WO2018159832A1 - Modulation circuit, control circuit, information processing device, and integration method - Google Patents

Modulation circuit, control circuit, information processing device, and integration method Download PDF

Info

Publication number
WO2018159832A1
WO2018159832A1 PCT/JP2018/008105 JP2018008105W WO2018159832A1 WO 2018159832 A1 WO2018159832 A1 WO 2018159832A1 JP 2018008105 W JP2018008105 W JP 2018008105W WO 2018159832 A1 WO2018159832 A1 WO 2018159832A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
resonance circuit
contact
resonance
phase
Prior art date
Application number
PCT/JP2018/008105
Other languages
French (fr)
Japanese (ja)
Inventor
泰信 中村
ピエールマリー ビランジョン
Original Assignee
国立研究開発法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人科学技術振興機構 filed Critical 国立研究開発法人科学技術振興機構
Publication of WO2018159832A1 publication Critical patent/WO2018159832A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits

Definitions

  • the interaction between the two superconducting qubits may be strong from the viewpoint of shortening the time or improving the accuracy of the two-qubit gate operation.
  • the state in which the two resonance circuits are electrically coupled to each other means a state in which a current flows from one resonance circuit to the other resonance circuit, and the two resonance circuits are connected to each other. Does not mean that they are physically connected by.
  • the state in which the two resonance circuits are not electrically coupled is a state in which current flows from one resonance circuit to the other resonance circuit. This means that the two resonance circuits are not physically connected to each other by wiring.
  • the coupling state is changed to the first resonance based on the first phase, the second phase, the third phase, and the fourth phase.
  • a configuration in which the circuit and the second resonance circuit are not coupled to each other and the state in which the first resonance circuit and the second resonance circuit are coupled may be used.
  • each of the first resonance circuit and the second resonance circuit is supplied from a power source that supplies an AC voltage to each of the first resonance circuit and the second resonance circuit.
  • the coupled state is changed to a state in which the first resonant circuit and the second resonant circuit are coupled, and the first resonant circuit and the first resonant circuit are changed by the power source.
  • the coupling state is changed to a state where the first resonance circuit and the second resonance circuit are not coupled. Also good.
  • the modulation circuit includes a fourth Josephson junction element having a ⁇ junction located between the fourth contact and the first contact.
  • At least one of the first resonance circuit RC1 and the second resonance circuit RC2 is a qubit circuit including a Josephson junction element, that is, a qubit circuit in which a superconducting qubit is configured by a Josephson junction element.
  • a qubit circuit including a Josephson junction element that is, a qubit circuit in which a superconducting qubit is configured by a Josephson junction element.
  • the power source PW is a power source that supplies an AC voltage having a predetermined frequency to each of the first resonance circuit RC1 and the second resonance circuit RC2.
  • the predetermined frequency is a resonance frequency of at least one of the first resonance circuit RC1 and the second resonance circuit RC2, and in this example, is a frequency included in a microwave frequency band.
  • the predetermined frequency may be a frequency included in another frequency band instead of the frequency included in the microwave frequency band. Below, the case where the said frequency is the resonant frequency of 1st resonant circuit RC1 is demonstrated as an example.
  • phase phi W, and the phase phi q, the phase phi r, each of the phase phi Z, the first phase phi 1, a second phase phi 2, a third phase phi 3, and the fourth phase phi 4 Represents each of the four linearly independent variables (degrees of freedom) that can be created by each linear combination.
  • the phase ⁇ W is a degree of freedom unrelated to the operation of the control circuit 1 according to the present embodiment, and thus does not appear in the above equation (1).
  • ⁇ 0 represents the magnetic flux quantum h / (2e).
  • h represents the Planck constant
  • e represents the elementary charge.
  • Q q represents the charge stored in the first capacitor C1 and the second capacitor C2.
  • qr represents the electric charge stored in the 3rd capacitor C3 and the 4th capacitor C4.
  • q Z is a charge stored in the modulation circuit MC in case the AC voltage by the power supply PW is supplied to each of the first resonant circuit RC1 and the second resonant circuit RC2. That is, the modulation circuit MC also behaves as a capacitor having a capacitance. This is because each of the first Josephson junction element J1 to the fourth Josephson junction element J4 has a capacitance. Note that a variable with “ ⁇ ” immediately above in the above formula (1) indicates that the variable is an operator.
  • both the potential at the second contact P2 and the potential at the fourth contact P4 at a certain timing are 0, and the potential at the first contact P1 at the timing.
  • the potential at the third contact P3 must be able to have the same magnitude and opposite values.
  • both the potential at the second contact P2 and the potential at the fourth contact P4 are 0, and the potential at the first contact P1 and the potential at the third contact P3 at the timing are mutually equal. Is the same, and the sign is opposite.
  • “ ⁇ ” in the figure indicates a potential having the same magnitude as that of the potential indicated by “+” and having the opposite sign.
  • both the potential at the first contact P1 and the potential at the third contact P3 are 0, and the potential at the second contact P2 and the potential at the fourth contact P4 at the timing are mutually equal. Is the same, and the sign is opposite.
  • “+” In the figure indicates a positive potential
  • “ ⁇ ” in the figure indicates a potential having the same magnitude as that of the potential indicated by “+” and having the opposite sign.
  • “0” in the symbol indicates a potential of 0.
  • “1” in the figure indicates the first contact P1, “2” in the figure indicates the second contact P2, and “3” in the figure indicates the third contact P3.
  • “4” indicates the fourth contact P4.
  • both the potential at the potential and the third contact point P3 of the first contact point P1 at a certain timing becomes a positive value
  • the potential at the second contact point P2 at this timing the Both of the potentials at the four contacts P4 must be the same value as the positive value and can have opposite signs.
  • both the potential at the first contact P1 and the potential at the third contact P3 are positive values
  • both the potential at the second contact P2 and the potential at the fourth contact P4 are positive. The case where the value is the same as the value of and the value is the opposite sign is shown.
  • the potential at the first contact P1 and the potential at the third contact P3 at a certain timing are both 0 or large due to the structure of the control circuit 1 (the symmetry that the control circuit 1 has).
  • the values are the same and the values are opposite.
  • the potential of the second contact P2 and the potential of the fourth contact P4 at a certain timing are both 0 or the same in magnitude and positive / negative depending on the structure of the control circuit 1.
  • the opposite value. Therefore, the phase phi Z is always 0 when the, first resonant circuit RC1 and the second resonant circuit RC2, can not be electrically coupled.
  • each of the first resonance circuit RC1 and the second resonance circuit RC2 resonates according to the mutual resonance.
  • the above-mentioned sixth term (the above interaction term), in which the terms depending on the phase ⁇ r , the phase ⁇ q , and the phase ⁇ Z are not 0,
  • the virtual harmonic oscillator representing the resonance of the second resonance circuit RC2 has two quantum states (i.e.,
  • the strength of the interaction increases as the Josephson energy of each of the first Josephson junction element J1 to the fourth Josephson junction element J4 increases. For this reason, in the control circuit 1, the intensity of the interaction can be increased by increasing the Josephson energy.
  • the case where the switch of the power supply PW is on is a case where an AC voltage is supplied to each of the first resonance circuit RC1 and the second resonance circuit RC2 by the power supply PW.
  • the control circuit 1 (i.e., the modulation circuit MC) includes a first phase phi 1, a second phase phi 2, a third phase phi 3, based on the fourth phase phi 4, first resonant
  • the coupling state between the circuit RC1 and the second resonance circuit RC2 is changed. More specifically, the control circuit 1 includes a first phase phi 1, a second phase phi 2, a third phase phi 3, based on the fourth phase phi 4, and the first resonance circuit RC1 second
  • the state is changed to either a state where the resonance circuit RC2 is not coupled or a state where the first resonance circuit RC1 and the second resonance circuit RC2 are coupled. Thereby, the control circuit 1 can cut
  • control circuit 1 supplies an AC voltage to each of the first resonance circuit RC1 and the second resonance circuit RC2 by a power source PW that supplies an AC voltage to each of the first resonance circuit RC1 and the second resonance circuit RC2.
  • a power source PW that supplies an AC voltage to each of the first resonance circuit RC1 and the second resonance circuit RC2.
  • the coupling state between the first resonance circuit RC1 and the second resonance circuit RC2 is changed to a state in which the first resonance circuit RC1 and the second resonance circuit RC2 are coupled, and the first resonance is generated by the power supply PW.
  • the coupling state is changed to a state where the first resonance circuit RC1 and the second resonance circuit RC2 are not coupled.
  • the quantum state of the first resonance circuit RC1 (more specifically, the quantum state of the harmonic oscillator representing the resonance of the first resonance circuit RC1) and the second resonance circuit RC2
  • the quantum state (more specifically, the quantum state of the superconducting qubit configured by the second resonance circuit RC2) changes independently. That is, in this case, in the control circuit 1, the interaction between the first resonance circuit RC1 and the second resonance circuit RC2 has disappeared (that is, the interaction is off).
  • the control circuit 1 when the switch of the power supply PW is on, the first resonance circuit RC1 and the second resonance circuit RC2 are electrically coupled.
  • the energy of the second resonance circuit RC2 changes nonlinearly (trigonometrically in the example described above) in accordance with the change in energy of the first resonance circuit RC1.
  • the control circuit 1 includes a first phase phi 1, a second phase phi 2, a third phase phi 3, based on the fourth phase phi 4, the energy of the first resonant circuit RC1
  • the energy of the second resonance circuit RC2 changes nonlinearly according to the change.
  • it does not necessarily correspond to one to one.
  • the interaction between the first resonance circuit RC1 and the second resonance circuit RC2 is turned on / off (that is, generated / disappeared) in accordance with the on / off of the switch of the power supply PW. Can be switched.
  • FIG. 3 is a diagram for explaining the concept of a method for integrating the control circuit 1 two-dimensionally.
  • a mark MK1 is arranged at each contact point of the two-dimensional square lattice.
  • marks MK2 are arranged at positions on the two-dimensional square lattice at the midpoints of the marks MK1 and MK1.
  • each of the plurality of marks MK1 in FIG. 3 represents the first resonance circuit RC1 described above.
  • each of the plurality of marks MK2 in FIG. 3 indicates the above-described second resonance circuit RC2.
  • the line connecting the mark MK1 and the mark MK2 is as shown in FIG.
  • the first resonance circuit RC1 among the four Josephson junction elements (the first Josephson junction element J1 to the fourth Josephson junction element J4) included in each of the plurality of modulation circuits MC included in the integrated circuit.
  • the two Josephson junction elements nearer to the second resonance circuit are ⁇ -junction Josephson junction elements, and the two Josephson junction elements closer to the second resonance circuit RC2 are ⁇ -junction Josephson junction elements. Note that the reference numerals given to the elements of the control circuit 1 in FIG. 1 are omitted in FIG. 4 because the figure becomes complicated.
  • the partial circuit PC1 By integrating the plurality of control circuits 1 as shown in FIG. 4, for example, when each of the two power supply PWs included in the partial circuit PC1 is turned on, the partial circuit PC1 includes a single modulation circuit MC. Thus, an interaction occurs between the superconducting qubits formed by each of the two first resonance circuits RC1 included in the partial circuit PC1. In addition, when any one of the two power sources PW included in the partial circuit PC1 is turned off, the interaction between the superconducting qubits formed by the two first resonance circuits RC1 included in the partial circuit PC1 is caused. Disappear. As described above, by integrating a plurality of control circuits 1 as shown in FIG.
  • Modification 1 of the embodiment will be described with reference to FIGS. 5 and 6.
  • symbol is attached
  • FIG. 5 is a diagram illustrating an example of the configuration of the control circuit 2 according to the first modification of the embodiment.
  • the third resonance circuit RC3 is an annular circuit in which the inductor L in the second resonance circuit RC2 is replaced with a fifth Josephson junction element J5. That is, the third resonance circuit RC3 is an annular circuit including the fifth Josephson junction element J5, the third capacitor C3, and the fourth capacitor C4.
  • the control circuit 2 includes the first resonance circuit RC1 and the third resonance circuit RC3, the Hamiltonian structure of the control circuit 2 based on the circuit quantum electrodynamics is almost the same as the Hamiltonian represented by the above equation (1). It becomes the same structure. Therefore, when the switch of the power source PW is turned off, the phase phi Z always 0, the first resonance circuit RC1 in the control circuit 2 and the third resonant circuit RC3, can not be electrically coupled. As a result, in this case, the first resonance circuit RC1 and the third resonance circuit RC3 resonate independently of each other (independently of each other).
  • This is configured by a virtual spin representing two quantum states (that is,
  • 1>) has disappeared (the interaction must be off) ).
  • This is a phenomenon that occurs regardless of the magnitude of the Josephson energy of each of the first Josephson junction element J1 to the fourth Josephson junction element J4. For this reason, even if the strength of the interaction is increased, the interaction can be turned off in the control circuit 2 by turning off the switch of the power source PW.
  • each of the first resonance circuit RC1 and the third resonance circuit RC3 resonates according to the mutual resonance.
  • 1>) of the superconducting qubit formed by the third resonance circuit RC3 is formed by the first resonance circuit RC1.
  • 1>) of a superconducting qubit ie, the interaction between these two spins is generated) (That it is in an on state)).
  • the strength of the interaction increases as the Josephson energy of each of the first Josephson junction element J1 to the fourth Josephson junction element J4 increases. For this reason, in the control circuit 2, the strength of the interaction can be increased by increasing the Josephson energy.
  • the quantum computer having the integrated circuit shown in FIG. 6 can perform a plurality of first resonance circuits RC1 included in the integrated circuit during the quantum calculation. Even if an error occurs in any one of the superconducting qubits constituted by each of the third resonance circuits RC3 and the first resonance circuit RC3, the first resonance constituting the superconducting qubits As long as the switch of the power supply PW connected to the circuit RC1 is off, it is possible to prevent the error from propagating to the first resonance circuit RC1 or the third resonance circuit RC3 constituting another superconducting qubit. it can.
  • the control circuit 3 includes a modulation circuit MC, a second resonance circuit RC2, a fourth resonance circuit RC4, and a power supply PW.
  • the control circuit 3 may be configured to include other circuits in addition to these three circuits and the power supply PW. However, in this case, the other circuit must be provided in the control circuit 3 so as not to break the characteristics of the control circuit 3 described below. In other words, the control circuit 3 may be subjected to any changes as long as the characteristics of the control circuit 3 described below are not destroyed.
  • the fourth resonance circuit RC4 is a resonance circuit obtained by replacing the 0th Josephson junction element J0 with the circuit CC in the first resonance circuit RC1. That is, in the fourth resonance circuit RC4, the circuit CC is located between the first capacitor C1 and the second capacitor C2.
  • the circuit CC is a ring circuit including a sixth Josephson junction element J6, a seventh Josephson junction element J7, and an eighth Josephson junction element J8.
  • the fourth resonance circuit RC4 including the circuit CC resonates.
  • Each of the sixth Josephson junction element J6 and the seventh Josephson junction element J7 is a zero junction Josephson junction element. Note that one or both of the sixth Josephson junction element J6 and the seventh Josephson junction element J7 may be a ⁇ junction Josephson junction element instead of the 0 junction Josephson junction element.
  • the eighth Josephson junction element J8 is a ⁇ junction Josephson junction element.
  • the eighth Josephson junction element J8 may be a 0-junction Josephson junction element instead of the ⁇ -junction Josephson junction element.
  • the eighth Josephson junction element J8 is located between the sixth Josephson junction element J6 and the seventh Josephson junction element J7 in the circuit CC.
  • the first contact P1 and the first capacitor C1 and the sixth Josephson junction element J6 and the eighth Josephson junction element J8 are connected. Further, in the control circuit 3, the third contact P3 and the second capacitor C2 and the seventh Josephson junction element J7 and the eighth Josephson junction element J8 are connected.
  • the control circuit 3 includes the second resonance circuit RC2 and the fourth resonance circuit RC4, the Hamiltonian structure of the control circuit 3 based on the circuit quantum electrodynamics is almost the same as the Hamiltonian shown in the above equation (1). It becomes the same structure. Therefore, when the switch of the power source PW is turned off, the phase phi Z is always 0, the control circuit 3 and the second resonant circuit RC2 and the fourth resonant circuit RC4, can not be electrically coupled. As a result, in this case, the second resonance circuit RC2 and the fourth resonance circuit RC4 resonate independently of each other (independently of each other).
  • each of the control circuit 1 to control circuit 3 described above replaces the resonance circuit (for example, the first resonance circuit RC1 in the case of the control circuit 1) constituting the superconducting qubit with another qubit.
  • the structure to which the circuit to comprise may be connected may be sufficient.
  • the other qubits may be known qubits or qubits to be developed in the future.
  • the circuit is configured such that the current oscillates according to two quantum states of the qubit.
  • the modulation circuit (in the example described above, the modulation circuit MC) includes the first contact (in the example described above, the first contact P1) and the second contact (in the example described above, A second contact P2), a third contact (in the example described above, the third contact P3), and a fourth contact (in the example described above, the fourth contact P4),
  • a first resonance circuit (in the example described above, the first resonance circuit RC1) is connected to the third contact
  • a second resonance circuit (in the example described above, the second resonance circuit RC1) is connected to the second contact and the fourth contact.
  • a ring circuit to which a resonance circuit RC2) is connected and a first phase (in the example described above, the first phase ⁇ 1 ) that is a phase represented by time integration of the potential at the first contact, and a second phase Contact (in the example described above, second place A second phase that is a phase represented by time integration of the potential in the phase ⁇ 2 ) and a third phase that is a phase represented by time integration of the potential at the third contact (in the example described above, the third phase). and phi 3), in the example described in the fourth phase (above the phase represented by the time integral of the potential at the fourth contact point, based on the fourth phase phi 4) and the first resonant circuit and the second resonance
  • the coupling state with the circuit is changed.
  • the modulation circuit has a coupling state based on the first phase, the second phase, the third phase, and the fourth phase, and the first resonance circuit and the second resonance circuit are coupled.
  • the state is changed to either a state in which the first resonance circuit and the second resonance circuit are coupled to each other. Thereby, the modulation circuit can disconnect the electrical coupling between the first resonance circuit and the second resonance circuit.
  • the modulation circuit is supplied to each of the first resonance circuit and the second resonance circuit by a power source (in the example described above, the power source PW) that supplies an AC voltage to each of the first resonance circuit and the second resonance circuit.
  • a power source in the example described above, the power source PW
  • the coupling state is changed to a state where the first resonance circuit and the second resonance circuit are coupled, and the power supply to each of the first resonance circuit and the second resonance circuit is performed.
  • the coupling state is changed to a state where the first resonance circuit and the second resonance circuit are not coupled.
  • the modulation circuit can switch the coupling state of the first resonance circuit and the second resonance circuit according to the supply state of the AC voltage by the power source to each of the first resonance circuit and the second resonance circuit.
  • the modulation circuit includes a 0-junction first Josephson junction element (in the example described above, the first Josephson junction element J1) and a 0-junction second Josephson junction element (in the example described above, The second Josephson junction element J2), the third Josephson junction element of ⁇ junction (in the example described above, the third Josephson junction element J3), and the fourth Josephson junction element of ⁇ junction (described above).
  • a fourth Josephson junction element J4) is provided, the first Josephson junction element is located between the first contact and the second contact, and the second Josephson junction element is the second contact and the third contact.
  • the third Josephson junction element is located between the third contact and the fourth contact, and the fourth Josephson junction element is located between the fourth contact and the first contact.
  • the modulation circuit can switch the coupling state between the first resonance circuit and the second resonance circuit when at least one of the first resonance circuit and the second resonance circuit is a qubit circuit including a Josephson junction element. it can.
  • the modulation circuit includes a readout circuit in which a resonance circuit different from the qubit circuit among the first resonance circuit and the second resonance circuit reads the quantum state of the qubit circuit. Accordingly, the modulation circuit uses a resonance circuit different from the qubit circuit among the first resonance circuit and the second resonance circuit, and the quantum state of the resonance circuit that is the qubit circuit among the first resonance circuit and the second resonance circuit. Can be read out.
  • control circuit in the example described above, the control circuit 1 to the control circuit 3 includes the modulation circuit, the first resonance circuit, the second resonance circuit, the first resonance circuit, and the second resonance circuit described above. And a power supply for supplying an AC voltage to each of the circuits.
  • the frequency of the AC voltage supplied by the power supply is at least one of the resonance frequency of the first resonance circuit and the second resonance circuit.
  • the second resonance circuit of the second resonance circuit is changed according to the change of the quantum state of the first resonance circuit. The quantum state changes.
  • the quantum state of the second resonance circuit changes according to the change of the quantum state of the first resonance circuit.
  • the change in the quantum state of the second resonance circuit is in accordance with the first phase, the second phase, the third phase, the fourth phase, and the change in the quantum state of the first resonance circuit. It is a change. Thereby, the electrical coupling between the first resonance circuit and the second resonance circuit can be cut.
  • the control circuit when the supply of AC voltage to each of the first resonance circuit and the second resonance circuit is stopped by the power supply, the control circuit has a quantum state of the first resonance circuit and a quantum state of the second resonance circuit. It changes independently. Thereby, the control circuit stops the supply of the AC voltage to each of the first resonance circuit and the second resonance circuit by the power source, thereby changing the coupling state between the first resonance circuit and the second resonance circuit to the first resonance circuit. It is possible to switch to a state where the resonance circuit and the second resonance circuit are not coupled.

Abstract

A modulation circuit comprising a ring circuit having a first contact, a second contact, a third contact, and a fourth contact, wherein a first resonator circuit is connected to the first contact and the third contact, and a second resonator circuit is connected to the second contact and the fourth contact. The coupling state of the first resonator circuit and the second resonator circuit is varied on the basis of a first phase expressed by the time integral of a potential at the first contact, a second phase expressed by the time integral of a potential at the second contact, a third phase expressed by the time integral of a potential at the third contact, and a fourth phase expressed by the time integral of a potential at the fourth contact.

Description

変調回路、制御回路、情報処理装置、及び集積方法Modulation circuit, control circuit, information processing apparatus, and integration method
 本発明は、変調回路、制御回路、情報処理装置、及び集積方法に関する。
 本願は、2017年03月03日に、日本に出願された特願2017-040378号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a modulation circuit, a control circuit, an information processing apparatus, and an integration method.
This application claims priority on March 03, 2017 based on Japanese Patent Application No. 2017-040378 filed in Japan, the contents of which are incorporated herein by reference.
 量子計算機に関する技術の研究や開発が行われている。 Research and development of technologies related to quantum computers are being conducted.
 これに関し、超伝導量子ビットを用いた量子計算機において2量子ビットゲート操作を行う方法が知られている(特許文献1、2参照)。 In this regard, a method of performing a two-qubit gate operation in a quantum computer using superconducting qubits is known (see Patent Documents 1 and 2).
米国特許第7613765号明細書U.S. Pat. No. 7,613,765 米国特許出願公開第2016/0380636号明細書US Patent Application Publication No. 2016/0380636
 ここで、超伝導量子ビットは、ジョセフソン接合によってもたらされる非線形性を利用した非調和的な共振回路によって構成される。また、ある2つの超伝導量子ビットに対して2量子ビットゲート操作を行う場合、当該2つの超伝導量子ビットの状態は、当該2つの超伝導量子ビット間に相互作用が生じている状態でなければならない。当該2つの超伝導量子ビット間に相互作用が生じている状態とは、2つの超伝導量子ビットのそれぞれを構成する共振回路同士が電気的に結合している状態のことである。そして、当該2つの超伝導量子ビットに対する2量子ビットゲート操作では、2量子ビットゲート操作の時間短縮や精度向上等の目的の観点から、当該2つの超伝導量子ビット間の相互作用が強いことが望ましい。なお、ここでは、2つの共振回路同士が電気的に結合している状態とは、一方の共振回路から他方の共振回路に電流が流れている状態を意味し、これら2つの共振回路同士が配線によって物理的に接続されていることを意味しているわけではない。また、2つの共振回路同士が電気的に結合していない状態(2つの共振回路同士の電気的な結合が切れている状態)とは、一方の共振回路から他方の共振回路に電流が流れていない状態を意味し、これら2つの共振回路同士が配線によって物理的に接続されていないことを意味しているわけではない。一方、当該2つの超伝導量子ビットに対して2量子ビットゲート操作を行わない場合に当該2つの超伝導量子ビット間に相互作用が生じていると、当該2つの超伝導量子ビットを備える量子計算機は、量子計算において誤りを生じさせてしまうことがある。このため、当該場合において当該2つの超伝導量子ビットの状態は、当該2つの超伝導量子ビット間に相互作用が生じていない状態でなければならない。当該2つの超伝導量子ビット間に相互作用が生じていない状態とは、当該2つの超伝導量子ビットのそれぞれを構成する共振回路同士が電気的に結合していない状態のことである。 Here, the superconducting qubit is composed of an anharmonic resonance circuit that utilizes the nonlinearity caused by the Josephson junction. In addition, when performing a two-qubit gate operation on a certain two superconducting qubits, the state of the two superconducting qubits must be a state in which an interaction occurs between the two superconducting qubits. I must. The state in which the interaction is generated between the two superconducting qubits is a state in which the resonance circuits constituting each of the two superconducting qubits are electrically coupled. In the two-qubit gate operation for the two superconducting qubits, the interaction between the two superconducting qubits may be strong from the viewpoint of shortening the time or improving the accuracy of the two-qubit gate operation. desirable. Here, the state in which the two resonance circuits are electrically coupled to each other means a state in which a current flows from one resonance circuit to the other resonance circuit, and the two resonance circuits are connected to each other. Does not mean that they are physically connected by. In addition, the state in which the two resonance circuits are not electrically coupled (the state in which the two resonance circuits are not electrically coupled) is a state in which current flows from one resonance circuit to the other resonance circuit. This means that the two resonance circuits are not physically connected to each other by wiring. On the other hand, when no two-qubit gate operation is performed on the two superconducting qubits and an interaction occurs between the two superconducting qubits, a quantum computer including the two superconducting qubits May cause errors in quantum computation. For this reason, in this case, the state of the two superconducting qubits must be such that no interaction occurs between the two superconducting qubits. The state where no interaction occurs between the two superconducting qubits is a state where the resonance circuits constituting each of the two superconducting qubits are not electrically coupled to each other.
 しかしながら、従来の方法では、上記の2つの超伝導量子ビットのそれぞれを構成する共振回路同士が電気的に結合している状態を、当該共振回路同士が電気的に結合していない状態に切り替えた場合、当該共振回路同士の電気的な結合が切れず(消えず)に残る場合があった。その結果、当該方法では、当該2つの超伝導量子ビットを備える量子計算機が行う量子計算において誤りを生じさせる場合があった。 However, in the conventional method, the state where the resonance circuits constituting each of the two superconducting qubits are electrically coupled is switched to the state where the resonance circuits are not electrically coupled. In some cases, the electrical coupling between the resonance circuits may remain unbroken (do not disappear). As a result, in this method, an error may occur in the quantum calculation performed by the quantum computer including the two superconducting qubits.
 そこで本発明は、上記従来技術の問題に鑑みてなされたものであり、第1共振回路と第2共振回路の電気的な結合を切ることができる変調回路、制御回路、情報処理装置、及び集積方法を提供する。 Accordingly, the present invention has been made in view of the above-described problems of the prior art, and includes a modulation circuit, a control circuit, an information processing apparatus, and an integrated circuit that can cut off electrical coupling between the first resonance circuit and the second resonance circuit. Provide a method.
 上記課題の少なくとも一つを解決するために本発明の一態様は、第1接点と、第2接点と、第3接点と、第4接点とを有し、前記第1接点と前記第3接点とに第1共振回路が接続され、前記第2接点と前記第4接点とに第2共振回路が接続された環状回路であって、前記第1接点における電位の時間積分によって表される位相である第1位相と、前記第2接点における電位の時間積分によって表される位相である第2位相と、前記第3接点における電位の時間積分によって表される位相である第3位相と、前記第4接点における電位の時間積分によって表される位相である第4位相とに基づいて、前記第1共振回路と前記第2共振回路との結合状態を変化させる、変調回路である。 In order to solve at least one of the above problems, one embodiment of the present invention includes a first contact, a second contact, a third contact, and a fourth contact, and the first contact and the third contact. A first resonance circuit is connected to the second contact and the fourth contact is connected to the second resonance circuit, and a phase represented by time integration of the potential at the first contact. A first phase, a second phase that is a phase represented by time integration of a potential at the second contact, a third phase that is a phase represented by time integration of a potential at the third contact, The modulation circuit changes a coupling state between the first resonance circuit and the second resonance circuit based on a fourth phase that is a phase represented by time integration of potentials at four contacts.
 また、本発明の他の態様は、変調回路において、前記第1位相と、前記第2位相と、前記第3位相と、前記第4位相とに基づいて、前記結合状態を、前記第1共振回路と前記第2共振回路とが結合していない状態と、前記第1共振回路と前記第2共振回路とが結合している状態とのいずれかに変化させる、構成が用いられてもよい。 According to another aspect of the present invention, in the modulation circuit, the coupling state is changed to the first resonance based on the first phase, the second phase, the third phase, and the fourth phase. A configuration in which the circuit and the second resonance circuit are not coupled to each other and the state in which the first resonance circuit and the second resonance circuit are coupled may be used.
 また、本発明の他の態様は、変調回路において、前記第1共振回路と前記第2共振回路とのそれぞれに交流電圧を供給する電源により前記第1共振回路と前記第2共振回路とのそれぞれへの前記交流電圧の供給が開始された場合、前記結合状態を前記第1共振回路と前記第2共振回路とが結合している状態に変化させ、前記電源により前記第1共振回路と前記第2共振回路とのそれぞれへの前記交流電圧の供給が停止された場合、前記結合状態を前記第1共振回路と前記第2共振回路とが結合していない状態に変化させる、構成が用いられてもよい。 According to another aspect of the present invention, in the modulation circuit, each of the first resonance circuit and the second resonance circuit is supplied from a power source that supplies an AC voltage to each of the first resonance circuit and the second resonance circuit. When the supply of the AC voltage to the power source is started, the coupled state is changed to a state in which the first resonant circuit and the second resonant circuit are coupled, and the first resonant circuit and the first resonant circuit are changed by the power source. When the supply of the AC voltage to each of the two resonance circuits is stopped, the coupling state is changed to a state where the first resonance circuit and the second resonance circuit are not coupled. Also good.
 また、本発明の他の態様は、変調回路において、前記第1接点と前記第2接点との間に位置する0接合の第1ジョセフソン接合素子を備えた、構成が用いられてもよい。 Further, in another aspect of the present invention, a configuration may be used in which a first junction Josephson junction element of 0 junction located between the first contact and the second contact is provided in the modulation circuit.
 また、本発明の他の態様は、変調回路において、前記第2接点と前記第3接点との間に位置する0接合の第2ジョセフソン接合素子を備えた、構成が用いられてもよい。 Further, in another aspect of the present invention, a configuration may be used in which the modulation circuit includes a second Josephson junction element with 0 junction positioned between the second contact and the third contact.
 また、本発明の他の態様は、変調回路において、前記第3接点と前記第4接点との間に位置するπ接合の第3ジョセフソン接合素子を備えた、構成が用いられてもよい。 In another aspect of the present invention, a configuration may be used in which the modulation circuit includes a third Josephson junction element having a π junction positioned between the third contact and the fourth contact.
 また、本発明の他の態様は、変調回路において、前記第4接点と前記第1接点との間に位置するπ接合の第4ジョセフソン接合素子を備えた、構成が用いられてもよい。 Further, in another aspect of the present invention, a configuration may be used in which the modulation circuit includes a fourth Josephson junction element having a π junction located between the fourth contact and the first contact.
 また、本発明の他の態様は、変調回路において、前記第1共振回路と前記第2共振回路のうちの少なくとも一方が、ジョセフソン接合素子を含む量子ビット回路である、構成が用いられてもよい。 Further, according to another aspect of the present invention, in the modulation circuit, a configuration in which at least one of the first resonance circuit and the second resonance circuit is a qubit circuit including a Josephson junction element is used. Good.
 また、本発明の他の態様は、変調回路において、前記第1共振回路と前記第2共振回路のうちのいずれか一方が、ジョセフソン接合素子を含む量子ビット回路である、構成が用いられてもよい。 According to another aspect of the present invention, there is used a configuration in which one of the first resonance circuit and the second resonance circuit is a qubit circuit including a Josephson junction element in a modulation circuit. Also good.
 また、本発明の他の態様は、変調回路において、前記第1共振回路と前記第2共振回路のうち前記量子ビット回路と異なる共振回路が、前記量子ビット回路の量子状態を読み出す読出回路を備える、構成が用いられてもよい。 According to another aspect of the present invention, in the modulation circuit, a resonance circuit different from the qubit circuit in the first resonance circuit and the second resonance circuit includes a readout circuit that reads a quantum state of the qubit circuit. A configuration may be used.
 また、本発明の他の態様は、上記に記載の変調回路と、前記第1共振回路と、前記第2共振回路と、前記第1共振回路と前記第2共振回路とのそれぞれに交流電圧を供給する電源と、を備える制御回路である。 According to another aspect of the present invention, an alternating voltage is applied to each of the modulation circuit described above, the first resonance circuit, the second resonance circuit, the first resonance circuit, and the second resonance circuit. And a power supply to be supplied.
 また、本発明の他の態様は、制御回路において、前記電源が供給する交流電圧の周波数は、前記第1共振回路と前記第2共振回路とのうち少なくとも一方の共振周波数である、構成が用いられてもよい。 According to another aspect of the present invention, in the control circuit, the configuration in which the frequency of the AC voltage supplied from the power source is at least one of the first resonance circuit and the second resonance circuit is used. May be.
 また、本発明の他の態様は、制御回路において、前記電源により前記第1共振回路と前記第2共振回路とのそれぞれへの前記交流電圧の供給が開始された場合、前記第1共振回路の量子状態の変化に応じて前記第2共振回路の量子状態が変化する、構成が用いられてもよい。 According to another aspect of the present invention, in the control circuit, when the supply of the AC voltage to each of the first resonance circuit and the second resonance circuit is started by the power source, the first resonance circuit A configuration in which the quantum state of the second resonance circuit changes in accordance with the change of the quantum state may be used.
 また、本発明の他の態様は、制御回路において、前記第2共振回路の量子状態の変化は、前記第1位相と、前記第2位相と、前記第3位相と、前記第4位相と、前記第1共振回路の量子状態の変化とに応じた変化である、構成が用いられてもよい。 According to another aspect of the present invention, in the control circuit, the change in the quantum state of the second resonance circuit includes the first phase, the second phase, the third phase, and the fourth phase. A configuration that is a change according to a change in the quantum state of the first resonance circuit may be used.
 また、本発明の他の態様は、制御回路において、前記電源により前記第1共振回路と前記第2共振回路とのそれぞれへの前記交流電圧の供給が停止された場合、前記第1共振回路の量子状態と、前記第2共振回路の量子状態とが独立に変化する、構成が用いられてもよい。 According to another aspect of the present invention, in the control circuit, when the supply of the AC voltage to each of the first resonance circuit and the second resonance circuit is stopped by the power source, the first resonance circuit A configuration in which the quantum state and the quantum state of the second resonance circuit change independently may be used.
 また、本発明の他の態様は、上記に記載の変調回路を備える、情報処理装置である。 Another aspect of the present invention is an information processing apparatus including the modulation circuit described above.
 また、本発明の他の態様は、上記に記載の制御回路を備える、情報処理装置である。 Another aspect of the present invention is an information processing apparatus including the control circuit described above.
 また、本発明の他の態様は、上記に記載の変調回路を介して複数の前記第1共振回路と複数の前記第2共振回路とを交互に接続し、前記第1共振回路と前記第2共振回路とを二次元的又は三次元的に集積する、集積方法である。 In another aspect of the present invention, a plurality of the first resonance circuits and a plurality of the second resonance circuits are alternately connected via the modulation circuit described above, and the first resonance circuit and the second resonance circuit are connected. This is an integration method in which resonance circuits are integrated two-dimensionally or three-dimensionally.
 本発明によれば、第1共振回路と第2共振回路とが結合した場合における結合の強さを強くしつつ、第1共振回路と第2共振回路の結合状態を切り替えることができる。 According to the present invention, the coupling state of the first resonance circuit and the second resonance circuit can be switched while increasing the strength of coupling when the first resonance circuit and the second resonance circuit are coupled.
実施形態に係る制御回路1の構成の一例を示す図である。It is a figure which shows an example of a structure of the control circuit 1 which concerns on embodiment. 位相φ、位相φ、位相φ、位相φのそれぞれが0ではない値となる場合において、第1接点P1、第2接点P2、第3接点P3、第4接点P4のそれぞれにおける電位の組み合わせのうちの特徴的な組み合わせの一例を示した図である。When the phase φ W , the phase φ q , the phase φ r , and the phase φ Z are non-zero values, the potentials at the first contact P1, the second contact P2, the third contact P3, and the fourth contact P4, respectively. It is the figure which showed an example of the characteristic combination among these combinations. 制御回路1を二次元的に集積化する方法の概念を説明するための図である。It is a figure for demonstrating the concept of the method of integrating the control circuit 1 two-dimensionally. 図3に示した概念に基づいて複数の制御回路1を集積させた集積回路の一例を示す図である。It is a figure which shows an example of the integrated circuit which integrated the some control circuit 1 based on the concept shown in FIG. 実施形態の変形例1に係る制御回路2の構成の一例を示す図である。It is a figure which shows an example of a structure of the control circuit 2 which concerns on the modification 1 of embodiment. 複数の制御回路2を集積させた集積回路の一例を示す図である。2 is a diagram illustrating an example of an integrated circuit in which a plurality of control circuits 2 are integrated. FIG. 実施形態の変形例2に係る制御回路3の構成の一例を示す図である。It is a figure which shows an example of a structure of the control circuit 3 which concerns on the modification 2 of embodiment.
 <実施形態>
 以下、本発明の実施形態について、図面を参照して説明する。
<Embodiment>
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 <制御回路の概要>
 まず、実施形態に係る制御回路1の概要について説明する。
 制御回路1は、情報処理装置のうち超伝導量子ビットを用いて量子計算を行う情報処理装置である量子計算機に備えられる回路である。より具体的には、当該量子計算機は、複数の制御回路1が二次元的又は三次元的に集積された集積回路を備える。ここでは、このような制御回路1の概要について説明する。
<Outline of control circuit>
First, an outline of the control circuit 1 according to the embodiment will be described.
The control circuit 1 is a circuit provided in a quantum computer that is an information processing apparatus that performs quantum computation using superconducting qubits among information processing apparatuses. More specifically, the quantum computer includes an integrated circuit in which a plurality of control circuits 1 are integrated two-dimensionally or three-dimensionally. Here, an outline of such a control circuit 1 will be described.
 超伝導量子ビットは、共振回路によって構成される。また、超伝導量子ビットを用いて量子計算を行う量子計算機は、1以上の超伝導量子ビットを対象にしてゲート操作を行い、量子計算を行う。超伝導量子ビットに対して行うゲート操作のうち、ある2つの超伝導量子ビットを対象にして行われる2量子ビットゲート操作を当該量子計算機が行う場合、当該2つの超伝導量子ビットの状態は、当該2つの超伝導量子ビット間に相互作用が生じている状態でなければならない。当該2つの超伝導量子ビット間に相互作用が生じている状態とは、当該2つの超伝導量子ビットのそれぞれを構成する共振回路同士が電気的に結合している状態のことである。そして、当該2つの超伝導量子ビットに対する2量子ビットゲート操作では、2量子ビットゲート操作の安定性等の理由から、当該2つの超伝導量子ビット間の相互作用が強いことが望ましい。一方、当該2つの超伝導量子ビットに対して2量子ビットゲート操作を行わない場合に当該2つの超伝導量子ビット間に相互作用が生じていると、当該2つの超伝導量子ビットを備える量子計算機は、量子計算において誤りを生じさせてしまうことがある。このため、当該場合において当該2つの超伝導量子ビットの状態は、当該2つの超伝導量子ビット間に相互作用が生じていない状態でなければならない。当該2つの超伝導量子ビット間に相互作用が生じていない状態とは、すなわち、2つの超伝導量子ビットのそれぞれを構成する共振回路同士が電気的に結合していない状態のことである。なお、本実施形態では、2つの共振回路同士が電気的に結合している状態とは、一方の共振回路から他方の共振回路に電流が流れている状態を意味し、これら2つの共振回路同士が配線によって物理的に接続されていることを意味しているわけではない。また、2つの共振回路同士が電気的に結合していない状態(2つの共振回路同士の電気的な結合が切れている状態)とは、一方の共振回路から他方の共振回路に電流が流れていない状態を意味し、これら2つの共振回路同士が配線によって物理的に接続されていないことを意味しているわけではない。 The superconducting qubit is composed of a resonant circuit. In addition, a quantum computer that performs quantum computation using a superconducting qubit performs quantum computation by performing a gate operation on one or more superconducting qubits. When the quantum computer performs a two-qubit gate operation performed on a certain two superconducting qubits among the gate operations performed on the superconducting qubits, the state of the two superconducting qubits is: There must be an interaction between the two superconducting qubits. The state where the interaction occurs between the two superconducting qubits is a state where the resonance circuits constituting each of the two superconducting qubits are electrically coupled. In the two-qubit gate operation for the two superconducting qubits, it is desirable that the interaction between the two superconducting qubits is strong for reasons such as the stability of the two-qubit gate operation. On the other hand, when no two-qubit gate operation is performed on the two superconducting qubits and an interaction occurs between the two superconducting qubits, a quantum computer including the two superconducting qubits May cause errors in quantum computation. For this reason, in this case, the state of the two superconducting qubits must be such that no interaction occurs between the two superconducting qubits. The state in which no interaction occurs between the two superconducting qubits means that the resonance circuits constituting each of the two superconducting qubits are not electrically coupled to each other. In the present embodiment, the state in which the two resonance circuits are electrically coupled to each other means a state in which a current flows from one resonance circuit to the other resonance circuit. Does not mean that they are physically connected by wiring. In addition, the state in which the two resonance circuits are not electrically coupled (the state in which the two resonance circuits are not electrically coupled) is a state in which current flows from one resonance circuit to the other resonance circuit. This means that the two resonance circuits are not physically connected to each other by wiring.
 しかしながら、制御回路1と異なる制御回路X(例えば、従来の制御回路)では、上記の2つの超伝導量子ビットのそれぞれを構成する共振回路同士が電気的に結合している状態を、当該共振回路同士が電気的に結合していない状態に切り替えた場合、当該共振回路同士の電気的な結合が切れず(消えず)に残る場合があった。その結果、制御回路Xでは、当該2つの超伝導量子ビットを備える量子計算機が行う量子計算において誤りを生じさせる場合があった。 However, in a control circuit X (for example, a conventional control circuit) different from the control circuit 1, the resonance circuit constituting each of the two superconducting qubits is electrically coupled to each other. When switching to a state where they are not electrically coupled to each other, there is a case where the electrical coupling between the resonance circuits is not cut (disappears). As a result, in the control circuit X, an error may occur in the quantum calculation performed by the quantum computer including the two superconducting qubits.
 そこで、制御回路1は、第1接点P1と、第2接点P2と、第3接点P3と、第4接点P4とを有し、第1接点P1と第3接点P3とに第1共振回路RC1が接続され、第2接点P2と第4接点P4とに第2共振回路RC2が接続された環状回路であって、第1接点P1における電位の時間積分によって表される位相である第1位相と、第2接点P2における電位の時間積分によって表される位相である第2位相と、第3接点P3における電位の時間積分によって表される位相である第3位相と、第4接点P4における電位の時間積分によって表される位相である第4位相とに基づいて、第1共振回路RC1と第2共振回路RC2との結合状態を変化させる。これにより、制御回路1は、第1共振回路RC1と第2共振回路RC2の電気的な結合を切ることができる。すなわち、複数の制御回路1が集積された集積回路を備える量子計算機は、ある2量子ビットゲート操作を行う際、当該相互作用がオンである状態とオフである状態とを切り替えることができる。当該2つの超伝導量子ビット間の相互作用がオンの状態とは、当該2つの超伝導量子ビット間に相互作用が生じている状態のことである。また、当該2つの超伝導量子ビット間の相互作用がオフの状態とは、当該2つの超伝導量子ビット間に相互作用が消失している(切れている)状態のことである。すなわち、制御回路1は、当該相互作用がオンの状態とオフの状態とを切り替えることができるスイッチ回路である。 Therefore, the control circuit 1 has a first contact P1, a second contact P2, a third contact P3, and a fourth contact P4. The first resonance circuit RC1 is connected to the first contact P1 and the third contact P3. Are connected to each other, and the second resonance circuit RC2 is connected to the second contact P2 and the fourth contact P4, the first phase being a phase expressed by time integration of the potential at the first contact P1; , A second phase that is a phase represented by time integration of the potential at the second contact P2, a third phase that is a phase represented by time integration of the potential at the third contact P3, and a potential at the fourth contact P4. The coupling state between the first resonance circuit RC1 and the second resonance circuit RC2 is changed based on the fourth phase that is a phase represented by time integration. Thereby, the control circuit 1 can cut | disconnect the electrical coupling of 1st resonance circuit RC1 and 2nd resonance circuit RC2. That is, a quantum computer including an integrated circuit in which a plurality of control circuits 1 are integrated can switch between a state in which the interaction is on and a state in which the interaction is off when performing a certain two-qubit gate operation. The state in which the interaction between the two superconducting qubits is on is a state in which an interaction occurs between the two superconducting qubits. The state in which the interaction between the two superconducting qubits is off is a state in which the interaction between the two superconducting qubits has disappeared (disconnected). That is, the control circuit 1 is a switch circuit that can switch between the on state and the off state of the interaction.
 なお、制御回路1は、量子計算機に代えて、他の情報処理装置に備えられる構成であってもよい。この場合、上記の第1共振回路RC1と第2共振回路RC2のそれぞれは、超伝導量子ビットを構成しなくてもよい(すなわち、後述する量子ビット回路でなくてもよい)。また、本実施形態において登場する電位は、制御回路1におけるある点(例えば、グラウンドの電位)の電位を基準とした電位である。 Note that the control circuit 1 may be configured to be provided in another information processing apparatus instead of the quantum computer. In this case, each of the first resonance circuit RC1 and the second resonance circuit RC2 may not constitute a superconducting qubit (that is, it may not be a qubit circuit described later). Further, the potential appearing in the present embodiment is a potential based on the potential at a certain point (for example, ground potential) in the control circuit 1.
 ここで、第1位相、第2位相、第3位相、第4位相のそれぞれについて説明する。
 第1位相は、前述した通り、第1接点P1における電位の時間積分によって表される位相である。より具体的には、第1位相は、第1接点P1における電位の時間積分に対して、ある物理定数を乗算することによって算出される。当該物理定数についてと、第1位相の算出方法については、既知であるため説明を省略する(回路量子電磁力学参照)。
 第2位相は、第1位相の場合と同様に、第2接点P2における電位の時間積分によって表される。
 第3位相は、第1位相の場合と同様に、第3接点P3における電位の時間積分によって表される。
 第4位相は、第1位相の場合と同様に、第4接点P4における電位の時間積分によって表される。
Here, each of the first phase, the second phase, the third phase, and the fourth phase will be described.
As described above, the first phase is a phase represented by time integration of the potential at the first contact P1. More specifically, the first phase is calculated by multiplying the time integral of the potential at the first contact P1 by a certain physical constant. Since the physical constant and the calculation method of the first phase are known, the description thereof is omitted (see circuit quantum electrodynamics).
The second phase is represented by the time integration of the potential at the second contact P2 as in the case of the first phase.
The third phase is represented by time integration of the potential at the third contact P3, as in the case of the first phase.
The fourth phase is represented by the time integration of the potential at the fourth contact P4 as in the case of the first phase.
 <制御回路の構成>
 まず、図1を参照し、制御回路1の構成について説明する。図1は、実施形態に係る制御回路1の構成の一例を示す図である。
<Configuration of control circuit>
First, the configuration of the control circuit 1 will be described with reference to FIG. FIG. 1 is a diagram illustrating an example of a configuration of a control circuit 1 according to the embodiment.
 制御回路1は、変調回路MCと、第1共振回路RC1と、第2共振回路RC2と、電源PWを備える。なお、制御回路1は、これら3つの回路及び電源PWに加えて、他の回路を備える構成であってもよい。ただし、この場合、当該他の回路は、以下において説明する制御回路1が有する特徴を壊さないように制御回路1に備えられなければならない。換言すると、以下において説明する制御回路1が有する特徴を壊さなければ、制御回路1は、如何なる変更を受けてもよい。 The control circuit 1 includes a modulation circuit MC, a first resonance circuit RC1, a second resonance circuit RC2, and a power supply PW. The control circuit 1 may be configured to include other circuits in addition to these three circuits and the power supply PW. However, in this case, the other circuit must be provided in the control circuit 1 so as not to break the characteristics of the control circuit 1 described below. In other words, the control circuit 1 may be subjected to any changes as long as the characteristics of the control circuit 1 described below are not destroyed.
 変調回路MCは、図1に示したように、第1接点P1と、第2接点P2と、第3接点P3と、第4接点P4とを有する。また、変調回路MCは、第1接点P1と第3接点P3とに第1共振回路RC1が接続され、第2接点P2と第4接点P4とに第2共振回路RC2が接続された環状回路である。 As shown in FIG. 1, the modulation circuit MC has a first contact P1, a second contact P2, a third contact P3, and a fourth contact P4. The modulation circuit MC is an annular circuit in which the first resonance circuit RC1 is connected to the first contact P1 and the third contact P3, and the second resonance circuit RC2 is connected to the second contact P2 and the fourth contact P4. is there.
 また、変調回路MCは、第1ジョセフソン接合素子J1と、第2ジョセフソン接合素子J2と、第3ジョセフソン接合素子J3と、第4ジョセフソン接合素子J4を備える。 In addition, the modulation circuit MC includes a first Josephson junction element J1, a second Josephson junction element J2, a third Josephson junction element J3, and a fourth Josephson junction element J4.
 第1ジョセフソン接合素子J1は、0接合のジョセフソン接合素子である。ここで、0接合のジョセフソン接合素子は、接合の両側の接点の間の位相差が0の場合にエネルギーが最小化されるジョセフソン接合のことである。また、第1ジョセフソン接合素子J1は、EJcジュール(又は電子ボルト)のジョセフソンエネルギーを有するジョセフソン接合素子である。第1ジョセフソン接合素子J1は、第1接点P1と第2接点P2との間に位置する。
 第2ジョセフソン接合素子J2は、0接合のジョセフソン接合素子である。また、第2ジョセフソン接合素子J2は、EJcジュール(又は電子ボルト)のジョセフソンエネルギーを有するジョセフソン接合素子である。第2ジョセフソン接合素子J2は、第2接点P2と第3接点P3との間に位置する。
 第3ジョセフソン接合素子J3は、π接合のジョセフソン接合素子である。π接合のジョセフソン接合素子は、接合の両側の接点の間の位相差がπの場合にエネルギーが最小化されるジョセフソン接合のことである。また、第3ジョセフソン接合素子J3は、EJcジュール(又は電子ボルト)のジョセフソンエネルギーを有するジョセフソン接合素子である。第3ジョセフソン接合素子J3は、第3接点P3と第4接点P4との間に位置する。
 第4ジョセフソン接合素子J4は、π接合のジョセフソン接合素子である。また、第4ジョセフソン接合素子J4は、EJcジュール(又は電子ボルト)のジョセフソンエネルギーを有するジョセフソン接合素子である。第4ジョセフソン接合素子J4は、第4接点P4と第1接点P1との間に位置する。
The first Josephson junction element J1 is a zero junction Josephson junction element. Here, a zero junction Josephson junction element is a Josephson junction in which energy is minimized when the phase difference between the contacts on both sides of the junction is zero. The first Josephson junction element J1 is a Josephson junction element having Josephson energy of E Jc joule (or electron volt). The first Josephson junction element J1 is located between the first contact P1 and the second contact P2.
The second Josephson junction element J2 is a zero junction Josephson junction element. The second Josephson junction element J2 is a Josephson junction element having Josephson energy of E Jc joule (or electron volt). The second Josephson junction element J2 is located between the second contact P2 and the third contact P3.
The third Josephson junction element J3 is a π-junction Josephson junction element. A π-junction Josephson junction element is a Josephson junction whose energy is minimized when the phase difference between the contacts on both sides of the junction is π. The third Josephson junction element J3 is a Josephson junction element having Josephson energy of E Jc joule (or electron volt). The third Josephson junction element J3 is located between the third contact P3 and the fourth contact P4.
The fourth Josephson junction element J4 is a π-junction Josephson junction element. The fourth Josephson device J4 is a Josephson device having a Josephson energy E Jc joules (or electron volts). The fourth Josephson junction element J4 is located between the fourth contact P4 and the first contact P1.
 第1共振回路RC1と第2共振回路RC2のうちの少なくとも一方は、ジョセフソン接合素子を含む量子ビット回路、すなわち超伝導量子ビットをジョセフソン接合素子によって構成する量子ビット回路である。本実施形態では、一例として、第1共振回路RC1のみが当該量子ビット回路である場合について説明する。 At least one of the first resonance circuit RC1 and the second resonance circuit RC2 is a qubit circuit including a Josephson junction element, that is, a qubit circuit in which a superconducting qubit is configured by a Josephson junction element. In the present embodiment, as an example, a case where only the first resonance circuit RC1 is the qubit circuit will be described.
 第1共振回路RC1は、第0ジョセフソン接合素子J0と、第1キャパシターC1と、第2キャパシターC2を備える環状回路である。ここで、第0ジョセフソン接合素子J0がインダクターとして振る舞うため、第1共振回路RC1は、共振する。 The first resonance circuit RC1 is an annular circuit including a 0th Josephson junction element J0, a first capacitor C1, and a second capacitor C2. Here, since the 0th Josephson junction element J0 behaves as an inductor, the first resonance circuit RC1 resonates.
 第0ジョセフソン接合素子J0は、0接合のジョセフソン接合素子である。また、第0ジョセフソン接合素子J0は、EJqジュール(又は電子ボルト)のジョセフソンエネルギーを有するジョセフソン接合素子である。第0ジョセフソン接合素子J0は、第1キャパシターC1と第2キャパシターC2との間に位置する。また、第0ジョセフソン接合素子J0は、静電容量が2×Cファラドのキャパシターとしても振る舞う。ここで、当該Cファラドに乗算されている係数である2は、後述するハミルトニアンの表式を簡単にするための係数である。なお、第0ジョセフソン接合素子J0は、0接合のジョセフソン接合素子に代えて、π接合のジョセフソン接合素子であってもよい。
 第1キャパシターC1は、静電容量が2×Cファラドのキャパシターである。ここで、当該Cファラドに乗算されている係数である2は、後述するハミルトニアンの表式を簡単にするための係数である。
 第2キャパシターC2は、静電容量が第1キャパシターC1の静電容量と同じキャパシターである。
The 0th Josephson junction element J0 is a 0 junction Josephson junction element. The 0th Josephson junction element J0 is a Josephson junction element having Josephson energy of E Jq Joule (or electron volt). The 0th Josephson junction element J0 is located between the first capacitor C1 and the second capacitor C2. The 0th Josephson junction element J0 also behaves as a capacitor having a capacitance of 2 × C c farad. Here, the coefficient 2 multiplied by the C c farad is a coefficient for simplifying the expression of the Hamiltonian described later. The 0th Josephson junction element J0 may be a π junction Josephson junction element instead of the 0 junction Josephson junction element.
The first capacitor C1 is the capacitance is a capacitor of 2 × C q farads. Here, 2 the a C q Farad coefficients are multiplied is a factor in order to simplify the expression for Hamiltonian described later.
The second capacitor C2 is a capacitor having the same capacitance as that of the first capacitor C1.
 第2共振回路RC2は、インダクターLと、第3キャパシターC3と、第4キャパシターC4を備える環状回路である。すなわち、第2共振回路RC2は、この一例において、LC共振回路である。 The second resonance circuit RC2 is an annular circuit including an inductor L, a third capacitor C3, and a fourth capacitor C4. That is, the second resonance circuit RC2 is an LC resonance circuit in this example.
 インダクターLは、Lヘンリーのインダクタンスを有するインダクターである。インダクターLは、例えば、コイルである。なお、インダクターLは、コイルに代えて、他のインダクターであってもよい。
 第3キャパシターC3は、静電容量が2×Cファラドのキャパシターである。ここで、当該Cファラドに乗算されている係数である2は、後述するハミルトニアンの表式を簡単にするための係数である。
 第4キャパシターC4は、静電容量が第3キャパシターC3の静電容量と同じキャパシターである。
The inductor L is an inductor having an inductance of L r Henry. The inductor L is, for example, a coil. The inductor L may be another inductor instead of the coil.
The third capacitor C3 is the capacitance is a capacitor of 2 × C r farads. Here, 2 the are C r Farad coefficients are multiplied is a factor in order to simplify the expression for Hamiltonian described later.
The fourth capacitor C4 is a capacitor having the same capacitance as that of the third capacitor C3.
 電源PWは、第1共振回路RC1と第2共振回路RC2とのそれぞれに予め決められた周波数の交流電圧を供給する電源である。当該予め決められた周波数は、第1共振回路RC1と第2共振回路RC2とのうちの少なくとも一方の共振周波数であり、この一例において、マイクロ波の周波数帯に含まれる周波数である。なお、当該予め決められた周波数は、マイクロ波の周波数帯に含まれる周波数に代えて、他の周波数帯に含まれる周波数であってもよい。以下では、一例として、当該周波数が第1共振回路RC1の共振周波数である場合について説明する。 The power source PW is a power source that supplies an AC voltage having a predetermined frequency to each of the first resonance circuit RC1 and the second resonance circuit RC2. The predetermined frequency is a resonance frequency of at least one of the first resonance circuit RC1 and the second resonance circuit RC2, and in this example, is a frequency included in a microwave frequency band. The predetermined frequency may be a frequency included in another frequency band instead of the frequency included in the microwave frequency band. Below, the case where the said frequency is the resonant frequency of 1st resonant circuit RC1 is demonstrated as an example.
 ここで、制御回路1において、第1キャパシターC1と第0ジョセフソン接合素子J0との間と第1接点P1とが接続され、第0ジョセフソン接合素子J0と第2キャパシターC2との間と第3接点P3とが接続されている。また、制御回路1において、インダクターLと第3キャパシターC3との間と第2接点P2とが接続され、第4キャパシターC4とインダクターLとの間と第4接点P4とが接続されている。また、制御回路1において、電源PWが有する2つの端子のうちの一方である第1端子T1と、第1キャパシターC1と第2キャパシターC2との間とが接続され、電源PWが有する2つの端子のうちの第1端子T1と異なる第2端子T2と、第3キャパシターC3と第4キャパシターC4との間とが接続されている。また、第1共振回路RC1と第2共振回路RC2のグラウンド電位は、互いに同じである。 Here, in the control circuit 1, the first contact P1 is connected between the first capacitor C1 and the 0th Josephson junction element J0, and the first contact P1 is connected between the 0th Josephson junction element J0 and the second capacitor C2. Three contacts P3 are connected. Further, in the control circuit 1, the second contact P2 is connected between the inductor L and the third capacitor C3, and the fourth contact P4 is connected between the fourth capacitor C4 and the inductor L. Further, in the control circuit 1, the first terminal T1, which is one of the two terminals of the power supply PW, is connected between the first capacitor C1 and the second capacitor C2, and the two terminals of the power supply PW are connected. Are connected to a second terminal T2 different from the first terminal T1, and between the third capacitor C3 and the fourth capacitor C4. The ground potentials of the first resonance circuit RC1 and the second resonance circuit RC2 are the same.
 <制御回路の動作>
 以下、制御回路1の動作について説明する。なお、以下では、すべてのジョセフソン接合素子が超伝導状態である場合について説明する。
<Operation of control circuit>
Hereinafter, the operation of the control circuit 1 will be described. In the following, a case where all Josephson junction elements are in a superconducting state will be described.
 回路量子電磁力学に基づく制御回路1のハミルトニアンは、第1接点P1における電位の時間積分によって表される位相である第1位相φと、第2接点P2における電位の時間積分によって表される位相である第2位相φと、第3接点P3における電位の時間積分によって表される位相である第3位相φと、第4接点P4における電位の時間積分によって表される位相である第4位相φとによって、以下の式(1)~式(5)のように表される。 The Hamiltonian of the control circuit 1 based on circuit quantum electrodynamics has a first phase φ 1 that is a phase expressed by time integration of the potential at the first contact P1 and a phase expressed by time integration of the potential at the second contact P2. a second phase phi 2 is a third phase phi 3 is a phase represented by the time integral of the potential of the third contact P3, the a phase represented by the time integral of the potential at the fourth contact point P4 4 by the phase phi 4, it is represented by the following formula (1) to (5).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 位相φと、位相φと、位相φと、位相φとのそれぞれは、第1位相φと、第2位相φと、第3位相φと、第4位相φとのそれぞれの線形結合によって作り出せる4つの線形独立な変数(自由度)のそれぞれを表す。なお、位相φは、本実施形態に係る制御回路1の動作と無関係な自由度であるため、上記の式(1)には表れていない。
Φは、磁束量子h/(2e)を表す。ここで、hは、プランク定数を表し、eは、電荷素量を表している。また、qは、第1キャパシターC1及び第2キャパシターC2に蓄えられた電荷を表す。また、qは、第3キャパシターC3及び第4キャパシターC4に蓄えられた電荷を表す。qは、電源PWにより交流電圧が第1共振回路RC1及び第2共振回路RC2のそれぞれに供給された場合において変調回路MCに蓄えられる電荷である。すなわち、変調回路MCは、静電容量を有するキャパシターとしても振る舞う。これは、前述の第1ジョセフソン接合素子J1~第4ジョセフソン接合素子J4のそれぞれが静電容量を有するためである。なお、上記の式(1)における「^」が直上に付された変数は、当該変数が演算子であることを表している。
And phase phi W, and the phase phi q, the phase phi r, each of the phase phi Z, the first phase phi 1, a second phase phi 2, a third phase phi 3, and the fourth phase phi 4 Represents each of the four linearly independent variables (degrees of freedom) that can be created by each linear combination. Note that the phase φ W is a degree of freedom unrelated to the operation of the control circuit 1 according to the present embodiment, and thus does not appear in the above equation (1).
Φ 0 represents the magnetic flux quantum h / (2e). Here, h represents the Planck constant, and e represents the elementary charge. Q q represents the charge stored in the first capacitor C1 and the second capacitor C2. Moreover, qr represents the electric charge stored in the 3rd capacitor C3 and the 4th capacitor C4. q Z is a charge stored in the modulation circuit MC in case the AC voltage by the power supply PW is supplied to each of the first resonant circuit RC1 and the second resonant circuit RC2. That is, the modulation circuit MC also behaves as a capacitor having a capacitance. This is because each of the first Josephson junction element J1 to the fourth Josephson junction element J4 has a capacitance. Note that a variable with “^” immediately above in the above formula (1) indicates that the variable is an operator.
 上記の式(1)における第1項及び第2項は、第2共振回路RC2の共振を表す仮想的な調和振動子に関するハミルトニアンを位相φによって表した項である。また、当該式(1)における第3項及び第4項は、第1共振回路RC1が表す超伝導量子ビットが有する2つの量子状態(すなわち、|0〉と|1〉)を表す仮想的なスピンに関するハミルトニアンを位相φによって表した項である。当該スピンは、独立な2つの状態を取るスピンである。なお、以下の説明において登場するスピンは、すべて独立な2つの状態を取るスピンのことを意味する。当該式(1)における第5項は、変調回路MCのエネルギーを表すハミルトニアンである。当該式(1)における第6項は、当該調和振動子と当該スピンとの間の相互作用を表す相互作用項である。図6に示したように、制御回路1が図1に示した構成である場合、当該相互作用項である当該第6項は、位相φ、位相φ、位相φについての非線形関数として表される。また、当該相互作用項が表す相互作用の大きさは、第1ジョセフソン接合素子J1~第4ジョセフソン接合素子J4のそれぞれが有するジョセフソンエネルギーを大きくすることにより、大きくすることができる。 The first and second terms in the above equation (1) is a term representing the Hamiltonian regarding virtual harmonic oscillator which represents the resonance of the second resonant circuit RC2 by the phase phi r. In addition, the third term and the fourth term in the formula (1) represent virtual states representing two quantum states (that is, | 0> and | 1>) included in the superconducting qubit represented by the first resonance circuit RC1. the Hamiltonian relates to a spin is a term representing the phase phi q. The spin is a spin that takes two independent states. Note that the spins appearing in the following description mean spins that take two independent states. The fifth term in the formula (1) is a Hamiltonian representing the energy of the modulation circuit MC. The sixth term in the equation (1) is an interaction term representing an interaction between the harmonic oscillator and the spin. As shown in FIG. 6, when the control circuit 1 has the configuration shown in FIG. 1, the sixth term as the interaction term is a nonlinear function with respect to the phase φ r , the phase φ q , and the phase φ Z. expressed. The magnitude of the interaction represented by the interaction term can be increased by increasing the Josephson energy of each of the first Josephson junction element J1 to the fourth Josephson junction element J4.
 ここで、図2は、位相φ、位相φ、位相φ、位相φのそれぞれが0ではない値となる場合において、第1接点P1、第2接点P2、第3接点P3、第4接点P4のそれぞれにおける電位の組み合わせのうちの特徴的な組み合わせの一例を示した図である。位相φが0ではない値を取る場合、あるタイミングにおける第1接点P1、第2接点P2、第3接点P3、第4接点P4のそれぞれにおける電位は、互いに大きさが同じ正の値となることができなければならない。しかし、制御回路1の構造から、当該電位は、互いに大きさが同じ正の値となることができない。このため、位相φは、前述した通り、非物理的な自由度である。図2に含まれる4つの図のうちWによって示された図は、当該場合における第1接点P1、第2接点P2、第3接点P3、第4接点P4のそれぞれにおける電位が互いに大きさが同じ正の値となっている場合を示している。すなわち、当該図における「+」は、正の値の電位を示している。また、当該図における「1」は、第1接点P1を示し、当該図における「2」は、第2接点P2を示し、当該図における「3」は、第3接点P3を示し、当該図における「4」は、第4接点P4を示している。 Here, FIG. 2 shows that the first contact P1, the second contact P2, the third contact P3, the first contact P1, the second contact P2, the third contact P3, when the phase φ W , the phase φ q , the phase φ r , and the phase φ Z are non-zero values. It is the figure which showed an example of the characteristic combination among the combinations of the electric potential in each of 4 contacts P4. If the phase phi W takes a value that is not zero, the first contact point P1 at a certain timing, the second contact P2, third contact P3, the potential at each of the fourth contacts P4, the size is the same positive value to each other It must be possible. However, due to the structure of the control circuit 1, the potentials cannot be positive values having the same magnitude. Therefore, the phase φ W is a non-physical degree of freedom as described above. Of the four diagrams included in FIG. 2, the diagram indicated by W indicates that the potentials at the first contact P1, the second contact P2, the third contact P3, and the fourth contact P4 in this case are the same in magnitude. The case where it is a positive value is shown. That is, “+” in the figure indicates a positive potential. Also, “1” in the figure indicates the first contact P1, “2” in the figure indicates the second contact P2, and “3” in the figure indicates the third contact P3. “4” indicates the fourth contact P4.
 また、位相φ及び位相φが0ではない値を取る場合、あるタイミングにおける第2接点P2における電位と第4接点P4における電位との両方が0となり、当該タイミングにおける第1接点P1における電位と第3接点P3における電位とが互いに大きさが同じで正負が逆の値となることができなければならない。Xによって示された図は、第2接点P2における電位と第4接点P4における電位との両方が0であり、当該タイミングにおける第1接点P1における電位と第3接点P3における電位とが互いに大きさが同じで正負が逆の値である場合を示している。当該図における「+」は、正の値の電位を示し、当該図における「-」は、「+」によって示された電位の大きさと同じ大きさであり符号が逆の電位を示し、当該図における「0」は、0の電位を示している。また、当該図における「1」は、第1接点P1を示し、当該図における「2」は、第2接点P2を示し、当該図における「3」は、第3接点P3を示し、当該図における「4」は、第4接点P4を示している。また、位相φ及び位相φが0ではない値を取る場合、あるタイミングにおける第1接点P1における電位と第3接点P3における電位との両方が0となり、当該タイミングにおける第2接点P2における電位と第4接点P4における電位とが互いに大きさが同じで正負が逆の値となることができなければならない。Yによって示された図は、第1接点P1における電位と第3接点P3における電位との両方が0であり、当該タイミングにおける第2接点P2における電位と第4接点P4における電位とが互いに大きさが同じで正負が逆の値である場合を示している。当該図における「+」は、正の値の電位を示し、当該図における「-」は、「+」によって示された電位の大きさと同じ大きさであり符号が逆の電位を示し、当該図における「0」は、0の電位を示している。また、当該図における「1」は、第1接点P1を示し、当該図における「2」は、第2接点P2を示し、当該図における「3」は、第3接点P3を示し、当該図における「4」は、第4接点P4を示している。 Further, when the phase φ q and the phase φ r have non-zero values, both the potential at the second contact P2 and the potential at the fourth contact P4 at a certain timing are 0, and the potential at the first contact P1 at the timing. And the potential at the third contact P3 must be able to have the same magnitude and opposite values. In the figure indicated by X, both the potential at the second contact P2 and the potential at the fourth contact P4 are 0, and the potential at the first contact P1 and the potential at the third contact P3 at the timing are mutually equal. Is the same, and the sign is opposite. “+” In the figure indicates a positive potential, and “−” in the figure indicates a potential having the same magnitude as that of the potential indicated by “+” and having the opposite sign. “0” in the symbol indicates a potential of 0. Also, “1” in the figure indicates the first contact P1, “2” in the figure indicates the second contact P2, and “3” in the figure indicates the third contact P3. “4” indicates the fourth contact P4. The phase phi if q and the phase phi r takes a value other than 0, next both are 0 and the potential of the potential and the third contact P3 of the first contact point P1 at a certain timing, the potential at the second contact point P2 at the timing And the potential at the fourth contact P4 should be the same in magnitude and opposite in value. In the figure indicated by Y, both the potential at the first contact P1 and the potential at the third contact P3 are 0, and the potential at the second contact P2 and the potential at the fourth contact P4 at the timing are mutually equal. Is the same, and the sign is opposite. “+” In the figure indicates a positive potential, and “−” in the figure indicates a potential having the same magnitude as that of the potential indicated by “+” and having the opposite sign. “0” in the symbol indicates a potential of 0. Also, “1” in the figure indicates the first contact P1, “2” in the figure indicates the second contact P2, and “3” in the figure indicates the third contact P3. “4” indicates the fourth contact P4.
 また、位相φが0ではない値を取る場合、あるタイミングにおける第1接点P1における電位と第3接点P3における電位との両方が正の値となり、当該タイミングにおける第2接点P2における電位と第4接点P4における電位との両方が当該正の値と大きさが同じ値で符号が逆の値となることができなければならない。Zによって示された図は、第1接点P1における電位と第3接点P3における電位との両方が正の値であり、第2接点P2における電位と第4接点P4における電位との両方が当該正の値と大きさが同じ値で符号が逆の値である場合を示している。当該図における「+」は、正の値の電位を示し、当該図における「-」は、「+」によって示された電位の大きさと同じ大きさであり符号が逆の電位を示している。また、当該図における「1」は、第1接点P1を示し、当該図における「2」は、第2接点P2を示し、当該図における「3」は、第3接点P3を示し、当該図における「4」は、第4接点P4を示している。 Also, when taking the values phase phi Z is not 0, both the potential at the potential and the third contact point P3 of the first contact point P1 at a certain timing becomes a positive value, and the potential at the second contact point P2 at this timing the Both of the potentials at the four contacts P4 must be the same value as the positive value and can have opposite signs. In the figure indicated by Z, both the potential at the first contact P1 and the potential at the third contact P3 are positive values, and both the potential at the second contact P2 and the potential at the fourth contact P4 are positive. The case where the value is the same as the value of and the value is the opposite sign is shown. In the figure, “+” indicates a positive potential, and “−” in the figure indicates a potential having the same magnitude as the potential indicated by “+” and having the opposite sign. Also, “1” in the figure indicates the first contact P1, “2” in the figure indicates the second contact P2, and “3” in the figure indicates the third contact P3. “4” indicates the fourth contact P4.
 さて、電源PWのスイッチがオフの場合、制御回路1の構造(が有する対称性)によって、あるタイミングにおける第1接点P1における電位と第3接点P3における電位とは、両方が0、又は互いに大きさが同じで正負が逆の値となる。また、当該場合、制御回路1の構造(が有する対称性)によって、あるタイミングにおける第2接点P2における電位と第4接点P4における電位とは、両方が0、又は互いに大きさが同じで正負が逆の値となる。このため、位相φは、当該場合において常に0であり、第1共振回路RC1と第2共振回路RC2とは、電気的に結合することができない。その結果、当該場合、第1共振回路RC1と第2共振回路RC2のそれぞれは、互いに独立に(互いに無関係に)共振する。これは、当該場合において前述の第6項(上記の相互作用項)が定数項となることとして上記の式(1)に示したハミルトニアンに反映されており、第2共振回路RC2の共振を表す仮想的な調和振動子と、第1共振回路RC1によって構成された超伝導量子ビットが有する2つの量子状態(すなわち、|0〉と|1〉)を表す仮想的なスピンとの間の相互作用が消失していること(当該相互作用がオフの状態であること)を意味している。また、これは、第1ジョセフソン接合素子J1~第4ジョセフソン接合素子J4のそれぞれが有するジョセフソンエネルギーの大きさと無関係に起こる現象である。このため、当該相互作用の強さを強くしたとしても、電源PWのスイッチをオフにすることにより、制御回路1では、当該相互作用をオフの状態にすることができる。なお、電源PWのスイッチがオフの場合とは、電源PWにより第1共振回路RC1と第2共振回路RC2との間に差動交流電圧が供給されていない場合のことである。 When the switch of the power supply PW is OFF, the potential at the first contact P1 and the potential at the third contact P3 at a certain timing are both 0 or large due to the structure of the control circuit 1 (the symmetry that the control circuit 1 has). The values are the same and the values are opposite. In this case, the potential of the second contact P2 and the potential of the fourth contact P4 at a certain timing are both 0 or the same in magnitude and positive / negative depending on the structure of the control circuit 1. The opposite value. Therefore, the phase phi Z is always 0 when the, first resonant circuit RC1 and the second resonant circuit RC2, can not be electrically coupled. As a result, in this case, the first resonance circuit RC1 and the second resonance circuit RC2 resonate independently of each other (independently of each other). This is reflected in the Hamiltonian shown in the above equation (1) as the aforementioned sixth term (the above interaction term) becomes a constant term in this case, and represents the resonance of the second resonance circuit RC2. Interaction between a virtual harmonic oscillator and a virtual spin representing two quantum states (ie, | 0> and | 1>) of a superconducting qubit formed by the first resonance circuit RC1 Has disappeared (the interaction is in an off state). This is a phenomenon that occurs regardless of the magnitude of the Josephson energy of each of the first Josephson junction element J1 to the fourth Josephson junction element J4. For this reason, even if the strength of the interaction is increased, the interaction can be turned off in the control circuit 1 by turning off the switch of the power source PW. Note that the case where the switch of the power supply PW is off is a case where the differential AC voltage is not supplied between the first resonance circuit RC1 and the second resonance circuit RC2 by the power supply PW.
 一方、電源PWのスイッチがオンの場合、あるタイミングにおいて、第1接点P1における電位と第3接点P3における電位とが正の電位となり、且つ、当該タイミングにおいて第2接点P2における電位と第4接点P4における電位とが負の電位となることができる。また、当該場合、当該タイミングとは別のタイミングにおいて、第1接点P1における電位と第3接点P3における電位とが負の電位となり、且つ、当該タイミングにおいて第2接点P2における電位と第4接点P4における電位とが正の電位となることができる。このため、位相φは、当該場合において常に0ではなく、0と異なる値となる場合がある。従って、当該場合、第1共振回路RC1と第2共振回路RC2とは、電気的に結合する。その結果、当該場合、第1共振回路RC1と第2共振回路RC2とのそれぞれは、互いの共振に応じて共振する。これは、当該場合において前述の第6項(上記の相互作用項)のうち位相φ、位相φ、位相φのそれぞれに依存する項が0ではなくなることとして上記の式(1)に示したハミルトニアンに反映されており、第2共振回路RC2の共振を表す仮想的な調和振動子が、第1共振回路RC1によって構成された超伝導量子ビットが有する2つの量子状態(すなわち、|0〉と|1〉)を表す仮想的なスピンの状態に応じた力を受けること(すなわち、当該調和振動子と当該スピンとの間の相互作用が発生していること(オンの状態であること))を意味している。また、当該相互作用の強さは、第1ジョセフソン接合素子J1~第4ジョセフソン接合素子J4のそれぞれが有するジョセフソンエネルギーを大きくするほど大きくなる。このため、制御回路1では、当該ジョセフソンエネルギーを大きくすることにより、当該相互作用の強さを強くすることができる。なお、電源PWのスイッチがオンの場合とは、電源PWにより第1共振回路RC1及び第2共振回路RC2のそれぞれに交流電圧が供給されている場合のことである。 On the other hand, when the switch of the power supply PW is on, the potential at the first contact P1 and the potential at the third contact P3 become positive at a certain timing, and the potential at the second contact P2 and the fourth contact at the timing. The potential at P4 can be a negative potential. In this case, at a timing different from the timing, the potential at the first contact P1 and the potential at the third contact P3 become negative, and the potential at the second contact P2 and the fourth contact P4 at the timing. The potential at can be a positive potential. Therefore, the phase phi Z is always not 0 when the, it may become 0 and different values. Therefore, in this case, the first resonance circuit RC1 and the second resonance circuit RC2 are electrically coupled. As a result, in this case, each of the first resonance circuit RC1 and the second resonance circuit RC2 resonates according to the mutual resonance. In this case, the above-mentioned sixth term (the above interaction term), in which the terms depending on the phase φ r , the phase φ q , and the phase φ Z are not 0, Reflected in the shown Hamiltonian, the virtual harmonic oscillator representing the resonance of the second resonance circuit RC2 has two quantum states (i.e., | 0) included in the superconducting qubit formed by the first resonance circuit RC1. > And | 1>) (i.e., an interaction between the harmonic oscillator and the spin occurs (the state is on). )). The strength of the interaction increases as the Josephson energy of each of the first Josephson junction element J1 to the fourth Josephson junction element J4 increases. For this reason, in the control circuit 1, the intensity of the interaction can be increased by increasing the Josephson energy. Note that the case where the switch of the power supply PW is on is a case where an AC voltage is supplied to each of the first resonance circuit RC1 and the second resonance circuit RC2 by the power supply PW.
 このように、制御回路1(すなわち、変調回路MC)は、第1位相φと、第2位相φと、第3位相φと、第4位相φとに基づいて、第1共振回路RC1と第2共振回路RC2との結合状態を変化させる。より具体的には、制御回路1は、第1位相φと、第2位相φと、第3位相φと、第4位相φとに基づいて、第1共振回路RC1と第2共振回路RC2とが結合していない状態と、第1共振回路RC1と第2共振回路RC2とが結合している状態とのいずれかに変化させる。これにより、制御回路1は、第1共振回路RC1と第2共振回路RC2の電気的な結合を切ることができる。 Thus, the control circuit 1 (i.e., the modulation circuit MC) includes a first phase phi 1, a second phase phi 2, a third phase phi 3, based on the fourth phase phi 4, first resonant The coupling state between the circuit RC1 and the second resonance circuit RC2 is changed. More specifically, the control circuit 1 includes a first phase phi 1, a second phase phi 2, a third phase phi 3, based on the fourth phase phi 4, and the first resonance circuit RC1 second The state is changed to either a state where the resonance circuit RC2 is not coupled or a state where the first resonance circuit RC1 and the second resonance circuit RC2 are coupled. Thereby, the control circuit 1 can cut | disconnect the electrical coupling of 1st resonance circuit RC1 and 2nd resonance circuit RC2.
 また、制御回路1は、第1共振回路RC1と第2共振回路RC2とのそれぞれに交流電圧を供給する電源PWにより第1共振回路RC1と第2共振回路RC2とのそれぞれへの交流電圧の供給が開始された場合、第1共振回路RC1と第2共振回路RC2との結合状態を第1共振回路RC1と第2共振回路RC2とが結合している状態に変化させ、電源PWにより第1共振回路RC1と第2共振回路RC2とのそれぞれへの交流電圧の供給が停止された場合、当該結合状態を第1共振回路RC1と第2共振回路RC2とが結合していない状態に変化させる。これにより、制御回路1は、第1共振回路RC1と第2共振回路RC2への電源PWによる交流電圧の供給状態(すなわち、電源PWのスイッチのオン/オフ)に応じて、第1共振回路と第2共振回路の結合状態を切り替えることができる。 In addition, the control circuit 1 supplies an AC voltage to each of the first resonance circuit RC1 and the second resonance circuit RC2 by a power source PW that supplies an AC voltage to each of the first resonance circuit RC1 and the second resonance circuit RC2. Is started, the coupling state between the first resonance circuit RC1 and the second resonance circuit RC2 is changed to a state in which the first resonance circuit RC1 and the second resonance circuit RC2 are coupled, and the first resonance is generated by the power supply PW. When the supply of the AC voltage to each of the circuit RC1 and the second resonance circuit RC2 is stopped, the coupling state is changed to a state where the first resonance circuit RC1 and the second resonance circuit RC2 are not coupled. Thereby, the control circuit 1 is connected to the first resonance circuit RC1 and the second resonance circuit RC2 in accordance with the supply state of the AC voltage by the power source PW (that is, on / off of the switch of the power source PW). The coupling state of the second resonance circuit can be switched.
 <第1共振回路のエネルギーと第2共振回路のエネルギーとの関係>
 以下、第1共振回路RC1のエネルギーと第2共振回路RC2のエネルギーとの関係について説明する。
<Relationship between energy of first resonance circuit and energy of second resonance circuit>
Hereinafter, the relationship between the energy of the first resonance circuit RC1 and the energy of the second resonance circuit RC2 will be described.
 電源PWのスイッチがオフの場合、前述したように、第1共振回路RC1と第2共振回路RC2とは、電気的に結合することができない。当該場合、制御回路1では、第1共振回路RC1のエネルギーと、第2共振回路RC2のエネルギーとが独立に変化する。当該場合、制御回路1に外部から電気的なエネルギーが供給されていないため、熱エネルギーとしてエネルギーが損失してしまうことを無視すれば、制御回路1全体のエネルギーは変化しない(保存される)。このため、当該場合、制御回路1では、第1共振回路RC1の量子状態(より具体的には、第1共振回路RC1の共振を表す調和振動子の量子状態)と、第2共振回路RC2の量子状態(より具体的には、第2共振回路RC2により構成された超伝導量子ビットの量子状態)とが独立に変化する。すなわち、当該場合、制御回路1では、第1共振回路RC1と第2共振回路RC2との間の相互作用が消失している(すなわち、当該相互作用がオフの状態である)。 When the switch of the power supply PW is off, as described above, the first resonance circuit RC1 and the second resonance circuit RC2 cannot be electrically coupled. In this case, in the control circuit 1, the energy of the first resonance circuit RC1 and the energy of the second resonance circuit RC2 change independently. In this case, since no electrical energy is supplied to the control circuit 1 from the outside, the energy of the entire control circuit 1 does not change (is stored) if the loss of energy as thermal energy is ignored. For this reason, in this case, in the control circuit 1, the quantum state of the first resonance circuit RC1 (more specifically, the quantum state of the harmonic oscillator representing the resonance of the first resonance circuit RC1) and the second resonance circuit RC2 The quantum state (more specifically, the quantum state of the superconducting qubit configured by the second resonance circuit RC2) changes independently. That is, in this case, in the control circuit 1, the interaction between the first resonance circuit RC1 and the second resonance circuit RC2 has disappeared (that is, the interaction is off).
 一方、電源PWのスイッチがオンの場合、第1共振回路RC1と第2共振回路RC2とは、電気的に結合する。当該場合、制御回路1では、第1共振回路RC1のエネルギーの変化に応じて第2共振回路RC2のエネルギーが非線形(上記で説明した例では、三角関数的)に変化する。より具体的には、制御回路1は、第1位相φと、第2位相φと、第3位相φと、第4位相φとに基づいて、第1共振回路RC1のエネルギーの変化に応じて第2共振回路RC2のエネルギーが非線形に変化する。このため、当該場合、制御回路1では、第1共振回路RC1の量子状態(より具体的には、第1共振回路RC1の共振を表す調和振動子の量子状態)の変化に応じて、第2共振回路RC2の量子状態(より具体的には、第2共振回路RC2により構成された超伝導量子ビットの量子状態)が変化する。すなわち、当該場合、制御回路1では、第1共振回路RC1と第2共振回路RC2との間に相互作用が発生している(すなわち、当該相互作用がオンの状態である)。なお、第1共振回路RC1のエネルギーの変化に応じた第2共振回路RC2のエネルギーの変化と、第1共振回路RC1の量子状態の変化に応じた第2共振回路RC2の量子状態の変化とは、必ずしも一対一に対応づくものではない。 On the other hand, when the switch of the power supply PW is on, the first resonance circuit RC1 and the second resonance circuit RC2 are electrically coupled. In this case, in the control circuit 1, the energy of the second resonance circuit RC2 changes nonlinearly (trigonometrically in the example described above) in accordance with the change in energy of the first resonance circuit RC1. More specifically, the control circuit 1 includes a first phase phi 1, a second phase phi 2, a third phase phi 3, based on the fourth phase phi 4, the energy of the first resonant circuit RC1 The energy of the second resonance circuit RC2 changes nonlinearly according to the change. Therefore, in this case, the control circuit 1 changes the second state according to the change in the quantum state of the first resonance circuit RC1 (more specifically, the quantum state of the harmonic oscillator representing the resonance of the first resonance circuit RC1). The quantum state of the resonant circuit RC2 (more specifically, the quantum state of the superconducting qubit formed by the second resonant circuit RC2) changes. That is, in this case, in the control circuit 1, an interaction occurs between the first resonance circuit RC1 and the second resonance circuit RC2 (that is, the interaction is in an on state). Note that a change in energy of the second resonance circuit RC2 according to a change in energy of the first resonance circuit RC1 and a change in quantum state of the second resonance circuit RC2 according to a change in quantum state of the first resonance circuit RC1. However, it does not necessarily correspond to one to one.
 このように、制御回路1では、電源PWのスイッチのオン/オフに応じて、第1共振回路RC1と第2共振回路RC2との間の相互作用のオン/オフ(すなわち、発生/消失)を切り替えることができる。 Thus, in the control circuit 1, the interaction between the first resonance circuit RC1 and the second resonance circuit RC2 is turned on / off (that is, generated / disappeared) in accordance with the on / off of the switch of the power supply PW. Can be switched.
 <制御回路の集積化と超伝導量子ビット間の相互作用>
 以下、図3及び図4を参照し、制御回路1の集積化と超伝導量子ビット間の相互作用について説明する。
<Integration of control circuit and interaction between superconducting qubits>
Hereinafter, the integration of the control circuit 1 and the interaction between the superconducting qubits will be described with reference to FIGS.
 制御回路1が集積された集積回路を作成する作成者は、第1共振回路RC1における第0ジョセフソン接合素子J0と、第2共振回路RC2におけるインダクターLとのうち少なくとも一方を他の制御回路1と共有させることにより、制御回路1を二次元的又は三次元的に集積回路化することができる。 A creator who creates an integrated circuit in which the control circuit 1 is integrated has at least one of the 0th Josephson junction element J0 in the first resonance circuit RC1 and the inductor L in the second resonance circuit RC2 as another control circuit 1. The control circuit 1 can be integrated into a two-dimensional or three-dimensional integrated circuit.
 図3は、制御回路1を二次元的に集積化する方法の概念を説明するための図である。図3では、二次元正方格子が有する接点それぞれの位置に印MK1が配置されている。また、図3では、当該二次元正方格子上の点であって印MK1と印MK1との中点それぞれの位置に印MK2が配置されている。ここで、図3における複数の印MK1のそれぞれは、前述の第1共振回路RC1を示している。また、図3における複数の印MK2のそれぞれは、前述の第2共振回路RC2を示している。また、図3において印MK1と印MK2との間を繋ぐ線は、印MK1が表す第1共振回路RC1と印MK2が表す第2共振回路RC2とのそれぞれに対して図1に示したように接続された変調回路MC及び電源PWを示している。また、図3において印MK3は、各第1共振回路RC1に接続された回路であり、第1共振回路RC1のそれぞれが構成する超伝導量子ビットの量子状態を読み出す読出回路である。第1共振回路RC1のそれぞれに接続された読出回路は、第1共振回路RC1が構成する超伝導量子ビットの量子状態を読み出すことが可能であれば、既知の回路であってもよく、これから開発される回路であってもよい。例えば、第1共振回路RC1のそれぞれに接続された読出回路には、変調回路MCを介して当該第1共振回路RC1に接続された第2共振回路RC2が用いられてもよい。この場合、当該第2共振回路RC2は、当該量子状態を読み出す読出回路を備える。なお、当該読出回路により当該量子状態を読み出す場合、当該第2共振回路RC2には、マイクロ波パルスの反射係数測定が行われる場合がある。 FIG. 3 is a diagram for explaining the concept of a method for integrating the control circuit 1 two-dimensionally. In FIG. 3, a mark MK1 is arranged at each contact point of the two-dimensional square lattice. Further, in FIG. 3, marks MK2 are arranged at positions on the two-dimensional square lattice at the midpoints of the marks MK1 and MK1. Here, each of the plurality of marks MK1 in FIG. 3 represents the first resonance circuit RC1 described above. Further, each of the plurality of marks MK2 in FIG. 3 indicates the above-described second resonance circuit RC2. Further, in FIG. 3, the line connecting the mark MK1 and the mark MK2 is as shown in FIG. 1 for each of the first resonance circuit RC1 represented by the mark MK1 and the second resonance circuit RC2 represented by the mark MK2. The connected modulation circuit MC and power supply PW are shown. In FIG. 3, a mark MK3 is a circuit connected to each first resonance circuit RC1, and is a readout circuit that reads the quantum state of the superconducting qubits formed by each of the first resonance circuits RC1. The readout circuit connected to each of the first resonance circuits RC1 may be a known circuit as long as it can read out the quantum state of the superconducting qubit formed by the first resonance circuit RC1, and will be developed from now on. It may be a circuit. For example, the second resonance circuit RC2 connected to the first resonance circuit RC1 via the modulation circuit MC may be used for the readout circuit connected to each of the first resonance circuits RC1. In this case, the second resonance circuit RC2 includes a readout circuit that reads the quantum state. Note that when the quantum state is read out by the readout circuit, the reflection coefficient measurement of the microwave pulse may be performed in the second resonance circuit RC2.
 このように複数の制御回路1同士を、第1共振回路RC1と第2共振回路RC2の少なくとも一方を共有させて接続させることにより、複数の制御回路1が集積された集積回路を作成する作成者は、当該集積回路を作成することができる。すなわち、当該作成者は、変調回路MCを介して複数の第1共振回路RC1と複数の第2共振回路RC2とを交互に接続し、第1共振回路RC1と第2共振回路RC2とを二次元的に集積回路化することができる。 A creator who creates an integrated circuit in which a plurality of control circuits 1 are integrated by connecting at least one of the first resonance circuit RC1 and the second resonance circuit RC2 to each other by connecting the plurality of control circuits 1 to each other. Can create the integrated circuit. That is, the creator alternately connects the plurality of first resonance circuits RC1 and the plurality of second resonance circuits RC2 via the modulation circuit MC, and connects the first resonance circuit RC1 and the second resonance circuit RC2 two-dimensionally. Thus, an integrated circuit can be obtained.
 図4は、図3に示した概念に基づいて複数の制御回路1を集積させた集積回路の一例を示す図である。例えば、図4に示した集積回路に含まれる部分回路PC1は、第2共振回路RC2(より具体的には、インダクターL)を2つの制御回路1において共有させた回路である。また、図4に示した集積回路に含まれる部分回路PC2は、第1共振回路RC1(より具体的には、第0ジョセフソン接合素子J0)を2つの制御回路1において共有させた回路である。すなわち、図4では、当該集積回路が有する複数の変調回路MCそれぞれが備える4つのジョセフソン接合素子(第1ジョセフソン接合素子J1~第4ジョセフソン接合素子J4)のうち、第1共振回路RC1に近い側の2つのジョセフソン接合素子がπ接合のジョセフソン接合素子であり、第2共振回路RC2に近い側の2つのジョセフソン接合素子がπ接合のジョセフソン接合素子である。なお、図1において制御回路1が有する各素子に対して付していた符号は、図4では、図が煩雑になるため、省略している。 FIG. 4 is a diagram showing an example of an integrated circuit in which a plurality of control circuits 1 are integrated based on the concept shown in FIG. For example, the partial circuit PC1 included in the integrated circuit shown in FIG. 4 is a circuit in which the two control circuits 1 share the second resonance circuit RC2 (more specifically, the inductor L). Further, the partial circuit PC2 included in the integrated circuit shown in FIG. 4 is a circuit in which the first control circuit RC1 (more specifically, the 0th Josephson junction element J0) is shared by the two control circuits 1. . That is, in FIG. 4, among the four Josephson junction elements (the first Josephson junction element J1 to the fourth Josephson junction element J4) included in each of the plurality of modulation circuits MC included in the integrated circuit, the first resonance circuit RC1. The two Josephson junction elements nearer to the second resonance circuit are π-junction Josephson junction elements, and the two Josephson junction elements closer to the second resonance circuit RC2 are π-junction Josephson junction elements. Note that the reference numerals given to the elements of the control circuit 1 in FIG. 1 are omitted in FIG. 4 because the figure becomes complicated.
 図4に示したように複数の制御回路1を集積することにより、例えば、部分回路PC1が有する2つの電源PWそれぞれのスイッチをオンにした場合、部分回路PC1が有する1つの変調回路MCを介して、部分回路PC1が有する2つの第1共振回路RC1のそれぞれが構成する超伝導量子ビット間において相互作用が発生する。また、部分回路PC1が有する2つの電源PWのうちいずれか一方のスイッチをオフにした場合、部分回路PC1が有する2つの第1共振回路RC1のそれぞれが構成する超伝導量子ビット間における相互作用が消失する。このように、図4に示したように複数の制御回路1を集積することにより、当該複数の制御回路1を備える量子計算機は、ユーザーが所望する任意の隣り合う2つの超伝導量子ビット間の相互作用のオン/オフを切り替えることができる。その結果、当該量子計算機は、当該相互作用をオフにした際(すなわち、当該スイッチをオフにした際)、第1共振回路RC1と第2共振回路RC2との間の電気的な結合を残すことなく切ることができ(すなわち、第1共振回路RC1と第2共振回路RC2との間の相互作用を残すことなく切ることができ)、第1共振回路RC1と第2共振回路RC2との間の電気的な結合が切れずに残った場合に発生する誤りであって量子計算における誤りの発生を抑制することができる。また、当該量子計算機は、当該誤りが他の超伝導量子ビットを構成する共振回路に伝播してしまうことを抑制することができる。 By integrating the plurality of control circuits 1 as shown in FIG. 4, for example, when each of the two power supply PWs included in the partial circuit PC1 is turned on, the partial circuit PC1 includes a single modulation circuit MC. Thus, an interaction occurs between the superconducting qubits formed by each of the two first resonance circuits RC1 included in the partial circuit PC1. In addition, when any one of the two power sources PW included in the partial circuit PC1 is turned off, the interaction between the superconducting qubits formed by the two first resonance circuits RC1 included in the partial circuit PC1 is caused. Disappear. As described above, by integrating a plurality of control circuits 1 as shown in FIG. 4, a quantum computer including the plurality of control circuits 1 can be used between any two adjacent superconducting qubits desired by the user. The interaction can be switched on / off. As a result, the quantum computer leaves an electrical coupling between the first resonance circuit RC1 and the second resonance circuit RC2 when the interaction is turned off (that is, when the switch is turned off). (Ie, without leaving an interaction between the first resonant circuit RC1 and the second resonant circuit RC2), and between the first resonant circuit RC1 and the second resonant circuit RC2. It is an error that occurs when the electrical coupling remains without being broken, and the occurrence of an error in quantum computation can be suppressed. In addition, the quantum computer can suppress the error from propagating to the resonance circuit constituting another superconducting qubit.
 なお、複数の制御回路1は、図4に示したように二次元的に集積される構成に代えて、三次元的に集積される構成であってもよい。この場合、ある二次元平面上に集積された複数の制御回路1のそれぞれは、例えば、当該二次元平面と直交する方向に重なる他の二次元平面上に集積された複数の制御回路1のそれぞれとビアを用いて電気的に接続される。 Note that the plurality of control circuits 1 may have a three-dimensionally integrated configuration instead of the two-dimensionally integrated configuration shown in FIG. In this case, each of the plurality of control circuits 1 integrated on a certain two-dimensional plane is, for example, each of the plurality of control circuits 1 integrated on another two-dimensional plane overlapping in the direction orthogonal to the two-dimensional plane. And are electrically connected using vias.
 また、上記において説明した第2共振回路RC2は、LC共振回路に代えて、他の共振回路であってもよい。当該他の共振回路は、既知の共振回路であってもよく、これから開発される共振回路であってもよい。また、第2共振回路RC2は、LC共振回路に代えて、空洞共振器を用いた回路であってもよい。この場合、第2共振回路RC2では、例えば、空洞共振器を構成する導体中に誘起される電流がLC共振回路を流れる電流の代わりに用いられる。 Further, the second resonance circuit RC2 described above may be another resonance circuit instead of the LC resonance circuit. The other resonance circuit may be a known resonance circuit or a resonance circuit to be developed in the future. Further, the second resonance circuit RC2 may be a circuit using a cavity resonator instead of the LC resonance circuit. In this case, in the second resonance circuit RC2, for example, a current induced in the conductor constituting the cavity resonator is used instead of the current flowing through the LC resonance circuit.
 また、上記において説明した第1共振回路RC1は、超伝導量子ビットを構成する量子ビット回路に代えて、第2共振回路RC2のような共振回路(例えば、LC共振回路)であってもよい。この場合、制御回路1を備える情報処理装置は、制御回路1により、2つの調和振動子のそれぞれを構成する2つの共振回路の間の量子状態を制御することができる。当該情報処理装置は、例えば、一方の共振回路を量子メモリとし、当該量子メモリに他方の量子状態(量子情報)を記憶させることができる。このため、当該情報処理装置は、李当該量子メモリに記憶された量子状態を読み出すこともできる。 Further, the first resonance circuit RC1 described above may be a resonance circuit (for example, an LC resonance circuit) like the second resonance circuit RC2 instead of the qubit circuit constituting the superconducting qubit. In this case, the information processing apparatus including the control circuit 1 can control the quantum state between the two resonance circuits constituting each of the two harmonic oscillators by the control circuit 1. For example, the information processing apparatus can use one resonance circuit as a quantum memory and store the other quantum state (quantum information) in the quantum memory. For this reason, the information processing apparatus can also read the quantum state stored in the quantum memory.
 また、2つの調和振動子のそれぞれを構成する2つの共振回路を第1共振回路RC1及び第2共振回路RC2として有する制御回路1aと、2つの超伝導量子ビットのそれぞれを構成する2つの共振回路を第1共振回路RC1及び第2共振回路RC2として有する制御回路1bとが組み合わされた回路は、量子計算機、量子計算機以外の情報処理装置の少なくとも一方に備えられる構成であってもよい。 In addition, a control circuit 1a having two resonance circuits constituting the two harmonic oscillators as the first resonance circuit RC1 and the second resonance circuit RC2, and two resonance circuits constituting the two superconducting qubits, respectively. The circuit combined with the control circuit 1b having the first resonance circuit RC1 and the second resonance circuit RC2 may be provided in at least one of a quantum computer and an information processing device other than the quantum computer.
 <実施形態の変形例1>
 以下、図5及び図6を参照し、実施形態の変形例1について説明する。なお、実施形態の変形例1では、実施形態と同様な構成部に対して同じ符号を付して説明を省略する。
<Modification 1 of Embodiment>
Hereinafter, Modification 1 of the embodiment will be described with reference to FIGS. 5 and 6. In addition, in the modification 1 of embodiment, the same code | symbol is attached | subjected with respect to the component similar to embodiment, and description is abbreviate | omitted.
 実施形態において説明した制御回路1は、第2共振回路RC2に代えて、以下において説明する第3共振回路RC3を備える構成であってもよい。以下では、第2共振回路RC2に代えて第3共振回路RC3を備える制御回路1を、制御回路2と称して説明する。第3共振回路RC3は、第1共振回路RC1と同様に超伝導量子ビットを構成する共振回路である。すなわち、制御回路2は、LC共振回路である第2共振回路RC2を用いることなく(図4に示したように第2共振回路RC2を介することなく)、制御回路2が備える2つの超伝導量子ビット間の相互作用のオン/オフを切り替えることができるスイッチ回路である。 The control circuit 1 described in the embodiment may include a third resonance circuit RC3 described below instead of the second resonance circuit RC2. Hereinafter, the control circuit 1 including the third resonance circuit RC3 instead of the second resonance circuit RC2 will be described as a control circuit 2. The third resonance circuit RC3 is a resonance circuit that constitutes a superconducting qubit in the same manner as the first resonance circuit RC1. That is, the control circuit 2 does not use the second resonance circuit RC2 that is an LC resonance circuit (without passing through the second resonance circuit RC2 as shown in FIG. 4), and the two superconducting quanta included in the control circuit 2 It is a switch circuit capable of switching on / off of interaction between bits.
 まず、制御回路2の構成について説明する。図5は、実施形態の変形例1に係る制御回路2の構成の一例を示す図である。 First, the configuration of the control circuit 2 will be described. FIG. 5 is a diagram illustrating an example of the configuration of the control circuit 2 according to the first modification of the embodiment.
 制御回路2は、変調回路MCと、第1共振回路RC1と、第3共振回路RC3と、電源PWを備える。なお、制御回路2は、これら3つの回路及び電源PWに加えて、他の回路を備える構成であってもよい。ただし、この場合、当該他の回路は、以下において説明する制御回路2が有する特徴を壊さないように制御回路2に備えられなければならない。換言すると、以下において説明する制御回路2が有する特徴を壊さなければ、制御回路2は、如何なる変更を受けてもよい。 The control circuit 2 includes a modulation circuit MC, a first resonance circuit RC1, a third resonance circuit RC3, and a power supply PW. The control circuit 2 may be configured to include other circuits in addition to these three circuits and the power supply PW. However, in this case, the other circuit must be provided in the control circuit 2 so as not to break the characteristics of the control circuit 2 described below. In other words, the control circuit 2 may be subjected to any changes as long as the characteristics of the control circuit 2 described below are not destroyed.
 第3共振回路RC3は、第2共振回路RC2におけるインダクターLを第5ジョセフソン接合素子J5に置き換えた環状回路である。すなわち、第3共振回路RC3は、第5ジョセフソン接合素子J5と、第3キャパシターC3と、第4キャパシターC4を備える環状回路である。 The third resonance circuit RC3 is an annular circuit in which the inductor L in the second resonance circuit RC2 is replaced with a fifth Josephson junction element J5. That is, the third resonance circuit RC3 is an annular circuit including the fifth Josephson junction element J5, the third capacitor C3, and the fourth capacitor C4.
 第5ジョセフソン接合素子J5は、0接合のジョセフソン接合素子である。第5ジョセフソン接合素子J5は、第3キャパシターC3と第4キャパシターC4との間に位置する。なお、第5ジョセフソン接合素子J5は、0接合のジョセフソン接合素子に代えて、π接合のジョセフソン接合素子であってもよい。 The fifth Josephson junction element J5 is a zero junction Josephson junction element. The fifth Josephson junction element J5 is located between the third capacitor C3 and the fourth capacitor C4. The fifth Josephson junction element J5 may be a π-junction Josephson junction element instead of the 0-junction Josephson junction element.
 このように、制御回路2が第1共振回路RC1と第3共振回路RC3を備える場合、回路量子電磁力学に基づく制御回路2のハミルトニアンの構造は、上記の式(1)に示したハミルトニアンとほぼ同じ構造になる。このため、電源PWのスイッチがオフの場合、位相φが常に0であり、制御回路2において第1共振回路RC1と第3共振回路RC3とは、電気的に結合することができない。その結果、当該場合、第1共振回路RC1と第3共振回路RC3のそれぞれは、互いに独立に(互いに無関係に)共振する。これは、第3共振回路RC3によって構成された超伝導量子ビットが有する2つの量子状態(すなわち、|0〉と|1〉)を表す仮想的なスピンと、第1共振回路RC1によって構成された超伝導量子ビットが有する2つの量子状態(すなわち、|0〉と|1〉)を表す仮想的なスピンとの間の相互作用が消失していること(当該相互作用がオフの状態であること)を意味している。また、これは、第1ジョセフソン接合素子J1~第4ジョセフソン接合素子J4のそれぞれが有するジョセフソンエネルギーの大きさと無関係に起こる現象である。このため、当該相互作用の強さを強くしたとしても、電源PWのスイッチをオフにすることにより、制御回路2では、当該相互作用をオフの状態にすることができる。 As described above, when the control circuit 2 includes the first resonance circuit RC1 and the third resonance circuit RC3, the Hamiltonian structure of the control circuit 2 based on the circuit quantum electrodynamics is almost the same as the Hamiltonian represented by the above equation (1). It becomes the same structure. Therefore, when the switch of the power source PW is turned off, the phase phi Z always 0, the first resonance circuit RC1 in the control circuit 2 and the third resonant circuit RC3, can not be electrically coupled. As a result, in this case, the first resonance circuit RC1 and the third resonance circuit RC3 resonate independently of each other (independently of each other). This is configured by a virtual spin representing two quantum states (that is, | 0> and | 1>) included in the superconducting qubit configured by the third resonance circuit RC3 and the first resonance circuit RC1. The interaction between the virtual spins representing the two quantum states of the superconducting qubit (ie, | 0> and | 1>) has disappeared (the interaction must be off) ). This is a phenomenon that occurs regardless of the magnitude of the Josephson energy of each of the first Josephson junction element J1 to the fourth Josephson junction element J4. For this reason, even if the strength of the interaction is increased, the interaction can be turned off in the control circuit 2 by turning off the switch of the power source PW.
 一方、電源PWのスイッチがオンの場合、第1共振回路RC1と第3共振回路RC3とは、電気的に結合する。その結果、当該場合、第1共振回路RC1と第3共振回路RC3とのそれぞれは、互いの共振に応じて共振する。これは、第3共振回路RC3によって構成された超伝導量子ビットが有する2つの量子状態(すなわち、|0〉と|1〉)を表す仮想的なスピンが、第1共振回路RC1によって構成された超伝導量子ビットが有する2つの量子状態(すなわち、|0〉と|1〉)を表す仮想的なスピンの状態に応じた力を受けること(すなわち、これら2つのスピン間相互作用が発生していること(オンの状態であること))を意味している。また、当該相互作用の強さは、第1ジョセフソン接合素子J1~第4ジョセフソン接合素子J4のそれぞれが有するジョセフソンエネルギーの大きくするほど大きくなる。このため、制御回路2では、当該ジョセフソンエネルギーを大きくすることにより、当該相互作用の強さを強くすることができる。 On the other hand, when the switch of the power supply PW is on, the first resonance circuit RC1 and the third resonance circuit RC3 are electrically coupled. As a result, in this case, each of the first resonance circuit RC1 and the third resonance circuit RC3 resonates according to the mutual resonance. This is because a virtual spin representing two quantum states (ie, | 0> and | 1>) of the superconducting qubit formed by the third resonance circuit RC3 is formed by the first resonance circuit RC1. Receiving a force corresponding to a virtual spin state representing two quantum states (ie, | 0> and | 1>) of a superconducting qubit (ie, the interaction between these two spins is generated) (That it is in an on state)). The strength of the interaction increases as the Josephson energy of each of the first Josephson junction element J1 to the fourth Josephson junction element J4 increases. For this reason, in the control circuit 2, the strength of the interaction can be increased by increasing the Josephson energy.
 このように制御回路2は、第1共振回路RC1と第2共振回路RC2とが結合した場合における結合の強さを強くしつつ、制御回路2が有する第1共振回路RC1及び第3共振回路RC3のそれぞれにより構成された超伝導量子ビット間の相互作用のオン/オフを切り替えることができる。その結果、制御回路2は、制御回路2を備えた量子計算機における量子計算において誤りが発生してしまうことを抑制することができる。 As described above, the control circuit 2 increases the coupling strength when the first resonance circuit RC1 and the second resonance circuit RC2 are coupled, and the first resonance circuit RC1 and the third resonance circuit RC3 that the control circuit 2 has. It is possible to switch on / off the interaction between the superconducting qubits configured by each of the above. As a result, the control circuit 2 can suppress an error from occurring in the quantum calculation in the quantum computer including the control circuit 2.
 図6は、複数の制御回路2を集積させた集積回路の一例を示す図である。例えば、図6に示した集積回路に含まれる部分回路PC3は、第3共振回路RC3(より具体的には、第5ジョセフソン接合素子J5)を2つの制御回路2において共有させた回路である。すなわち、制御回路2を集積化する方法の概念は、図3に示した印MK2を、第3共振回路RC3を示す図示しない印MK4に置き換えた概念と同様である。 FIG. 6 is a diagram illustrating an example of an integrated circuit in which a plurality of control circuits 2 are integrated. For example, the partial circuit PC3 included in the integrated circuit shown in FIG. 6 is a circuit in which the third control circuit RC3 (more specifically, the fifth Josephson junction element J5) is shared by the two control circuits 2. . That is, the concept of the method of integrating the control circuit 2 is the same as the concept in which the mark MK2 shown in FIG. 3 is replaced with a mark MK4 (not shown) showing the third resonance circuit RC3.
 このように複数の制御回路2同士を、第1共振回路RC1と第3共振回路RC3の少なくとも一方を共有させて接続させることにより、複数の制御回路2が集積化された集積回路を作成する作成者は、当該集積回路を作成することができる。すなわち、当該作成者は、変調回路MCを介して複数の第1共振回路RC1と複数の第3共振回路RC3とを交互に接続し、第1共振回路RC1と第3共振回路RC3とを二次元的に集積回路化することができる。その結果、当該集積回路は、図4に示した集積回路と比べて第2共振回路RC2の分だけ小さくすること、もしくは図4に示した集積回路と比べて超伝導量子ビットを構成する量子ビット回路(この一例において、第1共振回路RC1及び第3共振回路RC3)の数を増やすことができる。また、図6に示した集積回路のように制御回路2を集積する場合、当該集積回路の作成者は、当該集積回路における配線の簡略化ができる。その結果、当該集積回路は、当該場合ではない場合と比較して、より容易に作成できるとともに、より安価に作成することができる。 In this way, a plurality of control circuits 2 are connected to each other by sharing at least one of the first resonance circuit RC1 and the third resonance circuit RC3, thereby creating an integrated circuit in which the plurality of control circuits 2 are integrated. A person can create the integrated circuit. That is, the creator alternately connects the plurality of first resonance circuits RC1 and the plurality of third resonance circuits RC3 via the modulation circuit MC, and connects the first resonance circuit RC1 and the third resonance circuit RC3 two-dimensionally. Thus, an integrated circuit can be obtained. As a result, the integrated circuit is made smaller by the second resonant circuit RC2 than the integrated circuit shown in FIG. 4, or the qubits constituting the superconducting qubit as compared with the integrated circuit shown in FIG. The number of circuits (in this example, the first resonance circuit RC1 and the third resonance circuit RC3) can be increased. When the control circuit 2 is integrated like the integrated circuit shown in FIG. 6, the creator of the integrated circuit can simplify the wiring in the integrated circuit. As a result, the integrated circuit can be created more easily and at a lower cost than in the case where the integrated circuit is not.
 また、図6に示したように複数の制御回路2を集積することにより、例えば、部分回路PC3が有する1つの電源PWそれぞれのスイッチをオンにした場合、部分回路PC3が有する1つの変調回路MCを介して、部分回路PC3が有する第1共振回路RC1及び第3共振回路RC3のそれぞれが構成する超伝導量子ビット間において相互作用が発生する。また、部分回路PC3が有する1つの電源PWのスイッチをオフにした場合、部分回路PC3が有する第1共振回路RC1及び第3共振回路RC3のそれぞれが構成する超伝導量子ビット間における相互作用が消失する。このように、図6に示したように複数の制御回路2を集積することにより、当該複数の制御回路2を備える量子計算機は、ユーザーが所望する任意の隣り合う2つの超伝導量子ビット間の相互作用のオン/オフを切り替えることができる。その結果、当該量子計算機は、量子計算において誤りが発生してしまうことを抑制することができる。 Further, by integrating a plurality of control circuits 2 as shown in FIG. 6, for example, when each switch of one power supply PW included in the partial circuit PC3 is turned on, one modulation circuit MC included in the partial circuit PC3. Through the above, an interaction occurs between the superconducting qubits formed by each of the first resonance circuit RC1 and the third resonance circuit RC3 included in the partial circuit PC3. Further, when the switch of one power supply PW included in the partial circuit PC3 is turned off, the interaction between the superconducting qubits formed by each of the first resonance circuit RC1 and the third resonance circuit RC3 included in the partial circuit PC3 is lost. To do. In this way, by integrating a plurality of control circuits 2 as shown in FIG. 6, a quantum computer including the plurality of control circuits 2 can be used between any two adjacent superconducting qubits desired by the user. The interaction can be switched on / off. As a result, the quantum computer can suppress an error from occurring in the quantum calculation.
 また、図6に示したように複数の制御回路2を集積することにより、図6に示した集積回路を有する量子計算機は、量子計算中において、当該集積回路が有する複数の第1共振回路RC1のそれぞれ及び複数の第3共振回路RC3のそれぞれが構成する超伝導量子ビットのいずれか1つの超伝導量子ビットにおいて誤りが生じた場合であっても、当該超伝導量子ビットを構成する第1共振回路RC1に接続された電源PWのスイッチがオフである限り、当該誤りが他の超伝導量子ビットを構成する第1共振回路RC1又は第3共振回路RC3に伝播してしまうことを抑制することができる。 In addition, by integrating a plurality of control circuits 2 as shown in FIG. 6, the quantum computer having the integrated circuit shown in FIG. 6 can perform a plurality of first resonance circuits RC1 included in the integrated circuit during the quantum calculation. Even if an error occurs in any one of the superconducting qubits constituted by each of the third resonance circuits RC3 and the first resonance circuit RC3, the first resonance constituting the superconducting qubits As long as the switch of the power supply PW connected to the circuit RC1 is off, it is possible to prevent the error from propagating to the first resonance circuit RC1 or the third resonance circuit RC3 constituting another superconducting qubit. it can.
 なお、複数の制御回路2は、図6に示したように二次元的に集積される構成に代えて、三次元的に集積される構成であってもよい。この場合、ある二次元平面上に集積された複数の制御回路2のそれぞれは、例えば、当該二次元平面と直交する方向に重なる他の二次元平面上に集積された複数の制御回路2のそれぞれとビアを用いて電気的に接続される。 The plurality of control circuits 2 may be configured to be integrated three-dimensionally instead of the configuration integrated two-dimensionally as shown in FIG. In this case, each of the plurality of control circuits 2 integrated on a certain two-dimensional plane is, for example, each of the plurality of control circuits 2 integrated on another two-dimensional plane overlapping in a direction orthogonal to the two-dimensional plane. And are electrically connected using vias.
 <実施形態の変形例2>
 以下、図7を参照し、実施形態の変形例2について説明する。なお、実施形態の変形例2では、実施形態と同様な構成部に対して同じ符号を付して説明を省略する。
<Modification 2 of Embodiment>
Hereinafter, a second modification of the embodiment will be described with reference to FIG. In the second modification of the embodiment, the same reference numerals are given to the same components as those in the embodiment, and the description thereof is omitted.
 実施形態において説明した制御回路1は、第1共振回路RC1に代えて、第1共振回路RC1によって構成された超伝導量子ビットと異なる超伝導量子ビットを構成する共振回路を備える構成であってもよい。以下では、第1共振回路RC1に代えて当該共振回路を備える制御回路1を、制御回路3と称して説明する。以下では、一例として、当該共振回路が図7に示した第4共振回路RC4である場合について説明する。図7は、実施形態の変形例2に係る制御回路3の構成の一例を示す図である。 The control circuit 1 described in the embodiment may include a resonance circuit that configures a superconducting qubit different from the superconducting qubit configured by the first resonance circuit RC1 instead of the first resonance circuit RC1. Good. Hereinafter, the control circuit 1 including the resonance circuit instead of the first resonance circuit RC1 will be described as a control circuit 3. Below, the case where the said resonance circuit is 4th resonance circuit RC4 shown in FIG. 7 as an example is demonstrated. FIG. 7 is a diagram illustrating an example of a configuration of the control circuit 3 according to the second modification of the embodiment.
 制御回路3は、変調回路MCと、第2共振回路RC2と、第4共振回路RC4と、電源PWを備える。なお、制御回路3は、これら3つの回路及び電源PWに加えて、他の回路を備える構成であってもよい。ただし、この場合、当該他の回路は、以下において説明する制御回路3が有する特徴を壊さないように制御回路3に備えられなければならない。換言すると、以下において説明する制御回路3が有する特徴を壊さなければ、制御回路3は、如何なる変更を受けてもよい。 The control circuit 3 includes a modulation circuit MC, a second resonance circuit RC2, a fourth resonance circuit RC4, and a power supply PW. The control circuit 3 may be configured to include other circuits in addition to these three circuits and the power supply PW. However, in this case, the other circuit must be provided in the control circuit 3 so as not to break the characteristics of the control circuit 3 described below. In other words, the control circuit 3 may be subjected to any changes as long as the characteristics of the control circuit 3 described below are not destroyed.
 第4共振回路RC4は、第1共振回路RC1において第0ジョセフソン接合素子J0を回路CCに置き換えた共振回路である。すなわち、第4共振回路RC4において、回路CCは、第1キャパシターC1と第2キャパシターC2との間に位置する。
 回路CCは、第6ジョセフソン接合素子J6と、第7ジョセフソン接合素子J7と、第8ジョセフソン接合素子J8を備える環状回路である。ここで、第6ジョセフソン接合素子J6、第7ジョセフソン接合素子J7、第8ジョセフソン接合素子J8のそれぞれがインダクターとして振る舞うため、回路CCを備える第4共振回路RC4は、共振する。
The fourth resonance circuit RC4 is a resonance circuit obtained by replacing the 0th Josephson junction element J0 with the circuit CC in the first resonance circuit RC1. That is, in the fourth resonance circuit RC4, the circuit CC is located between the first capacitor C1 and the second capacitor C2.
The circuit CC is a ring circuit including a sixth Josephson junction element J6, a seventh Josephson junction element J7, and an eighth Josephson junction element J8. Here, since each of the sixth Josephson junction element J6, the seventh Josephson junction element J7, and the eighth Josephson junction element J8 behaves as an inductor, the fourth resonance circuit RC4 including the circuit CC resonates.
 第6ジョセフソン接合素子J6及び第7ジョセフソン接合素子J7のそれぞれは、0接合のジョセフソン接合素子である。なお、第6ジョセフソン接合素子J6及び第7ジョセフソン接合素子J7のうちいずれか一方又は両方は、0接合のジョセフソン接合素子に代えて、π接合のジョセフソン接合素子であってもよい。 Each of the sixth Josephson junction element J6 and the seventh Josephson junction element J7 is a zero junction Josephson junction element. Note that one or both of the sixth Josephson junction element J6 and the seventh Josephson junction element J7 may be a π junction Josephson junction element instead of the 0 junction Josephson junction element.
 第8ジョセフソン接合素子J8は、π接合のジョセフソン接合素子である。なお、第8ジョセフソン接合素子J8は、π接合のジョセフソン接合素子に代えて、0接合のジョセフソン接合素子であってもよい。第8ジョセフソン接合素子J8は、回路CCにおいて、第6ジョセフソン接合素子J6と第7ジョセフソン接合素子J7との間に位置する。 The eighth Josephson junction element J8 is a π junction Josephson junction element. The eighth Josephson junction element J8 may be a 0-junction Josephson junction element instead of the π-junction Josephson junction element. The eighth Josephson junction element J8 is located between the sixth Josephson junction element J6 and the seventh Josephson junction element J7 in the circuit CC.
 ここで、制御回路3において、第1接点P1と第1キャパシターC1との間と、第6ジョセフソン接合素子J6と第8ジョセフソン接合素子J8との間とが接続されている。また、制御回路3において、第3接点P3と第2キャパシターC2との間と、第7ジョセフソン接合素子J7と第8ジョセフソン接合素子J8との間とが接続されている。 Here, in the control circuit 3, the first contact P1 and the first capacitor C1 and the sixth Josephson junction element J6 and the eighth Josephson junction element J8 are connected. Further, in the control circuit 3, the third contact P3 and the second capacitor C2 and the seventh Josephson junction element J7 and the eighth Josephson junction element J8 are connected.
 このように、制御回路3が第2共振回路RC2と第4共振回路RC4を備える場合、回路量子電磁力学に基づく制御回路3のハミルトニアンの構造は、上記の式(1)に示したハミルトニアンとほぼ同じ構造になる。このため、電源PWのスイッチがオフの場合、位相φが常に0であり、制御回路3において第2共振回路RC2と第4共振回路RC4とは、電気的に結合することができない。その結果、当該場合、第2共振回路RC2と第4共振回路RC4のそれぞれは、互いに独立に(互いに無関係に)共振する。これは、第4共振回路RC4によって構成された超伝導量子ビットが有する2つの量子状態(すなわち、|0〉と|1〉)を表す仮想的なスピンと、第2共振回路RC2の共振を表す仮想的な調和振動子との間の相互作用が存在しない(消える、消失する)ことを意味している。また、これは、第1ジョセフソン接合素子J1~第4ジョセフソン接合素子J4のそれぞれが有するジョセフソンエネルギーの大きさと無関係に起こる現象である。このため、当該相互作用の強さを強くしたとしても、電源PWのスイッチをオフにすることにより、制御回路3では、当該相互作用をオフの状態にすることができる。 As described above, when the control circuit 3 includes the second resonance circuit RC2 and the fourth resonance circuit RC4, the Hamiltonian structure of the control circuit 3 based on the circuit quantum electrodynamics is almost the same as the Hamiltonian shown in the above equation (1). It becomes the same structure. Therefore, when the switch of the power source PW is turned off, the phase phi Z is always 0, the control circuit 3 and the second resonant circuit RC2 and the fourth resonant circuit RC4, can not be electrically coupled. As a result, in this case, the second resonance circuit RC2 and the fourth resonance circuit RC4 resonate independently of each other (independently of each other). This represents a virtual spin representing two quantum states (that is, | 0> and | 1>) included in the superconducting qubit formed by the fourth resonance circuit RC4 and resonance of the second resonance circuit RC2. This means that there is no interaction (disappears or disappears) with the virtual harmonic oscillator. This is a phenomenon that occurs regardless of the magnitude of the Josephson energy of each of the first Josephson junction element J1 to the fourth Josephson junction element J4. For this reason, even if the strength of the interaction is increased, the interaction can be turned off in the control circuit 3 by turning off the switch of the power source PW.
 一方、電源PWのスイッチがオンの場合、第2共振回路RC2と第4共振回路RC4とは、電気的に結合する。その結果、当該場合、第2共振回路RC2と第4共振回路RC4とのそれぞれは、互いの共振に応じて共振する。これは、第2共振回路RC2の共振を表す仮想的な調和振動子が、第4共振回路RC4によって構成された超伝導量子ビットが有する2つの量子状態(すなわち、|0〉と|1〉)を表す仮想的なスピンの状態に応じた力を受けること(すなわち、当該調和振動子と当該スピンとの間の相互作用が存在すること)を意味している。また、当該相互作用の強さは、第1ジョセフソン接合素子J1~第4ジョセフソン接合素子J4のそれぞれが有するジョセフソンエネルギーの大きくするほど大きくなる。このため、制御回路3では、当該ジョセフソンエネルギーを大きくすることにより、当該相互作用の強さを強くすることができる。 On the other hand, when the switch of the power supply PW is on, the second resonance circuit RC2 and the fourth resonance circuit RC4 are electrically coupled. As a result, in this case, each of the second resonance circuit RC2 and the fourth resonance circuit RC4 resonates according to the mutual resonance. This is because the virtual harmonic oscillator representing the resonance of the second resonance circuit RC2 has two quantum states (ie, | 0> and | 1>) that the superconducting qubit formed by the fourth resonance circuit RC4 has. It means that a force corresponding to a virtual spin state representing (that is, an interaction between the harmonic oscillator and the spin exists). The strength of the interaction increases as the Josephson energy of each of the first Josephson junction element J1 to the fourth Josephson junction element J4 increases. For this reason, in the control circuit 3, the strength of the interaction can be increased by increasing the Josephson energy.
 このように制御回路3は、第2共振回路RC2と第4共振回路RC4とが結合した場合における結合の強さを強くしつつ、制御回路3が有する第2共振回路RC2と第4共振回路RC4との間の相互作用のオン/オフを切り替えることができる。その結果、制御回路3は、実施形態と同様の効果を得ることができる。 In this way, the control circuit 3 increases the strength of the coupling when the second resonance circuit RC2 and the fourth resonance circuit RC4 are coupled, and the second resonance circuit RC2 and the fourth resonance circuit RC4 that the control circuit 3 has. Can be switched on / off. As a result, the control circuit 3 can obtain the same effect as the embodiment.
 なお、上記において説明した制御回路1~制御回路3のそれぞれは、超伝導量子ビットを構成する共振回路(例えば、制御回路1の場合、第1共振回路RC1)に代えて、他の量子ビットを構成する回路が接続される構成であってもよい。当該他の量子ビットは、既知の量子ビットであってもよく、これから開発される量子ビットであってもよい。この場合、当該回路は、当該量子ビットが有する2つの量子状態に応じて電流が振動するように構成される。 Note that each of the control circuit 1 to control circuit 3 described above replaces the resonance circuit (for example, the first resonance circuit RC1 in the case of the control circuit 1) constituting the superconducting qubit with another qubit. The structure to which the circuit to comprise may be connected may be sufficient. The other qubits may be known qubits or qubits to be developed in the future. In this case, the circuit is configured such that the current oscillates according to two quantum states of the qubit.
 以上のように、変調回路(上記において説明した例では、変調回路MC)は、第1接点(上記において説明した例では、第1接点P1)と、第2接点(上記において説明した例では、第2接点P2)と、第3接点(上記において説明した例では、第3接点P3)と、第4接点(上記において説明した例では、第4接点P4)とを有し、第1接点と第3接点とに第1共振回路(上記において説明した例では、第1共振回路RC1)が接続され、第2接点と第4接点とに第2共振回路(上記において説明した例では、第2共振回路RC2)が接続された環状回路であって、第1接点における電位の時間積分によって表される位相である第1位相(上記において説明した例では、第1位相φ)と、第2接点(上記において説明した例では、第2位相φ)における電位の時間積分によって表される位相である第2位相と、第3接点における電位の時間積分によって表される位相である第3位相(上記において説明した例では、第3位相φ)と、第4接点における電位の時間積分によって表される位相である第4位相(上記において説明した例では、第4位相φ)とに基づいて、第1共振回路と第2共振回路との結合状態を変化させる。また、変調回路は、第1位相と、前記第2位相と、前記第3位相と、前記第4位相とに基づいて、結合状態を、第1共振回路と第2共振回路とが結合していない状態と、第1共振回路と第2共振回路とが結合している状態とのいずれかに変化させる。これにより、変調回路は、第1共振回路と第2共振回路の電気的な結合を切ることができる。 As described above, the modulation circuit (in the example described above, the modulation circuit MC) includes the first contact (in the example described above, the first contact P1) and the second contact (in the example described above, A second contact P2), a third contact (in the example described above, the third contact P3), and a fourth contact (in the example described above, the fourth contact P4), A first resonance circuit (in the example described above, the first resonance circuit RC1) is connected to the third contact, and a second resonance circuit (in the example described above, the second resonance circuit RC1) is connected to the second contact and the fourth contact. A ring circuit to which a resonance circuit RC2) is connected, and a first phase (in the example described above, the first phase φ 1 ) that is a phase represented by time integration of the potential at the first contact, and a second phase Contact (in the example described above, second place A second phase that is a phase represented by time integration of the potential in the phase φ 2 ) and a third phase that is a phase represented by time integration of the potential at the third contact (in the example described above, the third phase). and phi 3), in the example described in the fourth phase (above the phase represented by the time integral of the potential at the fourth contact point, based on the fourth phase phi 4) and the first resonant circuit and the second resonance The coupling state with the circuit is changed. The modulation circuit has a coupling state based on the first phase, the second phase, the third phase, and the fourth phase, and the first resonance circuit and the second resonance circuit are coupled. The state is changed to either a state in which the first resonance circuit and the second resonance circuit are coupled to each other. Thereby, the modulation circuit can disconnect the electrical coupling between the first resonance circuit and the second resonance circuit.
 また、変調回路は、第1共振回路と第2共振回路とのそれぞれに交流電圧を供給する電源(上記において説明した例では、電源PW)により第1共振回路と第2共振回路とのそれぞれへの交流電圧の供給が開始された場合、結合状態を第1共振回路と第2共振回路とが結合している状態に変化させ、電源により第1共振回路と第2共振回路とのそれぞれへの交流電圧の供給が停止された場合、当該結合状態を第1共振回路と第2共振回路とが結合していない状態に変化させる。これにより、変調回路は、第1共振回路と第2共振回路とのそれぞれへの電源による交流電圧の供給状態に応じて、第1共振回路と第2共振回路の結合状態を切り替えることができる。 Further, the modulation circuit is supplied to each of the first resonance circuit and the second resonance circuit by a power source (in the example described above, the power source PW) that supplies an AC voltage to each of the first resonance circuit and the second resonance circuit. When the supply of the AC voltage is started, the coupling state is changed to a state where the first resonance circuit and the second resonance circuit are coupled, and the power supply to each of the first resonance circuit and the second resonance circuit is performed. When the supply of the AC voltage is stopped, the coupling state is changed to a state where the first resonance circuit and the second resonance circuit are not coupled. Thereby, the modulation circuit can switch the coupling state of the first resonance circuit and the second resonance circuit according to the supply state of the AC voltage by the power source to each of the first resonance circuit and the second resonance circuit.
 また、変調回路は、0接合の第1ジョセフソン接合素子(上記において説明した例では、第1ジョセフソン接合素子J1)と、0接合の第2ジョセフソン接合素子(上記において説明した例では、第2ジョセフソン接合素子J2)と、π接合の第3ジョセフソン接合素子(上記において説明した例では、第3ジョセフソン接合素子J3)と、π接合の第4ジョセフソン接合素子(上記において説明した例では、第4ジョセフソン接合素子J4)とを備え、第1ジョセフソン接合素子が第1接点と第2接点との間に位置し、第2ジョセフソン接合素子が第2接点と第3接点との間に位置し、第3ジョセフソン接合素子が第3接点と第4接点との間に位置し、第4ジョセフソン接合素子が第4接点と第1接点との間に位置する。これにより、変調回路は、第1ジョセフソン接合素子~第4ジョセフソン接合素子に基づいて、第1共振回路と第2共振回路の結合状態を切り替えることができる。 In addition, the modulation circuit includes a 0-junction first Josephson junction element (in the example described above, the first Josephson junction element J1) and a 0-junction second Josephson junction element (in the example described above, The second Josephson junction element J2), the third Josephson junction element of π junction (in the example described above, the third Josephson junction element J3), and the fourth Josephson junction element of π junction (described above). In this example, a fourth Josephson junction element J4) is provided, the first Josephson junction element is located between the first contact and the second contact, and the second Josephson junction element is the second contact and the third contact. The third Josephson junction element is located between the third contact and the fourth contact, and the fourth Josephson junction element is located between the fourth contact and the first contact. Thereby, the modulation circuit can switch the coupling state of the first resonance circuit and the second resonance circuit based on the first to fourth Josephson junction elements.
 また、変調回路は、第1共振回路と第2共振回路のうちの少なくとも一方が、ジョセフソン接合素子(上記において説明した例では、第0ジョセフソン接合素子J0、第5ジョセフソン接合素子J5、第6ジョセフソン接合素子J6~第8ジョセフソン接合素子J8)を含む量子ビット回路である。これにより、変調回路は、第1共振回路と第2共振回路の少なくとも一方がジョセフソン接合素子を含む量子ビット回路である場合において、第1共振回路と第2共振回路の結合状態を切り替えることができる。 In the modulation circuit, at least one of the first resonance circuit and the second resonance circuit is a Josephson junction element (in the example described above, the 0th Josephson junction element J0, the fifth Josephson junction element J5, This is a qubit circuit including sixth Josephson junction element J6 to eighth Josephson junction element J8). Accordingly, the modulation circuit can switch the coupling state between the first resonance circuit and the second resonance circuit when at least one of the first resonance circuit and the second resonance circuit is a qubit circuit including a Josephson junction element. it can.
 また、変調回路は、第1共振回路と前記第2共振回路のうちのいずれか一方が、ジョセフソン接合素子を含む量子ビット回路である。これにより、変調回路は、第1共振回路と第2共振回路のいずれか一方がジョセフソン接合素子を含む量子ビット回路である場合において、第1共振回路と第2共振回路の結合状態を切り替えることができる。 Further, the modulation circuit is a qubit circuit in which either one of the first resonance circuit and the second resonance circuit includes a Josephson junction element. Thereby, the modulation circuit switches the coupling state of the first resonance circuit and the second resonance circuit when either the first resonance circuit or the second resonance circuit is a qubit circuit including a Josephson junction element. Can do.
 また、変調回路は、第1共振回路と第2共振回路のうち量子ビット回路と異なる共振回路が、量子ビット回路の量子状態を読み出す読出回路を備える。これにより、変調回路は、第1共振回路と第2共振回路のうち量子ビット回路と異なる共振回路を用いて、第1共振回路と第2共振回路のうち量子ビット回路である共振回路の量子状態を読み出すことができる。 Further, the modulation circuit includes a readout circuit in which a resonance circuit different from the qubit circuit among the first resonance circuit and the second resonance circuit reads the quantum state of the qubit circuit. Accordingly, the modulation circuit uses a resonance circuit different from the qubit circuit among the first resonance circuit and the second resonance circuit, and the quantum state of the resonance circuit that is the qubit circuit among the first resonance circuit and the second resonance circuit. Can be read out.
 また、制御回路(上記において説明した例では、制御回路1~制御回路3)は、上記に記載の変調回路と、第1共振回路と、第2共振回路と、第1共振回路と第2共振回路とのそれぞれに交流電圧を供給する電源と、を備える。また、制御回路では、電源が供給する交流電圧の周波数は、前記第1共振回路と前記第2共振回路とのうち少なくとも一方の共振周波数である。また、制御回路では、電源により第1共振回路と第2共振回路とのそれぞれへの交流電圧の供給が開始された場合、第1共振回路の量子状態の変化に応じて、第2共振回路の量子状態が変化する。また、制御回路は、第1共振回路の量子状態の変化に応じて第2共振回路の量子状態が変化する。また、制御回路では、第2共振回路の量子状態の変化は、第1位相と、第2位相と、第3位相と、第4位相と、第1共振回路の量子状態の変化とに応じた変化である。これにより、第1共振回路と第2共振回路の電気的な結合を切ることができる。 In addition, the control circuit (in the example described above, the control circuit 1 to the control circuit 3) includes the modulation circuit, the first resonance circuit, the second resonance circuit, the first resonance circuit, and the second resonance circuit described above. And a power supply for supplying an AC voltage to each of the circuits. In the control circuit, the frequency of the AC voltage supplied by the power supply is at least one of the resonance frequency of the first resonance circuit and the second resonance circuit. Further, in the control circuit, when the supply of the AC voltage to each of the first resonance circuit and the second resonance circuit is started by the power source, the second resonance circuit of the second resonance circuit is changed according to the change of the quantum state of the first resonance circuit. The quantum state changes. In the control circuit, the quantum state of the second resonance circuit changes according to the change of the quantum state of the first resonance circuit. In the control circuit, the change in the quantum state of the second resonance circuit is in accordance with the first phase, the second phase, the third phase, the fourth phase, and the change in the quantum state of the first resonance circuit. It is a change. Thereby, the electrical coupling between the first resonance circuit and the second resonance circuit can be cut.
 また、制御回路は、電源により第1共振回路と第2共振回路とのそれぞれへの交流電圧の供給が停止された場合、第1共振回路の量子状態と、第2共振回路の量子状態とが独立に変化する。これにより、制御回路は、電源により第1共振回路と第2共振回路とのそれぞれへの交流電圧の供給を停止することによって、第1共振回路と第2共振回路との結合状態を、第1共振回路と第2共振回路が結合していない状態に切り替えることができる。 In addition, when the supply of AC voltage to each of the first resonance circuit and the second resonance circuit is stopped by the power supply, the control circuit has a quantum state of the first resonance circuit and a quantum state of the second resonance circuit. It changes independently. Thereby, the control circuit stops the supply of the AC voltage to each of the first resonance circuit and the second resonance circuit by the power source, thereby changing the coupling state between the first resonance circuit and the second resonance circuit to the first resonance circuit. It is possible to switch to a state where the resonance circuit and the second resonance circuit are not coupled.
 以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない限り、変更、置換、削除等されてもよい。 The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and changes, substitutions, deletions, and the like are possible without departing from the gist of the present invention. May be.
1、2、3  制御回路
C1  第1キャパシター
C2  第2キャパシター
C3  第3キャパシター
C4 第4キャパシター
CC  回路
J0  第0ジョセフソン接合素子
J1  第1ジョセフソン接合素子
J2  第2ジョセフソン接合素子
J3  第3ジョセフソン接合素子
J4  第4ジョセフソン接合素子
J5  第5ジョセフソン接合素子
J6  第6ジョセフソン接合素子
J7  第7ジョセフソン接合素子
J8  第8ジョセフソン接合素子
L1  インダクター
MC  変調回路
MK1~MK4  印
P1  第1接点
P2  第2接点
P3  第3接点
P4  第4接点
PC1~PC3  部分回路
PW  電源
RC1  第1共振回路
RC2  第2共振回路
RC3  第3共振回路
RC4  第4共振回路
T1  第1端子
T2  第2端子
1, 2, 3 Control circuit C1 1st capacitor C2 2nd capacitor C3 3rd capacitor C4 4th capacitor CC circuit J0 0th Josephson junction element J1 1st Josephson junction element J2 2nd Josephson junction element J3 3rd Joseph Son Junction Element J4 4th Josephson Junction Element J5 5th Josephson Junction Element J6 6th Josephson Junction Element J7 7th Josephson Junction Element J8 8th Josephson Junction Element L1 Inductor MC Modulation Circuits MK1-MK4 Mark P1 1st Contact P2 Second contact P3 Third contact P4 Fourth contact PC1 to PC3 Partial circuit PW Power supply RC1 First resonance circuit RC2 Second resonance circuit RC3 Third resonance circuit RC4 Fourth resonance circuit T1 First terminal T2 Second terminal

Claims (18)

  1.  第1接点と、第2接点と、第3接点と、第4接点とを有し、前記第1接点と前記第3接点とに第1共振回路が接続され、前記第2接点と前記第4接点とに第2共振回路が接続された環状回路であって、
     前記第1接点における電位の時間積分によって表される位相である第1位相と、前記第2接点における電位の時間積分によって表される位相である第2位相と、前記第3接点における電位の時間積分によって表される位相である第3位相と、前記第4接点における電位の時間積分によって表される位相である第4位相とに基づいて、前記第1共振回路と前記第2共振回路との結合状態を変化させる、
     変調回路。
    A first contact, a second contact, a third contact, and a fourth contact; a first resonance circuit connected to the first contact and the third contact; and the second contact and the fourth contact. A ring circuit in which a second resonance circuit is connected to a contact;
    A first phase that is a phase represented by time integration of a potential at the first contact; a second phase that is a phase represented by time integration of a potential at the second contact; and a time of a potential at the third contact. Based on the third phase, which is a phase represented by integration, and the fourth phase, which is a phase represented by time integration of the potential at the fourth contact, the first resonance circuit and the second resonance circuit Change the binding state,
    Modulation circuit.
  2.  前記第1位相と、前記第2位相と、前記第3位相と、前記第4位相とに基づいて、前記結合状態を、前記第1共振回路と前記第2共振回路とが結合していない状態と、前記第1共振回路と前記第2共振回路とが結合している状態とのいずれかに変化させる、
     請求項1に記載の変調回路。
    Based on the first phase, the second phase, the third phase, and the fourth phase, the coupling state is a state in which the first resonance circuit and the second resonance circuit are not coupled. And the first resonance circuit and the second resonance circuit are coupled to each other.
    The modulation circuit according to claim 1.
  3.  前記第1共振回路と前記第2共振回路とのそれぞれに交流電圧を供給する電源により前記第1共振回路と前記第2共振回路とのそれぞれへの前記交流電圧の供給が開始された場合、前記結合状態を前記第1共振回路と前記第2共振回路とが結合している状態に変化させ、前記電源により前記第1共振回路と前記第2共振回路とのそれぞれへの前記交流電圧の供給が停止された場合、前記結合状態を前記第1共振回路と前記第2共振回路とが結合していない状態に変化させる、
     請求項1又は2に記載の変調回路。
    When supply of the AC voltage to each of the first resonance circuit and the second resonance circuit is started by a power source that supplies an AC voltage to each of the first resonance circuit and the second resonance circuit, The coupling state is changed to a state in which the first resonance circuit and the second resonance circuit are coupled, and the supply of the AC voltage to each of the first resonance circuit and the second resonance circuit is performed by the power source. When stopped, the coupling state is changed to a state where the first resonance circuit and the second resonance circuit are not coupled;
    The modulation circuit according to claim 1.
  4.  前記第1接点と前記第2接点との間に位置する0接合の第1ジョセフソン接合素子を備えた、
     請求項1から3のうちいずれか一項に記載の変調回路。
    A zero-junction first Josephson junction element located between the first contact and the second contact;
    The modulation circuit according to any one of claims 1 to 3.
  5.  前記第2接点と前記第3接点との間に位置する0接合の第2ジョセフソン接合素子を備えた、
     請求項1から4のうちいずれか一項に記載の変調回路。
    A zero-junction second Josephson junction element located between the second contact and the third contact;
    The modulation circuit according to any one of claims 1 to 4.
  6.  前記第3接点と前記第4接点との間に位置するπ接合の第3ジョセフソン接合素子を備えた、
     請求項1から5のうちいずれか一項に記載の変調回路。
    A third Josephson junction element having a π junction located between the third contact and the fourth contact;
    The modulation circuit according to any one of claims 1 to 5.
  7.  前記第4接点と前記第1接点との間に位置するπ接合の第4ジョセフソン接合素子を備えた、
     請求項1から6のうちいずれか一項に記載の変調回路。
    A fourth Josephson junction element having a π junction located between the fourth contact and the first contact;
    The modulation circuit according to claim 1.
  8.  前記第1共振回路と前記第2共振回路のうちの少なくとも一方が、ジョセフソン接合素子を含む量子ビット回路である、
     請求項1から7のうちいずれか一項に記載の変調回路。
    At least one of the first resonant circuit and the second resonant circuit is a qubit circuit including a Josephson junction element;
    The modulation circuit according to claim 1.
  9.  前記第1共振回路と前記第2共振回路のうちのいずれか一方が、ジョセフソン接合素子を含む量子ビット回路である、
     請求項8に記載の変調回路。
    Either one of the first resonance circuit and the second resonance circuit is a qubit circuit including a Josephson junction element.
    The modulation circuit according to claim 8.
  10.  前記第1共振回路と前記第2共振回路のうち前記量子ビット回路と異なる共振回路が、前記量子ビット回路の量子状態を読み出す読出回路を備える、
     請求項9に記載の変調回路。
    A resonance circuit different from the qubit circuit among the first resonance circuit and the second resonance circuit includes a readout circuit that reads a quantum state of the qubit circuit.
    The modulation circuit according to claim 9.
  11.  請求項1から10のうちいずれか一項に記載の変調回路と、
     前記第1共振回路と、
     前記第2共振回路と、
     前記第1共振回路と前記第2共振回路とのそれぞれに交流電圧を供給する電源と、
     を備える制御回路。
    A modulation circuit according to any one of claims 1 to 10,
    The first resonant circuit;
    The second resonant circuit;
    A power supply for supplying an AC voltage to each of the first resonant circuit and the second resonant circuit;
    A control circuit comprising:
  12.  前記電源が供給する交流電圧の周波数は、前記第1共振回路と前記第2共振回路とのうち少なくとも一方の共振周波数である、
     請求項11に記載の制御回路。
    The frequency of the AC voltage supplied by the power supply is at least one of the resonance frequencies of the first resonance circuit and the second resonance circuit.
    The control circuit according to claim 11.
  13.  前記電源により前記第1共振回路と前記第2共振回路とのそれぞれへの前記交流電圧の供給が開始された場合、前記第1共振回路の量子状態の変化に応じて前記第2共振回路の量子状態が変化する、
     請求項11又は12に記載の制御回路。
    When the supply of the AC voltage to each of the first resonance circuit and the second resonance circuit is started by the power source, the quantum of the second resonance circuit is changed according to the change of the quantum state of the first resonance circuit. The state changes,
    The control circuit according to claim 11 or 12.
  14.  前記第2共振回路の量子状態の変化は、前記第1位相と、前記第2位相と、前記第3位相と、前記第4位相と、前記第1共振回路の量子状態の変化とに応じた変化である、
     請求項13に記載の制御回路。
    The change in the quantum state of the second resonance circuit is in accordance with the first phase, the second phase, the third phase, the fourth phase, and the change in the quantum state of the first resonance circuit. Is a change,
    The control circuit according to claim 13.
  15.  前記電源により前記第1共振回路と前記第2共振回路とのそれぞれへの前記交流電圧の供給が停止された場合、前記第1共振回路の量子状態と、前記第2共振回路の量子状態とが独立に変化する、
     請求項11から14のうちいずれか一項に記載の制御回路。
    When the supply of the AC voltage to each of the first resonance circuit and the second resonance circuit is stopped by the power source, the quantum state of the first resonance circuit and the quantum state of the second resonance circuit are Change independently,
    The control circuit according to claim 11.
  16.  請求項1から10のうちいずれか一項に記載の変調回路を備える、
     情報処理装置。
    Comprising the modulation circuit according to any one of claims 1 to 10,
    Information processing device.
  17.  請求項11から15のうちいずれか一項に記載の制御回路を備える、
     情報処理装置。
    A control circuit according to any one of claims 11 to 15 is provided.
    Information processing device.
  18.  請求項1から10のうちいずれか一項に記載の変調回路を介して複数の前記第1共振回路と複数の前記第2共振回路とを交互に接続し、前記第1共振回路と前記第2共振回路とを二次元的又は三次元的に集積する、
     集積方法。
    A plurality of the first resonance circuits and a plurality of the second resonance circuits are alternately connected via the modulation circuit according to any one of claims 1 to 10, and the first resonance circuit and the second resonance circuit are connected. Integrating the resonant circuit in two or three dimensions,
    Integration method.
PCT/JP2018/008105 2017-03-03 2018-03-02 Modulation circuit, control circuit, information processing device, and integration method WO2018159832A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-040378 2017-03-03
JP2017040378A JP2020074351A (en) 2017-03-03 2017-03-03 Modulation circuit, control circuit, information processing device, and accumulation method

Publications (1)

Publication Number Publication Date
WO2018159832A1 true WO2018159832A1 (en) 2018-09-07

Family

ID=63370095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008105 WO2018159832A1 (en) 2017-03-03 2018-03-02 Modulation circuit, control circuit, information processing device, and integration method

Country Status (2)

Country Link
JP (1) JP2020074351A (en)
WO (1) WO2018159832A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020504466A (en) * 2016-10-17 2020-02-06 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Circuit for sum frequency generator and method of forming the same, method for remote entanglement of first and second qubits, and method for configuring microwave relay device
US11121304B2 (en) 2019-11-14 2021-09-14 International Business Machines Corporation Junction fabrication method for forming qubits
EP4125131A1 (en) * 2021-07-30 2023-02-01 Kabushiki Kaisha Toshiba Coupler and calculating device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070263432A1 (en) * 2004-07-19 2007-11-15 Hakonen Pertti Capacitive Single- Electron Transistor
JP2014504057A (en) * 2010-11-11 2014-02-13 ディー−ウェイブ システムズ,インコーポレイテッド System and method for superconducting flux qubit readout
JP2014503880A (en) * 2010-12-01 2014-02-13 ノースロップ グラマン システムズ コーポレーション Quantum processor
JP2016510497A (en) * 2012-12-13 2016-04-07 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Quantum information processing system, quantum circuit system, and quantum information processing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070263432A1 (en) * 2004-07-19 2007-11-15 Hakonen Pertti Capacitive Single- Electron Transistor
JP2014504057A (en) * 2010-11-11 2014-02-13 ディー−ウェイブ システムズ,インコーポレイテッド System and method for superconducting flux qubit readout
JP2014503880A (en) * 2010-12-01 2014-02-13 ノースロップ グラマン システムズ コーポレーション Quantum processor
JP2016510497A (en) * 2012-12-13 2016-04-07 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Quantum information processing system, quantum circuit system, and quantum information processing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020504466A (en) * 2016-10-17 2020-02-06 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Circuit for sum frequency generator and method of forming the same, method for remote entanglement of first and second qubits, and method for configuring microwave relay device
US11121304B2 (en) 2019-11-14 2021-09-14 International Business Machines Corporation Junction fabrication method for forming qubits
EP4125131A1 (en) * 2021-07-30 2023-02-01 Kabushiki Kaisha Toshiba Coupler and calculating device

Also Published As

Publication number Publication date
JP2020074351A (en) 2020-05-14

Similar Documents

Publication Publication Date Title
Zhao Topological circuits of inductors and capacitors
WO2018159832A1 (en) Modulation circuit, control circuit, information processing device, and integration method
US10491221B1 (en) Tunable microwave resonator for qubit circuits
Hanada et al. Describing curved spaces by matrices
US9059674B2 (en) Multi-tunable superconducting circuits
US10622998B1 (en) Qubit circuit and method for topological protection
WO2008029815A1 (en) Quantum bit variable coupling method, quantum computing circuit using the method, and variable coupler
Chen et al. Critical theories of phase transition between symmetry protected topological states and their relation to the gapless boundary theories
KR20210095784A (en) Dipole element for superconducting circuits
CN110472740A (en) A kind of superconducting circuit structure and Superconducting Quantum chip, Superconducting Quantum computer
WO2021014891A1 (en) Resonator, oscillator, and quantum computer
Banerjee et al. Non-Hermitian topological phases: principles and prospects
WO2021014885A1 (en) Resonator, oscillator, and quantum computer
JPS59143427A (en) Logical operation circuit of superconductive magnetic flux quantum
Fendley et al. Boundary conformal field theory and tunneling of edge quasiparticles in non-Abelian topological states
WO2021014889A1 (en) Superconducting circuit and quantum computer
JP5125287B2 (en) Magnetic device and frequency analyzer
US20210193378A1 (en) Inductor arrangements
Cain et al. Electron transport through two irreducibly-coupled Aharonov-Bohm rings with applications to nanostructure quantum computing circuits
US11677129B2 (en) Microwave circulator
Bradlyn et al. New fermions
Rahman et al. Electrically active domain wall magnons in layered van der Waals antiferromagnets
US20230401475A1 (en) Multimode coupler to control interaction between quantum bits
WO2021014888A1 (en) Superconducting circuit and quantum computer
JP6651213B1 (en) Quantum circuit system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18760368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP