 라이브러리를 제작하였다. 상기 제작된 CP-PCT 라이브러리는 고분자 검출 배지(LB agar, glucose 20g/L, 3HB 1g/L, Nile red 0.5μg/ml)에서 3일간 생육 시킨 후 고분자 생성 여부를 확인하는 스크리닝 작업을 수행하여 ~80여 개체의 후보를 1차 선정하였다. 이들 후보를 고분자가 생성되는 조건에서 4일간 액체 배양(LB agar, glucose 20g/L, 3HB 1g/L, ampicillin 100mg/L, 37℃)하였고, FACS(Florescence Activated Cell Sorting) 분석하여 최종 2개체를 선정하였다. 상기 제작된 CP-PCT 변이체의 돌연변이 위치를 찾기 위해 유전자 염기 서열을 분석하였고 그 결과는 다음 표 6과 같다.Thereafter, PCR was performed under normal conditions using the primers SEQ ID NOs: 39 and 40 to amplify the PCR fragment containing the random mutation. phaC1 Ps6-19 synthase SCL mutant of phaC1 by cutting a pPs619C1300-CPPCT vector containing Ps6-19 300 with Sbf I / Nde I to remove the wild-type cp-pct, the amplified mutant PCR fragment Sbf I / Nde I A ligation mixture was inserted into the recognition site and introduced into E. coli JM109 to produce a CP-PCT library of ~ 10 ^ 5 scale. The prepared CP-PCT library was grown in polymer detection medium (LB agar, glucose 20g / L, 3HB 1g / L, Nile red 0.5μg / ml) for 3 days and then screened to determine whether the polymer was produced. More than 80 candidates were selected first. These candidates were subjected to liquid culture (LB agar, glucose 20g / L, 3HB 1g / L, ampicillin 100mg / L, 37 ° C) for 4 days under conditions in which the polymers were produced, and FACS (Florescence Activated Cell Sorting) analysis to analyze the final two individuals. Selected. Gene sequencing was performed to find the mutation position of the prepared CP-PCT variant. The results are shown in Table 6 below.
표 6
재조합벡터 핵산 치환
CP-PCT Variant 512 A1200G
CP-PCT Variant 522 T78C, T669C, A1125G, T1158C
Table 6
Recombinant vector Nucleic Acid Substitution
CP-PCT Variant 512 A1200G
CP-PCT Variant 522 T78C, T669C, A1125G, T1158C
상기 최종 선별된 돌연변이체들(512, 522)을 기본으로 다시 상기 Error-prone PCR의 방법으로 random mutagenesis를 수행하였고 아래와 같은 PCT 변이체 531-540을 얻었다.Based on the final selected mutants (512, 522) again random mutagenesis by the method of the error-prone PCR was performed to obtain the PCT variants 531-540 as follows.
표 7
변이(Mutations) 침묵 돌연변이(Silent Mutations)
CpPct512 A1200G
CpPct522 T78C, T669C, A1125G, T1158C
CpPct531 Gly335Asp A1200G
CpPct532 Ala243Thr A1200G
CpPct533 Asp65Gly T669C, A1125G, T1158C
CpPct534 Asp257Asn A1200G
CpPct535 Asp65Asn T669C, A1125G, T1158C
CpPct537 Thr199Ile T669C, A1125G, T1158C
CpPct540 Val193Ala T78C, T669C, A1125G, T1158C
TABLE 7
Mutations Silent Mutations
CpPct512 A1200G
CpPct522 T78C, T669C, A1125G, T1158C
CpPct531 Gly335asp A1200G
CpPct532 Ala243Thr A1200G
CpPct533 Asp65Gly T669C, A1125G, T1158C
CpPct534 Asp257Asn A1200G
CpPct535 Asp65Asn T669C, A1125G, T1158C
CpPct537 Thr199Ile T669C, A1125G, T1158C
CpPct540 Val193Ala T78C, T669C, A1125G, T1158C
그 후, CpPct540 돌연변이가 포함된 PCR 단편을 증폭하기 위해 상기 서열번호 39 및 40의 프라이머를 이용하여 일반 조건에서 PCR하였다. 상기 pPs619C1300-CPPCT 벡터를 SbfI/NdeI으로 절단하여 CPPCT 부분을 제거한 후, 상기 증폭된 CpPct540 PCR 단편을 SbfI/NdeI 인식부위에 삽입시킨 ligation mixture를 만들어 pPs619C1300-CPPCT540 벡터를 제조하였다.Thereafter, PCR was performed under normal conditions using the primers SEQ ID NOs: 39 and 40 to amplify the PCR fragment containing the CpPct540 mutation. The pPs619C1300-CPPCT vector Sbf I / Nde I was cut to remove the portion CPPCT, the amplified PCR fragments CpPct540 Sbf I / Nde I made the ligation mixture was inserted into the recognition site to prepare a pPs619C1300-CPPCT540 vector.
<실시예 1-3> pPs619C1337-CPPCT540 벡터의 제작Example 1-3 Construction of pPs619C1337-CPPCT540 Vector
표 5에 정리하였듯이 상기 phaC1Ps6-19 합성효소 변이체(phaC1Ps6-19300)를 이용하여 E130D, S325T, S477G 및 Q481K가 변이된 아미노산 서열을 가진 Pseudomonas 속 6-19 유래 PHA 합성효소 변이체(phaC1Ps6-19337)을 서열번호 31 및 32, 그리고 서열번호 33 및 34의 프라이머를 사용한 SDM 방법을 이용하여 제작하였고 그 유전자를 이용하여 pPs619C1337-CPPCT540벡터를 제작하였다 (도1). As summarized in Table 5, the phaC1 Ps6-19 synthase variant using (phaC1 Ps6-19 300) E130D, S325T , S477G , and Pseudomonas in 6-19-derived PHA having the amino acid sequence of the mutant Q481K synthase variant (phaC1 Ps6 -19 337) was prepared using the SDM method using the primers SEQ ID NOs: 31 and 32, and SEQ ID NOs: 33 and 34, and the pPs619C1337-CPPCT540 vector was constructed using the gene (FIG. 1).
서열번호 31: 5'-gaa ttc gtg ctg tcg agc ggc ggg cat atc- 3' SEQ ID NO: 31 5'-gaa ttc gtg ctg tcg agc ggc ggg cat atc-3 '
서열번호 32: 5'-gat atg ccc gcc gct cga cag cac gaa ttc- 3' SEQ ID NO: 32 5'-gat atg ccc gcc gct cga cag cac gaa ttc-3 '
서열번호 33: 5'-ggg cat atc aaa agc atc ctg aac ccg c- 3' SEQ ID NO: 33 5'-ggg cat atc aaa agc atc ctg aac ccg c-3 '
서열번호 34: 5'-gcg ggt tca gga tgc ttt tga tat gcc c- 3' SEQ ID NO: 34: 5'-gcg ggt tca gga tgc ttt tga tat gcc c-3 '
이로부터 얻은 재조합 벡터(pPs619C1337-CPPCT540)를 E.coli JM109에 형질전환 시키고, 이를 3HB가 포함된 중합체 검출배지(LB agar, glucose 20g/L, 3HB 2g/L, Nile red 0.5μg/ml)에서 생육 시킨 결과, 중합체 생성을 확인할 수 있었다.The recombinant vector (pPs619C1337-CPPCT540) thus obtained was transformed into E. coli JM109, and then transformed into 3HB-containing polymer detecting medium (LB agar, glucose 20g / L, 3HB 2g / L, Nile red 0.5μg / ml). As a result of the growth, the formation of the polymer was confirmed.
<실시예 1-4> pMCS104ReAB의 제작Example 1-4 Preparation of pMCS104ReAB
R. eutropha 유래의 β-케토티올레이즈(PhaA), 아세토아세틸-CoA 리덕테이즈(acetoacetyl-CoA reductase: PhaB)를 제공하는 플라스미드 pMCS104ReAB를 제작하였다(박시재, PhD thesis, Department of Chemical and Biomolecular Engineering, KAIST, 2003). pSYL105(Lee et al. Biotechnol. Bioeng. 44: 1337, 1994) 를 PstI 으로 절단해 수득한 phaAB 유전자를 PstI으로 절단한 p10499A (Park et al., FEMS Microbiol. Lett., 214:217, 2002)에 삽입하여, p10499PhaAB를 제작하였다. 상기 p10499PhaAB 플라스미드를 SspI으로 절단해 104 프로모터와 phaAB 유전자를 함유한 유전자 조각을 수득한 다음 EcoRV로 절단한 pBBR1MCS 플라스미드에 삽입해 pMCS104ReAB 플라스미드를 제작하였다 (도 2).A plasmid pMCS104ReAB was prepared to provide β-ketothiolase (PhaA) and acetoacetyl-CoA reductase (PhaB) derived from R. eutropha (Pak Si Jae, PhD thesis, Department of Chemical and Biomolecular Engineering). , KAIST, 2003). p10499A (Park et al ., FEMS Microbiol. Lett ., 214: 217, 2002), obtained by cleaving phaAB gene obtained by cleaving pSYL105 (Lee et al . Biotechnol. Bioeng. 44: 1337, 1994) with PstI. By inserting, p10499PhaAB was produced. The p10499PhaAB plasmid was digested with SspI to obtain a gene fragment containing 104 promoter and phaAB gene, and then inserted into pBBR1MCS plasmid digested with EcoRV to prepare pMCS104ReAB plasmid (FIG. 2).
<실시예 2> 탄소원으로 글리세롤을 이용한 재조합 대장균으로부터의 폴리락테이트(PLA) 제조 Example 2 Preparation of Polylactate (PLA) from Recombinant Escherichia Coli Using Glycerol as a Carbon Source
항생제로서 100 mg/L의 앰피실린이 함유된 LB 아가 플레이트 상의 <실시예 1-3>과 같이 pPs619C1337-CPPCT540 벡터로 형질전환된 재조합 대장균 XL1-Blue 콜로니 1개를 100 mg/L의 앰피실린을 함유하는 3 mL의 LB 배지에 접종한 후 이를 30℃에서 200 rpm의 속도로 교반해 주면서 24시간 동안 배양하였다. 배양액 1 mL을 100 mg/L의 앰피실린과 20 g/L 또는 50 g/L의 글리세롤이 함유된 100 mL의 MR 배지에 접종하였고, 이를 30℃에서 200 rpm의 교반 속도로 배양해 주면서 본 배양을 시작하였다. 배양은 4일간 진행 되었다. MR 배지의 경우 10 N NaOH를 이용하여 초기 pH를 7로 조절해 주었다. 본 배양에 사용된 배지는 하기 표 8에 도시하였다.One recombinant Escherichia coli XL1-Blue colony transformed with pPs619C1337-CPPCT540 vector as shown on <Example 1-3> on an LB agar plate containing 100 mg / L ampicillin as an antibiotic was treated with 100 mg / L ampicillin. After inoculating 3 mL of LB medium containing it was incubated for 24 hours while stirring at a speed of 200 rpm at 30 ℃. 1 mL of the culture was inoculated into 100 mL of MR medium containing 100 mg / L of ampicillin and 20 g / L or 50 g / L of glycerol, which was incubated at 30 ° C. with a stirring speed of 200 rpm. Started. The culture was carried out for 4 days. In case of MR medium, the initial pH was adjusted to 7 using 10 N NaOH. The medium used for this culture is shown in Table 8 below.
배양 종료 후, 원심분리하여 배양액으로부터 균체를 회수하였다. 회수된 균체를 증류수로 3번 세척한 후 100℃의 건조기에서 24시간 건조하였고, 건조된 균체 중 일부를 채취하여 가스크로마토그래피(GC)분석을 수행함으로써 세포 내 합성된 P(3HB-co-LA) 함량을 측정하였다. 분석에 사용된 표준물질은 P(3HB-co-3HV) 공중합체(이중 3HV의 함량은 무게비로 약 12%) 및 폴리락테이트 호모폴리머이었다. GC 분석결과는 하기 표 9에 나타내었다. 분석 결과, 글리세롤로부터 PLA 호모폴리머를 생합성할 수 있음을 확인할 수 있었는 바, 본 발명에 따른 재조합 대장균을 통하여 글리세롤로부터 PLA 호모폴리머를 제조할 수 있었다.After completion of the culture, cells were recovered from the culture by centrifugation. The recovered cells were washed three times with distilled water, and then dried in a drier at 100 ° C. for 24 hours. Some of the dried cells were collected and subjected to gas chromatography (GC) analysis to synthesize P (3HB-co-LA). ) Content was measured. Standards used in the analysis were P (3HB-co-3HV) copolymer (of which 3HV content was about 12% by weight) and polylactate homopolymer. GC analysis results are shown in Table 9 below. As a result, it was confirmed that PLA homopolymer can be biosynthesized from glycerol. PLA homopolymer can be prepared from glycerol through the recombinant E. coli according to the present invention.
표 8
성분 MR 배지 (/L)
KH2PO4 6.67 g
(NH4)2HPO4 4 g
Citrate 0.8 g
MgSOH2O 0.8 g
Sodium lactate 0 g 또는 2 g
Thiamine 10 mg
글리세롤 20 g 또는 50 g
Tracer* 5 mL
Table 8
ingredient MR badge (/ L)
KH 2 PO 4 6.67 g
(NH 4 ) 2 HPO 4 4 g
Citrate 0.8 g
MgSO 4 H 2 O 0.8 g
Sodium lactate 0 g or 2 g
Thiamine 10 mg
Glycerol 20 g or 50 g
Tracer * 5 mL
*Tracer (/L): FeSOH2O, 10 g ; ZnSOH2O, 2.25 g ; CuSOH2O, 1 g ; MnSOH2O, 0.5 g ; CaClH2O, 2 g ; Na2B4OH2O, 0.23 g ; (NH4)6Mo7O24, 0.1 g ; 35 % HCl, 10 mL. * Tracer (/ L): FeSO 4 H 2 O, 10 g; ZnSO 4 H 2 O, 2.25 g; CuSO 4 H 2 O, 1 g; MnSO 4 H 2 O, 0.5 g; CaCl 2 H 2 O, 2 g; Na 2 B 4 O 7 .H 2 O, 0.23 g; (NH 4 ) 6 Mo 7 O 24 , 0.1 g; 35% HCl, 10 mL.
표 9
배지 초기 기질 생합성된 고분자 유형 고분자 함량(무게비) 고분자 중 LA 함량(몰비)
MR G2* PLA 6.48 100
MR G2, NaL+ PLA 10.00 100
MR G5** PLA 1.85 100
MR G5, NaL PLA 5.75 100
Table 9
badge Early temperament Biosynthetic Polymer Type Polymer content (weight ratio) LA content in the polymer (molar ratio)
MR G2 * PLA 6.48 100
MR G2, NaL + PLA 10.00 100
MR G5 ** PLA 1.85 100
MR G5, NaL PLA 5.75 100
* G2: 글리세롤 20 g/L* G2: Glycerol 20 g / L
** G5: 글리세롤 50 g/L** G5: Glycerol 50 g / L
+ NaL: Sodium lactate (pH 7.0) 2 g/L + NaL: Sodium lactate (pH 7.0) 2 g / L
<실시예 3> 탄소원으로 글리세롤을 이용한 재조합 대장균으로부터의 폴리(3-하이드록시부티레이트-co-락테이트)(P(3HB-co-LA)) 제조 Example 3 Preparation of Poly (3-hydroxybutyrate-co-lactate) (P (3HB-co-LA)) from Recombinant E. coli using glycerol as a carbon source
항생제로서 100 mg/L의 앰피실린 및 34 mg/L의 클로람페니콜이 함유된 LB 아가 플레이트 상의 <실시예 1-3> 및 <실시예 1-4> 에서 기술된 pPs619C1337-CPPCT540 벡터 및 pMCS104ReAB 벡터로 동시에 형질전환된 재조합 대장균 XL1-Blue 콜로니 1개를 100 mg/L의 앰피실린 및 34 mg/L의 클로람페니콜 등의 항생제를 함유하는 3 mL의 LB 배지에 접종한 후 이를 30℃에서 200 rpm의 속도로 교반해 주면서 24시간 동안 배양하였다. 배양액 1 mL을 100 mg/L의 앰피실린 및 34 mg/L의 클로람페니콜, 그리고 20 g/L 또는 50 g/L의 글리세롤이 함유된 100 mL의 MR 배지에 접종하였고, 이를 30℃에서 200 rpm의 교반 속도로 배양해 주면서 본 배양을 시작하였다. 배양은 4일간 진행 되었다. MR 배지의 경우 10 N NaOH를 이용하여 초기 pH를 7로 조절해 주었다. 본 배양에 사용된 배지는 하기 표 10에 도시하였다.Simultaneously with pPs619C1337-CPPCT540 vector and pMCS104ReAB vector described in Examples 1-3 and LB agar plates containing 100 mg / L ampicillin and 34 mg / L chloramphenicol as antibiotics One transformed recombinant Escherichia coli XL1-Blue colony was inoculated into 3 mL of LB medium containing antibiotics such as 100 mg / L ampicillin and 34 mg / L chloramphenicol at a rate of 200 rpm at 30 ° C. Incubate for 24 hours with stirring. 1 mL of the culture was inoculated into 100 mL of MR medium containing 100 mg / L ampicillin and 34 mg / L chloramphenicol and 20 g / L or 50 g / L glycerol, which was then subjected to 200 rpm at 30 ° C. The main culture was started while incubating at a stirring speed. The culture was carried out for 4 days. In case of MR medium, the initial pH was adjusted to 7 using 10 N NaOH. The medium used for this culture is shown in Table 10 below.
배양 종료 후, 원심분리하여 배양액으로부터 균체를 회수하였다. 회수된 균체를 증류수로 3번 세척한 후 100℃의 건조기에서 24시간 건조하였고, 건조된 균체 중 일부를 채취하여 가스크로마토그래피(GC)분석을 수행함으로써 세포 내 합성된 P(3HB-co-LA) 함량을 측정하였다. 분석에 사용된 표준물질은 P(3HB-co-3HV) 공중합체(이중 3HV의 함량은 무게비로 약 12%) 및 폴리락테이트 호모폴리머이었다. GC 분석결과는 하기 표 11에 나타내었다. 분석 결과, 글리세롤로부터 P(3HB-co-LA) 공중합체를 생합성할 수 있음을 확인할 수 있었는 바, 본 발명에 따른 재조합 대장균을 통하여 글리세롤로부터 P(3HB-co-LA) 공중합체를 제조할 수 있었다.After completion of the culture, cells were recovered from the culture by centrifugation. The recovered cells were washed three times with distilled water, and then dried in a drier at 100 ° C. for 24 hours. Some of the dried cells were collected and subjected to gas chromatography (GC) analysis to synthesize P (3HB-co-LA). ) Content was measured. Standards used in the analysis were P (3HB-co-3HV) copolymer (of which 3HV content was about 12% by weight) and polylactate homopolymer. GC analysis results are shown in Table 11 below. As a result of the analysis, it was confirmed that the P (3HB-co-LA) copolymer could be biosynthesized from glycerol. The P (3HB-co-LA) copolymer could be prepared from glycerol through the recombinant E. coli according to the present invention. there was.
표 10
성분 MR 배지 (/L)
KH2PO4 6.67 g
(NH4)2HPO4 4 g
Citrate 0.8 g
MgSOH2O 0.8 g
Sodium lactate 0 g 또는 2 g
Thiamine 10 mg
글리세롤 20 g 또는 50 g
Tracer* 5 mL
Table 10
ingredient MR badge (/ L)
KH 2 PO 4 6.67 g
(NH 4 ) 2 HPO 4 4 g
Citrate 0.8 g
MgSO 4 H 2 O 0.8 g
Sodium lactate 0 g or 2 g
Thiamine 10 mg
Glycerol 20 g or 50 g
Tracer * 5 mL
*Tracer (/L): FeSOH2O, 10 g ; ZnSOH2O, 2.25 g ; CuSOH2O, 1 g ; MnSOH2O, 0.5 g ; CaClH2O, 2 g ; Na2B4OH2O, 0.23 g ; (NH4)6Mo7O24, 0.1 g ; 35 % HCl, 10 mL. * Tracer (/ L): FeSO 4 H 2 O, 10 g; ZnSO 4 H 2 O, 2.25 g; CuSO 4 H 2 O, 1 g; MnSO 4 H 2 O, 0.5 g; CaCl 2 H 2 O, 2 g; Na 2 B 4 O 7 .H 2 O, 0.23 g; (NH 4 ) 6 Mo 7 O 24 , 0.1 g; 35% HCl, 10 mL.
표 11
배지 초기 기질 생합성된 고분자 유형 고분자 함량(무게비) 고분자 중 LA 함량(몰비)
MR G2* P(3HB-LA) 53.08 64.75
MR G2, NaL+ P(3HB-LA) 51.38 69.92
MR G5** P(3HB-LA) 40.11 53.13
MR G5, NaL P(3HB-LA) 53.37 51.94
Table 11
badge Early temperament Biosynthetic Polymer Type Polymer content (weight ratio) LA content in the polymer (molar ratio)
MR G2 * P (3HB-LA) 53.08 64.75
MR G2, NaL + P (3HB-LA) 51.38 69.92
MR G5 ** P (3HB-LA) 40.11 53.13
MR G5, NaL P (3HB-LA) 53.37 51.94
* G2: 글리세롤 20 g/L* G2: Glycerol 20 g / L
** G5: 글리세롤 50 g/L** G5: Glycerol 50 g / L
+ NaL: Sodium lactate (pH 7.0) 2 g/L+ NaL: Sodium lactate (pH 7.0) 2 g / L

Claims (15)

  1. 락테이트를 락틸-CoA로 전환하는 효소의 유전자 및 락틸-CoA를 기질로 사용하는 폴리하이드록시알카노에이트(polyhydroxyalkanoate: PHA) 합성효소의 유전자를 포함하며, 기질로 글리세롤을 사용할 수 있는 락테이트 중합체 또는 하이드록시알카노에이트-락테이트 공중합체 생성능을 가지는 세포 또는 식물을 락테이트 및 글리세롤; 또는 락테이트, 글리세롤 및 하이드록시알카노에이트를 함유하는 환경 하에서 배양 또는 재배하고;Lactate polymers comprising genes of enzymes that convert lactate to lactyl-CoA and genes of polyhydroxyalkanoate (PHA) synthase using lactyl-CoA as a substrate, and can use glycerol as a substrate Or cells or plants having the ability to generate hydroxyalkanoate-lactate copolymers to lactate and glycerol; Or cultivated or grown in an environment containing lactate, glycerol and hydroxyalkanoate;
    상기 세포 또는 식물로부터 락테이트 중합체 또는 하이드록시알카노에이트-락테이트 공중합체를 회수하는 것을 포함하는 Recovering the lactate polymer or hydroxyalkanoate-lactate copolymer from the cell or plant
    글리세롤로부터 락테이트 중합체 또는 하이드록시알카노에이트-락테이트 공중합체를 제조하는 방법. A process for preparing lactate polymers or hydroxyalkanoate-lactate copolymers from glycerol.
  2. 제1항에 있어서, 상기 세포 또는 식물은 락테이트를 락틸-CoA로 전환하는 효소의 유전자 및 락틸-CoA를 기질로 사용하는 PHA 합성효소의 유전자 중 어느 하나 이상을 포함하지 않으며 기질로 글리세롤을 사용할 수 있는 세포 또는 식물을, 락테이트를 락틸-CoA로 전환하는 효소의 유전자 및 락틸-CoA를 기질로 사용하는 PHA 합성효소의 유전자 중 어느 하나 이상의 유전자로 형질전환하여 얻어지는 것인 방법.The method of claim 1, wherein the cell or plant does not include any one or more of a gene of an enzyme that converts lactate to lactyl-CoA and a gene of PHA synthase that uses lactyl-CoA as a substrate and uses glycerol as a substrate. And a cell or plant which is capable of being transformed with at least one of a gene of an enzyme for converting lactate to lactyl-CoA and a gene of PHA synthase using lactyl-CoA as a substrate.
  3. 제1항에 있어서, 상기 하이드록시알카노에이트-락테이트 공중합체 중의 하이드록시알카노에이트는 3-하이드록시부티레이트(3-hydroxybutyrate), 3-하이드록시발레르산(3-hydroxyvalerate), 4-하이드록시부티레이트(4-hydroxybutyrate), 탄소수가 6∼14개인 중간사슬 길이의 (D)-3-하이드록시카르복실산((D)-3-hydroxycarboxylic acid), 2-하이드록시프로피온산(2-hydroxypropionic acid), 3-하이드록시프로피온산(3-hydroxypropionic acid), 3-하이드록시헥산산(3-hydroxyhexanoic acid), 3-하이드록시헵탄산(3-hydroxyheptanoic acid), 3-하이드록시옥탄산(3-hydroxyoctanoic acid), 3-하이드록시노난산(3-hydroxynonanoic acid), 3-하이드록시데칸산(3-hydroxydecanoic acid), 3-하이드록시운데칸산(3-hydroxyundecanoic acid), 3-하이드록시도데칸산(3-hydroxydodecanoic acid), 3-하이드록시테트라데칸산(3-hydroxytetradecanoic acid), 3-하이드록시헥사데칸산(3-hydroxyhexadecanoic acid), 4-하이드록시발레르산(4-hydroxyvaleric acid), 4-하이드록시헥산산(4-hydroxyhexanoic acid), 4-하이드록시헵탄산(4-hydroxyheptanoic acid), 4-하이드록시옥탄산(4-hydroxyoctanoic acid), 4-하이드록시데칸산(4-hydroxydecanoic acid), 5-하이드록시발레르산(5-hydroxyvaleric acid), 5-하이드록시헥산산(5-hydroxyhexanoic acid), 6-하이드록시도데칸산(6-hydroxydodecanoic acid), 3-하이드록시-4-펜텐산(3-hydroxy-pentenoic acid), 3-하이드록시-4-trans-헥센산(3-hydroxy-4-trans-hexenoic acid), 3-하이드록시-4-cis-헥센산(3-hydroxy-4-cis-hexenoic acid), 3-하이드록시-5-헥센산(3-hydroxy-5-hexenoic acid), 3-하이드록시-6-trans-옥텐산(3-hydroxy-6-trans-octenoic acid), 3-하이드록시-6-cis-옥텐산(3-hydroxy-6-cis-octenoic acid), 3-하이드록시-7-옥텐산(3-hydroxy-7-octenoic acid), 3-하이드록시-8-노넨산(3-hydroxy-8-nonenoic acid), 3-하이드록시-9-데센산(3-hydroxy-9-decenoic acid), 3-하이드록시-5-cis-도데센산(3-hydroxy-5-cis-dodecenoic acid), 3-하이드록시-6-cis-도데센산(3-hydroxy-6-cis dodecenoic acid), 3-하이드록시-5-cis-테트라데센산(3-hydroxy-5-cis tetradecenoic acid), 3-하이드록시-7-cis-테트라데센산(3-hydroxy-7-cis tetradecenoic acid), 3-하이드록시-5,8-cis-cis-테트라데센산(3-hydroxy-5,8-cis-cis tetradecenoic acid), 3-하이드록시-4-메틸발레르산(3-hydroxy-4-methylvaleric acid), 3-하이드록시-4-메틸헥산산(3-hydroxy-4-methylhexanoic acid), 3-하이드록시-5-메틸헥산산(3-hydroxy-5-methylhexanoic acid), 3-하이드록시-6-메틸헵탄산(3-hydroxy-6-methylheptanoic acid), 3-하이드록시-4-메틸옥탄산(3-hydroxy-4-methyloctanoic acid), 3-하이드록시-5-메틸옥탄산(3-hydroxy-5-methyloctanoic acid), 3-하이드록시-6-메틸옥탄산(3-hydroxy-6-methyloctanoic acid), 3-하이드록시-7-메틸옥탄산(3-hydroxy-7-methyloctanoic acid), 3-하이드록시-6-메틸노난산(3-hydroxy-6-methylnonanoic acid), 3-하이드록시-7-메틸노난산(3-hydroxy-7-methylnonanoic acid), 3-하이드록시-8-메틸노난산(3-hydroxy-8-methylnonanoic acid), 3-하이드록시-7-메틸데칸산(3-hydroxy-7-methyldecanoic acid), 3-하이드록시-9-메틸데칸산(3-hydroxy-9-methyldecanoic acid), 3-하이드록시-7-메틸-6-옥텐산(3-hydroxy-7-methyl-6-octenoic acid), 말산(malic acid), 3-하이드록시숙신산-메틸에스테르(3-hydroxysuccinic acid-methyl ester), 3-하이드록시아디핀산-메틸에스테르(3-hydroxyadipinic acid-methyl ester), 3-하이드록시스베린산-메틸에스테르(3-hydroxysuberic acid-methyl ester), 3-하이드록시아젤라인산-메틸에스테르(3-hydroxyazelaic acid-methyl ester), 3-하이드록시세바신산-메틸에스테르(3-hydroxysebacic acid-methyl ester), 3-하이드록시스베린산-에틸에스테르(3-hydroxysuberic acid-ethyl ester), 3-하이드록시세바신산-에틸에스테르(3-hydroxysebacic acid-ethyl ester), 3-하이드록시피메린산-프로필에스테르(3-hydroxypimelic acid-propyl ester), 3-하이드록시세바신산-벤질에스테르(3-hydroxysebacic acid-benzil ester), 3-하이드록시-8-아세톡시옥탄산(3-hydroxy-8-acetoxyoctanoic acid), 3-하이드록시-9-아세톡시노난산(3-hydroxy-9-acetoxynonanoic acid), 페녹시-3-하이드록시부티레이트(phenoxy-3-hydroxybutyric acid), 페녹시-3-하이드록시발레르산(phenoxy-3-hydroxyvaleric acid), 페녹시-3-하이드록시헵탄산(phenoxy-3-hydroxyheptanoic acid), 페녹시-3-하이드록시옥탄산(phenoxy-3-hydroxyoctanoic acid), para-시아노페녹시-3-하이드록시부티레이트(para-cyanophenoxy-3-hydroxybutyric acid), para-시아노페녹시-3-하이드록시발레르산(para-cyanophenoxy-3-hydroxyvaleric acid), para-시아노페녹시-3-하이드록시헥산산(para-cyanophenoxy-3-hydroxyhexanoic acid), para-니트로페녹시-3-하이드록시헥산산(para-nitrophenoxy-3-hydroxyhexanoic acid), 3-하이드록시-5-페닐발레르산(3-hydroxy-5-phenylvaleric acid), 3-하이드록시-5-시클로헥실부티레이트(3-hydroxy-5-cyclohexylbutyric acid), 3,12-디하이드록시도데칸산(3, 12-dihydroxydodecanoic acid), 3,8-디하이드록시-5-cis-테트라데센산(3,8-dihydroxy-5-cis-tetradecenoic acid), 3-하이드록시-4,5-에폭시데칸산(3-hydroxy-4,5-epoxydecanoic acid), 3-하이드록시-6,7-에폭시도데칸산(3-hydroxy-6,7-epoxydodecanoic acid), 3-하이드록시-8,9-에폭시-5,6-cis-테트라데칸산(3-hydroxy-8,9-epoxy-5,6-cis-tetradecanoic acid), 7-시아노-3-하이드록시헵탄산(7-cyano-3-hydroxyheptanoic acid), 9-시아노-3-하이드록시노난산(9-cyano-3-hydroxynonanoic acid), 3-하이드록시-7-플루오로헵탄산(3-hydroxy-7-fluoroheptanoic acid), 3-하이드록시-9-플루오로노난산(3-hydroxy-9-fluorononanoic acid), 3-하이드록시-6-클로로헥산산(3-hydroxy-6-chlorohexanoic acid), 3-하이드록시-8-클로로옥탄산(3-hydroxy-8-chlorooctanoic acid), 3-하이드록시-6-브로모헥산산(3-hydroxy-6-bromohexanoic acid), 3-하이드록시-8-브로모옥탄산(3-hydroxy-8-bromooctanoic acid), 3-하이드록시-11-브로모운데칸산(3-hydroxy-11-bromoundecanoic acid), 3-하이드록시-2-부텐산(3-hydroxy-2-butenoic acid), 6-하이드록시-3-도데센산(6-hydroxy-3-dodecenoic acid), 3-하이드록시-2-메틸부티레이트(3-hydroxy-2-methylbutyric acid), 3-하이드록시-2-메틸발레르산(3-hydroxy-2-methylvaleric acid), 및 3-하이드록시-2,6-디메틸-5-헵텐산(3-hydroxy-2,6-heptenoic acid)로 구성되는 군으로부터 선택되는 하나 이상인 방법.  The method of claim 1, wherein the hydroxyalkanoate in the hydroxyalkanoate-lactate copolymer is 3-hydroxybutyrate, 3-hydroxyvalerate, 4-hydroxy. 4-hydroxybutyrate, medium chain length (D) -3-hydroxycarboxylic acid having 6 to 14 carbon atoms, 2-hydroxypropionic acid ), 3-hydroxypropionic acid, 3-hydroxyhexanoic acid, 3-hydroxyheptanoic acid, 3-hydroxyoctanoic acid acid), 3-hydroxynonanoic acid, 3-hydroxydecanoic acid, 3-hydroxyundecanoic acid, 3-hydroxydodecanoic acid ( 3-hydroxydodecanoic acid, 3-hydroxytetradecanoic acid, 3-hydroxyhexadecanoic acid hydroxyhexadecanoic acid, 4-hydroxyvaleric acid, 4-hydroxyhexanoic acid, 4-hydroxyheptanoic acid, 4-hydroxyoctanoic acid ( 4-hydroxyoctanoic acid), 4-hydroxydecanoic acid, 5-hydroxyvaleric acid, 5-hydroxyhexanoic acid, 6-hydroxy degree 6-hydroxydodecanoic acid, 3-hydroxy-4-pentenoic acid, 3-hydroxy-4-trans-hexenoic acid , 3-hydroxy-4-cis-hexenoic acid, 3-hydroxy-5-hexenoic acid, 3-hydroxy- 3-hydroxy-6-trans-octenoic acid, 3-hydroxy-6-cis-octenoic acid, 3-hydroxy-7- Octenic acid (3-hydroxy-7-octenoic acid), 3-hydroxy-8-nonenoic acid, 3-hydroxy-9-decenoic acid (3-hydroxy-9-de cenoic acid), 3-hydroxy-5-cis-dodecenoic acid, 3-hydroxy-6-cis-dodecenoic acid , 3-hydroxy-5-cis tetradecenoic acid, 3-hydroxy-7-cis- tetradecenoic acid, 3 3-hydroxy-5,8-cis-cis-tetradecenoic acid, 3-hydroxy-4-methylvaleric acid ), 3-hydroxy-4-methylhexanoic acid, 3-hydroxy-5-methylhexanoic acid, 3-hydroxy-6 3-hydroxy-6-methylheptanoic acid, 3-hydroxy-4-methyloctanoic acid, 3-hydroxy-5-methyloctanoic acid -5-methyloctanoic acid, 3-hydroxy-6-methyloctanoic acid, 3-hydroxy-7-methyloctanoic acid, 3 -Hydroxy-6-methylno 3-hydroxy-6-methylnonanoic acid, 3-hydroxy-7-methylnonanoic acid, 3-hydroxy-8-methylnonanoic acid methylnonanoic acid, 3-hydroxy-7-methyldecanoic acid, 3-hydroxy-9-methyldecanoic acid, 3-hydroxy 3-hydroxy-7-methyl-6-octenoic acid, malic acid, 3-hydroxysuccinic acid-methyl ester, 3- 3-hydroxyadipinic acid-methyl ester, 3-hydroxysuberic acid-methyl ester, 3-hydroxyazelanic acid methyl ester acid-methyl ester), 3-hydroxysebacic acid-methyl ester, 3-hydroxysuberic acid-ethyl ester, 3-hydroxyseba Citrate-ethyl ester (3-hydroxysebacic) acid-ethyl ester, 3-hydroxypimelic acid-propyl ester, 3-hydroxysebacic acid-benzil ester, 3-hydroxy- 3-hydroxy-8-acetoxyoctanoic acid, 3-hydroxy-9-acetoxynonanoic acid, phenoxy-3-hydroxybutyrate 3-hydroxybutyric acid, phenoxy-3-hydroxyvaleric acid, phenoxy-3-hydroxyheptanoic acid, phenoxy-3-hydroxyjade Phenoxy-3-hydroxyoctanoic acid, para-cyanophenoxy-3-hydroxybutyric acid, para-cyanophenoxy-3-hydroxy valeric acid (para-cyanophenoxy -3-hydroxyvaleric acid), para-cyanophenoxy-3-hydroxyhexanoic acid, para-nitrophenoxy-3-hydroxyhexanoic acid (para-nitrophenoxy-3-) hydr oxyhexanoic acid), 3-hydroxy-5-phenylvaleric acid, 3-hydroxy-5-cyclohexylbutyric acid, 3,12- Dihydroxydodecanoic acid, 3,8-dihydroxy-5-cis-tetradecenoic acid, 3-hydroxy- 3-hydroxy-4,5-epoxydecanoic acid, 3-hydroxy-6,7-epoxydodecanoic acid, 3-hydroxy 3-hydroxy-8,9-epoxy-5,6-cis-tetradecanoic acid, 7-cyano-3-hydroxyheptanoic acid -cyano-3-hydroxyheptanoic acid), 9-cyano-3-hydroxynonanoic acid, 3-hydroxy-7-fluoroheptanoic acid acid), 3-hydroxy-9-fluorononanoic acid, 3-hydroxy-6-chlorohexanoic acid, 3-hydroxy acid -8-claw 3-hydroxy-8-chlorooctanoic acid, 3-hydroxy-6-bromohexanoic acid, 3-hydroxy-8-bromooctanoic acid 8-bromooctanoic acid), 3-hydroxy-11-bromoundecanoic acid, 3-hydroxy-2-butenoic acid, 6- 6-hydroxy-3-dodecenoic acid, 3-hydroxy-2-methylbutyric acid, 3-hydroxy-2-methylvaleric acid (3 -hydroxy-2-methylvaleric acid), and 3-hydroxy-2,6-dimethyl-5-heptenoic acid.
  4. 제1항에 있어서, 상기 락테이트를 락틸-CoA로 전환하는 효소의 유전자는 프로피오닐-CoA 트렌스퍼라아제 (propionyl-CoA transferase) 유전자(pct)인 방법. The method of claim 1, wherein the gene of the enzyme for converting lactate to lactyl-CoA is propionyl-CoA transferase gene ( pct ).
  5. 제1항에 있어서, 상기 락테이트를 락틸-CoA로 전환하는 효소의 유전자는 클로스트리디움 프로피오니쿰(Clostridium propionicum) 유래의 pct 유전자인 방법. The method of claim 1, wherein the gene of the enzyme converting lactate to lactyl-CoA is a pct gene derived from Clostridium propionicum .
  6. 제1항에 있어서, 상기 락테이트를 락틸-CoA로 전환하는 효소의 유전자는 According to claim 1, wherein the gene of the enzyme that converts lactate to lactyl-CoA
    서열번호 1의 염기 서열;The nucleotide sequence of SEQ ID NO: 1;
    서열번호 1의 염기 서열에서 T78C, T669C, A1125G 및 T1158C가 변이된 염기 서열;A nucleotide sequence in which T78C, T669C, A1125G, and T1158C is mutated in the nucleotide sequence of SEQ ID NO: 1;
    서열번호 1의 염기 서열에서 A1200G가 변이된 염기 서열;A nucleotide sequence of which A1200G is mutated in the nucleotide sequence of SEQ ID NO: 1;
    서열번호 1의 염기 서열에서 A1200G가 변이되고, 서열번호 2의 아미노산 서열에서 Gly335Asp가 변이된 염기 서열;A nucleotide sequence of which A1200G is mutated in the nucleotide sequence of SEQ ID NO: 1 and a Gly335Asp is mutated in the amino acid sequence of SEQ ID NO: 2;
    서열번호 1의 염기 서열에서 T669C, A1125G 및 T1158C가 변이되고, 서열번호 2의 아미노산 서열에서 Asp65Gly이 변이된 염기 서열;A nucleotide sequence in which T669C, A1125G and T1158C is mutated in the nucleotide sequence of SEQ ID NO: 1, and Asp65Gly is mutated in the amino acid sequence of SEQ ID NO: 2;
    서열번호 1의 염기 서열에서 T669C, A1125G 및 T1158C가 변이되고, 서열번호 2의 아미노산 서열에서 Asp65Asn이 변이된 염기 서열;A nucleotide sequence in which T669C, A1125G and T1158C is mutated in the nucleotide sequence of SEQ ID NO: 1, and Asp65Asn is mutated in the amino acid sequence of SEQ ID NO: 2;
    서열번호 1의 염기 서열에서 T669C, A1125G 및 T1158C가 변이되고, 서열번호 2의 아미노산 서열에서 Thr199Ile이 변이된 염기 서열;A nucleotide sequence in which T669C, A1125G, and T1158C is mutated in the nucleotide sequence of SEQ ID NO: 1, and a Thr199Ile is mutated in the amino acid sequence of SEQ ID NO: 2;
    서열번호 1의 염기 서열에서 A1200G가 변이되고, 서열번호 2의 아미노산 서열에서 Ala243Thr이 변이된 염기 서열; A nucleotide sequence in which A1200G is mutated in the nucleotide sequence of SEQ ID NO: 1 and Ala243Thr is mutated in an amino acid sequence of SEQ ID NO: 2;
    서열번호 1의 염기 서열에서 A1200G가 변이되고, 서열번호 2의 아미노산 서열에서 Asp257Asn이 변이된 염기 서열; 및A nucleotide sequence in which A1200G is mutated in the nucleotide sequence of SEQ ID NO: 1 and Asp257Asn is mutated in an amino acid sequence of SEQ ID NO: 2; And
    서열번호 1의 염기 서열에서 T78C, T669C, A1125G 및 T1158C가 변이되고, 서열번호 2의 아미노산 서열에서 Val193Ala이 변이된 염기 서열로 이루어진 군으로부터 선택된 염기 서열을 가지는 것인 방법.And wherein T78C, T669C, A1125G and T1158C are mutated in the nucleotide sequence of SEQ ID NO: 1, and Val193Ala in the amino acid sequence of SEQ ID NO: 2 has a nucleotide sequence selected from the group consisting of mutated sequences.
  7. 제6항에 있어서, 상기 락테이트를 락틸-CoA로 전환하는 효소의 유전자는 서열번호 1의 염기 서열에서 T78C, T669C, A1125G 및 T1158C가 변이되고, 서열번호 2의 아미노산 서열에서 Val193Ala이 변이된 염기 서열을 가지는 것인 방법. The base of claim 6, wherein the gene of the enzyme converting lactate to lactyl-CoA is mutated in T78C, T669C, A1125G and T1158C in the nucleotide sequence of SEQ ID NO: 1, and Val193Ala is mutated in the amino acid sequence of SEQ ID NO: 2. 8. Having a sequence.
  8. 제1항에 있어서, 상기 락틸-CoA를 기질로 사용하는 PHA 합성효소의 유전자는 슈도모나스 속 6-19(pseudomonas sp. 6-19)의 PHA 합성효소 유전자인 방법. The method of claim 1, wherein the gene of PHA synthase using lactyl-CoA as a substrate is a PHA synthase gene of pseudomonas sp. 6-19 .
  9. 제1항에 있어서, 상기 락틸-CoA를 기질로 사용하는 PHA 합성효소의 유전자는According to claim 1, wherein the gene of PHA synthase using the lactyl-CoA as a substrate
    서열번호 4의 아미노산 서열; 또는The amino acid sequence of SEQ ID NO: 4; or
    서열번호 4의 아미노산 서열에서 E130D, S325T, S477R, S477H, S477F, S477Y, S477G, Q481M, Q481K 및 Q481R로 구성되는 군으로부터 선택되는 하나 이상의 변이를 포함하는 아미노산 서열에 대응하는 염기 서열을 가지는 것인 방법.Having a base sequence corresponding to an amino acid sequence comprising one or more mutations selected from the group consisting of E130D, S325T, S477R, S477H, S477F, S477Y, S477G, Q481M, Q481K, and Q481R in the amino acid sequence of SEQ ID NO: 4 Way.
  10. 제1항에 있어서, 상기 락틸-CoA를 기질로 사용하는 PHA 합성효소의 유전자는 서열번호 4의 아미노산 서열에서 E130D, S325T, S477G 및 Q481K가 변이된 아미노산 서열에 대응하는 염기 서열을 가지는 것인 방법.The method of claim 1, wherein the gene of the PHA synthase using the lactyl-CoA as a substrate has a base sequence corresponding to the amino acid sequence of E130D, S325T, S477G and Q481K in the amino acid sequence of SEQ ID NO: 4 .
  11. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 세포 또는 식물이 글리세롤(glycerol)으로부터 하이드록시아실-CoA(hydroxyacyl-CoA)를 생성하는 효소의 유전자를 추가로 포함하는 것인 방법.  The method of claim 1, wherein the cell or plant further comprises a gene of an enzyme that produces hydroxyacyl-CoA from glycerol.
  12. 제11항에 있어서, 상기 글리세롤로부터 하이드록시아실-CoA를 생성하는 효소는 케토티올라제 및 아세토아세틸-CoA 리덕타제인 방법. The method of claim 11, wherein the enzyme that produces hydroxyacyl-CoA from glycerol is ketothiolase and acetoacetyl-CoA reductase.
  13. 제12항에 있어서, 상기 케토티올라제 및 아세토아세틸-CoA 리덕타제는 Ralstonia eutropha에서 유래한 것인 방법. The method of claim 12, wherein the ketothiolase and acetoacetyl-CoA reductase are from Ralstonia eutropha .
  14. 제1항 내지 제9항 중 어느 한 항에 있어서, 상기 세포는 박테리아인 방법.The method of claim 1, wherein the cell is a bacterium.
  15. 제14항에 있어서, 상기 박테리아는 대장균인 방법. The method of claim 14, wherein the bacterium is Escherichia coli.
PCT/KR2010/008901 2009-12-14 2010-12-13 Recombinant microorganism for producing polylactic acid or a polylactic acid copolymer from glycerol and method for producing polylactic acid or a polylactic acid copolymer from glycerol using the microorganism WO2011074842A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2009-0124171 2009-12-14
KR20090124171 2009-12-14
KR1020100127101A KR101260187B1 (en) 2009-12-14 2010-12-13 Recombinant microorganism able to produce polylactate or polylactate copolymer from glycerol and method for producing polylactate or polylactate copolymer from glycerol using the same
KR10-2010-0127101 2010-12-13

Publications (2)

Publication Number Publication Date
WO2011074842A2 true WO2011074842A2 (en) 2011-06-23
WO2011074842A3 WO2011074842A3 (en) 2011-11-03

Family

ID=44167845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/008901 WO2011074842A2 (en) 2009-12-14 2010-12-13 Recombinant microorganism for producing polylactic acid or a polylactic acid copolymer from glycerol and method for producing polylactic acid or a polylactic acid copolymer from glycerol using the microorganism

Country Status (1)

Country Link
WO (1) WO2011074842A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883463B2 (en) 2011-03-11 2014-11-11 Korea Advanced Institute Of Science And Technology Recombinant microorganism having ability to produce [lactate-co-glycolate] copolymer from glucose, and method for preparing [lactate-co-glycolate] copolymer using same
US10640774B2 (en) * 2016-01-28 2020-05-05 Korea Advanced Institute Of Science And Technology Recombinant microorganism having ability to produce poly(lactate-coglycolate) or copolymer thereof from xylose and method for preparing poly(lactate-coglycolate) or copolymer thereof by using same
CN115261347A (en) * 2022-04-06 2022-11-01 深圳蓝晶生物科技有限公司 Engineered microorganisms expressing acetoacetyl-CoA reductase variants and methods of increasing the proportion of 3-hydroxycaproic acid in PHA

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126796A1 (en) * 2005-05-24 2006-11-30 Lg Chem, Ltd. Cells or plants having a producing ability of polylactate or its copolymers and method for preparing polylactate or its copolymers using the same
WO2009022797A1 (en) * 2007-08-14 2009-02-19 Lg Chem, Ltd. Mutant of propionyl-coa transferase from clostridium propionicum and preparing method for pla or pla copolymer using the same
WO2009031762A2 (en) * 2007-09-07 2009-03-12 Lg Chem, Ltd. Recombinant microorganism capable of producing polylactate or polylactate copolymer from sucrose and method for producing polylactate or polylactate copolymer from sucrose using the same
WO2009091141A2 (en) * 2008-01-16 2009-07-23 Lg Chem, Ltd. Recombinant microorganism having a producing ability of polylactate or its copolymers and method for preparing polylactate or its copolymers using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126796A1 (en) * 2005-05-24 2006-11-30 Lg Chem, Ltd. Cells or plants having a producing ability of polylactate or its copolymers and method for preparing polylactate or its copolymers using the same
WO2009022797A1 (en) * 2007-08-14 2009-02-19 Lg Chem, Ltd. Mutant of propionyl-coa transferase from clostridium propionicum and preparing method for pla or pla copolymer using the same
WO2009031762A2 (en) * 2007-09-07 2009-03-12 Lg Chem, Ltd. Recombinant microorganism capable of producing polylactate or polylactate copolymer from sucrose and method for producing polylactate or polylactate copolymer from sucrose using the same
WO2009091141A2 (en) * 2008-01-16 2009-07-23 Lg Chem, Ltd. Recombinant microorganism having a producing ability of polylactate or its copolymers and method for preparing polylactate or its copolymers using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAGUCHI, S. ET AL.: 'A microbial factory for lactate-based polyesters using a lactate- polymerizing enzyme' PROC, NATL. ACAD. SCI. USA vol. 105, no. 45, 11 November 2008, pages 17323 - 17327 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883463B2 (en) 2011-03-11 2014-11-11 Korea Advanced Institute Of Science And Technology Recombinant microorganism having ability to produce [lactate-co-glycolate] copolymer from glucose, and method for preparing [lactate-co-glycolate] copolymer using same
US10640774B2 (en) * 2016-01-28 2020-05-05 Korea Advanced Institute Of Science And Technology Recombinant microorganism having ability to produce poly(lactate-coglycolate) or copolymer thereof from xylose and method for preparing poly(lactate-coglycolate) or copolymer thereof by using same
CN115261347A (en) * 2022-04-06 2022-11-01 深圳蓝晶生物科技有限公司 Engineered microorganisms expressing acetoacetyl-CoA reductase variants and methods of increasing the proportion of 3-hydroxycaproic acid in PHA
EP4279587A4 (en) * 2022-04-06 2024-02-28 Shenzhen Bluepha Biosciences Co., Ltd. Engineered microorganism expressing acetoacetyl coenzyme a reductase variant and method for increasing proportion of 3-hydroxyhexanoic acid in pha

Also Published As

Publication number Publication date
WO2011074842A3 (en) 2011-11-03

Similar Documents

Publication Publication Date Title
WO2011002220A9 (en) Preparation method of lactate polymers and lactate copolymers using polyhydroxyalkanoate synthase mutants
KR101037354B1 (en) Recombinant microorganism able to produce polylactate or polylactate copolymer from sucrose and method for producing polylactate or polylactate copolymer from sucrose using the same
KR100957777B1 (en) Mutants of PHA synthase from Pseudomonas sp. 6-19 and method for preparing lactate homopolymer or copolymer using the same
US9957533B2 (en) Mutant of propionyl-CoA transferase from Clostridium propionicum and preparing method for PLA or PLA copolymer using the same
WO2010090436A2 (en) Recombinant ralstonia eutropha capable of producing polylactic acid or polylatic acid copolymer, and method for producing polylactic acid or polylatic acid copolymer using same
WO2009157702A2 (en) Method for preparing polylactate and copolymer thereof using a mutant microorganism with enhanced polylactate, and the copolymer producing capability thereof
US20100136637A1 (en) Recombinant microorganism having a producing ability of polylactate or its copolymers and method for preparing polyactate or its copolymers using the same
WO2009031762A2 (en) Recombinant microorganism capable of producing polylactate or polylactate copolymer from sucrose and method for producing polylactate or polylactate copolymer from sucrose using the same
WO2011074842A2 (en) Recombinant microorganism for producing polylactic acid or a polylactic acid copolymer from glycerol and method for producing polylactic acid or a polylactic acid copolymer from glycerol using the microorganism
KR101085960B1 (en) Method for Preparing Polylactate-co-glycolate or Polylactate-co-glycolate-co-hydroxyalkanoate Copolymers Using Cells or Plants Having Producing Ability of Polylactate-co-glycolate or Polylactate-co-glycolate-co-hydroxyalkanoate Copolymers
KR101293904B1 (en) Recombinant microorganism capable of producing polylactate or polylactate copolymer from xylose and method for producing polylactate or polylactate copolymer from xylose using the same
KR101260187B1 (en) Recombinant microorganism able to produce polylactate or polylactate copolymer from glycerol and method for producing polylactate or polylactate copolymer from glycerol using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10837838

Country of ref document: EP

Kind code of ref document: A2