WO2018159749A1 - Method for cooling steel sheet, cooling device for steel sheet and method for manufacturing steel sheet - Google Patents

Method for cooling steel sheet, cooling device for steel sheet and method for manufacturing steel sheet Download PDF

Info

Publication number
WO2018159749A1
WO2018159749A1 PCT/JP2018/007743 JP2018007743W WO2018159749A1 WO 2018159749 A1 WO2018159749 A1 WO 2018159749A1 JP 2018007743 W JP2018007743 W JP 2018007743W WO 2018159749 A1 WO2018159749 A1 WO 2018159749A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
steel sheet
plate
steel
sheet
Prior art date
Application number
PCT/JP2018/007743
Other languages
French (fr)
Japanese (ja)
Inventor
上岡 悟史
雄太 田村
原田 直樹
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201880015172.2A priority Critical patent/CN110366456B/en
Priority to EP18760481.4A priority patent/EP3560616B1/en
Priority to KR1020197025297A priority patent/KR102303872B1/en
Publication of WO2018159749A1 publication Critical patent/WO2018159749A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2275/00Mill drive parameters
    • B21B2275/02Speed
    • B21B2275/06Product speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table

Definitions

  • the present invention relates to controlled cooling in which hot-rolled high-temperature steel sheets are subjected to passing cooling while being constrained by a roll.
  • a method for cooling a steel plate which can produce a steel plate with less strain on a thick steel plate (hereinafter sometimes simply referred to as a steel plate) having a plate thickness as thin as 10 mm or less and a plate width of 3000 mm or more
  • the present invention relates to a cooling device and a method for manufacturing a steel plate.
  • cooling of steel sheets is constrained by a plurality of rolls, and a cooling nozzle is disposed between the restraining rolls to cool the steel sheets while passing (referred to as passing cooling).
  • passing cooling a cooling nozzle is disposed between the restraining rolls to cool the steel sheets while passing
  • the reason for controlled cooling by such a method is that the initial investment cost can be suppressed because it is possible to cool with a short equipment length by using the passing cooling.
  • the restraining roll suppresses distortion caused by uneven temperature distribution in the steel plate upper and lower surfaces and the steel plate surface during cooling, and disposes cooling water outside the cooling device by arranging a cooling nozzle between the rolls. This prevents the cooling water from staying on the steel plate.
  • Patent Document 1 predicts the residual stress generated in the steel sheet from the measurement of the temperature distribution of the steel sheet after cooling with respect to the shape defect due to the non-uniformity of the steel sheet temperature distribution after cooling. The method for determining whether or not correction is necessary is described.
  • Patent Document 2 focuses on the restraint roll from the viewpoint of suppressing C warpage that occurs during water cooling, and applies a load within the range of restraint force of the restraint roll required as a function of its roll pitch and steel plate thickness. Describes a method for manufacturing a steel sheet with good flatness.
  • Buckling deformation due to shrinkage in the width direction of the steel plate during water cooling is a mechanism different from the strain due to temperature deviation of the upper and lower surfaces assumed so far, so it is thought that strain will occur even if cooling is performed by the conventional method .
  • the method of predicting from the temperature distribution after cooling of the steel sheet as in Patent Document 1 deformation larger than the predicted plate shape occurs. Therefore, the prediction is wrong, and it is difficult to reduce the incidence of correction.
  • Patent Document 2 although distortion due to temperature deviation of the upper and lower surfaces can be suppressed, buckling deformation due to sheet width contraction caused by water cooling is not taken into consideration, so that the sheet thickness is thin and the sheet width is small. There is no effect on a wide area.
  • this invention makes it a subject to solve the problem of the said prior art, and in control cooling which cools the steel plate after hot rolling, restraining with a roll, the cooling method of a steel plate with little distortion, the cooling device of a steel plate, and It aims at providing the manufacturing method of a steel plate.
  • the gist of the present invention is as follows. [1] A steel plate is conveyed in a state in which the steel plate is restrained by a plurality of rolls arranged at a predetermined pitch in the steel plate conveyance direction, and cooling water is sprayed onto the upper and lower surfaces of the steel plate by a cooling nozzle arranged between the plurality of rolls.
  • V Plate speed (m / s)
  • Cv Cooling rate with respect to the average temperature of the steel sheet in the thickness direction (° C./s)
  • L Roll pitch (m)
  • t Plate thickness (m)
  • W Plate width (m) It is.
  • a plurality of rolls that are arranged at a predetermined pitch in the steel plate conveyance direction and convey and restrain the steel plate;
  • a cooling nozzle that is disposed between a plurality of rolls and that cools the steel sheet by injecting cooling water onto the upper and lower surfaces of the steel sheet;
  • a steel sheet cooling apparatus comprising: a control mechanism that controls a plate passing speed V so as to satisfy the following formula (1).
  • V Plate speed (m / s)
  • Cv Cooling rate with respect to the average temperature of the steel sheet in the thickness direction (° C./s)
  • L Roll pitch (m)
  • t Plate thickness (m)
  • W Plate width (m) It is.
  • [5] The steel sheet cooling apparatus according to [4], wherein the plate thickness t is 10 mm or less.
  • the present invention it is possible to manufacture a steel plate with less distortion.
  • the effect can be exhibited by applying it to off-line heat treatment of thick steel plates.
  • FIG. 1 is a schematic diagram showing a partial configuration of a production facility using the steel sheet cooling device of the present invention.
  • FIG. 2 is a diagram for explaining buckling deformation during cooling of a steel plate
  • (a) is a schematic diagram showing the configuration of the cooling device of the present invention
  • (b) is a view of the plate width W of the steel plate during cooling of the steel plate. It is a figure explaining a change.
  • FIG. 3 is a diagram illustrating an example of a defective shape (ear wave) of a steel plate.
  • FIG. 4 is a diagram for explaining the definition of the steepness ⁇ .
  • FIG. 5 is a diagram showing the relationship between the roll pitch L and the steepness ⁇ .
  • FIG. 1 is a schematic diagram showing a partial configuration of a production facility using the steel sheet cooling device of the present invention.
  • FIG. 2 is a diagram for explaining buckling deformation during cooling of a steel plate
  • (a) is a schematic diagram showing the configuration of the cooling device of the present
  • FIG. 6 is a diagram showing the relationship between the cooling rate Cv and the steepness ⁇ .
  • FIG. 7 is a diagram showing the relationship between the sheet passing speed V and the steepness ⁇ .
  • FIG. 8 is a diagram for explaining buckling deformation when a part of steel plates (steel plates between roll pitches L) is cut out.
  • FIG. 9 is a diagram showing the relationship between the buckling coefficient k, the roll pitch L, and the square of the plate width W.
  • FIG. 1 is a schematic diagram showing a partial configuration of a production facility using the steel sheet cooling device of the present invention.
  • a steel plate 1 having a predetermined thickness produced on a rolling mill line is conveyed to the production line shown in FIG.
  • the steel plate 1 is heated to a predetermined temperature by the heating furnace 10
  • the steel plate 1 is conveyed while being restrained by the plurality of rolls 2, and is cooled by the plurality of cooling nozzles 3 installed between the rolls 2.
  • the arrow in a figure is a conveyance direction of a steel plate.
  • the roll 2 and the cooling nozzle 3 are installed on the upper and lower surfaces of the steel plate 1.
  • the cooling device according to the present invention includes a roll 2, a cooling nozzle 3, and a control mechanism (not shown) that controls the plate passing speed V so as to satisfy formula (1) described later.
  • FIG. 2 (a) is a schematic diagram showing the configuration of the steel sheet cooling device of the present invention.
  • the upper and lower surfaces of the steel sheet 1 are restrained by a plurality of rolls 2 such as a roll 2-0, a roll 2-1, a roll 2-i, and a roll 2-n along the conveyance direction.
  • a plurality of rolls 2 such as a roll 2-0, a roll 2-1, a roll 2-i, and a roll 2-n along the conveyance direction.
  • the cooling nozzle 3 is installed in the upper and lower surfaces of the steel plate 1, respectively.
  • FIG. 2B is a diagram for explaining a change in the plate width W of the steel plate during cooling of the steel plate.
  • the plate width W of the steel plate 1 when passing through the steel plate cooling device shown in FIG. It is the figure which looked at change from the top.
  • the plate width of the steel plate 1 when passing through each roll 2 is W and the roll pitch in the steel plate conveyance direction is L, the steel plate 1 contracts by water cooling.
  • the sheet width when passing through the roll W 1 the sheet width when passing through the roll 2-1).
  • the portion having a large plate width (for example, the plate width W o ) has a large compressive stress. receive.
  • the deformation of the steel sheet due to the compressive stress is referred to as buckling deformation.
  • the shape of each steel plate cooled under various conditions such as the plate passing speed V, the plate thickness t, the plate width W, the cooling rate Cv, and the like.
  • the relationship with cooling conditions was investigated. Specifically, the steel sheet 1 having a thickness of 6 mm to 10 mm manufactured in the rolling mill line is conveyed to the manufacturing line in FIG. 1 and heated to 950 ° C. by the heating furnace (Heath roll heating furnace) 10.
  • the cooling nozzle 3 was used to cool to 100 ° C. It was judged whether or not buckling deformation occurred from the shape of the steel plate after cooling.
  • FIG. 3 is a diagram showing an example of the shape of a steel plate in which a shape defect has occurred, and a shape defect called a so-called ear wave has occurred in the edge portion of the steel plate 1.
  • This defect of the ear wave shape was quantified using the steepness ⁇ (%) represented by the definition shown in FIG. 4 and the following formula (2).
  • an ear wave does not generate
  • ( ⁇ / P) ⁇ 100 (2) However, in Formula (2), ⁇ : Steepness (%) ⁇ : Wave height (m) P: Wave pitch (m) It is.
  • the wave pitch P of the steel sheet in which the shape defect occurred was about 0.6 to 1.4 m.
  • the allowable value of steepness for example, if there is a large shape defect when welding multiple plates, the work of welding in a flat state by restraining the deformation of the steel plate will occur, as much as possible A smaller steepness is preferable.
  • FIG. 6 It has been confirmed that the steepness ⁇ decreases as the cooling rate Cv decreases. When the cooling rate Cv was 110 ° C./s or less, no ear wave was generated.
  • the cooling rate Cv is a cooling rate with respect to the average temperature in the plate thickness direction.
  • V Plate speed (m / s)
  • Cv Cooling rate with respect to the average temperature of the steel sheet in the thickness direction (° C./s)
  • L Roll pitch (m)
  • t Plate thickness (m)
  • W Plate width (m) It is.
  • ⁇ e Buckling limit stress (MPa) k: Buckling coefficient E: Young's modulus (MPa) ⁇ : Circumference ratio ⁇ : Poisson's ratio t: Plate thickness (m) L: Roll pitch (m) W: Plate width (m) m: Wave number (usually 1) It is. Note that L is described as the plate length in the elasticity handbook, but this time it is a system constrained by a roll, so it is read from the roll pitch as judged from the direction of stress.
  • equation (4) is an example of an elementary analysis. Actually, since the restraint state of the steel plate changes, the buckling coefficient does not become as shown in this equation (4). For this reason, the buckling coefficient k is often used by appropriately modifying it so as to match the actual condition with reference to the equation (4).
  • the compressive stress exerted in the width direction of the steel plate from the inter-roll entry temperature and the inter-roll exit temperature is as follows: It can be described as follows.
  • ⁇ a compressive stress in the width direction (MPa)
  • Linear expansion coefficient (1 / ° C)
  • E Young's modulus (MPa)
  • T in Roll entry temperature (° C)
  • T out roll-side outlet temperature (° C.) It is.
  • the compressive stress sigma a width direction can be described as follows.
  • the buckling coefficient k is represented by the following equation (11) derived from the above equation (10).
  • the buckling coefficient k is a value unique to the process, various experiments were performed with actual machines, and the buckling coefficient k was actually obtained.
  • the experimental conditions are as follows: the plate thickness t is 5 to 15 mm, the plate width W is 3000 to 5000 mm, the roll pitch L is 500 to 750 mm, and the plate passing speed is 0.3 to 2.0 m. / S.
  • the buckling constant k at the actual buckling boundary is considered to be related to the square of the roll pitch L and the plate width W from the above equation (4).
  • the buckling coefficient k may deviate from the theoretical formula of equation (4) due to constraints at each end or deformation conditions. For example, when there is a shear force, the (W / L) term is omitted. There are also examples. Therefore, this time, when the (W / L) term is omitted, the relationship between the buckling coefficient k actually obtained by the actual machine, the roll pitch L, and the square of the plate width W is plotted. The result is shown in FIG. In FIG.
  • indicates that the steepness ⁇ is less than 0.5%
  • x indicates that the steepness ⁇ is 0.5% or more. From FIG. 9, it can be said that there is a correlation between the buckling constant k of the boundary that actually buckles and the steepness ⁇ .
  • the plate passing speed V that does not buckle can be expressed by the following Formula (1).
  • Cv Cooling rate with respect to the average temperature of the steel sheet in the thickness direction (° C./s)
  • L Roll pitch (m)
  • t Plate thickness (m)
  • W Plate width (m) It is.
  • the roll pitch L is a parameter that comes from the machine configuration, it cannot be changed after the machine is installed.
  • the plate thickness t, the plate width W, and the cooling rate Cv are parameters related to determining the characteristics of the product and cannot be simply changed. Therefore, the formula (1) is arranged focusing on the plate passing speed V which is a parameter that can be appropriately changed in operation.
  • the buckling deformation is faster in order to prevent buckling deformation when the sheet thickness t is thinner, the roll pitch L is wider, the cooling speed Cv is faster, and the sheet width is wider. It turns out that it is necessary to cool with.
  • the roll pitch L, the cooling speed Cv, and the plate passing speed V are values unique to the cooling equipment, and the plate thickness t and the plate width W are determined by the product.
  • the cooling speed Cv is the flow rate of the cooling water of the cooling device
  • the plate passing speed V is the number of rotations of the table roll, which can be changed.
  • the roll pitch of the cooling device is designed to be as short as possible (for example, 500 mm pitch) according to the range of production types in the design stage, and the rotation speed of the table roll is set to rotate as fast as possible (for example, 2 m / s or more), the adjustment range of the flow rate of the cooling water should be designed to be wide. If the roll pitch L cannot be shortened, such as using existing equipment, the cooling rate Cv can be slowed by widening the adjustment range of the cooling water flow rate and enabling cooling at a low flow rate. It is effective (for example, 100 ° C./s or less at a plate thickness of 10 mm).
  • Hot strip mills for producing hot-rolled steel strips and on-line controlled cooling of thick steel plates have a plate speed of about 2.5 m / s at a thickness of 10 mm, which is relatively fast. Deformation hardly occurs.
  • water cooling is performed in conjunction with the extraction rate of the heating furnace, so that the plate passing speed is about 1.0 m / s. Likely to happen.
  • the present invention it is possible to manufacture a steel sheet with less cooling strain by cooling the steel sheet at a sheet passing speed V that satisfies the above formula (1).
  • an effect is expressed regarding the steel plate with a thin plate thickness and a wide plate width.
  • it is suitable for cooling thick steel plates having a plate thickness of 10 mm or less and / or a plate width of 3000 mm or more, and can be applied to off-line heat treatment of thick steel plates.
  • the steel sheet was cooled using the manufacturing equipment shown in FIG.
  • the heating temperature in the heating furnace 10 was set to 930 ° C.
  • the plate thickness was set to 5 mm, 10 mm, and 12 mm where buckling deformation was likely to occur.
  • the amount of cooling water can be changed.
  • the cooling rate of a steel plate having a thickness of 5 mm when the maximum amount of water is injected is 400 ° C./s, and the cooling rate when the minimum flow rate is injected is 100 ° C./s.
  • the cooling rate is inversely proportional to the plate thickness. Therefore, when the plate thickness is 10 mm, the maximum cooling rate is 200 ° C./s, and the minimum cooling rate is 50 ° C./s.
  • the roll pitch L was changed for each condition.
  • the shape of the steel plate was judged by the steepness ⁇ .
  • the steepness ⁇ was less than 0.5%, the steel plate shape was judged to be flat.
  • the steepness ⁇ was 0.5% or more, the steel plate shape was judged to be buckled.
  • ⁇ / P was calculated from the average value of all ear waves generated at both ends of the steel sheet.
  • cooling is performed at a plate passing speed higher than the plate passing speed V obtained by the equation (1).
  • buckling deformation did not occur and a flat shape was obtained.
  • cooling is performed at a plate passing speed lower than the plate passing speed V obtained by the equation (1).
  • buckling deformation occurred under all conditions.
  • the transfer speed control of a general off-line heat treatment apparatus for thick steel plates is influenced by the driving mechanism of the heating furnace, and the transfer speed can be controlled at a speed of approximately 0.02 to 0.5 m / s.
  • the plate passing speed determined by the expression (1) of the present invention, that is, the carrying speed is the carrying speed control of the actual machine. Since it falls within the range, shape adjustment is easy.
  • the shape adjustment of the steel plate having a narrow plate width is also easy because the plate passing speed obtained by the formula (1) of the present invention, that is, the transport speed is within the transport speed control range of the actual machine.
  • the cooling rate control and roll pitch change of the present invention for a steel plate having a plate thickness of 10 mm or less and / or a plate width of 3000 mm or more, is the plate passing speed required by the formula (1) of the present invention, that is, The transport speed may be outside the transport speed control range of the actual machine. For this reason, when implementing this invention with respect to the steel plate of 10 mm or less board thickness and / or 3000 mm or more board width, it turns out that cooling rate control, a roll pitch change, etc. are required.
  • the sheet passing speed is controlled to 2.0 m / s slightly faster than general equipment, It can be seen that buckling deformation can be prevented.

Abstract

The purpose of the present invention is to provide: a method for cooling a steel sheet having less distortion in controlled cooling, in which the hot-rolled steel sheet is cooled while being restrained by rolls; a cooling device for a steel sheet; and a method for manufacturing a steel sheet. Provided is a method for cooling a steel sheet in which a steel sheet is conveyed while being restrained by a plurality of rolls disposed at a prescribed pitch in a steel sheet conveying direction, and cooling water is sprayed on upper and lower surfaces of the steel sheet by cooling nozzles disposed between the plurality of rolls to cool the steel sheet, wherein cooling is performed at a sheet passing speed V that satisfies formula (1): V > 2.21×10-5×Cv ×L3×t-2×(24.2+204.3×(L/W)2)-1 In formula (1): V is the sheet passing speed (m/s); Cv is the cooling rate (oC/s) with respect to the average temperature of the steel sheet in the thickness direction; L is the roll pitch (m); T is the sheet thickness (m); and W is the sheet width (m).

Description

鋼板の冷却方法および鋼板の冷却装置ならびに鋼板の製造方法Steel plate cooling method, steel plate cooling device, and steel plate manufacturing method
 本発明は、熱間圧延された高温の鋼板を、ロールにより拘束した状態で通過冷却を実施する制御冷却に関する。特に板厚が10mm以下と薄く、且つ板幅が3000mm以上の厚鋼板(以下、単に鋼板と称することもある。)に対して、歪の少ない鋼板を製造することができる、鋼板の冷却方法および冷却装置ならびに鋼板の製造方法に関する。 The present invention relates to controlled cooling in which hot-rolled high-temperature steel sheets are subjected to passing cooling while being constrained by a roll. In particular, a method for cooling a steel plate, which can produce a steel plate with less strain on a thick steel plate (hereinafter sometimes simply referred to as a steel plate) having a plate thickness as thin as 10 mm or less and a plate width of 3000 mm or more, and The present invention relates to a cooling device and a method for manufacturing a steel plate.
 鋼板の製造に当たっては、鋼板に要求される機械的性質、特に強度と靭性を確保する必要がある。これを達成するために、圧延後の高温の鋼板をそのまま冷却したり、一旦室温まで空冷して、オフラインで再加熱・焼入れしたりする作業が行われる。この冷却では、鋼板に要求される材質上の特性を確保するために、冷却速度を大きくすることが必要である。同時に、材質の均一性を確保し、冷却時の歪み(冷却歪)の発生を抑制するために冷却が鋼板面全体にわたって均一に行われることが重要である。冷却歪が発生した場合、冷却後の鋼板をローラー矯正機やプレスなどの矯正機を用いて平坦度を確保することが必要となるため、追加工程が発生することから納期短縮の大きな障害となる。 When manufacturing steel sheets, it is necessary to ensure the mechanical properties required for steel sheets, especially strength and toughness. In order to achieve this, an operation is performed in which the high-temperature steel sheet after rolling is cooled as it is, or is air-cooled to room temperature and reheated and quenched off-line. In this cooling, it is necessary to increase the cooling rate in order to ensure the material properties required for the steel sheet. At the same time, it is important that the cooling is performed uniformly over the entire surface of the steel sheet in order to ensure the uniformity of the material and suppress the occurrence of distortion during cooling (cooling distortion). When cooling distortion occurs, it is necessary to secure the flatness of the cooled steel sheet using a straightening machine such as a roller straightener or a press, which causes an additional process and is a major obstacle to shortening the delivery time. .
 これに対応して、現在、鋼板の冷却は複数のロールにより鋼板を拘束し、その拘束ロール間に冷却ノズルを配置して、鋼板を通過させながら冷却する手法(通過冷却という。)が広く行われており、これにより歪の少ない鋼板を製造している。 Correspondingly, currently, cooling of steel sheets is constrained by a plurality of rolls, and a cooling nozzle is disposed between the restraining rolls to cool the steel sheets while passing (referred to as passing cooling). As a result, a steel plate with less distortion is manufactured.
 このような方法で制御冷却する理由として、通過冷却とすることで短い設備長で冷却が可能になるため、初期投資コストの抑制が可能であることが挙げられる。また、拘束ロールは冷却中の鋼板上下面や鋼板面内の温度分布の不均一に起因して発生する歪を押さえ込み、且つロール間に冷却ノズルを配置することにより、冷却装置外部に冷却水が出ないようにして、鋼板上に冷却水が滞留する事を防止している。 The reason for controlled cooling by such a method is that the initial investment cost can be suppressed because it is possible to cool with a short equipment length by using the passing cooling. In addition, the restraining roll suppresses distortion caused by uneven temperature distribution in the steel plate upper and lower surfaces and the steel plate surface during cooling, and disposes cooling water outside the cooling device by arranging a cooling nozzle between the rolls. This prevents the cooling water from staying on the steel plate.
 以上の観点から、たとえば特許文献1には、冷却後の鋼板温度分布の不均一に起因した形状不良に対して、冷却後の鋼板の温度分布の測定から鋼板に発生する残留応力を予測することで、矯正の必要可否を判断する方法が記載されている。 From the above viewpoint, for example, Patent Document 1 predicts the residual stress generated in the steel sheet from the measurement of the temperature distribution of the steel sheet after cooling with respect to the shape defect due to the non-uniformity of the steel sheet temperature distribution after cooling. The method for determining whether or not correction is necessary is described.
 また、特許文献2には、水冷中に発生するC反りを抑制する観点で、拘束ロールに着目し、そのロールピッチ、鋼板厚みの関数として必要な拘束ロールの拘束力の範囲で負荷をかけることにより、平坦度のよい鋼板の製造方法について記載されている。 In addition, Patent Document 2 focuses on the restraint roll from the viewpoint of suppressing C warpage that occurs during water cooling, and applies a load within the range of restraint force of the restraint roll required as a function of its roll pitch and steel plate thickness. Describes a method for manufacturing a steel sheet with good flatness.
特許第2843273号公報Japanese Patent No. 2843273 特許第3925789号公報Japanese Patent No. 3925789
 上記で説明したような手法により歪の少ない鋼板が製造できるようになったものの、幅方向や上下面の温度均一性を確保して冷却しても、依然として歪が発生することがある。そこで本発明者らが歪の発生について検討した結果、水冷時の鋼板幅方向の収縮による座屈変形に起因して冷却歪が発生することがわかった。座屈変形に起因する冷却歪は、板厚が薄く且つ板幅が広い鋼板の場合、上記で説明したような手法による低減効果が発現しにくく、特に板厚が10mm以下であり且つ板幅3000mm以上の鋼板の冷却時には、幅方向や上下面の温度均一性を確保して冷却しても歪が発生するということがわかった。 Although a steel plate with less distortion can be produced by the method described above, even if cooling is performed while ensuring temperature uniformity in the width direction and the upper and lower surfaces, distortion may still occur. Therefore, as a result of investigations on the occurrence of strain by the present inventors, it has been found that cooling strain is generated due to buckling deformation due to contraction in the width direction of the steel sheet during water cooling. In the case of a steel plate having a thin plate thickness and a wide plate width, the cooling strain due to buckling deformation is unlikely to exhibit a reduction effect by the method described above. In particular, the plate thickness is 10 mm or less and the plate width is 3000 mm. It has been found that when the steel sheet is cooled, distortion occurs even if it is cooled with the temperature uniformity in the width direction and the upper and lower surfaces secured.
 水冷時の鋼板幅方向の収縮による座屈変形は、これまでに想定されている上下面の温度偏差による歪と異なるメカニズムであるため、従来の手法で冷却を行っても歪が発生すると考えられる。特許文献1のような鋼板の冷却後の温度分布から予測する方法では、予測した板形状よりも大きな変形が発生する。そのため予測が外れ、矯正の発生率の削減は困難である。また、特許文献2では、上下面の温度偏差起因の歪の抑制は可能であるものの、水冷時に伴う板幅収縮に起因した座屈変形は考慮してないため、板厚が薄く且つ板幅が広い領域に関して効果が発現しない。 Buckling deformation due to shrinkage in the width direction of the steel plate during water cooling is a mechanism different from the strain due to temperature deviation of the upper and lower surfaces assumed so far, so it is thought that strain will occur even if cooling is performed by the conventional method . In the method of predicting from the temperature distribution after cooling of the steel sheet as in Patent Document 1, deformation larger than the predicted plate shape occurs. Therefore, the prediction is wrong, and it is difficult to reduce the incidence of correction. Further, in Patent Document 2, although distortion due to temperature deviation of the upper and lower surfaces can be suppressed, buckling deformation due to sheet width contraction caused by water cooling is not taken into consideration, so that the sheet thickness is thin and the sheet width is small. There is no effect on a wide area.
 そこで本発明は、上記従来技術の問題点を解決することを課題とし、熱間圧延後の鋼板をロールで拘束しながら冷却する制御冷却において、歪の少ない鋼板の冷却方法および鋼板の冷却装置ならびに鋼板の製造方法を提供することを目的とする。 Then, this invention makes it a subject to solve the problem of the said prior art, and in control cooling which cools the steel plate after hot rolling, restraining with a roll, the cooling method of a steel plate with little distortion, the cooling device of a steel plate, and It aims at providing the manufacturing method of a steel plate.
 本発明の要旨は、以下の通りである。
[1]鋼板搬送方向に所定のピッチに配置される複数のロールにより鋼板を拘束した状態で搬送し、複数のロール間に配置される冷却ノズルにより鋼板の上下面に冷却水を噴射して鋼板を冷却する鋼板の冷却方法において、
下記式(1)を満足する通板速度Vで冷却する鋼板の冷却方法。
V>2.21×10-5×Cv×L×t-2×(24.2+204.3×(L/W)-1・・・(1)
ただし、式(1)において、
V:通板速度(m/s)
Cv:板厚方向の鋼板平均温度に対する冷却速度(℃/s)
L:ロールピッチ(m)
t:板厚(m)
W:板幅(m)
である。
[2]板厚tは10mm以下である[1]に記載の鋼板の冷却方法。
[3]板幅Wは3000mm以上である[1]または[2]に記載の鋼板の冷却方法。
[4]鋼板搬送方向に所定のピッチで配置されて、鋼板を拘束して搬送する複数のロールと、
複数のロール間に配置されて、鋼板の上下面に冷却水を噴射して鋼板を冷却する冷却ノズルと、
下記式(1)を満足するように通板速度Vを制御する制御機構と
を備える鋼板の冷却装置。
V>2.21×10-5×Cv×L×t-2×(24.2+204.3×(L/W)-1・・・(1)
ただし、式(1)において、
V:通板速度(m/s)
Cv:板厚方向の鋼板平均温度に対する冷却速度(℃/s)
L:ロールピッチ(m)
t:板厚(m)
W:板幅(m)
である。
[5]板厚tは10mm以下である[4]に記載の鋼板の冷却装置。
[6]板幅Wは3000mm以上である[4]または[5]に記載の鋼板の冷却装置。
[7]熱間圧延後の鋼板を[1]~[3]のいずれかに記載の冷却方法を用いて冷却し、鋼板を製造する鋼板の製造方法。
The gist of the present invention is as follows.
[1] A steel plate is conveyed in a state in which the steel plate is restrained by a plurality of rolls arranged at a predetermined pitch in the steel plate conveyance direction, and cooling water is sprayed onto the upper and lower surfaces of the steel plate by a cooling nozzle arranged between the plurality of rolls. In the method for cooling the steel sheet,
A cooling method for a steel sheet that is cooled at a sheet passing speed V that satisfies the following formula (1).
V> 2.21 × 10 −5 × Cv × L 3 × t −2 × (24.2 + 204.3 × (L / W) 2 ) −1 (1)
However, in Formula (1),
V: Plate speed (m / s)
Cv: Cooling rate with respect to the average temperature of the steel sheet in the thickness direction (° C./s)
L: Roll pitch (m)
t: Plate thickness (m)
W: Plate width (m)
It is.
[2] The method for cooling a steel sheet according to [1], wherein the sheet thickness t is 10 mm or less.
[3] The steel sheet cooling method according to [1] or [2], wherein the plate width W is 3000 mm or more.
[4] A plurality of rolls that are arranged at a predetermined pitch in the steel plate conveyance direction and convey and restrain the steel plate;
A cooling nozzle that is disposed between a plurality of rolls and that cools the steel sheet by injecting cooling water onto the upper and lower surfaces of the steel sheet;
A steel sheet cooling apparatus comprising: a control mechanism that controls a plate passing speed V so as to satisfy the following formula (1).
V> 2.21 × 10 −5 × Cv × L 3 × t −2 × (24.2 + 204.3 × (L / W) 2 ) −1 (1)
However, in Formula (1),
V: Plate speed (m / s)
Cv: Cooling rate with respect to the average temperature of the steel sheet in the thickness direction (° C./s)
L: Roll pitch (m)
t: Plate thickness (m)
W: Plate width (m)
It is.
[5] The steel sheet cooling apparatus according to [4], wherein the plate thickness t is 10 mm or less.
[6] The steel sheet cooling apparatus according to [4] or [5], wherein the plate width W is 3000 mm or more.
[7] A method for producing a steel sheet, wherein the steel sheet after hot rolling is cooled by using the cooling method according to any one of [1] to [3].
 本発明によれば、歪の少ない鋼板の製造が可能となる。特に厚鋼板のオフライン熱処理に適用することでその効果を発揮できる。 According to the present invention, it is possible to manufacture a steel plate with less distortion. In particular, the effect can be exhibited by applying it to off-line heat treatment of thick steel plates.
図1は、本発明の鋼板の冷却装置を用いた製造設備の一部の構成を示す模式図である。FIG. 1 is a schematic diagram showing a partial configuration of a production facility using the steel sheet cooling device of the present invention. 図2は、鋼板冷却時における座屈変形を説明する図であり、(a)は本発明の冷却装置の構成を示す模式図であり、(b)は鋼板冷却時における鋼板の板幅Wの変化を説明する図である。FIG. 2 is a diagram for explaining buckling deformation during cooling of a steel plate, (a) is a schematic diagram showing the configuration of the cooling device of the present invention, and (b) is a view of the plate width W of the steel plate during cooling of the steel plate. It is a figure explaining a change. 図3は、鋼板の形状不良(耳波)の一例を示す図である。FIG. 3 is a diagram illustrating an example of a defective shape (ear wave) of a steel plate. 図4は、急峻度λの定義を説明する図である。FIG. 4 is a diagram for explaining the definition of the steepness λ. 図5は、ロールピッチLと急峻度λとの関係を示す図である。FIG. 5 is a diagram showing the relationship between the roll pitch L and the steepness λ. 図6は、冷却速度Cvと急峻度λとの関係を示す図である。FIG. 6 is a diagram showing the relationship between the cooling rate Cv and the steepness λ. 図7は、通板速度Vと急峻度λとの関係を示す図である。FIG. 7 is a diagram showing the relationship between the sheet passing speed V and the steepness λ. 図8は、一部の鋼板(ロールピッチL間の鋼板)を切り出した際の、座屈変形を説明する図である。FIG. 8 is a diagram for explaining buckling deformation when a part of steel plates (steel plates between roll pitches L) is cut out. 図9は、座屈係数kと、ロールピッチLと板幅Wの2乗との関係を示す図である。FIG. 9 is a diagram showing the relationship between the buckling coefficient k, the roll pitch L, and the square of the plate width W.
 まず、冷却歪の原因と考えられる水冷時の鋼板幅方向の収縮による座屈変形について説明する。図1は、本発明の鋼板の冷却装置を用いた製造設備の一部の構成を示す模式図である。圧延機ラインで製造した所定の板厚の鋼板1を、図1の製造ラインに搬送する。加熱炉10により鋼板1を所定の温度に加熱した後、複数のロール2により拘束しながら鋼板1を搬送させ、各ロール2間に設置されている複数の冷却ノズル3により冷却を行う。なお、図中の矢印は鋼板の搬送方向である。また、ロール2および冷却ノズル3は鋼板1の上下面に設置される。本発明に係る冷却装置は、ロール2、冷却ノズル3、および後述する式(1)を満足するように通板速度Vを制御する制御機構(図示せず)とを備える。 First, the buckling deformation due to shrinkage in the steel sheet width direction during water cooling, which is considered to be a cause of cooling strain, will be described. FIG. 1 is a schematic diagram showing a partial configuration of a production facility using the steel sheet cooling device of the present invention. A steel plate 1 having a predetermined thickness produced on a rolling mill line is conveyed to the production line shown in FIG. After the steel plate 1 is heated to a predetermined temperature by the heating furnace 10, the steel plate 1 is conveyed while being restrained by the plurality of rolls 2, and is cooled by the plurality of cooling nozzles 3 installed between the rolls 2. In addition, the arrow in a figure is a conveyance direction of a steel plate. The roll 2 and the cooling nozzle 3 are installed on the upper and lower surfaces of the steel plate 1. The cooling device according to the present invention includes a roll 2, a cooling nozzle 3, and a control mechanism (not shown) that controls the plate passing speed V so as to satisfy formula (1) described later.
 図2(a)は、本発明の鋼板の冷却装置の構成を示す模式図である。図2(a)に示すように、鋼板1は搬送方向に沿って、ロール2-0、ロール2-1、…ロール2-i、ロール2-nといった、複数のロール2により上下面を拘束されている。各ロール2間には、冷却ノズル3が鋼板1の上下面にそれぞれ設置されている。 FIG. 2 (a) is a schematic diagram showing the configuration of the steel sheet cooling device of the present invention. As shown in FIG. 2A, the upper and lower surfaces of the steel sheet 1 are restrained by a plurality of rolls 2 such as a roll 2-0, a roll 2-1, a roll 2-i, and a roll 2-n along the conveyance direction. Has been. Between each roll 2, the cooling nozzle 3 is installed in the upper and lower surfaces of the steel plate 1, respectively.
 図2(b)は、鋼板冷却時における鋼板の板幅Wの変化を説明する図であり、図2(a)に示す鋼板の冷却装置内を通過する際の、鋼板1の板幅Wの変化を上から見た図である。各ロール2を通過する際の鋼板1の板幅をW、鋼板搬送方向におけるロールピッチをLとすると、水冷により鋼板1は収縮する。例えば、ロール2-0からロール2-1へ鋼板が移動した場合、図2(b)に示すように、板幅はΔW(Δ=W-W、なお、W:ロール2-0を通過する際の板幅、W:ロール2-1を通過する際の板幅である。)だけ収縮する。このとき、板幅の広い鋼板と板幅の狭い鋼板が同じ幅となるように接合させているのと同じ状態となるため、板幅の広い部分(例えば板幅W)は大きな圧縮応力を受ける。この圧縮応力による鋼板の変形を本発明では座屈変形とよぶ。 FIG. 2B is a diagram for explaining a change in the plate width W of the steel plate during cooling of the steel plate. The plate width W of the steel plate 1 when passing through the steel plate cooling device shown in FIG. It is the figure which looked at change from the top. When the plate width of the steel plate 1 when passing through each roll 2 is W and the roll pitch in the steel plate conveyance direction is L, the steel plate 1 contracts by water cooling. For example, when the steel plate moves from the roll 2-0 to the roll 2-1, as shown in FIG. 2B, the plate width is ΔW (Δ = W 0 −W 1 , where W o : roll 2-0. The sheet width when passing through the roll W 1 : the sheet width when passing through the roll 2-1). At this time, since the steel plate having a large plate width and the steel plate having a narrow plate width are joined to have the same width, the portion having a large plate width (for example, the plate width W o ) has a large compressive stress. receive. In the present invention, the deformation of the steel sheet due to the compressive stress is referred to as buckling deformation.
 このとき、通板速度が遅い若しくは冷却速度が速い場合は、その搬送方向に対する収縮勾配ΔW/Lが急峻となることで大きな圧縮応力が発生し、座屈変形が発生しやすくなる。また、板厚が薄く且つ板幅が広い場合は、板の剛性が低くなることで、圧縮応力による耐性が低くなり、同じく座屈変形が発生しやすくなる。 At this time, when the plate passing speed is low or the cooling speed is high, the contraction gradient ΔW / L with respect to the conveying direction becomes steep, so that a large compressive stress is generated and buckling deformation is likely to occur. Further, when the plate thickness is thin and the plate width is wide, the rigidity of the plate is lowered, so that the resistance due to the compressive stress is lowered, and the buckling deformation is also likely to occur.
 そこで、上記の板幅Wの収縮メカニズムを確認するために、実際の製造ラインにおいて、通板速度V、板厚t、板幅Wや冷却速度Cvなど様々な条件で冷却した鋼板の形状と各冷却条件との関係について調査した。具体的には、圧延機ラインで製造した板厚6mm~10mmの鋼板1を、図1の製造ラインに搬送し、加熱炉(ハースロール加熱炉)10により950℃まで加熱したのちに、ロール2により拘束しながら、冷却ノズル3により100℃まで冷却を行った。冷却後の鋼板形状から座屈変形したかどうかの判断を行った。 Therefore, in order to confirm the contraction mechanism of the plate width W, in the actual production line, the shape of each steel plate cooled under various conditions such as the plate passing speed V, the plate thickness t, the plate width W, the cooling rate Cv, and the like. The relationship with cooling conditions was investigated. Specifically, the steel sheet 1 having a thickness of 6 mm to 10 mm manufactured in the rolling mill line is conveyed to the manufacturing line in FIG. 1 and heated to 950 ° C. by the heating furnace (Heath roll heating furnace) 10. The cooling nozzle 3 was used to cool to 100 ° C. It was judged whether or not buckling deformation occurred from the shape of the steel plate after cooling.
 図3は、形状不良が発生した鋼板の形状を示す一例の図であり、鋼板1のエッジ部にいわゆる耳波と呼ばれる形状不良が発生していた。この耳波形状の不良を、図4および下記式(2)に示す定義で表される急峻度λ(%)を用いて定量化した。なお、耳波は一ヶ所に発生するわけではなく、鋼板の両端部に複数発生する。そこで、下記式(2)におけるδ/Pの値は、鋼板両端部に発生した全ての耳波の平均値とする。
λ=(δ/P)×100・・・(2)
ただし、式(2)において、
λ:急峻度(%)
δ:波高さ(m)
P:波ピッチ(m)
である。
FIG. 3 is a diagram showing an example of the shape of a steel plate in which a shape defect has occurred, and a shape defect called a so-called ear wave has occurred in the edge portion of the steel plate 1. This defect of the ear wave shape was quantified using the steepness λ (%) represented by the definition shown in FIG. 4 and the following formula (2). In addition, an ear wave does not generate | occur | produce in one place, but multiple generate | occur | produces in the both ends of a steel plate. Therefore, the value of δ / P in the following formula (2) is the average value of all ear waves generated at both ends of the steel plate.
λ = (δ / P) × 100 (2)
However, in Formula (2),
λ: Steepness (%)
δ: Wave height (m)
P: Wave pitch (m)
It is.
 定量化した結果、形状不良が発生した鋼板の波ピッチPは0.6~1.4m程度であった。急峻度の許容値に関しては、たとえば複数の板を溶接する際に大きな形状不良があると、鋼板が持つ変形を拘束して平らにした状態で溶接する作業などが発生することから、可能な限り急峻度は小さい方が好ましい。一般的な基準としては、鋼板搬送方向における波ピッチPを2mとした時に、波高さδを10mm以下とすることが要求されている。そこで、本発明では、急峻度λ=(10/2000)×100=0.5%未満を座屈変形が無いと考え、λが0.5%以上を座屈変形があると判断した。 As a result of quantification, the wave pitch P of the steel sheet in which the shape defect occurred was about 0.6 to 1.4 m. With regard to the allowable value of steepness, for example, if there is a large shape defect when welding multiple plates, the work of welding in a flat state by restraining the deformation of the steel plate will occur, as much as possible A smaller steepness is preferable. As a general standard, it is required that the wave height δ is 10 mm or less when the wave pitch P in the steel sheet conveyance direction is 2 m. Therefore, in the present invention, the steepness λ = (10/2000) × 100 = less than 0.5% is considered as no buckling deformation, and it is determined that λ is 0.5% or more as buckling deformation.
 図5は、板厚t=10mm、板幅W=3000mm、通板速度V=0.58m/s、冷却速度Cv=220℃/sとして、ロールピッチLと耳波形状の急峻度λとの関係を示す図である。ロールピッチLが短くなるほど急峻度λは小さくなることが確認された。ロールピッチLが600mm以下の場合、耳波は発生しなかった。 FIG. 5 shows the relationship between the roll pitch L and the steepness λ of the acoustic wave shape with a plate thickness t = 10 mm, a plate width W = 3000 mm, a plate passing speed V = 0.58 m / s, and a cooling rate Cv = 220 ° C./s. It is a figure which shows a relationship. It has been confirmed that the steepness λ becomes smaller as the roll pitch L becomes shorter. When the roll pitch L was 600 mm or less, no ear wave was generated.
 図6は、板厚t=10mm、板幅W=3000mm、通板速度V=0.58m/s、ロールピッチL=750mmとして、冷却速度Cvと耳波形状の急峻度λとの関係を示す図である。冷却速度Cvが小さくなるほど急峻度λは小さくなることが確認された。冷却速度Cvが110℃/s以下の場合、耳波は発生しなかった。 FIG. 6 shows the relationship between the cooling rate Cv and the steepness λ of the ear wave shape when the plate thickness t = 10 mm, the plate width W = 3000 mm, the plate passing speed V = 0.58 m / s, and the roll pitch L = 750 mm. FIG. It has been confirmed that the steepness λ decreases as the cooling rate Cv decreases. When the cooling rate Cv was 110 ° C./s or less, no ear wave was generated.
 図7は、板厚t=6mm、ロールピッチL=750mm、冷却速度Cv=300℃/sとして、板幅Wが1500mmと板幅Wが3000mmの場合の鋼板について、通板速度Vと急峻度λとの関係を示す図である。いずれの板幅であっても、通板速度Vが速いほど、急峻度λは小さくなることが確認された。また、板幅Wが1500mmでは、通板速度Vが1.8m/s以上で耳波が発生しなかった。一方、板幅Wが3000mmでは、通板速度Vが3.0m/s以上で耳波が発生しなかった。これらの結果から、同じ通板速度の場合、板幅が大きいほど形状が悪くなることが分かった。 FIG. 7 shows a plate speed V and steepness of a steel plate having a plate thickness t = 6 mm, a roll pitch L = 750 mm, a cooling rate Cv = 300 ° C./s, and a plate width W of 1500 mm and a plate width W of 3000 mm. It is a figure which shows the relationship with (lambda). It was confirmed that the steepness λ becomes smaller as the plate passing speed V is higher at any plate width. Further, when the plate width W was 1500 mm, no ear wave was generated when the plate passing speed V was 1.8 m / s or more. On the other hand, when the plate width W was 3000 mm, no ear wave was generated when the plate passing speed V was 3.0 m / s or more. From these results, it was found that the shape deteriorates as the plate width increases for the same plate passing speed.
 なお、厚鋼板では板厚が厚いほど、冷却時に鋼板表面と鋼板中心において、温度差が生じる。そのため、ここでの冷却速度Cvは、板厚方向の平均温度に対する冷却速度である。 In thick steel plates, the thicker the plate thickness, the more temperature difference occurs between the steel plate surface and the steel plate center during cooling. Therefore, the cooling rate Cv here is a cooling rate with respect to the average temperature in the plate thickness direction.
 これらの知見から、座屈変形は、通板速度V、冷却速度Cv、ロールピッチL、板厚t、板幅Wに起因して発生するといえる。そこで本発明者らがさらに検討した結果、下記式(1)で表される通板速度Vを満足すれば、座屈変形が発生せず、歪の少ない鋼板を得られることがわかった。
V>2.21×10-5×Cv×L×t-2×(24.2+204.3×(L/W)-1・・・(1)
ただし、式(1)において、
V:通板速度(m/s)
Cv:板厚方向の鋼板平均温度に対する冷却速度(℃/s)
L:ロールピッチ(m)
t:板厚(m)
W:板幅(m)
である。
From these findings, it can be said that the buckling deformation occurs due to the plate passing speed V, the cooling speed Cv, the roll pitch L, the plate thickness t, and the plate width W. Therefore, as a result of further studies by the present inventors, it has been found that if a plate passing speed V represented by the following formula (1) is satisfied, a steel plate with less strain can be obtained without buckling deformation.
V> 2.21 × 10 −5 × Cv × L 3 × t −2 × (24.2 + 204.3 × (L / W) 2 ) −1 (1)
However, in Formula (1),
V: Plate speed (m / s)
Cv: Cooling rate with respect to the average temperature of the steel sheet in the thickness direction (° C./s)
L: Roll pitch (m)
t: Plate thickness (m)
W: Plate width (m)
It is.
 以下、上記式(1)の導出について説明する。 Hereinafter, the derivation of the above formula (1) will be described.
 弾性学ハンドブック(中原ら,2001年,朝倉書店,P.264)によれば、座屈限界の圧縮応力は以下のように記載されている。 According to the Elasticity Handbook (Nakahara et al., 2001, Asakura Shoten, P. 264), the compressive stress at the buckling limit is described as follows.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
上記式において、
σ:座屈限界応力(MPa)
k:座屈係数
E:ヤング率(MPa)
π:円周率
ν:ポアソン比
t:板厚(m)
L:ロールピッチ(m)
W:板幅(m)
m:波数(通常1をとる)
である。
なお、Lは弾性学ハンドブックでは板長さと記載されているが、今回はロールで拘束している系であるため、応力の方向から判断してロールピッチと読み替える。また、座屈係数kに関しては、式(4)は初等解析の一例である。実際は鋼板の拘束状態などが変化するため、この式(4)通りの座屈係数にはならない。そのため、座屈係数kは、式(4)を参考に実態に合うように適宜修正して利用されることが多い。
In the above formula,
σ e : Buckling limit stress (MPa)
k: Buckling coefficient E: Young's modulus (MPa)
π: Circumference ratio ν: Poisson's ratio t: Plate thickness (m)
L: Roll pitch (m)
W: Plate width (m)
m: Wave number (usually 1)
It is.
Note that L is described as the plate length in the elasticity handbook, but this time it is a system constrained by a roll, so it is read from the roll pitch as judged from the direction of stress. Regarding the buckling coefficient k, equation (4) is an example of an elementary analysis. Actually, since the restraint state of the steel plate changes, the buckling coefficient does not become as shown in this equation (4). For this reason, the buckling coefficient k is often used by appropriately modifying it so as to match the actual condition with reference to the equation (4).
 図8のように、一部のロール間の鋼板(ロールピッチL間の鋼板)を切り出して考えると、ロール間入側温度およびロール間出側温度から、鋼板の幅方向に及ぼす圧縮応力は以下のように記載できる。 As shown in FIG. 8, when considering a steel plate between some rolls (a steel plate between roll pitches L), the compressive stress exerted in the width direction of the steel plate from the inter-roll entry temperature and the inter-roll exit temperature is as follows: It can be described as follows.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
上記式において、
σ:幅方向の圧縮応力(MPa)
α:線膨張率(1/℃)
E:ヤング率(MPa)
in:ロール間入側温度(℃)
out:ロール間出側温度(℃)
である。
In the above formula,
σ a : compressive stress in the width direction (MPa)
α: Linear expansion coefficient (1 / ° C)
E: Young's modulus (MPa)
T in : Roll entry temperature (° C)
T out : roll-side outlet temperature (° C.)
It is.
 ロール間において、一定の冷却速度で冷却されたとすると、上記の式(5)のロール間入側温度Tinおよびロール間出側温度Toutは以下のように記載することができる。 Assuming cooling between the rolls at a constant cooling rate, the inter-roll entry temperature T in and the inter-roll exit temperature T out of the above equation (5) can be described as follows.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
上記式において、
Cv:冷却速度(℃/s)
V:通板速度(m/s)
である。
In the above formula,
Cv: Cooling rate (° C./s)
V: Plate speed (m / s)
It is.
 すなわち、幅方向の圧縮応力σは次のように記載することができる。 In other words, the compressive stress sigma a width direction can be described as follows.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 幅方向の圧縮応力σが、座屈限界応力σよりも小さい場合は座屈しないことから、式(8)の関係式を満たせば座屈変形はしない。 When the compressive stress σ a in the width direction is smaller than the buckling limit stress σ e , buckling does not occur if the relational expression (8) is satisfied.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 式(8)を通板速度Vに対して書き直すと以下のようになる。 Rewriting equation (8) for the plate speed V is as follows.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 なお、鋼の場合は、ポアソン比ν及び熱膨張率αは固有値を持つため、定数として考えると、座屈変形しない通板速度Vは以下のように記載できる。(高温域での操業を想定し、ポアソン比ν及び熱膨張率αはそれぞれν=0.3、α=2.0×10-5で換算) In the case of steel, since the Poisson's ratio ν and the coefficient of thermal expansion α have eigenvalues, when considered as constants, the plate passing speed V that does not buckle and deform can be described as follows. (Assuming operation in a high temperature range, Poisson's ratio ν and coefficient of thermal expansion α are converted to ν = 0.3 and α = 2.0 × 10 −5 respectively)
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 座屈係数kは、上記式(10)から導き出される下記式(11)となる。 The buckling coefficient k is represented by the following equation (11) derived from the above equation (10).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 ここで、座屈係数kはプロセス固有の値となるため、種々の実験を実機で行い、座屈係数kを実際に求めた。実際に座屈係数kを求めるべく、実験条件としては、板厚tを5~15mm、板幅Wを3000~5000mm、ロールピッチLを500~750mm、通板速度を0.3~2.0m/sとした。 Here, since the buckling coefficient k is a value unique to the process, various experiments were performed with actual machines, and the buckling coefficient k was actually obtained. In order to actually determine the buckling coefficient k, the experimental conditions are as follows: the plate thickness t is 5 to 15 mm, the plate width W is 3000 to 5000 mm, the roll pitch L is 500 to 750 mm, and the plate passing speed is 0.3 to 2.0 m. / S.
 一方、実際に座屈する境界の座屈定数kは、上記式(4)から、ロールピッチLと板幅Wの2乗に関係すると考えられる。先に述べたように、座屈係数kは各端部の拘束や変形条件などで式(4)の理論式からずれることがあり、例えばせん断力がある場合は(W/L)項を省略する例も存在する。そこで、今回は(W/L)項を省略した場合で実機にて実際に求めた座屈係数kと、ロールピッチLと板幅Wの2乗との関係をプロットした。その結果を図9に示す。図9において、○は急峻度λが0.5%未満であり、×は急峻度λが0.5%以上であることを示す。図9から、実際に座屈する境界の座屈定数kと急峻度λとの間に相関関係があるといえる。 On the other hand, the buckling constant k at the actual buckling boundary is considered to be related to the square of the roll pitch L and the plate width W from the above equation (4). As described above, the buckling coefficient k may deviate from the theoretical formula of equation (4) due to constraints at each end or deformation conditions. For example, when there is a shear force, the (W / L) term is omitted. There are also examples. Therefore, this time, when the (W / L) term is omitted, the relationship between the buckling coefficient k actually obtained by the actual machine, the roll pitch L, and the square of the plate width W is plotted. The result is shown in FIG. In FIG. 9, ◯ indicates that the steepness λ is less than 0.5%, and x indicates that the steepness λ is 0.5% or more. From FIG. 9, it can be said that there is a correlation between the buckling constant k of the boundary that actually buckles and the steepness λ.
 図9の結果から、座屈係数kは、以下の関係で表すことができる。
k=204.3(L/W)+24.2・・・(12)
 式(10)および式(12)を組み合わせることで、座屈しない通板速度Vは、下記式(1)で表すことができる。
V>2.21×10-5×Cv×L×t-2×(24.2+204.3×(L/W)-1・・・(1)
ただし、式(1)において、
V:通板速度(m/s)
Cv:板厚方向の鋼板平均温度に対する冷却速度(℃/s)
L:ロールピッチ(m)
t:板厚(m)
W:板幅(m)
である。
From the result of FIG. 9, the buckling coefficient k can be expressed by the following relationship.
k = 204.3 (L / W) 2 +24.2 (12)
By combining Formula (10) and Formula (12), the plate passing speed V that does not buckle can be expressed by the following Formula (1).
V> 2.21 × 10 −5 × Cv × L 3 × t −2 × (24.2 + 204.3 × (L / W) 2 ) −1 (1)
However, in Formula (1),
V: Plate speed (m / s)
Cv: Cooling rate with respect to the average temperature of the steel sheet in the thickness direction (° C./s)
L: Roll pitch (m)
t: Plate thickness (m)
W: Plate width (m)
It is.
 なお、ロールピッチLは機械構成から来るパラメータであるため、機械設置後は変更できないパラメータである。また、板厚t、板幅Wや冷却速度Cvは、商品の特性を決定するのに関連するパラメータであり、これも単純に変更することができない。そこで、操業上、適宜変更が可能なパラメータである通板速度Vに着目して式(1)を整理している。 In addition, since the roll pitch L is a parameter that comes from the machine configuration, it cannot be changed after the machine is installed. Further, the plate thickness t, the plate width W, and the cooling rate Cv are parameters related to determining the characteristics of the product and cannot be simply changed. Therefore, the formula (1) is arranged focusing on the plate passing speed V which is a parameter that can be appropriately changed in operation.
 上記式(1)から、座屈変形は板厚tが薄いほど、ロールピッチLが広いほど、冷却速度Cvが速いほど、板幅が広い場合、座屈変形させないためには早い通板速度Vで冷却する必要があることがわかる。ここで、ロールピッチL、冷却速度Cv、通板速度Vは冷却設備固有の値であり、板厚t、板幅Wは製品により決まる。一方、冷却速度Cvは冷却装置の冷却水の流量、通板速度Vはテーブルロールの回転数であり、それぞれ変更可能である。そこで、設計段階で予め製造品種の範囲に応じて、冷却装置のロールピッチを可能な限り短く設計しておき(たとえば500mmピッチ)、テーブルロールの回転数はなるべく早く回転するようにし(たとえば2m/s以上まで)、冷却水の流量の調整範囲も広くするように設計するのがよい。また、既存の設備を活用するなどのロールピッチLを短縮できない場合は、冷却水の流量の調整範囲を広くして、少ない流量での冷却を可能とすることで冷却速度Cvを遅くするのが有効である(たとえば、板厚10mmで100℃/s以下)。熱延鋼帯を製造するホットストリップミルや厚鋼板のオンライン制御冷却では、板厚10mmの厚みでおおよそ2.5m/s程度の通板速度となり、比較的速度が早いため、このような座屈変形は発生しにくい。一方、厚鋼板のオフライン熱処理時の冷却では、加熱炉の抽出速度と連動して水冷するため、1.0m/s程度の通板速度となるため、本発明で説明したような座屈変形が発生しやすい。 From the above formula (1), the buckling deformation is faster in order to prevent buckling deformation when the sheet thickness t is thinner, the roll pitch L is wider, the cooling speed Cv is faster, and the sheet width is wider. It turns out that it is necessary to cool with. Here, the roll pitch L, the cooling speed Cv, and the plate passing speed V are values unique to the cooling equipment, and the plate thickness t and the plate width W are determined by the product. On the other hand, the cooling speed Cv is the flow rate of the cooling water of the cooling device, and the plate passing speed V is the number of rotations of the table roll, which can be changed. Therefore, the roll pitch of the cooling device is designed to be as short as possible (for example, 500 mm pitch) according to the range of production types in the design stage, and the rotation speed of the table roll is set to rotate as fast as possible (for example, 2 m / s or more), the adjustment range of the flow rate of the cooling water should be designed to be wide. If the roll pitch L cannot be shortened, such as using existing equipment, the cooling rate Cv can be slowed by widening the adjustment range of the cooling water flow rate and enabling cooling at a low flow rate. It is effective (for example, 100 ° C./s or less at a plate thickness of 10 mm). Hot strip mills for producing hot-rolled steel strips and on-line controlled cooling of thick steel plates have a plate speed of about 2.5 m / s at a thickness of 10 mm, which is relatively fast. Deformation hardly occurs. On the other hand, in cooling at the time of off-line heat treatment of a thick steel plate, water cooling is performed in conjunction with the extraction rate of the heating furnace, so that the plate passing speed is about 1.0 m / s. Likely to happen.
 以上より、本発明では、上記式(1)を満足する通板速度Vで鋼板を冷却させることにより、冷却歪の少ない鋼板の製造が可能となる。本発明では、板厚が薄く且つ板幅が広い鋼板に関して効果が発現する。特に板厚が10mm以下および/または板幅3000mm以上の厚鋼板の冷却に好適であり、厚鋼板のオフライン熱処理に適用することができる。 As described above, in the present invention, it is possible to manufacture a steel sheet with less cooling strain by cooling the steel sheet at a sheet passing speed V that satisfies the above formula (1). In this invention, an effect is expressed regarding the steel plate with a thin plate thickness and a wide plate width. In particular, it is suitable for cooling thick steel plates having a plate thickness of 10 mm or less and / or a plate width of 3000 mm or more, and can be applied to off-line heat treatment of thick steel plates.
 図1に示す製造設備を用いて、鋼板を冷却させた。ここで、加熱炉10における加熱温度は930℃とし、板厚は座屈変形が発生しやすい板厚5mm、10mm、12mmとした。冷却ノズル3はフラットスプレーを幅方向に複数並べたものを用いた。冷却水量は変更可能であり、最大水量を噴射した場合の板厚5mmの厚鋼板の冷却速度は400℃/s、最小流量を噴射した時の冷却速度は100℃/sである。なお、冷却水量を一定として、板厚だけ変更して冷却した場合、冷却速度は板厚に逆比例する。よって、板厚10mmの場合の最大冷却速度は200℃/s、最小冷却速度は50℃/sとなる。また、ロールピッチLは各条件毎に変更した。 The steel sheet was cooled using the manufacturing equipment shown in FIG. Here, the heating temperature in the heating furnace 10 was set to 930 ° C., and the plate thickness was set to 5 mm, 10 mm, and 12 mm where buckling deformation was likely to occur. As the cooling nozzle 3, a plurality of flat sprays arranged in the width direction was used. The amount of cooling water can be changed. The cooling rate of a steel plate having a thickness of 5 mm when the maximum amount of water is injected is 400 ° C./s, and the cooling rate when the minimum flow rate is injected is 100 ° C./s. When cooling is performed by changing only the plate thickness with the cooling water amount being constant, the cooling rate is inversely proportional to the plate thickness. Therefore, when the plate thickness is 10 mm, the maximum cooling rate is 200 ° C./s, and the minimum cooling rate is 50 ° C./s. The roll pitch L was changed for each condition.
 鋼板形状は急峻度λで判断した。急峻度λが0.5%未満を鋼板形状がフラットであると判断し、一方、急峻度λが0.5%以上を鋼板形状が座屈変形していると判断した。なお、急峻度λを求めるに際し、δ/Pは鋼板両端部に発生した全ての耳波の平均値から算出した。 The shape of the steel plate was judged by the steepness λ. When the steepness λ was less than 0.5%, the steel plate shape was judged to be flat. On the other hand, when the steepness λ was 0.5% or more, the steel plate shape was judged to be buckled. When obtaining the steepness λ, δ / P was calculated from the average value of all ear waves generated at both ends of the steel sheet.
 結果を表1に示す。 The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 本発明例は、式(1)で求められる通板速度Vよりも速い通板速度にて冷却している。いずれの本発明例も座屈変形は発生せずフラットな形状となった。一方、比較例はいずれも、式(1)で求められる通板速度Vよりも遅い通板速度にて冷却している。いずれの比較例もすべての条件で座屈変形が発生した。その結果、比較例の全ての鋼板は、冷却後にローラー矯正機で形状修正を行って出荷した。本発明例の全ての鋼板は、再矯正せずにそのまま出荷が可能であった。 In the example of the present invention, cooling is performed at a plate passing speed higher than the plate passing speed V obtained by the equation (1). In any of the inventive examples, buckling deformation did not occur and a flat shape was obtained. On the other hand, in all the comparative examples, cooling is performed at a plate passing speed lower than the plate passing speed V obtained by the equation (1). In all the comparative examples, buckling deformation occurred under all conditions. As a result, all the steel plates of the comparative examples were shipped after being subjected to shape correction with a roller straightener after cooling. All the steel sheets of the inventive examples could be shipped as they were without re-correction.
 なお、一般的な厚鋼板のオフライン熱処理装置の搬送速度制御は、加熱炉の駆動機構に影響され、搬送速度はおよそ0.02~0.5m/s程度の速度制御が可能なものが多い。実施例の結果からもわかるように、特に板厚12mmの実験条件では、冷却速度が速くても、本発明の式(1)で求められる通板速度、すなわち搬送速度は、実機の搬送速度制御範囲に入るため、形状調整は容易である。更に板幅の狭い鋼板も、同じく本発明の式(1)で求められる通板速度、すなわち搬送速度が実機の搬送速度制御範囲に入るため、形状調整は容易である。一方、特に本発明の冷却速度制御やロールピッチの変更などは、板厚10mm以下、および/または、板幅3000mm以上の鋼板においては、本発明の式(1)で求められる通板速度、すなわち搬送速度が実機の搬送速度制御範囲外となることがある。このため、板厚10mm以下、および/または、板幅3000mm以上の鋼板に対して本発明を実施する場合には、冷却速度制御やロールピッチの変更などが必要であることが分かる。また、特に板厚5mmと薄く且つ板幅5000mmの条件では、ロールピッチを500mmと狭くするのに加えて、通板速度を2.0m/sと一般的な設備より若干早く制御することで、座屈変形が防止できることがわかる。 Note that the transfer speed control of a general off-line heat treatment apparatus for thick steel plates is influenced by the driving mechanism of the heating furnace, and the transfer speed can be controlled at a speed of approximately 0.02 to 0.5 m / s. As can be seen from the results of the examples, especially in the experimental condition where the plate thickness is 12 mm, even if the cooling rate is high, the plate passing speed determined by the expression (1) of the present invention, that is, the carrying speed is the carrying speed control of the actual machine. Since it falls within the range, shape adjustment is easy. Furthermore, the shape adjustment of the steel plate having a narrow plate width is also easy because the plate passing speed obtained by the formula (1) of the present invention, that is, the transport speed is within the transport speed control range of the actual machine. On the other hand, in particular, the cooling rate control and roll pitch change of the present invention, for a steel plate having a plate thickness of 10 mm or less and / or a plate width of 3000 mm or more, is the plate passing speed required by the formula (1) of the present invention, that is, The transport speed may be outside the transport speed control range of the actual machine. For this reason, when implementing this invention with respect to the steel plate of 10 mm or less board thickness and / or 3000 mm or more board width, it turns out that cooling rate control, a roll pitch change, etc. are required. In addition, in the condition of a sheet thickness of 5 mm and a sheet width of 5000 mm, in addition to narrowing the roll pitch to 500 mm, the sheet passing speed is controlled to 2.0 m / s slightly faster than general equipment, It can be seen that buckling deformation can be prevented.
 1   鋼板
 2   ロール
 2-0 ロール
 2-1 ロール
 2-i ロール
 2-n ロール
 3   冷却ノズル
 10  加熱炉(ハースロール加熱炉)
 δ   波高さ
 P   波ピッチ
1 Steel plate 2 Roll 2-0 Roll 2-1 Roll 2-i Roll 2-n Roll 3 Cooling nozzle 10 Heating furnace (Heath roll heating furnace)
δ Wave height P Wave pitch

Claims (7)

  1.  鋼板搬送方向に所定のピッチに配置される複数のロールにより鋼板を拘束した状態で搬送し、複数のロール間に配置される冷却ノズルにより鋼板の上下面に冷却水を噴射して鋼板を冷却する鋼板の冷却方法において、
    下記式(1)を満足する通板速度Vで冷却する鋼板の冷却方法。
    V>2.21×10-5×Cv×L×t-2×(24.2+204.3×(L/W)-1・・・(1)
    ただし、式(1)において、
    V:通板速度(m/s)
    Cv:板厚方向の鋼板平均温度に対する冷却速度(℃/s)
    L:ロールピッチ(m)
    t:板厚(m)
    W:板幅(m)
    である。
    The steel sheet is transported in a state of being restrained by a plurality of rolls arranged at a predetermined pitch in the steel sheet conveyance direction, and cooling water is sprayed onto the upper and lower surfaces of the steel sheet by a cooling nozzle disposed between the plurality of rolls to cool the steel sheet. In the cooling method of the steel sheet,
    A cooling method for a steel sheet that is cooled at a sheet passing speed V that satisfies the following formula (1).
    V> 2.21 × 10 −5 × Cv × L 3 × t −2 × (24.2 + 204.3 × (L / W) 2 ) −1 (1)
    However, in Formula (1),
    V: Plate speed (m / s)
    Cv: Cooling rate with respect to the average temperature of the steel sheet in the thickness direction (° C./s)
    L: Roll pitch (m)
    t: Plate thickness (m)
    W: Plate width (m)
    It is.
  2.  板厚tは10mm以下である請求項1に記載の鋼板の冷却方法。 The method for cooling a steel sheet according to claim 1, wherein the plate thickness t is 10 mm or less.
  3.  板幅Wは3000mm以上である請求項1または2に記載の鋼板の冷却方法。 The sheet width W is 3000 mm or more. The method for cooling a steel sheet according to claim 1 or 2.
  4.  鋼板搬送方向に所定のピッチで配置されて、鋼板を拘束して搬送する複数のロールと、
    複数のロール間に配置されて、鋼板の上下面に冷却水を噴射して鋼板を冷却する冷却ノズルと、
    下記式(1)を満足するように通板速度Vを制御する制御機構と
    を備える鋼板の冷却装置。
    V>2.21×10-5×Cv×L×t-2×(24.2+204.3×(L/W)-1・・・(1)
    ただし、式(1)において、
    V:通板速度(m/s)
    Cv:板厚方向の鋼板平均温度に対する冷却速度(℃/s)
    L:ロールピッチ(m)
    t:板厚(m)
    W:板幅(m)
    である。
    A plurality of rolls that are arranged at a predetermined pitch in the steel plate conveyance direction and restrain and convey the steel plate,
    A cooling nozzle that is disposed between a plurality of rolls and that cools the steel sheet by injecting cooling water onto the upper and lower surfaces of the steel sheet;
    A steel sheet cooling apparatus comprising: a control mechanism that controls a plate passing speed V so as to satisfy the following formula (1).
    V> 2.21 × 10 −5 × Cv × L 3 × t −2 × (24.2 + 204.3 × (L / W) 2 ) −1 (1)
    However, in Formula (1),
    V: Plate speed (m / s)
    Cv: Cooling rate with respect to the average temperature of the steel sheet in the thickness direction (° C./s)
    L: Roll pitch (m)
    t: Plate thickness (m)
    W: Plate width (m)
    It is.
  5.  板厚tは10mm以下である請求項4に記載の鋼板の冷却装置。 The steel sheet cooling device according to claim 4, wherein the plate thickness t is 10 mm or less.
  6.  板幅Wは3000mm以上である請求項4または5に記載の鋼板の冷却装置。 The plate width W is 3000 mm or more. The steel sheet cooling device according to claim 4 or 5.
  7.  熱間圧延後の鋼板を請求項1~3のいずれかに記載の冷却方法を用いて冷却し、鋼板を製造する鋼板の製造方法。 A method for producing a steel sheet, wherein the steel sheet after hot rolling is cooled by using the cooling method according to any one of claims 1 to 3.
PCT/JP2018/007743 2017-03-02 2018-03-01 Method for cooling steel sheet, cooling device for steel sheet and method for manufacturing steel sheet WO2018159749A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880015172.2A CN110366456B (en) 2017-03-02 2018-03-01 Method and apparatus for cooling steel sheet, and method for manufacturing steel sheet
EP18760481.4A EP3560616B1 (en) 2017-03-02 2018-03-01 Method for cooling steel sheet and method for manufacturing steel sheet
KR1020197025297A KR102303872B1 (en) 2017-03-02 2018-03-01 A method for cooling a steel sheet, a cooling device for a steel sheet, and a method for manufacturing a steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017038973A JP6720894B2 (en) 2017-03-02 2017-03-02 Steel sheet cooling method, steel sheet cooling device, and steel sheet manufacturing method
JP2017-038973 2017-03-02

Publications (1)

Publication Number Publication Date
WO2018159749A1 true WO2018159749A1 (en) 2018-09-07

Family

ID=63371165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007743 WO2018159749A1 (en) 2017-03-02 2018-03-01 Method for cooling steel sheet, cooling device for steel sheet and method for manufacturing steel sheet

Country Status (5)

Country Link
EP (1) EP3560616B1 (en)
JP (1) JP6720894B2 (en)
KR (1) KR102303872B1 (en)
CN (1) CN110366456B (en)
WO (1) WO2018159749A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109794506A (en) * 2019-04-04 2019-05-24 哈尔滨工业大学(威海) A kind of hot forming steel plate rolling formation device and method
CN114130834A (en) * 2021-11-30 2022-03-04 宝武集团鄂城钢铁有限公司 Production method for accurately controlling thickness range of thin steel plate by adopting single-stand rolling mill
CN114728320A (en) * 2019-11-25 2022-07-08 杰富意钢铁株式会社 Steel plate manufacturing equipment and manufacturing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102430332B1 (en) * 2017-10-31 2022-08-05 제이에프이 스틸 가부시키가이샤 Steel plate manufacturing equipment and manufacturing method
JP7076323B2 (en) * 2018-07-31 2022-05-27 株式会社ユニバーサルエンターテインメント Pachinko machine
EP4275806A1 (en) * 2021-02-18 2023-11-15 JFE Steel Corporation Method for predicting shape of steel sheet, shape control method, manufacturing method, method for generating shape prediction model, and manufacturing equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179829A (en) * 1988-12-28 1990-07-12 Nippon Steel Corp Controller for cooling hot-rolled steel sheet
JP2843273B2 (en) 1995-01-05 1999-01-06 株式会社神戸製鋼所 Hot rolled steel sheet shape prediction method
JP2004216438A (en) * 2003-01-16 2004-08-05 Nippon Steel Corp Cooling method and cooling apparatus for steel plate
JP3925789B2 (en) 2002-05-17 2007-06-06 Jfeスチール株式会社 High temperature steel sheet cooling method, high temperature steel sheet cooling device, and steel sheet manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193769A (en) * 1975-02-15 1976-08-17
JPH0222424A (en) * 1988-07-08 1990-01-25 Sumitomo Metal Ind Ltd Roll cooling method for hoop
JPH0866713A (en) * 1994-08-30 1996-03-12 Kawasaki Steel Corp Cooling control method for rolled stock
IN2014MN01155A (en) * 2005-06-23 2015-07-03 Nippon Steel & Sumitomo Metal Corp
JP4586791B2 (en) * 2006-10-30 2010-11-24 Jfeスチール株式会社 Cooling method for hot-rolled steel strip
FI20070622L (en) * 2007-08-17 2009-04-15 Outokumpu Oy Method and device for checking evenness during cooling of a strip made of stainless steel
JP5626275B2 (en) * 2011-07-27 2014-11-19 新日鐵住金株式会社 Method for cooling hot-rolled steel sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179829A (en) * 1988-12-28 1990-07-12 Nippon Steel Corp Controller for cooling hot-rolled steel sheet
JP2843273B2 (en) 1995-01-05 1999-01-06 株式会社神戸製鋼所 Hot rolled steel sheet shape prediction method
JP3925789B2 (en) 2002-05-17 2007-06-06 Jfeスチール株式会社 High temperature steel sheet cooling method, high temperature steel sheet cooling device, and steel sheet manufacturing method
JP2004216438A (en) * 2003-01-16 2004-08-05 Nippon Steel Corp Cooling method and cooling apparatus for steel plate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3560616A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109794506A (en) * 2019-04-04 2019-05-24 哈尔滨工业大学(威海) A kind of hot forming steel plate rolling formation device and method
CN109794506B (en) * 2019-04-04 2023-10-24 哈尔滨工业大学(威海) Roll forming device and method for hot formed steel plate
CN114728320A (en) * 2019-11-25 2022-07-08 杰富意钢铁株式会社 Steel plate manufacturing equipment and manufacturing method
CN114130834A (en) * 2021-11-30 2022-03-04 宝武集团鄂城钢铁有限公司 Production method for accurately controlling thickness range of thin steel plate by adopting single-stand rolling mill
CN114130834B (en) * 2021-11-30 2023-08-22 宝武集团鄂城钢铁有限公司 Production method for precisely controlling thickness range of thin steel plate by adopting single-frame rolling mill

Also Published As

Publication number Publication date
EP3560616B1 (en) 2023-01-25
EP3560616A4 (en) 2020-01-15
CN110366456A (en) 2019-10-22
CN110366456B (en) 2021-08-31
KR20190112085A (en) 2019-10-02
JP6720894B2 (en) 2020-07-08
EP3560616A1 (en) 2019-10-30
JP2018144050A (en) 2018-09-20
KR102303872B1 (en) 2021-09-17

Similar Documents

Publication Publication Date Title
WO2018159749A1 (en) Method for cooling steel sheet, cooling device for steel sheet and method for manufacturing steel sheet
JP6521193B1 (en) Steel plate manufacturing equipment and steel plate manufacturing method
WO2011042934A1 (en) Cooling apparatus and cooling method for hot rolling
JP2008238241A (en) Manufacturing method of aluminum metal sheet
JP6922873B2 (en) Temperable rolling method, temper rolling equipment and steel sheet manufacturing method
JP4360250B2 (en) Steel plate manufacturing method and manufacturing equipment
JP4289480B2 (en) Straightening method to obtain steel plate with good shape with little variation in residual stress
JP3924276B2 (en) Straightening method for thin wide plate
WO2017130765A1 (en) Production equipment line for hot-rolled steel strips and production method for hot-rolled steel strip
JP5338116B2 (en) How to prevent buckling of hot slab width press
JP7173377B2 (en) Steel plate manufacturing equipment and manufacturing method
JP2008231476A (en) Method for producing steel sheet
JP2013180335A (en) Method of straightening steel sheet with roller leveler and roller leveler straightener
JP6569691B2 (en) Manufacturing method of unequal side unequal thickness angle steel
JP6172110B2 (en) Hot rolled steel sheet rolling method
JP2016078026A (en) Rolling method for hot rolled steel plate
JP2019038035A (en) Hat-shaped steel sheet pile, manufacturing method of hat-shaped steel sheet pile, and manufacturing facility therefor
JP4581418B2 (en) Heat treatment method for thick steel plate
JP4305156B2 (en) Heat treatment method for steel sheet
JP3558000B2 (en) Manufacturing method of hot rolled steel strip
JP7151513B2 (en) Roller straightening method
JP5407698B2 (en) Manufacturing method and equipment for thick steel plate
JP6627730B2 (en) Hot slab width reduction device, hot slab width reduction method, and hot rolled steel sheet manufacturing method
JP2023158774A (en) Width press device and slab width press method
JP6394625B2 (en) Width reduction device and side guide position control method of width reduction device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760481

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018760481

Country of ref document: EP

Effective date: 20190723

ENP Entry into the national phase

Ref document number: 20197025297

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE