JP6651213B1 - Quantum circuit system - Google Patents

Quantum circuit system Download PDF

Info

Publication number
JP6651213B1
JP6651213B1 JP2019566371A JP2019566371A JP6651213B1 JP 6651213 B1 JP6651213 B1 JP 6651213B1 JP 2019566371 A JP2019566371 A JP 2019566371A JP 2019566371 A JP2019566371 A JP 2019566371A JP 6651213 B1 JP6651213 B1 JP 6651213B1
Authority
JP
Japan
Prior art keywords
waveguide
quantum
frequency power
quantum circuit
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019566371A
Other languages
Japanese (ja)
Other versions
JPWO2021029063A1 (en
Inventor
大輔 才田
大輔 才田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MDR INC.
Original Assignee
MDR INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MDR INC. filed Critical MDR INC.
Application granted granted Critical
Publication of JP6651213B1 publication Critical patent/JP6651213B1/en
Publication of JPWO2021029063A1 publication Critical patent/JPWO2021029063A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices

Abstract

意図しない量子状態の変化を防止することができる量子回路システム10を提供する。量子回路システム10は、少なくとも2つの量子状態をそれぞれ有する第1量子回路11a及び第2量子回路11bと、第1量子回路11aに電磁気的に接続された第1導波路12a及び第2量子回路11bに電磁気的に接続された第2導波路12bと、第1導波路12aに第1高周波電力を伝搬させて第1量子回路11aを所定の量子状態に変化させる場合に、第2量子回路11bの量子状態の変化を補償するように、直接的又は間接的に、第2導波路12bに第2高周波電力を伝搬させる高周波電源13bと、を備える。Provided is a quantum circuit system 10 that can prevent an unintended change in a quantum state. The quantum circuit system 10 includes a first quantum circuit 11a and a second quantum circuit 11b having at least two quantum states, respectively, and a first waveguide 12a and a second quantum circuit 11b electromagnetically connected to the first quantum circuit 11a. When the first quantum circuit 11a is changed to a predetermined quantum state by transmitting the first high-frequency power to the second waveguide 12b electromagnetically connected to the second quantum circuit 11b, A high-frequency power supply 13b for directly or indirectly transmitting the second high-frequency power to the second waveguide 12b so as to compensate for a change in the quantum state.

Description

本発明は、量子回路システムに関する。   The present invention relates to a quantum circuit system.

近年、量子コンピュータの実用化に向けて研究が進められている。例えば、下記非特許文献1では、トランズモンと呼ばれる量子回路が提案された。トランズモンは、電気的ノイズ耐性が高く、比較的長い緩和時間を有する。   In recent years, research has been advanced toward the practical use of quantum computers. For example, in Non-Patent Document 1 below, a quantum circuit called a transmon is proposed. Transmons have high electrical noise immunity and have relatively long relaxation times.

また、下記特許文献1には、開口を有する導波路と、導波路内に配設される非線形量子回路と、開口に結合される電磁場源とを備える量子情報処理システムが記載されている。   Further, Patent Document 1 described below discloses a quantum information processing system including a waveguide having an opening, a non-linear quantum circuit disposed in the waveguide, and an electromagnetic field source coupled to the opening.

さらに、下記特許文献2には、ジョセフソン接合による中断のない細長い薄膜と、細長い薄膜の近位端と電気接触している超伝導量子干渉デバイス(SQUID)であって、3つより少ないジョセフソン接合を有する、超伝導量子干渉デバイス(SQUID)と、細長い薄膜と同一平面内にあり、細長い薄膜の遠位端と電気接触している接地面とを備え、薄膜、SQUID及び接地面が、設計された動作温度において超伝導状態になる材料を含む、量子ビットデバイスが記載されている。   In addition, U.S. Patent No. 6,064,086 discloses a non-interrupted elongated thin film by a Josephson junction and a superconducting quantum interference device (SQUID) in electrical contact with the proximal end of the elongated thin film, wherein less than three Josephson A superconducting quantum interference device (SQUID) with a junction and a ground plane coplanar with the elongated membrane and in electrical contact with the distal end of the elongated membrane, wherein the membrane, SQUID and ground plane are designed A qubit device is described that includes a material that becomes superconducting at a specified operating temperature.

Jens Koch, Terri M. Yu, Jay Gambetta, A. A. Houck, D. I. Schuster, J. Majer, Alexandre Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Charge-insensitive qubit design derived from the Cooper pair box,” Phys. Rev. A 76, 042319, 2007Jens Koch, Terri M. Yu, Jay Gambetta, AA Houck, DI Schuster, J. Majer, Alexandre Blais, MH Devoret, SM Girvin, and RJ Schoelkopf, “Charge-insensitive qubit design derived from the Cooper pair box,” Phys. Rev. A 76, 042319, 2007

特開2016−510497号公報JP-A-2006-510497 特開2018−524795号公報JP 2018-524795 A

トランズモン等の量子回路の量子状態は、量子回路に接続された導波路に高周波電力を伝搬させることで操作されることがある。このとき、導波路を伝搬する電磁場が漏れて、他の導波路にも電力が伝搬することがあり、他の導波路に接続された量子回路の量子状態が意図せず変化してしまうことがある。   The quantum state of a quantum circuit such as a transmon is sometimes manipulated by propagating high-frequency power through a waveguide connected to the quantum circuit. At this time, the electromagnetic field propagating in the waveguide leaks, and power may also propagate to other waveguides, and the quantum state of the quantum circuit connected to the other waveguide may change unintentionally. is there.

このような意図しない量子状態の変化を訂正するために、量子エラー訂正の技術を用いることが検討されている。しかしながら、量子エラー訂正を実装するためには余分な量子回路を設ける必要があり、回路の大規模化が必要となる。   In order to correct such an unintended change in the quantum state, the use of a quantum error correction technique is being studied. However, in order to implement quantum error correction, it is necessary to provide an extra quantum circuit, and the circuit needs to be increased in scale.

そこで、本発明は、意図しない量子状態の変化を防止することができる量子回路システムを提供する。   Thus, the present invention provides a quantum circuit system that can prevent an unintended change in the quantum state.

本発明の一態様に係る量子回路システムは、少なくとも2つの量子状態をそれぞれ有する第1量子回路及び第2量子回路と、第1量子回路に電磁気的に接続された第1導波路及び第2量子回路に電磁気的に接続された第2導波路と、第1導波路に第1高周波電力を伝搬させて第1量子回路を所定の量子状態に変化させる場合に、第2量子回路の量子状態の変化を補償するように、直接的又は間接的に、第2導波路に第2高周波電力を伝搬させる高周波電源と、を備える。   A quantum circuit system according to one embodiment of the present invention includes a first quantum circuit and a second quantum circuit each having at least two quantum states, a first waveguide and a second quantum circuit electromagnetically connected to the first quantum circuit. A second waveguide that is electromagnetically connected to the circuit, and a first high-frequency power that propagates through the first waveguide to change the first quantum circuit to a predetermined quantum state. A high-frequency power source that directly or indirectly propagates the second high-frequency power to the second waveguide so as to compensate for the change.

この態様によれば、第1量子回路を所定の量子状態に変化させる場合に、第2量子回路の量子状態の変化を補償することができ、第2量子回路について意図しない量子状態の変化を防止することができる。   According to this aspect, when changing the first quantum circuit to the predetermined quantum state, the change in the quantum state of the second quantum circuit can be compensated, and the unintended change in the quantum state of the second quantum circuit can be prevented. can do.

上記態様において、高周波電源は、第1導波路に第1高周波電力を伝搬させたタイミング以降に、第2量子回路の量子状態の変化を補償するように、直接的又は間接的に、第2導波路に第2高周波電力を伝搬させてもよい。   In the above aspect, the high-frequency power supply directly or indirectly compensates for a change in the quantum state of the second quantum circuit after the timing when the first high-frequency power is propagated to the first waveguide. The second high frequency power may be propagated in the wave path.

この態様によれば、第1量子回路を所定の量子状態に変化させるタイミングと同時又はその後に第2量子回路の量子状態の変化を補償することができ、第2量子回路について意図しない量子状態の変化を防止することができる。   According to this aspect, the change of the quantum state of the second quantum circuit can be compensated for at the same time as or after the timing of changing the first quantum circuit to the predetermined quantum state. Changes can be prevented.

上記態様において、高周波電源は、第1導波路に第1高周波電力を伝搬させたことによる第2量子回路の量子状態の変化を補償する高周波電力と、第2量子回路を所定の量子状態に変化させる高周波電力との重ね合わせである第2高周波電力を、直接的又は間接的に、第2導波路に伝搬させてもよい。   In the above aspect, the high-frequency power supply includes a high-frequency power for compensating a change in a quantum state of the second quantum circuit due to the propagation of the first high-frequency power through the first waveguide, and a change in the second quantum circuit to a predetermined quantum state. The second high-frequency power, which is superimposed on the high-frequency power to be made, may be directly or indirectly propagated to the second waveguide.

この態様によれば、第1量子回路を所定の量子状態に変化させたことにより生じる第2量子回路の量子状態の変化を補償しつつ、第2量子回路の量子状態を所定の量子状態に変化させることができる。   According to this aspect, the quantum state of the second quantum circuit is changed to the predetermined quantum state while compensating for the change of the quantum state of the second quantum circuit caused by changing the first quantum circuit to the predetermined quantum state. Can be done.

上記態様において、第2導波路に沿って延伸する補助導波路をさらに備え、高周波電源は、第1導波路に第1高周波電力を伝搬させて第1量子回路を所定の量子状態に変化させる場合に、第2量子回路の量子状態の変化を補償するように、補助導波路に第3高周波電力を伝搬させ、間接的に、第2導波路に第2高周波電力を伝搬させてもよい。   In the above aspect, the semiconductor device may further include an auxiliary waveguide extending along the second waveguide, wherein the high-frequency power supply propagates the first high-frequency power to the first waveguide to change the first quantum circuit to a predetermined quantum state. Alternatively, the third high-frequency power may be propagated to the auxiliary waveguide and the second high-frequency power may be indirectly propagated to the second waveguide so as to compensate for a change in the quantum state of the second quantum circuit.

この態様によれば、第1量子回路を所定の量子状態に変化させる場合に、第2導波路に直接的に高周波電力を伝搬させることなく第2量子回路の量子状態の変化を補償することができる。   According to this aspect, when changing the first quantum circuit to the predetermined quantum state, it is possible to compensate for the change in the quantum state of the second quantum circuit without directly transmitting the high-frequency power to the second waveguide. it can.

上記態様において、補助導波路は、第2導波路に沿って延伸する第1部分及び第2部分と、第1部分及び第2部分を接続する折返し部分とを含んでもよい。   In the above aspect, the auxiliary waveguide may include a first portion and a second portion extending along the second waveguide, and a folded portion connecting the first portion and the second portion.

この態様によれば、補助導波路に第3高周波電力を伝搬させる場合に、より正確に第2導波路に第2高周波電力を伝搬させることができる。   According to this aspect, when transmitting the third high-frequency power to the auxiliary waveguide, the second high-frequency power can be more accurately propagated to the second waveguide.

本発明によれば、意図しない量子状態の変化を防止することができる量子回路システムを提供することができる。   According to the present invention, it is possible to provide a quantum circuit system capable of preventing an unintended change in a quantum state.

本発明の実施形態に係る量子計算システムのネットワーク構成を示す図である。FIG. 1 is a diagram illustrating a network configuration of a quantum computation system according to an embodiment of the present invention. 本実施形態に係る量子回路システムの構成を示す図である。FIG. 1 is a diagram illustrating a configuration of a quantum circuit system according to an embodiment. 本実施形態に係る量子回路の回路図である。FIG. 2 is a circuit diagram of the quantum circuit according to the embodiment. 本実施形態に係る量子回路システムの第1導波路の波形、第2導波路の波形及び第2量子回路の量子状態の第1例を示す図である。It is a figure showing the 1st example of the waveform of the 1st waveguide of the quantum circuit system concerning this embodiment, the waveform of the 2nd waveguide, and the quantum state of the 2nd quantum circuit. 本実施形態に係る量子回路システムの第1導波路の波形、第2導波路の波形及び第2量子回路の量子状態の第2例を示す図である。It is a figure showing the 2nd example of the waveform of the 1st waveguide of the quantum circuit system concerning this embodiment, the waveform of the 2nd waveguide, and the quantum state of the 2nd quantum circuit. 本実施形態に係る量子回路システムの第1導波路の波形、第2導波路の波形及び第2量子回路の量子状態の第3例を示す図である。It is a figure showing the 3rd example of the waveform of the 1st waveguide of the quantum circuit system concerning this embodiment, the waveform of the 2nd waveguide, and the quantum state of the 2nd quantum circuit. 本実施形態に係る量子回路システムの第1導波路の波形、第2導波路の波形及び第2量子回路の量子状態の第4例を示す図である。It is a figure showing the 4th example of the waveform of the 1st waveguide of the quantum circuit system concerning this embodiment, the waveform of the 2nd waveguide, and the quantum state of the 2nd quantum circuit. 本実施形態の第1変形例に係る量子回路システムの構成を示す図である。FIG. 9 is a diagram illustrating a configuration of a quantum circuit system according to a first modification of the present embodiment. 本実施形態の第1変形例に係る量子回路システムの第1導波路の波形、第2導波路の波形及び第2量子回路の量子状態の第1例を示す図である。It is a figure showing the 1st example of the waveform of the 1st waveguide of the quantum circuit system concerning the 1st modification of this embodiment, the waveform of the 2nd waveguide, and the quantum state of the 2nd quantum circuit. 本実施形態の第1変形例に係る量子回路システムの第1導波路の波形、第2導波路の波形及び第2量子回路の量子状態の第2例を示す図である。FIG. 11 is a diagram illustrating a second example of the waveform of the first waveguide, the waveform of the second waveguide, and the quantum state of the second quantum circuit in the quantum circuit system according to the first modification of the embodiment. 本実施形態の第2変形例に係る量子回路システムの構成を示す図である。FIG. 11 is a diagram illustrating a configuration of a quantum circuit system according to a second modification of the present embodiment. 本実施形態の第3変形例に係る量子回路システムの構成を示す図である。FIG. 11 is a diagram illustrating a configuration of a quantum circuit system according to a third modification of the present embodiment. 本実施形態の第4変形例に係る量子回路システムの構成を示す図である。FIG. 14 is a diagram illustrating a configuration of a quantum circuit system according to a fourth modification of the present embodiment. 本実施形態の第5変形例に係る量子回路システムの構成を示す図である。It is a figure showing the composition of the quantum circuit system concerning the 5th modification of this embodiment.

添付図面を参照して、本発明の実施形態について説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有する。   An embodiment of the present invention will be described with reference to the accompanying drawings. In each of the drawings, the components denoted by the same reference numerals have the same or similar configurations.

図1は、本発明の実施形態に係る量子計算システム100のネットワーク構成を示す図である。量子計算システム100は、量子回路システム10と、ユーザ端末20とを含む。量子回路システム10及びユーザ端末20は、インターネット等の通信ネットワークNを介して互いに通信可能に接続される。量子計算システム100のユーザは、汎用の古典コンピュータで構成されるユーザ端末20を用いて量子回路システム10にデータを入力したり、量子回路システム10によって行われた量子計算の結果を取得したりする。   FIG. 1 is a diagram illustrating a network configuration of a quantum computation system 100 according to an embodiment of the present invention. The quantum computation system 100 includes a quantum circuit system 10 and a user terminal 20. The quantum circuit system 10 and the user terminal 20 are communicably connected to each other via a communication network N such as the Internet. A user of the quantum computation system 100 inputs data to the quantum circuit system 10 using a user terminal 20 configured by a general-purpose classical computer, or acquires a result of quantum computation performed by the quantum circuit system 10. .

図2は、本実施形態に係る量子回路システム10の構成を示す図である。量子回路システム10は、少なくとも2つの量子状態をそれぞれ有する第1量子回路11a及び第2量子回路11bと、第1量子回路11aに電磁気的に接続された第1導波路12a及び第2量子回路11bに電磁気的に接続された第2導波路12bと、を備える。また、量子回路システム10は、第1導波路12aに第1高周波電力を伝搬させて第1量子回路11aを所定の量子状態に変化させる場合に、第2量子回路11bの量子状態の変化を補償するように、直接的又は間接的に、第2導波路12bに第2高周波電力を伝搬させる第2高周波電源13bを備える。量子回路システム10は、第2導波路12bに高周波電力を伝搬させて第2量子回路11bを所定の量子状態に変化させる場合に、第1量子回路11aの量子状態の変化を補償するように、直接的又は間接的に、第1導波路12aに高周波電力を伝搬させる第1高周波電源13aを備える。   FIG. 2 is a diagram illustrating a configuration of the quantum circuit system 10 according to the present embodiment. The quantum circuit system 10 includes a first quantum circuit 11a and a second quantum circuit 11b having at least two quantum states, respectively, and a first waveguide 12a and a second quantum circuit 11b electromagnetically connected to the first quantum circuit 11a. And a second waveguide 12b electromagnetically connected to the second waveguide 12b. The quantum circuit system 10 compensates for a change in the quantum state of the second quantum circuit 11b when the first high-frequency power is propagated through the first waveguide 12a to change the first quantum circuit 11a to a predetermined quantum state. The second high-frequency power supply 13b for directly or indirectly transmitting the second high-frequency power to the second waveguide 12b is provided. The quantum circuit system 10 compensates for a change in the quantum state of the first quantum circuit 11a when the high-frequency power is propagated to the second waveguide 12b to change the second quantum circuit 11b to a predetermined quantum state. A first high-frequency power supply 13a for directly or indirectly transmitting high-frequency power to the first waveguide 12a is provided.

さらに、量子回路システム10は、少なくとも2つの量子状態をそれぞれ有する第3量子回路11c及び第4量子回路11dと、第3量子回路11cに電磁気的に接続された第3導波路12c及び第4量子回路11dに電磁気的に接続された第4導波路12dと、をさらに備える。また、量子回路システム10は、第3導波路12cに第3高周波電力を伝搬させて第3量子回路11cを所定の量子状態に変化させる場合に、第4量子回路11dの量子状態の変化を補償するように、直接的又は間接的に、第4導波路12dに第4高周波電力を伝搬させる第4高周波電源13dを備える。また、量子回路システム10は、第4導波路12dに高周波電力を伝搬させて第4量子回路11dを所定の量子状態に変化させる場合に、第3量子回路11cの量子状態の変化を補償するように、直接的又は間接的に、第3導波路12cに高周波電力を伝搬させる第3高周波電源13cを備える。   Further, the quantum circuit system 10 includes a third quantum circuit 11c and a fourth quantum circuit 11d having at least two quantum states, respectively, and a third waveguide 12c and a fourth quantum circuit electromagnetically connected to the third quantum circuit 11c. A fourth waveguide 12d electromagnetically connected to the circuit 11d. The quantum circuit system 10 compensates for a change in the quantum state of the fourth quantum circuit 11d when the third high-frequency power is propagated through the third waveguide 12c to change the third quantum circuit 11c to a predetermined quantum state. As a result, a fourth high-frequency power supply 13d for directly or indirectly transmitting the fourth high-frequency power to the fourth waveguide 12d is provided. The quantum circuit system 10 also compensates for a change in the quantum state of the third quantum circuit 11c when the high-frequency power is transmitted to the fourth waveguide 12d to change the fourth quantum circuit 11d to a predetermined quantum state. And a third high-frequency power supply 13c for directly or indirectly transmitting high-frequency power to the third waveguide 12c.

第1量子回路11a、第2量子回路11b、第3量子回路11c及び第4量子回路11dは、それぞれ同様の構成を有してよく、例えばトランズモンを含む量子回路であってよい。第1導波路12a、第2導波路12b、第3導波路12c及び第4導波路12dは、それぞれ同様の構成を有してよく、例えばコプレナー線路やマイクロストリップ線路等を含む導波路であってよい。第1高周波電源13a、第2高周波電源13b、第3高周波電源13c及び第4高周波電源13dは、それぞれ同様の構成を有してよく、例えば数GHzの高周波パルスを出力する電源を含んでよい。   Each of the first quantum circuit 11a, the second quantum circuit 11b, the third quantum circuit 11c, and the fourth quantum circuit 11d may have the same configuration, and may be, for example, a quantum circuit including tranmon. The first waveguide 12a, the second waveguide 12b, the third waveguide 12c, and the fourth waveguide 12d may have the same configuration, for example, a waveguide including a coplanar line, a microstrip line, and the like. Good. The first high-frequency power supply 13a, the second high-frequency power supply 13b, the third high-frequency power supply 13c, and the fourth high-frequency power supply 13d may have the same configuration, and may include a power supply that outputs a high-frequency pulse of several GHz, for example.

本明細書では、第1量子回路11a、第2量子回路11b、第3量子回路11c及び第4量子回路11dを含む複数の量子回路を単に量子回路11と呼ぶ。また、第1導波路12a、第2導波路12b、第3導波路12c及び第4導波路12dを含む複数の導波路を単に導波路12と呼び、第1高周波電源13a、第2高周波電源13b、第3高周波電源13c及び第4高周波電源13dを含む複数の高周波電源を単に高周波電源13と呼ぶ。   In this specification, a plurality of quantum circuits including the first quantum circuit 11a, the second quantum circuit 11b, the third quantum circuit 11c, and the fourth quantum circuit 11d are simply referred to as the quantum circuit 11. A plurality of waveguides including the first waveguide 12a, the second waveguide 12b, the third waveguide 12c, and the fourth waveguide 12d are simply referred to as a waveguide 12, and include a first high-frequency power supply 13a and a second high-frequency power supply 13b. , A plurality of high-frequency power supplies including the third high-frequency power supply 13c and the fourth high-frequency power supply 13d are simply referred to as a high-frequency power supply 13.

図2では、4つの量子回路11と、4つの導波路12と、4つの高周波電源13とを備える量子回路システム10を例示しているが、量子回路11、導波路12及び高周波電源13の数は任意である。高周波電源13の数が量子回路11の数より少なく、分波器等を介して量子回路11に接続される構造であってもよい。   FIG. 2 illustrates a quantum circuit system 10 including four quantum circuits 11, four waveguides 12, and four high-frequency power sources 13. Is optional. The number of the high-frequency power supplies 13 may be smaller than the number of the quantum circuits 11, and may be connected to the quantum circuit 11 via a duplexer or the like.

図3は、本実施形態に係る量子回路11の回路図の一例である。量子回路11は、ジョセフソン接合JJ及びキャパシタCを含むトランズモン111と、インダクタL及びキャパシタCを含む共振器112とを有する。高周波電源13は、入力キャパシタCinの一端に接続され、高周波電源13から出力される高周波パルスは、ゲートキャパシタCを介してトランズモン111に入力され、トランズモン111の量子状態を変化させる。ジョセフソン接合JJの数は1つとは限らず、並列に2つ接続されdc-SQUIDの構成とする場合や、サイズが異なるジョセフソン接合JJが並列に接続される場合(Flux qubit等)や、サイズが異なるジョセフソン接合JJが複数接続される場合(Fluxonium等)があり得る。このようにジョセフソン接合JJの数やサイズにより、系のエネルギーポテンシャルが目的に応じて調整されることがある。FIG. 3 is an example of a circuit diagram of the quantum circuit 11 according to the present embodiment. Quantum circuit 11 includes a Toranzumon 111 including Josephson junction JJ and capacitor C B, a resonator 112 includes an inductor L r and a capacitor C r. High frequency power source 13 is connected to one end of the input capacitor C in, the high-frequency pulse output from the high frequency power source 13 is input to the Toranzumon 111 via the gate capacitor C g, changing the quantum state of Toranzumon 111. The number of Josephson junctions JJ is not limited to one, and two are connected in parallel to form a dc-SQUID configuration. There may be a case where a plurality of Josephson junctions JJ having different sizes are connected (such as Fluxonium). As described above, the energy potential of the system may be adjusted depending on the purpose depending on the number and size of the Josephson junctions JJ.

図4は、本実施形態に係る量子回路システム10の第1導波路12aの波形、第2導波路12bの波形及び第2量子回路11bの量子状態の第1例を示す図である。同図では、第1導波路12aの電圧及び時間の関係を示す波形グラフと、第2導波路12bの電圧及び時間の関係を示す波形グラフと、第2量子回路11bの量子状態を表すブロッホ球とを示している。なお、同図では、説明を簡明にするため、第1導波路12a及び第2導波路12bの電圧のグラフとしているが、第1導波路12a及び第2導波路12bに伝搬するのは高周波パルスであり、電圧と電流に明確に分離されない電力が伝搬することとなる。   FIG. 4 is a diagram illustrating a first example of the waveform of the first waveguide 12a, the waveform of the second waveguide 12b, and the quantum state of the second quantum circuit 11b of the quantum circuit system 10 according to the present embodiment. In the figure, a waveform graph showing the relationship between the voltage and time of the first waveguide 12a, a waveform graph showing the relationship between the voltage and time of the second waveguide 12b, and a Bloch sphere representing the quantum state of the second quantum circuit 11b. Are shown. In FIG. 1, for simplicity of description, a graph of the voltage of the first waveguide 12a and the voltage of the second waveguide 12b is shown, but the high-frequency pulse propagates to the first waveguide 12a and the second waveguide 12b. Therefore, power that is not clearly separated into voltage and current propagates.

以下では、第1導波路12aに第1高周波電力を伝搬させて第1量子回路11aを所定の量子状態に変化させる場合に、第2量子回路11bの量子状態の変化を補償するように、第2導波路12bに第2高周波電力を伝搬させる例について説明するが、この関係は逆であってもよい。すなわち、第2導波路12bに高周波電力を伝搬させて第2量子回路11bを所定の量子状態に変化させる場合に、第1量子回路11aの量子状態の変化を補償するように、第1導波路12aに高周波電力を伝搬させてもよい。また、第2導波路12bと第3導波路12cとの間で同様の処理を行ってもよいし、第3導波路12cと第4導波路12dとの間で同様の処理を行ってもよい。   Hereinafter, when the first high frequency power is propagated through the first waveguide 12a to change the first quantum circuit 11a to a predetermined quantum state, the first quantum circuit 11a is compensated for a change in the quantum state of the second quantum circuit 11b. An example in which the second high frequency power is propagated through the two waveguides 12b will be described, but this relationship may be reversed. That is, when the high frequency power is propagated to the second waveguide 12b to change the second quantum circuit 11b to a predetermined quantum state, the first waveguide is compensated for the change in the quantum state of the first quantum circuit 11a. High frequency power may be propagated to 12a. Further, the same processing may be performed between the second waveguide 12b and the third waveguide 12c, or the same processing may be performed between the third waveguide 12c and the fourth waveguide 12d. .

第1導波路12aに第1高周波電力を伝搬させて第1量子回路11aを所定の量子状態に変化させる場合、第1導波路12aに比較的大きな第1高周波電力が入力され、第1導波路12aの周囲に漏れ電磁場が生じる。そして、漏れ電磁場の影響により、第1導波路12aに隣接する第2導波路12bに意図しない高周波電力が伝搬し、第2量子回路11bの量子状態が変化してしまう。図4では、漏れ電磁場の影響により第2量子回路11bの量子状態が変化する様子を、量子ビットの方向が傾いたブロッホ球によって示している。   When the first high frequency power is propagated to the first waveguide 12a to change the first quantum circuit 11a to a predetermined quantum state, a relatively large first high frequency power is input to the first waveguide 12a and the first waveguide A leakage electromagnetic field is generated around 12a. Then, due to the effect of the leakage electromagnetic field, unintended high-frequency power propagates to the second waveguide 12b adjacent to the first waveguide 12a, and the quantum state of the second quantum circuit 11b changes. In FIG. 4, a state in which the quantum state of the second quantum circuit 11b changes due to the influence of the leakage electromagnetic field is indicated by a Bloch sphere in which the direction of the qubit is inclined.

第2高周波電源13bは、第2量子回路11bの量子状態の変化を補償するように、直接的又は間接的に、第2導波路12bに第2高周波電力を伝搬させる。本例の場合、第2高周波電源13bは、第1導波路12aに第1高周波電力を伝搬させたタイミング以降に、第2量子回路11bの量子状態の変化を補償するように、直接的又は間接的に、第2導波路12bに第2高周波電力を伝搬させる。より具体的には、本例の場合、第2高周波電源13bは、第1導波路12aに第1高周波電力を伝搬させたタイミングよりも後に、第2量子回路11bの量子状態の変化を補償するように、直接的に、第2導波路12bに第2高周波電力を伝搬させている。図4では、補償された後の第2量子回路11bの量子状態を、量子ビットの方向が垂直上向きに戻ったブロッホ球によって示している。   The second high-frequency power supply 13b directly or indirectly propagates the second high-frequency power to the second waveguide 12b so as to compensate for a change in the quantum state of the second quantum circuit 11b. In the case of this example, the second high-frequency power supply 13b is directly or indirectly controlled so as to compensate for a change in the quantum state of the second quantum circuit 11b after the timing when the first high-frequency power is propagated to the first waveguide 12a. Specifically, the second high-frequency power is propagated through the second waveguide 12b. More specifically, in the case of this example, the second high-frequency power supply 13b compensates for a change in the quantum state of the second quantum circuit 11b after the timing when the first high-frequency power is propagated to the first waveguide 12a. As described above, the second high-frequency power is directly propagated to the second waveguide 12b. In FIG. 4, the quantum state of the second quantum circuit 11b after the compensation is indicated by a Bloch sphere in which the direction of the qubit has returned to a vertical upward direction.

第2量子回路11bの量子状態の変化を補償するように、第2導波路12bに伝搬させる第2高周波電力の大きさは、量子回路システム10を構成する複数の材料の物理的特性と、第1導波路12a及び第2導波路12bの配置とに基づいて理論的に算出してもよいし、量子回路システム10を実働させて実験的に定めてもよい。   The magnitude of the second high-frequency power transmitted to the second waveguide 12b so as to compensate for the change in the quantum state of the second quantum circuit 11b depends on the physical characteristics of a plurality of materials constituting the quantum circuit system 10 and the second high-frequency power. It may be calculated theoretically based on the arrangement of the first waveguide 12a and the second waveguide 12b, or may be determined experimentally by actually operating the quantum circuit system 10.

このように、第1量子回路11aを所定の量子状態に変化させる場合に、第2量子回路11bの量子状態の変化を補償することができ、第2量子回路11bについて意図しない量子状態の変化を防止することができる。当然ながら、同様の処理を第2高周波電源13b以外の高周波電源13によって行うことで、任意の量子回路11について意図しない量子状態の変化を防止することができる。   As described above, when the first quantum circuit 11a is changed to a predetermined quantum state, the change of the quantum state of the second quantum circuit 11b can be compensated, and the unintended change of the quantum state of the second quantum circuit 11b can be prevented. Can be prevented. Naturally, by performing the same processing using the high-frequency power supply 13 other than the second high-frequency power supply 13b, it is possible to prevent an unintended change in the quantum state of an arbitrary quantum circuit 11.

また、第1量子回路11aを所定の量子状態に変化させるタイミングと同時又はその後に第2量子回路11bの量子状態の変化を補償することができ、第2量子回路11bについて意図しない量子状態の変化を防止することができる。   In addition, the change in the quantum state of the second quantum circuit 11b can be compensated for at the same time as or after the timing of changing the first quantum circuit 11a to the predetermined quantum state. Can be prevented.

図5は、本実施形態に係る量子回路システム10の第1導波路12aの波形、第2導波路12bの波形及び第2量子回路11bの量子状態の第2例を示す図である。同図では、第1導波路12aの電圧及び時間の関係を示す波形グラフと、第2導波路12bの電圧及び時間の関係を示す波形グラフと、第2量子回路11bの量子状態を表すブロッホ球とを示している。なお、同図では、説明を簡明にするため、第1導波路12a及び第2導波路12bの電圧のグラフとしているが、第1導波路12a及び第2導波路12bに伝搬するのは高周波パルスであり、電圧と電流に明確に分離されない電力が伝搬することとなる。   FIG. 5 is a diagram illustrating a second example of the waveform of the first waveguide 12a, the waveform of the second waveguide 12b, and the quantum state of the second quantum circuit 11b of the quantum circuit system 10 according to the present embodiment. In the figure, a waveform graph showing the relationship between the voltage and time of the first waveguide 12a, a waveform graph showing the relationship between the voltage and time of the second waveguide 12b, and a Bloch sphere representing the quantum state of the second quantum circuit 11b. Are shown. In FIG. 1, for simplicity of description, a graph of the voltage of the first waveguide 12a and the voltage of the second waveguide 12b is shown, but the high-frequency pulse propagates to the first waveguide 12a and the second waveguide 12b. Therefore, power that is not clearly separated into voltage and current propagates.

以下では、第1導波路12aに第1高周波電力を伝搬させて第1量子回路11aを所定の量子状態に変化させる場合に、第2量子回路11bの量子状態の変化を補償するように、第2導波路12bに第2高周波電力を伝搬させる例について説明するが、この関係は逆であってもよい。すなわち、第2導波路12bに高周波電力を伝搬させて第2量子回路11bを所定の量子状態に変化させる場合に、第1量子回路11aの量子状態の変化を補償するように、第1導波路12aに高周波電力を伝搬させてもよい。また、第2導波路12bと第3導波路12cとの間で同様の処理を行ってもよいし、第3導波路12cと第4導波路12dとの間で同様の処理を行ってもよい。   Hereinafter, when the first high frequency power is propagated through the first waveguide 12a to change the first quantum circuit 11a to a predetermined quantum state, the first quantum circuit 11a is compensated for a change in the quantum state of the second quantum circuit 11b. An example in which the second high frequency power is propagated through the two waveguides 12b will be described, but this relationship may be reversed. That is, when the high frequency power is propagated to the second waveguide 12b to change the second quantum circuit 11b to a predetermined quantum state, the first waveguide is compensated for the change in the quantum state of the first quantum circuit 11a. High frequency power may be propagated to 12a. Further, the same processing may be performed between the second waveguide 12b and the third waveguide 12c, or the same processing may be performed between the third waveguide 12c and the fourth waveguide 12d. .

第1導波路12aに第1高周波電力を伝搬させて第1量子回路11aを所定の量子状態に変化させる場合、第1導波路12aに比較的大きな第1高周波電力が入力され、第1導波路12aの周囲に漏れ電磁場が生じる。そして、漏れ電磁場の影響により、第1導波路12aに隣接する第2導波路12bに意図しない高周波電力が伝搬し、第2量子回路11bの量子状態が変化してしまう。   When the first high frequency power is propagated to the first waveguide 12a to change the first quantum circuit 11a to a predetermined quantum state, a relatively large first high frequency power is input to the first waveguide 12a and the first waveguide A leakage electromagnetic field is generated around 12a. Then, due to the effect of the leakage electromagnetic field, unintended high-frequency power propagates to the second waveguide 12b adjacent to the first waveguide 12a, and the quantum state of the second quantum circuit 11b changes.

第2高周波電源13bは、第2量子回路11bの量子状態の変化を補償するように、直接的又は間接的に、第2導波路12bに第2高周波電力を伝搬させる。本例の場合、第2高周波電源13bは、第1導波路12aに第1高周波電力を伝搬させたタイミングと同時に、第2量子回路11bの量子状態の変化を補償するように、直接的に、第2導波路12bに第2高周波電力を伝搬させている。図5では、第1高周波電力が入力された前後で、第2量子回路11bの量子状態が変化していないことを、量子ビットの方向が垂直上向きのまま変化していないブロッホ球によって示している。   The second high-frequency power supply 13b directly or indirectly propagates the second high-frequency power to the second waveguide 12b so as to compensate for a change in the quantum state of the second quantum circuit 11b. In the case of the present example, the second high-frequency power supply 13b directly transmits the first high-frequency power to the first waveguide 12a at the same time as compensating for a change in the quantum state of the second quantum circuit 11b. The second high frequency power is propagated through the second waveguide 12b. In FIG. 5, before and after the input of the first high-frequency power, the fact that the quantum state of the second quantum circuit 11 b has not changed is indicated by a Bloch sphere in which the direction of the qubit remains unchanged vertically upward. .

このように、第1量子回路11aを所定の量子状態に変化させる場合に、第2量子回路11bの量子状態の変化を補償することができ、第2量子回路11bについて意図しない量子状態の変化を防止することができる。当然ながら、同様の処理を第2高周波電源13b以外の高周波電源13によって行うことで、任意の量子回路11について意図しない量子状態の変化を防止することができる。   As described above, when the first quantum circuit 11a is changed to a predetermined quantum state, the change of the quantum state of the second quantum circuit 11b can be compensated, and the unintended change of the quantum state of the second quantum circuit 11b can be prevented. Can be prevented. Naturally, by performing the same processing using the high-frequency power supply 13 other than the second high-frequency power supply 13b, it is possible to prevent an unintended change in the quantum state of an arbitrary quantum circuit 11.

また、第1量子回路11aを所定の量子状態に変化させるタイミングと同時又はその後に第2量子回路11bの量子状態の変化を補償することができ、第2量子回路11bについて意図しない量子状態の変化を防止することができる。   In addition, the change in the quantum state of the second quantum circuit 11b can be compensated for at the same time as or after the timing of changing the first quantum circuit 11a to the predetermined quantum state. Can be prevented.

図6は、本実施形態に係る量子回路システム10の第1導波路12aの波形、第2導波路12bの波形及び第2量子回路11bの量子状態の第3例を示す図である。同図では、第1導波路12aの電圧及び時間の関係を示す波形グラフと、第2導波路12bの電圧及び時間の関係を示す波形グラフと、第2量子回路11bの量子状態を表すブロッホ球とを示している。なお、同図では、説明を簡明にするため、第1導波路12a及び第2導波路12bの電圧のグラフとしているが、第1導波路12a及び第2導波路12bに伝搬するのは高周波パルスであり、電圧と電流に明確に分離されない電力が伝搬することとなる。   FIG. 6 is a diagram illustrating a third example of the waveform of the first waveguide 12a, the waveform of the second waveguide 12b, and the quantum state of the second quantum circuit 11b of the quantum circuit system 10 according to the present embodiment. In the figure, a waveform graph showing the relationship between the voltage and time of the first waveguide 12a, a waveform graph showing the relationship between the voltage and time of the second waveguide 12b, and a Bloch sphere representing the quantum state of the second quantum circuit 11b. Are shown. In FIG. 1, for simplicity of description, a graph of the voltage of the first waveguide 12a and the voltage of the second waveguide 12b is shown, but the high-frequency pulse propagates to the first waveguide 12a and the second waveguide 12b. Therefore, power that is not clearly separated into voltage and current propagates.

以下では、第1導波路12aに第1高周波電力を伝搬させて第1量子回路11aを所定の量子状態に変化させる場合に、第2量子回路11bの量子状態の変化を補償するように、第2導波路12bに第2高周波電力を伝搬させる例について説明するが、この関係は逆であってもよい。すなわち、第2導波路12bに高周波電力を伝搬させて第2量子回路11bを所定の量子状態に変化させる場合に、第1量子回路11aの量子状態の変化を補償するように、第1導波路12aに高周波電力を伝搬させてもよい。また、第2導波路12bと第3導波路12cとの間で同様の処理を行ってもよいし、第3導波路12cと第4導波路12dとの間で同様の処理を行ってもよい。   Hereinafter, when the first high frequency power is propagated through the first waveguide 12a to change the first quantum circuit 11a to a predetermined quantum state, the first quantum circuit 11a is compensated for a change in the quantum state of the second quantum circuit 11b. An example in which the second high frequency power is propagated through the two waveguides 12b will be described, but this relationship may be reversed. That is, when the high frequency power is propagated to the second waveguide 12b to change the second quantum circuit 11b to a predetermined quantum state, the first waveguide is compensated for the change in the quantum state of the first quantum circuit 11a. High frequency power may be propagated to 12a. Further, the same processing may be performed between the second waveguide 12b and the third waveguide 12c, or the same processing may be performed between the third waveguide 12c and the fourth waveguide 12d. .

第1導波路12aに第1高周波電力を伝搬させて第1量子回路11aを所定の量子状態に変化させる場合、第1導波路12aに比較的大きな第1高周波電力が入力され、第1導波路12aの周囲に漏れ電磁場が生じる。そして、漏れ電磁場の影響により、第1導波路12aに隣接する第2導波路12bに意図しない高周波電力が伝搬し、第2量子回路11bの量子状態が変化してしまう。図6では、漏れ電磁場の影響により第2量子回路11bの量子状態が変化する様子を、量子ビットの方向が傾いたブロッホ球によって示している。   When the first high frequency power is propagated to the first waveguide 12a to change the first quantum circuit 11a to a predetermined quantum state, a relatively large first high frequency power is input to the first waveguide 12a and the first waveguide A leakage electromagnetic field is generated around 12a. Then, due to the effect of the leakage electromagnetic field, unintended high-frequency power propagates to the second waveguide 12b adjacent to the first waveguide 12a, and the quantum state of the second quantum circuit 11b changes. In FIG. 6, how the quantum state of the second quantum circuit 11b changes due to the influence of the leakage electromagnetic field is shown by a Bloch sphere in which the direction of the qubit is inclined.

第2高周波電源13bは、第1導波路12aに第1高周波電力を伝搬させたことによる第2量子回路11bの量子状態の変化を補償する高周波電力と、第2量子回路11bを所定の量子状態に変化させる高周波電力との重ね合わせである第2高周波電力を、直接的又は間接的に、第2導波路12bに伝搬させる。本例の場合、第2高周波電源13bは、第1導波路12aに第1高周波電力を伝搬させたタイミングよりも後に、第1導波路12aに第1高周波電力を伝搬させたことによる第2量子回路11bの量子状態の変化を補償する高周波電力と、第2量子回路11bを所定の量子状態に変化させる高周波電力との重ね合わせである第2高周波電力を、直接的に、第2導波路12bに伝搬させている。図6では、補償によりパルス高がδだけ低くなった第2高周波電力を図示するとともに、補償込みの第2高周波電力によって、第2量子回路11bの量子状態が、所定の量子状態である水平右向きに変化したブロッホ球によって示している。なお、このような変換は、初期の量子状態を|0>とした場合に、アダマールゲートを作用させ、(|0>+|1>)/√2という所定の量子状態に変化させる変換に相当する。   The second high-frequency power supply 13b includes a high-frequency power for compensating a change in the quantum state of the second quantum circuit 11b due to the propagation of the first high-frequency power to the first waveguide 12a, and a second quantum circuit 11b having a predetermined quantum state. The second high-frequency power, which is a superposition with the high-frequency power to be changed to the above, is directly or indirectly propagated to the second waveguide 12b. In the case of this example, the second high-frequency power supply 13b is configured to transmit the second high-frequency power to the first waveguide 12a after the timing of transmitting the first high-frequency power to the first waveguide 12a. The second high frequency power, which is a superposition of the high frequency power for compensating the change in the quantum state of the circuit 11b and the high frequency power for changing the second quantum circuit 11b to a predetermined quantum state, is directly applied to the second waveguide 12b. Is propagated to. FIG. 6 illustrates the second high-frequency power in which the pulse height is reduced by δ due to the compensation, and the second high-frequency power including the compensation causes the quantum state of the second quantum circuit 11b to move in the horizontal right direction, which is the predetermined quantum state. Is shown by the Bloch sphere that has changed to. Note that such a conversion corresponds to a conversion in which, when the initial quantum state is | 0>, a Hadamard gate is operated to change to a predetermined quantum state of (| 0> + | 1>) / √2. I do.

補償の大きさδは、量子回路システム10を構成する複数の材料の物理的特性と、第1導波路12a及び第2導波路12bの配置とに基づいて理論的に算出してもよいし、量子回路システム10を実働させて実験的に定めてもよい。   The magnitude of compensation δ may be theoretically calculated based on the physical characteristics of a plurality of materials constituting the quantum circuit system 10 and the arrangement of the first waveguide 12a and the second waveguide 12b, The quantum circuit system 10 may be experimentally determined by actual operation.

このように、第1量子回路11aを所定の量子状態に変化させたことにより生じる第2量子回路11bの量子状態の変化を補償しつつ、第2量子回路11bの量子状態を所定の量子状態に変化させることができる。   Thus, while compensating for the change in the quantum state of the second quantum circuit 11b caused by changing the first quantum circuit 11a to the predetermined quantum state, the quantum state of the second quantum circuit 11b is changed to the predetermined quantum state. Can be changed.

図7は、本実施形態に係る量子回路システム10の第1導波路12aの波形、第2導波路12bの波形及び第2量子回路11bの量子状態の第4例を示す図である。同図では、第1導波路12aの電圧及び時間の関係を示す波形グラフと、第2導波路12bの電圧及び時間の関係を示す波形グラフと、第2量子回路11bの量子状態を表すブロッホ球とを示している。なお、同図では、説明を簡明にするため、第1導波路12a及び第2導波路12bの電圧のグラフとしているが、第1導波路12a及び第2導波路12bに伝搬するのは高周波パルスであり、電圧と電流に明確に分離されない電力が伝搬することとなる。   FIG. 7 is a diagram illustrating a fourth example of the waveform of the first waveguide 12a, the waveform of the second waveguide 12b, and the quantum state of the second quantum circuit 11b of the quantum circuit system 10 according to the present embodiment. In the figure, a waveform graph showing the relationship between the voltage and time of the first waveguide 12a, a waveform graph showing the relationship between the voltage and time of the second waveguide 12b, and a Bloch sphere representing the quantum state of the second quantum circuit 11b. Are shown. In FIG. 1, for simplicity of description, a graph of the voltage of the first waveguide 12a and the voltage of the second waveguide 12b is shown, but the high-frequency pulse propagates to the first waveguide 12a and the second waveguide 12b. Therefore, power that is not clearly separated into voltage and current propagates.

第1導波路12aに第1高周波電力を伝搬させて第1量子回路11aを所定の量子状態に変化させる場合、第1導波路12aに比較的大きな第1高周波電力が入力され、第1導波路12aの周囲に漏れ電磁場が生じる。そして、漏れ電磁場の影響により、第1導波路12aに隣接する第2導波路12bに意図しない高周波電力が伝搬し、第2量子回路11bの量子状態が変化してしまう。図7では、漏れ電磁場の影響により第2量子回路11bの量子状態が変化する様子を、量子ビットの方向が傾いたブロッホ球によって示している。   When the first high frequency power is propagated to the first waveguide 12a to change the first quantum circuit 11a to a predetermined quantum state, a relatively large first high frequency power is input to the first waveguide 12a and the first waveguide A leakage electromagnetic field is generated around 12a. Then, due to the effect of the leakage electromagnetic field, unintended high-frequency power propagates to the second waveguide 12b adjacent to the first waveguide 12a, and the quantum state of the second quantum circuit 11b changes. In FIG. 7, a state in which the quantum state of the second quantum circuit 11b changes due to the influence of the leakage electromagnetic field is shown by a Bloch sphere in which the direction of the qubit is inclined.

第1高周波電源13aは、第2量子回路11bの量子状態の変化を補償するように、間接的に、第2導波路12bに第2高周波電力を伝搬させる。本例の場合、第1高周波電源13aは、第1導波路12aに第1高周波電力を伝搬させたタイミングよりも後に、第2量子回路11bの量子状態の変化を補償するように、間接的に、第2導波路12bに第2高周波電力を伝搬させる。より具体的には、第1高周波電源13aは、第1導波路12aに第1高周波電力を伝搬させたタイミングよりも後に、第2量子回路11bの量子状態の変化を補償するように、第1高周波電力と逆位相の高周波電力を第1導波路12aに伝搬させ、その漏れ電磁場によって、間接的に、第2導波路12bに第2高周波電力を伝搬させる。図7では、補償された後の第2量子回路11bの量子状態を、量子ビットの方向が垂直上向きに戻ったブロッホ球によって示している。   The first high-frequency power supply 13a indirectly propagates the second high-frequency power to the second waveguide 12b so as to compensate for a change in the quantum state of the second quantum circuit 11b. In the case of this example, the first high-frequency power supply 13a indirectly compensates for a change in the quantum state of the second quantum circuit 11b after the timing when the first high-frequency power is propagated to the first waveguide 12a. The second high frequency power is propagated through the second waveguide 12b. More specifically, the first high-frequency power supply 13a compensates for a change in the quantum state of the second quantum circuit 11b after the timing at which the first high-frequency power is propagated to the first waveguide 12a. The high-frequency power having a phase opposite to that of the high-frequency power is propagated to the first waveguide 12a, and the second high-frequency power is indirectly propagated to the second waveguide 12b by the leakage electromagnetic field. In FIG. 7, the quantum state of the second quantum circuit 11b after the compensation is indicated by a Bloch sphere in which the direction of the qubit has returned vertically upward.

第2量子回路11bの量子状態の変化を補償するように、第1導波路12aに伝搬させる第1高周波電力と逆位相の高周波電力の大きさは、量子回路システム10を構成する複数の材料の物理的特性と、第1導波路12a及び第2導波路12bの配置とに基づいて理論的に算出してもよいし、量子回路システム10を実働させて実験的に定めてもよい。   The magnitude of the high-frequency power having the opposite phase to the first high-frequency power transmitted to the first waveguide 12a so as to compensate for the change in the quantum state of the second quantum circuit 11b depends on the material of the plurality of materials constituting the quantum circuit system 10. It may be calculated theoretically based on physical characteristics and the arrangement of the first waveguide 12a and the second waveguide 12b, or may be determined experimentally by actually operating the quantum circuit system 10.

このように、第1量子回路11aを所定の量子状態に変化させる場合に、第2量子回路11bの量子状態の変化を補償することができ、第2量子回路11bについて意図しない量子状態の変化を防止することができる。   As described above, when the first quantum circuit 11a is changed to a predetermined quantum state, the change of the quantum state of the second quantum circuit 11b can be compensated, and the unintended change of the quantum state of the second quantum circuit 11b can be prevented. Can be prevented.

図8は、本実施形態の第1変形例に係る量子回路システム10aの構成を示す図である。第1変形例に係る量子回路システム10aは、少なくとも2つの量子状態をそれぞれ有する第1量子回路11a及び第2量子回路11bと、第1量子回路11aに電磁気的に接続された第1導波路12a及び第2量子回路11bに電磁気的に接続された第2導波路12bと、を備える。また、第1変形例に係る量子回路システム10aは、第2導波路12bに沿って延伸する第2補助導波路15bを備える。さらに、第1変形例に係る量子回路システム10aは、第1導波路12aに第1高周波電力を伝搬させて第1量子回路11aを所定の量子状態に変化させる場合に、第2量子回路11bの量子状態の変化を補償するように、第2補助導波路15bに第3高周波電力を伝搬させ、間接的に、第2導波路12bに第2高周波電力を伝搬させる、第2補助高周波電源16bを備える。   FIG. 8 is a diagram illustrating a configuration of a quantum circuit system 10a according to a first modification of the present embodiment. The quantum circuit system 10a according to the first modification includes a first quantum circuit 11a and a second quantum circuit 11b having at least two quantum states, respectively, and a first waveguide 12a electromagnetically connected to the first quantum circuit 11a. And a second waveguide 12b electromagnetically connected to the second quantum circuit 11b. In addition, the quantum circuit system 10a according to the first modification includes a second auxiliary waveguide 15b extending along the second waveguide 12b. Furthermore, the quantum circuit system 10a according to the first modified example has a configuration in which the first quantum circuit 11a is changed to a predetermined quantum state by transmitting the first high-frequency power to the first waveguide 12a. A second auxiliary high-frequency power supply 16b for transmitting the third high-frequency power to the second auxiliary waveguide 15b and indirectly transmitting the second high-frequency power to the second waveguide 12b so as to compensate for the change in the quantum state. Prepare.

第1変形例に係る量子回路システム10aは、第2導波路12bに高周波電力を伝搬させて第2量子回路11bを所定の量子状態に変化させる場合に、第1量子回路11aの量子状態の変化を補償するように、第1補助導波路15aに高周波電力を伝搬させ、間接的に、第1導波路12aに高周波電力を伝搬させる、第1補助高周波電源16aを備える。   The quantum circuit system 10a according to the first modified example changes the quantum state of the first quantum circuit 11a when the second quantum circuit 11b is changed to a predetermined quantum state by transmitting high-frequency power to the second waveguide 12b. And a first auxiliary high-frequency power supply 16a for transmitting high-frequency power to the first auxiliary waveguide 15a and indirectly transmitting high-frequency power to the first waveguide 12a so as to compensate for

本明細書では、第1補助導波路15a及び第2補助導波路15bを含む複数の補助導波路を単に補助導波路15と呼ぶ。また、第1補助高周波電源16a及び第2補助高周波電源16bを含む複数の補助高周波電源を単に補助高周波電源16と呼ぶ。   In this specification, a plurality of auxiliary waveguides including the first auxiliary waveguide 15a and the second auxiliary waveguide 15b are simply referred to as the auxiliary waveguide 15. A plurality of auxiliary high-frequency power supplies including the first auxiliary high-frequency power supply 16a and the second auxiliary high-frequency power supply 16b are simply referred to as the auxiliary high-frequency power supply 16.

なお、図8では、2つの量子回路11と、2つの導波路12と、2つの高周波電源13と、2つの補助導波路15と、2つの補助高周波電源16とを備える第1変化例に係る量子回路システム10aを例示しているが、量子回路11、導波路12、高周波電源13、補助導波路15及び補助高周波電源16の数は任意である。   Note that FIG. 8 relates to a first modification example including two quantum circuits 11, two waveguides 12, two high-frequency power supplies 13, two auxiliary waveguides 15, and two auxiliary high-frequency power supplies 16. Although the quantum circuit system 10a is illustrated, the number of the quantum circuit 11, the waveguide 12, the high-frequency power supply 13, the auxiliary waveguide 15, and the auxiliary high-frequency power supply 16 is arbitrary.

図9は、本実施形態の第1変形例に係る量子回路システム10aの第1導波路12aの波形、第2導波路12bの波形及び第2量子回路11bの量子状態の第1例を示す図である。同図では、第1導波路12aの電圧及び時間の関係を示す波形グラフと、第2導波路12bの電圧及び時間の関係を示す波形グラフと、補助導波路(第2補助導波路15b)の電圧及び時間の関係を示す波形グラフと、第2量子回路11bの量子状態を表すブロッホ球とを示している。なお、同図では、説明を簡明にするため、第1導波路12a、第2導波路12b及び第2補助導波路15bの電圧のグラフとしているが、第1導波路12a、第2導波路12b及び第2補助導波路15bに伝搬するのは高周波パルスであり、電圧と電流に明確に分離されない電力が伝搬することとなる。   FIG. 9 is a diagram illustrating a first example of the waveform of the first waveguide 12a, the waveform of the second waveguide 12b, and the quantum state of the second quantum circuit 11b of the quantum circuit system 10a according to the first modification of the present embodiment. It is. In the figure, a waveform graph showing the relationship between the voltage and time of the first waveguide 12a, a waveform graph showing the relationship between the voltage and time of the second waveguide 12b, and the waveform graph of the auxiliary waveguide (second auxiliary waveguide 15b) are shown. A waveform graph showing the relationship between voltage and time and a Bloch sphere representing a quantum state of the second quantum circuit 11b are shown. In FIG. 3, for simplification of the description, the voltage of the first waveguide 12a, the second waveguide 12b, and the voltage of the second auxiliary waveguide 15b are graphs. However, the first waveguide 12a, the second waveguide 12b High-frequency pulses propagate to the second auxiliary waveguide 15b, and power that is not clearly separated into voltage and current propagates.

以下では、第1導波路12aに第1高周波電力を伝搬させて第1量子回路11aを所定の量子状態に変化させる場合に、第2量子回路11bの量子状態の変化を補償するように、第2補助導波路15bに第3高周波電力を伝搬させる例について説明するが、この関係は逆であってもよい。すなわち、第2導波路12bに高周波電力を伝搬させて第2量子回路11bを所定の量子状態に変化させる場合に、第1量子回路11aの量子状態の変化を補償するように、第1補助導波路15aに高周波電力を伝搬させてもよい。   Hereinafter, when the first high frequency power is propagated through the first waveguide 12a to change the first quantum circuit 11a to a predetermined quantum state, the first quantum circuit 11a is compensated for a change in the quantum state of the second quantum circuit 11b. An example in which the third high-frequency power is propagated through the second auxiliary waveguide 15b will be described, but this relationship may be reversed. That is, when high-frequency power is propagated through the second waveguide 12b to change the second quantum circuit 11b to a predetermined quantum state, the first auxiliary waveguide is compensated for to compensate for the change in the quantum state of the first quantum circuit 11a. High-frequency power may be propagated through the wave path 15a.

第1導波路12aに第1高周波電力を伝搬させて第1量子回路11aを所定の量子状態に変化させる場合、第1導波路12aに比較的大きな第1高周波電力が入力され、第1導波路12aの周囲に漏れ電磁場が生じる。そして、漏れ電磁場の影響により、第1導波路12aに隣接する第2導波路12bに意図しない高周波電力が伝搬し、第2量子回路11bの量子状態が変化してしまう。図9では、漏れ電磁場の影響により第2量子回路11bの量子状態が変化する様子を、量子ビットの方向が傾いたブロッホ球によって示している。   When the first high frequency power is propagated to the first waveguide 12a to change the first quantum circuit 11a to a predetermined quantum state, a relatively large first high frequency power is input to the first waveguide 12a and the first waveguide A leakage electromagnetic field is generated around 12a. Then, due to the effect of the leakage electromagnetic field, unintended high-frequency power propagates to the second waveguide 12b adjacent to the first waveguide 12a, and the quantum state of the second quantum circuit 11b changes. In FIG. 9, a state in which the quantum state of the second quantum circuit 11b changes due to the influence of the leakage electromagnetic field is shown by a Bloch sphere in which the direction of the qubit is inclined.

第2補助高周波電源16bは、第2量子回路11bの量子状態の変化を補償するように、第2補助導波路15bに第3高周波電力を伝搬させ、間接的に、第2導波路12bに第2高周波電力を伝搬させる。より具体的には、本例の場合、第2補助高周波電源16bは、第1導波路12aに第1高周波電力を伝搬させたタイミングよりも後に、第2量子回路11bの量子状態の変化を補償するように、第2補助導波路15bに第3高周波電力を伝搬させ、間接的に、第2導波路12bに第2高周波電力を伝搬させている。図9では、補償された後の第2量子回路11bの量子状態を、量子ビットの方向が垂直上向きに戻ったブロッホ球によって示している。   The second auxiliary high-frequency power supply 16b transmits the third high-frequency power to the second auxiliary waveguide 15b so as to compensate for a change in the quantum state of the second quantum circuit 11b, and indirectly transmits the third high-frequency power to the second waveguide 12b. 2 Propagate high frequency power. More specifically, in the case of this example, the second auxiliary high frequency power supply 16b compensates for a change in the quantum state of the second quantum circuit 11b after the timing when the first high frequency power is propagated to the first waveguide 12a. As a result, the third high-frequency power is transmitted to the second auxiliary waveguide 15b, and the second high-frequency power is indirectly transmitted to the second waveguide 12b. In FIG. 9, the quantum state of the second quantum circuit 11b after the compensation is indicated by a Bloch sphere in which the direction of the qubit has returned vertically upward.

第2量子回路11bの量子状態の変化を補償するように、第2補助導波路15bに伝搬させる第3高周波電力の大きさは、量子回路システム10を構成する複数の材料の物理的特性と、第1導波路12a、第2導波路12b及び第2補助導波路15bの配置とに基づいて理論的に算出してもよいし、第1変形例に係る量子回路システム10aを実働させて実験的に定めてもよい。   The magnitude of the third high-frequency power transmitted to the second auxiliary waveguide 15b so as to compensate for the change in the quantum state of the second quantum circuit 11b depends on the physical characteristics of a plurality of materials constituting the quantum circuit system 10, It may be calculated theoretically based on the arrangement of the first waveguide 12a, the second waveguide 12b, and the second auxiliary waveguide 15b, or may be experimentally performed by actually operating the quantum circuit system 10a according to the first modification. May be determined.

このように、第1量子回路11aを所定の量子状態に変化させる場合に、第2導波路12bに直接的に高周波電力を伝搬させることなく第2量子回路11bの量子状態の変化を補償することができる。   As described above, when the first quantum circuit 11a is changed to a predetermined quantum state, the change in the quantum state of the second quantum circuit 11b is compensated without directly transmitting the high-frequency power to the second waveguide 12b. Can be.

図10は、本実施形態の第1変形例に係る量子回路システム10aの第1導波路12aの波形、第2導波路12bの波形及び第2量子回路11bの量子状態の第2例を示す図である。同図では、第1導波路12aの電圧及び時間の関係を示す波形グラフと、第2導波路12bの電圧及び時間の関係を示す波形グラフと、補助導波路(第2補助導波路15b)の電圧及び時間の関係を示す波形グラフと、第2量子回路11bの量子状態を表すブロッホ球とを示している。なお、同図では、説明を簡明にするため、第1導波路12a、第2導波路12b及び第2補助導波路15bの電圧のグラフとしているが、第1導波路12a、第2導波路12b及び第2補助導波路15bに伝搬するのは高周波パルスであり、電圧と電流に明確に分離されない電力が伝搬することとなる。   FIG. 10 is a diagram illustrating a second example of the waveform of the first waveguide 12a, the waveform of the second waveguide 12b, and the quantum state of the second quantum circuit 11b of the quantum circuit system 10a according to the first modification of the present embodiment. It is. In the figure, a waveform graph showing the relationship between the voltage and time of the first waveguide 12a, a waveform graph showing the relationship between the voltage and time of the second waveguide 12b, and the waveform graph of the auxiliary waveguide (second auxiliary waveguide 15b) are shown. A waveform graph showing the relationship between voltage and time and a Bloch sphere representing a quantum state of the second quantum circuit 11b are shown. In FIG. 3, for simplification of the description, the voltage of the first waveguide 12a, the second waveguide 12b, and the voltage of the second auxiliary waveguide 15b are plotted, but the first waveguide 12a, the second waveguide 12b High-frequency pulses propagate to the second auxiliary waveguide 15b, and power that is not clearly separated into voltage and current propagates.

以下では、第1導波路12aに第1高周波電力を伝搬させて第1量子回路11aを所定の量子状態に変化させる場合に、第2量子回路11bの量子状態の変化を補償するように、第2補助導波路15bに第3高周波電力を伝搬させる例について説明するが、この関係は逆であってもよい。すなわち、第2導波路12bに高周波電力を伝搬させて第2量子回路11bを所定の量子状態に変化させる場合に、第1量子回路11aの量子状態の変化を補償するように、第1補助導波路15aに高周波電力を伝搬させてもよい。   Hereinafter, when the first high frequency power is propagated through the first waveguide 12a to change the first quantum circuit 11a to a predetermined quantum state, the first quantum circuit 11a is compensated for a change in the quantum state of the second quantum circuit 11b. An example in which the third high-frequency power is propagated through the second auxiliary waveguide 15b will be described, but this relationship may be reversed. That is, when high-frequency power is propagated through the second waveguide 12b to change the second quantum circuit 11b to a predetermined quantum state, the first auxiliary waveguide is compensated for to compensate for the change in the quantum state of the first quantum circuit 11a. High-frequency power may be propagated through the wave path 15a.

第1導波路12aに第1高周波電力を伝搬させて第1量子回路11aを所定の量子状態に変化させる場合、第1導波路12aに比較的大きな第1高周波電力が入力され、第1導波路12aの周囲に漏れ電磁場が生じる。そして、漏れ電磁場の影響により、第1導波路12aに隣接する第2導波路12bに意図しない高周波電力が伝搬し、第2量子回路11bの量子状態が変化してしまう。図10では、漏れ電磁場の影響により第2量子回路11bの量子状態が変化する様子を、量子ビットの方向が傾いたブロッホ球によって示している。   When the first high frequency power is propagated to the first waveguide 12a to change the first quantum circuit 11a to a predetermined quantum state, a relatively large first high frequency power is input to the first waveguide 12a and the first waveguide A leakage electromagnetic field is generated around 12a. Then, due to the effect of the leakage electromagnetic field, unintended high-frequency power propagates to the second waveguide 12b adjacent to the first waveguide 12a, and the quantum state of the second quantum circuit 11b changes. In FIG. 10, a state in which the quantum state of the second quantum circuit 11b changes due to the influence of the leakage electromagnetic field is shown by a Bloch sphere in which the direction of the qubit is inclined.

第2補助高周波電源16bは、第2量子回路11bの量子状態の変化を補償するように、第2補助導波路15bに第3高周波電力を伝搬させ、間接的に、第2導波路12bに第2高周波電力を伝搬させる。より具体的には、本例の場合、第2補助高周波電源16bは、第1導波路12aに第1高周波電力を伝搬させたタイミングと同時に、第2量子回路11bの量子状態の変化を補償するように、第2補助導波路15bに第3高周波電力を伝搬させ、間接的に、第2導波路12bに第2高周波電力を伝搬させている。図10では、第1高周波電力が入力された前後で、第2量子回路11bの量子状態が変化していないことを、量子ビットの方向が垂直上向きのまま変化していないブロッホ球によって示している。   The second auxiliary high-frequency power supply 16b transmits the third high-frequency power to the second auxiliary waveguide 15b so as to compensate for a change in the quantum state of the second quantum circuit 11b, and indirectly transmits the third high-frequency power to the second waveguide 12b. 2 Propagate high frequency power. More specifically, in the case of the present example, the second auxiliary high-frequency power supply 16b compensates for a change in the quantum state of the second quantum circuit 11b at the same time as the timing when the first high-frequency power is transmitted to the first waveguide 12a. As described above, the third high-frequency power is propagated to the second auxiliary waveguide 15b, and the second high-frequency power is indirectly propagated to the second waveguide 12b. In FIG. 10, before and after the input of the first high-frequency power, the fact that the quantum state of the second quantum circuit 11b has not changed is indicated by a Bloch sphere in which the direction of the qubit does not change while maintaining the vertical upward direction. .

第2量子回路11bの量子状態の変化を補償するように、第2補助導波路15bに伝搬させる第3高周波電力の大きさは、量子回路システム10を構成する複数の材料の物理的特性と、第1導波路12a、第2導波路12b及び第2補助導波路15bの配置とに基づいて理論的に算出してもよいし、第1変形例に係る量子回路システム10aを実働させて実験的に定めてもよい。   The magnitude of the third high-frequency power transmitted to the second auxiliary waveguide 15b so as to compensate for the change in the quantum state of the second quantum circuit 11b depends on the physical characteristics of a plurality of materials constituting the quantum circuit system 10, It may be calculated theoretically based on the arrangement of the first waveguide 12a, the second waveguide 12b, and the second auxiliary waveguide 15b, or may be experimentally performed by actually operating the quantum circuit system 10a according to the first modification. May be determined.

このように、第1量子回路11aを所定の量子状態に変化させる場合に、第2導波路12bに直接的に高周波電力を伝搬させることなく第2量子回路11bの量子状態の変化を補償することができる。   As described above, when the first quantum circuit 11a is changed to a predetermined quantum state, the change in the quantum state of the second quantum circuit 11b is compensated without directly transmitting the high-frequency power to the second waveguide 12b. Can be.

図11は、本実施形態の第2変形例に係る量子回路システム10bの構成を示す図である。第2変形例に係る量子回路システム10bは、少なくとも2つの量子状態をそれぞれ有する第1量子回路11a及び第2量子回路11bと、第1量子回路11aに電磁気的に接続された第1導波路12a及び第2量子回路11bに電磁気的に接続された第2導波路12bと、を備える。また、第2変形例に係る量子回路システム10bは、第2導波路12bに沿って延伸する第2補助導波路15bを備える。さらに、第2変形例に係る量子回路システム10bは、第1導波路12aに第1高周波電力を伝搬させて第1量子回路11aを所定の量子状態に変化させる場合に、第2量子回路11bの量子状態の変化を補償するように、第2補助導波路15bに第3高周波電力を伝搬させ、間接的に、第2導波路12bに第2高周波電力を伝搬させる、第2補助高周波電源16bを備える。   FIG. 11 is a diagram illustrating a configuration of a quantum circuit system 10b according to a second modification of the present embodiment. The quantum circuit system 10b according to the second modification includes a first quantum circuit 11a and a second quantum circuit 11b having at least two quantum states, respectively, and a first waveguide 12a electromagnetically connected to the first quantum circuit 11a. And a second waveguide 12b electromagnetically connected to the second quantum circuit 11b. Further, the quantum circuit system 10b according to the second modified example includes a second auxiliary waveguide 15b extending along the second waveguide 12b. Further, the quantum circuit system 10b according to the second modified example is configured to transmit the first high-frequency power to the first waveguide 12a to change the first quantum circuit 11a to a predetermined quantum state. A second auxiliary high-frequency power supply 16b for transmitting the third high-frequency power to the second auxiliary waveguide 15b and indirectly transmitting the second high-frequency power to the second waveguide 12b so as to compensate for the change in the quantum state. Prepare.

第2変形例に係る量子回路システム10bは、第2導波路12bに高周波電力を伝搬させて第2量子回路11bを所定の量子状態に変化させる場合に、第1量子回路11aの量子状態の変化を補償するように、第1補助導波路15aに高周波電力を伝搬させ、間接的に、第1導波路12aに高周波電力を伝搬させる、第1補助高周波電源16aを備える。   The quantum circuit system 10b according to the second modified example changes the quantum state of the first quantum circuit 11a when the second quantum circuit 11b is changed to a predetermined quantum state by transmitting high-frequency power to the second waveguide 12b. And a first auxiliary high-frequency power supply 16a for transmitting high-frequency power to the first auxiliary waveguide 15a and indirectly transmitting high-frequency power to the first waveguide 12a so as to compensate for

第2変形例に係る量子回路システム10bでは、第2補助導波路15bは、第2導波路12bに沿って延伸する第1部分151b及び第2部分152bと、第1部分151b及び第2部分152bを接続する折返し部分153bとを含む。また、第1補助導波路15aは、第1導波路12aに沿って延伸する第1部分151a及び第2部分152aと、第1部分151a及び第2部分152aを接続する折返し部分153aとを含む。   In the quantum circuit system 10b according to the second modification, the second auxiliary waveguide 15b includes a first portion 151b and a second portion 152b extending along the second waveguide 12b, and a first portion 151b and a second portion 152b. And a folded portion 153b for connecting Further, the first auxiliary waveguide 15a includes a first portion 151a and a second portion 152a extending along the first waveguide 12a, and a folded portion 153a connecting the first portion 151a and the second portion 152a.

このように、補助導波路15を第1部分151、第2部分152及び折返し部分153によって構成することで、比較的均一な電磁場が周囲に生じる第1部分151を導波路12に隣接させることができ、補助導波路15に第3高周波電力を伝搬させる場合に、より正確に第2導波路に第2高周波電力を伝搬させることができる。   Thus, by forming the auxiliary waveguide 15 by the first portion 151, the second portion 152, and the folded portion 153, the first portion 151 where a relatively uniform electromagnetic field is generated around the first portion 151 can be adjacent to the waveguide 12. Thus, when the third high-frequency power is propagated to the auxiliary waveguide 15, the second high-frequency power can be more accurately propagated to the second waveguide.

なお、図11では、2つの量子回路11と、2つの導波路12と、2つの高周波電源13と、2つの補助導波路15と、2つの補助高周波電源16とを備える第2変形例に係る量子回路システム10bを例示しているが、量子回路11、導波路12、高周波電源13、補助導波路15及び補助高周波電源16の数は任意である。   Note that FIG. 11 relates to a second modified example including two quantum circuits 11, two waveguides 12, two high-frequency power supplies 13, two auxiliary waveguides 15, and two auxiliary high-frequency power supplies 16. Although the quantum circuit system 10b is illustrated, the number of the quantum circuit 11, the waveguide 12, the high-frequency power supply 13, the auxiliary waveguide 15, and the auxiliary high-frequency power supply 16 is arbitrary.

図12は、本実施形態の第3変形例に係る量子回路システム10cの構成を示す図である。第3変形例に係る量子回路システム10cは、少なくとも2つの量子状態をそれぞれ有する第1量子回路11a及び第2量子回路11bと、第1量子回路11aに電磁気的に接続された第1導波路12a及び第2量子回路11bに電磁気的に接続された第2導波路12bと、を備える。また、第3変形例に係る量子回路システム10cは、第2導波路12bに沿って延伸する第2補助導波路15bを備える。さらに、第3変形例に係る量子回路システム10cは、第1導波路12aに第1高周波電力を伝搬させて第1量子回路11aを所定の量子状態に変化させる場合に、第2量子回路11bの量子状態の変化を補償するように、第2補助導波路15bに第3高周波電力を伝搬させ、間接的に、第2導波路12bに第2高周波電力を伝搬させる、第2補助高周波電源16bを備える。   FIG. 12 is a diagram illustrating a configuration of a quantum circuit system 10c according to a third modification of the present embodiment. The quantum circuit system 10c according to the third modification includes a first quantum circuit 11a and a second quantum circuit 11b having at least two quantum states, respectively, and a first waveguide 12a electromagnetically connected to the first quantum circuit 11a. And a second waveguide 12b electromagnetically connected to the second quantum circuit 11b. Further, the quantum circuit system 10c according to the third modification includes a second auxiliary waveguide 15b extending along the second waveguide 12b. Further, the quantum circuit system 10c according to the third modified example is configured to transmit the first high-frequency power to the first waveguide 12a to change the first quantum circuit 11a to a predetermined quantum state. A second auxiliary high-frequency power supply 16b for transmitting the third high-frequency power to the second auxiliary waveguide 15b and indirectly transmitting the second high-frequency power to the second waveguide 12b so as to compensate for the change in the quantum state. Prepare.

第3変形例に係る量子回路システム10cは、第2導波路12bに高周波電力を伝搬させて第2量子回路11bを所定の量子状態に変化させる場合に、第1量子回路11aの量子状態の変化を補償するように、第1補助導波路15aに高周波電力を伝搬させ、間接的に、第1導波路12aに高周波電力を伝搬させる、第1補助高周波電源16aを備える。   The quantum circuit system 10c according to the third modification changes the quantum state of the first quantum circuit 11a when the second quantum circuit 11b is changed to a predetermined quantum state by transmitting high-frequency power to the second waveguide 12b. And a first auxiliary high-frequency power supply 16a for transmitting high-frequency power to the first auxiliary waveguide 15a and indirectly transmitting high-frequency power to the first waveguide 12a so as to compensate for

第3変形例に係る量子回路システム10cでは、第1量子回路11a、第2量子回路11b、第1導波路12a、第2導波路12b、第1高周波電源13a、第2高周波電源13b、第1補助導波路15a、第2補助導波路15b、第1補助高周波電源16a及び第2補助高周波電源16bを一単位とする構成が、複数並んで配置されている。   In the quantum circuit system 10c according to the third modification, the first quantum circuit 11a, the second quantum circuit 11b, the first waveguide 12a, the second waveguide 12b, the first high-frequency power supply 13a, the second high-frequency power supply 13b, the first A plurality of configurations each including the auxiliary waveguide 15a, the second auxiliary waveguide 15b, the first auxiliary high-frequency power supply 16a, and the second auxiliary high-frequency power supply 16b are arranged side by side.

より具体的には、第3変形例に係る量子回路システム10cでは、上記一単位の構成が、高周波電源13の設けられる位置が量子回路11を挟んで互いに逆側になるように、導波路12が延伸する方向と直交する方向に隣接して複数配置されている。このような配置によって、複数の量子回路11が設けられる基板面積を効率的に用いることができるとともに、補助導波路15によって、量子回路11に生じる意図しない量子状態の変化を補償することができる。   More specifically, in the quantum circuit system 10c according to the third modification, the configuration of one unit is such that the waveguides 12 are arranged such that the position where the high-frequency power supply 13 is provided is on the opposite side of the quantum circuit 11 therebetween. Are arranged adjacent to each other in a direction perpendicular to the direction in which the film is stretched. With such an arrangement, the substrate area on which the plurality of quantum circuits 11 are provided can be efficiently used, and the auxiliary waveguide 15 can compensate for an unintended change in the quantum state occurring in the quantum circuit 11.

なお、図12では、8つの量子回路11と、8つの導波路12と、8つの高周波電源13と、8つの補助導波路15と、8つの補助高周波電源16とを備える第3変形例に係る量子回路システム10cを例示しているが、量子回路11、導波路12、高周波電源13、補助導波路15及び補助高周波電源16の数は任意である。   FIG. 12 relates to a third modified example including eight quantum circuits 11, eight waveguides 12, eight high-frequency power supplies 13, eight auxiliary waveguides 15, and eight auxiliary high-frequency power supplies 16. Although the quantum circuit system 10c is illustrated, the number of the quantum circuit 11, the waveguide 12, the high-frequency power supply 13, the auxiliary waveguide 15, and the auxiliary high-frequency power supply 16 is arbitrary.

図13は、本実施形態の第4変形例に係る量子回路システム10dの構成を示す図である。第4変形例に係る量子回路システム10dは、少なくとも2つの量子状態をそれぞれ有する第1量子回路11a及び第2量子回路11bと、第1量子回路11aに電磁気的に接続された第1導波路12a及び第2量子回路11bに電磁気的に接続された第2導波路12bと、を備える。また、第4変形例に係る量子回路システム10dは、第2導波路12bに沿って延伸する第2補助導波路15bを備える。さらに、第4変形例に係る量子回路システム10dは、第1導波路12aに第1高周波電力を伝搬させて第1量子回路11aを所定の量子状態に変化させる場合に、第2量子回路11bの量子状態の変化を補償するように、第2補助導波路15bに第3高周波電力を伝搬させ、間接的に、第2導波路12bに第2高周波電力を伝搬させる、第2補助高周波電源16bを備える。   FIG. 13 is a diagram illustrating a configuration of a quantum circuit system 10d according to a fourth modification of the present embodiment. A quantum circuit system 10d according to a fourth modification includes a first quantum circuit 11a and a second quantum circuit 11b having at least two quantum states, respectively, and a first waveguide 12a electromagnetically connected to the first quantum circuit 11a. And a second waveguide 12b electromagnetically connected to the second quantum circuit 11b. The quantum circuit system 10d according to the fourth modification includes a second auxiliary waveguide 15b extending along the second waveguide 12b. Further, the quantum circuit system 10d according to the fourth modified example is configured to transmit the first high-frequency power to the first waveguide 12a to change the first quantum circuit 11a to a predetermined quantum state. A second auxiliary high-frequency power supply 16b for transmitting the third high-frequency power to the second auxiliary waveguide 15b and indirectly transmitting the second high-frequency power to the second waveguide 12b so as to compensate for the change in the quantum state. Prepare.

第4変形例に係る量子回路システム10dは、第2導波路12bに高周波電力を伝搬させて第2量子回路11bを所定の量子状態に変化させる場合に、第1量子回路11aの量子状態の変化を補償するように、第1補助導波路15aに高周波電力を伝搬させ、間接的に、第1導波路12aに高周波電力を伝搬させる、第1補助高周波電源16aを備える。   The quantum circuit system 10d according to the fourth modified example changes the quantum state of the first quantum circuit 11a when transmitting the high-frequency power to the second waveguide 12b to change the second quantum circuit 11b to a predetermined quantum state. And a first auxiliary high-frequency power supply 16a that propagates high-frequency power to the first auxiliary waveguide 15a and indirectly propagates high-frequency power to the first waveguide 12a so as to compensate for this.

第4変形例に係る量子回路システム10dでは、第1量子回路11a、第2量子回路11b、第1導波路12a、第2導波路12b、第1高周波電源13a、第2高周波電源13b、第1補助導波路15a、第2補助導波路15b、第1補助高周波電源16a及び第2補助高周波電源16bを一単位とする構成が、複数並んで配置されている。   In a quantum circuit system 10d according to a fourth modification, a first quantum circuit 11a, a second quantum circuit 11b, a first waveguide 12a, a second waveguide 12b, a first high-frequency power supply 13a, a second high-frequency power supply 13b, a first A plurality of configurations each including the auxiliary waveguide 15a, the second auxiliary waveguide 15b, the first auxiliary high-frequency power supply 16a, and the second auxiliary high-frequency power supply 16b are arranged side by side.

より具体的には、第4変形例に係る量子回路システム10dでは、導波路12が放射状に延伸し、高周波電源13の設けられる位置が量子回路11の位置を中心に90°ずつ回転して配置されるように、上記一単位の構成が複数配置されている。このような配置によって、複数の量子回路11が設けられる基板面積を効率的に用いることができるとともに、補助導波路15によって、量子回路11に生じる意図しない量子状態の変化を補償することができる。   More specifically, in the quantum circuit system 10d according to the fourth modified example, the waveguide 12 extends radially, and the position where the high-frequency power supply 13 is provided is rotated by 90 ° around the position of the quantum circuit 11 and arranged. As shown in FIG. With such an arrangement, the substrate area on which the plurality of quantum circuits 11 are provided can be efficiently used, and the auxiliary waveguide 15 can compensate for an unintended change in the quantum state occurring in the quantum circuit 11.

なお、図13では、8つの量子回路11と、8つの導波路12と、8つの高周波電源13と、8つの補助導波路15と、8つの補助高周波電源16とを備える第4変形例に係る量子回路システム10dを例示しているが、量子回路11、導波路12、高周波電源13、補助導波路15及び補助高周波電源16の数は任意である。   Note that FIG. 13 relates to a fourth modified example including eight quantum circuits 11, eight waveguides 12, eight high-frequency power supplies 13, eight auxiliary waveguides 15, and eight auxiliary high-frequency power supplies 16. Although the quantum circuit system 10d is illustrated, the number of the quantum circuit 11, the waveguide 12, the high-frequency power supply 13, the auxiliary waveguide 15, and the auxiliary high-frequency power supply 16 is arbitrary.

図14は、本実施形態の第5変形例に係る量子回路システム10eの構成を示す図である。第5変形例に係る量子回路システム10eは、少なくとも2つの量子状態をそれぞれ有する第1量子回路11a及び第2量子回路11bと、第1量子回路11aに電磁気的に接続された第1導波路12a及び第2量子回路11bに電磁気的に接続された第2導波路12bと、を備える。また、第5変形例に係る量子回路システム10eは、第2導波路12bに沿って延伸する第2補助導波路15bを備える。さらに、第5変形例に係る量子回路システム10eは、第1導波路12aに第1高周波電力を伝搬させて第1量子回路11aを所定の量子状態に変化させる場合に、第2量子回路11bの量子状態の変化を補償するように、第2補助導波路15bに第3高周波電力を伝搬させ、間接的に、第2導波路12bに第2高周波電力を伝搬させる、第2補助高周波電源16bを備える。   FIG. 14 is a diagram illustrating a configuration of a quantum circuit system 10e according to a fifth modification of the present embodiment. The quantum circuit system 10e according to the fifth modification includes a first quantum circuit 11a and a second quantum circuit 11b having at least two quantum states, respectively, and a first waveguide 12a electromagnetically connected to the first quantum circuit 11a. And a second waveguide 12b electromagnetically connected to the second quantum circuit 11b. Further, the quantum circuit system 10e according to the fifth modification includes a second auxiliary waveguide 15b extending along the second waveguide 12b. Furthermore, the quantum circuit system 10e according to the fifth modified example is configured to transmit the first high-frequency power to the first waveguide 12a to change the first quantum circuit 11a to a predetermined quantum state. A second auxiliary high-frequency power supply 16b for transmitting the third high-frequency power to the second auxiliary waveguide 15b and indirectly transmitting the second high-frequency power to the second waveguide 12b so as to compensate for the change in the quantum state. Prepare.

第5変形例に係る量子回路システム10eは、第2導波路12bに高周波電力を伝搬させて第2量子回路11bを所定の量子状態に変化させる場合に、第1量子回路11aの量子状態の変化を補償するように、第1補助導波路15aに高周波電力を伝搬させ、間接的に、第1導波路12aに高周波電力を伝搬させる、第1補助高周波電源16aを備える。   The quantum circuit system 10e according to the fifth modified example changes the quantum state of the first quantum circuit 11a when the high frequency power is propagated through the second waveguide 12b to change the second quantum circuit 11b to a predetermined quantum state. And a first auxiliary high-frequency power supply 16a for transmitting high-frequency power to the first auxiliary waveguide 15a and indirectly transmitting high-frequency power to the first waveguide 12a so as to compensate for

また、第5変形例に係る量子回路システム10eは、第1量子回路11aの量子状態を読み出すための第1読出し線14aと、第2量子回路11bの量子状態を読み出すための第2読出し線14bとを備える。第1読出し線14aは、出力キャパシタを介して、第1量子回路11aに含まれる入力キャパシタCinとゲートキャパシタCの間に接続されてよい。同様に、第2読出し線14bは、出力キャパシタを介して、第2量子回路11bに含まれる入力キャパシタCinとゲートキャパシタCの間に接続されてよい。なお出力キャパシタが入力キャパシタCinを兼ねていてもよい。The quantum circuit system 10e according to the fifth modification includes a first read line 14a for reading the quantum state of the first quantum circuit 11a, and a second read line 14b for reading the quantum state of the second quantum circuit 11b. And The first read line 14a through the output capacitor may be connected between the input capacitor C in the gate capacitor C g included in the first quantum circuit 11a. Similarly, the second read line 14b through the output capacitor may be connected between the input capacitor C in the gate capacitor C g in the second quantum circuit 11b. The output capacitor may also serve as the input capacitor C in.

第5変形例に係る量子回路システム10eでは、第1量子回路11a、第2量子回路11b、第1導波路12a、第2導波路12b、第1高周波電源13a、第2高周波電源13b、第1補助導波路15a、第2補助導波路15b、第1補助高周波電源16a及び第2補助高周波電源16bを一単位とする構成が、複数並んで配置されている。   In the quantum circuit system 10e according to the fifth modification, the first quantum circuit 11a, the second quantum circuit 11b, the first waveguide 12a, the second waveguide 12b, the first high frequency power supply 13a, the second high frequency power supply 13b, the first A plurality of configurations each including the auxiliary waveguide 15a, the second auxiliary waveguide 15b, the first auxiliary high-frequency power supply 16a, and the second auxiliary high-frequency power supply 16b are arranged side by side.

より具体的には、第5変形例に係る量子回路システム10eでは、上記一単位の構成が、高周波電源13の設けられる位置が量子回路11を挟んで互いに逆側になるように、導波路12が延伸する方向と直交する方向に隣接して複数配置されている。このような配置によって、複数の量子回路11が設けられる基板面積を効率的に用いることができるとともに、補助導波路15によって、量子回路11に生じる意図しない量子状態の変化を補償することができる。   More specifically, in the quantum circuit system 10e according to the fifth modified example, the configuration of one unit is such that the waveguide 12 is arranged such that the position where the high-frequency power supply 13 is provided is on the opposite side of the quantum circuit 11 therebetween. Are arranged adjacent to each other in a direction perpendicular to the direction in which the film is stretched. With such an arrangement, the substrate area on which the plurality of quantum circuits 11 are provided can be efficiently used, and the auxiliary waveguide 15 can compensate for an unintended change in the quantum state occurring in the quantum circuit 11.

なお、図14では、4つの量子回路11と、4つの導波路12と、4つの高周波電源13と、4つの補助導波路15と、4つの補助高周波電源16と、4つの読出し線14とを備える第5変形例に係る量子回路システム10eを例示しているが、量子回路11、導波路12、高周波電源13、補助導波路15、補助高周波電源16及び4つの読出し線14の数は任意である。   In FIG. 14, four quantum circuits 11, four waveguides 12, four high-frequency power supplies 13, four auxiliary waveguides 15, four auxiliary high-frequency power supplies 16, and four readout lines 14 are connected. Although the quantum circuit system 10e according to the fifth modified example is illustrated, the numbers of the quantum circuit 11, the waveguide 12, the high-frequency power supply 13, the auxiliary waveguide 15, the auxiliary high-frequency power supply 16, and the four readout lines 14 are arbitrary. is there.

以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。   The embodiments described above are intended to facilitate understanding of the present invention, and are not intended to limit and interpret the present invention. Each element included in the embodiment and the arrangement, material, condition, shape, size, and the like of the embodiment are not limited to those illustrated but can be appropriately changed. It is also possible to partially replace or combine the configurations shown in different embodiments.

Claims (5)

少なくとも2つの量子状態をそれぞれ有する第1量子回路及び第2量子回路と、
前記第1量子回路に電磁気的に接続された第1導波路及び前記第2量子回路に電磁気的に接続された第2導波路と、
前記第1導波路に第1高周波電力を伝搬させて前記第1量子回路を所定の量子状態に変化させる場合に、前記第2量子回路の量子状態の変化を補償するように、直接的又は間接的に、前記第2導波路に第2高周波電力を伝搬させる高周波電源と、
を備える量子回路システム。
A first quantum circuit and a second quantum circuit each having at least two quantum states;
A first waveguide electromagnetically connected to the first quantum circuit and a second waveguide electromagnetically connected to the second quantum circuit;
When the first high frequency power is propagated through the first waveguide to change the first quantum circuit to a predetermined quantum state, a direct or indirect method is used to compensate for the change in the quantum state of the second quantum circuit. A high-frequency power source for transmitting a second high-frequency power to the second waveguide;
A quantum circuit system comprising:
前記高周波電源は、前記第1導波路に前記第1高周波電力を伝搬させたタイミング以降に、前記第2量子回路の量子状態の変化を補償するように、直接的又は間接的に、前記第2導波路に前記第2高周波電力を伝搬させる、
請求項1に記載の量子回路システム。
The high-frequency power supply directly or indirectly compensates for a change in the quantum state of the second quantum circuit after the timing at which the first high-frequency power is propagated to the first waveguide. Propagating the second high-frequency power through a waveguide;
The quantum circuit system according to claim 1.
前記高周波電源は、前記第1導波路に前記第1高周波電力を伝搬させたことによる前記第2量子回路の量子状態の変化を補償する高周波電力と、前記第2量子回路を所定の量子状態に変化させる高周波電力との重ね合わせである前記第2高周波電力を、直接的又は間接的に、前記第2導波路に伝搬させる、
請求項1又は2に記載の量子回路システム。
The high-frequency power supply includes a high-frequency power for compensating for a change in a quantum state of the second quantum circuit due to the propagation of the first high-frequency power to the first waveguide, and sets the second quantum circuit to a predetermined quantum state. The second high-frequency power, which is a superposition with the high-frequency power to be changed, is directly or indirectly propagated to the second waveguide.
The quantum circuit system according to claim 1.
前記第2導波路に沿って延伸する補助導波路をさらに備え、
前記高周波電源は、前記第1導波路に前記第1高周波電力を伝搬させて前記第1量子回路を所定の量子状態に変化させる場合に、前記第2量子回路の量子状態の変化を補償するように、前記補助導波路に第3高周波電力を伝搬させ、間接的に、前記第2導波路に前記第2高周波電力を伝搬させる、
請求項1又は2に記載の量子回路システム。
An auxiliary waveguide extending along the second waveguide;
The high-frequency power supply compensates for a change in the quantum state of the second quantum circuit when the first quantum circuit is changed to a predetermined quantum state by propagating the first high-frequency power to the first waveguide. Transmitting the third high-frequency power to the auxiliary waveguide and indirectly transmitting the second high-frequency power to the second waveguide;
The quantum circuit system according to claim 1.
前記補助導波路は、前記第2導波路に沿って延伸する第1部分及び第2部分と、前記第1部分及び前記第2部分を接続する折返し部分とを含む、
請求項4に記載の量子回路システム。
The auxiliary waveguide includes a first portion and a second portion extending along the second waveguide, and a folded portion connecting the first portion and the second portion.
The quantum circuit system according to claim 4.
JP2019566371A 2019-08-15 2019-08-15 Quantum circuit system Active JP6651213B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/032042 WO2021029063A1 (en) 2019-08-15 2019-08-15 Quantum circuit system

Publications (2)

Publication Number Publication Date
JP6651213B1 true JP6651213B1 (en) 2020-02-19
JPWO2021029063A1 JPWO2021029063A1 (en) 2021-09-27

Family

ID=69568364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019566371A Active JP6651213B1 (en) 2019-08-15 2019-08-15 Quantum circuit system

Country Status (2)

Country Link
JP (1) JP6651213B1 (en)
WO (1) WO2021029063A1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAN, ZHIGUANG ET AL., SUPPLEMENTARY MATERIALS FOR STRONGLY CORRELATED QUANTUM WALKS WITH A 12-QUBIT SUPERCONDUCTING PROCES, JPN6019040304, 2 May 2019 (2019-05-02), pages 1 - 35, ISSN: 0004183685 *

Also Published As

Publication number Publication date
WO2021029063A1 (en) 2021-02-18
JPWO2021029063A1 (en) 2021-09-27

Similar Documents

Publication Publication Date Title
Lescanne et al. Exponential suppression of bit-flips in a qubit encoded in an oscillator
CN108475353B (en) Multi-qubit tunable coupling mechanism using fixed-frequency superconducting qubits
US10090043B2 (en) Providing controlled pulses for quantum computing
US10056908B2 (en) Operating a coupler device to perform quantum logic gates
US10726351B1 (en) System and method for controlling superconducting qubits using single flux quantum logic
CA2662604C (en) Quantum bit variable coupling method, quantum computing circuit using the method, and variable coupler
EP2577872B1 (en) Quantum logic gates utilizing resonator mediated coupling
Yang et al. Entangling superconducting qubits in a multi-cavity system
CN108698815A (en) Technology and related system for manipulating double qubit quantum states and method
WO2017027733A1 (en) Systems and methods for creating and using higher degree interactions between quantum devices
US20200112310A1 (en) Qubit circuit and method for topological protection
JP2009194646A (en) Microwave switch circuit
Chow et al. Characterizing a four-qubit planar lattice for arbitrary error detection
Canturk et al. Numerical study of Josephson junction qubits with an unharmonic current–phase relation
Roth et al. The transmon qubit for electromagnetics engineers: An introduction
Bastrakova et al. Sub-nanosecond operations on superconducting quantum register based on Ramsey patterns
Santos Quantum gates by inverse engineering of a Hamiltonian
Nefedkin et al. Dark‐State Induced Quantum Nonreciprocity
JP2009049631A (en) Element state readout apparatus, method, and transmission type josephson resonant circuit
JP6651213B1 (en) Quantum circuit system
Wang et al. Photon blockade with cross-Kerr nonlinearity in superconducting circuits
Abdoulkary et al. Envelope solitons in a left-handed nonlinear transmission line with Josephson junction
US20200091867A1 (en) Electronic circuit, oscillator, and calculating device
Huang et al. Control of single-photon routing by another atom
Gul et al. Localized modes in parametrically driven long Josephson junctions with a double-well potential

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191129

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191129

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200114

R150 Certificate of patent or registration of utility model

Ref document number: 6651213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531