KR20150142304A - Method for Fine-Tuning Gene Expression Using Synthetic Regulatory Small RNA - Google Patents

Method for Fine-Tuning Gene Expression Using Synthetic Regulatory Small RNA Download PDF

Info

Publication number
KR20150142304A
KR20150142304A KR1020140070868A KR20140070868A KR20150142304A KR 20150142304 A KR20150142304 A KR 20150142304A KR 1020140070868 A KR1020140070868 A KR 1020140070868A KR 20140070868 A KR20140070868 A KR 20140070868A KR 20150142304 A KR20150142304 A KR 20150142304A
Authority
KR
South Korea
Prior art keywords
srna
dna
expression
regulator
gene
Prior art date
Application number
KR1020140070868A
Other languages
Korean (ko)
Other versions
KR101750855B1 (en
Inventor
이상엽
노민호
유승민
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020140070868A priority Critical patent/KR101750855B1/en
Publication of KR20150142304A publication Critical patent/KR20150142304A/en
Application granted granted Critical
Publication of KR101750855B1 publication Critical patent/KR101750855B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/64General methods for preparing the vector, for introducing it into the cell or for selecting the vector-containing host
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/72Candida
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/822Microorganisms using bacteria or actinomycetales
    • Y10S435/848Escherichia
    • Y10S435/849Escherichia coli
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/911Microorganisms using fungi
    • Y10S435/921Candida

Abstract

The present invention relates to a method for fine-tuning gene expression in a prokaryote using a synthetic regulatory small RNA (sRNA), and more specifically, to a synthetic regulatory sRNA which can fine-tune target gene expression by adjusting an expression amount of the sRNA or a binding force between the sRNA and Hfq to fine-tune target gene expression. According to the present invention, the method for fine-tuning gene expression using the synthetic regulatory sRNA adjusts the expression amount of the sRNA or the binding force between the sRNA and Hfq to fine tune a suppression degree of the target gene expression to apply a combination of various target genes to various strains simultaneously, easily, and quickly without a gene deletion process through the synthetic regulatory sRNA which regulates gene expression, which is very suitable for measuring a metabolic capability for each strain and selecting an optimal strain. Also, a target gene for gene expression suppression can be selected easily and quickly, and the selected target gene can be expressed to a desired degree. Therefore, the method can be used in constructing a recombinant strain for efficiently producing various metabolites and establishing an efficient production method.

Description

합성 조절 sRNA를 이용한 유전자 발현 미세조절 방법 {Method for Fine-Tuning Gene Expression Using Synthetic Regulatory Small RNA}[0001] The present invention relates to a method for fine-tuning gene expression using synthetic regulatory sRNA,

본 발명은 원핵세포 내에서 합성 조절 sRNA를 이용한 유전자 발현 미세조절 방법에 관한 것으로, 보다 상세하게는 표적유전자 발현을 미세하게 조절하기 위하여 sRNA 발현양 또는 sRNA와 Hfq의 결합력을 조절하여 표적유전자의 발현을 미세 조절할 수 있는 합성 조절 sRNA에 관한 것이다.
More particularly, the present invention relates to a method for controlling the expression of a target gene by controlling the amount of sRNA expression or the binding strength of sRNA and Hfq to control the expression of a target gene Lt; RTI ID = 0.0 > sRNA < / RTI >

최근 전 세계적으로 환경 문제 및 한정된 자원 고갈에 대한 우려가 급증하고 있으며, 이를 해결하기 위한 대안으로 친환경적이며 재생산 가능한 생물체 기반의 생산 시스템 구축에 대한 관심이 증가하고 있다. 이런 시스템은 생물체 내의 대사 회로를 조절하여 대사 흐름을 목적 대사산물에 최적화함으로써 제조할 수 있는데, 이 과정에서 다양한 분자생물학 기술이 요구되고 있다. 대사회로 조절을 위해서는 크게 대사산물 생산에 필요한 대사 흐름을 강화시키기 위해 생합성 과정에 필요한 효소 발현을 증가시키는 것과, 세포 성장 및 다른 대사산물 생산에 이용되는 대사 흐름을 막고 목적 대사산물 생산으로 활용하기 위해 유전자를 결실시키는 방법이 있다. 현재 널리 쓰이는 유전자 결실 방법은 결실시키고자 하는 유전자와 상동 서열을 가지는 임의의 서열을 재조합 효소(recombinase)를 통해 치환시킴으로써 기능을 상실케 만드는 것이다 (Datsenko et al , PNAS , 97(12): 6640-6645, 2000). 그러나, 이런 유전자 결실 방법은 여러 문제점을 갖는다. Concerns about environmental problems and limited resource exhaustion are increasing rapidly in the world in recent years, and there is an increasing interest in building an environmentally friendly and reproducible organism-based production system as an alternative solution. These systems can be produced by modulating the metabolic pathway in an organism and optimizing the metabolic flux to the desired metabolite, which requires a variety of molecular biology techniques. In order to regulate the metabolic pathway, it is necessary to increase the expression of enzymes necessary for the biosynthesis process in order to strengthen the metabolic flow required for the production of metabolites, to prevent the metabolism flow used for cell growth and other metabolites, There is a way to delete the gene. Currently widely used methods of gene deletion are the loss of function by replacing any sequence with homologous sequences with recombinase (Datsenko meat al. , PNAS , 97 (12): 6640-6645, 2000). However, these gene deletion methods have various problems.

무엇보다도 유전자 결실 기법(Gene knock-out)은 수주-수개월의 시간이 필요하고, 유전자의 발현을 on-off로만 조절이 가능하고, 여러 균주에 적용시키기 위해서는 각 균주마다 유전자 결실을 반복해서 진행해야 하므로 많은 경우의 수를 실험적으로 확인해야 하는 대사공학 연구에 있어서 시간이 가장 많이 소모되는 과정이다. 염색체 상에서 존재하는 유전자의 프로모터에 돌연변이를 유발하여 활성을 약화시키거나 기존의 프로모터 대신 유전자 발현을 조절할 수 있는 다양한 프로모터들로 치환하는 방법 또한 유전자의 발현량을 조절 및 억제하는 방법으로 사용되고 있지만, 이들 방법 역시 유전자 결실과 동일하거나 유사한 과정을 거쳐서 이루어지기 때문에 유전자 결실의 한계를 그대로 지닐 뿐만 아니라 유전자 결실과는 다르게 돌연변이가 생긴 프로모터로 인한 발현량을 직접 확인하기 전까지 결과를 예측하기가 어려워 단순한 유전자 결실보다 더 많은 노력과 시간이 요구될 수 있다.Most of all, gene knock-out requires a few weeks - several months, and gene expression can be regulated only on-off. To apply it to several strains, gene deletion must be repeated for each strain This is the most time-consuming process in the study of metabolic engineering which requires many experiments to be confirmed experimentally. A method of mutating the promoter of a gene existing on a chromosome to weaken its activity or substituting it with various promoters capable of regulating gene expression instead of the existing promoter is also used as a method of controlling and suppressing the expression amount of a gene, Since the method is also performed through the same or similar process as the gene deletion, it is difficult to predict the result until the expression amount due to the mutant promoter is directly confirmed, unlike the gene deletion limit, More effort and time may be required.

이러한 기존의 유전자 억제 방법의 한계를 극복하기 위해서 짧은 길이의 맞춤형 합성 sRNA 기법이 개발되었으며(Na, D et al ., Nat . Biotechnol ., 31(2), 170-174, 2013; Yoo, SM et al . Nat . Protoc ., 8(9), 1694-1707, 2013), 이는 대상 균주의 염색체 서열을 변형하지 않아도 플라스미드를 이용하여 간편하게 목적유전자 발현을 감소시킬 수 있으며 동일한 유전자 발현 억제를 다양한 균주에 동시다발적으로 쉽게 적용시킬 수 있는 장점이 있다. 게다가 이를 제작, 보관, 적용시키는 것이 빠르고 간편하다.In order to overcome the limitations of this conventional gene suppression method, a short-length custom synthetic sRNA technique has been developed (Na, D et al ., Nat . Biotechnol ., 31 (2), 170-174, 2013; Yoo, SM et al . Nat . Protoc ., 8 (9), 1694-1707, 2013), it is possible to easily reduce the expression of the target gene using the plasmid without modifying the chromosomal sequence of the target strain and to inhibit the same gene expression simultaneously in various strains simultaneously There is an advantage that it can be easily applied. Moreover, it is quick and easy to make, store and apply them.

sRNA는 표적유전자의 mRNA와 상보적 결합을 이루기 위한 base pairing region(이하 BPR)와 Hfq 결합 서열로 이루어져 있다. 기존의 기법에서는 표적유전자의 발현을 조절하기 위해 BPR 부분의 binding free energy를 계산하여 염기서열 길이 및 변이를 조절하였다. 이는 표적유전자의 염기서열 정보를 바탕으로 하여 BPR 부분을 디자인하고 일반적인 유전자 재조합 방법을 통해 손쉽게 합성 sRNA 를 설계 및 재조합 할 수 있다는 장점이 있지만, 유전자 발현 정도를 원하는 수준으로 미세조절하기 위해서는 표적유전자마다 sRNA의 BPR 부분을 새로 디자인하고 이를 바탕으로 sRNA를 재설계해야 한다. 또한 binding free energy로는 sRNA 활성 변화를 정확하게 예측하기 어렵다는 한계가 있으며, Binding free energy는 sRNA와 mRNA의 서열을 기반으로 계산이 되는데, 실제 sRNA와 mRNA의 결합에 있어 Hfq 단백질이 sRNA와 mRNA의 결합을 돕기 때문에 계산의 정확도가 낮아질 수 있다. 게다가 sRNA와 mRNA의 2차 구조로 인해서 결합 서열에 구조적인 변화가 생기는 경우 예측이 빗나감으로, 이러한 문제점들을 극복하기 위해서는 표적유전자의 종류와 상관없이 원하는 수준으로 조절할 수 있는 범용 시스템이 개발되어야 한다. The sRNA consists of a base pairing region (BPR) and a Hfq binding sequence for complementary binding to the mRNA of the target gene. In the conventional technique, the binding free energy of the BPR region was calculated to control the expression of the target gene, thereby controlling the base sequence length and the mutation. This is because it is possible to easily design and recombine a synthetic sRNA through a general gene recombination method by designing the BPR part based on the nucleotide sequence information of the target gene. However, in order to finely control the degree of gene expression to a desired level, The BPR part of the sRNA must be redesigned and the sRNA redesigned based on it. Binding free energy is calculated based on the sequence of sRNA and mRNA. In actual binding of sRNA to mRNA, Hfq protein binds to sRNA and mRNA The accuracy of the calculation can be lowered because it helps. In addition, if structural changes occur in the binding sequence due to the secondary structure of sRNA and mRNA, the prediction is missed. In order to overcome these problems, a universal system that can be adjusted to a desired level regardless of the type of target gene must be developed .

이에 본 발명자들은 이상의 조건에 부합하는 범용 유전자 발현 조절 시스템을 구축하기 위해 예의 노력한 결과, BPR을 고정시켜 놓은 채로 다른 요소들의 변이를 시도하였고, 이를 위해서 다양한 유전자 발현을 조절하는 프로모터들을 도입하는 방법과 sRNA 구조체 내의 Hfq 결합부위에 돌연변이를 적용하는 방법을 구축하였다. 다양한 구성형 프로모터를 도입하여 sRNA의 발현양을 제어함으로써 표적 유전자의 발현조절이 가능함을 확인하였고, 유도형 프로모터를 도입할 경우에는 sRNA 구조체의 Hfq 결합부위에 돌연변이 도입을 통하여 표적유전자 발현의 미세조절이 가능한 것을 확인하고, 본 발명을 완성하게 되었다.
Therefore, the inventors of the present invention have tried to construct a universal gene expression regulatory system that meets the above conditions, and as a result, attempted mutation of other factors while fixing BPR, and a method of introducing promoters controlling various gene expression A method of applying a mutation to the Hfq binding site in the sRNA construct was constructed. It was confirmed that the expression of the target gene could be regulated by controlling the expression level of sRNA by introducing various constitutive promoters. When the inducible promoter was introduced, mutation introduction into the Hfq binding site of the sRNA construct resulted in fine regulation of the expression of the target gene And that the present invention has been completed.

본 발명의 목적은 종래 유전자 발현 억제 방법의 한계점을 극복하고, 동시에 표적유전자의 mRNA 발현을 미세하게 조절할 수 있는 다양한 맞춤형 합성 sRNA를 이용한 유전자 발현 미세조절 방법을 제공하는 데 있다.
It is an object of the present invention to provide a method for fine regulation of gene expression using various customized synthetic sRNAs capable of overcoming the limitations of conventional gene expression suppression methods and simultaneously controlling mRNA expression of a target gene.

상기 목적을 달성하기 위하여, 본 발명은 (a) 프로모터, (b) 표적 유전자 mRNA와 상보적 결합을 형성하는 영역을 코딩하는 핵산, (c) Sgrs의 sRNA 유래의 서열번호 91로 표시되는 Hfq 결합 부위(Hfq binding site)를 코딩하는 핵산의 야생형 또는 돌연변이가 유발된 sRNA 구조체(scaffold) 및 (d) 전사종결자를 포함하는 벡터를 제공한다.(B) a nucleic acid encoding a region that forms a complementary bond with the mRNA of the target gene; (c) an Hfq-binding region represented by SEQ ID NO: 91 derived from the sRNA of Sgrs; A wild-type or mutagenized sRNA construct (scaffold) encoding a Hfq binding site, and (d) a transcription terminator.

본 발명은 또한, 상기 벡터로 형질전화된 재조합 미생물을 제공한다.The present invention also provides a recombinant microorganism transformed with said vector.

본 발명은 또한, 상기 벡터를 원핵생물 내로 도입하거나 원핵생물 내에서 발현시켜, 표적유전자의 mRNA 발현을 미세조절하는 방법을 제공한다.The present invention also provides a method for fine-regulating mRNA expression of a target gene by introducing the vector into prokaryotes or expressing them in prokaryotes.

본 발명은 또한, 다음의 단계를 포함하는 목적물질 생산을 위한 표적유전자의 스크리닝 방법을 제공한다. The present invention also provides a screening method for a target gene for producing a target substance, comprising the following steps.

(a) 목적물질을 생산하고자 하는 대상 균주에 존재하고, 목적물질 생합성 경로에 참여하는 유전자들 중 어느 하나 이상의 유전자를 상기 방법으로 발현을 미세조절하는 단계; 및 (a) fine-regulating the expression of any one or more genes present in a target strain to be produced in a target substance biosynthetic pathway by the above method; And

(b) 상기 발현 미세조절에 따라 목적물질 생산수율이 향상되는 경우, 발현을 조절시킨 유전자를 목적물질 생산을 위한 표적유전자로 선정하는 단계.(b) selecting a gene whose expression is regulated as a target gene for production of a target substance when the production yield of the target substance is improved according to the expression microcontrol.

본 발명은 또한, 다음의 단계를 포함하는 목적물질 생산균주의 개량방법을 제공한다. The present invention also provides a method for improving a target substance producing strain comprising the following steps.

(a) 목적물질을 생산하고자 하는 대상 균주에 존재하고, 목적물질 생합성 경로에 참여하는 유전자들 중 어느 하나 이상의 유전자를 상기 방법으로 발현을 미세조절하는 단계; 및 (a) fine-regulating the expression of any one or more genes present in a target strain to be produced in a target substance biosynthetic pathway by the above method; And

(b) 상기 발현 미세조절에 따라 목적물질 생산수율이 향상되는 경우, 발현을 조절시킨 유전자를 목적물질 생산을 위한 표적유전자로 스크리닝하는 단계; 및(b) screening a gene whose expression has been regulated as a target gene for production of a target substance when the yield of the target substance is improved according to the expression micro-regulation; And

(c) 상기 스크리닝된 유전자의 발현정도를 도입하여 재조합 균주를 제조하는 단계.
(c) introducing the degree of expression of the screened gene to produce a recombinant strain.

본 발명에 따른 합성 조절 sRNA를 이용한 유전자 발현 미세조절 방법은 sRNA 발현양 조절 또는 sRNA와 Hfq의 결합력을 조절함으로써 표적 유전자의 발현 억제 정도를 미세조절 할 수 있으므로, 유전자 발현을 조절하는 합성 조절 sRNA를 통한 유전자 결실 과정 없이 다양한 균주에서 다양한 표적 유전자의 조합을 동시다발적으로 쉽고 빠르게 적용할 수 있어 균주별 대사 능력 측정 및 최적 균주 선정에 매우 적합하다. 또한, 유전자 발현 억제 표적유전자를 쉽고 빠르게 선정할 수 있고 이렇게 선정된 유전자를 원하는 정도만큼 발현시킬 수 있다는 장점이 있으므로, 다양한 대사산물의 효율적 생산을 위한 재조합 균주의 제작 및 효율적 생산방법 확립에 사용할 수 있는바 매우 유용하다.
The method of controlling the gene expression using the synthetic control sRNA according to the present invention can control the expression level of the target gene by controlling the sRNA expression level or the binding force between sRNA and Hfq, , It is possible to apply various combinations of target genes easily and quickly in various strains without gene deletion process, and thus it is very suitable for the measurement of metabolic ability by strains and the selection of optimal strains. In addition, since it is possible to easily and rapidly select a target gene for inhibiting gene expression and to express the selected gene as much as desired, it can be used for the production of a recombinant strain for efficiently producing various metabolites and for establishing an efficient production method It is very useful.

도 1은 sRNA의 발현을 위해 사용된 플라스미드로 상업적으로 판매되는 pKK223-3 플라스미드를 기반으로 하여 SgrS 구조체를 포함한 sRNA를 재조합시킨 것이다.
도 2는 sRNA 인 SgrS의 일부 구조를 나타내며 돌연변이를 유발사킬 잠재적인 표적을 나타낸 것이다. 본 서열 중 3'말단의 'UUUUUUUU' 서열은 전사 종결자이자 Hfq 결합 부위이기도 하다.
도 3은 sRNA 표적 유전자의 발현을 위해 사용된 플라스미드로 상업적으로 판매되는 pACYC184 플라스미드를 기반으로 하여 DsRed2 유전자를 발현하도록 재조합시킨 것이다.
도 4는 SgrS 구조체를 포함한 합성 sRNA가 DsRed2의 발현을 효과적으로 억제함을 확인한 것이다.
도 5는 DsRed2를 표적으로 하는 합성 sRNA의 발현 억제 활성이 BPR로부터 기인함을 나타낸다.
도 6은 표적유전자 발현 억제 효과의 로그값과 sRNA의 발현량이 선형 비례함을 나타내는 그래프이다.
도 7은 Hfq 결합부위의 stem loop에서 stem의 서열변화에 따른 sRNA 발현억제 활성 변화를 나타낸다.
도 8은 Hfq 결합부위의 stem loop에서 stem의 길이 변화에 따른 sRNA 발현억제 활성 변화를 나타낸다.
도 9는 Hfq 결합부위의 stem loop에서 loop의 서열 변화에 따른 sRNA 발현억제 활성 변화를 나타낸다.
도 10은 Hfq 결합부위의 UAUU 서열 변화에 따른 sRNA 발현억제 활성 변화를 나타낸다.
도 11은 전사 종결자이자 Hfq 결합부위인 U tail의 길이 변화에 따른 sRNA 발현억제 활성 변화를 나타낸다.
Figure 1 shows the recombination of sRNA containing the SgrS structure based on the pKK223-3 plasmid commercially available as a plasmid used for the expression of sRNA.
Fig. 2 shows a partial structure of sgrS, which is an sRNA, and shows a potential target to induce mutation. The sequence 'UUUUUUUUU' at the 3 'end of this sequence is also a transcription terminator and Hfq binding site.
Figure 3 is a recombinant expression of the DsRed2 gene based on the pACYC184 plasmid, which is commercially available as a plasmid used for expression of the sRNA target gene.
FIG. 4 shows that the synthetic sRNA containing the SgrS structure effectively suppressed the expression of DsRed2.
Figure 5 shows that the expression-inhibiting activity of synthetic sRNA targeting DsRed2 is due to BPR.
6 is a graph showing that the logarithm of the effect of suppressing the target gene expression and the expression amount of sRNA are linearly proportional.
FIG. 7 shows changes in the sRNA expression-suppressing activity of the stem loop of the Hfq binding site according to the change of the stem sequence.
FIG. 8 shows changes in the sRNA expression-suppressing activity of the Hfq binding site in response to the change in stem length in the stem loop.
FIG. 9 shows changes in the sRNA expression-inhibiting activity according to the loop sequence change in the stem loop of the Hfq binding site.
Fig. 10 shows changes in the sRNA expression-suppressing activity according to the UAUU sequence change in the Hfq binding site.
FIG. 11 shows changes in the sRNA expression-suppressing activity with the change of the length of U tail which is a transcription terminator and Hfq binding site.

다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.

본 발명의 상세한 설명 등에서 사용되는 주요 용어의 정의는 다음과 같다. The definitions of the main terms used in the description of the present invention and the like are as follows.

본원에서 "sRNA (small RNA)"란, 단백질로 번역되지 않으며 상보적 결합을 통해 특정 mRNA의 번역을 효과적으로 억제하는, 보통 염기 서열의 길이가 200개 이하의 짧은 길이의 RNA이다.As used herein, the term "sRNA (small RNA) " refers to RNA of a short length of 200 nucleotides or less in length, which effectively prevents translation of a specific mRNA through complementary binding.

본원에서 "유전자"란 최광의의 의미로 간주되어야 하며, 구조 단백질 또는 조절 단백질을 암호화할 수 있다. 이때, 조절단백질은 전사인자, 열 충격단백질 또는 DNA/RNA 복제, 전사 및/또는 번역에 관여하는 단백질을 포함한다. 본 발명에 있어서, 발현 억제의 대상이 되는 표적 유전자는 염색체 외 구성요소로서 존재할 수 있다. As used herein, the term "gene " should be considered in its broadest sense and may encompass structural or regulatory proteins. Wherein the regulatory protein comprises a transcription factor, a heat shock protein or a protein involved in DNA / RNA replication, transcription and / or translation. In the present invention, the target gene to be inhibited in expression may exist as an extrachromosomal component.

본 발명은 일 관점에서, (a) 프로모터, (b) 표적 유전자 mRNA와 상보적 결합을 형성하는 영역을 코딩하는 핵산, (c) Sgrs의 sRNA 유래의 서열번호 91로 표시되는 Hfq 결합 부위(Hfq binding site)를 코딩하는 핵산의 야생형 또는 돌연변이가 유발된 sRNA 구조체(scaffold) 및 (d) 전사종결자를 포함하는 벡터에 관한 것이다.(B) a nucleic acid encoding a region that forms a complementary bond with a target gene mRNA; (c) an Hfq binding site represented by SEQ ID NO: 91 derived from the sRNA of Sgrs (Hfq a wild-type or mutagenized sRNA construct (scaffold) encoding a nucleic acid binding site, and (d) a transcription terminator.

본 발명의 프로모터는 유도체(inducer)가 존재할 때만 작동하는 유도형 프로모터(inducible promoter), 항상 작동하는 구성형 프로모터(constitutive promoter) 및 이들 프로모터 유래의 프로모터들(trc 프로모터 또는 tac 프로모터) 을 사용하는 것이 바람직하며, 이들 프로모터의 활성을 조절하면 sRNA의 발현양이 변화되므로 표적유전자의 발현 정도를 조절할 수 있다. 대부분의 유전자들의 경우, 다양한 구성형 프로모터를 도입함으로써 sRNA 의 발현양을 제어하고, 그에 따라 표적유전자의 발현 또한 조절이 가능하다. 구성형 프로모터의 경우는 Chris Anderson에 의해 제작된 Anderson promoter collection (http://partsregistry.org/Promoters/Catalog/Anderson)에서 제시하는 다양한 프로모터를 사용하는 것을 특징으로 할 수 있다.The promoter of the present invention is to use an inducible promoter that operates only when an inducer is present, a constitutive promoter that always operates, and promoters derived from these promoters (trc promoter or tac promoter) . Regulating the activity of these promoters changes the expression level of sRNA, thereby regulating the expression level of the target gene. For most genes, expression of the target gene can be controlled by controlling the expression level of sRNA by introducing various constitutive promoters. In the case of constitutive promoters, it may be characterized by the use of various promoters provided by the Anderson promoter collection (http://partsregistry.org/Promoters/Catalog/Anderson) produced by Chris Anderson.

본 발명의 돌연변이가 유발된 sRNA 구조체(scaffold)는 sRNA와 Hfq의 결합력을 조절하여 표적 유전자의 발현을 미세조절한다. 미생물의 생존에 치명적인 유전자 또는 생장속도를 저해하는 유전자들의 발현을 억제할 경우에는 유도형 프로모터 하에서 필요한 경우에만 sRNA 가 발현되는 시스템이 구축되어야 하지만, 유도형 프로모터를 도입할 경우, 발현양 조절이 용이하지 않다. 이에 본 발명에 있어서, 바람직하게는 Hfq 결합부위의 돌연변이 유발을 통하여 표적유전자의 발현을 미세조절하는 것을 특징으로 할 수 있다. The mutant-induced sRNA construct (scaffold) of the present invention regulates the binding of sRNA and Hfq to fine-tune the expression of the target gene. When suppressing the expression of genes that are critical to survival of microorganisms or inhibiting the growth rate, a system in which sRNA is expressed only when necessary under the inducible promoter should be constructed. However, when the inducible promoter is introduced, the expression level can be easily controlled I do not. Therefore, in the present invention, the expression of the target gene may be finely regulated by inducing mutation of the Hfq binding site.

본 발명에서는, Sgrs의 sRNA 구조체(도 2)의 일부 서열을 서열번호 91로 표시하고 돌연변이를 유발하였다. 첫번째 stem 부위인 서열번호 91의 5 내지 8번 GGUG 서열을 GGAC, CCUG 및 CCUC로 변환 또는 GGUG 4nt를 6nt 및 8nt로 변환하여 sRNA와 Hfq의 결합력을 조절하는 것을 특징으로 할 수 있다. 또한, Sgrs의 sRNA 구조체의 첫번째 loop 부위인 서열번호 91의 10 내지 13번 AAAA 서열을 CCGG, CCCC, CCUU, GGGG, GGCC, GGUU, UUGG 및 UUUU로 변환하거나, Hfq의 결합 부위인 서열번호 91의 1 내지 4번의 UAUU를 GAUU, UCUU, UACU, UAAU, UAUC, UAUA, GCCC, GCAC, GACC 및 GAAC로 변화하는 것을 특징으로 할 수 있다. 아울러, Sgrs의 sRNA 구조체의 전사종결자이자 Hfq의 결합 부위인 서열번호 91의 42 내지 49번 U tail의 길이를 4 내지 8로 변환하는 것을 특징으로 할 수 있다. In the present invention, a partial sequence of the sRNA construct of Sgrs (FIG. 2) is represented by SEQ ID NO: 91 and mutagenesis was induced. And the binding between the sRNA and Hfq is regulated by converting the GGUG sequence of SEQ ID NO: 91, which is the first stem region, into GGAC, CCUG and CCUC, or by converting GGUG 4nt into 6nt and 8nt. Also, the 10th to 13th AAAA sequence of SEQ ID NO: 91, which is the first loop site of the sgrs of Sgrs, is converted into CCGG, CCCC, CCUU, GGGG, GGCC, GGUU, UUGG and UUUU, or the sequence of SEQ ID NO: 91 The UAUUs 1 to 4 may be changed to GAUU, UCUU, UACU, UAAU, UAUC, UAUA, GCCC, GCAC, GACC, and GAAC. It is also possible to convert the length of U tail 42 to 49 of SEQ ID NO: 91, which is a transcription terminator of Sgrs and a binding site of Hfq, to 4 to 8.

[서열번호 91] 5'-UAUUGGUGUAAAAUCACCCGCCAGCAGAUUAUACCUGCUGGUUUUUUUU-3' [SEQ ID NO: 91] 5'-UAUUGGUGUAAAAUCACCCGCCAGCAGAUUAUACCUGCUGGUUUUUUUU-3 '

본원에서, 상기 "핵산"은 RNA, DNA 안정화된 RNA 혹은 안정화된 DNA일 수 있다. 이때, "코딩 (encoding)"이란, 상기 sRNA를 암호화하는 것으로서, 상기 sRNA에 상보적인 핵산 서열을 의미한다.As used herein, the "nucleic acid" may be RNA, DNA stabilized RNA or stabilized DNA. Herein, the term "encoding" means a nucleic acid sequence complementary to the sRNA which encodes the sRNA.

본원에서, "벡터(vector)"는 적합한 숙주 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 함유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자 또는 간단하게 잠재적 게놈 삽입물일 수 있다. 적당한 숙주로 형질전환되면, 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 플라스미드가 현재 벡터의 가장 통상적으로 사용되는 형태이므로, 본 발명의 명세서에서 "플라스미드(plasmid)" 및 "벡터(vector)"는 때로 상호 교환적으로 사용된다. 본 발명의 목적상, 플라스미드 벡터를 이용하는 게 바람직하다. 이러한 목적에 사용될 수 있는 전형적인 플라스미드 벡터는 (a) 숙주세포당 수 개에서 수백 개의 플라스미드 벡터를 포함하도록 복제가 효율적으로 이루어지도록 하는 복제 개시점, (b) 플라스미드 벡터로 형질전환된 숙주세포가 선발될 수 있도록 하는 항생제 내성 유전자 및 (c) 외래 DNA 절편이 삽입될 수 있는 제한효소 절단부위를 포함하는 구조를 지니고 있다. 적절한 제한효소 절단부위가 존재하지 않을지라도, 통상의 방법에 따른 합성 올리고뉴클레오타이드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용하면 벡터와 외래 DNA를 용이하게 라이게이션(ligation)할 수 있다. 라이게이션 후에, 벡터는 적절한 숙주세포로 형질전환되어야 한다. 형질전환은 칼슘 클로라이드 방법 또는 전기천공법(electroporation) (Neumann, et al., EMBO J., 1:841, 1982) 등을 사용해서 용이하게 달성될 수 있다. 본 발명에 따른 sRNA의 발현을 위하여 사용되는 벡터는 당업계에 공지된 발현 벡터가 사용될 수 있다. As used herein, "vector" means a DNA construct containing a DNA sequence operably linked to a suitable regulatory sequence capable of expressing the DNA in the appropriate host. The vector may be a plasmid, phage particle or simply a potential genome insert. Once transformed into the appropriate host, the vector may replicate and function independently of the host genome, or, in some cases, integrate into the genome itself. Because the plasmid is the most commonly used form of the current vector, the terms "plasmid" and "vector" are sometimes used interchangeably in the context of the present invention. For the purpose of the present invention, it is preferable to use a plasmid vector. Typical plasmid vectors that can be used for this purpose include (a) a cloning start point that allows replication to be efficiently made to include several to several hundred plasmid vectors per host cell, (b) a host cell transformed with the plasmid vector, (C) a restriction enzyme cleavage site into which a foreign DNA fragment can be inserted. Even if an appropriate restriction enzyme cleavage site is not present, using a synthetic oligonucleotide adapter or a linker according to a conventional method can easily ligate the vector and the foreign DNA. After ligation, the vector should be transformed into the appropriate host cell. Transformation can be readily accomplished using a calcium chloride method or electroporation (Neumann, et al., EMBO J. , 1: 841, 1982). As the vector used for expression of the sRNA according to the present invention, an expression vector known in the art can be used.

핵산의 염기 서열은 다른 핵산 서열과 기능적 관계로 배치될 때 "작동가능하게 연결(operably linked)"된다. 예를 들면, 프로모터 또는 인핸서는 서열의 전사에 직접적인 영향을 끼치는 요소들이며, 코딩서열에 작동 가능하도록 적절한 위치에 배치 혹은 연결되며; 리보좀 결합 부위는 서열의 전사에 영향을 끼치며 코딩 서열에 작동 가능하도록 코딩서열의 직전에 연결된다. 전서열(pre-sequence) 또는 분비 리더 서열 (secretion leader sequence)를 암호화하는 DNA는 폴리펩타이드의 분비에 참여하는 전단백질을 암호화 하고 있으며, 목표 유전자에 직접 연결된다. 일반적으로, "작동가능하게 연결된"은 DNA 서열이 물리적으로 연결되어 있으며, 또한 분비 리더 서열의 경우 접촉하고 리딩 프레임 내에 존재하는 것을 의미한다. 그러나, 인핸서(enhancer)는 접촉할 필요가 없다. 이들 서열의 연결은 편리한 제한 효소 부위에서 라이게이션(연결)에 의해 수행된다. 그러한 부위가 존재하지 않는 경우, 통상의 방법에 따른 합성 올리고뉴클레오티드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용한다.The nucleotide sequence of a nucleic acid is "operably linked" when placed in a functional relationship with another nucleic acid sequence. For example, a promoter or enhancer is an element that directly affects the transcription of a sequence and is placed or linked in an appropriate position to be operable in a coding sequence; The ribosome binding site affects the transcription of the sequence and is linked directly to the coding sequence so as to be operable in the coding sequence. The DNA encoding the pre-sequence or secretion leader sequence encodes the entire protein involved in the secretion of the polypeptide and is directly linked to the target gene. Generally, "operably linked" means that the DNA sequences are physically linked, and in the case of a secretory leader sequence, are in contact and present in the reading frame. However, the enhancer need not be in contact. The linkage of these sequences is carried out by ligation (linkage) at convenient restriction sites. If such a site does not exist, a synthetic oligonucleotide adapter or a linker according to a conventional method is used.

본 발명은 다른 관점에서, 상기 벡터로 형질전화된 재조합 미생물에 관한 것이다.In another aspect, the present invention relates to a recombinant microorganism transformed with said vector.

본원 명세서에 사용된 용어 "형질전환"은 DNA를 숙주로 도입하여 DNA가 염색체 외 인자로서 또는 염색체 통합완성에 의해 복제 가능하게 되는 것을 의미한다. As used herein, the term "transformation" means introducing DNA into a host and allowing the DNA to replicate as an extrachromosomal factor or by chromosomal integration.

물론 모든 벡터가 본 발명의 DNA 서열을 발현하는데 모두 동등하게 기능을 발휘하지는 않는다는 것을 이해하여야만 한다. 마찬가지로 모든 숙주가 동일한 발현 시스템에 대해 동일하게 기능을 발휘하지는 않는다. 그러나, 당업자라면 과도한 실험적 부담없이 본 발명의 범위를 벗어나지 않는 채로 여러 벡터, 발현 조절 서열 및 숙주 중에서 적절한 선택을 할 수 있다. 예를 들어, 벡터를 선택함에 있어서는 숙주를 고려하여야 하는데, 이는 벡터가 그 안에서 복제되어야만 하기 때문이다. 벡터의 복제 수, 복제 수를 조절할 수 있는 능력 및 당해 벡터에 의해 코딩되는 다른 단백질, 예를 들어 항생제 마커의 발현도 또한 고려되어야만 한다. Of course, it should be understood that not all vectors function equally well in expressing the DNA sequences of the present invention. Likewise, not all hosts function identically for the same expression system. However, those skilled in the art will be able to make appropriate selections among a variety of vectors, expression control sequences, and hosts without undue experimentation and without departing from the scope of the present invention. For example, in selecting a vector, the host should be considered because the vector must be replicated within it. The number of copies of the vector, the ability to control the number of copies, and the expression of other proteins encoded by the vector, such as antibiotic markers, must also be considered.

본 발명은 또 다른 관점에서, 상기 벡터를 원핵생물 내로 도입하거나 원핵생물 내에서 발현시켜, 표적유전자의 mRNA 발현을 미세조절하는 방법에 관한 것이다.In another aspect, the present invention relates to a method for fine-regulating mRNA expression of a target gene by introducing the vector into prokaryotes or expressing them in prokaryotes.

본 발명은 또 다른 관점에서, 다음의 단계를 포함하는 목적물질 생산을 위한 표적유전자의 스크리닝 방법에 관한 것이다.In another aspect, the present invention relates to a screening method of a target gene for producing a target substance, comprising the steps of:

(a) 목적물질을 생산하고자 하는 대상 균주에 존재하고, 목적물질 생합성 경로에 참여하는 유전자들 중 어느 하나 이상의 유전자를 제1항의 방법으로 발현을 미세조절하는 단계; 및 (a) fine-regulating expression of any one or more genes among genes participating in a target substance biosynthetic pathway present in a target strain to be produced, according to the method of claim 1; And

(b) 상기 발현 미세조절에 따라 목적물질 생산수율이 향상되는 경우, 발현을 조절시킨 유전자를 목적물질 생산을 위한 표적유전자로 선정하는 단계.(b) selecting a gene whose expression is regulated as a target gene for production of a target substance when the production yield of the target substance is improved according to the expression microcontrol.

본 발명은 또 다른 관점에서, 다음의 단계를 포함하는 목적물질 생산균주의 개량방법에 관한 것이다.In another aspect, the present invention relates to a method for improving a target substance producing strain, comprising the steps of:

(a) 목적물질을 생산하고자 하는 대상 균주에 존재하고, 목적물질 생합성 경로에 참여하는 유전자들 중 어느 하나 이상의 유전자를 제1항의 방법으로 발현을 미세조절하는 단계; 및 (a) fine-regulating expression of any one or more genes among genes participating in a target substance biosynthetic pathway present in a target strain to be produced, according to the method of claim 1; And

(b) 상기 발현 미세조절에 따라 목적물질 생산수율이 향상되는 경우, 발현을 조절시킨 유전자를 목적물질 생산을 위한 표적유전자로 스크리닝하는 단계; 및(b) screening a gene whose expression has been regulated as a target gene for production of a target substance when the yield of the target substance is improved according to the expression micro-regulation; And

(c) 상기 스크리닝된 유전자의 발현정도를 도입하여 재조합 균주를 제조하는 단계.
(c) introducing the degree of expression of the screened gene to produce a recombinant strain.

실시예Example

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

합성 synthesis sRNAsRNA 의 성능 확인Check the performance of

1-1: 합성 1-1: Synthesis sRNAsRNA 제작 및 활용을 위한  For production and use sRNAsRNA 발현 플라스미드 제작 Production of expression plasmids

sRNA의 발현의 편의성을 확보하기 위하여 도 1과 같은 플라스미드를 제작하였다. 이후의 실험에서는 도 1의 플라스미드를 site-directed mutagenesis를 이용하여 sRNA나 프로모터를 변형하여 사용하였다. In order to ensure the convenience of expression of sRNA, a plasmid as shown in Fig. 1 was prepared. In the subsequent experiments, the plasmid of Fig. 1 was modified by site-directed mutagenesis using sRNA or promoter.

본 실시예 및 하기 실시예들에서 사용한 제한효소는 New England BioLabs (미국)와 Enzynomics (한국), PCR 중합효소는 Solgent (한국)에서 구입하였다. 프라이머는 Macrogen (한국)에서 구입하였으며, 기타 효소들은 Enzynomics (한국)에서 구입하였다. 이외의 것에 대해서는 별도로 표시하였다. The restriction enzymes used in this and the following examples were purchased from New England BioLabs (USA) and Enzynomics (Korea), and PCR polymerase from Solgent (Korea). Primers were purchased from Macrogen (Korea), and other enzymes were purchased from Enzynomics (Korea). Other things are indicated separately.

pBluescript II KS + (Stratagene)의 다중 클로닝 부위를 서열번호 1과 2의 프라이머를 이용하여 PCR을 수행하여 Pharmacia에서 제작한 pKK223-3 플라스미드의 HindIII/NaeI site에 삽입하였다. 다중 클로닝 부위의 PCR 산물은 PvuII와 NaeI으로 절단하였으며, pKK223-3 플라스미드는 HindIII 와 NaeI으로 절단 후 Klenow 중합효소를 이용하여 blunt 말단을 만들어 두 DNA 조각을 접합하여 플라스미드 pKK223-3 KS를 제작하였다. 이렇게 제작된 플라스미드에 sRNA 구조체와 그 발현을 위해 Pr 프로모터, 그리고 전사 종결자로 T1/TE을 삽입하여 sRNA 발현을 위한 플라스미드를 제작하였다. Pr 프로모터와 전사 종결자 T1/TE 및 sRNA 구조체의 서열은 기존 연구에 사용한 Rlowcat-PrMicC*Ter에서 서열번호 3과 서열번호 4의 프라이머를 이용하여 PCR을 수행하여 클로닝 하였다(Na, D et al , Nat Biotechnol ., 31(2), 170-174,2013). Pr 프로모터-MicC 구조체-T1/TE 전사종결자의 PCR 산물을 BamHI 과 NotI으로 절단하였으며, pKK223-3 KS도 또한 BamHI/NotI으로 절단하여 두 DNA 조각을 접합하였다. 이때 사용한 Pr 프로모터의 서열은 Registry of Standard Biological Parts 데이터(http://parts.igem.org/)에 등록된 BBa_R0051의 서열이며 T1/TE 프로모터는 같은 데이터 베이스의 BBa_B0015의 서열이다. Base pairing region 이라고 표현된 BPR 에는 DsRed2 형광단백질의 개시코돈부터 24 mer의 뉴클레오티드 서열을 추가하였다. 이렇게 만들어진 플라스미드는 pKK223-3 KS Pr MDsRed2라 명명하였다. BPR은 서열번호 5, 6의 프라이머를 이용하여 inverse PCR 기법을 통해서 삽입하였다. SgrS 서열의 구조체의 서열은 도 2와 같으며 이 또한 서열번호 7, 8의 프라이머를 이용한 inverse PCR 기법을 통하여 제작하였다. 이렇게 만들어진 플라스미드는 pKK223-3 KS Pr SDsRed2라 명명하였다. SgrS의 서열을 지니는 플라스미드의 맵은 도 1과 같으며, 플라스미드 제작에는 대장균 균주 DH5α를 사용하였다.The multiple cloning site of pBluescript II KS + (Stratagene) was inserted into the HindIII / NaeI site of the pKK223-3 plasmid produced by Pharmacia by performing PCR using the primers of SEQ ID NOS: 1 and 2. The PCR product of the multiple cloning site was digested with PvuII and NaeI, and the pKK223-3 plasmid was digested with HindIII and NaeI, followed by blunt termination using Klenow polymerase to construct two plasmid pKK223-3 KS. A plasmid for sRNA expression was constructed by inserting T1 / TE into the thus constructed plasmid with the sRNA construct, the Pr promoter for its expression, and the transcription terminator. The sequences of the Pr promoter, transcription terminator T1 / TE and sRNA constructs were cloned by PCR using primers of SEQ ID NOS: 3 and 4 in Rlowcat-PrMicC * Ter used in previous studies (Na, D et al , Nat Biotechnol ., 31 (2), 170-174, 2013). PCR products of the Pr promoter-MimC structure-T1 / TE transcription terminator were digested with BamHI and NotI, and pKK223-3 KS was also digested with BamHI / NotI to ligate the two DNA fragments. The sequence of the Pr promoter used is the sequence of BBa_R0051 registered in the Registry of Standard Biological Parts data (http://parts.igem.org/), and the T1 / TE promoter is the sequence of BBa_B0015 in the same database. In the BPR represented by the base pairing region, a 24-mer nucleotide sequence was added from the initiation codon of the DsRed2 fluorescent protein. The plasmid thus constructed was named pKK223-3 KS Pr MDsRed2. BPR was inserted by inverse PCR using the primers of SEQ ID NOS: 5 and 6. The sequence of the SgrS sequence was as shown in Fig. 2 and was also constructed by inverse PCR using the primers of SEQ ID NOS: 7 and 8. The plasmid thus constructed was named pKK223-3 KS Pr SDsRed2. The map of the plasmid having the sequence of SgrS is shown in Fig. 1, and the E. coli strain DH5? Was used for the plasmid production.

<사용한 프라이머 서열>&Lt; Primer Sequence Used >

[서열번호 1] 5'-GGCCAATTCAGCTGGTACCGGGCCCCCCCTCG-3'[SEQ ID NO: 1] 5'-GGCCAATTCAGCTGGTACCGGGCCCCCCCTCG-3 '

[서열번호 2] 5'-GGCCAATTGCCGGCGAGCTCCACCGCGGTGG-3'[SEQ ID NO: 2] 5'-GGCCAATTGCCGGCGAGCTCCACCGCGGTGG-3 '

[서열번호 3] 5'-GGCCTTAAGCGGCCGCTAACACCGTGCGTGTTGAC-3'[SEQ ID NO: 3] 5'-GGCCTTAAGCGGCCGCTAACACCGTGCGTGTTGAC-3 '

[서열번호 4] 5'-CCGGAATTGGATCCTATAAACGCAGAAAGGCCC-3'[SEQ ID NO: 4] 5'-CCGGAATTGGATCCTATAAACGCAGAAAGGCCC-3 '

[서열번호 5] 5'-CTCGCCATATATTTGTCTTTCTGTTGGGCCATTGCATTGC-3'[SEQ ID NO: 5] 5'-CTCGCCATATATTTGTCTTTCTGTTGGGCCATTGCATTGC-3 '

[서열번호 6] 5'-CAGTGAGAACGTCATGCAACCATTATCACCGCCAGAGG-3'[SEQ ID NO: 6] 5'-CAGTGAGAACGTCATGCAACCATTATCACCGCCAGAGG-3 '

[서열번호 7] 5'-GCCAGCAGATTATACCTGCTGGTTTTTTTTCTCGAGCCAGGCATCAAATAAAAC[SEQ ID NO: 7] 5'-GCCAGCAGATTATACCTGCTGGTTTTTTTTCTCGAGCCAGGCATCAAATAAAAC

G-3'G-3 '

[서열번호 8] 5'-GGGTGATTTTACACCAATAGACAAATATATGGCGAGCAGTGAGAACGTCATGCA[SEQ ID NO: 8] 5'-GGGTGATTTTACACCAATAGACAAATATATGGCGAGCAGTGAGAACGTCATGCA

ACCATTATCACCGCCAGAGG-3'
ACCATTATCACCGCCAGAGG-3 '

1-2: 합성 1-2: Synthesis sRNAsRNA 성능 조사를 위한 표적유전자 플라스미드 제작 Production of target gene plasmid for performance study

sRNA의 성능을 쉽게 확인하기 위한 표적유전자로 형광단백질인 DsRed2를 선정하였으며 DsRed2 유전자의 발현을 위하여 도 3과 같은 리포터 플라스미드를 제작하였다. pBluescript II KS + (Stratagene)의 다중 클로닝 부위를 서열번호 1과 2의 프라이머를 이용하여 PCR 수행하여 Pharmacia에서 제작한 pACYC184(New England BioLabs, 미국) 플라스미드의 XbaI/NaeI site에 삽입하였다. 다중 클로닝 부위의 PCR 산물은 PvuII와 NaeI으로 절단하였으며, pACYC184 플라스미드는 XbaI와 NaeI으로 절단 후 Klenow 중합효소를 이용하여 blunt 말단을 만들어 두 DNA 조각을 접합하여 플라스미드 pACYC184 KS를 제작하였다. sRNA의 표적 유전자로 형광 단백질을 지니고 있는 플라스미드를 제작하였다. 다중 클로닝 부위의 ApaI/SalI의 site에 lactose 프로모터와 형광 단백질 DsRed2의 유전자, 그리고 전사 종결자로 T1/TE 서열을 삽입하였다. 여기서 사용한 lactose 프로모터와 DsRed2 유전자, 그리고 T1/TE 전사 종결자는 기존 연구에서 사용한 Rlowcat-Plac-DsRed2에서 서열번호 9와 10을 이용해 PCR하여 제작되었다 (Na, D et al , Nat Biotechnol ., 31(2), 170-174, 2013). Lactose 프로모터는 pBluescript SK+ (Stratagene)을 템플릿으로 하여 PCR 을 통해 제작되었으며, DsRed2 유전자는 pDsRed2-N1(Clontech)을 템플릿으로 PCR을 통해 제작되었다. T1/TE 전사 종결자는 상기된 Registry of Standard Biological Parts 데이터 베이스(http://parts.igem.org/)에 등록된 BBa_R0015 서열이다. 플라스미드 제작에는 대장균 DH5α를 사용하였다.A fluorescent protein DsRed2 was selected as a target gene for easily confirming the performance of sRNA, and a reporter plasmid as shown in Fig. 3 was prepared for the expression of the DsRed2 gene. The multiple cloning site of pBluescript II KS + (Stratagene) was inserted into the XbaI / NaeI site of the plasmid pACYC184 (New England BioLabs, USA) prepared in Pharmacia by PCR using the primers of SEQ ID NOS: 1 and 2. The PCR product of the multiple cloning site was digested with PvuII and NaeI. The plasmid pACYC184 plasmid was digested with XbaI and NaeI, blunt ends were made using Klenow polymerase, and two DNA fragments were ligated to produce plasmid pACYC184 KS. A plasmid carrying a fluorescent protein as a target gene of sRNA was prepared. The lactase promoter, the gene for the fluorescent protein DsRed2, and the T1 / TE sequence as a transcription terminator were inserted into the ApaI / SalI site at the multiple cloning site. The lactose promoter, DsRed2 gene, and T1 / TE transcription terminator used in this study were constructed by PCR using SEQ ID NOS: 9 and 10 in Rlowcat-Plac-DsRed2 (Na, D et al , Nat Biotechnol ., 31 (2), 170-174, 2013). The Lactose promoter was constructed by PCR using pBluescript SK + (Stratagene) as a template, and the DsRed2 gene was constructed by PCR using pDsRed2-N1 (Clontech) as a template. The T1 / TE transcription terminator is the BBa_R0015 sequence registered in the above Registry of Standard Biological Parts database (http://parts.igem.org/). Escherichia coli DH5? Was used for plasmid production.

<사용한 프라이머 서열>&Lt; Primer Sequence Used >

[서열번호 9] 5'-GGCCTTAAGGGCCCGTGGATAACCGTATTACCGC-3'[SEQ ID NO: 9] 5'-GGCCTTAAGGGCCCGTGGATAACCGTATTACCGC-3 '

[서열번호 10] 5'-CCGGAATTGTCGACTATAAACGCAGAAAGGCCC-3'
[SEQ ID NO: 10] 5'-CCGGAATTGTCGACTATAAACGCAGAAAGGCCC-3 '

1-3: 합성 1-3: Synthesis sRNAsRNA 의 성능 조사Performance survey

상기에서 제작된 플라스미드를 이용하여 sRNA에 의한 표적 유전자의 발현 억제 성능을 조사하기 위한 실험을 진행하였다. DH5α에 실시예 1-2에서 제작한 리포터 플라스미드와 실시예 1-1에서 제작한 SgrS의 구조체를 지니며 DsRed2 를 표적단백질로 하는 sRNA를 지니는 플라스미드를 동시에 형질전환을 하였다. 그리고 Ampicilin(Ap) 과 Chrolamphenicol(Cm) 항생제를 포함한 LB 플레이트를 이용하여 두 플라스미드를 모두 지니는 콜로니를 선택 후 Ap와 Cm이 포함된 LB 배지에 접종하였다. 그리고 stationary phase까지 배양하여 형광 발현 여부를 측정하였다. 도 4와 같이 SgrS 구조체를 지니는 anti-DsRed2 합성 sRNA는 대조군 대비 99%의 발현 억제 효율을 보였다. 두 가지 균주는 모두 pACYC184 KS Plac DsRed2를 지니고 있으며, 대조군과 SgrS들은 각기 pKK223-3 KS, pKK223-3 KS SDsRed2를 지니고 있다. 형광 측정의 대조군으로는 pACYC184 KS와 pKK223-3 KS를 지니고 있는 균주를 사용하였다.
Experiments were conducted to investigate the inhibitory effect of sRNA on the expression of a target gene using the plasmid prepared above. The reporter plasmid prepared in Example 1-2 and the SgrS construct prepared in Example 1-1 were simultaneously transformed into DH5α and a plasmid carrying sRNA with DsRed2 as a target protein. Colonies carrying both plasmids were selected using LB plates containing Ampicilin (Ap) and Chrolamphenicol (Cm) antibiotics, and then inoculated into LB medium containing Ap and Cm. Then, the cells were cultured up to stationary phase to measure fluorescence expression. As shown in FIG. 4, the anti-DsRed2 synthetic sRNA having the SgrS structure showed 99% inhibition of expression compared to the control. Both strains have pACYC184 KS Plac DsRed2, and the control and SgrS have pKK223-3 KS and pKK223-3 KS SDsRed2, respectively. As a control group for fluorescence measurement, strains having pACYC184 KS and pKK223-3 KS were used.

1-4: 합성 1-4: Synthesis sRNAsRNA 의 특이성 조사Specificity survey

sRNA 에 의한 표적 유전자의 발현 억제가 BPR 에 의하여 특이적으로 이뤄지는지 알아보기 위한 실험을 수행하였다. 이 실험에서는 SgrS 구조체를 가지며 24 개의 뉴클레오타이드로 이뤄지는 BPR을 포함하는 sRNA를 갖는 플라스미드 (pKK223-3 KS SDsRed2)를 사용하였다. BPR이 없는 플라스미드를 pKK223-3 KS SDsRed2를 템플릿으로 서열번호 11과 12의 프라이머를 이용, Inverse PCR 기법을 이용해 제작하였으며, 이는 pKK223-3 KS SO라고 명명하였다. 이는 이하 데이터에 non-targeting sRNA라고 표기된 샘플에 사용되었다. 그리고 실시예 1-3과 같은 방법으로 실험을 진행하였다. 그 결과는 도 5에 보여진 바와 같으며, BPR이 없는 sRNA는 대조군 대비 2%의 형광단백질 발현 억제 효율을 보였으며, 24개의 뉴클레오타이드의 BPR을 지니는 sRNA는 98%의 형광단백질 발현 억제 효율을 보였다. 이는 합성 sRNA의 구조체가 아닌, BPR에 의해서 특정 유전자의 억제가 이뤄짐을 보여준다.Experiments were conducted to investigate whether the inhibition of target gene expression by sRNA was specifically effected by BPR. In this experiment, a plasmid (pKK223-3 KS SDsRed2) carrying an sRNA containing a BPR consisting of 24 nucleotides with a SgrS structure was used. The plasmid without BPR was constructed by using the inverse PCR technique using the primers of SEQ ID NOs: 11 and 12 as a template of pKK223-3 KS SDsRed2, which was named pKK223-3 KS SO. This was used for the samples labeled non-targeting sRNA in the following data. The experiment was carried out in the same manner as in Example 1-3. The results are shown in FIG. 5. As shown in FIG. 5, sRNA without BPR showed 2% inhibition of fluorescent protein expression compared to the control, and sRNA with 24 nucleotide BPR showed 98% inhibition of fluorescent protein expression. This shows that inhibition of a specific gene is achieved by BPR rather than the structure of the synthetic sRNA.

<사용한 프라이머 서열>&Lt; Primer Sequence Used >

[서열번호 11] 5'-TATTGGTGTAAAATCACCCGCCAGCAG-3'[SEQ ID NO: 11] 5'-TATTGGTGTAAAATCACCCGCCAGCAG-3 '

[서열번호 12] 5'-GCAACCATTATCACCGCCAGAGG-3'
[SEQ ID NO: 12] 5'-GCAACCATTATCACCGCCAGAGG-3 '

다양한 프로모터 도입을 통한 Through the introduction of various promoters sRNAsRNA 발현 조절 및 그 효과 Regulation of expression and its effect

다양한 유전자 발현 세기를 나타내는 프로모터를 사용하여 sRNA의 발현양을 조절함으로써, 표적유전자 억제의 미세조절 실험을 수행하였다. 실시예 1의 플라스미드와 실험방법을 사용하였으며 sRNA의 프로모터는 Inverse PCR 기법을 이용하여 Anderson promoter collection의 프로모터들을 서열번호 13~46의 프라이머를 사용하여 클로닝 하였다. sRNA의 구조체로는 SgrS를 사용하였으며, 프로모터는 J23100, J23101, J23102, J23103, J23104, J23105, J23106, J23107, J23109, J23111, J23112, J23113, J23114, J23115, J23116, J23117, J23118를 사용하였다. 그 결과는 도 6과 같으며, 프로모터의 강도는 단백질 억제 효율의 로그값과 비례함을 알 수 있었다. An experiment was conducted to control the expression of sRNA by using a promoter showing various gene expression levels. The plasmid and experimental method of Example 1 were used, and the promoters of the Anderson promoter collection were cloned using the primers of SEQ ID NOS: 13 to 46 using the inverse PCR technique. SgrS was used as the structure of the sRNA and the promoters were J23100, J23101, J23102, J23103, J23104, J23105, J23106, J23107, J23109, J23111, J23112, J23113, J23114, J23115, J23116, J23117, J23118. The results are shown in FIG. 6, and the intensity of the promoter was proportional to the logarithm of protein inhibition efficiency.

<프로모터 클로닝에 사용한 프라이머 서열>&Lt; Primer sequence used for promoter cloning >

J23100: J23100:

[서열번호 13] 5'-GACTGAGCTAGCCGTCAAGCGGCCGCCACCGCGGTGGAGC-3'[SEQ ID NO: 13] 5'-GACTGAGCTAGCCGTCAAGCGGCCGCCACCGCGGTGGAGC-3 '

[서열번호 14] 5'-CTAGGTACAGTGCTAGCGATGACGTTCTCACTGCTCGCC-3'[SEQ ID NO: 14] 5'-CTAGGTACAGTGCTAGCGATGACGTTCTCACTGCTCGCC-3 '

J23101:J23101:

[서열번호 15] 5'-CTAGGTATTATGCTAGCGATGACGTTCTCACTGCTCGCC-3'[SEQ ID NO: 15] 5'-CTAGGTATTATGCTAGCGATGACGTTCTCACTGCTCGCC-3 '

[서열번호 16] 5'-GACTGAGCTAGCTGTAAAGCGGCCGCCACCGCGGTGGAGC-3'[SEQ ID NO: 16] 5'-GACTGAGCTAGCTGTAAAGCGGCCGCCACCGCGGTGGAGC-3 '

J23102:J23102:

[서열번호 17] 5'-CTAGGTACTGTGCTAGCGATGACGTTCTCACTGCTCGCC-3'[SEQ ID NO: 17] 5'-CTAGGTACTGTGCTAGCGATGACGTTCTCACTGCTCGCC-3 '

[서열번호 18] 5'-GACTGAGCTAGCTGTCAAGCGGCCGCCACCGCGGTGGAGC-3'[SEQ ID NO: 18] 5'-GACTGAGCTAGCTGTCAAGCGGCCGCCACCGCGGTGGAGC-3 '

J23103:J23103:

[서열번호 19] 5'-CTAGGGATTATGCTAGCGATGACGTTCTCACTGCTCGCC-3'[SEQ ID NO: 19] 5'-CTAGGGATTATGCTAGCGATGACGTTCTCACTGCTCGCC-3 '

[서열번호 20] 5'-GACTGAGCTAGCTATCAGGCGGCCGCCACCGCGGTGGAGC-3'[SEQ ID NO: 20] 5'-GACTGAGCTAGCTATCAGGCGGCCGCCACCGCGGTGGAGC-3 '

J23104:J23104:

[서열번호 21] 5'-CTAGGTATTGTGCTAGCGATGACGTTCTCACTGCTCGCC-3'[SEQ ID NO: 21] 5'-CTAGGTATTGTGCTAGCGATGACGTTCTCACTGCTCGCC-3 '

[서열번호 22] 5'-GACTGAGCTAGCTGTCAAGCGGCCGCCACCGCGGTGGAGC-3'[SEQ ID NO: 22] 5'-GACTGAGCTAGCTGTCAAGCGGCCGCCACCGCGGTGGAGC-3 '

J23105:J23105:

[서열번호 23] 5'-GACTGAGCTAGCCGTAAAGCGGCCGCCACCGCGGTGGAGC-3'[SEQ ID NO: 23] 5'-GACTGAGCTAGCCGTAAAGCGGCCGCCACCGCGGTGGAGC-3 '

[서열번호 24] 5'-CTAGGTACTATGCTAGCGATGACGTTCTCACTGCTCGC-3'[SEQ ID NO: 24] 5'-CTAGGTACTATGCTAGCGATGACGTTCTCACTGCTCGC-3 '

J23106:J23106:

[서열번호 25] 5'-CTAGGTATAGTGCTAGCGATGACGTTCTCACTGCTCGCC-3'[SEQ ID NO: 25] 5'-CTAGGTATAGTGCTAGCGATGACGTTCTCACTGCTCGCC-3 '

[서열번호 26] 5'-GACTGAGCTAGCCGTAAAGCGGCCGCCACCGCGGTGGAGC-3'[SEQ ID NO: 26] 5'-GACTGAGCTAGCCGTAAAGCGGCCGCCACCGCGGTGGAGC-3 '

J23107:J23107:

[서열번호 27] 5'-CTAGGTATTATGCTAGCGATGACGTTCTCACTGCTCGCC-3'[SEQ ID NO: 27] 5'-CTAGGTATTATGCTAGCGATGACGTTCTCACTGCTCGCC-3 '

[서열번호 28] 5'-GGCTGAGCTAGCCGTAAAGCGGCCGCCACCGCGGTGGAGC-3'[SEQ ID NO: 28] 5'-GGCTGAGCTAGCCGTAAAGCGGCCGCCACCGCGGTGGAGC-3 '

J23109:J23109:

[서열번호 29] 5'-GACTGAGCTAGCTGTAAAGCGGCCGCCACCGCGGTGGAGC-3'[SEQ ID NO: 29] 5'-GACTGAGCTAGCTGTAAAGCGGCCGCCACCGCGGTGGAGC-3 '

[서열번호 30] 5'-CTAGGGACTGTGCTAGCGATGACGTTCTCACTGCTCGC-3'[SEQ ID NO: 30] 5'-CTAGGGACTGTGCTAGCGATGACGTTCTCACTGCTCGC-3 '

J23111:J23111:

[서열번호 31] 5'-CTAGGTATAGTGCTAGCGATGACGTTCTCACTGCTCGCC-3'[SEQ ID NO: 31] 5'-CTAGGTATAGTGCTAGCGATGACGTTCTCACTGCTCGCC-3 '

[서열번호 32] 5'-GACTGAGCTAGCCGTCAAGCGGCCGCCACCGCGGTGGAGC-3'[SEQ ID NO: 32] 5'-GACTGAGCTAGCCGTCAAGCGGCCGCCACCGCGGTGGAGC-3 '

J23112:J23112:

[서열번호 33] 5'-CTAGGGATTATGCTAGCGATGACGTTCTCACTGCTCGCC-3'[SEQ ID NO: 33] 5'-CTAGGGATTATGCTAGCGATGACGTTCTCACTGCTCGCC-3 '

[서열번호 34] 5'-GACTGAGCTAGCTATCAGGCGGCCGCCACCGCGGTGGAGC-3'[SEQ ID NO: 34] 5'-GACTGAGCTAGCTATCAGGCGGCCGCCACCGCGGTGGAGC-3 '

J23113:J23113:

[서열번호 35] 5'-CTAGGGATTATGCTAGCGATGACGTTCTCACTGCTCGCC-3'[SEQ ID NO: 35] 5'-CTAGGGATTATGCTAGCGATGACGTTCTCACTGCTCGCC-3 '

[서열번호 36] 5'-GACTGAGCTAGCCATCAGGCGGCCGCCACCGCGGTGGAGC-3'[SEQ ID NO: 36] 5'-GACTGAGCTAGCCATCAGGCGGCCGCCACCGCGGTGGAGC-3 '

J23114:J23114:

[서열번호 37] 5'-GACTGAGCTAGCCATAAAGCGGCCGCCACCGCGGTGGAGC-3'[SEQ ID NO: 37] 5'-GACTGAGCTAGCCATAAAGCGGCCGCCACCGCGGTGGAGC-3 '

[서열번호 38] 5'-CTAGGTACAATGCTAGCGATGACGTTCTCACTGCTCGC-3'[SEQ ID NO: 38] 5'-CTAGGTACAATGCTAGCGATGACGTTCTCACTGCTCGC-3 '

J23115:J23115:

[서열번호 39] 5'-CTTGGTACAATGCTAGCGATGACGTTCTCACTGCTCGCC-3'[SEQ ID NO: 39] 5'-CTTGGTACAATGCTAGCGATGACGTTCTCACTGCTCGCC-3 '

[서열번호 40] 5'-GGCTGAGCTAGCTATAAAGCGGCCGCCACCGCGGTGGAGC-3'[SEQ ID NO: 40] 5'-GGCTGAGCTAGCTATAAAGCGGCCGCCACCGCGGTGGAGC-3 '

J23116:J23116:

[서열번호 41] 5'-CTAGGGACTATGCTAGCGATGACGTTCTCACTGCTCGCC-3'[SEQ ID NO: 41] 5'-CTAGGGACTATGCTAGCGATGACGTTCTCACTGCTCGCC-3 '

[서열번호 42] 5'-GACTGAGCTAGCTGTCAAGCGGCCGCCACCGCGGTGGAGC-3'[SEQ ID NO: 42] 5'-GACTGAGCTAGCTGTCAAGCGGCCGCCACCGCGGTGGAGC-3 '

J23117:J23117:

[서열번호 43] 5'-CTAGGGATTGTGCTAGCGATGACGTTCTCACTGCTCGCC-3'[SEQ ID NO: 43] 5'-CTAGGGATTGTGCTAGCGATGACGTTCTCACTGCTCGCC-3 '

[서열번호 44] 5'-GACTGAGCTAGCTGTCAAGCGGCCGCCACCGCGGTGGAGC-3'[SEQ ID NO: 44] 5'-GACTGAGCTAGCTGTCAAGCGGCCGCCACCGCGGTGGAGC-3 '

J23118:J23118:

[서열번호 45] 5'-CTAGGTATTGTGCTAGCGATGACGTTCTCACTGCTCGCC-3'[SEQ ID NO: 45] 5'-CTAGGTATTGTGCTAGCGATGACGTTCTCACTGCTCGCC-3 '

[서열번호 46] 5'-GACTGAGCTAGCCGTCAAGCGGCCGCCACCGCGGTGGAGC-3'
[SEQ ID NO: 46] 5'-GACTGAGCTAGCCGTCAAGCGGCCGCCACCGCGGTGGAGC-3 '

sRNAsRNA 의 구조체 돌연변이를 통한 표적유전자 억제의 미세조절Modulation of target gene inhibition through mutation in the structure of

sRNA 구조체에 돌연변이를 일으켜 그 활성을 변화시켜 표적유전자 억제 정도를 미세조절 하는 실험을 수행하였다. 실시예1의 플라스미드와 실험방법을 사용하였으며 sRNA의 프로모터로는 이전 실험에서 74%의 억제율을 보인 J23105를 사용하였다. 도면 8의 실험만 J23108을 이용하여 실험이 이루어졌다. J23108의 프로모터로 sRNA를 발현하는 플라스미드는 서열번호 51과 52를 이용한 Inverse PCR 을 통해서 제작되었다. 그리고 아래에 나열된 서열의 프라이머를 이용해 Inverse PCR 기법을 통해서 구조체에 돌연변이를 일으켰다. 대조군으로는 sRNA 구조체가 없는 pKK223-3 KS, 그리고 BPR이 없는 pKK223-3 KS SO를 사용하였다. mRNA SgrS 구조체의 stem loop에서 stem의 서열 돌연변이(도 7), stem 길이의 변화(도 8), loop의 서열(도 9), UAUU 서열의 돌연변이(도 10), U tail의 길이(도 11)가 모두 sRNA 활성을 약화 혹은 강화시킬 수 있었다. U tail은 전사 종결자이자 Hfq 결합 부위이기도 하다. 이들 돌연변이의 조합을 이용해 sRNA의 억제 활성을 더욱 약화하거나 강화시킬 수 있으리라 생각된다. The sRNA constructs were mutagenized and their activities were changed to control the degree of target gene inhibition. The plasmid and experimental method of Example 1 were used, and as a promoter of sRNA, J23105, which showed 74% inhibition rate in the previous experiment, was used. Experiment was conducted using J23108 only for the experiment of FIG. The plasmid expressing sRNA with the promoter of J23108 was constructed by inverse PCR using SEQ ID NOS: 51 and 52. Mutations were made in the construct through inverse PCR using primers of the sequences listed below. As control, pKK223-3 KS without sRNA construct and pKK223-3 KS SO without BPR were used. (Fig. 11), the sequence of the loop (Fig. 9), the mutation of the UAUU sequence (Fig. 10), the length of the U tail (Fig. 11) Could weaken or enhance sRNA activity. U tail is also a transcription terminator and Hfq binding site. The combination of these mutations may further weaken or enhance the inhibitory activity of sRNA.

<도 7의 돌연변이에 사용한 프라이머 서열>&Lt; Primer sequence used for mutation in Fig. 7 >

공통사용 프라이머:Common use primer:

[서열번호 47] 5'-AATCACCCGCCAGCAGATTATACCTGCTGG-3'[SEQ ID NO: 47] 5'-AATCACCCGCCAGCAGATTATACCTGCTGG-3 '

GGAC:GGAC:

[서열번호 48] 5'-TTAGTCCAATAATGGCGAGCAGTGAGAAC-3'[SEQ ID NO: 48] 5'-TTAGTCCAATAATGGCGAGCAGTGAGAAC-3 '

CCUG:CCUG:

[서열번호 49] 5'-TTACAGGAATAATGGCGAGCAGTGAGAAC-3'[SEQ ID NO: 49] 5'-TTACAGGAATAATGGCGAGCAGTGAGAAC-3 '

CCUCCCUC

[서열번호 50] 5'-TTAGTGGAATAATGGCGAGCAGTGAGAAC-3'
[SEQ ID NO: 50] 5'-TTAGTGGAATAATGGCGAGCAGTGAGAAC-3 '

<도 8의 돌연변이에 사용한 프라이머 서열>&Lt; Primer sequence used in the mutation of Fig. 8 >

J23108 제작 프라이머J23108 Production primer

[서열번호 51] 5'-GACTGAGCTAGCTGTCAGGCGGCCGCCACCGCGGTGGAGC-3'[SEQ ID NO: 51] 5'-GACTGAGCTAGCTGTCAGGCGGCCGCCACCGCGGTGGAGC-3 '

[서열번호 52] 5'-CTAGGTATAATGCTAGCGATGACGTTCTCACTGCTCGCC-3'[SEQ ID NO: 52] 5'-CTAGGTATAATGCTAGCGATGACGTTCTCACTGCTCGCC-3 '

6nt stem:6nt stem:

[서열번호 53] 5'-TTACCCACCAATAATGGCGAGCAGTGAGAAC-3'[SEQ ID NO: 53] 5'-TTACCCACCAATAATGGCGAGCAGTGAGAAC-3 '

[서열번호 54] 5'-AATCCCACCCGCCAGCAGATTATACCTGCTGG-3'[SEQ ID NO: 54] 5'-AATCCCACCCGCCAGCAGATTATACCTGCTGG-3 '

8nt stem:8nt stem:

[서열번호 55] 5'-TTACCCCCACCAATAATGGCGAGCAGTGAGAAC-3'[SEQ ID NO: 55] 5'-TTACCCCCACCAATAATGGCGAGCAGTGAGAAC-3 '

[서열번호 56] 5'-AATCCCCCACCCGCCAGCAGATTATACCTGCTGG-3'
[SEQ ID NO: 56] 5'-AATCCCCCACCCGCCAGCAGATTATACCTGCTGG-3 '

<도 9의 돌연변이에 사용한 프라이머 서열><Primer sequence used in the mutation of FIG. 9>

CCGG:CCGG:

[서열번호 57] 5'-GGACACCAATAATGGCGAGC-3'[SEQ ID NO: 57] 5'-GGACACCAATAATGGCGAGC-3 '

[서열번호 58] 5'-GGTCACCCGCCAGCAGATTATAC-3'[SEQ ID NO: 58] 5'-GGTCACCCGCCAGCAGATTATAC-3 '

CCCC:CCCC:

[서열번호 59] 5'-GGACACCAATAATGGCGAGC-3'[SEQ ID NO: 59] 5'-GGACACCAATAATGGCGAGC-3 '

[서열번호 60] 5'-CCTCACCCGCCAGCAGATTATAC-3'[SEQ ID NO: 60] 5'-CCTCACCCGCCAGCAGATTATAC-3 '

CCUU:CCUU:

[서열번호 61] 5'-GGACACCAATAATGGCGAGC-3'[SEQ ID NO: 61] 5'-GGACACCAATAATGGCGAGC-3 '

[서열번호 62] 5'-TTTCACCCGCCAGCAGATTATAC-3'[SEQ ID NO: 62] 5'-TTTCACCCGCCAGCAGATTATAC-3 '

GGGG;GGGG;

[서열번호 63] 5'-CCACACCAATAATGGCGAGC-3'[SEQ ID NO: 63] 5'-CCACACCAATAATGGCGAGC-3 '

[서열번호 64] 5'-GGTCACCCGCCAGCAGATTATAC-3'[SEQ ID NO: 64] 5'-GGTCACCCGCCAGCAGATTATAC-3 '

GGCC:GGCC:

[서열번호 65] 5'-CCACACCAATAATGGCGAGC-3'[SEQ ID NO: 65] 5'-CCACACCAATAATGGCGAGC-3 '

[서열번호 66] 5'-CCTCACCCGCCAGCAGATTATAC-3'[SEQ ID NO: 66] 5'-CCTCACCCGCCAGCAGATTATAC-3 '

GGUU:GGUU:

[서열번호 67] 5'-CCACACCAATAATGGCGAGC-3'[SEQ ID NO: 67] 5'-CCACACCAATAATGGCGAGC-3 '

[서열번호 68] 5'-TTTCACCCGCCAGCAGATTATAC-3'[SEQ ID NO: 68] 5'-TTTCACCCGCCAGCAGATTATAC-3 '

UUGG:UUGG:

[서열번호 69] 5'-AAACACCAATAATGGCGAGC-3'[SEQ ID NO: 69] 5'-AAACACCAATAATGGCGAGC-3 '

[서열번호 70] 5'-GGTCACCCGCCAGCAGATTATAC-3'[SEQ ID NO: 70] 5'-GGTCACCCGCCAGCAGATTATAC-3 '

UUCC:UUCC:

[서열번호 71] 5'-AAACACCAATAATGGCGAGC-3' [SEQ ID NO: 71] 5'-AAACACCAATAATGGCGAGC-3 '

[서열번호 72] 5'-CCTCACCCGCCAGCAGATTATAC-3' [SEQ ID NO: 72] 5'-CCTCACCCGCCAGCAGATTATAC-3 '

UUUU:UUUU:

[서열번호 73] 5'-AAACACCAATAATGGCGAGC-3'[SEQ ID NO: 73] 5'-AAACACCAATAATGGCGAGC-3 '

[서열번호 74] 5'-TTTCACCCGCCAGCAGATTATAC-3'
[SEQ ID NO: 74] 5'-TTTCACCCGCCAGCAGATTATAC-3 '

<도 10의 돌연변이에 사용한 프라이머 서열><Primer sequence used in the mutation of FIG. 10>

공통사용 프라이머Commonly used primer

[서열번호 75] 5'-GACAAATATATGGCGAGCAG-3'[SEQ ID NO: 75] 5'-GACAAATATATGGCGAGCAG-3 '

GAUU:GAUU:

[서열번호 76] 5'-GATTGGTGTAAAATCACCCGCCAGCAG-3'[SEQ ID NO: 76] 5'-GATTGGTGTAAAATCACCCGCCAGCAG-3 '

UCUU:UCUU:

[서열번호 77] 5'-GTCTTGGTGTAAAATCACCCGCCAGCAG-3'[SEQ ID NO: 77] 5'-GTCTTGGTGTAAAATCACCCGCCAGCAG-3 '

UACU:UACU:

[서열번호 78] 5'-TACTGGTGTAAAATCACCCGCCAGCAG-3'[SEQ ID NO: 78] 5'-TACTGGTGTAAAATCACCCGCCAGCAG-3 '

UAAU:UAAU:

[서열번호 79] 5'-TAATGGTGTAAAATCACCCGCCAGCAG-3'[SEQ ID NO: 79] 5'-TAATGGTGTAAAATCACCCGCCAGCAG-3 '

UAUC:UAUC:

[서열번호 80] 5'-TATCGGTGTAAAATCACCCGCCAGCAG-3'[SEQ ID NO: 80] 5'-TATCGGTGTAAAATCACCCGCCAGCAG-3 '

UAUA:UAUA:

[서열번호 81] 5'-TATAGGTGTAAAATCACCCGCCAGCAG-3'[SEQ ID NO: 81] 5'-TATAGGTGTAAAATCACCCGCCAGCAG-3 '

GCCC:GCCC:

[서열번호 82] 5'-GCCCGGTGTAAAATCACCCGCCAGCAG-3'[SEQ ID NO: 82] 5'-GCCCGGTGTAAAATCACCCGCCAGCAG-3 '

GCAC:GCAC:

[서열번호 83] 5'-GCACGGTGTAAAATCACCCGCCAGCAG-3'[SEQ ID NO: 83] 5'-GCACGGTGTAAAATCACCCGCCAGCAG-3 '

GACC:GACC:

[서열번호 84] 5'-GACCGGTGTAAAATCACCCGCCAGCAG-3'[SEQ ID NO: 84] 5'-GACCGGTGTAAAATCACCCGCCAGCAG-3 '

GAAC:GAAC:

[서열번호 85] 5'-GACCGGTGTAAAATCACCCGCCAGCAG-3'
[SEQ ID NO: 85] 5'-GACCGGTGTAAAATCACCCGCCAGCAG-3 '

<도 11의 돌연변이에 사용한 프라이머 서열><Primer sequence used in the mutation of FIG. 11>

공통사용 프라이머:Common use primer:

[서열번호 86] 5'-CTCGAGCCAGGC-3'[SEQ ID NO: 86] 5'-CTCGAGCCAGGC-3 '

U7:U7:

[서열번호 87] 5'-AAAAAAACCAGCAGGTATAATCTGCTGGCG-3'[SEQ ID NO: 87] 5'-AAAAAAACCAGCAGGTATAATCTGCTGGCG-3 '

U6:U6:

[서열번호 88] 5'-AAAAAACCAGCAGGTATAATCTGCTGGCG-3'[SEQ ID NO: 88] 5'-AAAAAACCAGCAGGTATAATCTGCTGGCG-3 '

U5:U5:

[서열번호 89] 5'-AAAAACCAGCAGGTATAATCTGCTGGCG-3'[SEQ ID NO: 89] 5'-AAAAACCAGCAGGTATAATCTGCTGGCG-3 '

U4:U4:

[서열번호 90] 5'-AAAACCAGCAGGTATAATCTGCTGGCG-3'[SEQ ID NO: 90] 5'-AAAACCAGCAGGTATAATCTGCTGGCG-3 '

<110> Korea Advanced Institute of Science and Technology <120> Method for Fine-Tuning Gene Expression Using Synthetic Regulatory Small RNA <130> P13-B298 <160> 91 <170> KopatentIn 2.0 <210> 1 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> p1 <400> 1 ggccaattca gctggtaccg ggccccccct cg 32 <210> 2 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> p2 <400> 2 ggccaattgc cggcgagctc caccgcggtg g 31 <210> 3 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> p3 <400> 3 ggccttaagc ggccgctaac accgtgcgtg ttgac 35 <210> 4 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> p4 <400> 4 ccggaattgg atcctataaa cgcagaaagg ccc 33 <210> 5 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> p5 <400> 5 ctcgccatat atttgtcttt ctgttgggcc attgcattgc 40 <210> 6 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> p6 <400> 6 cagtgagaac gtcatgcaac cattatcacc gccagagg 38 <210> 7 <211> 55 <212> DNA <213> Artificial Sequence <220> <223> p7 <400> 7 gccagcagat tatacctgct ggtttttttt ctcgagccag gcatcaaata aaacg 55 <210> 8 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> p8 <400> 8 gggtgatttt acaccaatag acaaatatat ggcgagcagt gagaacgtca tgcaaccatt 60 atcaccgcca gagg 74 <210> 9 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> p9 <400> 9 ggccttaagg gcccgtggat aaccgtatta ccgc 34 <210> 10 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> p10 <400> 10 ccggaattgt cgactataaa cgcagaaagg ccc 33 <210> 11 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> p11 <400> 11 tattggtgta aaatcacccg ccagcag 27 <210> 12 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> p12 <400> 12 gcaaccatta tcaccgccag agg 23 <210> 13 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23100-f <400> 13 gactgagcta gccgtcaagc ggccgccacc gcggtggagc 40 <210> 14 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> J23100-r <400> 14 ctaggtacag tgctagcgat gacgttctca ctgctcgcc 39 <210> 15 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> J23101-f <400> 15 ctaggtatta tgctagcgat gacgttctca ctgctcgcc 39 <210> 16 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23101-r <400> 16 gactgagcta gctgtaaagc ggccgccacc gcggtggagc 40 <210> 17 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> J23102-f <400> 17 ctaggtactg tgctagcgat gacgttctca ctgctcgcc 39 <210> 18 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23102-r <400> 18 gactgagcta gctgtcaagc ggccgccacc gcggtggagc 40 <210> 19 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> J23103-f <400> 19 ctagggatta tgctagcgat gacgttctca ctgctcgcc 39 <210> 20 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23103-r <400> 20 gactgagcta gctatcaggc ggccgccacc gcggtggagc 40 <210> 21 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> J23104-f <400> 21 ctaggtattg tgctagcgat gacgttctca ctgctcgcc 39 <210> 22 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23104-r <400> 22 gactgagcta gctgtcaagc ggccgccacc gcggtggagc 40 <210> 23 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23105-f <400> 23 gactgagcta gccgtaaagc ggccgccacc gcggtggagc 40 <210> 24 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> J23105-r <400> 24 ctaggtacta tgctagcgat gacgttctca ctgctcgc 38 <210> 25 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> J23106-f <400> 25 ctaggtatag tgctagcgat gacgttctca ctgctcgcc 39 <210> 26 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23106-r <400> 26 gactgagcta gccgtaaagc ggccgccacc gcggtggagc 40 <210> 27 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> J23107-f <400> 27 ctaggtatta tgctagcgat gacgttctca ctgctcgcc 39 <210> 28 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23107-r <400> 28 ggctgagcta gccgtaaagc ggccgccacc gcggtggagc 40 <210> 29 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23109-f <400> 29 gactgagcta gctgtaaagc ggccgccacc gcggtggagc 40 <210> 30 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> J23109-r <400> 30 ctagggactg tgctagcgat gacgttctca ctgctcgc 38 <210> 31 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> J23111-f <400> 31 ctaggtatag tgctagcgat gacgttctca ctgctcgcc 39 <210> 32 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23111-r <400> 32 gactgagcta gccgtcaagc ggccgccacc gcggtggagc 40 <210> 33 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> J23112-f <400> 33 ctagggatta tgctagcgat gacgttctca ctgctcgcc 39 <210> 34 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23112-r <400> 34 gactgagcta gctatcaggc ggccgccacc gcggtggagc 40 <210> 35 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> J23113-f <400> 35 ctagggatta tgctagcgat gacgttctca ctgctcgcc 39 <210> 36 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23113-r <400> 36 gactgagcta gccatcaggc ggccgccacc gcggtggagc 40 <210> 37 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23114-f <400> 37 gactgagcta gccataaagc ggccgccacc gcggtggagc 40 <210> 38 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> J23114-r <400> 38 ctaggtacaa tgctagcgat gacgttctca ctgctcgc 38 <210> 39 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> J23115-f <400> 39 cttggtacaa tgctagcgat gacgttctca ctgctcgcc 39 <210> 40 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23115-r <400> 40 ggctgagcta gctataaagc ggccgccacc gcggtggagc 40 <210> 41 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> J23116-f <400> 41 ctagggacta tgctagcgat gacgttctca ctgctcgcc 39 <210> 42 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23116-r <400> 42 gactgagcta gctgtcaagc ggccgccacc gcggtggagc 40 <210> 43 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> J23117-f <400> 43 ctagggattg tgctagcgat gacgttctca ctgctcgcc 39 <210> 44 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23117-r <400> 44 gactgagcta gctgtcaagc ggccgccacc gcggtggagc 40 <210> 45 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> J23118-f <400> 45 ctaggtattg tgctagcgat gacgttctca ctgctcgcc 39 <210> 46 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23118-r <400> 46 gactgagcta gccgtcaagc ggccgccacc gcggtggagc 40 <210> 47 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> p47 <400> 47 aatcacccgc cagcagatta tacctgctgg 30 <210> 48 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> p48 <400> 48 ttagtccaat aatggcgagc agtgagaac 29 <210> 49 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> p49 <400> 49 ttacaggaat aatggcgagc agtgagaac 29 <210> 50 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> p50 <400> 50 ttagtggaat aatggcgagc agtgagaac 29 <210> 51 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23108-f <400> 51 gactgagcta gctgtcaggc ggccgccacc gcggtggagc 40 <210> 52 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> J23108-r <400> 52 ctaggtataa tgctagcgat gacgttctca ctgctcgcc 39 <210> 53 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> 6nt-53 <400> 53 ttacccacca ataatggcga gcagtgagaa c 31 <210> 54 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> 6nt-54 <400> 54 aatcccaccc gccagcagat tatacctgct gg 32 <210> 55 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> 8nt-55 <400> 55 ttacccccac caataatggc gagcagtgag aac 33 <210> 56 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> 8nt-56 <400> 56 aatcccccac ccgccagcag attatacctg ctgg 34 <210> 57 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 57 <400> 57 ggacaccaat aatggcgagc 20 <210> 58 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> p58 <400> 58 ggtcacccgc cagcagatta tac 23 <210> 59 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> p59 <400> 59 ggacaccaat aatggcgagc 20 <210> 60 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> p60 <400> 60 cctcacccgc cagcagatta tac 23 <210> 61 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> p61 <400> 61 ggacaccaat aatggcgagc 20 <210> 62 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> p62 <400> 62 tttcacccgc cagcagatta tac 23 <210> 63 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> p63 <400> 63 ccacaccaat aatggcgagc 20 <210> 64 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> p64 <400> 64 ggtcacccgc cagcagatta tac 23 <210> 65 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> p65 <400> 65 ccacaccaat aatggcgagc 20 <210> 66 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> p66 <400> 66 cctcacccgc cagcagatta tac 23 <210> 67 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> p67 <400> 67 ccacaccaat aatggcgagc 20 <210> 68 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> p68 <400> 68 tttcacccgc cagcagatta tac 23 <210> 69 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> p69 <400> 69 aaacaccaat aatggcgagc 20 <210> 70 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> p70 <400> 70 ggtcacccgc cagcagatta tac 23 <210> 71 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> p71 <400> 71 aaacaccaat aatggcgagc 20 <210> 72 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> p72 <400> 72 cctcacccgc cagcagatta tac 23 <210> 73 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> p73 <400> 73 aaacaccaat aatggcgagc 20 <210> 74 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> p74 <400> 74 tttcacccgc cagcagatta tac 23 <210> 75 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> p75 <400> 75 gacaaatata tggcgagcag 20 <210> 76 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> p76 <400> 76 gattggtgta aaatcacccg ccagcag 27 <210> 77 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> p77 <400> 77 gtcttggtgt aaaatcaccc gccagcag 28 <210> 78 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> p78 <400> 78 tactggtgta aaatcacccg ccagcag 27 <210> 79 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> p79 <400> 79 taatggtgta aaatcacccg ccagcag 27 <210> 80 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> p80 <400> 80 tatcggtgta aaatcacccg ccagcag 27 <210> 81 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> p81 <400> 81 tataggtgta aaatcacccg ccagcag 27 <210> 82 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> p82 <400> 82 gcccggtgta aaatcacccg ccagcag 27 <210> 83 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> p83 <400> 83 gcacggtgta aaatcacccg ccagcag 27 <210> 84 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> p84 <400> 84 gaccggtgta aaatcacccg ccagcag 27 <210> 85 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> p85 <400> 85 gaccggtgta aaatcacccg ccagcag 27 <210> 86 <211> 12 <212> DNA <213> Artificial Sequence <220> <223> p86 <400> 86 ctcgagccag gc 12 <210> 87 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> u7-87 <400> 87 aaaaaaacca gcaggtataa tctgctggcg 30 <210> 88 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> u6-88 <400> 88 aaaaaaccag caggtataat ctgctggcg 29 <210> 89 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> u5-89 <400> 89 aaaaaccagc aggtataatc tgctggcg 28 <210> 90 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> u4-90 <400> 90 aaaaccagca ggtataatct gctggcg 27 <210> 91 <211> 49 <212> RNA <213> Artificial Sequence <220> <223> SgrS-sRNA <400> 91 uauuggugua aaaucacccg ccagcagauu auaccugcug guuuuuuuu 49 <110> Korea Advanced Institute of Science and Technology <120> Method for Fine-Tuning Gene Expression Using Synthetic Regulatory          Small RNA <130> P13-B298 <160> 91 <170> Kopatentin 2.0 <210> 1 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> p1 <400> 1 ggccaattca gctggtaccg ggccccccct cg 32 <210> 2 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> p2 <400> 2 ggccaattgc cggcgagctc caccgcggtg g 31 <210> 3 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> p3 <400> 3 ggccttaagc ggccgctaac accgtgcgtg ttgac 35 <210> 4 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> p4 <400> 4 ccggaattgg atcctataaa cgcagaaagg ccc 33 <210> 5 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> p5 <400> 5 ctcgccatat atttgtcttt ctgttgggcc attgcattgc 40 <210> 6 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> p6 <400> 6 cagtgagaac gtcatgcaac cattatcacc gccagagg 38 <210> 7 <211> 55 <212> DNA <213> Artificial Sequence <220> <223> p7 <400> 7 gccagcagat tatacctgct ggtttttttt ctcgagccag gcatcaaata aaacg 55 <210> 8 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> p8 <400> 8 gggtgatttt acaccaatag acaaatatat ggcgagcagt gagaacgtca tgcaaccatt 60 atcaccgcca gagg 74 <210> 9 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> p9 <400> 9 ggccttaagg gcccgtggat aaccgtatta ccgc 34 <210> 10 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> p10 <400> 10 ccggaattgt cgactataaa cgcagaaagg ccc 33 <210> 11 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> p11 <400> 11 tattggtgta aaatcacccg ccagcag 27 <210> 12 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> p12 <400> 12 gcaaccatta tcaccgccag agg 23 <210> 13 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23100-f <400> 13 gactgagcta gccgtcaagc ggccgccacc gcggtggagc 40 <210> 14 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> J23100-r <400> 14 ctaggtacaga tgctagcgat gacgttctca ctgctcgcc 39 <210> 15 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> J23101-f <400> 15 ctaggtatta tgctagcgat gacgttctca ctgctcgcc 39 <210> 16 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23101-r <400> 16 gactgagcta gctgtaaagc ggccgccacc gcggtggagc 40 <210> 17 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> J23102-f <400> 17 ctaggtactg tgctagcgat gacgttctca ctgctcgcc 39 <210> 18 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23102-r <400> 18 gactgagcta gctgtcaagc ggccgccacc gcggtggagc 40 <210> 19 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> J23103-f <400> 19 ctagggatta tgctagcgat gacgttctca ctgctcgcc 39 <210> 20 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23103-r <400> 20 gactgagcta gctatcaggc ggccgccacc gcggtggagc 40 <210> 21 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> J23104-f <400> 21 ctaggtattg tgctagcgat gacgttctca ctgctcgcc 39 <210> 22 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23104-r <400> 22 gactgagcta gctgtcaagc ggccgccacc gcggtggagc 40 <210> 23 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23105-f <400> 23 gactgagcta gccgtaaagc ggccgccacc gcggtggagc 40 <210> 24 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> J23105-r <400> 24 ctaggtacta tgctagcgat gacgttctca ctgctcgc 38 <210> 25 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> J23106-f <400> 25 ctaggtatag tgctagcgat gacgttctca ctgctcgcc 39 <210> 26 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23106-r <400> 26 gactgagcta gccgtaaagc ggccgccacc gcggtggagc 40 <210> 27 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> J23107-f <400> 27 ctaggtatta tgctagcgat gacgttctca ctgctcgcc 39 <210> 28 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23107-r <400> 28 ggctgagcta gccgtaaagc ggccgccacc gcggtggagc 40 <210> 29 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23109-f <400> 29 gactgagcta gctgtaaagc ggccgccacc gcggtggagc 40 <210> 30 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> J23109-r <400> 30 ctagggactg tgctagcgat gacgttctca ctgctcgc 38 <210> 31 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> J23111-f <400> 31 ctaggtatag tgctagcgat gacgttctca ctgctcgcc 39 <210> 32 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23111-r <400> 32 gactgagcta gccgtcaagc ggccgccacc gcggtggagc 40 <210> 33 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> J23112-f <400> 33 ctagggatta tgctagcgat gacgttctca ctgctcgcc 39 <210> 34 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23112-r <400> 34 gactgagcta gctatcaggc ggccgccacc gcggtggagc 40 <210> 35 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> J23113-f <400> 35 ctagggatta tgctagcgat gacgttctca ctgctcgcc 39 <210> 36 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23113-r <400> 36 gactgagcta gccatcaggc ggccgccacc gcggtggagc 40 <210> 37 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23114-f <400> 37 gactgagcta gccataaagc ggccgccacc gcggtggagc 40 <210> 38 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> J23114-r <400> 38 ctaggtacaa tgctagcgat gacgttctca ctgctcgc 38 <210> 39 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> J23115-f <400> 39 cttggtacaa tgctagcgat gacgttctca ctgctcgcc 39 <210> 40 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23115-r <400> 40 ggctgagcta gctataaagc ggccgccacc gcggtggagc 40 <210> 41 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> J23116-f <400> 41 ctagggacta tgctagcgat gacgttctca ctgctcgcc 39 <210> 42 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23116-r <400> 42 gactgagcta gctgtcaagc ggccgccacc gcggtggagc 40 <210> 43 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> J23117-f <400> 43 ctagggattg tgctagcgat gacgttctca ctgctcgcc 39 <210> 44 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23117-r <400> 44 gactgagcta gctgtcaagc ggccgccacc gcggtggagc 40 <210> 45 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> J23118-f <400> 45 ctaggtattg tgctagcgat gacgttctca ctgctcgcc 39 <210> 46 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23118-r <400> 46 gactgagcta gccgtcaagc ggccgccacc gcggtggagc 40 <210> 47 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> p47 <400> 47 aatcacccgc cagcagatta tacctgctgg 30 <210> 48 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> p48 <400> 48 ttagtccaat aatggcgagc agtgagaac 29 <210> 49 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> p49 <400> 49 ttacaggaat aatggcgagc agtgagaac 29 <210> 50 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> p50 <400> 50 ttagtggaat aatggcgagc agtgagaac 29 <210> 51 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> J23108-f <400> 51 gactgagcta gctgtcaggc ggccgccacc gcggtggagc 40 <210> 52 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> J23108-r <400> 52 ctaggtataa tgctagcgat gacgttctca ctgctcgcc 39 <210> 53 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> 6 nt-53 <400> 53 ttacccacca ataatggcga gcagtgagaa c 31 <210> 54 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> 6nt-54 <400> 54 aatcccaccc gccagcagat tatacctgct gg 32 <210> 55 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> 8 nt-55 <400> 55 ttacccccac caataatggc gagcagtgag aac 33 <210> 56 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> 8 nt-56 <400> 56 aatcccccac ccgccagcag attatacctg ctgg 34 <210> 57 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 57 <400> 57 ggacaccaat aatggcgagc 20 <210> 58 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> p58 <400> 58 ggtcacccgc cagcagatta tac 23 <210> 59 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> p59 <400> 59 ggacaccaat aatggcgagc 20 <210> 60 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> p60 <400> 60 cctcacccgc cagcagatta tac 23 <210> 61 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> p61 <400> 61 ggacaccaat aatggcgagc 20 <210> 62 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> p62 <400> 62 tttcacccgc cagcagatta tac 23 <210> 63 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> p63 <400> 63 ccacaccaat aatggcgagc 20 <210> 64 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> p64 <400> 64 ggtcacccgc cagcagatta tac 23 <210> 65 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> p65 <400> 65 ccacaccaat aatggcgagc 20 <210> 66 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> p66 <400> 66 cctcacccgc cagcagatta tac 23 <210> 67 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> p67 <400> 67 ccacaccaat aatggcgagc 20 <210> 68 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> p68 <400> 68 tttcacccgc cagcagatta tac 23 <210> 69 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> p69 <400> 69 aaacaccaat aatggcgagc 20 <210> 70 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> p70 <400> 70 ggtcacccgc cagcagatta tac 23 <210> 71 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> p71 <400> 71 aaacaccaat aatggcgagc 20 <210> 72 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> p72 <400> 72 cctcacccgc cagcagatta tac 23 <210> 73 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> p73 <400> 73 aaacaccaat aatggcgagc 20 <210> 74 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> p74 <400> 74 tttcacccgc cagcagatta tac 23 <210> 75 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> p75 <400> 75 gacaaatata tggcgagcag 20 <210> 76 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> p76 <400> 76 gattggtgta aaatcacccg ccagcag 27 <210> 77 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> p77 <400> 77 gtcttggtgt aaaatcaccc gccagcag 28 <210> 78 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> p78 <400> 78 tactggtgta aaatcacccg ccagcag 27 <210> 79 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> p79 <400> 79 taatggtgta aaatcacccg ccagcag 27 <210> 80 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> p80 <400> 80 tatcggtgta aaatcacccg ccagcag 27 <210> 81 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> p81 <400> 81 tataggtgta aaatcacccg ccagcag 27 <210> 82 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> p82 <400> 82 gcccggtgta aaatcacccg ccagcag 27 <210> 83 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> p83 <400> 83 gcacggtgta aaatcacccg ccagcag 27 <210> 84 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> p84 <400> 84 gaccggtgta aaatcacccg ccagcag 27 <210> 85 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> p85 <400> 85 gaccggtgta aaatcacccg ccagcag 27 <210> 86 <211> 12 <212> DNA <213> Artificial Sequence <220> <223> p86 <400> 86 ctcgagccag gc 12 <210> 87 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> u7-87 <400> 87 aaaaaaacca gcaggtataa tctgctggcg 30 <210> 88 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> u6-88 <400> 88 aaaaaaccag caggtataat ctgctggcg 29 <210> 89 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> u5-89 <400> 89 aaaaaccagc aggtataatc tgctggcg 28 <210> 90 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> u4-90 <400> 90 aaaaccagca ggtataatct gctggcg 27 <210> 91 <211> 49 <212> RNA <213> Artificial Sequence <220> <223> SgrS-sRNA <400> 91 uauuggugua aaaucacccg ccagcagauu auaccugcug guuuuuuuu 49

Claims (12)

(a) 프로모터, (b) 표적 유전자 mRNA와 상보적 결합을 형성하는 영역을 코딩하는 핵산, (c) Sgrs의 sRNA 유래의 서열번호 91로 표시되는 Hfq 결합 부위(Hfq binding site)를 코딩하는 핵산의 야생형 또는 돌연변이가 유발된 sRNA 구조체(scaffold) 및 (d) 전사종결자를 포함하는 벡터.
(a) a promoter, (b) a nucleic acid encoding a region that forms a complementary bond with the mRNA of the target gene, (c) a nucleic acid encoding an Hfq binding site represented by SEQ ID NO: 91 derived from sRNA of sgrs Of a wild type or mutated sRNA construct (scaffold) and (d) a vector comprising a transcription terminator.
제1항에 있어서, 상기 돌연변이가 유발된 sRNA 구조체는 서열번호 91로 표시되는 염기서열에서 (i) 1번 내지 4번 중 어느 한 개 이상의 염기가 치환된 sRNA 구조체, (ii) 5번 내지 8번 중 어느 한 개 이상의 염기가 치환된 sRNA 구조체, (iii) 5번 내지 8번에 2개 또는 4개의 염기가 삽입된 sRNA 구조체, (iv) 10번 내지 13번 4개의 염기가 치환된 sRNA 구조체 및 (v) 42번 내지 49번 중 1개 내지 4개의 염기가 결실된 sRNA 구조체에서 선택된 어느 하나인 것을 특징으로 하는 벡터.
The mutant-induced sRNA construct according to claim 1, wherein the mutation-induced sRNA construct comprises (i) an sRNA construct in which any one or more bases of (1) to (4) are substituted, (ii) (Iii) an sRNA structure in which two or four bases are inserted in positions 5 to 8, (iv) an sRNA structure in which four bases in positions 10 to 13 are substituted, And (v) an sRNA construct in which one to four bases 42 to 49 have been deleted.
제1항에 있어서, 상기 프로모터는 trc 프로모터, tac 프로모터, 구성형 프로모터인 앤더슨 프로모터 집합(Anderson promoter collection) 또는 유도성 프로모터인 아라비노스 오페론 프로모터, 락토스 오페론 프로모터로 구성된 군에서 선택된 어느 하나인 것을 특징으로 하는 벡터.
[Claim 2] The method according to claim 1, wherein the promoter is any one selected from the group consisting of a trc promoter, a tac promoter, an Anderson promoter collection as a constitutive promoter, or an arabinose operon promoter as an inducible promoter, or a lactose operon promoter Vector illustration.
제1항에 있어서, 상기 표적 유전자 mRNA와 상보적 결합을 형성하는 영역은 10 내지 100bp인 것을 특징으로 하는 벡터.
2. The vector according to claim 1, wherein the region forming the complementary binding with the target gene mRNA is 10 to 100 bp.
제1항에 있어서, 상기 표적유전자의 mRNA는 DsRed2, LuxR, AraC, KanR (kanamycin resistance gene), tyrR(tyrosine regulator), ppc (phosphoenolpyruvate carboxylase), csrA (carbon storage regulator), pgi (glucose-6-phosphate isomerase), glt (citrate synthase), accA (acetyl-CoA carboxyltransferase, alpha-subunit), accB (biotinylated biotin-carboxyl carrier protein), accC (acetyl-CoA carboxylase), accD (acetyl-CoA carboxyltransferase, beta-subunit), aceE (subunit of E1p component of pyruvate dehydrogenase complex), aceF (pyruvate dehydrogenase), ackA (propionate kinase / acetate kinase activity), adiY (AdiY is a positive DNA-binding transcriptional regulator that controls the arginine) decarboxylase (adi) system), argB (acetylglutamate kinase), argC (N-acetylglutamylphosphate reductase), argG (argininosuccinate synthase), argH (argininosuccinate lyase), asnC (transcriptional regulator that activates the expression of asnA, a gene involved in the synthesis of asparagine), aspA (aspartate ammonia-lyase), crp (CRP transcriptional dual regulator), csiD (predicted protein. CsiD is the product of a gene induced by carbon starvation), csiR (DNA-binding transcriptional repressor), cytR (transcription factor required for transport and utilization of ribonucleosides and deoxyribonucleosides), dcuA (The DcuA transporter is one of three transporters known to be responsible for the uptake of C4-dicarboxylates such as fumarate under anaerobic conditions), deoB (phosphopentomutase), deoC (deoxyribose-phosphate aldolase), deoR (The transcriptional repressor DeoR, for "Deoxyribose Regulator," is involved in the negative expression of genes related to transport and catabolism of deoxyribonucleoside nucleotides), fabH (KASIII, -ketoacyl-ACP synthases), fadD (fatty acyl-CoA synthetase), fadR (FadR Fatty acid degradation Regulon, is a multifunctional dual regulator that exerts negative control over the fatty acid degradative regulon [Simons80, Simons80a] and acetate metabolism), fbp (fructose-1,6-bisphosphatase), fnr (FNR is the primary transcriptional regulator that mediates the transition from aerobic to anaerobic growth), fruR (FruR is a dual transcriptional regulator that plays a pleiotropic role to modulate the direction of carbon flow through the different metabolic pathways of energy metabolism, but independently of the CRP regulator) , ftsL (essential cell division protein FtsL), ftsQ (essential cell division protein FtsQ), ftsW (essential cell division protein FtsW), ftsZ (essential cell division protein FtsZ), fur (Fur-Fe+2 DNA-binding transcriptional dual regulator), gabD (succinate semialdehyde dehydrogenase, NADP+-dependent), gabP (APC transporter), gabT (4-aminobutyrate aminotransferase), gadA (glutamate decarboxylase A subunit), gadB (glutamate decarboxylase B subunit), gadC (GABA APC transporter), glcC (GntR family transcriptional regulator, glc operon transcriptional activator), glpK (glycerol kinase), glpR (sn-Glycerol-3-phosphate repressor), glpX (fructose 1,6-bisphosphatase II), gltA (citrate synthase), hfld (lysogenization regulator), ihfa (IHF, Integration host factor, is a global regulatory protein), ihfb (IHF, Integration host factor, is a global regulatory protein), ilvB (acetohydroxybutanoate synthase / acetolactate synthase), ilvC (acetohydroxy acid isomeroreductase), ilvD (dihydroxy acid dehydratase), ilvG_1 (acetolactate synthase II, large subunit, N-ter fragment (pseudogene)), ilvG_2 (acetolactate synthase II, large subunit, C-ter fragment (pseudogene)), ilvH (acetolactate synthase / acetohydroxybutanoate synthase), ilvL (ilvGEDA operon leader peptide), ilvM (acetohydroxybutanoate synthase / acetolactate synthase), ilvN (acetohydroxybutanoate synthase / acetolactate synthase), ilvX (Predicted small protein), lexA (LexA represses the transcription of several genes involved in the cellular response to DNA damage), lpxC (UDP-3-O-acyl-N-acetylglucosamine deacetylase), marA (MarA participates in controlling several genes involved in resistance to antibiotics, oxidative stress, organic solvents and heavy metals.), metJ (MetJ transcriptional repressor), modE (ModE is the principal regulator that controls the transcription of operons involved in the transport of molybdenum and synthesis of molybdoenzymes and molybdate-related functions), nadB (L-aspartate oxidase), narL (nitrate/nitrite response regulator), pck (phosphoenolpyruvate carboxykinase), PdhR (PdhR, "pyruvate dehydrogenase complex regulator," regulates genes involved in the pyruvate dehydrogenase complex), phoP (PhoP-Phosphorylated DNA-binding transcriptional dual regulator. Member of the two-component regulatory system phoQ/phoP involved in adaptation to low Mg2+ environments and the control of acid resistance genes), pnuC (PnuC NMN transporter), ppsA (phosphoenolpyruvate synthetase), pta (Phosphate acetyltransferase), purA (adenylosuccinate synthetase), purB (adenylosuccinate lyase), purR (PurR-Hypoxanthine DNA-binding transcriptional repressor. PurR dimer controls several genes involved in purine nucleotide biosynthesis and its own synthesis), puuE (4-aminobutyrate aminotransferase), rbsA (ribose ABC transporter), rbsB (ribose ABC transporter), rbsD (ribose pyranase), rbsK (ribokinase), rbsR (The transcription factor RbsR, for "Ribose Repressor," is negatively autoregulated and controls the transcription of the operon involved in ribose catabolism and transport), rcsB (RcsB-BglJ DNA-binding transcriptional activator. RcsB protein for "Regulator capsule synthesis B," is a response regulator that belongs to the multicomponent RcsF/RcsC/RcsD/RcsA-RcsB phosphorelay system and is involved in the regulation of the synthesis of colanic acid capsule, cell division, periplasmic proteins, motility, and a small RNA) , rutR (RutR regulates genes directly or indirectly involved in the complex pathway of pyrimidine metabolism), serA (alpha-ketoglutarate reductase / D-3-phosphoglycerate dehydrogenase), serC (phosphohydroxythreonine aminotransferase / 3-phosphoserine aminotransferase), soxS (dual transcriptional activator and participates in the removal of superoxide and nitric oxide), sroD (SroD small RNA), zwf (glucose 6-phosphate-1-dehydrogenase), asnA (asparagine synthetase A), asnB (asparagine synthetase B), carA (carbamoyl phosphate synthetase), carB (carbamoyl phosphate synthetase), ddlB (D-alanine-D-alanine ligase B), deoA (thymidine phosphorylase / uracil phosphorylase), deoD (purine nucleoside phosphorylase deoD-type), dpiA (dual transcriptional regulator involved in anaerobic citrate catabolism), fis (Fis, "factor for inversion stimulation", is a small DNA-binding and bending protein whose main role appears to be the organization and maintenance of nucleoid structure), gadE (GadE controls the transcription of genes involved in glutamate dependent system), gadW (GadW controls the transcription of genes involved in glutamate dependent system), gadX (GadX controls the transcription of genes involved in glutamate dependent system), glpF (GlpF glycerol MIP channel), ilvY (IlvY DNA-binding transcriptional dual regulator), ivbL (The ilvB operon leader peptide (IvbL)), lhgO (L-2-hydroxyglutarate oxidase), lpd (Lipoamide dehydrogenase), lrp (Lrp is a dual transcriptional regulator for at least 10% of the genes in Escherichia coli. These genes are involved in amino acid biosynthesis and catabolism, nutrient) transport, pili synthesis, and other cellular functions, including 1-carbon metabolism), metB (O-succinylhomoserine lyase / O-succinylhomoserine(thiol)-lyase), metL (aspartate kinase / homoserine dehydrogenase), mraY (phospho-N-acetylmuramoyl-pentapeptide transferase), mraZ (Unknown function), murE (UDP-N-acetylmuramoylalanyl-D-glutamate 2,6-diaminopimelate ligase), murF (D-alanyl-D-alanine-adding enzyme), murG (N-acetylglucosaminyl transferase), nac (Nacregulates, without a coeffector, genes involved in nitrogen metabolism under nitrogen-limiting conditions), nadA (quinolinate synthase), nsrR (NsrR, the "nitrite-sensitive repressor" regulates genes involved in cell protection against nitric oxide (NO) ), panC (pantothenate synthetase), panD (Aspartate 1-decarboxylase), pgl (6-phosphogluconolactonase), pyrB (aspartate carbamoyltransferase, PyrB subunit), pyrC (dihydroorotase), pyrL (aspartate carbamoyltransferase, PyrI subunit), rob (Rob is a transcriptional dual regulator. Its N-terminal domain shares 49% identity with MarA and SoxS. These proteins activate a common set of about 50 target genes, the marA/soxS/rob regulon, involved in antibiotic resistance, superoxide resistance, and tolerance to organic solvents and heavy metals.) , rpe (ribulose phosphate 3-epimerase), talA (transaldolase A), thrA (aspartate kinase / homoserine dehydrogenase), thrB (homoserine kinase), thrC (threonine synthase), thrL (thr operon leader peptide), tktA (transketolase I), tktB (transketolase II) 및 torR (two-component system, OmpR family, torCAD operon response regulator TorR)로 구성되는 군에서 선택된 유전자의 mRNA인 것을 특징으로 하는 벡터.
2. The method of claim 1, wherein the mRNA of the target gene is selected from the group consisting of DsRed2, LuxR, AraC, kanamycin resistance gene, tyrR, tyrosine regulator, phosphoenolpyruvate carboxylase, csrA, phosphate isomerase), glt (citrate synthase), accA (acetyl-CoA carboxyltransferase, alpha-subunit), accB (biotinylated biotin-carboxyl carrier protein), accC (acetyl-CoA carboxylase) ), aceE (subunit of E1p component of pyruvate dehydrogenase complex), aceF (pyruvate dehydrogenase), ackA (propionate kinase / acetate kinase activity), adiY (adiY is a positive DNA-binding transcriptional regulator of arginine) decarboxylase argB (argininosuccinate synthase), argH (argininosuccinate lyase), asnC (transcriptional regulator that activates the expression of asnA, a gene involved in the synthesis of asparagine), argB (acetylglutamate kinase) aspA (as partate ammonia-lyase), CRP (CRP transcriptional dual regulator), csiD (predicted protein. CsiD is the product of a gene induced by carbon starvation), csiR (DNA-binding transcriptional repressor), cytR (transcription factor required for transport and utilization of ribonucleosides and deoxyribonucleosides), dcuA (The dcuA transporter is one of three transporters known to be for example, the responsible for the uptake of C4-dicarboxylates such as fumarate under anaerobic conditions, deoB (phosphopentomutase), deoC (deoxyribose-phosphate aldolase), deoR (the transcriptional repressor DeoR, FADR (FadR Fatty Acid Degradation Regulon), is a multifunctional dual regulator that exerts negative control over the fatty (FAD), fadD (fatty acyl-CoA synthetase) acid degradative regulon [Simons80, Simons80a] and acetate metabolism), fbp (fructose-1,6-bisphosphatase), fnr (FNR is the primary transcriptional regulator that me dietary transition from aerobic to anaerobic growth, fruR (FruR is a dual transcriptional regulator that plays a pleiotropic role to modulate the direction of carbon flow through the different metabolic pathways of energy metabolism, independently of the CRP regulator), ftsL cell division protein FtsL), essential cell division protein FtsQ, essential cell division protein FtsW, essential cell division protein FtsZ, Fur-Fe + 2 DNA-binding transcriptional dual regulator, gabD (GABA APC transporter), glcC (GntR family), gadA (glutamate decarboxylase A subunit), gadA (GABA APC transporter) transcriptional regulator, glc operon transcriptional activator), glpK (glycerol kinase), glpR (sn-Glycerol-3-phosphate repressor), glpX (fructose 1,6-bisphosphatase II), gltA (citrate synthase), hfld (IHF, integration host factor, is a global regulatory protein), ilvB (acetohydroxybutanoate synthase / acetolactate synthase), ilvC (acetohydroxy acid isomeroreductase), ilvD (acetolactate synthase II, large subunit, N-ter fragment (pseudogene)), ilvG2 (acetolactate synthase II, large subunit, C-ter fragment (pseudogene)), ilvH (acetolactate synthase / acetohydroxybutanoate synthase) , ilvL operon leader peptide, ilvM (acetohydroxybutanoate synthase / acetolactate synthase), ilvN (acetohydroxybutanoate synthase / acetolactate synthase), ilvX (Predicted small protein), lexA (LexA represses the transcription of several genes involved in the cellular response to DNA damage), lpxC (UDP-3-O-acyl-N-acetylglucosamine deacetylase), marA (MarA participates in controlling several genes involved in resistance to antibiotics, oxidative stress, (L-aspartate oxidase), narL (MetL transcriptional repressor), metE (MetJ transcriptional repressor), modE (ModE is the principal regulator of the transcription of operons involved in the transport of molybdenum and synthesis of molybdoenzymes and molybdate- (nitrate / nitrite response regulator), pck (phosphoenolpyruvate carboxykinase), PdhR (PdhR, "pyruvate dehydrogenase complex regulator," regulates genes involved in the pyruvate dehydrogenase complex), phoP (PhoP-phosphorylated DNA-binding transcriptional dual regulator. (PnuC NMN transporter), ppsA (phosphoenolpyruvate synthetase), pta (Phosphate acetyltransferase), purA (adenylosuccinate synthetase ), purB (adenylosuccinate lyase), purR (PurR-Hypoxanthine DNA-binding transcriptional repressor. PurR dimer controls several genes involved in purine nucleotide biosynthesis and its own synthesis), puuE (4-aminobutyrate aminotransferase), rbsA (ribose ABC transporter) RbsB (ribose ABC transporter), rbsD (ribose pyranase), rbsK (ribokinase), rbsR (the transcription factor RbsR, for "Ribose Repressor," is negatively autoregulated and controls the transcription of the operon involved in ribose catabolism and transport) (RcsB-BglJ DNA-binding transcriptional activator. RcsB protein for "regulator capsule synthesis B," is a response regulator that belongs to the multicomponent RcsF / RcsC / RcsD / RcsA-RcsB phos (RutR regulates genes directly or indirectly involved in the complex pathway of pyrimidine metabolism), serA ((RutR gene) alpha-ketoglutarate reductase / D-3-phosphoglycerate dehydrogenase, serC (phosphohydroxythreonine aminotransferase / 3-phosphoserine aminotransferase), soxS (dual transcriptional activator and participant in the removal of superoxide and nitric oxide), sroD asparagine synthetase A, asparagine synthetase B, carA (carbamoyl phosphate synthetase), carB (carbamoyl phosphate synthetase), ddlB (D-alanine-D-alanine ligase B), glucose 6-phosphate-1-dehydrogenase, asnA , deoA (thymidine phosphorylase / uracil phosphorylase), deoD (purine nucleoside phosphorylase deoD-type), dpiA (dual transcriptional regulator involved in anaerobic citrate catabolism), fis (GadE) controls the transcription of genes involved in glutamate dependent systems, gadW (GadW controls the transcription of genes " n &quot;, is a small DNA-binding and bending protein whose main role appears to be the organization and maintenance of nucleoid structure) the glabridin gene is involved in glutamate dependent system, gadX controls the transcription of genes involved in glutamate dependent system, glpF (GlpF glycerol MIP channel), ilvY (IlvY DNA-binding transcriptional dual regulator), ivbL (the ilvB operon leader peptide ), lhgO (L-2-hydroxyglutarate oxidase), lpd (Lipoamide dehydrogenase), lrp (Lrp is a dual transcriptional regulator for at least 10% of the genes in Escherichia coli. These genes are involved in amino acid biosynthesis and catabolism, nutrient transport, pili synthesis, and other cellular functions, including 1-carbon metabolism, metB (O-succinylhomoserine lyase / O-succinylhomoserine kinase / homoserine dehydrogenase), mraY (phospho-N-acetylmuramoyl-pentapeptide transferase), mraZ (Unknown function), murE (UDP-N-acetylmuramoylalanyl-D-glutamate 2,6-diaminopimelate ligase) -alanine-adding enzyme, murG (N-acetylglucosaminyl transferase), nac (Nacreulates, without a coeffector, nasA, quinolinate synthase, nsrR, (pantothenate synthetase), panD (aspartate 1-decarboxylase), pgl (6-phosphogluconolactonase), pyrB (aspartate carbamoyltransferase, PyrB subunit), pyrC (dihydroorotase) , pyrL (aspartate carbamoyltransfer rase, PyrI subunit), rob (Rob is a transcriptional dual regulator. Its N-terminal domain shares 49% identity with MarA and SoxS. These proteins activate a common set of about 50 target genes, such as rAp (ribulose phosphate 3-epimerase), thalA / transaldolase A), thrA (aspartate kinase / homoserine dehydrogenase), thrB (homoserine kinase), thrC throne synthase, thrL thr operon leader peptide, tktA transketolase I, tktB transketolase II and torR system, OmpR family, torCAD operon response regulator TorR).
제1항에 있어서, 상기 sRNA 구조체는 돌연변이에 의해 Hfq와의 결합력이 조절되는 것을 특징으로 하는 벡터.
The vector according to claim 1, wherein the sRNA construct is capable of binding to Hfq by mutation.
제1항에 있어서, 상기 전사종결자는 U tail의 길이가 4 내지 8인 것을 특징으로 하는 벡터.
The vector according to claim 1, wherein the transcription terminator has a U tail length of 4 to 8.
제1항의 벡터로 형질전화된 재조합 미생물.
A recombinant microorganism transformed with the vector of claim 1.
제1항의 벡터를 원핵생물 내로 도입하거나 원핵생물 내에서 발현시켜, 표적유전자의 mRNA 발현을 미세조절하는 방법.
A method for fine-regulating mRNA expression of a target gene by introducing the vector of claim 1 into a prokaryote or expressing it in prokaryotes.
제9항에 있어서, 상기 원핵생물은 대장균, 리조비움(Rhizobium), 비피도박테리움 (Bifidobacterium), 로도코커스 (Rhodococcus), 칸디다 (Candida), 에르위니아(Erwinia), 엔테로박터 (Enterobacter), 파스테렐라(Pasteurella), 멘하이미아 (Mannheimia), 액티노바실러스 (Actinobacillus), 아그레가티박터 (Aggregatibacter), 잔토모나스(Xanthomonas), 비브리오(Vibrio), 슈도모나스(Pseudomonas), 아조토박터(Azotobacter), 애시네토박터(Acinetobacter), 랄스토니아(Ralstonia), 아그로박테리움(Agrobacterium), 리조비움(Rhizobium), 로도박터(Rhodobacter), 자이모모나스(Zymomonas), 바실러스(Bacillus), 스테필로코커스(Staphylococcus), 락토코커스(Lactococcus), 스트렙토코커스(Streptococcus), 락토바실러스(Lactobacillus), 클로스트리디움(Clostridium), 코리네박테리움(Corynebacterium), 스트렙토마이세스(Streptomyces), 비피도박테리움(Bifidobacterium) 및 사이클로박테리움(Cyclobacterium)로 구성되는 군에서 선택된 것을 특징으로 하는 방법.
10. The method of claim 9, wherein the prokaryote is selected from the group consisting of E. coli, Rhizobium, Bifidobacterium, Rhodococcus, Candida, Erwinia, Enterobacter, But are not limited to, Pasteurella, Mannheimia, Actinobacillus, Aggregatibacter, Xanthomonas, Vibrio, Pseudomonas, Azotobacter, Acinetobacter, Ralstonia, Agrobacterium, Rhizobium, Rhodobacter, Zymomonas, Bacillus, Staphylococcus, A bacterial strain such as Staphylococcus, Lactococcus, Streptococcus, Lactobacillus, Clostridium, Corynebacterium, Streptomyces, Bifidobacterium, ) And between &Lt; RTI ID = 0.0 &gt; Cyclobacterium. &Lt; / RTI &gt;
다음의 단계를 포함하는 목적물질 생산을 위한 표적유전자의 스크리닝 방법:
(a) 목적물질을 생산하고자 하는 대상 균주에 존재하고, 목적물질 생합성 경로에 참여하는 유전자들 중 어느 하나 이상의 유전자를 제9항의 방법으로 발현을 미세조절하는 단계; 및
(b) 상기 발현 미세조절에 따라 목적물질 생산수율이 향상되는 경우, 발현을 조절시킨 유전자를 목적물질 생산을 위한 표적유전자로 선정하는 단계.
A screening method for a target gene for producing a target substance comprising the steps of:
(a) fine-regulating the expression of any one or more genes among genes participating in a target substance biosynthetic pathway present in a target strain to be produced by the method of claim 9; And
(b) selecting a gene whose expression is regulated as a target gene for production of a target substance when the production yield of the target substance is improved according to the expression microcontrol.
다음의 단계를 포함하는 목적물질 생산균주의 개량방법:
(a) 목적물질을 생산하고자 하는 대상 균주에 존재하고, 목적물질 생합성 경로에 참여하는 유전자들 중 어느 하나 이상의 유전자를 제9항의 방법으로 발현을 미세조절하는 단계; 및
(b) 상기 발현 미세조절에 따라 목적물질 생산수율이 향상되는 경우, 발현을 조절시킨 유전자를 목적물질 생산을 위한 표적유전자로 스크리닝하는 단계; 및
(c) 상기 스크리닝된 유전자의 발현정도를 도입하여 재조합 균주를 제조하는 단계.
A method for improving a target substance producing strain comprising the steps of:
(a) fine-regulating the expression of any one or more genes among genes participating in a target substance biosynthetic pathway present in a target strain to be produced by the method of claim 9; And
(b) screening a gene whose expression has been regulated as a target gene for production of a target substance when the yield of the target substance is improved according to the expression micro-regulation; And
(c) introducing the degree of expression of the screened gene to produce a recombinant strain.
KR1020140070868A 2014-06-11 2014-06-11 Method for Fine-Tuning Gene Expression Using Synthetic Regulatory Small RNA KR101750855B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140070868A KR101750855B1 (en) 2014-06-11 2014-06-11 Method for Fine-Tuning Gene Expression Using Synthetic Regulatory Small RNA

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140070868A KR101750855B1 (en) 2014-06-11 2014-06-11 Method for Fine-Tuning Gene Expression Using Synthetic Regulatory Small RNA

Publications (2)

Publication Number Publication Date
KR20150142304A true KR20150142304A (en) 2015-12-22
KR101750855B1 KR101750855B1 (en) 2017-06-27

Family

ID=55081630

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140070868A KR101750855B1 (en) 2014-06-11 2014-06-11 Method for Fine-Tuning Gene Expression Using Synthetic Regulatory Small RNA

Country Status (1)

Country Link
KR (1) KR101750855B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159965A1 (en) 2017-02-28 2018-09-07 한국과학기술원 Method for producing polyhydroxyalkanoate using 2-hydroxyisocaproate-coa transferase
US10961521B2 (en) 2017-02-28 2021-03-30 Korea Advanced Institute Of Science And Technology Recombinant microorganism for producing polyhydroxyalkanoate

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102187682B1 (en) 2018-06-08 2020-12-07 한국과학기술원 Novel Enzyme-coupled Malonyl-CoA Biosensor based on Type III Polyketide Synthase and Use of the same
CN108753675A (en) * 2018-06-26 2018-11-06 青岛农业大学 A kind of construction method of sRNA interference systems in methyl bacterium
KR102037958B1 (en) * 2018-06-27 2019-11-26 한국과학기술원 Multiplex Gene Expression Inhibition System based on Synthetic Regulatory Small RNA and Method of Preparing the Same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159965A1 (en) 2017-02-28 2018-09-07 한국과학기술원 Method for producing polyhydroxyalkanoate using 2-hydroxyisocaproate-coa transferase
US10961521B2 (en) 2017-02-28 2021-03-30 Korea Advanced Institute Of Science And Technology Recombinant microorganism for producing polyhydroxyalkanoate

Also Published As

Publication number Publication date
KR101750855B1 (en) 2017-06-27

Similar Documents

Publication Publication Date Title
US10196644B2 (en) Method for fine-tuning gene expression levels using synthetic regulatory SRNA
EP2803727B1 (en) Synthesis-regulating srna and method for preparing same
Müller et al. Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity production from methanol
Cleto et al. Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi)
Becker et al. Corynebacterium glutamicum for sustainable bioproduction: from metabolic physiology to systems metabolic engineering
Park et al. Metabolic pathways and fermentative production of L‐aspartate family amino acids
KR101750855B1 (en) Method for Fine-Tuning Gene Expression Using Synthetic Regulatory Small RNA
KR102139454B1 (en) Useful Microorganism, And Method For Producing Desired Substance
KR102037958B1 (en) Multiplex Gene Expression Inhibition System based on Synthetic Regulatory Small RNA and Method of Preparing the Same
US9102961B2 (en) Biological synthesis of difunctional hexanes and pentanes from carbohydrate feedstocks
US20150203879A1 (en) Methods and Microorganisms for the Biological Synthesis of (S) -2-amino-6-hydroxypimelate, Hexamethylenediamine and 6-aminocaproate
WO2010141468A1 (en) Methods and molecules for yield improvement involving metabolic engineering
CN105492616A (en) Method for producing l-leucine, l-valine, l-isoleucine, alpha-ketoisovalerate, alpha-keto-beta-methylvalerate, or alpha-ketoisocaproate using recombinant corynebacteria that contain the ilvbn operon which can be induced by propionate
Hasegawa et al. Isobutanol production in Corynebacterium glutamicum: suppressed succinate by-production by pckA inactivation and enhanced productivity via the Entner–Doudoroff pathway
Wang Strategy for improving L-isoleucine production efficiency in Corynebacterium glutamicum
Wang et al. Deletion of odhA or pyc improves production of γ-aminobutyric acid and its precursor L-glutamate in recombinant Corynebacterium glutamicum
Lynch et al. Method for producing 3-hydroxypropionic acid and other products
Zhang et al. Metabolic engineering of Corynebacterium glutamicum WM001 to improve l‐isoleucine production
CN113710813A (en) Microorganisms and methods for the production of glycolic acid and glycine through a reverse glyoxylate shunt
Wang et al. Improvement of acetyl‐CoA supply and glucose utilization increases l‐leucine production in Corynebacterium glutamicum
Salinas et al. Metabolic engineering of Cupriavidus necator H16 for heterotrophic and autotrophic production of 3-hydroxypropionic acid
CN110564757A (en) Construction method and application of metabolic engineering escherichia coli strain for producing 3-hydroxypropionic acid by using acetic acid or salt thereof
Tajima et al. Effects of eliminating pyruvate node pathways and of coexpression of heterogeneous carboxylation enzymes on succinate production by Enterobacter aerogenes
WO2014028026A1 (en) Biological synthesis of difunctional hexanes and pentanes from carbohydrate feedstocks
RU2794946C1 (en) New promoter and method for obtaining the desired substance using it

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
GRNT Written decision to grant