WO2018159684A1 - Three-dimensional molding transfer film and method for manufacturing same, and method for manufacturing resin molded article - Google Patents

Three-dimensional molding transfer film and method for manufacturing same, and method for manufacturing resin molded article Download PDF

Info

Publication number
WO2018159684A1
WO2018159684A1 PCT/JP2018/007522 JP2018007522W WO2018159684A1 WO 2018159684 A1 WO2018159684 A1 WO 2018159684A1 JP 2018007522 W JP2018007522 W JP 2018007522W WO 2018159684 A1 WO2018159684 A1 WO 2018159684A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
meth
resin
acrylate
transfer film
Prior art date
Application number
PCT/JP2018/007522
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 大田
明寿 野田
横山 大輔
雄二 中津川
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2018159684A1 publication Critical patent/WO2018159684A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C1/00Processes, not specifically provided for elsewhere, for producing decorative surface effects
    • B44C1/16Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like
    • B44C1/165Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like for decalcomanias; sheet material therefor
    • B44C1/17Dry transfer

Definitions

  • the present invention relates to a transfer film for three-dimensional molding, a manufacturing method thereof, and a manufacturing method of a resin molded product.
  • a protective layer is laminated using a three-dimensional molded film.
  • the three-dimensional molded film used in such a technique can be roughly classified into a laminate type three-dimensional molded film and a transfer type three-dimensional molded film.
  • Laminate type three-dimensional molded film is laminated so that the protective layer is located on the outermost surface on the support substrate, and the support substrate is placed in the resin molded product by laminating the molding resin on the support substrate side. Is used to be captured.
  • the transfer type three-dimensional molded film has a protective layer laminated directly on the support substrate or via a release layer provided as necessary, and after molding resin is laminated on the opposite side of the support substrate The support substrate is peeled off so that the support substrate does not remain in the resin molded product.
  • a protective layer provided on such a three-dimensional molded film from the viewpoint of imparting excellent surface properties to the resin molded product, it is chemically crosslinked by irradiating with ionizing radiation typified by ultraviolet rays and electron beams. It is considered preferable to use a resin composition containing an ionizing radiation curable resin that cures.
  • a three-dimensional molded film is roughly divided into a protective layer that has already been cured by ionizing radiation in the state of the three-dimensional molded film and a film that has been cured after being formed into a resin molded product by molding, From the viewpoint of improving the productivity by simplifying the process after the molding process, the former is considered preferable.
  • the protective layer when the protective layer is cured at the stage of the three-dimensional molded film, the flexibility of the three-dimensional molded film is lowered, and there is a risk that the protective layer may crack in the process of molding, so it has excellent moldability. It is necessary to select a resin composition.
  • a resin composition In particular, in the case of the above-described transfer-type three-dimensional molded film, it is usually necessary to laminate other layers such as a design layer and an adhesive layer on the protective layer, and from the protective layer to the supporting substrate in the molding process.
  • the design of the resin composition is better than that of the laminate type because the surface must be peeled off and the surface exposed by peeling off the support substrate must express excellent physical properties. There is a problem that it is difficult.
  • Patent Documents 1 and 2 disclose techniques for forming a protective layer using an ionizing radiation curable resin composition containing polycarbonate (meth) acrylate.
  • a resin composition containing polycarbonate (meth) acrylate.
  • the surface of the protective layer is scratched. There is a problem that it is very conspicuous.
  • a method of imparting self-repairability by using a soft material for the protective layer is known.
  • the protective layer was softened, the density of the protective layer was reduced, the reflectance was lowered, and it was difficult to make it high gloss.
  • the first embodiment of the present invention has excellent moldability, further excellent scratch resistance, and can suitably impart a high gloss design to a resin molded product.
  • the main purpose is to provide a transfer film for three-dimensional molding.
  • the second embodiment of the present invention has excellent moldability, and can impart excellent durability and chemical resistance to the resin molded product after molding.
  • the main object is to provide a transfer film for three-dimensional molding.
  • the second embodiment of the present invention also aims to provide a method for producing a resin molded product using the three-dimensional molding transfer film.
  • a transfer film for three-dimensional molding having at least a protective layer on the transfer substrate, wherein the protective layer is formed by a cured product of an ionizing radiation curable resin composition containing polycarbonate (meth) acrylate.
  • the three-dimensional transfer film for which the Martens hardness of the protective layer is 6 N / mm 2 or more and 40 N / mm 2 or less has excellent moldability, excellent scratch resistance, and high gloss. It was found that the design can be suitably imparted to a resin molded product.
  • the first embodiment of the present invention has been completed by further studies based on such knowledge.
  • Item 1A A transfer film for three-dimensional molding having at least a protective layer on a transfer substrate, The protective layer is formed of a cured product of an ionizing radiation curable resin composition containing polycarbonate (meth) acrylate, A transfer film for three-dimensional molding, wherein the protective layer has a Martens hardness of 6 N / mm 2 or more and 40 N / mm 2 or less.
  • Item 2A Item 3.
  • the transfer film for three-dimensional molding according to Item 1A which has at least the protective layer and the primer layer in this order on the transfer substrate.
  • Item 3A Item 3.
  • Item 3. The three-dimensional molding transfer film according to Item 3A, wherein the polyol contains an acrylic polyol.
  • Item 3. The three-dimensional item according to any one of Items 1A to 4A, which has at least one selected from the group consisting of a decorative layer, an adhesive layer, and a transparent resin layer on the opposite side of the protective layer from the transfer substrate. Transfer film for molding.
  • the ionizing radiation curable resin composition is irradiated with ionizing radiation, the layer made of the ionizing radiation curable resin composition is cured, and the Martens hardness is 6 N / mm 2 or more on the transfer substrate.
  • a method for producing a resin molded product
  • the present inventors have intensively studied to solve the problem of the second embodiment.
  • it is a three-dimensional molding transfer film having a transfer layer on the release layer of the support having at least a transfer substrate and a release layer, and the Martens hardness of the release layer is 7 N / mm.
  • the transfer film for three-dimensional molding that is 2 or more and 45 N / mm 2 or less has excellent moldability, and can impart excellent durability and chemical resistance to the molded resin product after molding. I found.
  • the second embodiment of the present invention has been completed by further studies based on this knowledge.
  • the second embodiment of the present invention provides the following aspects of the invention.
  • Item 1B A transfer film for three-dimensional molding having a transfer layer on the release layer of the support having at least a transfer substrate and a release layer, A transfer film for three-dimensional molding, wherein the release layer has a Martens hardness of 7 N / mm 2 or more and 45 N / mm 2 or less.
  • Item 2B Item 3.
  • Item 3B Item 3.
  • Item 3. The transfer film for three-dimensional molding according to any one of Items 1B to 3B, wherein the release layer has a thickness of 2.0 ⁇ m or less.
  • Item 5B. The transfer layer has a protective layer; Item 3. The transfer film for three-dimensional molding according to any one of Items 1B to 4B, wherein the protective layer is in contact with the release layer.
  • Item 6. The transfer film for three-dimensional molding according to Item 5B or 6B, wherein the ionizing radiation curable resin composition of the protective layer contains polycarbonate (meth) acrylate.
  • Item 8. The transfer film for three-dimensional molding according to any one of Items 1B to 7B, wherein the transfer layer has at least one selected from the group consisting of a decorative layer, an adhesive layer, and a transparent resin layer.
  • Item 9B. A step of laminating a molding resin layer on the transfer layer side of the transfer film for three-dimensional molding according to any one of Items 1B to 8B; Peeling the support from the transfer layer; A method for producing a resin molded product.
  • a transfer film for three-dimensional molding that has excellent moldability, is excellent in scratch resistance, and can suitably impart a high gloss design to a resin molded product.
  • a transfer film for three-dimensional molding that has excellent moldability, is excellent in scratch resistance, and can suitably impart a high gloss design to a resin molded product.
  • molding transfer film can also be provided.
  • the three-dimensional molding has excellent moldability and can impart excellent durability and chemical resistance to the molded resin product after molding.
  • a transfer film can be provided.
  • molding transfer film can also be provided.
  • the three-dimensional molding transfer film according to the first aspect of the present invention is a three-dimensional molding transfer film having at least a protective layer on a transfer substrate, wherein the protective layer is polycarbonate ( It is formed of a cured product of an ionizing radiation curable resin composition containing (meth) acrylate, and the protective layer has a Martens hardness of 6 N / mm 2 or more and 40 N / mm 2 or less.
  • the transfer film for three-dimensional molding of the first embodiment by having such a configuration, it has excellent moldability, is excellent in scratch resistance, and has a high gloss design suitable for resin molded products. Can be granted.
  • the three-dimensional forming transfer film of the first aspect will be described in detail.
  • the transfer film for 3D molding according to the second embodiment of the present invention is a transfer film for 3D molding having a transfer layer on a release layer of a support having at least a transfer substrate and a release layer.
  • the release layer has a Martens hardness of 7 N / mm 2 or more and 45 N / mm 2 or less.
  • the transfer film for three-dimensional molding of the second embodiment by having such a configuration, the transfer film has excellent moldability, and further has excellent durability and resistance to a molded resin product after molding. Chemical properties can be imparted.
  • the three-dimensional forming transfer film of the second embodiment will be described in detail.
  • the numerical range indicated by “to” means “above” or “below”.
  • the notation of 2 to 15 mm means 2 mm or more and 15 mm or less.
  • the transfer film for three-dimensional molding of the present invention may not have a decorative layer or the like, and may be, for example, transparent.
  • (meth) acrylate means “acrylate or methacrylate”, and other similar things have the same meaning.
  • the first embodiment and the second embodiment are described when the present invention is described without particularly indicating that the description is about the first embodiment or the second embodiment. It means that it is a common explanation.
  • the three-dimensional molding transfer film of the first embodiment has at least a protective layer 3 on a transfer substrate 1.
  • a primer layer 4 may be provided on the opposite side of the protective layer 3 from the transfer substrate 1 as necessary for the purpose of improving the adhesion between the protective layer 3 and the adjacent layer.
  • a release layer 2 is provided on the surface of the transfer substrate 1 on the protective layer 3 side, if necessary, for the purpose of improving the peelability between the transfer substrate 1 and the protective layer 3. Also good.
  • the transfer substrate 1 and the release layer 2 provided as necessary constitute a support 10, and the support 10 is three-dimensional. After the molding transfer film is laminated on the molding resin layer 8, it is peeled off.
  • the transfer film for three-dimensional molding of the first embodiment may be provided with a decoration layer 5 as necessary for the purpose of imparting decorativeness to the three-dimensional transfer film. Moreover, you may have the contact bonding layer 6 as needed for the purpose of improving the adhesiveness of the molding resin layer 8, etc. Moreover, you may provide the transparent resin layer 7 as needed for the purpose of improving the adhesiveness of the protective layer 3, the primer layer 4, and the contact bonding layer 6, etc.
  • the protective layer 3, the primer layer 4, the decorative layer 5, the adhesive layer 6, the transparent resin layer 7 and the like further provided as necessary constitute the transfer layer 9.
  • the transfer layer 9 is transferred to the molded resin layer 8 to form the resin molded product of the first embodiment.
  • the transfer film for three-dimensional molding of the second embodiment has a transfer layer 9 on the release layer 2 of the support 10 having the transfer substrate 1 and the release layer 2.
  • the transfer substrate 1 and the release layer 2 constitute a support body 10, and the support body 10 forms a transfer film for three-dimensional molding. After being laminated on the resin layer 8, it is peeled off.
  • the transfer layer 9 preferably has the protective layer 3.
  • the protective layer 3 is preferably in contact with the release layer 2.
  • the primer layer 4 may be provided.
  • the transfer layer 9 may be provided with a decoration layer 5 as needed for the purpose of imparting decoration to the transfer film for three-dimensional molding.
  • the protective layer 3, the primer layer 4, the decorative layer 5, the adhesive layer 6, the transparent resin layer 7 and the like constitute the transfer layer 9, and the transfer layer 9
  • the molded resin layer 8 is transferred to the resin molded product of the second embodiment.
  • FIG. 1 shows a three-dimensional molding in which a transfer substrate / release layer / protective layer / primer layer / decoration layer / adhesive layer are laminated in this order as an embodiment of the laminated structure of the three-dimensional molding transfer film of the present invention.
  • the schematic diagram of the cross-sectional structure of one form of the transfer film for water is shown.
  • FIG. 2 as one aspect of the laminated structure of the transfer film for three-dimensional molding of the present invention, a transfer substrate / release layer / protective layer / primer layer / transparent resin layer / adhesive layer were laminated in this order.
  • molding is shown.
  • the three-dimensional molding transfer film of the first embodiment has a transfer substrate 1 and, if necessary, a release layer 2 as a support 10.
  • the protective layer 3 formed on the transfer substrate 1, the primer layer 4, the decoration layer 5, the adhesive layer 6, the transparent resin layer 7 and the like further formed as necessary constitute the transfer layer 9. .
  • the interface between the support 10 and the transfer layer 9 is peeled off, and the support 10 is peeled off to obtain a resin molded product. It is done.
  • the transfer film for three-dimensional molding of the second embodiment has a transfer substrate 1 and a release layer 2 as the support 10.
  • a protective layer 3, a primer layer 4, a decoration layer 5, an adhesive layer 6, a transparent resin layer 7 and the like formed on the support 10 constitute a transfer layer 9.
  • the interface between the release layer 2 and the transfer layer 9 of the support 10 is peeled off, and the support 10 is peeled and removed. A resin molded product is obtained.
  • the transfer substrate 1 serves as a support member for the transfer film for three-dimensional molding.
  • the transfer substrate 1 used in the present invention is selected in consideration of suitability for vacuum forming, and a resin sheet made of a thermoplastic resin is typically used.
  • the thermoplastic resin include polyester resin; acrylic resin; polyolefin resin such as polypropylene and polyethylene; polycarbonate resin; acrylonitrile-butadiene-styrene resin (ABS resin); vinyl chloride resin and the like.
  • polyester sheet As the transfer substrate 1 in terms of heat resistance, dimensional stability, moldability, and versatility.
  • the polyester resin constituting the polyester sheet refers to a polymer containing an ester group obtained by polycondensation from a polyvalent carboxylic acid and a polyhydric alcohol.
  • Polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN) and the like can be mentioned preferably, and polyethylene terephthalate (PET) is particularly preferable in terms of heat resistance and dimensional stability.
  • the transfer substrate 1 is provided with a concavo-convex shape on at least one surface as necessary for the purpose of imparting a concavo-convex shape to the surface of the protective layer 3 to be described later or improving blocking resistance. You may have. Further, by laminating the protective layer 3 on the surface of the transfer substrate 1 having the concavo-convex shape via the release layer 2, the concavo-convex shape corresponding to the concavo-convex shape of the transfer substrate 1 is formed on the surface of the protective layer 3. In the range which does not contradict the purpose of the present invention, a matte design can be imparted to the surface of the protective layer 3.
  • the irregular shape is formed only on the surface opposite to the protective layer 3 of the transfer substrate 1 or the transfer layer 1 is transferred. What is necessary is just to reduce the uneven
  • the method for forming the uneven shape on the surface of the transfer substrate 1 is as follows. Examples of the method of causing the transfer substrate 1 to contain fine particles so that the shape of the fine particles is exposed on the surface of the transfer substrate 1 are exemplified. Among these, a method in which the transfer substrate 1 contains fine particles is preferably used.
  • synthetic resin particles and inorganic particles are representatively exemplified, but it is particularly preferable to use synthetic resin particles from the viewpoint of improving the three-dimensional moldability.
  • the synthetic resin particle is not particularly limited as long as it is a particle formed of a synthetic resin.
  • acrylic beads, urethane beads, silicone beads, nylon beads, styrene beads, melamine beads, urethane acrylic beads, polyester beads, polyethylene Examples include beads.
  • acrylic beads, urethane beads, and silicone beads are preferably used from the viewpoint of forming an uneven shape excellent in scratch resistance on the protective layer 3.
  • inorganic particles examples include calcium carbonate, magnesium carbonate, calcium sulfate, barium sulfate, lithium phosphate, magnesium phosphate, calcium phosphate, aluminum oxide, silicon oxide, and kaolin. These fine particles may be used alone or in combination of two or more.
  • the particle diameter of the fine particles is preferably about 0.3 to 25 ⁇ m, more preferably about 0.5 to 5 ⁇ m.
  • the particle size of the fine particles in the present invention is dispersed in the air by using the Shimadzu laser diffraction particle size distribution analyzer SALD-2100-WJA1, using the compressed air to inject the powder to be measured from the nozzle. It is based on a spray-type dry measurement system that measures the above.
  • the content of the fine particles contained in the transfer substrate 1 may be appropriately set according to the purpose.
  • the content is preferably 1 to 100 parts by mass with respect to 100 parts by mass of the resin contained in the transfer substrate 1.
  • various stabilizers, lubricants, antioxidants, antistatic agents, antifoaming agents, fluorescent whitening agents, and the like can be blended in the transfer substrate 1 as necessary.
  • the polyester sheet suitably used as the transfer substrate 1 in the present invention is produced, for example, as follows. First, the above polyester-based resin and other raw materials are supplied to a known melt extrusion apparatus such as an extruder, and heated to a temperature equal to or higher than the melting point of the polyester-based resin to be melted. Next, while extruding the molten polymer, it is rapidly cooled and solidified on the rotary cooling drum to a temperature not higher than the glass transition temperature to obtain a substantially amorphous unoriented sheet. This sheet is obtained by stretching in a biaxial direction to form a sheet and heat-setting. In this case, the stretching method may be sequential biaxial stretching or simultaneous biaxial stretching.
  • the draw ratio is preferably 7 times or less, more preferably 5 times or less, and further preferably 3 times or less, as an area ratio.
  • a polyester sheet may be manufactured as described above, or a commercially available one may be used.
  • the transfer substrate 1 can be subjected to physical or chemical surface treatment such as an oxidation method or a concavo-convex method on one side or both sides as desired for the purpose of improving the adhesion to the release layer 2.
  • the oxidation method include corona discharge treatment, chromium oxidation treatment, flame treatment, hot air treatment, ozone / ultraviolet treatment method, and examples of the unevenness method include a sand blast method and a solvent treatment method.
  • These surface treatments are appropriately selected according to the type of the transfer substrate 1, but in general, the corona discharge treatment method is preferably used from the viewpoints of effects and operability.
  • the transfer substrate 1 may be subjected to a treatment such as forming an easy-adhesion layer for the purpose of enhancing interlayer adhesion between the transfer substrate 1 and a layer provided thereon.
  • a treatment such as forming an easy-adhesion layer for the purpose of enhancing interlayer adhesion between the transfer substrate 1 and a layer provided thereon.
  • the commercially available product that has been subjected to surface treatment as described above or that has an easy-adhesive layer can be used.
  • the thickness of the transfer substrate 1 is usually 10 to 150 ⁇ m, preferably 10 to 125 ⁇ m, more preferably 10 to 80 ⁇ m.
  • a single layer sheet of these resins or a multilayer sheet made of the same or different resins can be used as the base material 1 for transfer.
  • release layer 2 is laminated with the transfer layer 9 of the transfer substrate 1 as necessary for the purpose of improving the peelability between the support 10 and the transfer layer 9. On the side surface. Furthermore, in the first embodiment, the release layer 2 also exhibits the function of improving the moldability of the three-dimensional molding transfer film and improving the durability and chemical resistance of the molded resin product after molding. obtain.
  • the release layer 2 is a surface on the side on which the transfer layer 9 of the transfer substrate 1 is laminated for the purpose of improving the peelability between the support 10 and the transfer layer 9.
  • the release layer 2 exhibits the functions of improving the moldability of the three-dimensional molding transfer film and improving the durability and chemical resistance of the molded resin product after molding. .
  • the release layer 2 may be a solid release layer covering the entire surface (entirely solid), or may be provided in a part.
  • a solid release layer is preferable in consideration of peelability, moldability, durability of the molded resin product after molding, chemical resistance, and the like.
  • the Martens hardness of the release layer 2 is preferably in the range of 7 to 45 N / mm 2 .
  • the Martens hardness of the release layer 2 is in such a specific range, the moldability of the transfer film for three-dimensional molding is improved, and the durability and chemical resistance are excellent with respect to the resin molded product after molding. Can be given.
  • This mechanism can be considered as follows. That is, when the three-dimensional molding transfer film is laminated with the molding resin layer, high heat pressure is applied to both the support and the transfer layer of the three-dimensional molding transfer film. Is extended.
  • the transfer film for three-dimensional molding is not only excellent in moldability, but also the surface properties (durability and chemical resistance) of the resin molded product after the release layer is prevented from being deteriorated and the release layer is peeled off. ) Is considered to have improved.
  • the Martens hardness of the release layer 2 preferably 7 ⁇ 30 N / mm 2, more preferably about 7 ⁇ 27N / mm 2, and more preferably about 10 ⁇ 25 N / mm 2 approximately, particularly preferably 12 ⁇ 20 N / mm 2 or so.
  • the Martens hardness of the release layer 2 is in the range of 7 to 45 N / mm 2 .
  • the moldability of the transfer film for three-dimensional molding is improved, and the durability and chemical resistance are excellent with respect to the resin molded product after molding.
  • This mechanism can be considered as follows. That is, when the three-dimensional molding transfer film is laminated with the molding resin layer, high heat pressure is applied to both the support and the transfer layer of the three-dimensional molding transfer film. Is extended. At this time, when the hardness of the release layer is within the above specific range, it is effectively suppressed that the release layer is inappropriately deformed during molding, and accordingly, the transfer layer is inappropriately formed.
  • the transfer film for three-dimensional molding is not only excellent in moldability, but also the surface properties (durability and chemical resistance) of the resin molded product after the release layer is prevented from being deteriorated and the release layer is peeled off. ) Is considered to have improved.
  • the Martens hardness of the release layer 2 preferably 7 ⁇ 30 N / mm 2, more preferably about 10 ⁇ 25 N / mm 2, and more preferably about include about 12 ⁇ 20N / mm 2.
  • the method for measuring the Martens hardness of the release layer is as follows.
  • the Martens hardness is a value measured using a surface film physical property tester (PICODERTOR HM-500, manufactured by Fisher Instruments Co., Ltd.), and a specific measurement method is as follows.
  • a diamond indenter (Vickers indenter) having a facing angle of 136 ° as shown in FIG. 5A is used in an environment of a temperature of 25 ° C. and a relative humidity of 50%.
  • a diamond indenter is pushed into the release layer, and the hardness is obtained from the indentation load F and the indentation depth h (indentation depth) by the following equation (1).
  • the indentation conditions were as follows.
  • a load of 0 to 0.1 mN was applied for 20 seconds to the release layer at room temperature (laboratory environmental temperature) as shown in FIG. 5B, and then 0.1 mN. Is held for 5 seconds, and finally unloading from 0.1 to 0 mN is performed in 20 seconds.
  • the transfer layer is peeled off at the interface with the release layer using a cellophane tape, and a support having the transfer substrate and the release layer is obtained. Measurement is performed on the surface on the mold layer side.
  • the material constituting the release layer 2 is not particularly limited, but effectively improves the moldability of the three-dimensional molding transfer film, and the molded resin product after molding.
  • the release layer 2 is preferably composed of a cured product of an ionizing radiation curable resin composition.
  • the material constituting the release layer 2 is not particularly limited as long as the Martens hardness is in the above range, but it effectively improves the moldability of the transfer film for three-dimensional molding.
  • the release layer 2 is composed of a cured product of an ionizing radiation curable resin composition. Is preferred.
  • the ionizing radiation curable resin used for forming the release layer 2 is a resin that crosslinks and cures when irradiated with ionizing radiation. Specifically, a polymerizable unsaturated bond or an epoxy group in the molecule. And a mixture of at least one of prepolymers, oligomers, monomers, and the like, as appropriate.
  • ionizing radiation means an electromagnetic wave or charged particle beam having an energy quantum capable of polymerizing or cross-linking molecules, and usually ultraviolet (UV) or electron beam (EB) is used. It also includes electromagnetic waves such as rays and ⁇ rays, and charged particle rays such as ⁇ rays and ion rays.
  • the electron beam curable resin can be made solvent-free, does not require an initiator for photopolymerization, and provides stable curing characteristics. Used for.
  • a (meth) acrylate monomer having a radically polymerizable unsaturated group in the molecule is preferable, and a polyfunctional (meth) acrylate monomer is particularly preferable.
  • the polyfunctional (meth) acrylate monomer may be a (meth) acrylate monomer having two or more polymerizable unsaturated bonds (bifunctional or more), preferably three or more (trifunctional or more) in the molecule.
  • polyfunctional (meth) acrylate examples include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di ( (Meth) acrylate, neopentyl glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, caprolactone modified dicyclopentenyl di ( (Meth) acrylate, ethylene oxide-modified phosphoric acid di (meth) acrylate, allylated cyclohexyl di (meth) acrylate, isocyanurate di (meth) acrylate, trimethylolpropane tri (meth) acrylate , Ethylene oxide modified trimethylolpropane tri (me
  • the oligomer used as the ionizing radiation curable resin is preferably a (meth) acrylate oligomer having a radical polymerizable unsaturated group in the molecule, and more than two polymerizable unsaturated bonds in the molecule.
  • a polyfunctional (meth) acrylate oligomer having (bifunctional or higher) is preferred.
  • Examples of the polyfunctional (meth) acrylate oligomer include polycarbonate (meth) acrylate, acrylic silicone (meth) acrylate, urethane (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, and polyether (meth) acrylate.
  • polycarbonate (meth) acrylate is not particularly limited as long as it has a carbonate bond in the polymer main chain and a (meth) acrylate group in the terminal or side chain. It can be obtained by esterification with acrylic acid.
  • the polycarbonate (meth) acrylate may be, for example, urethane (meth) acrylate having a polycarbonate skeleton.
  • the urethane (meth) acrylate having a polycarbonate skeleton can be obtained, for example, by reacting a polycarbonate polyol, a polyvalent isocyanate compound, and hydroxy (meth) acrylate.
  • the acrylic silicone (meth) acrylate can be obtained by radical copolymerizing a silicone macromonomer with a (meth) acrylate monomer.
  • the urethane (meth) acrylate can be obtained, for example, by esterifying a polyurethane oligomer obtained by a reaction of a polyether polyol, a polyester polyol or a caprolactone polyol and a polyisocyanate compound with (meth) acrylic acid.
  • Epoxy (meth) acrylate can be obtained, for example, by reacting (meth) acrylic acid with an oxirane ring of a relatively low molecular weight bisphenol type epoxy resin or novolak type epoxy resin and esterifying it. Also, a carboxyl-modified epoxy (meth) acrylate obtained by partially modifying this epoxy (meth) acrylate with a dibasic carboxylic acid anhydride can be used.
  • Polyester (meth) acrylate is obtained by esterifying the hydroxyl group of a polyester oligomer having hydroxyl groups at both ends obtained by condensation of a polyvalent carboxylic acid and a polyhydric alcohol with (meth) acrylic acid, for example, or It can be obtained by esterifying the terminal hydroxyl group of an oligomer obtained by adding an alkylene oxide with (meth) acrylic acid.
  • the polyether (meth) acrylate can be obtained by esterifying the hydroxyl group of the polyether polyol with (meth) acrylic acid.
  • Polybutadiene (meth) acrylate can be obtained by adding (meth) acrylic acid to the side chain of the polybutadiene oligomer.
  • Silicone (meth) acrylate can be obtained by adding (meth) acrylic acid to the terminal or side chain of silicone having a polysiloxane bond in the main chain.
  • the polyfunctional (meth) acrylate oligomer polycarbonate (meth) acrylate, urethane (meth) acrylate, and the like are particularly preferable. These oligomers may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the ionizing radiation curable resin composition forming the release layer 2 preferably contains polycarbonate (meth) acrylate.
  • the moldability of the three-dimensional molding transfer film is effectively improved, and the resin molded product after molding is more excellent.
  • polycarbonate (meth) acrylate it is preferable to use polycarbonate (meth) acrylate, and it is particularly preferable to use polycarbonate (meth) acrylate and polyfunctional (meth) acrylate in combination.
  • the polycarbonate (meth) acrylate is preferably used together with the polyfunctional (meth) acrylate in the ionizing radiation curable resin composition of the release layer 2 as well as the protective layer 3 described later.
  • the mass ratio of the polycarbonate (meth) acrylate and the polyfunctional (meth) acrylate is smaller than 98: 2 (that is, the amount of the polycarbonate (meth) acrylate is 98% by mass or less based on the total amount of the two components).
  • the mass ratio of the polycarbonate (meth) acrylate and the polyfunctional (meth) acrylate is larger than 50:50 (that is, the amount of the polycarbonate (meth) acrylate is 50% by mass or more based on the total amount of the two components).
  • the mass ratio of polycarbonate (meth) acrylate to polyfunctional (meth) acrylate is 95: 5 to 60:40.
  • the details of the polyfunctional (meth) acrylate are as described in [Protective layer 3], and any bifunctional or higher (meth) acrylate may be used, and the number of functional groups is preferably 2 to 6. Degree.
  • the polyfunctional (meth) acrylate may be either an oligomer or a monomer, but a polyfunctional (meth) acrylate oligomer is preferable from the viewpoint of improving three-dimensional moldability.
  • the polyfunctional (meth) acrylate oligomer and the polyfunctional (meth) acrylate monomer are as described above.
  • the content of the polycarbonate (meth) acrylate in the ionizing radiation curable resin composition forming the release layer 2 is not particularly limited, but the above-described moldability, durability, and chemical resistance are not limited. From the viewpoint of further improving the properties, it is preferably about 98 to 50% by mass, more preferably about 90 to 65% by mass.
  • the release layer 2 when the release layer 2 is formed using an ionizing radiation curable resin, the release layer 2 is formed by, for example, preparing an ionizing radiation curable resin composition, applying it, and crosslinking and curing it. Is done.
  • the viscosity of an ionizing radiation curable resin composition should just be a viscosity which can form a non-hardened resin layer with the below-mentioned coating system.
  • the prepared coating solution is applied by a known method such as gravure coating, bar coating, roll coating, reverse roll coating, comma coating, etc., preferably gravure coating, so as to have a desired thickness.
  • gravure coating bar coating, roll coating, reverse roll coating, comma coating, etc., preferably gravure coating, so as to have a desired thickness.
  • a cured resin layer is formed.
  • the release layer 2 is formed by irradiating the thus formed uncured resin layer with ionizing radiation such as an electron beam and ultraviolet rays to cure the uncured resin layer.
  • ionizing radiation such as an electron beam and ultraviolet rays
  • the acceleration voltage can be appropriately selected according to the resin to be used and the thickness of the layer, but usually an acceleration voltage of about 70 to 300 kV can be mentioned.
  • the transmission capability increases as the acceleration voltage increases. Therefore, when a resin that is easily deteriorated by the electron beam irradiation is used under the release layer 2, the electron beam transmission depth and the mold release are used.
  • the acceleration voltage is selected so that the thicknesses of the layers 2 are substantially equal.
  • the release layer 2 is cured with an electron beam together with the protective layer 3 described later, the accelerating voltage is set so that the transmission depth of the electron beam and the total thickness of the release layer 2 and the protective layer 3 are substantially equal. Is selected. Thereby, irradiation of the extra electron beam to the layer located under the release layer 2 can be suppressed, and deterioration of each layer due to the excess electron beam can be minimized.
  • the irradiation dose is an amount that makes the crosslinking density of the release layer 2 a sufficient value, and an amount that makes the Martens hardness within the above range, preferably 60 to 300 kGy (6 to 30 Mrad). 70 to 200 kGy (7 to 20 Mrad) is preferable.
  • the Martens hardness of the release layer 2 can be set to the above range, and the transfer substrate 1 is deteriorated by ionizing radiation transmitted through the release layer 2. Can be suppressed.
  • the said example is a case where the number of functional groups of polyfunctional (meth) acrylate is set to 2, and an appropriate irradiation dose is required according to the number of functional groups.
  • the electron beam source is not particularly limited.
  • various electron beam accelerators such as a Cockloft Walton type, a bandegraft type, a resonant transformer type, an insulated core transformer type, a linear type, a dynamitron type, and a high frequency type can be used. Can be used.
  • ultraviolet rays In the case where ultraviolet rays are used as ionizing radiation, light rays including ultraviolet rays having a wavelength of 190 to 380 nm may be emitted.
  • the ultraviolet light source is not particularly limited, and examples thereof include a high pressure mercury lamp, a low pressure mercury lamp, a metal halide lamp, a carbon arc lamp, and an ultraviolet light emitting diode (LED-UV).
  • the thickness of the release layer 2 the moldability of the transfer film for three-dimensional molding is effectively improved, and the durability and chemical resistance are further improved with respect to the molded resin product after molding.
  • the lower limit is preferably 0. 0 in consideration of manufacturability and flatness. About 2 ⁇ m may be mentioned.
  • the protective layer 3, the primer layer 4, the decorative layer 5, the adhesive layer 6, the transparent resin layer 7 and the like formed on the support 10 constitute the transfer layer 9. ing.
  • the interface between the support 10 and the transfer layer 9 is peeled off, and the transfer layer 9 of the three-dimensional molding transfer film becomes the molding resin layer 8.
  • a transferred resin molded product is obtained.
  • the protective layer 3 is provided on the three-dimensional molding transfer film so as to be positioned on the outermost surface of the resin molded product for the purpose of enhancing the scratch resistance and gloss of the resin molded product. Is a layer.
  • the protective layer 3 is preferably in contact with the release layer 2.
  • the protective layer 3 is positioned on the outermost surface of the resin molded product for the purpose of enhancing the durability, chemical resistance, etc. of the resin molded product, It is a layer provided on a three-dimensional molding transfer film.
  • the protective layer 3 is preferably in contact with the release layer 2.
  • the first embodiment is characterized in that the Martens hardness of the protective layer 3 is in the range of 6 to 40 N / mm 2 .
  • the Martens hardness of the protective layer 3 is in such a specific range, the moldability of the transfer film for three-dimensional molding is improved, and excellent scratch resistance and high gloss are imparted to the molded resin product after molding. It becomes possible to do.
  • the refractive index increases as the resin density increases.
  • the formula R ref [(n 1 ⁇ n 2 ) / (n 1 + n 2 )] 2 (the light beam has a refractive index n From the surface reflectivity R ref ) in the case of normal incidence from the material 1 to the material having the refractive index n 2 , it can be seen that the reflectivity increases as the refractive index of the resin increases.
  • the moldability of the transfer film for three-dimensional molding is effectively improved, and further excellent scratch resistance and high gloss are imparted to the molded resin product after molding.
  • the Martens hardness of the protective layer 3 preferably 7 ⁇ 35N / mm 2, more preferably about 8 ⁇ 27N / mm 2, and more preferably about 10 to An example is about 25 N / mm 2 .
  • the method for measuring the Martens hardness of the protective layer is as follows.
  • a three-dimensional molding transfer film to be measured for peel strength, a mold for molding the same, and a resin (resin for forming a molding resin layer) to be laminated on the three-dimensional molding transfer film are prepared.
  • the shape of the mold has a flat portion where the area elongation percentage of the surface of the three-dimensional molding transfer film is substantially 0% when the three-dimensional molding transfer film is molded in the mold. .
  • the mold temperature is set to 60 ° C.
  • a resin for forming a molding resin layer
  • a resin mixture of ABS resin and polycarbonate resin for example, CYCOLOY TM Resin XCY620
  • CYCOLOY TM Resin XCY620 CYCOLOY TM Resin XCY620
  • a three-dimensional molding transfer film is placed in a mold, preformed so as to conform to the shape in the mold by vacuum molding, and then subjected to injection molding. After the injection molding, the Martens hardness is measured on the outermost protective layer of the resin molded product obtained by removing from the mold and peeling off the support.
  • the Martens hardness is a value measured using a surface film physical property tester (PICODERTOR HM-500, manufactured by Fisher Instruments Co., Ltd.), and a specific measurement method is as follows.
  • a diamond indenter (Vickers indenter) having a facing angle of 136 ° as shown in FIG. 5A is used in an environment of a temperature of 25 ° C. and a relative humidity of 50%.
  • a diamond indenter is pushed into the protective layer, and the hardness is obtained from the indentation load F and the indentation depth h (indentation depth) by the following equation (1). As shown in FIG.
  • the indentation condition was that a load of 0 to 0.1 mN was first applied to the protective layer at room temperature (laboratory environmental temperature) for 20 seconds, and then 0.1 mN. Hold the load for 5 seconds, and finally unload from 0.1 to 0 mN in 20 seconds.
  • the protective layer 3 is formed of a cured product of an ionizing radiation curable resin composition containing polycarbonate (meth) acrylate.
  • the protective layer 3 is preferably formed of a cured product of an ionizing radiation curable resin composition containing polycarbonate (meth) acrylate and an acrylic resin.
  • the material constituting the protective layer 3 is not particularly limited, and the protective layer 3 is made of a resin such as a thermoplastic resin, a thermosetting resin, or an ionizing radiation curable resin. Preferably it is. From the viewpoint of effectively improving the moldability of the transfer film for three-dimensional molding and imparting further excellent durability and chemical resistance to the molded resin product after molding, the protective layer 3 is made of ionizing radiation. It is preferable that it is comprised with the hardened
  • the ionizing radiation curable resin used for forming the protective layer 3 is a resin that crosslinks and cures when irradiated with ionizing radiation. Specifically, a polymerizable unsaturated bond or an epoxy group is present in the molecule.
  • the prepolymer, the oligomer, the monomer, and the like that are appropriately mixed are included.
  • the ionizing radiation is as described in the release layer 2 described above.
  • the polycarbonate (meth) acrylate used in the present invention is not particularly limited as long as it has a carbonate bond in the polymer main chain and a (meth) acrylate group in the terminal or side chain. It can be obtained by esterification with (meth) acrylic acid.
  • This (meth) acrylate preferably has two or more functional groups from the viewpoint of crosslinking and curing.
  • the polycarbonate (meth) acrylate may be, for example, urethane (meth) acrylate having a polycarbonate skeleton.
  • the urethane (meth) acrylate having a polycarbonate skeleton can be obtained, for example, by reacting a polycarbonate polyol, a polyvalent isocyanate compound, and hydroxy (meth) acrylate.
  • the above polycarbonate (meth) acrylate is obtained, for example, by converting part or all of the hydroxyl groups of polycarbonate polyol into (meth) acrylate (acrylic acid ester or methacrylic acid ester).
  • This esterification reaction can be performed by a normal esterification reaction.
  • the above polycarbonate polyol is a polymer having a carbonate bond in the polymer main chain and having 2 or more, preferably 2 to 50, more preferably 3 to 50 hydroxyl groups in the terminal or side chain.
  • a typical method for producing this polycarbonate polyol is a method by a polycondensation reaction from a diol compound (A), a trihydric or higher polyhydric alcohol (B), and a compound (C) to be a carbonyl component.
  • the diol compound (A) used as a raw material is represented by the general formula HO—R 1 —OH.
  • R 1 is a divalent hydrocarbon group having 2 to 20 carbon atoms, and the group may contain an ether bond.
  • diol compound (A) examples include ethylene glycol, 1,2-propylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, polyethylene glycol, neopentyl glycol, 1,3-propanediol, 1,4-butane.
  • Diol 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,3-bis (2-hydroxyethoxy) benzene, 1,4- Examples thereof include bis (2-hydroxyethoxy) benzene, neopentyl glycol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol and the like. These diols may be used alone or in admixture of two or more.
  • examples of the trihydric or higher polyhydric alcohol (B) include alcohols such as trimethylolpurpan, trimethylolethane, pentaerythritol, ditrimethylolpropane, dipentaerythritol, glycerin, sorbitol. Further, alcohols having a hydroxyl group obtained by adding 1 to 5 equivalents of ethylene oxide, propylene oxide, or other alkylene oxide to the hydroxyl group of these polyhydric alcohols may be used. These polyhydric alcohols may be used alone or in combination of two or more.
  • the compound (C) serving as the carbonyl component is any compound selected from carbonic acid diester, phosgene, and equivalents thereof. Specific examples thereof include carbonic acid diesters such as dimethyl carbonate, diethyl carbonate, diisopropyl carbonate, diphenyl carbonate, ethylene carbonate and propylene carbonate, phosgene, and halogenated formates such as methyl chloroformate, ethyl chloroformate and phenyl chloroformate. Etc. These may be used alone or in admixture of two or more.
  • the polycarbonate polyol is synthesized by subjecting the above-described diol compound (A), a trihydric or higher polyhydric alcohol (B), and a compound (C) to be a carbonyl component to a polycondensation reaction under general conditions.
  • the charged molar ratio of the diol compound (A) to the polyhydric alcohol (B) is preferably in the range of 50:50 to 99: 1, and the diol compound (C) as the carbonyl component
  • the charged molar ratio of A) to the polyhydric alcohol (B) is preferably 0.2 to 2 equivalents relative to the hydroxyl groups of the diol compound and polyhydric alcohol.
  • the number of equivalents (eq./mol) of hydroxyl groups present in the polycarbonate polyol after the polycondensation reaction at the above charge ratio is 3 or more on average in one molecule, preferably 3 to 50, more preferably 3 to 20. Within this range, a necessary amount of (meth) acrylate groups are formed by the esterification reaction described later, and moderate flexibility is imparted to the polycarbonate (meth) acrylate resin.
  • the terminal functional group of this polycarbonate polyol is usually an OH group, but a part thereof may be a carbonate group.
  • the method for producing the polycarbonate polyol described above is described in, for example, JP-A No. 64-1726.
  • the polycarbonate polyol can also be produced by an ester exchange reaction between a polycarbonate diol and a trihydric or higher polyhydric alcohol as described in JP-A-3-181517.
  • the molecular weight of the polycarbonate (meth) acrylate used in the present invention is preferably 500 or more, more preferably 1,000 or more, as measured by GPC analysis and converted to standard polystyrene. And more preferably 2,000 or more.
  • the upper limit of the weight average molecular weight of the polycarbonate (meth) acrylate is not particularly limited, but is preferably 100,000 or less and more preferably 50,000 or less from the viewpoint of controlling the viscosity not to be too high. From the standpoint of achieving both scratch resistance and three-dimensional formability, it is more preferably 2,000 or more and 50,000 or less, and particularly preferably 5,000 to 20,000.
  • the polycarbonate (meth) acrylate is preferably used together with the polyfunctional (meth) acrylate.
  • the mass ratio of the polycarbonate (meth) acrylate and the polyfunctional (meth) acrylate is smaller than 98: 2 (that is, the amount of the polycarbonate (meth) acrylate is 98% by mass or less based on the total amount of the two components). Further, the aforementioned scratch resistance and gloss are further improved.
  • the mass ratio of the polycarbonate (meth) acrylate and the polyfunctional (meth) acrylate is larger than 50:50 (that is, the amount of the polycarbonate (meth) acrylate is 50% by mass or more based on the total amount of the two components). ), Three-dimensional formability is further improved.
  • the mass ratio of polycarbonate (meth) acrylate to polyfunctional (meth) acrylate is 95: 5 to 60:40.
  • the polyfunctional (meth) acrylate used in the present invention is not particularly limited as long as it is a bifunctional or higher (meth) acrylate.
  • bifunctional means having two ethylenically unsaturated bonds ⁇ (meth) acryloyl group ⁇ in the molecule.
  • the number of functional groups is preferably about 2 to 6.
  • the polyfunctional (meth) acrylate may be either an oligomer or a monomer, but a polyfunctional (meth) acrylate oligomer is preferable from the viewpoint of improving three-dimensional moldability.
  • polyfunctional (meth) acrylate oligomer examples include urethane (meth) acrylate oligomers, epoxy (meth) acrylate oligomers, polyester (meth) acrylate oligomers, and polyether (meth) acrylate oligomers.
  • the urethane (meth) acrylate oligomer can be obtained, for example, by esterifying a polyurethane oligomer obtained by the reaction of polyether polyol or polyester polyol and polyisocyanate with (meth) acrylic acid.
  • the epoxy (meth) acrylate oligomer can be obtained, for example, by reacting (meth) acrylic acid with an oxirane ring of a relatively low molecular weight bisphenol type epoxy resin or novolak type epoxy resin and esterifying it. Further, a carboxyl-modified epoxy (meth) acrylate oligomer obtained by partially modifying this epoxy (meth) acrylate oligomer with a dibasic carboxylic acid anhydride can also be used.
  • polyester (meth) acrylate oligomers examples include esterification of hydroxyl groups of polyester oligomers having hydroxyl groups at both ends obtained by condensation of polycarboxylic acid and polyhydric alcohol with (meth) acrylic acid, It can be obtained by esterifying the terminal hydroxyl group of an oligomer obtained by adding an alkylene oxide to a carboxylic acid with (meth) acrylic acid.
  • the polyether (meth) acrylate oligomer can be obtained by esterifying the hydroxyl group of the polyether polyol with (meth) acrylic acid.
  • polyfunctional (meth) acrylate oligomers include polybutadiene (meth) acrylate oligomers with high hydrophobicity having (meth) acrylate groups in the side chain of polybutadiene oligomers, and silicones (meta-methacrylate) having polysiloxane bonds in the main chain.
  • polyfunctional (meth) acrylate monomer examples include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6- Hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, hydroxypivalic acid neopentyl glycol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, caprolactone modified di Cyclopentenyl di (meth) acrylate, ethylene oxide-modified phosphoric acid di (meth) acrylate, allylated cyclohexyl di (meth) acrylate, isocyanurate di (meth) acrylate, trimethylolpropane Li (meth) acrylate, ethylene oxide modified trimethylolpropane tri (
  • a monofunctional (meth) acrylate can be used in combination with the polyfunctional (meth) acrylate, as long as the object of the present invention is not impaired, for the purpose of reducing the viscosity.
  • monofunctional (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl ( Examples include meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, and isobornyl (meth) acrylate. These monofunctional (meth) acrylates may be used alone or in combination of two or more.
  • the content of the polycarbonate (meth) acrylate in the ionizing radiation curable resin composition forming the protective layer 3 is not particularly limited, but from the viewpoint of further improving the moldability, durability, and chemical resistance described above. Is preferably about 98 to 50% by mass, more preferably about 90 to 65% by mass.
  • the protective layer 3 is more preferably formed of a cured product of an ionizing radiation curable resin composition containing polycarbonate (meth) acrylate as an ionizing radiation curable resin and an acrylic resin. Moreover, when using the ionizing radiation curable resin composition containing a polycarbonate (meth) acrylate and an acrylic resin, it is preferable to use with the said polyfunctional (meth) acrylate.
  • the acrylic resin is not particularly limited.
  • the acrylic resin is preferably a homopolymer of (meth) acrylic acid ester, a copolymer of two or more different (meth) acrylic acid ester monomers, or a copolymer of (meth) acrylic acid ester and other monomers.
  • Polymer specifically, poly (meth) methyl acrylate, poly (meth) ethyl acrylate, poly (meth) acrylate propyl, poly (meth) acrylate butyl, methyl (meth) acrylate- (Meth) butyl acrylate copolymer, (meth) ethyl acrylate- (meth) butyl acrylate copolymer, ethylene- (meth) methyl acrylate copolymer, styrene- (meth) methyl acrylate copolymer
  • a (meth) acrylic resin made of a homopolymer or a copolymer containing a (meth) acrylic acid ester such as the above is preferably used.
  • methyl poly (meth) acrylate is particularly preferable.
  • the weight average molecular weight of the acrylic resin is not particularly limited, but from the viewpoint of imparting excellent scratch resistance and high gloss to the resin molded product while effectively enhancing the moldability of the transfer film for three-dimensional molding, Preferably about 10,000 to 150,000, more preferably about 10,000 to 40,000.
  • the weight average molecular weight of the acrylic resin in this specification is a value measured by gel permeation chromatography using polystyrene as a standard substance.
  • the glass transition temperature (Tg) of the acrylic resin from the viewpoint of imparting excellent scratch resistance and high gloss to the resin molded product while effectively enhancing the moldability of the transfer film for three-dimensional molding,
  • the temperature is preferably about 40 to 160 ° C, more preferably about 80 to 120 ° C.
  • the glass transition temperature (Tg) of the acrylic resin in this specification is a value measured with a differential scanning calorimeter (DSC).
  • the content of the acrylic resin in the ionizing radiation curable resin composition forming the protective layer 3 is not particularly limited, but it is effective for the resin molded product while effectively improving the moldability of the three-dimensional molding transfer film. From the viewpoint of imparting excellent scratch resistance and high gloss, it is preferably 25 parts by mass or less, more preferably 0.5 to 25 parts per 100 parts by mass of the solid content other than the acrylic resin in the ionizing radiation curable resin composition. About 2 parts by mass, more preferably about 2 to 8 parts by mass is mentioned.
  • the ionizing radiation curable resin composition forming the protective layer 3 may further contain a curing agent as necessary. By including the curing agent, the scratch resistance and gloss of the protective layer 3 can be further enhanced.
  • an isocyanate compound is mentioned.
  • limit especially if it is a compound which has an isocyanate group as an isocyanate compound Preferably the polyfunctional isocyanate compound which has 2 or more of isocyanate groups is mentioned.
  • polyfunctional isocyanate examples include aromatic isocyanates such as 2,4-tolylene diisocyanate (TDI), xylene diisocyanate (XDI), naphthalene diisocyanate, 4,4-diphenylmethane diisocyanate, or 1,6-hexamethylene diisocyanate ( And polyisocyanates such as aliphatic (or alicyclic) isocyanates such as HMDI), isophorone diisocyanate (IPDI), methylene diisocyanate (MDI), hydrogenated tolylene diisocyanate, and hydrogenated diphenylmethane diisocyanate.
  • aromatic isocyanates such as 2,4-tolylene diisocyanate (TDI), xylene diisocyanate (XDI), naphthalene diisocyanate, 4,4-diphenylmethane diisocyanate, or 1,6-hexamethylene diisocyanate (
  • adducts or multimers of these various isocyanates for example, adducts of tolylene diisocyanate, tolylene diisocyanate trimers, etc., blocked isocyanate compounds, and the like are also included.
  • An isocyanate compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the curing agent in the ionizing radiation curable resin composition forming the protective layer 3 is not particularly limited, but is preferably ionizing radiation curable from the viewpoint of further improving the three-dimensional formability and scratch resistance.
  • the amount is about 0.1 to 20 parts by mass, more preferably about 1 to 10 parts by mass, and still more preferably about 1 to 7 parts by mass with respect to 100 parts by mass of the solid content other than the curing agent in the resin composition.
  • additives can be blended in the ionizing radiation curable resin composition forming the protective layer 3 according to desired physical properties to be provided in the protective layer 3.
  • the additive include a weather resistance improver such as an ultraviolet absorber and a light stabilizer, an abrasion resistance improver, a polymerization inhibitor, a crosslinking agent, an infrared absorber, an antistatic agent, an adhesion improver, a leveling agent, Examples include a thixotropic agent, a coupling agent, a plasticizer, an antifoaming agent, a filler, a solvent, and a colorant. These additives can be appropriately selected from those commonly used.
  • the ultraviolet absorber or light stabilizer a reactive ultraviolet absorber or light stabilizer having a polymerizable group such as a (meth) acryloyl group in the molecule can be used.
  • the thickness of the protective layer 3 after curing is not particularly limited, and examples thereof include 1 to 1000 ⁇ m, preferably 1 to 100 ⁇ m, more preferably 1 to 50 ⁇ m, and still more preferably 1 to 30 ⁇ m.
  • a protective layer such as durability and chemical resistance
  • it can be uniformly cured. It becomes possible and it becomes economically advantageous.
  • the three-dimensional formability of the transfer film for three-dimensional molding is further improved when the thickness of the protective layer 3 after curing satisfies the above range, it is highly capable of following complicated three-dimensional shapes such as automotive interior applications. Sex can be obtained.
  • the three-dimensional molding transfer film of the present invention can obtain a sufficiently high three-dimensional moldability even when the thickness of the protective layer 3 is larger than that of the conventional one. It is also useful as a transfer film for three-dimensional molding of a member that requires a high temperature, such as a vehicle exterior part.
  • the protective layer 3 is formed by preparing an ionizing radiation curable resin composition, applying it, and crosslinking and curing.
  • the viscosity of ionizing radiation-curable resin composition should just be a viscosity which can form a non-hardened resin layer on the surface of the mold release layer 2, for example with the below-mentioned coating system.
  • the prepared coating solution is formed on the surface of the transfer substrate 1 or the release layer 2 so as to have the above thickness, such as gravure coating, bar coating, roll coating, reverse roll coating, comma coating, etc. Is applied by a known method, preferably gravure coating, to form an uncured resin layer.
  • the protective layer 3 is formed by irradiating the uncured resin layer thus formed with ionizing radiation such as an electron beam and ultraviolet rays to cure the uncured resin layer.
  • ionizing radiation such as an electron beam and ultraviolet rays
  • the acceleration voltage can be appropriately selected according to the resin to be used and the thickness of the layer, but usually an acceleration voltage of about 70 to 300 kV can be mentioned.
  • the transmission capability increases as the acceleration voltage increases. Therefore, when a resin that is easily deteriorated by electron beam irradiation is used under the protective layer 3, the electron beam transmission depth and the protective layer 3 are increased.
  • the acceleration voltage is selected so that the thicknesses of the two are substantially equal. Thereby, irradiation of the extra electron beam to the layer located under the protective layer 3 can be suppressed, and deterioration of each layer due to the excess electron beam can be minimized.
  • the irradiation dose is an amount such that the crosslink density of the protective layer 3 becomes a sufficient value, and is preferably 50 to 300 kGy (5 to 30 Mrad), more preferably 50 to 200 kGy (5 to 20 Mrad).
  • the Martens hardness of the protective layer 3 can be set to the above range, and the ionizing radiation transmitted through the protective layer 3 is used. Deterioration of the transfer substrate 1 and the release layer 2 can be suppressed.
  • a hard coat function By adding various additives to the protective layer 3, a hard coat function, an antifogging coat function, an antifouling coating function, an antiglare coating function, an antireflection coating function, an ultraviolet shielding coating function, an infrared shielding coating function, etc. You may perform the process which provides this function.
  • the primer layer 4 is a layer provided as necessary for the purpose of improving the adhesion between the protective layer 3 and the layer located below (the side opposite to the support 10).
  • the primer layer 4 can be formed of a primer layer forming resin composition.
  • the resin used for the primer layer-forming resin composition is not particularly limited.
  • urethane resin acrylic resin
  • (meth) acryl-urethane copolymer resin polyester resin
  • butyral resin Etc butyral resin Etc.
  • a polyol and / or a cured product thereof, a urethane resin, an acrylic resin, and a (meth) acryl-urethane copolymer resin are preferable.
  • These resins may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the primer layer 4 is preferably formed of a resin composition containing a polyol and a urethane resin.
  • the polyol may be a compound having two or more hydroxyl groups in the molecule, and specific examples thereof include polyester polyol, polyethylene glycol, polypropylene glycol, acrylic polyol, polyether polyol and the like, preferably acrylic polyol is used. Can be mentioned.
  • the mass ratio (polyol: urethane resin) is preferably about 5: 5 to 9.5: 0.5, more preferably 7: 3. About 9: 1.
  • the crosslinking density of the protective layer 3 is high, it is necessary to adjust the adhesion by increasing the ratio of the urethane resin.
  • cured polyols examples include urethane resins.
  • urethane resin polyurethane having a polyol (polyhydric alcohol) as a main ingredient and an isocyanate as a crosslinking agent (curing agent) can be used.
  • isocyanate examples include polyvalent isocyanate having two or more isocyanate groups in the molecule; aromatic isocyanate such as 4,4-diphenylmethane diisocyanate; hexamethylene diisocyanate, isophorone diisocyanate, hydrogenated tolylene diisocyanate, hydrogen Aliphatic (or alicyclic) isocyanates such as added diphenylmethane diisocyanate can be mentioned.
  • the content of isocyanate in the primer layer-forming resin composition is not particularly limited, but from the viewpoint of adhesion, and from the viewpoint of printing suitability when laminating a decorative layer 5 described later,
  • the amount is preferably 3 to 45 parts by weight and more preferably 3 to 25 parts by weight with respect to 100 parts by weight of the polyol.
  • urethane resins from the viewpoint of improving adhesion after crosslinking, preferably a combination of acrylic polyol or polyester polyol as a polyol and hexamethylene diisocyanate or 4,4-diphenylmethane diisocyanate as a crosslinking agent; Includes a combination of acrylic polyol and hexamethylene diisocyanate.
  • acrylic resin for example, the homopolymer of (meth) acrylic acid ester, the copolymer of 2 or more types of different (meth) acrylic acid ester monomers, or (meth) acrylic acid ester and others And a copolymer with the above monomer.
  • (meth) acrylic resin poly (meth) acrylate methyl, poly (meth) ethyl acrylate, poly (meth) acrylate propyl, poly (meth) acrylate butyl, (meth) acrylic acid Methyl- (meth) butyl acrylate copolymer, (meth) ethyl acrylate- (meth) butyl acrylate copolymer, ethylene- (meth) methyl acrylate copolymer, styrene-methyl (meth) acrylate copolymer
  • acrylic acid esters such as polymers.
  • the (meth) acryl-urethane copolymer resin is not particularly limited, and examples thereof include an acrylic-urethane (polyester urethane) block copolymer resin. Further, as the curing agent, the above-described various isocyanates are used.
  • the ratio of the acrylic to urethane ratio in the acrylic-urethane (polyester urethane) block copolymer resin is not particularly limited. For example, the acrylic / urethane ratio (mass ratio) is 9/1 to 1/9, preferably 8 / 2 to 2/8.
  • the thickness of the primer layer 4 is not particularly limited, but is about 0.1 to 10 ⁇ m, preferably about 1 to 10 ⁇ m (that is, the coating amount is about 0.1 to 10 g / m 2 , preferably 1 to 10 g / m 2). m 2 ).
  • the weather resistance of the three-dimensional molding transfer film can be further improved, and cracking, breakage, whitening, and the like of the protective layer 3 can be effectively suppressed.
  • various additives can be blended according to desired physical properties to be provided.
  • the additive include a weather resistance improver such as an ultraviolet absorber and a light stabilizer, an abrasion resistance improver, a polymerization inhibitor, a crosslinking agent, an infrared absorber, an antistatic agent, an adhesion improver, a leveling agent, Examples include a thixotropic agent, a coupling agent, a plasticizer, an antifoaming agent, a filler, a solvent, a colorant, and a matting agent. These additives can be appropriately selected from commonly used ones.
  • the matting agent include silica particles and aluminum hydroxide particles.
  • the ultraviolet absorber or light stabilizer a reactive ultraviolet absorber or light stabilizer having a polymerizable group such as a (meth) acryloyl group in the molecule can be used.
  • Primer layer 4 is a primer layer forming resin composition, gravure coat, gravure reverse coat, gravure offset coat, spinner coat, roll coat, reverse roll coat, kiss coat, wheeler coat, dip coat, solid coat by silk screen, It is formed by a normal coating method such as wire bar coating, flow coating, comma coating, flow coating, brush coating, spray coating, or the like, or transfer coating.
  • the transfer coating method is a method of forming a coating film of a primer layer or an adhesive layer on a thin sheet (film substrate) and then coating the surface of the target layer in the transfer film for three-dimensional molding. .
  • the primer layer 4 may be formed on the protective layer 3 after curing. Moreover, after forming the primer layer 4 by laminating a layer made of the primer layer forming composition on the ionizing radiation curable resin composition layer forming the protective layer 3, the layer made of the ionizing radiation curable resin is formed.
  • the protective layer 3 may be formed by irradiating with ionizing radiation and curing the layer made of ionizing radiation curable resin.
  • the decorative layer 5 is a layer provided as necessary in order to impart decorative properties to the resin molded product.
  • the decoration layer 5 is usually composed of a picture layer and / or a concealment layer.
  • the pattern layer is a layer provided for expressing a pattern such as a pattern or characters
  • the concealing layer is usually a solid layer and is provided for concealing the coloring of the molded resin or the like. Is a layer.
  • the concealing layer may be provided inside the picture layer to enhance the picture of the picture layer, or the decoration layer 5 may be formed by the concealing layer alone.
  • the pattern of the pattern layer is not particularly limited, and examples thereof include a pattern composed of wood grain, stone grain, cloth grain, sand grain, geometric pattern, letters, and the like.
  • the decoration layer 5 is formed using a printing ink containing a colorant, a binder resin, and a solvent or dispersion medium.
  • the colorant of the printing ink used for forming the decorative layer 5 is not particularly limited, but for example, metals such as aluminum, chromium, nickel, tin, titanium, iron phosphide, copper, gold, silver, brass, alloys, Or metallic pigments made of scale-like foil powder of metal compounds; mica-like iron oxide, titanium dioxide-coated mica, titanium dioxide-coated bismuth oxychloride, bismuth oxychloride, titanium dioxide-coated talc, fish scale foil, colored titanium dioxide-coated mica, basic Pearl pigment made of foil powder such as lead carbonate; fluorescent pigments such as strontium aluminate, calcium aluminate, barium aluminate, zinc sulfide, calcium sulfide; white inorganics such as titanium dioxide, zinc white, antimony trioxide Pigment: Inorganic such as zinc white, petal, vermilion, ultramarine, cobalt blue, titanium yellow, yellow lead, carbon black Fee; isoindolinone yellow, Hans
  • the binder resin of the printing ink used for forming the decorative layer 5 is not particularly limited.
  • vinyl acetate copolymer resins examples include vinyl acetate copolymer resins, polyvinyl butyral resins, alkyd resins, petroleum resins, ketone resins, epoxy resins, melamine resins, fluorine resins, silicone resins, fibrin derivatives, rubber resins, and the like.
  • These binder resins may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the solvent or dispersion medium of the printing ink used for forming the decorative layer 5 is not particularly limited.
  • petroleum organic solvents such as hexane, heptane, octane, toluene, xylene, ethylbenzene, cyclohexane, and methylcyclohexane
  • Ester organic solvents such as ethyl acetate, butyl acetate, 2-methoxyethyl acetate, and 2-ethoxyethyl acetate
  • alcohols such as methyl alcohol, ethyl alcohol, normal propyl alcohol, isopropyl alcohol, isobutyl alcohol, ethylene glycol, and propylene glycol Organic solvents
  • ketone organic solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone
  • ether organic solvents such as diethyl ether, dioxane
  • the printing ink used for forming the decorative layer 5 includes an anti-settling agent, a curing catalyst, an ultraviolet absorber, an antioxidant, a leveling agent, a thickener, an antifoaming agent, a lubricant, and the like as necessary. It may be included.
  • the decorative layer 5 can be formed on an adjacent layer such as the protective layer 3 or the primer layer 4 by a known printing method such as gravure printing, flexographic printing, silk screen printing, or offset printing.
  • a known printing method such as gravure printing, flexographic printing, silk screen printing, or offset printing.
  • the thickness of the decorative layer 5 is not particularly limited, but may be 1 to 40 ⁇ m, preferably 3 to 30 ⁇ m, for example.
  • the decoration layer 5 may be a metal thin film layer.
  • the metal forming the metal thin film layer include tin, indium, chromium, aluminum, nickel, copper, silver, gold, platinum, zinc, and alloys containing at least one of these.
  • the method for forming the metal thin film layer is not particularly limited, and examples thereof include a vapor deposition method such as a vacuum vapor deposition method, a sputtering method, and an ion plating method using the above-described metal.
  • the adhesive layer 6 is used for the purpose of improving the adhesion between the transfer film for three-dimensional molding and the molded resin layer 8, and the like (on the molded resin layer 8 side) such as the decorative layer 5 and the transparent resin layer 7. ) If necessary.
  • the resin forming the adhesive layer 6 is not particularly limited as long as it can improve the adhesion and adhesiveness between these layers, and for example, a thermoplastic resin or a thermosetting resin is used.
  • thermoplastic resin examples include acrylic resins, acrylic-modified polyolefin resins, chlorinated polyolefin resins, vinyl chloride-vinyl acetate copolymers, thermoplastic urethane resins, thermoplastic polyester resins, polyamide resins, rubber resins, and the like. .
  • a thermoplastic resin may be used individually by 1 type, and may be used in combination of 2 or more types.
  • thermosetting resin examples include a urethane resin and an epoxy resin.
  • a thermosetting resin may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the transfer film for three-dimensional molding of the present invention is applied to a decorating method by sticking onto a resin molded body prepared in advance, such as a vacuum pressing method described later. Is preferably provided.
  • a vacuum pressing method it is preferable to form the adhesive layer 6 by using a conventional resin that exhibits adhesiveness by pressurization or heating among the various resins described above.
  • the thickness of the adhesive layer 6 is not particularly limited, but may be about 0.1 to 30 ⁇ m, preferably about 0.5 to 20 ⁇ m, and more preferably about 1 to 8 ⁇ m.
  • a transparent resin layer 7 may be provided as necessary for the purpose of improving the adhesion between the primer layer 4 and the adhesive layer 6. Since the transparent resin layer 7 can improve the adhesion between the primer layer 4 and the adhesive layer 6 in the embodiment in which the three-dimensional molding transfer film of the present invention does not have the decorative layer 5, the three-dimensional structure of the present invention. It is particularly useful to provide the molding transfer film when it is used for the production of a resin molded product requiring transparency.
  • the transparent resin layer 7 is not particularly limited as long as it is transparent, and includes any of colorless and transparent, colored and transparent, and translucent. Examples of the resin component that forms the transparent resin layer 7 include the binder resin exemplified in the decorative layer 5.
  • the transparent resin layer 7 may include a filler, a matting agent, a foaming agent, a flame retardant, a lubricant, an antistatic agent, an antioxidant, an ultraviolet absorber, a light stabilizer, a radical scavenger, and a soft component.
  • a filler a matting agent, a foaming agent, a flame retardant, a lubricant, an antistatic agent, an antioxidant, an ultraviolet absorber, a light stabilizer, a radical scavenger, and a soft component.
  • a filler e.g., a filler, a matting agent, a foaming agent, a flame retardant, a lubricant, an antistatic agent, an antioxidant, an ultraviolet absorber, a light stabilizer, a radical scavenger, and a soft component.
  • Various additives such as rubber (for example, rubber) may be included.
  • the transparent resin layer 7 can be formed by a known printing method such as gravure printing, flexographic printing, silk screen printing, or offset printing.
  • the thickness of the transparent resin layer 7 is not particularly limited, but is generally about 0.1 to 10 ⁇ m, preferably about 1 to 10 ⁇ m.
  • the transfer film for three-dimensional molding of the first embodiment can be manufactured by a manufacturing method including the following steps, for example.
  • the ionizing radiation curable resin composition is irradiated with ionizing radiation to form the ionizing radiation curable resin composition.
  • Step of forming release layer forming coating on transfer substrate 1 Step of forming protective layer forming coating on release layer forming coating Release layer forming coating and protection A step of irradiating the layer forming coating film with ionizing radiation to form a release layer in which the release layer forming coating film is cured and a protective layer in which the protective layer forming coating film is cured.
  • molding of a 2nd embodiment can be manufactured with a manufacturing method provided with the following processes, for example.
  • Step of forming release layer forming coating film on transfer substrate 1 Irradiating the release layer forming coating film with ionizing radiation forms a release layer in which the release layer forming coating film is cured.
  • Step of forming release layer forming coating on transfer substrate 1 Step of forming protective layer forming coating on release layer forming coating Release layer forming coating and protection A step of irradiating the layer forming coating film with ionizing radiation to form a release layer in which the release layer forming coating film is cured and a protective layer in which the protective layer forming coating film is cured (in this case, the release layer) Is adjusted to be in the range of 7 to 45 N / mm 2 ).
  • the resin molded product of the present invention is formed by integrating the three-dimensional molding transfer film of the present invention and a molded resin. Specifically, in the first embodiment, by laminating the molding resin layer 8 on the side opposite to the support 10 of the three-dimensional molding transfer film, at least the molding resin layer 8, the protective layer 3, A resin molded product with a support in which the support 10 is laminated in this order is obtained (see, for example, FIG. 3). Next, by peeling the support 10 from the resin molded product with the support, the resin molded product of the present invention in which at least the molded resin layer 8 and the protective layer 3 are laminated in this order is obtained (see, for example, FIG. 4). ).
  • the molding resin layer 8, the transfer layer 9, the support 10, and the molding resin layer 8 are laminated on the side opposite to the support 10 of the three-dimensional molding transfer film. Are laminated in this order to obtain a resin molded product with a support (see, for example, FIG. 3).
  • the support 10 is peeled from the resin molded product with the support to obtain the resin molded product of the present invention in which at least the molded resin layer 8 and the transfer layer 9 are laminated (see, for example, FIG. 4).
  • the resin molded product of the first embodiment is further provided with at least one layer such as the decorative layer 5, the primer layer 4, the adhesive layer 6, and the transparent resin layer 7 as necessary.
  • at least one layer such as the protective layer 3, the decorative layer 5, the primer layer 4, the adhesive layer 6, and the transparent resin layer 7 is included. Further, it may be provided.
  • the resin molded product of the first embodiment can be manufactured by a manufacturing method including the following steps.
  • the resin molded product of the second embodiment can be manufactured by a manufacturing method including the following steps.
  • the protective layer side (opposite to the support) of the transfer three-dimensional transfer film is directed into the mold, and the three-dimensional transfer film is transferred from the protective layer side by a hot platen.
  • a step of heating (it is a step to be performed if necessary, and may not have the step), (2) A step of pre-molding (vacuum molding) the three-dimensional molding transfer film along the inner shape of the mold and closely contacting the inner surface of the mold to clamp the mold; (3) A step of injecting resin into the mold, (4) A step of taking out a resin molded product (resin molded product with a support) from the mold after cooling the injection resin, and (5) a step of peeling the support from the protective layer of the resin molded product.
  • the transfer film for three-dimensional molding when applied to, for example, the injection molding simultaneous transfer decoration method, as a method for producing a resin molded product of the second embodiment, for example, the following steps (1 ) To (5).
  • the transfer layer side of the transfer three-dimensional molding transfer film (the side opposite to the support) is directed into the mold, and the three-dimensional molding transfer film is transferred from the transfer layer side by a hot platen.
  • a step of heating (it is a step to be performed if necessary, and may not have the step), (2) A step of pre-molding (vacuum molding) the three-dimensional molding transfer film along the inner shape of the mold and closely contacting the inner surface of the mold to clamp the mold; (3) A step of injecting resin into the mold, (4) A step of taking out a resin molded product (resin molded product with a support) from the mold after cooling the injection resin, and (5) a step of peeling the support from the transfer layer of the resin molded product.
  • the temperature for heating the three-dimensional molding transfer film is not less than the glass transition temperature of the transfer substrate 1 and
  • the melting point (or melting point) is preferably in the range. Usually, it is more preferable to carry out at a temperature near the glass transition temperature.
  • the vicinity of the glass transition temperature mentioned above refers to a range of glass transition temperature ⁇ 5 ° C., and is generally about 70 to 130 ° C. when a polyester film suitable as the transfer substrate 1 is used.
  • the step of heating the transfer film for three-dimensional molding and the step of preforming the transfer film for three-dimensional molding are omitted, and in the step (3) described later, injection is performed.
  • the transfer film for three-dimensional molding may be formed into a mold shape by the heat and pressure of the resin.
  • the molding resin described later is melted and injected into the cavity to integrate the three-dimensional molding transfer film and the molding resin.
  • the molding resin is a thermoplastic resin, it is made into a fluid state by heating and melting, and when the molding resin is a thermosetting resin, the uncured liquid composition is injected at room temperature or appropriately heated and injected in a fluid state. Then, it is cooled and solidified.
  • the three-dimensional molding transfer film is integrally bonded to the formed resin molded body to form a resin molded product with a support.
  • the heating temperature of the molding resin depends on the type of the molding resin, but is generally about 180 to 320 ° C.
  • the support 10 is peeled off from the protective layer 3 in the step (5) in the first embodiment.
  • a resin molded product is obtained.
  • the resin molded product is obtained by peeling the support 10 from the transfer layer 9 in the step (5).
  • the step of peeling the support 10 from the protective layer 3 may be performed simultaneously with the step of taking out the decorative resin molded product from the mold, and in the second embodiment, the support The step of peeling the body 10 from the transfer layer 9 may be performed simultaneously with the step of taking out the resin molded product from the mold. That is, in the first embodiment and the second embodiment, step (5) may be included in step (4).
  • the resin molded product can be manufactured by a vacuum pressure bonding method.
  • the vacuum pressure bonding method first, the three-dimensional molding transfer film and the resin molded body of the present invention are three-dimensionally molded in a vacuum pressure bonding machine including a first vacuum chamber located on the upper side and a second vacuum chamber located on the lower side. Inside the vacuum press so that the transfer film for the first vacuum chamber is on the side of the first vacuum chamber, the resin molding is on the side of the second vacuum chamber, and the side on which the molding resin layer 8 of the three-dimensional molding transfer film is laminated faces the resin molding And set the two vacuum chambers in a vacuum state.
  • the resin molding is installed on a lifting platform that is provided on the second vacuum chamber side and can be moved up and down.
  • the molded body is pressed against the three-dimensional molding transfer film using an elevator, and the pressure difference between the two vacuum chambers is used to form the three-dimensional molding transfer film. It sticks to the surface of the resin molding while stretching. Finally, the two vacuum chambers are opened to atmospheric pressure, the support 10 is peeled off, and an excess portion of the three-dimensional molding transfer film is trimmed as necessary to obtain the resin molded product of the present invention. it can.
  • the three-dimensional molding transfer film is heated in order to soften the three-dimensional molding transfer film and improve the moldability. It is preferable to provide a process.
  • the vacuum pressure bonding method provided with the said process may be especially called a vacuum thermocompression bonding method.
  • the heating temperature in this step may be appropriately selected depending on the type of resin constituting the three-dimensional molding transfer film, the thickness of the three-dimensional molding transfer film, and the like. If a resin film is used, the temperature can usually be about 60 to 200 ° C.
  • the molded resin layer 8 may be formed by selecting a resin according to the application.
  • the molding resin for forming the molding resin layer 8 may be a thermoplastic resin or a thermosetting resin.
  • thermoplastic resin examples include polyolefin resins such as polyethylene and polypropylene, ABS resins, styrene resins, polycarbonate resins, acrylic resins, and vinyl chloride resins. These thermoplastic resins may be used individually by 1 type, and may be used in combination of 2 or more type.
  • thermosetting resin examples include urethane resin and epoxy resin. These thermosetting resins may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the support 10 serves as a protective sheet for the resin molded product, it is stored as it is without being peeled after the production of the resin molded product with a support and is supported at the time of use.
  • the body 10 may be peeled off. By using in this manner, it is possible to prevent the resin molded product from being damaged due to rubbing during transportation.
  • the resin molded product of the present invention has excellent scratch resistance and chemical resistance, for example, interior materials or exterior materials of vehicles such as automobiles; fittings such as window frames and door frames; architectures such as walls, floors, and ceilings It can be used as an interior material of a product; a housing of a household electric appliance such as a television receiver or an air conditioner;
  • Example 1A to 6A and Comparative Examples 1A to 2A Manufacture of three-dimensional molding transfer film
  • a transfer substrate a polyethylene terephthalate film (thickness 50 ⁇ m) having an easy-adhesive layer formed on one surface was used.
  • Electron radiation curable resin composition comprising 85% by mass of bifunctional polycarbonate acrylate (weight average molecular weight: 8,000) and 15% by mass of pentaerythritol triacrylate (PETA) on the surface of the easy adhesive layer of the polyethylene terephthalate film ( (Including UVA 2.2%, HALS 0.6%) was printed by gravure printing to form a release layer-forming coating film (thickness 1.5 ⁇ m).
  • an electron beam with an acceleration voltage of 165 kV and an irradiation dose of 7 Mrad was applied from above the coating film to cure the release layer forming coating film to form a release layer.
  • Examples 1A to 6A and Comparative Example 1A an ionizing radiation curable resin composition described later was applied onto the release layer with a bar coder so that the thickness after curing would be the thickness shown in Table 1A. Then, a protective layer-forming coating film was formed.
  • the content of pentaerythritol triacrylate (PETA) contained in the electron radiation curable resin composition used for forming the protective layer (the balance is polycarbonate acrylate and acrylic polymer) is as shown in Table 1A.
  • an electron beam having an acceleration voltage of 165 kV and an irradiation dose (unit: Mrad) described in Table 1A was irradiated on the coating film to cure the coating film for forming the protective layer, thereby forming a protective layer.
  • a primer layer-forming resin composition having the composition shown in Table 1A was applied by gravure printing to form a primer layer (thickness: 1.5 ⁇ m).
  • a decorative layer is formed on the primer layer containing an acrylic resin and a vinyl chloride-vinyl acetate copolymer resin as a binder resin (acrylic resin 50 mass%, vinyl chloride-vinyl acetate copolymer resin 50 mass%).
  • a black solid decorative layer was formed by gravure printing using the black ink composition for printing.
  • an adhesive layer (1.5 ⁇ m) is formed by gravure printing, thereby transferring a transfer substrate.
  • a resin composition for forming an adhesive layer containing an acrylic resin softening temperature: 125 ° C.
  • an adhesive layer (1.5 ⁇ m) is formed by gravure printing, thereby transferring a transfer substrate.
  • Tetrafunctional polycarbonate acrylate (weight average molecular weight: 10,000) Pentaerythritol triacrylate (PETA) Acrylic polymer (acrylic resin, copolymer of methyl methacrylate and methacrylic acid, Tg 105 ° C., weight average molecular weight: about 20,000) 2.5% by weight
  • a three-dimensional molding transfer film to be measured for peel strength, a mold for molding the same, and a resin (resin for forming a molding resin layer) to be laminated on the three-dimensional molding transfer film were prepared.
  • the shape of the mold is such that when the three-dimensional molding transfer film is molded in the mold, the mold has a flat portion in which the area elongation percentage of the surface of the three-dimensional molding transfer film is substantially 0%.
  • the mold temperature was set to 60 ° C.
  • a resin (resin for forming a molding resin layer) to be injected onto the three-dimensional molding transfer film a mixed resin of ABS resin and polycarbonate resin (CYCOLOY TM Resin XCY620) was heated to 265 ° C. and melted. . Further, the transfer film for three-dimensional molding was put in a mold, and pre-molded so as to conform to the shape in the mold by vacuum molding, and then injection-molded. After the injection molding, the Martens hardness was measured on the outermost protective layer of the resin molded product obtained by removing from the mold and peeling the support.
  • CYCOLOY TM Resin XCY620 CYCOLOY TM Resin XCY620
  • the Martens hardness is a value measured using a surface film physical property tester (PICODERTOR HM-500, manufactured by Fisher Instruments Co., Ltd.), and a specific measurement method is as follows.
  • a diamond indenter (Vickers indenter) having a facing angle of 136 ° as shown in FIG. 5A is used in an environment of a temperature of 25 ° C. and a relative humidity of 50%.
  • a diamond indenter was pushed into the protective layer, and the hardness was determined from the indentation load F and the indentation depth h (indentation depth) by the following formula (1).
  • the indentation condition was that a load of 0 to 0.1 mN was first applied for 20 seconds at room temperature (laboratory environment temperature) to the protective layer or the release layer as shown in FIG.
  • the load was maintained at a load of 0.1 mN for 5 seconds, and finally unloading from 0.1 to 0 mN was performed in 20 seconds.
  • the Martens hardness of the release layer was measured in the same manner as in Examples 1B to 7B and Comparative Examples 1B to 2B described later. The results are shown in Table 1A.
  • A Less than 5% after 5 minutes of test. And recovered to less than 1% after 30 minutes of testing.
  • B 5% or more and less than 30% after 5 minutes of the test. And recovered to less than 5% after 30 minutes of testing.
  • C 30% or more after 5 minutes of the test and 30% or more after 30 minutes of the test.
  • the three-dimensional molding transfer films of Examples 1A to 6A are excellent in moldability and are scratch resistant. Excellent blackness and high-gloss black design (piano black).
  • Examples 1B-7B and Comparative Examples 1B-2B Manufacture of three-dimensional molding transfer film
  • a transfer substrate a polyethylene terephthalate film (thickness 50 ⁇ m) having an easy-adhesive layer formed on one surface was used.
  • PETA pentaerythritol triacrylate
  • the number of functional groups of the EB resin (the number of functional groups of the polycarbonate acrylate), the amount of PETA added (the balance is polycarbonate acrylate), and the thickness of the release layer are as shown in Table 1B.
  • an electron beam having an acceleration voltage of 165 kV and an irradiation dose (unit: Mrad) described in Table 1B was irradiated on the coating film to cure the release layer forming coating film to form a release layer.
  • a coating liquid containing an acrylic melamine resin as a main component was printed by gravure printing and thermally cured at 150 ° C. to form a release layer.
  • an ionizing radiation curable resin composition described later was applied on the release layer with a bar coder so that the thickness after curing was 4 ⁇ m, thereby forming a protective layer-forming coating film.
  • an electron beam with an acceleration voltage of 165 kV and an irradiation dose of 5 MRad was irradiated on the protective layer-forming coating film to cure the protective layer-forming coating film, thereby forming a protective layer.
  • a primer layer-forming resin composition containing acrylic polyol was applied by gravure printing to form a primer layer (thickness 1.5 ⁇ m).
  • a decorative layer is formed on the primer layer containing an acrylic resin and a vinyl chloride-vinyl acetate copolymer resin as a binder resin (acrylic resin 50 mass%, vinyl chloride-vinyl acetate copolymer resin 50 mass%).
  • a hairline decorative layer was formed by gravure printing using the black ink composition for printing.
  • the adhesive layer is formed on the decorative layer by gravure printing using a resin composition for forming an adhesive layer containing an acrylic resin (softening temperature: 125 ° C.).
  • Bifunctional polycarbonate acrylate (weight average molecular weight: 8,000) Tetrafunctional polycarbonate acrylate (weight average molecular weight: 8,000) Pentaerythritol triacrylate (PETA)
  • the Martens hardness is a value measured using a surface film physical property tester (PICODERTOR HM-500, manufactured by Fisher Instruments Co., Ltd.), and a specific measurement method is as follows.
  • a diamond indenter (Vickers indenter) having a facing angle of 136 ° as shown in FIG. 5A is used in an environment of a temperature of 25 ° C. and a relative humidity of 50%.
  • a diamond indenter was pushed into the release layer, and the hardness was determined from the indentation load F and the indentation depth h (indentation depth) by the following formula (1).
  • the indentation conditions were as follows.
  • a load of 0 to 0.1 mN was applied for 20 seconds to the release layer at room temperature (laboratory environmental temperature) as shown in FIG. 5B, and then 0.1 mN. was held for 5 seconds, and finally unloading from 0.1 to 0 mN was performed for 20 seconds.
  • the transfer layer is peeled off at the interface with the release layer using a cellophane tape, and a support having a transfer substrate and a release layer is obtained.
  • the release layer of this support Measurements were made on the side surface.
  • the Martens hardness of the release layer was measured in the same manner as in Examples 1B to 7B and Comparative Examples 1B to 2B described later. The results are shown in Table 1B.
  • the support with a release layer was peeled off from each of the above three-dimensional molding transfer films, and the support was cut into a strip having a length of 150 mm and a width of 1 inch to prepare a sample for evaluation with only a colored layer.
  • the sample was subjected to a tensile test using a tensile tester with an initial tensile chuck distance of 100 mm and a tensile speed of 100 mm / min. Measurement is performed by setting a film sample in a thermostat set at a temperature of 100 ° C in advance, performing a tensile test after preheating for 60 seconds, and measuring the amount of elongation (breaking elongation) until the release layer cracks. did.
  • EB resin means ionizing radiation curable resin.
  • the three-dimensional molding transfer films of Examples 1B to 7B in which the Martens hardness of the release layer is in the range of 7 to 45 N / mm 2 are excellent in moldability.
  • the resin molded product after molding was also excellent in durability and chemical resistance.

Abstract

Provided is a three-dimensional molding transfer film that has excellent moldability, excellent scratch resistance, and can suitably apply a highly glossy design to a resin molded article. The three-dimensional molding transfer film comprises at least a protection layer on a transfer substrate, wherein the protection layer is formed of cured material of an ionizing radiation curable resin composition containing polycarbonate (meta)acrylate, and the protection layer has a Martens hardness of 6 N/mm2 or more and 40 N/mm2 or less. Alternatively, the three-dimensional molding transfer film comprises a transfer layer on a mold releasing layer of a support body having a transfer substrate and the mold releasing layer, wherein the mold releasing layer has a Martens hardness of 7 N/mm2 or more and 45 N/mm2 or less.

Description

三次元成形用転写フィルム、その製造方法、及び樹脂成形品の製造方法Three-dimensional molding transfer film, method for producing the same, and method for producing resin molded products
 本発明は、三次元成形用転写フィルム、その製造方法、及び樹脂成形品の製造方法に関する。 The present invention relates to a transfer film for three-dimensional molding, a manufacturing method thereof, and a manufacturing method of a resin molded product.
 自動車内外装、建材内装材、家電製品などに使用される樹脂成形品や、無機ガラス代替材料として用いられる有機ガラス等に用いられる樹脂成形品などにおいては、表面保護や意匠性の付与などを目的として、三次元成形フィルムを用いて保護層を積層する技術が用いられている。このような技術に使用される三次元成形フィルムとしては、ラミネート型の三次元成形フィルムと、転写型の三次元成形フィルムとに大別することができる。ラミネート型の三次元成形フィルムは、支持基材上に保護層が最表面に位置するように積層されており、支持基材側に成形樹脂を積層することで、樹脂成形品中に支持基材が取り込まれるように用いられる。一方、転写型の三次元成形フィルムは、支持基材上に直接、または必要により設けられる離型層を介して保護層が積層されており、支持基材とは反対側に成形樹脂を積層後、支持基材を剥離することで、樹脂成形品に支持基材が残らないようにして用いられる。これら2種類の三次元成形フィルムは、樹脂成形品の形状や求める機能などに応じて使い分けがなされている。 For resin molded products used for automotive interior / exterior materials, interior materials for building materials, home appliances, etc., and resin molded products used for organic glass used as an inorganic glass substitute material, etc. As a technique, a protective layer is laminated using a three-dimensional molded film. The three-dimensional molded film used in such a technique can be roughly classified into a laminate type three-dimensional molded film and a transfer type three-dimensional molded film. Laminate type three-dimensional molded film is laminated so that the protective layer is located on the outermost surface on the support substrate, and the support substrate is placed in the resin molded product by laminating the molding resin on the support substrate side. Is used to be captured. On the other hand, the transfer type three-dimensional molded film has a protective layer laminated directly on the support substrate or via a release layer provided as necessary, and after molding resin is laminated on the opposite side of the support substrate The support substrate is peeled off so that the support substrate does not remain in the resin molded product. These two types of three-dimensional molded films are selectively used according to the shape of the resin molded product and the desired function.
 このような三次元成形フィルムに設けられる保護層としては、樹脂成形品に優れた表面物性を付与する観点から、紫外線や電子線等に代表される電離放射線を照射することにより化学的に架橋して硬化する、電離放射線硬化性樹脂を含む樹脂組成物を用いることが好ましいとされている。かかる三次元成形フィルムは、その保護層を、三次元成形フィルムの状態で既に電離放射線により硬化させたものと、成形加工により樹脂成形品とした後に硬化させたものとに大別されるが、成形加工後の工程を簡便にして生産性を高める観点からは前者が好ましいと考えられている。しかしながら、三次元成形フィルムの段階で保護層が硬化されると、三次元成形フィルムの柔軟性が低下しており、成形加工の過程で保護層にクラックが生じる恐れがあるため、成形性に優れた樹脂組成物を選択する必要が生じる。特に、上記した転写型の三次元成形フィルムの場合、保護層上には、通常、意匠層や接着層などの他の層を積層する必要があるという点、成形加工において保護層から支持基材を剥離されなければならないという点、支持基材を剥離することで表出した面が優れた物性を発現しなければならないという点などから、ラミネート型に比して、樹脂組成物の設計がより難しいという問題がある。 As a protective layer provided on such a three-dimensional molded film, from the viewpoint of imparting excellent surface properties to the resin molded product, it is chemically crosslinked by irradiating with ionizing radiation typified by ultraviolet rays and electron beams. It is considered preferable to use a resin composition containing an ionizing radiation curable resin that cures. Such a three-dimensional molded film is roughly divided into a protective layer that has already been cured by ionizing radiation in the state of the three-dimensional molded film and a film that has been cured after being formed into a resin molded product by molding, From the viewpoint of improving the productivity by simplifying the process after the molding process, the former is considered preferable. However, when the protective layer is cured at the stage of the three-dimensional molded film, the flexibility of the three-dimensional molded film is lowered, and there is a risk that the protective layer may crack in the process of molding, so it has excellent moldability. It is necessary to select a resin composition. In particular, in the case of the above-described transfer-type three-dimensional molded film, it is usually necessary to laminate other layers such as a design layer and an adhesive layer on the protective layer, and from the protective layer to the supporting substrate in the molding process. The design of the resin composition is better than that of the laminate type because the surface must be peeled off and the surface exposed by peeling off the support substrate must express excellent physical properties. There is a problem that it is difficult.
 このような従来技術の下、特許文献1及び2には、保護層をポリカーボネート(メタ)アクリレートを含む電離放射線硬化性樹脂組成物を用いて形成する技術が開示されている。このような樹脂組成物を用いることにより、保護層が電離放射線硬化性樹脂組成物の硬化物により形成された転写型の三次元成形フィルムにおいても、三次元成形性と耐傷性の両立を図ることが可能となる。 Under such conventional techniques, Patent Documents 1 and 2 disclose techniques for forming a protective layer using an ionizing radiation curable resin composition containing polycarbonate (meth) acrylate. By using such a resin composition, a three-dimensional moldability and scratch resistance can be achieved even in a transfer type three-dimensional molded film in which the protective layer is formed of a cured product of an ionizing radiation curable resin composition. Is possible.
特開2012-56236号公報JP 2012-56236 A 特開2013-111929号公報JP 2013-111929 A
 樹脂成形品の製造に使用される三次元成形フィルムを、例えばピアノブラックのような高艶(たとえば、グロス値が80以上)の黒色とした場合、保護層の表面に傷が付くと、傷が非常に目立ちやすいという問題がある。このような耐傷性の問題を解決する手法としては、保護層に柔らかい素材を用いて、自己修復性を付与する方法が知られている。しかしながら、研究を進めると保護層を柔らかくすると、保護層の密度が低下して反射率が低下し、高艶とすることが困難になるという問題が明らかになった。 If the three-dimensional molded film used for the production of the resin molded product is black with high gloss (for example, gloss value of 80 or more) such as piano black, the surface of the protective layer is scratched. There is a problem that it is very conspicuous. As a technique for solving such a problem of scratch resistance, a method of imparting self-repairability by using a soft material for the protective layer is known. However, as the research progressed, it became clear that when the protective layer was softened, the density of the protective layer was reduced, the reflectance was lowered, and it was difficult to make it high gloss.
 このような状況下、本発明の第1の実施態様は、優れた成形性を有しており、さらに、耐傷性に優れ、高艶の意匠を樹脂成形品に好適に付与することができる、三次元成形用転写フィルムを提供することを主な目的とする。さらに、本発明の第1の実施態様は、当該三次元成形フィルムの製造方法、及び当該三次元成形フィルムを用いた樹脂成形品の製造方法を提供することも目的とする。 Under such circumstances, the first embodiment of the present invention has excellent moldability, further excellent scratch resistance, and can suitably impart a high gloss design to a resin molded product. The main purpose is to provide a transfer film for three-dimensional molding. Furthermore, it is another object of the first embodiment of the present invention to provide a method for producing the three-dimensional molded film and a method for producing a resin molded product using the three-dimensional molded film.
 また、本発明者らが検討を重ねたところ、転写型の三次元成形フィルムにおいて、三次元成形後に剥離される支持基材の離型層の物性が、三次元成形フィルムの成形性、さらには、成形後に支持基材が剥離された樹脂成形品の耐久性や耐薬品性にまで影響を与えることも見出した。 In addition, as a result of repeated studies by the present inventors, in the transfer-type three-dimensional molded film, the physical properties of the release layer of the support substrate that is peeled off after the three-dimensional molding, the moldability of the three-dimensional molded film, The present inventors also found that the durability and chemical resistance of the resin molded product from which the supporting base material was peeled off after molding were affected.
 このような状況下、本発明の第2の実施態様は、優れた成形性を有しており、さらに、成形後の樹脂成形品に対して優れた耐久性及び耐薬品性を付与することができる、三次元成形用転写フィルムを提供することを主な目的とする。さらに、本発明の第2の実施態様は、当該三次元成形用転写フィルムを用いた樹脂成形品の製造方法を提供することも目的とする。 Under such circumstances, the second embodiment of the present invention has excellent moldability, and can impart excellent durability and chemical resistance to the resin molded product after molding. The main object is to provide a transfer film for three-dimensional molding. Furthermore, the second embodiment of the present invention also aims to provide a method for producing a resin molded product using the three-dimensional molding transfer film.
 本発明者らは、前記第1の実施態様の課題を解決すべく鋭意検討を行った。その結果、転写用基材上に、少なくとも保護層を有する三次元成形用転写フィルムであって、保護層が、ポリカーボネート(メタ)アクリレートを含む電離放射線硬化性樹脂組成物の硬化物により形成されており、保護層のマルテンス硬さが、6N/mm2以上、40N/mm2以下である三次元成形用転写フィルムは、優れた成形性を有しており、さらに、耐傷性に優れ、高艶の意匠を樹脂成形品に好適に付与できることを見出した。本発明の第1の実施態様は、かかる知見に基づいて、更に検討を重ねることにより完成したものである。 The present inventors have intensively studied to solve the problem of the first embodiment. As a result, a transfer film for three-dimensional molding having at least a protective layer on the transfer substrate, wherein the protective layer is formed by a cured product of an ionizing radiation curable resin composition containing polycarbonate (meth) acrylate. In addition, the three-dimensional transfer film for which the Martens hardness of the protective layer is 6 N / mm 2 or more and 40 N / mm 2 or less has excellent moldability, excellent scratch resistance, and high gloss. It was found that the design can be suitably imparted to a resin molded product. The first embodiment of the present invention has been completed by further studies based on such knowledge.
 即ち、本発明の第1の実施態様は、下記に掲げる態様の発明を提供する。
項1A. 転写用基材上に、少なくとも保護層を有する三次元成形用転写フィルムであって、
 前記保護層が、ポリカーボネート(メタ)アクリレートを含む電離放射線硬化性樹脂組成物の硬化物により形成されており、
 前記保護層のマルテンス硬さが、6N/mm2以上、40N/mm2以下である、三次元成形用転写フィルム。
項2A. 前記転写用基材上に、少なくとも、前記保護層及びプライマー層をこの順に有する、項1Aに記載の三次元成形用転写フィルム。
項3A. 前記プライマー層が、ポリオール及び/又はその硬化物を含む、項2Aに記載の三次元成形用転写フィルム。
項4A. 前記ポリオールが、アクリルポリオールを含む、項3Aに記載の三次元成形用転写フィルム。
項5A. 前記保護層の前記転写用基材とは反対側に、装飾層、接着層、及び透明樹脂層からなる群より選択された少なくとも1種を有する、項1A~4Aのいずれかに記載の三次元成形用転写フィルム。
項6A. 転写用基材上に、ポリカーボネート(メタ)アクリレートを含む電離放射線硬化性樹脂組成物からなる層を積層する工程と、
 前記電離放射線硬化性樹脂組成物に電離放射線を照射し、前記電離放射線硬化性樹脂組成物からなる層を硬化させて、前記転写用基材上に、マルテンス硬さが、6N/mm2以上、40N/mm2以下の保護層を形成する工程と、
 を備える、三次元成形用転写フィルムの製造方法。
項7A. 項1A~5Aのいずれかに記載の三次元成形用転写フィルムの前記保護層側に成形樹脂層を積層する工程と、
 前記転写用基材を前記保護層から剥離する工程と、
を備える、樹脂成形品の製造方法。
That is, the first embodiment of the present invention provides the following aspects of the invention.
Item 1A. A transfer film for three-dimensional molding having at least a protective layer on a transfer substrate,
The protective layer is formed of a cured product of an ionizing radiation curable resin composition containing polycarbonate (meth) acrylate,
A transfer film for three-dimensional molding, wherein the protective layer has a Martens hardness of 6 N / mm 2 or more and 40 N / mm 2 or less.
Item 2A. Item 3. The transfer film for three-dimensional molding according to Item 1A, which has at least the protective layer and the primer layer in this order on the transfer substrate.
Item 3A. Item 3. The transfer film for three-dimensional molding according to Item 2A, wherein the primer layer contains a polyol and / or a cured product thereof.
Item 4A. Item 3. The three-dimensional molding transfer film according to Item 3A, wherein the polyol contains an acrylic polyol.
Item 5A. Item 3. The three-dimensional item according to any one of Items 1A to 4A, which has at least one selected from the group consisting of a decorative layer, an adhesive layer, and a transparent resin layer on the opposite side of the protective layer from the transfer substrate. Transfer film for molding.
Item 6A. Laminating a layer made of an ionizing radiation curable resin composition containing polycarbonate (meth) acrylate on a transfer substrate;
The ionizing radiation curable resin composition is irradiated with ionizing radiation, the layer made of the ionizing radiation curable resin composition is cured, and the Martens hardness is 6 N / mm 2 or more on the transfer substrate. Forming a protective layer of 40 N / mm 2 or less;
A method for producing a transfer film for three-dimensional molding, comprising:
Item 7A. A step of laminating a molding resin layer on the protective layer side of the transfer film for three-dimensional molding according to any one of Items 1A to 5A;
Peeling the substrate for transfer from the protective layer;
A method for producing a resin molded product.
 また、本発明者らは、前記第2の実施態様の課題を解決すべく鋭意検討を行った。その結果、少なくとも転写用基材及び離型層を有する支持体の前記離型層上に、転写層を有する三次元成形用転写フィルムであって、離型層のマルテンス硬さが、7N/mm2以上、45N/mm2以下である三次元成形用転写フィルムは、優れた成形性を有しており、さらに、成形後の樹脂成形品に対して優れた耐久性及び耐薬品性を付与できることを見出した。本発明の第2の実施態様は、かかる知見に基づいて、更に検討を重ねることにより完成したものである。 In addition, the present inventors have intensively studied to solve the problem of the second embodiment. As a result, it is a three-dimensional molding transfer film having a transfer layer on the release layer of the support having at least a transfer substrate and a release layer, and the Martens hardness of the release layer is 7 N / mm. The transfer film for three-dimensional molding that is 2 or more and 45 N / mm 2 or less has excellent moldability, and can impart excellent durability and chemical resistance to the molded resin product after molding. I found. The second embodiment of the present invention has been completed by further studies based on this knowledge.
 即ち、本発明の第2の実施態様は、下記に掲げる態様の発明を提供する。
項1B. 少なくとも転写用基材及び離型層を有する支持体の前記離型層上に、転写層を有する三次元成形用転写フィルムであって、
 前記離型層のマルテンス硬さが、7N/mm2以上、45N/mm2以下である、三次元成形用転写フィルム。
項2B. 前記離型層が、電離放射線硬化性樹脂組成物の硬化物により構成されている、項1Bに記載の三次元成形用転写フィルム。
項3B. 前記離型層の前記電離放射線硬化性樹脂組成物が、ポリカーボネート(メタ)アクリレート及び多官能(メタ)アクリレートを含んでいる、項1B又は2Bに記載の三次元成形用転写フィルム。
項4B. 前記離型層の厚みが、2.0μm以下である、項1B~3Bのいずれかに記載の三次元成形用転写フィルム。
項5B. 前記転写層が保護層を有しており、
 前記保護層が、前記離型層と接面している、項1B~4Bのいずれかに記載の三次元成形用転写フィルム。
項6B. 前記保護層が、電離放射線硬化性樹脂組成物の硬化物により構成されている、項5Bに記載の三次元成形用転写フィルム。
項7B. 前記保護層の前記電離放射線硬化性樹脂組成物が、ポリカーボネート(メタ)アクリレートを含んでいる、項5B又は6Bに記載の三次元成形用転写フィルム。
項8B. 前記転写層が、装飾層、接着層、及び透明樹脂層からなる群より選択された少なくとも1種を有する、項1B~7Bのいずれかに記載の三次元成形用転写フィルム。
項9B. 項1B~8Bのいずれかに記載の三次元成形用転写フィルムの前記転写層側に成形樹脂層を積層する工程と、
 前記支持体を前記転写層から剥離する工程と、
を備える、樹脂成形品の製造方法。
That is, the second embodiment of the present invention provides the following aspects of the invention.
Item 1B. A transfer film for three-dimensional molding having a transfer layer on the release layer of the support having at least a transfer substrate and a release layer,
A transfer film for three-dimensional molding, wherein the release layer has a Martens hardness of 7 N / mm 2 or more and 45 N / mm 2 or less.
Item 2B. Item 3. The transfer film for three-dimensional molding according to Item 1B, wherein the release layer is composed of a cured product of an ionizing radiation curable resin composition.
Item 3B. Item 3. The transfer film for three-dimensional molding according to Item 1B or 2B, wherein the ionizing radiation curable resin composition of the release layer contains polycarbonate (meth) acrylate and polyfunctional (meth) acrylate.
Item 4B. Item 3. The transfer film for three-dimensional molding according to any one of Items 1B to 3B, wherein the release layer has a thickness of 2.0 μm or less.
Item 5B. The transfer layer has a protective layer;
Item 3. The transfer film for three-dimensional molding according to any one of Items 1B to 4B, wherein the protective layer is in contact with the release layer.
Item 6B. Item 5. The transfer film for three-dimensional molding according to Item 5B, wherein the protective layer is formed of a cured product of an ionizing radiation curable resin composition.
Item 7B. Item 6. The transfer film for three-dimensional molding according to Item 5B or 6B, wherein the ionizing radiation curable resin composition of the protective layer contains polycarbonate (meth) acrylate.
Item 8B. Item 8. The transfer film for three-dimensional molding according to any one of Items 1B to 7B, wherein the transfer layer has at least one selected from the group consisting of a decorative layer, an adhesive layer, and a transparent resin layer.
Item 9B. A step of laminating a molding resin layer on the transfer layer side of the transfer film for three-dimensional molding according to any one of Items 1B to 8B;
Peeling the support from the transfer layer;
A method for producing a resin molded product.
 本発明の第1の実施態様によれば、優れた成形性を有しており、さらに、耐傷性に優れ、高艶の意匠を樹脂成形品に好適に付与できる、三次元成形用転写フィルムを提供することができる。また、本発明の第1の実施態様によれば、当該三次元成形用転写フィルムの製造方法、及び当該三次元成形用転写フィルムを用いた樹脂成形品の製造方法を提供することもできる。 According to the first embodiment of the present invention, there is provided a transfer film for three-dimensional molding that has excellent moldability, is excellent in scratch resistance, and can suitably impart a high gloss design to a resin molded product. Can be provided. Moreover, according to the 1st embodiment of this invention, the manufacturing method of the said three-dimensional shaping | molding transfer film and the manufacturing method of the resin molded product using the said three-dimensional shaping | molding transfer film can also be provided.
 また、本発明の第2の実施態様によれば、優れた成形性を有しており、さらに、成形後の樹脂成形品に対して優れた耐久性及び耐薬品性を付与できる、三次元成形用転写フィルムを提供することができる。また、本発明の第2の実施態様によれば、当該三次元成形用転写フィルムを利用した樹脂成形品の製造方法を提供することもできる。 In addition, according to the second embodiment of the present invention, the three-dimensional molding has excellent moldability and can impart excellent durability and chemical resistance to the molded resin product after molding. A transfer film can be provided. Moreover, according to the 2nd embodiment of this invention, the manufacturing method of the resin molded product using the said three-dimensional shaping | molding transfer film can also be provided.
本発明の三次元成形用転写フィルムの一形態の断面構造の模式図である。It is a schematic diagram of the cross-sectional structure of one form of the transfer film for three-dimensional shaping | molding of this invention. 本発明の三次元成形用転写フィルムの一形態の断面構造の模式図である。It is a schematic diagram of the cross-sectional structure of one form of the transfer film for three-dimensional shaping | molding of this invention. 本発明の支持体付き樹脂成形品の一形態の断面構造の模式図である。It is a schematic diagram of the cross-sectional structure of one form of the resin molded product with a support of the present invention. 本発明の樹脂成形品の一形態の断面構造の模式図である。It is a schematic diagram of the cross-sectional structure of one form of the resin molded product of this invention. マルテンス硬さの測定方法を模式的に示す説明図である。It is explanatory drawing which shows typically the measuring method of Martens hardness.
1.三次元成形用転写フィルム
 本発明の第1の態様の三次元成形用転写フィルムは、転写用基材上に、少なくとも保護層を有する三次元成形用転写フィルムであって、保護層が、ポリカーボネート(メタ)アクリレートを含む電離放射線硬化性樹脂組成物の硬化物により形成されており、保護層のマルテンス硬さが、6N/mm2以上、40N/mm2以下であることを特徴とする。第1の実施態様の三次元成形用転写フィルムでは、このような構成を有することにより、優れた成形性を有しており、さらに、耐傷性に優れ、高艶の意匠を樹脂成形品に好適に付与することができる。以下、第1の態様の三次元成形用転写フィルムについて詳述する。
1. Three-dimensional molding transfer film The three-dimensional molding transfer film according to the first aspect of the present invention is a three-dimensional molding transfer film having at least a protective layer on a transfer substrate, wherein the protective layer is polycarbonate ( It is formed of a cured product of an ionizing radiation curable resin composition containing (meth) acrylate, and the protective layer has a Martens hardness of 6 N / mm 2 or more and 40 N / mm 2 or less. In the transfer film for three-dimensional molding of the first embodiment, by having such a configuration, it has excellent moldability, is excellent in scratch resistance, and has a high gloss design suitable for resin molded products. Can be granted. Hereinafter, the three-dimensional forming transfer film of the first aspect will be described in detail.
 また、本発明の第2の実施態様の三次元成形用転写フィルムは、少なくとも転写用基材及び離型層を有する支持体の離型層上に、転写層を有する三次元成形用転写フィルムであって、離型層のマルテンス硬さが、7N/mm2以上、45N/mm2以下であることを特徴とする。第2の実施態様の三次元成形用転写フィルムでは、このような構成を有することにより、優れた成形性を有しており、さらに、成形後の樹脂成形品に対して優れた耐久性及び耐薬品性を付与することができる。以下、第2の実施態様の三次元成形用転写フィルムについて詳述する。 The transfer film for 3D molding according to the second embodiment of the present invention is a transfer film for 3D molding having a transfer layer on a release layer of a support having at least a transfer substrate and a release layer. The release layer has a Martens hardness of 7 N / mm 2 or more and 45 N / mm 2 or less. In the transfer film for three-dimensional molding of the second embodiment, by having such a configuration, the transfer film has excellent moldability, and further has excellent durability and resistance to a molded resin product after molding. Chemical properties can be imparted. Hereinafter, the three-dimensional forming transfer film of the second embodiment will be described in detail.
 なお、本明細書において、「~」で示される数値範囲は「以上」、「以下」を意味する。例えば、2~15mmとの表記は、2mm以上15mm以下を意味する。また、後述の通り、本発明(第1の実施態様及び第2の実施態様)の三次元成形用転写フィルムは、装飾層などを有していなくてもよく、例えば透明であってもよい。また、「(メタ)アクリレート」とは「アクリレート又はメタクリレート」を意味し、他の類似するものも同様の意である。また、本明細書において、第1の実施態様または第2の実施態様についての説明であることを特に明示せず、本発明について説明している場合、第1の実施態様及び第2の実施態様に共通する説明であることを意味している。 In this specification, the numerical range indicated by “to” means “above” or “below”. For example, the notation of 2 to 15 mm means 2 mm or more and 15 mm or less. As will be described later, the transfer film for three-dimensional molding of the present invention (the first embodiment and the second embodiment) may not have a decorative layer or the like, and may be, for example, transparent. Further, “(meth) acrylate” means “acrylate or methacrylate”, and other similar things have the same meaning. Further, in the present specification, the first embodiment and the second embodiment are described when the present invention is described without particularly indicating that the description is about the first embodiment or the second embodiment. It means that it is a common explanation.
三次元成形用転写フィルムの積層構造
 第1の実施態様の三次元成形用転写フィルムは、転写用基材1上に、少なくとも保護層3を有する。保護層3の転写用基材1とは反対側には、保護層3と隣接する層との密着性を向上させることなどを目的として、必要に応じて、プライマー層4を設けてもよい。また、転写用基材1の保護層3側の表面には、転写用基材1と保護層3との剥離性を高めることなどを目的として、必要に応じて、離型層2を設けてもよい。第1の実施態様の三次元成形用転写フィルムにおいては、転写用基材1及び必要に応じて設けられる離型層2が、支持体10を構成しており、当該支持体10は、三次元成形用転写フィルムを成形樹脂層8に積層させた後に、剥離除去される。
Laminated structure of three-dimensional molding transfer film The three-dimensional molding transfer film of the first embodiment has at least a protective layer 3 on a transfer substrate 1. A primer layer 4 may be provided on the opposite side of the protective layer 3 from the transfer substrate 1 as necessary for the purpose of improving the adhesion between the protective layer 3 and the adjacent layer. In addition, a release layer 2 is provided on the surface of the transfer substrate 1 on the protective layer 3 side, if necessary, for the purpose of improving the peelability between the transfer substrate 1 and the protective layer 3. Also good. In the three-dimensional molding transfer film of the first embodiment, the transfer substrate 1 and the release layer 2 provided as necessary constitute a support 10, and the support 10 is three-dimensional. After the molding transfer film is laminated on the molding resin layer 8, it is peeled off.
 第1の実施態様の三次元成形用転写フィルムは、三次元成形用転写フィルムに装飾性を付与することなどを目的として、必要に応じて、装飾層5を設けてもよい。また、成形樹脂層8の密着性を高めることなどを目的として、必要に応じて、接着層6を有していてもよい。また、保護層3やプライマー層4と接着層6との密着性を向上させることなどを目的として、必要に応じて、透明樹脂層7を設けてもよい。第1の実施態様の三次元成形用転写フィルムにおいて、保護層3、必要に応じてさらに設けられるプライマー層4、装飾層5、接着層6、透明樹脂層7などが、転写層9を構成しており、転写層9が成形樹脂層8に転写されて第1の実施態様の樹脂成形品となる。 The transfer film for three-dimensional molding of the first embodiment may be provided with a decoration layer 5 as necessary for the purpose of imparting decorativeness to the three-dimensional transfer film. Moreover, you may have the contact bonding layer 6 as needed for the purpose of improving the adhesiveness of the molding resin layer 8, etc. Moreover, you may provide the transparent resin layer 7 as needed for the purpose of improving the adhesiveness of the protective layer 3, the primer layer 4, and the contact bonding layer 6, etc. In the transfer film for three-dimensional molding according to the first embodiment, the protective layer 3, the primer layer 4, the decorative layer 5, the adhesive layer 6, the transparent resin layer 7 and the like further provided as necessary constitute the transfer layer 9. The transfer layer 9 is transferred to the molded resin layer 8 to form the resin molded product of the first embodiment.
 第1の実施態様の三次元成形用転写フィルムの積層構造として、転写用基材/保護層がこの順に積層された積層構造;転写用基材/保護層/プライマー層がこの順に積層された積層構造;転写用基材/離型層/保護層/プライマー層がこの順に積層された積層構造;転写用基材/離型層/保護層/プライマー層/装飾層がこの順に積層された積層構造;転写用基材/離型層/保護層/プライマー層/装飾層/接着層がこの順に積層された積層構造;転写用基材/離型層/保護層/プライマー層/透明樹脂層/接着層がこの順に積層された積層構造などが挙げられる。 As a laminated structure of the transfer film for three-dimensional molding of the first embodiment, a laminated structure in which a transfer substrate / protective layer is laminated in this order; a laminate in which a transfer substrate / protective layer / primer layer is laminated in this order Structure: Laminated structure in which transfer substrate / release layer / protective layer / primer layer are laminated in this order; Laminated structure in which transfer substrate / release layer / protective layer / primer layer / decorative layer are laminated in this order Laminated structure in which transfer substrate / release layer / protective layer / primer layer / decoration layer / adhesive layer are laminated in this order; transfer substrate / release layer / protective layer / primer layer / transparent resin layer / adhesive Examples include a laminated structure in which layers are laminated in this order.
 また、第2の実施態様の三次元成形用転写フィルムは、転写用基材1及び離型層2を有する支持体10の離型層2上に、転写層9を有する。第2の実施態様の三次元成形用転写フィルムにおいては、転写用基材1及び離型層2が、支持体10を構成しており、当該支持体10は、三次元成形用転写フィルムを成形樹脂層8に積層させた後に、剥離除去される。 The transfer film for three-dimensional molding of the second embodiment has a transfer layer 9 on the release layer 2 of the support 10 having the transfer substrate 1 and the release layer 2. In the transfer film for three-dimensional molding of the second embodiment, the transfer substrate 1 and the release layer 2 constitute a support body 10, and the support body 10 forms a transfer film for three-dimensional molding. After being laminated on the resin layer 8, it is peeled off.
 第2の実施態様において、転写層9は、保護層3を有していることが好ましい。また、保護層3は、離型層2と接面していることが好ましい。また、転写層9が保護層3を有する場合、保護層3の支持体10とは反対側には、保護層3と隣接する層との密着性を向上させることなどを目的として、必要に応じて、プライマー層4を設けてもよい。また、転写層9には、三次元成形用転写フィルムに装飾性を付与することなどを目的として、必要に応じて、装飾層5を設けてもよい。また、成形樹脂層8の密着性を高めることなどを目的として、必要に応じて、接着層6を有していてもよい。また、保護層3やプライマー層4と接着層6との密着性を向上させることなどを目的として、必要に応じて、透明樹脂層7を設けてもよい。第2の実施態様の三次元成形用転写フィルムにおいて、保護層3、プライマー層4、装飾層5、接着層6、透明樹脂層7などが、転写層9を構成しており、転写層9が成形樹脂層8に転写されて第2の実施態様の樹脂成形品となる。 In the second embodiment, the transfer layer 9 preferably has the protective layer 3. The protective layer 3 is preferably in contact with the release layer 2. Further, when the transfer layer 9 has the protective layer 3, on the opposite side of the protective layer 3 from the support 10, for the purpose of improving the adhesion between the protective layer 3 and the adjacent layer, as necessary, The primer layer 4 may be provided. In addition, the transfer layer 9 may be provided with a decoration layer 5 as needed for the purpose of imparting decoration to the transfer film for three-dimensional molding. Moreover, you may have the contact bonding layer 6 as needed for the purpose of improving the adhesiveness of the molding resin layer 8, etc. Moreover, you may provide the transparent resin layer 7 as needed for the purpose of improving the adhesiveness of the protective layer 3, the primer layer 4, and the contact bonding layer 6, etc. In the transfer film for three-dimensional molding of the second embodiment, the protective layer 3, the primer layer 4, the decorative layer 5, the adhesive layer 6, the transparent resin layer 7 and the like constitute the transfer layer 9, and the transfer layer 9 The molded resin layer 8 is transferred to the resin molded product of the second embodiment.
 第2の実施態様の三次元成形用転写フィルムの積層構造として、転写用基材/離型層/保護層がこの順に積層された積層構造;転写用基材/離型層/保護層/プライマー層がこの順に積層された積層構造;転写用基材/離型層/保護層/プライマー層/装飾層がこの順に積層された積層構造;転写用基材/離型層/保護層/プライマー層/装飾層/接着層がこの順に積層された積層構造;転写用基材/離型層/保護層/プライマー層/透明樹脂層/接着層がこの順に積層された積層構造などが挙げられる。 As the laminated structure of the transfer film for three-dimensional molding of the second embodiment, a laminated structure in which a transfer substrate / release layer / protective layer are laminated in this order; transfer substrate / release layer / protective layer / primer Laminated structure in which layers are laminated in this order; Laminated structure in which transfer substrate / release layer / protective layer / primer layer / decorative layer are laminated in this order; transfer substrate / release layer / protective layer / primer layer / Laminated structure in which decorative layer / adhesive layer is laminated in this order; laminated structure in which transfer substrate / release layer / protective layer / primer layer / transparent resin layer / adhesive layer are laminated in this order.
 図1に、本発明の三次元成形用転写フィルムの積層構造の一態様として、転写用基材/離型層/保護層/プライマー層/装飾層/接着層がこの順に積層された三次元成形用転写フィルムの一形態の断面構造の模式図を示す。また、図2に、本発明の三次元成形用転写フィルムの積層構造の一態様として、転写用基材/離型層/保護層/プライマー層/透明樹脂層/接着層がこの順に積層された三次元成形用転写フィルムの一形態の断面構造の模式図を示す。 FIG. 1 shows a three-dimensional molding in which a transfer substrate / release layer / protective layer / primer layer / decoration layer / adhesive layer are laminated in this order as an embodiment of the laminated structure of the three-dimensional molding transfer film of the present invention. The schematic diagram of the cross-sectional structure of one form of the transfer film for water is shown. Further, in FIG. 2, as one aspect of the laminated structure of the transfer film for three-dimensional molding of the present invention, a transfer substrate / release layer / protective layer / primer layer / transparent resin layer / adhesive layer were laminated in this order. The schematic diagram of the cross-section of one form of the transfer film for three-dimensional shaping | molding is shown.
三次元成形用転写フィルムを形成する各層の組成
[支持体10]
 第1の実施態様の三次元成形用転写フィルムは、支持体10として、転写用基材1、必要に応じて離型層2を有する。転写用基材1の上に形成された保護層3、必要に応じてさらに形成されるプライマー層4、装飾層5、接着層6、透明樹脂層7などが、転写層9を構成している。第1の実施態様においては、三次元成形用転写フィルムと成形樹脂を一体成形した後に、支持体10と転写層9の界面が引き剥がされ、支持体10が剥離除去されて樹脂成形品が得られる。
Composition of each layer forming three-dimensional molding transfer film [support 10]
The three-dimensional molding transfer film of the first embodiment has a transfer substrate 1 and, if necessary, a release layer 2 as a support 10. The protective layer 3 formed on the transfer substrate 1, the primer layer 4, the decoration layer 5, the adhesive layer 6, the transparent resin layer 7 and the like further formed as necessary constitute the transfer layer 9. . In the first embodiment, after integrally molding the three-dimensional molding transfer film and the molding resin, the interface between the support 10 and the transfer layer 9 is peeled off, and the support 10 is peeled off to obtain a resin molded product. It is done.
 また、第2の実施態様の三次元成形用転写フィルムは、支持体10として、転写用基材1及び離型層2を有する。支持体10の上に形成された保護層3、プライマー層4、装飾層5、接着層6、透明樹脂層7などが、転写層9を構成している。第2の実施態様においては、三次元成形用転写フィルムと成形樹脂を一体成形した後に、支持体10の離型層2と転写層9の界面が引き剥がされ、支持体10が剥離除去されて樹脂成形品が得られる。 The transfer film for three-dimensional molding of the second embodiment has a transfer substrate 1 and a release layer 2 as the support 10. A protective layer 3, a primer layer 4, a decoration layer 5, an adhesive layer 6, a transparent resin layer 7 and the like formed on the support 10 constitute a transfer layer 9. In the second embodiment, after the three-dimensional molding transfer film and the molding resin are integrally molded, the interface between the release layer 2 and the transfer layer 9 of the support 10 is peeled off, and the support 10 is peeled and removed. A resin molded product is obtained.
(転写用基材1)
 本発明において、転写用基材1は、三次元成形用転写フィルムの支持部材としての役割を果たす。本発明で用いられる転写用基材1は、真空成形適性を考慮して選定され、代表的には熱可塑性樹脂からなる樹脂シートが使用される。該熱可塑性樹脂としては、ポリエステル樹脂;アクリル樹脂;ポリプロピレン、ポリエチレン等のポリオレフィン樹脂;ポリカーボネート樹脂;アクリロニトリル-ブタジエン-スチレン樹脂(ABS樹脂);塩化ビニル樹脂等が挙げられる。
(Transfer substrate 1)
In the present invention, the transfer substrate 1 serves as a support member for the transfer film for three-dimensional molding. The transfer substrate 1 used in the present invention is selected in consideration of suitability for vacuum forming, and a resin sheet made of a thermoplastic resin is typically used. Examples of the thermoplastic resin include polyester resin; acrylic resin; polyolefin resin such as polypropylene and polyethylene; polycarbonate resin; acrylonitrile-butadiene-styrene resin (ABS resin); vinyl chloride resin and the like.
 本発明においては、転写用基材1として、ポリエステルシートを用いることが、耐熱性、寸法安定性、成形性、及び汎用性の点で好ましい。ポリエステルシートを構成するポリエステル樹脂とは、多価カルボン酸と、多価アルコールとから重縮合によって得られるエステル基を含むポリマーを示し、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)などを好ましく挙げることができ、ポリエチレンテレフタレート(PET)が、耐熱性や寸法安定性の点で特に好ましい。 In the present invention, it is preferable to use a polyester sheet as the transfer substrate 1 in terms of heat resistance, dimensional stability, moldability, and versatility. The polyester resin constituting the polyester sheet refers to a polymer containing an ester group obtained by polycondensation from a polyvalent carboxylic acid and a polyhydric alcohol. Polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN) and the like can be mentioned preferably, and polyethylene terephthalate (PET) is particularly preferable in terms of heat resistance and dimensional stability.
 本発明において、転写用基材1は、後述の保護層3の表面に凹凸形状を付与することや、耐ブロッキング性を向上させることなどを目的として、必要に応じて少なくとも一方の表面に凹凸形状を有していてもよい。また、転写用基材1の凹凸形状を有する表面に離型層2を介して保護層3を積層することにより、保護層3の表面に、転写用基材1の凹凸形状に対応した凹凸形状を形成し、本発明の目的に反しない範囲において、保護層3の表面にマットな意匠を付与することができる。更に、保護層3の表面にマットな意匠を付与する別の方法として、離型層2の中に有機や無機のフィラーを添加する方法がある。また、保護層3の表面に凹凸形状を付与せずに耐ブロッキング性を向上させる場合には、転写用基材1の保護層3とは反対側の表面のみに凹凸形状を形成したり、転写用基材1の凹凸形状を小さくしたり、離型層2の厚みを調整すればよい。 In the present invention, the transfer substrate 1 is provided with a concavo-convex shape on at least one surface as necessary for the purpose of imparting a concavo-convex shape to the surface of the protective layer 3 to be described later or improving blocking resistance. You may have. Further, by laminating the protective layer 3 on the surface of the transfer substrate 1 having the concavo-convex shape via the release layer 2, the concavo-convex shape corresponding to the concavo-convex shape of the transfer substrate 1 is formed on the surface of the protective layer 3. In the range which does not contradict the purpose of the present invention, a matte design can be imparted to the surface of the protective layer 3. Furthermore, as another method for imparting a matte design to the surface of the protective layer 3, there is a method of adding an organic or inorganic filler into the release layer 2. In addition, in the case where the blocking resistance is improved without imparting the irregular shape to the surface of the protective layer 3, the irregular shape is formed only on the surface opposite to the protective layer 3 of the transfer substrate 1 or the transfer layer 1 is transferred. What is necessary is just to reduce the uneven | corrugated shape of the base material 1 for an adjustment, or to adjust the thickness of the mold release layer 2.
 転写用基材1の表面に凹凸形状を形成する方法としては、サンドブラスト加工、ヘアライン加工、レーザ加工、エンボス加工などの物理的な方法、又は薬品や溶剤による腐食処理などの化学的な方法のほか、転写用基材1に微粒子を含有させることにより、当該微粒子の形状を転写用基材1の表面に表出させる方法が例示される。これらの中でも、転写用基材1に微粒子を含有させる方法が好適に用いられる。 In addition to physical methods such as sand blasting, hairline processing, laser processing, embossing, or chemical methods such as corrosion treatment with chemicals or solvents, the method for forming the uneven shape on the surface of the transfer substrate 1 is as follows. Examples of the method of causing the transfer substrate 1 to contain fine particles so that the shape of the fine particles is exposed on the surface of the transfer substrate 1 are exemplified. Among these, a method in which the transfer substrate 1 contains fine particles is preferably used.
 微粒子としては、合成樹脂粒子や無機粒子が代表的に挙げられるが、三次元成形性を良好とする観点からは合成樹脂粒子を用いることが特に好ましい。合成樹脂粒子としては、合成樹脂により形成された粒子であれば、特に制限されず、例えば、アクリルビーズ、ウレタンビーズ、シリコーンビーズ、ナイロンビーズ、スチレンビーズ、メラミンビーズ、ウレタンアクリルビーズ、ポリエステルビーズ、ポリエチレンビーズなどが挙げられる。これらの合成樹脂粒子の中でも、耐傷性に優れた凹凸形状を保護層3に形成する観点からは、好ましくはアクリルビーズ、ウレタンビーズ、シリコーンビーズが挙げられる。また、無機粒子としては、炭酸カルシウム、炭酸マグネシウム、硫酸カルシウム、硫酸バリウム、リン酸リチウム、リン酸マグネシウム、リン酸カルシウム、酸化アルミニウム、酸化ケイ素、カオリンなどが挙げられる。これらの微粒子は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。微粒子の粒子径としては、好ましくは0.3~25μm程度、より好ましくは0.5~5μm程度が挙げられる。なお、本発明における微粒子の粒子径は、島津レーザ回折式粒度分布測定装置SALD-2100-WJA1を使用し、圧縮空気を利用してノズルから測定対象となる粉体を噴射し、空気中に分散させて測定する噴射型乾式測定方式によるものを指す。 As the fine particles, synthetic resin particles and inorganic particles are representatively exemplified, but it is particularly preferable to use synthetic resin particles from the viewpoint of improving the three-dimensional moldability. The synthetic resin particle is not particularly limited as long as it is a particle formed of a synthetic resin. For example, acrylic beads, urethane beads, silicone beads, nylon beads, styrene beads, melamine beads, urethane acrylic beads, polyester beads, polyethylene Examples include beads. Among these synthetic resin particles, acrylic beads, urethane beads, and silicone beads are preferably used from the viewpoint of forming an uneven shape excellent in scratch resistance on the protective layer 3. Examples of inorganic particles include calcium carbonate, magnesium carbonate, calcium sulfate, barium sulfate, lithium phosphate, magnesium phosphate, calcium phosphate, aluminum oxide, silicon oxide, and kaolin. These fine particles may be used alone or in combination of two or more. The particle diameter of the fine particles is preferably about 0.3 to 25 μm, more preferably about 0.5 to 5 μm. The particle size of the fine particles in the present invention is dispersed in the air by using the Shimadzu laser diffraction particle size distribution analyzer SALD-2100-WJA1, using the compressed air to inject the powder to be measured from the nozzle. It is based on a spray-type dry measurement system that measures the above.
 転写用基材1に含まれる微粒子の含有量としては、目的に応じて適宜設定すればよく、例えば、転写用基材1に含まれる樹脂100質量部に対して、好ましくは1~100質量部程度、より好ましくは5~80質量部程度が挙げられる。また、転写用基材1には、必要に応じて各種安定剤、潤滑剤、酸化防止剤、帯電防止剤、消泡剤、蛍光増白剤などを配合することもできる。 The content of the fine particles contained in the transfer substrate 1 may be appropriately set according to the purpose. For example, the content is preferably 1 to 100 parts by mass with respect to 100 parts by mass of the resin contained in the transfer substrate 1. About 5 to 80 parts by mass. In addition, various stabilizers, lubricants, antioxidants, antistatic agents, antifoaming agents, fluorescent whitening agents, and the like can be blended in the transfer substrate 1 as necessary.
 本発明で転写用基材1として好適に用いられるポリエステルシートは、例えば以下のように製造される。まず上記のポリエステル系樹脂とその他の原料をエクストルーダーなどの周知の溶融押出装置に供給し、当該ポリエステル系樹脂の融点以上の温度に加熱し溶融する。次いで溶融ポリマーを押出しながら、回転冷却ドラム上でガラス転移温度以下の温度になるよう急冷固化し、実質的に非晶状態の未配向シートを得る。このシートを2軸方向に延伸してシート化し、熱固定を施すことで得られる。この場合、延伸方法は逐次2軸延伸でも同時2軸延伸でもよい。また、必要に応じ、熱固定を施す前又は後に再度縦及び/又は横方向に延伸してもよい。本発明においては十分な寸法安定性を得るため延伸倍率を面積倍率として7倍以下が好ましく、5倍以下がより好ましく、3倍以下がさらに好ましい。この範囲内であれば、得られるポリエステルシートを三次元成形用転写フィルムに用いた場合、該三次元成形用転写フィルムが成形樹脂を射出する際の温度域で再び収縮せず、当該温度域で必要なシート強度を得ることができる。なお、ポリエステルシートは、上記のように製造してもよいし、市販のものを用いてもよい。 The polyester sheet suitably used as the transfer substrate 1 in the present invention is produced, for example, as follows. First, the above polyester-based resin and other raw materials are supplied to a known melt extrusion apparatus such as an extruder, and heated to a temperature equal to or higher than the melting point of the polyester-based resin to be melted. Next, while extruding the molten polymer, it is rapidly cooled and solidified on the rotary cooling drum to a temperature not higher than the glass transition temperature to obtain a substantially amorphous unoriented sheet. This sheet is obtained by stretching in a biaxial direction to form a sheet and heat-setting. In this case, the stretching method may be sequential biaxial stretching or simultaneous biaxial stretching. Moreover, you may extend | stretch longitudinally and / or a horizontal direction again before or after performing heat setting as needed. In the present invention, in order to obtain sufficient dimensional stability, the draw ratio is preferably 7 times or less, more preferably 5 times or less, and further preferably 3 times or less, as an area ratio. Within this range, when the obtained polyester sheet is used for a three-dimensional molding transfer film, the three-dimensional molding transfer film does not shrink again in the temperature range when the molding resin is injected, Necessary sheet strength can be obtained. In addition, a polyester sheet may be manufactured as described above, or a commercially available one may be used.
 また、転写用基材1は、離型層2との密着性を向上させる目的で、所望により、片面又は両面に酸化法や凹凸化法などの物理的又は化学的表面処理を施すことができる。上記酸化法としては、例えばコロナ放電処理、クロム酸化処理、火炎処理、熱風処理、オゾン・紫外線処理法などが挙げられ、凹凸化法としては、例えばサンドブラスト法、溶剤処理法などが挙げられる。これらの表面処理は、転写用基材1の種類に応じて適宜選択されるが、一般にはコロナ放電処理法が効果及び操作性などの面から好ましく用いられる。また、転写用基材1は、転写用基材1とその上に設けられる層との層間密着性の強化などを目的として、易接着層を形成するなどの処理を施してもよい。なお、ポリエステルシートとして市販のものを用いる場合には、該市販品は予め上記したような表面処理が施されたものや、易接着剤層が設けられたものも用いることができる。 In addition, the transfer substrate 1 can be subjected to physical or chemical surface treatment such as an oxidation method or a concavo-convex method on one side or both sides as desired for the purpose of improving the adhesion to the release layer 2. . Examples of the oxidation method include corona discharge treatment, chromium oxidation treatment, flame treatment, hot air treatment, ozone / ultraviolet treatment method, and examples of the unevenness method include a sand blast method and a solvent treatment method. These surface treatments are appropriately selected according to the type of the transfer substrate 1, but in general, the corona discharge treatment method is preferably used from the viewpoints of effects and operability. Further, the transfer substrate 1 may be subjected to a treatment such as forming an easy-adhesion layer for the purpose of enhancing interlayer adhesion between the transfer substrate 1 and a layer provided thereon. In addition, when using a commercially available polyester sheet, the commercially available product that has been subjected to surface treatment as described above or that has an easy-adhesive layer can be used.
 転写用基材1の厚みは、通常10~150μmであり、10~125μmが好ましく、10~80μmがより好ましい。また、転写用基材1としては、これら樹脂の単層シート、あるいは同種又は異種樹脂による複層シートを用いることができる。 The thickness of the transfer substrate 1 is usually 10 to 150 μm, preferably 10 to 125 μm, more preferably 10 to 80 μm. Moreover, as the base material 1 for transfer, a single layer sheet of these resins or a multilayer sheet made of the same or different resins can be used.
(離型層2)
 第1の実施態様において、離型層2は、支持体10と転写層9との剥離性を高めることなどを目的として、必要に応じて、転写用基材1の転写層9が積層される側の表面に設けられる。さらに、第1の実施態様において、離型層2は、三次元成形用転写フィルムの成形性を向上させ、かつ、成形後の樹脂成形品の耐久性及び耐薬品性を向上させる機能も発揮し得る。
(Release layer 2)
In the first embodiment, the release layer 2 is laminated with the transfer layer 9 of the transfer substrate 1 as necessary for the purpose of improving the peelability between the support 10 and the transfer layer 9. On the side surface. Furthermore, in the first embodiment, the release layer 2 also exhibits the function of improving the moldability of the three-dimensional molding transfer film and improving the durability and chemical resistance of the molded resin product after molding. obtain.
 一方、第2の実施態様において、離型層2は、支持体10と転写層9との剥離性を高めることなどを目的として、転写用基材1の転写層9が積層される側の表面に設けられる。さらに、第2の実施態様において、離型層2は、三次元成形用転写フィルムの成形性を向上させ、かつ、成形後の樹脂成形品の耐久性及び耐薬品性を向上させる機能も発揮する。 On the other hand, in the second embodiment, the release layer 2 is a surface on the side on which the transfer layer 9 of the transfer substrate 1 is laminated for the purpose of improving the peelability between the support 10 and the transfer layer 9. Provided. Furthermore, in the second embodiment, the release layer 2 exhibits the functions of improving the moldability of the three-dimensional molding transfer film and improving the durability and chemical resistance of the molded resin product after molding. .
 本発明において、離型層2は、全面を被覆(全面ベタ状)しているベタ離型層であってもよいし、一部に設けられるものであってもよい。通常は、剥離性、成形性、成形後の樹脂成形品の耐久性及び耐薬品性などを考慮して、ベタ離型層が好ましい。 In the present invention, the release layer 2 may be a solid release layer covering the entire surface (entirely solid), or may be provided in a part. In general, a solid release layer is preferable in consideration of peelability, moldability, durability of the molded resin product after molding, chemical resistance, and the like.
 第1の実施態様においては、離型層2のマルテンス硬さが、7~45N/mm2の範囲にあることが好ましい。離型層2のマルテンス硬さがこのような特定の範囲にあることにより、三次元成形用転写フィルムの成形性が向上し、成形後の樹脂成形品に対して優れた耐久性及び耐薬品性を付与することが可能となる。この機序としては、次のように考えることができる。すなわち、三次元成形用転写フィルムが成形樹脂層と積層される際には、三次元成形用転写フィルムの支持体と転写層の両方に高い熱圧が加えられ、さらに、三次元成形用転写フィルムが引き延ばされる。この際に、離型層の硬さが上記特定の範囲内にあることにより、成形時に離型層が不適切に変形することが効果的に抑制され、これに伴い、転写層が不適切に変形することも抑制されていると考えられる。これにより、三次元成形用転写フィルムの成形性に優れているだけでなく、転写層の劣化が抑制され、離型層が剥離された後の樹脂成形品の表面物性(耐久性及び耐薬品性)が向上していると考えられる。 In the first embodiment, the Martens hardness of the release layer 2 is preferably in the range of 7 to 45 N / mm 2 . When the Martens hardness of the release layer 2 is in such a specific range, the moldability of the transfer film for three-dimensional molding is improved, and the durability and chemical resistance are excellent with respect to the resin molded product after molding. Can be given. This mechanism can be considered as follows. That is, when the three-dimensional molding transfer film is laminated with the molding resin layer, high heat pressure is applied to both the support and the transfer layer of the three-dimensional molding transfer film. Is extended. At this time, when the hardness of the release layer is within the above specific range, it is effectively suppressed that the release layer is inappropriately deformed during molding, and accordingly, the transfer layer is inappropriately formed. It is considered that deformation is also suppressed. As a result, the transfer film for three-dimensional molding is not only excellent in moldability, but also the surface properties (durability and chemical resistance) of the resin molded product after the release layer is prevented from being deteriorated and the release layer is peeled off. ) Is considered to have improved.
 第1の実施態様において、三次元成形用転写フィルムの成形性を効果的に向上させ、かつ、成形後の樹脂成形品に対してより一層優れた耐久性及び耐薬品性を付与する観点から、離型層2のマルテンス硬さとしては、好ましくは7~30N/mm2程度、より好ましくは7~27N/mm2程度、さらに好ましくは10~25N/mm2程度、特に好ましくは12~20N/mm2程度が挙げられる。 In the first embodiment, from the viewpoint of effectively improving the moldability of the three-dimensional molding transfer film and imparting further excellent durability and chemical resistance to the molded resin product after molding, the Martens hardness of the release layer 2, preferably 7 ~ 30 N / mm 2, more preferably about 7 ~ 27N / mm 2, and more preferably about 10 ~ 25 N / mm 2 approximately, particularly preferably 12 ~ 20 N / mm 2 or so.
 また、第2の実施態様においては、離型層2のマルテンス硬さが、7~45N/mm2の範囲にあること特徴としている。離型層2のマルテンス硬さがこのような特定の範囲にあることにより、三次元成形用転写フィルムの成形性が向上し、成形後の樹脂成形品に対して優れた耐久性及び耐薬品性を付与することが可能となる。この機序としては、次のように考えることができる。すなわち、三次元成形用転写フィルムが成形樹脂層と積層される際には、三次元成形用転写フィルムの支持体と転写層の両方に高い熱圧が加えられ、さらに、三次元成形用転写フィルムが引き延ばされる。この際に、離型層の硬さが上記特定の範囲内にあることにより、成形時に離型層が不適切に変形することが効果的に抑制され、これに伴い、転写層が不適切に変形することも抑制されていると考えられる。これにより、三次元成形用転写フィルムの成形性に優れているだけでなく、転写層の劣化が抑制され、離型層が剥離された後の樹脂成形品の表面物性(耐久性及び耐薬品性)が向上していると考えられる。 In the second embodiment, the Martens hardness of the release layer 2 is in the range of 7 to 45 N / mm 2 . When the Martens hardness of the release layer 2 is in such a specific range, the moldability of the transfer film for three-dimensional molding is improved, and the durability and chemical resistance are excellent with respect to the resin molded product after molding. Can be given. This mechanism can be considered as follows. That is, when the three-dimensional molding transfer film is laminated with the molding resin layer, high heat pressure is applied to both the support and the transfer layer of the three-dimensional molding transfer film. Is extended. At this time, when the hardness of the release layer is within the above specific range, it is effectively suppressed that the release layer is inappropriately deformed during molding, and accordingly, the transfer layer is inappropriately formed. It is considered that deformation is also suppressed. As a result, the transfer film for three-dimensional molding is not only excellent in moldability, but also the surface properties (durability and chemical resistance) of the resin molded product after the release layer is prevented from being deteriorated and the release layer is peeled off. ) Is considered to have improved.
 第2の実施態様において、三次元成形用転写フィルムの成形性を効果的に向上させ、かつ、成形後の樹脂成形品に対してより一層優れた耐久性及び耐薬品性を付与する観点から、離型層2のマルテンス硬さとしては、好ましくは7~30N/mm2程度、より好ましくは10~25N/mm2程度、さらに好ましくは12~20N/mm2程度が挙げられる。 In the second embodiment, from the viewpoint of effectively improving the moldability of the transfer film for three-dimensional molding, and imparting further excellent durability and chemical resistance to the molded resin product after molding, the Martens hardness of the release layer 2, preferably 7 ~ 30 N / mm 2, more preferably about 10 ~ 25 N / mm 2, and more preferably about include about 12 ~ 20N / mm 2.
 本発明において、離型層のマルテンス硬さの測定方法は、以下の通りである。 In the present invention, the method for measuring the Martens hardness of the release layer is as follows.
<離型層のマルテンス硬さの測定>
 マルテンス硬さは、表面皮膜物性試験機(PICODENTOR HM-500、株式会社フィッシャー・インストルメンツ製)を用いて測定される値であり、具体的な測定方法は以下の通りである。この測定方法では、温度25℃及び相対湿度50%の環境下、図5(a)に示されるような対面角136°のダイヤモンド圧子(ビッカース圧子)を用いて、各三次元成形用転写フィルムの離型層にダイヤモンド圧子を押し込み、押し込み荷重Fと押し込み深さh(圧痕深さ)から下記の式(1)により硬さを求める。押し込み条件は、離型層に対して、室温(実験室環境温度)において、図5(b)に示される通り、先ず0~0.1mNまでの負荷を20秒間で加え、次に0.1mNの負荷で5秒間保持し、最後に0.1~0mNまでの除荷を20秒間で行う。三次元成形用転写フィルムについて、セロハンテープを用いて転写層を離型層との界面で剥離して取り除くことで、転写用基材及び離型層を有する支持体を得、この支持体の離型層側の面について、測定を実施する。
Figure JPOXMLDOC01-appb-M000001
<Measurement of Martens hardness of release layer>
The Martens hardness is a value measured using a surface film physical property tester (PICODERTOR HM-500, manufactured by Fisher Instruments Co., Ltd.), and a specific measurement method is as follows. In this measurement method, a diamond indenter (Vickers indenter) having a facing angle of 136 ° as shown in FIG. 5A is used in an environment of a temperature of 25 ° C. and a relative humidity of 50%. A diamond indenter is pushed into the release layer, and the hardness is obtained from the indentation load F and the indentation depth h (indentation depth) by the following equation (1). The indentation conditions were as follows. First, a load of 0 to 0.1 mN was applied for 20 seconds to the release layer at room temperature (laboratory environmental temperature) as shown in FIG. 5B, and then 0.1 mN. Is held for 5 seconds, and finally unloading from 0.1 to 0 mN is performed in 20 seconds. For the transfer film for three-dimensional molding, the transfer layer is peeled off at the interface with the release layer using a cellophane tape, and a support having the transfer substrate and the release layer is obtained. Measurement is performed on the surface on the mold layer side.
Figure JPOXMLDOC01-appb-M000001
 第1の実施態様において、離型層2を構成する素材としては、特に制限されないが、三次元成形用転写フィルムの成形性を効果的に向上させ、かつ、成形後の樹脂成形品に対してより一層優れた耐久性及び耐薬品性を付与する観点から、離型層2は、電離放射線硬化性樹脂組成物の硬化物により構成されていることが好ましい。 In the first embodiment, the material constituting the release layer 2 is not particularly limited, but effectively improves the moldability of the three-dimensional molding transfer film, and the molded resin product after molding. From the viewpoint of imparting further excellent durability and chemical resistance, the release layer 2 is preferably composed of a cured product of an ionizing radiation curable resin composition.
 また、第2の実施態様において、離型層2を構成する素材としては、マルテンス硬さが上記の範囲となれば特に制限されないが、三次元成形用転写フィルムの成形性を効果的に向上させ、かつ、成形後の樹脂成形品に対してより一層優れた耐久性及び耐薬品性を付与する観点から、離型層2は、電離放射線硬化性樹脂組成物の硬化物により構成されていることが好ましい。 In the second embodiment, the material constituting the release layer 2 is not particularly limited as long as the Martens hardness is in the above range, but it effectively improves the moldability of the transfer film for three-dimensional molding. And from the viewpoint of imparting even better durability and chemical resistance to the molded resin product after molding, the release layer 2 is composed of a cured product of an ionizing radiation curable resin composition. Is preferred.
 以下、本発明の離型層2の形成に用いられる電離放射線硬化性樹脂について、詳述する。 Hereinafter, the ionizing radiation curable resin used for forming the release layer 2 of the present invention will be described in detail.
(電離放射線硬化性樹脂)
 離型層2の形成に使用される電離放射線硬化性樹脂とは、電離放射線を照射することにより、架橋、硬化する樹脂であり、具体的には、分子中に重合性不飽和結合又はエポキシ基を有する、プレポリマー、オリゴマー、及びモノマーなどのうち少なくとも1種を適宜混合したものが挙げられる。ここで電離放射線とは、電磁波又は荷電粒子線のうち、分子を重合あるいは架橋しうるエネルギー量子を有するものを意味し、通常紫外線(UV)又は電子線(EB)が用いられるが、その他、X線、γ線等の電磁波、α線、イオン線等の荷電粒子線も含むものである。電離放射線硬化性樹脂の中でも、電子線硬化性樹脂は、無溶剤化が可能であり、光重合用開始剤を必要とせず、安定な硬化特性が得られるため、離型層2の形成において好適に使用される。
(Ionizing radiation curable resin)
The ionizing radiation curable resin used for forming the release layer 2 is a resin that crosslinks and cures when irradiated with ionizing radiation. Specifically, a polymerizable unsaturated bond or an epoxy group in the molecule. And a mixture of at least one of prepolymers, oligomers, monomers, and the like, as appropriate. Here, ionizing radiation means an electromagnetic wave or charged particle beam having an energy quantum capable of polymerizing or cross-linking molecules, and usually ultraviolet (UV) or electron beam (EB) is used. It also includes electromagnetic waves such as rays and γ rays, and charged particle rays such as α rays and ion rays. Among the ionizing radiation curable resins, the electron beam curable resin can be made solvent-free, does not require an initiator for photopolymerization, and provides stable curing characteristics. Used for.
 電離放射線硬化性樹脂として使用される上記モノマーとしては、分子中にラジカル重合性不飽和基を持つ(メタ)アクリレートモノマーが好適であり、中でも多官能性(メタ)アクリレートモノマーが好ましい。多官能性(メタ)アクリレートモノマーとしては、分子内に重合性不飽和結合を2個以上(2官能以上)、好ましくは3個以上(3官能以上)有する(メタ)アクリレートモノマーであればよい。多官能性(メタ)アクリレートとして、具体的には、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、アリル化シクロヘキシルジ(メタ)アクリレート、イソシアヌレートジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エチレンオキシド変性ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。これらのモノマーは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 As the monomer used as the ionizing radiation curable resin, a (meth) acrylate monomer having a radically polymerizable unsaturated group in the molecule is preferable, and a polyfunctional (meth) acrylate monomer is particularly preferable. The polyfunctional (meth) acrylate monomer may be a (meth) acrylate monomer having two or more polymerizable unsaturated bonds (bifunctional or more), preferably three or more (trifunctional or more) in the molecule. Specific examples of the polyfunctional (meth) acrylate include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di ( (Meth) acrylate, neopentyl glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, caprolactone modified dicyclopentenyl di ( (Meth) acrylate, ethylene oxide-modified phosphoric acid di (meth) acrylate, allylated cyclohexyl di (meth) acrylate, isocyanurate di (meth) acrylate, trimethylolpropane tri (meth) acrylate , Ethylene oxide modified trimethylolpropane tri (meth) acrylate, dipentaerythritol tri (meth) acrylate, propionic acid modified dipentaerythritol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, propylene oxide modified trimethylolpropane tri ( (Meth) acrylate, tris (acryloxyethyl) isocyanurate, propionic acid modified dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ethylene oxide modified dipentaerythritol hexa (meth) acrylate, caprolactone modified dipentaerythritol Examples include hexa (meth) acrylate. These monomers may be used individually by 1 type, and may be used in combination of 2 or more type.
 また、電離放射線硬化性樹脂として使用される上記オリゴマーとしては、分子中にラジカル重合性不飽和基を持つ(メタ)アクリレートオリゴマーが好適であり、中でも分子内に重合性不飽和結合を2個以上(2官能以上)有する多官能性(メタ)アクリレートオリゴマーが好ましい。多官能性(メタ)アクリレートオリゴマーとしては、例えば、ポリカーボネート(メタ)アクリレート、アクリルシリコーン(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリブタジエン(メタ)アクリレート、シリコーン(メタ)アクリレート、分子中にカチオン重合性官能基を有するオリゴマー(例えば、ノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、脂肪族ビニルエーテル、芳香族ビニルエーテル等)等が挙げられる。ここで、ポリカーボネート(メタ)アクリレートは、ポリマー主鎖にカーボネート結合を有し、かつ末端または側鎖に(メタ)アクリレート基を有するものであれば特に制限されず、例えば、ポリカーボネートポリオールを(メタ)アクリル酸でエステル化することにより得ることができる。ポリカーボネート(メタ)アクリレートは、例えば、ポリカーボネート骨格を有するウレタン(メタ)アクリレートなどであってもよい。ポリカーボネート骨格を有するウレタン(メタ)アクリレートは、例えば、ポリカーボネートポリオールと、多価イソシアネート化合物と、ヒドロキシ(メタ)アクリレートとを反応させることにより得られる。アクリルシリコーン(メタ)アクリレートは、シリコーンマクロモノマーを(メタ)アクリレートモノマーとラジカル共重合させることにより得ることができる。ウレタン(メタ)アクリレートは、例えば、ポリエーテルポリオールやポリエステルポリオールやカプロラクトン系ポリオールとポリイソシアネート化合物の反応によって得られるポリウレタンオリゴマーを、(メタ)アクリル酸でエステル化することにより得ることができる。エポキシ(メタ)アクリレートは、例えば、比較的低分子量のビスフェノール型エポキシ樹脂やノボラック型エポキシ樹脂のオキシラン環に、(メタ)アクリル酸を反応しエステル化することにより得ることができる。また、このエポキシ(メタ)アクリレートを部分的に二塩基性カルボン酸無水物で変性したカルボキシル変性型のエポキシ(メタ)アクリレートも用いることができる。ポリエステル(メタ)アクリレートは、例えば多価カルボン酸と多価アルコールの縮合によって得られる両末端に水酸基を有するポリエステルオリゴマーの水酸基を(メタ)アクリル酸でエステル化することにより、或いは多価カルボン酸にアルキレンオキシドを付加して得られるオリゴマーの末端の水酸基を(メタ)アクリル酸でエステル化することにより得ることができる。ポリエーテル(メタ)アクリレートは、ポリエーテルポリオールの水酸基を(メタ)アクリル酸でエステル化することにより得ることができる。ポリブタジエン(メタ)アクリレートは、ポリブタジエンオリゴマーの側鎖に(メタ)アクリル酸を付加することにより得ることができる。シリコーン(メタ)アクリレートは、主鎖にポリシロキサン結合をもつシリコーンの末端又は側鎖に(メタ)アクリル酸を付加することにより得ることができる。これらの中でも、多官能性(メタ)アクリレートオリゴマーとしては、ポリカーボネート(メタ)アクリレート、ウレタン(メタ)アクリレートなどが特に好ましい。これらのオリゴマーは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 The oligomer used as the ionizing radiation curable resin is preferably a (meth) acrylate oligomer having a radical polymerizable unsaturated group in the molecule, and more than two polymerizable unsaturated bonds in the molecule. A polyfunctional (meth) acrylate oligomer having (bifunctional or higher) is preferred. Examples of the polyfunctional (meth) acrylate oligomer include polycarbonate (meth) acrylate, acrylic silicone (meth) acrylate, urethane (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, and polyether (meth) acrylate. , Polybutadiene (meth) acrylate, silicone (meth) acrylate, oligomer having a cationic polymerizable functional group in the molecule (for example, novolac type epoxy resin, bisphenol type epoxy resin, aliphatic vinyl ether, aromatic vinyl ether, etc.) . Here, the polycarbonate (meth) acrylate is not particularly limited as long as it has a carbonate bond in the polymer main chain and a (meth) acrylate group in the terminal or side chain. It can be obtained by esterification with acrylic acid. The polycarbonate (meth) acrylate may be, for example, urethane (meth) acrylate having a polycarbonate skeleton. The urethane (meth) acrylate having a polycarbonate skeleton can be obtained, for example, by reacting a polycarbonate polyol, a polyvalent isocyanate compound, and hydroxy (meth) acrylate. The acrylic silicone (meth) acrylate can be obtained by radical copolymerizing a silicone macromonomer with a (meth) acrylate monomer. The urethane (meth) acrylate can be obtained, for example, by esterifying a polyurethane oligomer obtained by a reaction of a polyether polyol, a polyester polyol or a caprolactone polyol and a polyisocyanate compound with (meth) acrylic acid. Epoxy (meth) acrylate can be obtained, for example, by reacting (meth) acrylic acid with an oxirane ring of a relatively low molecular weight bisphenol type epoxy resin or novolak type epoxy resin and esterifying it. Also, a carboxyl-modified epoxy (meth) acrylate obtained by partially modifying this epoxy (meth) acrylate with a dibasic carboxylic acid anhydride can be used. Polyester (meth) acrylate is obtained by esterifying the hydroxyl group of a polyester oligomer having hydroxyl groups at both ends obtained by condensation of a polyvalent carboxylic acid and a polyhydric alcohol with (meth) acrylic acid, for example, or It can be obtained by esterifying the terminal hydroxyl group of an oligomer obtained by adding an alkylene oxide with (meth) acrylic acid. The polyether (meth) acrylate can be obtained by esterifying the hydroxyl group of the polyether polyol with (meth) acrylic acid. Polybutadiene (meth) acrylate can be obtained by adding (meth) acrylic acid to the side chain of the polybutadiene oligomer. Silicone (meth) acrylate can be obtained by adding (meth) acrylic acid to the terminal or side chain of silicone having a polysiloxane bond in the main chain. Among these, as the polyfunctional (meth) acrylate oligomer, polycarbonate (meth) acrylate, urethane (meth) acrylate, and the like are particularly preferable. These oligomers may be used individually by 1 type, and may be used in combination of 2 or more type.
 第1の実施態様において、離型層2を形成する電離放射線硬化性樹脂組成物は、ポリカーボネート(メタ)アクリレートを含んでいることが好ましい。 In the first embodiment, the ionizing radiation curable resin composition forming the release layer 2 preferably contains polycarbonate (meth) acrylate.
 また、第2の実施態様において、上記した電離放射線硬化性樹脂の中でも、三次元成形用転写フィルムの成形性を効果的に向上させ、かつ、成形後の樹脂成形品に対してより一層優れた耐久性及び耐薬品性を付与する観点から、ポリカーボネート(メタ)アクリレートを用いることが好ましく、ポリカーボネート(メタ)アクリレートと多官能(メタ)アクリレートを併用することが特に好ましい。 Further, in the second embodiment, among the above-mentioned ionizing radiation curable resins, the moldability of the three-dimensional molding transfer film is effectively improved, and the resin molded product after molding is more excellent. From the viewpoint of imparting durability and chemical resistance, it is preferable to use polycarbonate (meth) acrylate, and it is particularly preferable to use polycarbonate (meth) acrylate and polyfunctional (meth) acrylate in combination.
 ポリカーボネート(メタ)アクリレートの詳細については、後述の[保護層3]で説明したとおりである。 Details of the polycarbonate (meth) acrylate are as described in [Protective layer 3] described later.
 本発明において、後述の保護層3と同様、離型層2の電離放射線硬化性樹脂組成物においても、ポリカーボネート(メタ)アクリレートは、多官能(メタ)アクリレートと共に用いることが好ましい。ポリカーボネート(メタ)アクリレートと該多官能(メタ)アクリレートの質量比としては、ポリカーボネート(メタ)アクリレート:多官能(メタ)アクリレート=98:2~50:50であることがより好ましい。ポリカーボネート(メタ)アクリレートと多官能(メタ)アクリレートの質量比が98:2より小さくなると(即ち、ポリカーボネート(メタ)アクリレートの量が、2成分の合計量に対して98質量%以下であると)、前述の耐久性、及び耐薬品性がさらに向上する。一方、ポリカーボネート(メタ)アクリレートと多官能(メタ)アクリレートの質量比が50:50より大きくなると(即ち、ポリカーボネート(メタ)アクリレートの量が、2成分の合計量に対して50質量%以上となると)、三次元成形性がさらに向上する。好ましくは、ポリカーボネート(メタ)アクリレートと多官能(メタ)アクリレートの質量比が95:5~60:40である。 In the present invention, the polycarbonate (meth) acrylate is preferably used together with the polyfunctional (meth) acrylate in the ionizing radiation curable resin composition of the release layer 2 as well as the protective layer 3 described later. The mass ratio of the polycarbonate (meth) acrylate and the polyfunctional (meth) acrylate is more preferably polycarbonate (meth) acrylate: polyfunctional (meth) acrylate = 98: 2 to 50:50. When the mass ratio of the polycarbonate (meth) acrylate and the polyfunctional (meth) acrylate is smaller than 98: 2 (that is, the amount of the polycarbonate (meth) acrylate is 98% by mass or less based on the total amount of the two components). The aforementioned durability and chemical resistance are further improved. On the other hand, when the mass ratio of the polycarbonate (meth) acrylate and the polyfunctional (meth) acrylate is larger than 50:50 (that is, the amount of the polycarbonate (meth) acrylate is 50% by mass or more based on the total amount of the two components). ), Three-dimensional formability is further improved. Preferably, the mass ratio of polycarbonate (meth) acrylate to polyfunctional (meth) acrylate is 95: 5 to 60:40.
 本発明において、多官能(メタ)アクリレートの詳細については、[保護層3]で説明したとおりであり、2官能以上の(メタ)アクリレートであればよく、官能基数としては、好ましくは2~6程度が挙げられる。多官能(メタ)アクリレートは、オリゴマー及びモノマーのいずれでもよいが、三次元成形性向上の観点から多官能(メタ)アクリレートオリゴマーが好ましい。多官能(メタ)アクリレートオリゴマー及び多官能(メタ)アクリレートモノマーについては、前述の通りである。 In the present invention, the details of the polyfunctional (meth) acrylate are as described in [Protective layer 3], and any bifunctional or higher (meth) acrylate may be used, and the number of functional groups is preferably 2 to 6. Degree. The polyfunctional (meth) acrylate may be either an oligomer or a monomer, but a polyfunctional (meth) acrylate oligomer is preferable from the viewpoint of improving three-dimensional moldability. The polyfunctional (meth) acrylate oligomer and the polyfunctional (meth) acrylate monomer are as described above.
 第2の実施態様において、離型層2を形成する電離放射線硬化性樹脂組成物中におけるポリカーボネート(メタ)アクリレートの含有量としては、特に制限されないが、前述の成形性、耐久性、及び耐薬品性をより一層向上させる観点からは、好ましくは98~50質量%程度、より好ましくは90~65質量%程度が挙げられる。 In the second embodiment, the content of the polycarbonate (meth) acrylate in the ionizing radiation curable resin composition forming the release layer 2 is not particularly limited, but the above-described moldability, durability, and chemical resistance are not limited. From the viewpoint of further improving the properties, it is preferably about 98 to 50% by mass, more preferably about 90 to 65% by mass.
 本発明において、電離放射線硬化性樹脂を用いて離型層2を形成する場合、離型層2の形成は、例えば、電離放射線硬化性樹脂組成物を調製し、これを塗布し、架橋硬化することにより行われる。なお、電離放射線硬化性樹脂組成物の粘度は、後述の塗布方式により、未硬化樹脂層を形成し得る粘度であればよい。 In the present invention, when the release layer 2 is formed using an ionizing radiation curable resin, the release layer 2 is formed by, for example, preparing an ionizing radiation curable resin composition, applying it, and crosslinking and curing it. Is done. In addition, the viscosity of an ionizing radiation curable resin composition should just be a viscosity which can form a non-hardened resin layer with the below-mentioned coating system.
 本発明においては、調製された塗布液を、所望の厚みとなるように、グラビアコート、バーコート、ロールコート、リバースロールコート、コンマコート等の公知の方式、好ましくはグラビアコートにより塗布し、未硬化樹脂層を形成させる。 In the present invention, the prepared coating solution is applied by a known method such as gravure coating, bar coating, roll coating, reverse roll coating, comma coating, etc., preferably gravure coating, so as to have a desired thickness. A cured resin layer is formed.
 このようにして形成された未硬化樹脂層に、電子線、紫外線等の電離放射線を照射して該未硬化樹脂層を硬化させて離型層2を形成する。ここで、電離放射線として電子線を用いる場合、その加速電圧については、用いる樹脂や層の厚みに応じて適宜選定し得るが、通常加速電圧70~300kV程度が挙げられる。 The release layer 2 is formed by irradiating the thus formed uncured resin layer with ionizing radiation such as an electron beam and ultraviolet rays to cure the uncured resin layer. Here, when an electron beam is used as the ionizing radiation, the acceleration voltage can be appropriately selected according to the resin to be used and the thickness of the layer, but usually an acceleration voltage of about 70 to 300 kV can be mentioned.
 なお、電子線の照射において、加速電圧が高いほど透過能力が増加するため、離型層2の下に電子線照射によって劣化しやすい樹脂を使用する場合には、電子線の透過深さと離型層2の厚みが実質的に等しくなるように、加速電圧を選定する。また、後述の保護層3と共に離型層2を電子線によって硬化させる場合には、電子線の透過深さと離型層2及び保護層3の合計厚みが実質的に等しくなるように、加速電圧を選定する。これにより、離型層2の下に位置する層への余分の電子線の照射を抑制することができ、過剰電子線による各層の劣化を最小限にとどめることができる。 In the electron beam irradiation, the transmission capability increases as the acceleration voltage increases. Therefore, when a resin that is easily deteriorated by the electron beam irradiation is used under the release layer 2, the electron beam transmission depth and the mold release are used. The acceleration voltage is selected so that the thicknesses of the layers 2 are substantially equal. When the release layer 2 is cured with an electron beam together with the protective layer 3 described later, the accelerating voltage is set so that the transmission depth of the electron beam and the total thickness of the release layer 2 and the protective layer 3 are substantially equal. Is selected. Thereby, irradiation of the extra electron beam to the layer located under the release layer 2 can be suppressed, and deterioration of each layer due to the excess electron beam can be minimized.
 また、照射線量は、離型層2の架橋密度が十分な値となる量であり、かつ、マルテンス硬さを上記の範囲とする量であり、好ましくは60~300kGy(6~30Mrad)、より好ましくは70~200kGy(7~20Mrad)が挙げられる。照射線量をこのような範囲に設定することにより、離型層2のマルテンス硬さを上記の範囲とすることができ、かつ、離型層2を透過した電離放射線による転写用基材1の劣化を抑制することができる。なお、上記例は多官能(メタ)アクリレートの官能基数を2とした場合であり、官能基数に応じて適切な照射線量が必要である。 Further, the irradiation dose is an amount that makes the crosslinking density of the release layer 2 a sufficient value, and an amount that makes the Martens hardness within the above range, preferably 60 to 300 kGy (6 to 30 Mrad). 70 to 200 kGy (7 to 20 Mrad) is preferable. By setting the irradiation dose in such a range, the Martens hardness of the release layer 2 can be set to the above range, and the transfer substrate 1 is deteriorated by ionizing radiation transmitted through the release layer 2. Can be suppressed. In addition, the said example is a case where the number of functional groups of polyfunctional (meth) acrylate is set to 2, and an appropriate irradiation dose is required according to the number of functional groups.
 更に、電子線源としては、特に制限はなく、例えばコックロフトワルトン型、バンデグラフト型、共振変圧器型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の各種電子線加速器を用いることができる。 Furthermore, the electron beam source is not particularly limited. For example, various electron beam accelerators such as a Cockloft Walton type, a bandegraft type, a resonant transformer type, an insulated core transformer type, a linear type, a dynamitron type, and a high frequency type can be used. Can be used.
 電離放射線として紫外線を用いる場合には、波長190~380nmの紫外線を含む光線を放射すればよい。紫外線源としては、特に制限されないが、例えば、高圧水銀燈、低圧水銀燈、メタルハライドランプ、カーボンアーク燈、紫外線発光ダイオード(LED-UV)等が挙げられる。 In the case where ultraviolet rays are used as ionizing radiation, light rays including ultraviolet rays having a wavelength of 190 to 380 nm may be emitted. The ultraviolet light source is not particularly limited, and examples thereof include a high pressure mercury lamp, a low pressure mercury lamp, a metal halide lamp, a carbon arc lamp, and an ultraviolet light emitting diode (LED-UV).
 本発明において、離型層2の厚みとしては、三次元成形用転写フィルムの成形性を効果的に向上させ、かつ、成形後の樹脂成形品に対してより一層優れた耐久性及び耐薬品性を付与する観点から、好ましくは5.0μm以下、より好ましくは2.5μm以下、さらに好ましくは2.0μm以下が挙げられ、下限値としては、製造性及び平坦性を考慮して好ましくは0.2μm程度が挙げられる。 In the present invention, as the thickness of the release layer 2, the moldability of the transfer film for three-dimensional molding is effectively improved, and the durability and chemical resistance are further improved with respect to the molded resin product after molding. Is preferably 5.0 μm or less, more preferably 2.5 μm or less, and even more preferably 2.0 μm or less. The lower limit is preferably 0. 0 in consideration of manufacturability and flatness. About 2 μm may be mentioned.
(転写層9)
 本発明の三次元成形用転写フィルムにおいては、支持体10の上に形成された、保護層3、プライマー層4、装飾層5、接着層6、透明樹脂層7などが転写層9を構成している。本発明においては、三次元成形用転写フィルムと成形樹脂を一体成形した後に、支持体10と転写層9の界面が引き剥がされ、三次元成形用転写フィルムの転写層9が成形樹脂層8に転写された樹脂成形品が得られる。以下、これらの各層について詳述する。
(Transfer layer 9)
In the transfer film for three-dimensional molding of the present invention, the protective layer 3, the primer layer 4, the decorative layer 5, the adhesive layer 6, the transparent resin layer 7 and the like formed on the support 10 constitute the transfer layer 9. ing. In the present invention, after the three-dimensional molding transfer film and the molding resin are integrally molded, the interface between the support 10 and the transfer layer 9 is peeled off, and the transfer layer 9 of the three-dimensional molding transfer film becomes the molding resin layer 8. A transferred resin molded product is obtained. Hereinafter, each of these layers will be described in detail.
[保護層3]
 第1の実施態様において、保護層3は、樹脂成形品の耐傷性、さらに艶を高めることを目的として、樹脂成形品の最表面に位置するようにして、三次元成形用転写フィルムに設けられる層である。保護層3は、離型層2に接面していることが好ましい。
[Protective layer 3]
In the first embodiment, the protective layer 3 is provided on the three-dimensional molding transfer film so as to be positioned on the outermost surface of the resin molded product for the purpose of enhancing the scratch resistance and gloss of the resin molded product. Is a layer. The protective layer 3 is preferably in contact with the release layer 2.
 一方、第2の実施態様において、保護層3は、樹脂成形品の耐久性、耐薬品性などを高めることを目的として、樹脂成形品の最表面に位置するようにして、必要に応じて、三次元成形用転写フィルムに設けられる層である。保護層3は、離型層2に接面していることが好ましい。 On the other hand, in the second embodiment, the protective layer 3 is positioned on the outermost surface of the resin molded product for the purpose of enhancing the durability, chemical resistance, etc. of the resin molded product, It is a layer provided on a three-dimensional molding transfer film. The protective layer 3 is preferably in contact with the release layer 2.
 第1の実施態様においては、保護層3のマルテンス硬さが、6~40N/mm2の範囲にあること特徴としている。保護層3のマルテンス硬さがこのような特定の範囲にあることにより、三次元成形用転写フィルムの成形性が向上し、成形後の樹脂成形品に対して優れた耐傷性と高艶を付与することが可能となる。一般に、樹脂の密度が高くなると、屈折率が高くなることが知られており、例えばRref=[(n1-n2)/(n1+n2)]2の式(光線が屈折率n1の物質から屈折率n2の物質に垂直入射する場合の表面反射率Rref)から、樹脂の屈折率が高くなることで反射率が高くなることも分かる。 The first embodiment is characterized in that the Martens hardness of the protective layer 3 is in the range of 6 to 40 N / mm 2 . When the Martens hardness of the protective layer 3 is in such a specific range, the moldability of the transfer film for three-dimensional molding is improved, and excellent scratch resistance and high gloss are imparted to the molded resin product after molding. It becomes possible to do. In general, it is known that the refractive index increases as the resin density increases. For example, the formula R ref = [(n 1 −n 2 ) / (n 1 + n 2 )] 2 (the light beam has a refractive index n From the surface reflectivity R ref ) in the case of normal incidence from the material 1 to the material having the refractive index n 2 , it can be seen that the reflectivity increases as the refractive index of the resin increases.
 第1の実施態様において、三次元成形用転写フィルムの成形性を効果的に向上させ、かつ、成形後の樹脂成形品に対してより一層優れた耐傷性及び高艶を付与し、さらに保護層とプライマー層との間の密着性を高める観点から、保護層3のマルテンス硬さとしては、好ましくは7~35N/mm2程度、より好ましくは8~27N/mm2程度、さらに好ましくは10~25N/mm2程度が挙げられる。本発明において、保護層のマルテンス硬さの測定方法は、以下の通りである。 In the first embodiment, the moldability of the transfer film for three-dimensional molding is effectively improved, and further excellent scratch resistance and high gloss are imparted to the molded resin product after molding. and from the viewpoint of enhancing the adhesion between the primer layer, as the Martens hardness of the protective layer 3, preferably 7 ~ 35N / mm 2, more preferably about 8 ~ 27N / mm 2, and more preferably about 10 to An example is about 25 N / mm 2 . In the present invention, the method for measuring the Martens hardness of the protective layer is as follows.
<保護層のマルテンス硬さの測定>
 まず、剥離強度の測定対象とする三次元成形用転写フィルムと、これを成形するための金型と、三次元成形用転写フィルムに積層する樹脂(成形樹脂層を形成する樹脂)を用意する。金型の形状は、三次元成形用転写フィルムが金型内で成形された際に、三次元成形用転写フィルムの表面の面積伸び率が実質的に0%となる平面部を有するものとする。また、金型の温度は、60℃に設定する。三次元成形用転写フィルムに射出する樹脂(成形樹脂層を形成する樹脂)としては、ABS樹脂とポリカーボネート樹脂との混合樹脂(例えば、CYCOLOYTM Resin XCY620)を265℃に加熱して溶融させたものとする。また、三次元成形用転写フィルムを金型に入れて、真空成形で金型内の形状に沿うように予備成形して型締めした上で射出成型を行う。射出成型後、金型から取り出すと共に支持体を剥離することで得られた樹脂成形品について、最表面の保護層上からマルテンス硬さの測定を行う。マルテンス硬さは、表面皮膜物性試験機(PICODENTOR HM-500、株式会社フィッシャー・インストルメンツ製)を用いて測定される値であり、具体的な測定方法は以下の通りである。この測定方法では、温度25℃及び相対湿度50%の環境下、図5(a)に示されるような対面角136°のダイヤモンド圧子(ビッカース圧子)を用いて、各三次元成形用転写フィルムの保護層にダイヤモンド圧子を押し込み、押し込み荷重Fと押し込み深さh(圧痕深さ)から下記の式(1)により硬さを求める。押し込み条件は、保護層に対して、室温(実験室環境温度)において、図5(b)に示される通り、先ず0~0.1mNまでの負荷を20秒間で加え、次に0.1mNの負荷で5秒間保持し、最後に0.1~0mNまでの除荷を20秒間で行う。
Figure JPOXMLDOC01-appb-M000002
<Measurement of Martens hardness of protective layer>
First, a three-dimensional molding transfer film to be measured for peel strength, a mold for molding the same, and a resin (resin for forming a molding resin layer) to be laminated on the three-dimensional molding transfer film are prepared. The shape of the mold has a flat portion where the area elongation percentage of the surface of the three-dimensional molding transfer film is substantially 0% when the three-dimensional molding transfer film is molded in the mold. . The mold temperature is set to 60 ° C. As a resin (resin for forming a molding resin layer) to be injected onto a three-dimensional molding transfer film, a resin mixture of ABS resin and polycarbonate resin (for example, CYCOLOY Resin XCY620) is heated to 265 ° C. and melted. And In addition, a three-dimensional molding transfer film is placed in a mold, preformed so as to conform to the shape in the mold by vacuum molding, and then subjected to injection molding. After the injection molding, the Martens hardness is measured on the outermost protective layer of the resin molded product obtained by removing from the mold and peeling off the support. The Martens hardness is a value measured using a surface film physical property tester (PICODERTOR HM-500, manufactured by Fisher Instruments Co., Ltd.), and a specific measurement method is as follows. In this measurement method, a diamond indenter (Vickers indenter) having a facing angle of 136 ° as shown in FIG. 5A is used in an environment of a temperature of 25 ° C. and a relative humidity of 50%. A diamond indenter is pushed into the protective layer, and the hardness is obtained from the indentation load F and the indentation depth h (indentation depth) by the following equation (1). As shown in FIG. 5 (b), the indentation condition was that a load of 0 to 0.1 mN was first applied to the protective layer at room temperature (laboratory environmental temperature) for 20 seconds, and then 0.1 mN. Hold the load for 5 seconds, and finally unload from 0.1 to 0 mN in 20 seconds.
Figure JPOXMLDOC01-appb-M000002
 第1の実施態様において、保護層3は、ポリカーボネート(メタ)アクリレートを含む電離放射線硬化性樹脂組成物の硬化物により形成されている。また、後述の通り、保護層3は、ポリカーボネート(メタ)アクリレート及びアクリル樹脂を含む電離放射線硬化性樹脂組成物の硬化物により形成されていることが好ましい。 In the first embodiment, the protective layer 3 is formed of a cured product of an ionizing radiation curable resin composition containing polycarbonate (meth) acrylate. As will be described later, the protective layer 3 is preferably formed of a cured product of an ionizing radiation curable resin composition containing polycarbonate (meth) acrylate and an acrylic resin.
 一方、第2の実施態様において、保護層3を構成する素材としては、特に制限されず、保護層3は、熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂などの樹脂により構成されていることが好ましい。三次元成形用転写フィルムの成形性を効果的に向上させ、かつ、成形後の樹脂成形品に対してより一層優れた耐久性及び耐薬品性を付与する観点から、保護層3は、電離放射線硬化性樹脂組成物の硬化物により構成されていること好ましい。 On the other hand, in the second embodiment, the material constituting the protective layer 3 is not particularly limited, and the protective layer 3 is made of a resin such as a thermoplastic resin, a thermosetting resin, or an ionizing radiation curable resin. Preferably it is. From the viewpoint of effectively improving the moldability of the transfer film for three-dimensional molding and imparting further excellent durability and chemical resistance to the molded resin product after molding, the protective layer 3 is made of ionizing radiation. It is preferable that it is comprised with the hardened | cured material of curable resin composition.
 以下、本発明の保護層の形成に用いられる電池放射線硬化性樹脂について、詳述する。 Hereinafter, the battery radiation curable resin used for forming the protective layer of the present invention will be described in detail.
(電離放射線硬化性樹脂)
 保護層3の形成に使用される電離放射線硬化性樹脂とは、電離放射線を照射することにより、架橋、硬化する樹脂であり、具体的には、分子中に重合性不飽和結合又はエポキシ基を有する、プレポリマー、オリゴマー、及びモノマーなどのうち少なくとも1種を適宜混合したものが挙げられる。ここで電離放射線とは、前述の離型層2において説明したとおりである。
(Ionizing radiation curable resin)
The ionizing radiation curable resin used for forming the protective layer 3 is a resin that crosslinks and cures when irradiated with ionizing radiation. Specifically, a polymerizable unsaturated bond or an epoxy group is present in the molecule. The prepolymer, the oligomer, the monomer, and the like that are appropriately mixed are included. Here, the ionizing radiation is as described in the release layer 2 described above.
 本発明に用いられるポリカーボネート(メタ)アクリレートは、ポリマー主鎖にカーボネート結合を有し、かつ末端または側鎖に(メタ)アクリレート基を有するものであれば特に制限されず、例えば、ポリカーボネートポリオールを(メタ)アクリル酸でエステル化することにより得ることができる。この(メタ)アクリレートは、架橋、硬化する観点から、2官能以上有することが好ましい。ポリカーボネート(メタ)アクリレートは、例えば、ポリカーボネート骨格を有するウレタン(メタ)アクリレートなどであってもよい。ポリカーボネート骨格を有するウレタン(メタ)アクリレートは、例えば、ポリカーボネートポリオールと、多価イソシアネート化合物と、ヒドロキシ(メタ)アクリレートとを反応させることにより得られる。 The polycarbonate (meth) acrylate used in the present invention is not particularly limited as long as it has a carbonate bond in the polymer main chain and a (meth) acrylate group in the terminal or side chain. It can be obtained by esterification with (meth) acrylic acid. This (meth) acrylate preferably has two or more functional groups from the viewpoint of crosslinking and curing. The polycarbonate (meth) acrylate may be, for example, urethane (meth) acrylate having a polycarbonate skeleton. The urethane (meth) acrylate having a polycarbonate skeleton can be obtained, for example, by reacting a polycarbonate polyol, a polyvalent isocyanate compound, and hydroxy (meth) acrylate.
 上記のポリカーボネート(メタ)アクリレートは、例えば、ポリカーボネートポリオールの水酸基の一部又は全てを(メタ)アクリレート(アクリル酸エステル又はメタクリル酸エステル)に変換して得られる。このエステル化反応は、通常のエステル化反応によって行うことができる。例えば、1)ポリカーボネートポリオールとアクリル酸ハライド又はメタクリル酸ハライドとを、塩基存在下に縮合させる方法、2)ポリカーボネートポリオールとアクリル酸無水物又はメタクリル酸無水物とを、触媒存在下に縮合させる方法、あるいは、3)ポリカーボネートポリオールとアクリル酸又はメタクリル酸とを、酸触媒存在下に縮合させる方法などが挙げられる。 The above polycarbonate (meth) acrylate is obtained, for example, by converting part or all of the hydroxyl groups of polycarbonate polyol into (meth) acrylate (acrylic acid ester or methacrylic acid ester). This esterification reaction can be performed by a normal esterification reaction. For example, 1) a method of condensing polycarbonate polyol and acrylic acid halide or methacrylic acid halide in the presence of a base, 2) a method of condensing polycarbonate polyol and acrylic acid anhydride or methacrylic acid anhydride in the presence of a catalyst, Alternatively, 3) a method of condensing polycarbonate polyol and acrylic acid or methacrylic acid in the presence of an acid catalyst can be used.
 上記のポリカーボネートポリオールは、ポリマー主鎖にカーボネート結合を有し、末端あるいは側鎖に2個以上、好ましくは2~50個の、より好ましくは3~50個の水酸基を有する重合体である。このポリカーボネートポリオールの代表的な製造方法は、ジオール化合物(A)、3価以上の多価アルコール(B)、及びカルボニル成分となる化合物(C)とから重縮合反応による方法である。原料として用いられるジオール化合物(A)は、一般式 HO-R1-OHで表される。ここで、R1は、炭素数2~20の2価炭化水素基であって、基中にエーテル結合を含んでいてもよい。例えば、直鎖、又は分岐状のアルキレン基、シクロヘキシレン基、フェニレン基である。 The above polycarbonate polyol is a polymer having a carbonate bond in the polymer main chain and having 2 or more, preferably 2 to 50, more preferably 3 to 50 hydroxyl groups in the terminal or side chain. A typical method for producing this polycarbonate polyol is a method by a polycondensation reaction from a diol compound (A), a trihydric or higher polyhydric alcohol (B), and a compound (C) to be a carbonyl component. The diol compound (A) used as a raw material is represented by the general formula HO—R 1 —OH. Here, R 1 is a divalent hydrocarbon group having 2 to 20 carbon atoms, and the group may contain an ether bond. For example, a linear or branched alkylene group, a cyclohexylene group, or a phenylene group.
 ジオール化合物(A)の具体例としては、エチレングリコール、1,2-プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ポリエチレングリコール、ネオペンチルグリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,3-ビス(2-ヒドロキシエトキシ)ベンゼン、1,4-ビス(2-ヒドロキシエトキシ)ベンゼン、ネオペンチルグリコール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノールなどが挙げられる。これらジオールは、それを単独で用いても、あるいは2種以上を混合して用いてもよい。 Specific examples of the diol compound (A) include ethylene glycol, 1,2-propylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, polyethylene glycol, neopentyl glycol, 1,3-propanediol, 1,4-butane. Diol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,3-bis (2-hydroxyethoxy) benzene, 1,4- Examples thereof include bis (2-hydroxyethoxy) benzene, neopentyl glycol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol and the like. These diols may be used alone or in admixture of two or more.
 また、3価以上の多価アルコール(B)の例としては、トリメチロールプルパン、トリメチロールエタン、ペンタエリスリトール、ジトリメチロールプロパン、ジペンタエリスリトール、グリセリン、ソルビトールなどのアルコール類を挙げることができる。さらに、これらの多価アルコールの水酸基に対して、1~5当量のエチレンオキシド、プロピレンオキシド、あるいはその他のアルキレンオキシドを付加させた水酸基を有するアルコール類であってもよい。多価アルコールは、これらを単独で用いても、あるいは2種以上を混合して用いてもよい。 Also, examples of the trihydric or higher polyhydric alcohol (B) include alcohols such as trimethylolpurpan, trimethylolethane, pentaerythritol, ditrimethylolpropane, dipentaerythritol, glycerin, sorbitol. Further, alcohols having a hydroxyl group obtained by adding 1 to 5 equivalents of ethylene oxide, propylene oxide, or other alkylene oxide to the hydroxyl group of these polyhydric alcohols may be used. These polyhydric alcohols may be used alone or in combination of two or more.
 カルボニル成分となる化合物(C)は、炭酸ジエステル、ホスゲン、又はこれらの等価体の中から選ばれるいずれかの化合物である。その具体例としては、炭酸ジメチル、炭酸ジエチル、炭酸ジイソプロピル、炭酸ジフェニル、エチレンカーボネート、プロピレンカーボネートなどの炭酸ジエステル類、ホスゲン、あるいはクロロギ酸メチル、クロロギ酸エチル、クロロギ酸フェニルなどのハロゲン化ギ酸エステル類などが挙げられる。これらは、単独で用いても、あるいは2種以上を混合して用いてもよい。 The compound (C) serving as the carbonyl component is any compound selected from carbonic acid diester, phosgene, and equivalents thereof. Specific examples thereof include carbonic acid diesters such as dimethyl carbonate, diethyl carbonate, diisopropyl carbonate, diphenyl carbonate, ethylene carbonate and propylene carbonate, phosgene, and halogenated formates such as methyl chloroformate, ethyl chloroformate and phenyl chloroformate. Etc. These may be used alone or in admixture of two or more.
 ポリカーボネートポリオールは、前記したジオール化合物(A)、3価以上の多価アルコール(B)、及びカルボニル成分となる化合物(C)とを、一般的な条件下で重縮合反応することにより合成される。例えば、ジオール化合物(A)と多価アルコール(B)との仕込みモル比は、50:50~99:1の範囲にあることが好ましく、また、カルボニル成分となる化合物(C)のジオール化合物(A)と多価アルコール(B)に対する仕込みモル比は、ジオール化合物及び多価アルコールの持つ水酸基に対して、0.2~2当量であることが好ましい。 The polycarbonate polyol is synthesized by subjecting the above-described diol compound (A), a trihydric or higher polyhydric alcohol (B), and a compound (C) to be a carbonyl component to a polycondensation reaction under general conditions. . For example, the charged molar ratio of the diol compound (A) to the polyhydric alcohol (B) is preferably in the range of 50:50 to 99: 1, and the diol compound (C) as the carbonyl component ( The charged molar ratio of A) to the polyhydric alcohol (B) is preferably 0.2 to 2 equivalents relative to the hydroxyl groups of the diol compound and polyhydric alcohol.
 前記の仕込み割合で重縮合反応した後のポリカーボネートポリオール中に存在する水酸基の当量数(eq./mol)は、1分子中に平均して3以上、好ましくは3~50、より好ましくは3~20である。この範囲であると、後述するエステル化反応によって必要な量の(メタ)アクリレート基が形成され、またポリカーボネート(メタ)アクリレート樹脂に適度な可撓性が付与される。なお、このポリカーボネートポリオールの末端官能基は、通常はOH基であるが、その一部がカーボネート基であってもよい。 The number of equivalents (eq./mol) of hydroxyl groups present in the polycarbonate polyol after the polycondensation reaction at the above charge ratio is 3 or more on average in one molecule, preferably 3 to 50, more preferably 3 to 20. Within this range, a necessary amount of (meth) acrylate groups are formed by the esterification reaction described later, and moderate flexibility is imparted to the polycarbonate (meth) acrylate resin. The terminal functional group of this polycarbonate polyol is usually an OH group, but a part thereof may be a carbonate group.
 以上説明したポリカーボネートポリオールの製造方法は、例えば、特開昭64-1726号公報に記載されている。また、このポリカーボネートポリオールは、特開平3-181517号公報に記載されているように、ポリカーボネートジオールと3価以上の多価アルコールとのエステル交換反応によっても製造することができる。 The method for producing the polycarbonate polyol described above is described in, for example, JP-A No. 64-1726. The polycarbonate polyol can also be produced by an ester exchange reaction between a polycarbonate diol and a trihydric or higher polyhydric alcohol as described in JP-A-3-181517.
 本発明に用いられるポリカーボネート(メタ)アクリレートの分子量は、GPC分析によって測定され、かつ標準ポリスチレンで換算された重量平均分子量が、500以上であることが好ましく、1,000以上であることがより好ましく、2,000以上であることがさらに好ましい。ポリカーボネート(メタ)アクリレートの重量平均分子量の上限は特に制限されないが、粘度が高くなり過ぎないように制御する観点から100,000以下が好ましく、50,000以下がより好ましい。耐傷性と三次元成形性とを両立させる観点から、さらに好ましくは、2,000以上50,000以下であり、特に好ましくは、5,000~20,000である。 The molecular weight of the polycarbonate (meth) acrylate used in the present invention is preferably 500 or more, more preferably 1,000 or more, as measured by GPC analysis and converted to standard polystyrene. And more preferably 2,000 or more. The upper limit of the weight average molecular weight of the polycarbonate (meth) acrylate is not particularly limited, but is preferably 100,000 or less and more preferably 50,000 or less from the viewpoint of controlling the viscosity not to be too high. From the standpoint of achieving both scratch resistance and three-dimensional formability, it is more preferably 2,000 or more and 50,000 or less, and particularly preferably 5,000 to 20,000.
 電離放射線硬化性樹脂組成物において、ポリカーボネート(メタ)アクリレートは、多官能(メタ)アクリレートと共に用いることが好ましい。ポリカーボネート(メタ)アクリレートと該多官能(メタ)アクリレートの質量比としては、ポリカーボネート(メタ)アクリレート:多官能(メタ)アクリレート=98:2~50:50であることがより好ましい。ポリカーボネート(メタ)アクリレートと多官能(メタ)アクリレートの質量比が98:2より小さくなると(即ち、ポリカーボネート(メタ)アクリレートの量が、2成分の合計量に対して98質量%以下であると)、前述の耐傷性、及び艶がさらに向上する。一方、ポリカーボネート(メタ)アクリレートと多官能(メタ)アクリレートの質量比が50:50より大きくなると(即ち、ポリカーボネート(メタ)アクリレートの量が、2成分の合計量に対して50質量%以上となると)、三次元成形性がさらに向上する。好ましくは、ポリカーボネート(メタ)アクリレートと多官能(メタ)アクリレートの質量比が95:5~60:40である。 In the ionizing radiation curable resin composition, the polycarbonate (meth) acrylate is preferably used together with the polyfunctional (meth) acrylate. The mass ratio of the polycarbonate (meth) acrylate and the polyfunctional (meth) acrylate is more preferably polycarbonate (meth) acrylate: polyfunctional (meth) acrylate = 98: 2 to 50:50. When the mass ratio of the polycarbonate (meth) acrylate and the polyfunctional (meth) acrylate is smaller than 98: 2 (that is, the amount of the polycarbonate (meth) acrylate is 98% by mass or less based on the total amount of the two components). Further, the aforementioned scratch resistance and gloss are further improved. On the other hand, when the mass ratio of the polycarbonate (meth) acrylate and the polyfunctional (meth) acrylate is larger than 50:50 (that is, the amount of the polycarbonate (meth) acrylate is 50% by mass or more based on the total amount of the two components). ), Three-dimensional formability is further improved. Preferably, the mass ratio of polycarbonate (meth) acrylate to polyfunctional (meth) acrylate is 95: 5 to 60:40.
 本発明に用いられる多官能(メタ)アクリレートは、2官能以上の(メタ)アクリレートであればよく、特に制限はない。ここで、2官能とは、分子内にエチレン性不飽和結合{(メタ)アクリロイル基}を2個有することをいう。官能基数としては、好ましくは2~6程度が挙げられる。 The polyfunctional (meth) acrylate used in the present invention is not particularly limited as long as it is a bifunctional or higher (meth) acrylate. Here, bifunctional means having two ethylenically unsaturated bonds {(meth) acryloyl group} in the molecule. The number of functional groups is preferably about 2 to 6.
 また、多官能(メタ)アクリレートは、オリゴマー及びモノマーのいずれでもよいが、三次元成形性向上の観点から多官能(メタ)アクリレートオリゴマーが好ましい。 In addition, the polyfunctional (meth) acrylate may be either an oligomer or a monomer, but a polyfunctional (meth) acrylate oligomer is preferable from the viewpoint of improving three-dimensional moldability.
 上記の多官能(メタ)アクリレートオリゴマーとしては、例えばウレタン(メタ)アクリレート系オリゴマー、エポキシ(メタ)アクリレート系オリゴマー、ポリエステル(メタ)アクリレート系オリゴマー、ポリエーテル(メタ)アクリレート系オリゴマーなどが挙げられる。ここで、ウレタン(メタ)アクリレート系オリゴマーは、例えば、ポリエーテルポリオールやポリエステルポリオールとポリイソシアネートの反応によって得られるポリウレタンオリゴマーを、(メタ)アクリル酸でエステル化することにより得ることができる。エポキシ(メタ)アクリレート系オリゴマーは、例えば、比較的低分子量のビスフェノール型エポキシ樹脂やノボラック型エポキシ樹脂のオキシラン環に、(メタ)アクリル酸を反応しエステル化することにより得ることができる。また、このエポキシ(メタ)アクリレート系オリゴマーを部分的に二塩基性カルボン酸無水物で変性したカルボキシル変性型のエポキシ(メタ)アクリレートオリゴマーも用いることができる。ポリエステル(メタ)アクリレート系オリゴマーとしては、例えば多価カルボン酸と多価アルコールの縮合によって得られる両末端に水酸基を有するポリエステルオリゴマーの水酸基を(メタ)アクリル酸でエステル化することにより、あるいは、多価カルボン酸にアルキレンオキシドを付加して得られるオリゴマーの末端の水酸基を(メタ)アクリル酸でエステル化することにより得ることができる。ポリエーテル(メタ)アクリレート系オリゴマーは、ポリエーテルポリオールの水酸基を(メタ)アクリル酸でエステル化することにより得ることができる。 Examples of the polyfunctional (meth) acrylate oligomer include urethane (meth) acrylate oligomers, epoxy (meth) acrylate oligomers, polyester (meth) acrylate oligomers, and polyether (meth) acrylate oligomers. Here, the urethane (meth) acrylate oligomer can be obtained, for example, by esterifying a polyurethane oligomer obtained by the reaction of polyether polyol or polyester polyol and polyisocyanate with (meth) acrylic acid. The epoxy (meth) acrylate oligomer can be obtained, for example, by reacting (meth) acrylic acid with an oxirane ring of a relatively low molecular weight bisphenol type epoxy resin or novolak type epoxy resin and esterifying it. Further, a carboxyl-modified epoxy (meth) acrylate oligomer obtained by partially modifying this epoxy (meth) acrylate oligomer with a dibasic carboxylic acid anhydride can also be used. Examples of polyester (meth) acrylate oligomers include esterification of hydroxyl groups of polyester oligomers having hydroxyl groups at both ends obtained by condensation of polycarboxylic acid and polyhydric alcohol with (meth) acrylic acid, It can be obtained by esterifying the terminal hydroxyl group of an oligomer obtained by adding an alkylene oxide to a carboxylic acid with (meth) acrylic acid. The polyether (meth) acrylate oligomer can be obtained by esterifying the hydroxyl group of the polyether polyol with (meth) acrylic acid.
 さらに、他の多官能(メタ)アクリレートオリゴマーとしては、ポリブタジエンオリゴマーの側鎖に(メタ)アクリレート基をもつ疎水性の高いポリブタジエン(メタ)アクリレート系オリゴマー、主鎖にポリシロキサン結合をもつシリコーン(メタ)アクリレート系オリゴマー、小さな分子内に多くの反応性基をもつアミノプラスト樹脂を変性したアミノプラスト樹脂(メタ)アクリレート系オリゴマーなどが挙げられる。 Furthermore, other polyfunctional (meth) acrylate oligomers include polybutadiene (meth) acrylate oligomers with high hydrophobicity having (meth) acrylate groups in the side chain of polybutadiene oligomers, and silicones (meta-methacrylate) having polysiloxane bonds in the main chain. ) Acrylate oligomers, aminoplast resin (meth) acrylate oligomers obtained by modifying aminoplast resins having many reactive groups in small molecules.
 また、上記の多官能(メタ)アクリレートモノマーとしては、具体的にはエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、アリル化シクロヘキシルジ(メタ)アクリレート、イソシアヌレートジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エチレンオキシド変性ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレートなどが挙げられる。以上述べた多官能性(メタ)アクリレートオリゴマー及び多官能性(メタ)アクリレートモノマーは1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Specific examples of the polyfunctional (meth) acrylate monomer include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6- Hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, hydroxypivalic acid neopentyl glycol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, caprolactone modified di Cyclopentenyl di (meth) acrylate, ethylene oxide-modified phosphoric acid di (meth) acrylate, allylated cyclohexyl di (meth) acrylate, isocyanurate di (meth) acrylate, trimethylolpropane Li (meth) acrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, dipentaerythritol tri (meth) acrylate, propionic acid modified dipentaerythritol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, propylene oxide modified tri Methylolpropane tri (meth) acrylate, tris (acryloxyethyl) isocyanurate, propionic acid modified dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ethylene oxide modified dipentaerythritol hexa (meth) acrylate, caprolactone Examples thereof include modified dipentaerythritol hexa (meth) acrylate. The polyfunctional (meth) acrylate oligomer and polyfunctional (meth) acrylate monomer described above may be used alone or in combination of two or more.
 本発明においては、前記多官能性(メタ)アクリレートとともに、その粘度を低下させるなどの目的で、単官能性(メタ)アクリレートを、本発明の目的を損なわない範囲で適宜併用することができる。単官能性(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソボルニル(メタ)アクリレートなどが挙げられる。これらの単官能性(メタ)アクリレートは1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 In the present invention, a monofunctional (meth) acrylate can be used in combination with the polyfunctional (meth) acrylate, as long as the object of the present invention is not impaired, for the purpose of reducing the viscosity. Examples of monofunctional (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl ( Examples include meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, and isobornyl (meth) acrylate. These monofunctional (meth) acrylates may be used alone or in combination of two or more.
 保護層3を形成する電離放射線硬化性樹脂組成物中におけるポリカーボネート(メタ)アクリレートの含有量としては、特に制限されないが、前述の成形性、耐久性、及び耐薬品性をより一層向上させる観点からは、好ましくは98~50質量%程度、より好ましくは90~65質量%程度が挙げられる。 The content of the polycarbonate (meth) acrylate in the ionizing radiation curable resin composition forming the protective layer 3 is not particularly limited, but from the viewpoint of further improving the moldability, durability, and chemical resistance described above. Is preferably about 98 to 50% by mass, more preferably about 90 to 65% by mass.
<アクリル樹脂>
 保護層3は、電離放射線硬化性樹脂としてのポリカーボネート(メタ)アクリレート及びアクリル樹脂を含む電離放射線硬化性樹脂組成物の硬化物により形成されていることがより好ましい。また、ポリカーボネート(メタ)アクリレート及びアクリル樹脂を含む電離放射線硬化性樹脂組成物を用いる場合にも、前記の多官能(メタ)アクリレートと共に用いることが好ましい。
<Acrylic resin>
The protective layer 3 is more preferably formed of a cured product of an ionizing radiation curable resin composition containing polycarbonate (meth) acrylate as an ionizing radiation curable resin and an acrylic resin. Moreover, when using the ionizing radiation curable resin composition containing a polycarbonate (meth) acrylate and an acrylic resin, it is preferable to use with the said polyfunctional (meth) acrylate.
 アクリル樹脂としては、特に制限されない。アクリル樹脂としては、好ましくは、(メタ)アクリル酸エステルの単独重合体、2種以上の異なる(メタ)アクリル酸エステルモノマーの共重合体、又は(メタ)アクリル酸エステルと他のモノマーとの共重合体が挙げられ、具体的には、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、ポリ(メタ)アクリル酸プロピル、ポリ(メタ)アクリル酸ブチル、(メタ)アクリル酸メチル-(メタ)アクリル酸ブチル共重合体、(メタ)アクリル酸エチル-(メタ)アクリル酸ブチル共重合体、エチレン-(メタ)アクリル酸メチル共重合体、スチレン-(メタ)アクリル酸メチル共重合体等の(メタ)アクリル酸エステルを含む単独又は共重合体からなる(メタ)アクリル樹脂が好適に用いられる。これらの中でも、耐傷性を高める観点から、ポリ(メタ)アクリル酸メチルが特に好ましい。 The acrylic resin is not particularly limited. The acrylic resin is preferably a homopolymer of (meth) acrylic acid ester, a copolymer of two or more different (meth) acrylic acid ester monomers, or a copolymer of (meth) acrylic acid ester and other monomers. Polymer, specifically, poly (meth) methyl acrylate, poly (meth) ethyl acrylate, poly (meth) acrylate propyl, poly (meth) acrylate butyl, methyl (meth) acrylate- (Meth) butyl acrylate copolymer, (meth) ethyl acrylate- (meth) butyl acrylate copolymer, ethylene- (meth) methyl acrylate copolymer, styrene- (meth) methyl acrylate copolymer A (meth) acrylic resin made of a homopolymer or a copolymer containing a (meth) acrylic acid ester such as the above is preferably used. Among these, from the viewpoint of improving scratch resistance, methyl poly (meth) acrylate is particularly preferable.
 アクリル樹脂の重量平均分子量としては、特に制限されないが、三次元成形用転写フィルムの成形性を効果的に高めつつ、樹脂成形品に対して優れた耐傷性及び高艶を付与する観点からは、好ましくは10,000~150,000程度、より好ましくは10,000~40,000程度が挙げられる。 The weight average molecular weight of the acrylic resin is not particularly limited, but from the viewpoint of imparting excellent scratch resistance and high gloss to the resin molded product while effectively enhancing the moldability of the transfer film for three-dimensional molding, Preferably about 10,000 to 150,000, more preferably about 10,000 to 40,000.
 なお、本明細書におけるアクリル樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー法により、ポリスチレンを標準物質として測定した値である。 In addition, the weight average molecular weight of the acrylic resin in this specification is a value measured by gel permeation chromatography using polystyrene as a standard substance.
 また、アクリル樹脂のガラス転移温度(Tg)としては、三次元成形用転写フィルムの成形性を効果的に高めつつ、樹脂成形品に対して優れた耐傷性及び高艶を付与する観点からは、好ましくは40~160℃程度、より好ましくは80~120℃程度が挙げられる。 In addition, as the glass transition temperature (Tg) of the acrylic resin, from the viewpoint of imparting excellent scratch resistance and high gloss to the resin molded product while effectively enhancing the moldability of the transfer film for three-dimensional molding, The temperature is preferably about 40 to 160 ° C, more preferably about 80 to 120 ° C.
 なお、本明細書におけるアクリル樹脂のガラス転移温度(Tg)は、示差走査熱量計(DSC)で測定した値である。 In addition, the glass transition temperature (Tg) of the acrylic resin in this specification is a value measured with a differential scanning calorimeter (DSC).
 保護層3を形成する電離放射線硬化性樹脂組成物中におけるアクリル樹脂の含有量としては、特に制限されないが、三次元成形用転写フィルムの成形性を効果的に高めつつ、樹脂成形品に対して優れた耐傷性及び高艶を付与する観点からは、好ましくは電離放射線硬化性樹脂組成物中のアクリル樹脂以外の固形分100質量部に対して25質量部以下、より好ましくは0.5~25質量部程度、さらに好ましくは2~8質量部程度が挙げられる。 The content of the acrylic resin in the ionizing radiation curable resin composition forming the protective layer 3 is not particularly limited, but it is effective for the resin molded product while effectively improving the moldability of the three-dimensional molding transfer film. From the viewpoint of imparting excellent scratch resistance and high gloss, it is preferably 25 parts by mass or less, more preferably 0.5 to 25 parts per 100 parts by mass of the solid content other than the acrylic resin in the ionizing radiation curable resin composition. About 2 parts by mass, more preferably about 2 to 8 parts by mass is mentioned.
<硬化剤>
 また、本発明において、保護層3を形成する電離放射線硬化性樹脂組成物には、必要に応じて、さらに硬化剤が含まれていてもよい。硬化剤が含まれることにより、保護層3の耐傷性及び艶をより一層高めることができる。
<Curing agent>
In the present invention, the ionizing radiation curable resin composition forming the protective layer 3 may further contain a curing agent as necessary. By including the curing agent, the scratch resistance and gloss of the protective layer 3 can be further enhanced.
 硬化剤としては、特に制限されないが、好ましくはイソシアネート化合物が挙げられる。イソシアネート化合物としては、イソシアネート基を有する化合物であれば、特に制限されないが、好ましくはイソシアネート基を2個以上有する多官能イソシアネート化合物が挙げられる。多官能イソシアネートとしては、例えば、2,4-トリレンジイソシアネート(TDI)、キシレンジイソシアネート(XDI)、ナフタレンジイソシアネート、4,4-ジフェニルメタンジイソシアネート等の芳香族イソシアネート、あるいは、1,6-ヘキサメチレンジイソシアネート(HMDI)、イソホロンジイソシアネート(IPDI)、メチレンジイソシアネート(MDI)、水素添加トリレンジイソシアネート、水素添加ジフェニルメタンジイソシアネート等の脂肪族(ないしは脂環式)イソシアネート等のポリイソシアネートが挙げられる。また、これら各種イソシアネートの付加体又は多量体、例えば、トリレンジイソシアネートの付加体、トリレンジイソシアネート3量体(trimer)等や、ブロック化されたイソシアネート化合物等も挙げられる。イソシアネート化合物は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 Although it does not restrict | limit especially as a hardening | curing agent, Preferably an isocyanate compound is mentioned. Although it will not restrict | limit especially if it is a compound which has an isocyanate group as an isocyanate compound, Preferably the polyfunctional isocyanate compound which has 2 or more of isocyanate groups is mentioned. Examples of the polyfunctional isocyanate include aromatic isocyanates such as 2,4-tolylene diisocyanate (TDI), xylene diisocyanate (XDI), naphthalene diisocyanate, 4,4-diphenylmethane diisocyanate, or 1,6-hexamethylene diisocyanate ( And polyisocyanates such as aliphatic (or alicyclic) isocyanates such as HMDI), isophorone diisocyanate (IPDI), methylene diisocyanate (MDI), hydrogenated tolylene diisocyanate, and hydrogenated diphenylmethane diisocyanate. Further, adducts or multimers of these various isocyanates, for example, adducts of tolylene diisocyanate, tolylene diisocyanate trimers, etc., blocked isocyanate compounds, and the like are also included. An isocyanate compound may be used individually by 1 type, and may be used in combination of 2 or more type.
 保護層3を形成する電離放射線硬化性樹脂組成物中における硬化剤の含有量としては、特に制限されないが、三次元成形性及び耐傷性をより一層向上させる観点からは、好ましくは電離放射線硬化性樹脂組成物中の硬化剤以外の固形分100質量部に対して0.1~20質量部程度、より好ましくは1~10質量部程度、さらに好ましくは1~7質量部程度が挙げられる。 The content of the curing agent in the ionizing radiation curable resin composition forming the protective layer 3 is not particularly limited, but is preferably ionizing radiation curable from the viewpoint of further improving the three-dimensional formability and scratch resistance. The amount is about 0.1 to 20 parts by mass, more preferably about 1 to 10 parts by mass, and still more preferably about 1 to 7 parts by mass with respect to 100 parts by mass of the solid content other than the curing agent in the resin composition.
 保護層3を形成する電離放射線硬化性樹脂組成物には、保護層3に備えさせる所望の物性に応じて、各種添加剤を配合することができる。この添加剤としては、例えば紫外線吸収剤や光安定剤等の耐候性改善剤、耐摩耗性向上剤、重合禁止剤、架橋剤、赤外線吸収剤、帯電防止剤、接着性向上剤、レベリング剤、チクソ性付与剤、カップリング剤、可塑剤、消泡剤、充填剤、溶剤、着色剤等が挙げられる。これらの添加剤は、常用されるものから適宜選択して用いることができる。また、紫外線吸収剤や光安定剤として、分子内に(メタ)アクリロイル基等の重合性基を有する反応性の紫外線吸収剤や光安定剤を用いることもできる。 Various additives can be blended in the ionizing radiation curable resin composition forming the protective layer 3 according to desired physical properties to be provided in the protective layer 3. Examples of the additive include a weather resistance improver such as an ultraviolet absorber and a light stabilizer, an abrasion resistance improver, a polymerization inhibitor, a crosslinking agent, an infrared absorber, an antistatic agent, an adhesion improver, a leveling agent, Examples include a thixotropic agent, a coupling agent, a plasticizer, an antifoaming agent, a filler, a solvent, and a colorant. These additives can be appropriately selected from those commonly used. In addition, as the ultraviolet absorber or light stabilizer, a reactive ultraviolet absorber or light stabilizer having a polymerizable group such as a (meth) acryloyl group in the molecule can be used.
 保護層3の硬化後の厚みについては、特に制限されないが、例えば、1~1000μm、好ましくは1~100μm、より好ましくは1~50μm、更に好ましくは1~30μmが挙げられる。このような範囲の厚みを満たすと、耐久性、耐薬品性等の保護層としての十分な物性が得られると共に、電離放射線を均一に照射することが可能であるため、均一に硬化することが可能となり、経済的にも有利になる。更に、保護層3の硬化後の厚みが前記範囲を充足することによって、三次元成形用転写フィルムの三次元成形性が一層向上するため自動車内装用途等の複雑な三次元形状に対して高い追従性を得ることができる。このように、本発明の三次元成形用転写フィルムは保護層3の厚みを従来のものより厚くしても、十分に高い三次元成形性が得られることから、特に保護層3に高い膜厚を要求される部材、例えば車両外装部品等の三次元成形用転写フィルムとしても有用である。 The thickness of the protective layer 3 after curing is not particularly limited, and examples thereof include 1 to 1000 μm, preferably 1 to 100 μm, more preferably 1 to 50 μm, and still more preferably 1 to 30 μm. When the thickness within such a range is satisfied, sufficient physical properties as a protective layer such as durability and chemical resistance can be obtained, and since it is possible to uniformly irradiate ionizing radiation, it can be uniformly cured. It becomes possible and it becomes economically advantageous. Furthermore, since the three-dimensional formability of the transfer film for three-dimensional molding is further improved when the thickness of the protective layer 3 after curing satisfies the above range, it is highly capable of following complicated three-dimensional shapes such as automotive interior applications. Sex can be obtained. As described above, the three-dimensional molding transfer film of the present invention can obtain a sufficiently high three-dimensional moldability even when the thickness of the protective layer 3 is larger than that of the conventional one. It is also useful as a transfer film for three-dimensional molding of a member that requires a high temperature, such as a vehicle exterior part.
 保護層3の形成は、電離放射線硬化性樹脂組成物を調製し、これを塗布し、架橋硬化することにより行われる。なお、電離放射線硬化性樹脂組成物の粘度は、後述の塗布方式により、例えば離型層2の表面上に未硬化樹脂層を形成し得る粘度であればよい。 The protective layer 3 is formed by preparing an ionizing radiation curable resin composition, applying it, and crosslinking and curing. In addition, the viscosity of ionizing radiation-curable resin composition should just be a viscosity which can form a non-hardened resin layer on the surface of the mold release layer 2, for example with the below-mentioned coating system.
 本発明においては、調製された塗布液を、前記厚みとなるように、転写用基材1または離型層2の表面上に、グラビアコート、バーコート、ロールコート、リバースロールコート、コンマコート等の公知の方式、好ましくはグラビアコートにより塗布し、未硬化樹脂層を形成させる。 In the present invention, the prepared coating solution is formed on the surface of the transfer substrate 1 or the release layer 2 so as to have the above thickness, such as gravure coating, bar coating, roll coating, reverse roll coating, comma coating, etc. Is applied by a known method, preferably gravure coating, to form an uncured resin layer.
 このようにして形成された未硬化樹脂層に、電子線、紫外線等の電離放射線を照射して該未硬化樹脂層を硬化させて保護層3を形成する。ここで、電離放射線として電子線を用いる場合、その加速電圧については、用いる樹脂や層の厚みに応じて適宜選定し得るが、通常加速電圧70~300kV程度が挙げられる。 The protective layer 3 is formed by irradiating the uncured resin layer thus formed with ionizing radiation such as an electron beam and ultraviolet rays to cure the uncured resin layer. Here, when an electron beam is used as the ionizing radiation, the acceleration voltage can be appropriately selected according to the resin to be used and the thickness of the layer, but usually an acceleration voltage of about 70 to 300 kV can be mentioned.
 なお、電子線の照射において、加速電圧が高いほど透過能力が増加するため、保護層3の下に電子線照射によって劣化しやすい樹脂を使用する場合には、電子線の透過深さと保護層3の厚みが実質的に等しくなるように、加速電圧を選定する。これにより、保護層3の下に位置する層への余分の電子線の照射を抑制することができ、過剰電子線による各層の劣化を最小限にとどめることができる。 In the electron beam irradiation, the transmission capability increases as the acceleration voltage increases. Therefore, when a resin that is easily deteriorated by electron beam irradiation is used under the protective layer 3, the electron beam transmission depth and the protective layer 3 are increased. The acceleration voltage is selected so that the thicknesses of the two are substantially equal. Thereby, irradiation of the extra electron beam to the layer located under the protective layer 3 can be suppressed, and deterioration of each layer due to the excess electron beam can be minimized.
 また、照射線量は、保護層3の架橋密度が十分な値となる量であり、好ましくは50~300kGy(5~30Mrad)、より好ましくは50~200kGy(5~20Mrad)が挙げられる。第1の実施態様においては、特に、照射線量をこのよう範囲に設定することにより、保護層3のマルテンス硬さを上記の範囲とすることができ、且つ、保護層3を透過した電離放射線による転写用基材1及び離型層2の劣化を抑制することができる。 Further, the irradiation dose is an amount such that the crosslink density of the protective layer 3 becomes a sufficient value, and is preferably 50 to 300 kGy (5 to 30 Mrad), more preferably 50 to 200 kGy (5 to 20 Mrad). In the first embodiment, in particular, by setting the irradiation dose in such a range, the Martens hardness of the protective layer 3 can be set to the above range, and the ionizing radiation transmitted through the protective layer 3 is used. Deterioration of the transfer substrate 1 and the release layer 2 can be suppressed.
 保護層3には、各種の添加剤を添加することにより、ハードコート機能、防曇コート機能、防汚コート機能、防眩コート機能、反射防止コート機能、紫外線遮蔽コート機能、赤外線遮蔽コート機能等の機能を付与する処理を行ってもよい。 By adding various additives to the protective layer 3, a hard coat function, an antifogging coat function, an antifouling coating function, an antiglare coating function, an antireflection coating function, an ultraviolet shielding coating function, an infrared shielding coating function, etc. You may perform the process which provides this function.
[プライマー層4]
 本発明において、プライマー層4は、保護層3とその下(支持体10とは反対側)に位置する層との密着性を高めることなどを目的として、必要に応じて設けられる層である。プライマー層4は、プライマー層形成用樹脂組成物により形成することができる。
[Primer layer 4]
In the present invention, the primer layer 4 is a layer provided as necessary for the purpose of improving the adhesion between the protective layer 3 and the layer located below (the side opposite to the support 10). The primer layer 4 can be formed of a primer layer forming resin composition.
 プライマー層形成用樹脂組成物に用いる樹脂としては、特に制限されないが、例えば、ポリオール及び/又はその硬化物、ウレタン樹脂、アクリル樹脂、(メタ)アクリル-ウレタン共重合体樹脂、ポリエステル樹脂、ブチラール樹脂等が挙げられる。これらの樹脂の中でも、好ましくは、ポリオール及び/又はその硬化物、ウレタン樹脂、アクリル樹脂、及び(メタ)アクリル-ウレタン共重合体樹脂が挙げられる。これらの樹脂は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 The resin used for the primer layer-forming resin composition is not particularly limited. For example, polyol and / or cured product thereof, urethane resin, acrylic resin, (meth) acryl-urethane copolymer resin, polyester resin, butyral resin Etc. Among these resins, a polyol and / or a cured product thereof, a urethane resin, an acrylic resin, and a (meth) acryl-urethane copolymer resin are preferable. These resins may be used individually by 1 type, and may be used in combination of 2 or more type.
 本発明において、プライマー層4は、ポリオールとウレタン樹脂を含む樹脂組成物により形成することが好ましい。ポリオールとしては、分子中に2個以上の水酸基を有する化合物であればよく、具体的には、ポリエステルポリオール、ポリエチレングリコール、ポリプロピレングリコール、アクリルポリオール、ポリエーテルポリオール等が挙げられ、好ましくはアクリルポリオールが挙げられる。 In the present invention, the primer layer 4 is preferably formed of a resin composition containing a polyol and a urethane resin. The polyol may be a compound having two or more hydroxyl groups in the molecule, and specific examples thereof include polyester polyol, polyethylene glycol, polypropylene glycol, acrylic polyol, polyether polyol and the like, preferably acrylic polyol is used. Can be mentioned.
 プライマー層4の形成にポリオールとウレタン樹脂とを使用する場合、これらの質量比(ポリオール:ウレタン樹脂)としては、好ましくは5:5~9.5:0.5程度、より好ましくは7:3~9:1程度が挙げられる。保護層3の架橋密度が高い場合などは、ウレタン樹脂の比率を大きくすることで密着力の調整が必要である。 When a polyol and a urethane resin are used for forming the primer layer 4, the mass ratio (polyol: urethane resin) is preferably about 5: 5 to 9.5: 0.5, more preferably 7: 3. About 9: 1. When the crosslinking density of the protective layer 3 is high, it is necessary to adjust the adhesion by increasing the ratio of the urethane resin.
 ポリオールの硬化物としては、例えばウレタン樹脂が挙げられる。ウレタン樹脂としては、ポリオール(多価アルコール)を主剤とし、イソシアネートを架橋剤(硬化剤)とするポリウレタンを使用できる。 Examples of cured polyols include urethane resins. As the urethane resin, polyurethane having a polyol (polyhydric alcohol) as a main ingredient and an isocyanate as a crosslinking agent (curing agent) can be used.
 イソシアネートとしては、具体的には、分子中に2個以上のイソシアネート基を有する多価イソシアネート;4,4-ジフェニルメタンジイソシアネート等の芳香族イソシアネート;ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、水素添加トリレンジイソシアネート、水素添加ジフェニルメタンジイソシアネート等の脂肪族(又は脂環族)イソシアネートが挙げられる。イソシアネートを硬化剤として用いる場合、プライマー層形成用樹脂組成物におけるイソシアネートの含有量は特に制限されないが、密着性の観点や、後述の装飾層5などを積層する際の印刷適正の観点からは、上記のポリオール100質量部に対して3~45質量部が好ましく、3~25質量部がより好ましい。 Specific examples of the isocyanate include polyvalent isocyanate having two or more isocyanate groups in the molecule; aromatic isocyanate such as 4,4-diphenylmethane diisocyanate; hexamethylene diisocyanate, isophorone diisocyanate, hydrogenated tolylene diisocyanate, hydrogen Aliphatic (or alicyclic) isocyanates such as added diphenylmethane diisocyanate can be mentioned. When using isocyanate as a curing agent, the content of isocyanate in the primer layer-forming resin composition is not particularly limited, but from the viewpoint of adhesion, and from the viewpoint of printing suitability when laminating a decorative layer 5 described later, The amount is preferably 3 to 45 parts by weight and more preferably 3 to 25 parts by weight with respect to 100 parts by weight of the polyol.
 上記ウレタン樹脂の中でも、架橋後の密着性の向上等の観点から、好ましくは、ポリオールとしてアクリルポリオール、又はポリエステルポリオールと、架橋剤としてヘキサメチレンジイソシアネート、4,4-ジフェニルメタンジイソシアネートとから組み合わせ;さらに好ましくは、アクリルポリオールとヘキサメチレンジイソシアネートとを組み合わせが挙げられる。 Among the urethane resins, from the viewpoint of improving adhesion after crosslinking, preferably a combination of acrylic polyol or polyester polyol as a polyol and hexamethylene diisocyanate or 4,4-diphenylmethane diisocyanate as a crosslinking agent; Includes a combination of acrylic polyol and hexamethylene diisocyanate.
 上記アクリル樹脂としては、特に制限されないが、例えば、(メタ)アクリル酸エステルの単独重合体、2種以上の異なる(メタ)アクリル酸エステルモノマーの共重合体、又は(メタ)アクリル酸エステルと他のモノマーとの共重合体が挙げられる。(メタ)アクリル樹脂として、より具体的には、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、ポリ(メタ)アクリル酸プロピル、ポリ(メタ)アクリル酸ブチル、(メタ)アクリル酸メチル-(メタ)アクリル酸ブチル共重合体、(メタ)アクリル酸エチル-(メタ)アクリル酸ブチル共重合体、エチレン-(メタ)アクリル酸メチル共重合体、スチレン-(メタ)アクリル酸メチル共重合体等の(メタ)アクリル酸エステル等が挙げられる。 Although it does not restrict | limit especially as said acrylic resin, For example, the homopolymer of (meth) acrylic acid ester, the copolymer of 2 or more types of different (meth) acrylic acid ester monomers, or (meth) acrylic acid ester and others And a copolymer with the above monomer. More specifically, as a (meth) acrylic resin, poly (meth) acrylate methyl, poly (meth) ethyl acrylate, poly (meth) acrylate propyl, poly (meth) acrylate butyl, (meth) acrylic acid Methyl- (meth) butyl acrylate copolymer, (meth) ethyl acrylate- (meth) butyl acrylate copolymer, ethylene- (meth) methyl acrylate copolymer, styrene-methyl (meth) acrylate copolymer Examples include (meth) acrylic acid esters such as polymers.
 (メタ)アクリル-ウレタン共重合体樹脂としては、特に制限されないが、例えば、アクリル-ウレタン(ポリエステルウレタン)ブロック共重合系樹脂が挙げられる。また、硬化剤としては、前述する各種イソシアネートが用いられる。アクリル-ウレタン(ポリエステルウレタン)ブロック共重合系樹脂におけるアクリルとウレタン比の比率については、特に制限されないが、例えば、アクリル/ウレタン比(質量比)として、9/1~1/9、好ましくは8/2~2/8が挙げられる。 The (meth) acryl-urethane copolymer resin is not particularly limited, and examples thereof include an acrylic-urethane (polyester urethane) block copolymer resin. Further, as the curing agent, the above-described various isocyanates are used. The ratio of the acrylic to urethane ratio in the acrylic-urethane (polyester urethane) block copolymer resin is not particularly limited. For example, the acrylic / urethane ratio (mass ratio) is 9/1 to 1/9, preferably 8 / 2 to 2/8.
 プライマー層4の厚みについては、特に制限されないが、例えば0.1~10μm程度、好ましくは1~10μm程度(すなわち、塗布量が例えば0.1~10g/m2程度、好ましくは1~10g/m2)が挙げられる。プライマー層4がこのような厚みを充足することにより、三次元成形用転写フィルムの耐候性をより高めると共に、保護層3の割れ、破断、白化等を有効に抑制することができる。 The thickness of the primer layer 4 is not particularly limited, but is about 0.1 to 10 μm, preferably about 1 to 10 μm (that is, the coating amount is about 0.1 to 10 g / m 2 , preferably 1 to 10 g / m 2). m 2 ). When the primer layer 4 satisfies such a thickness, the weather resistance of the three-dimensional molding transfer film can be further improved, and cracking, breakage, whitening, and the like of the protective layer 3 can be effectively suppressed.
 プライマー層4を形成する組成物には、備えさせる所望の物性に応じて、各種添加剤を配合することができる。この添加剤としては、例えば紫外線吸収剤や光安定剤等の耐候性改善剤、耐摩耗性向上剤、重合禁止剤、架橋剤、赤外線吸収剤、帯電防止剤、接着性向上剤、レベリング剤、チクソ性付与剤、カップリング剤、可塑剤、消泡剤、充填剤、溶剤、着色剤、マット剤等が挙げられる。これらの添加剤は、常用されるものから適宜選択して用いることができ、例えばマット剤としてはシリカ粒子や水酸化アルミニウム粒子等が挙げられる。また、紫外線吸収剤や光安定剤として、分子内に(メタ)アクリロイル基等の重合性基を有する反応性の紫外線吸収剤や光安定剤を用いることもできる。 In the composition forming the primer layer 4, various additives can be blended according to desired physical properties to be provided. Examples of the additive include a weather resistance improver such as an ultraviolet absorber and a light stabilizer, an abrasion resistance improver, a polymerization inhibitor, a crosslinking agent, an infrared absorber, an antistatic agent, an adhesion improver, a leveling agent, Examples include a thixotropic agent, a coupling agent, a plasticizer, an antifoaming agent, a filler, a solvent, a colorant, and a matting agent. These additives can be appropriately selected from commonly used ones. Examples of the matting agent include silica particles and aluminum hydroxide particles. In addition, as the ultraviolet absorber or light stabilizer, a reactive ultraviolet absorber or light stabilizer having a polymerizable group such as a (meth) acryloyl group in the molecule can be used.
 プライマー層4は、プライマー層形成用樹脂組成物を用いて、グラビアコート、グラビアリバースコート、グラビアオフセットコート、スピンナーコート、ロールコート、リバースロールコート、キスコート、ホイラーコート、ディップコート、シルクスクリーンによるベタコート、ワイヤーバーコート、フローコート、コンマコート、かけ流しコート、刷毛塗り、スプレーコート等の通常の塗布方法や転写コーティング法により形成される。ここで、転写コーティング法とは、薄いシート(フィルム基材)にプライマー層や接着層の塗膜を形成し、その後に三次元成形用転写フィルム中の対象となる層表面に被覆する方法である。 Primer layer 4 is a primer layer forming resin composition, gravure coat, gravure reverse coat, gravure offset coat, spinner coat, roll coat, reverse roll coat, kiss coat, wheeler coat, dip coat, solid coat by silk screen, It is formed by a normal coating method such as wire bar coating, flow coating, comma coating, flow coating, brush coating, spray coating, or the like, or transfer coating. Here, the transfer coating method is a method of forming a coating film of a primer layer or an adhesive layer on a thin sheet (film substrate) and then coating the surface of the target layer in the transfer film for three-dimensional molding. .
 プライマー層4は、硬化後の保護層3の上に形成してもよい。また、保護層3を形成する電離放射線硬化性樹脂組成物の層の上にプライマー層形成用組成物からなる層を積層してプライマー層4を形成した後、電離放射線硬化性樹脂からなる層に電離放射線を照射し、電離放射線硬化性樹脂からなる層を硬化させて保護層3を形成してもよい。 The primer layer 4 may be formed on the protective layer 3 after curing. Moreover, after forming the primer layer 4 by laminating a layer made of the primer layer forming composition on the ionizing radiation curable resin composition layer forming the protective layer 3, the layer made of the ionizing radiation curable resin is formed. The protective layer 3 may be formed by irradiating with ionizing radiation and curing the layer made of ionizing radiation curable resin.
[装飾層5]
 本発明において、装飾層5は、樹脂成形品に装飾性を付与するために、必要に応じて設けられる層である。装飾層5は、通常、絵柄層及び/又は隠蔽層により構成される。ここで、絵柄層は、模様や文字等とパターン状の絵柄を表現するために設けられる層であり、隠蔽層は、通常全面ベタ層であり成形樹脂等の着色等を隠蔽するために設けられる層である。隠蔽層は、絵柄層の絵柄を引き立てるために絵柄層の内側に設けてもよく、また隠蔽層単独で装飾層5を形成してもよい。
[Decoration layer 5]
In the present invention, the decorative layer 5 is a layer provided as necessary in order to impart decorative properties to the resin molded product. The decoration layer 5 is usually composed of a picture layer and / or a concealment layer. Here, the pattern layer is a layer provided for expressing a pattern such as a pattern or characters, and the concealing layer is usually a solid layer and is provided for concealing the coloring of the molded resin or the like. Is a layer. The concealing layer may be provided inside the picture layer to enhance the picture of the picture layer, or the decoration layer 5 may be formed by the concealing layer alone.
 絵柄層の絵柄については、特に制限されないが、例えば、木目、石目、布目、砂目、幾何学模様、文字等からなる絵柄が挙げられる。 The pattern of the pattern layer is not particularly limited, and examples thereof include a pattern composed of wood grain, stone grain, cloth grain, sand grain, geometric pattern, letters, and the like.
 装飾層5は、着色剤、バインダー樹脂、及び溶剤又は分散媒を含む印刷インキを用いて形成される。 The decoration layer 5 is formed using a printing ink containing a colorant, a binder resin, and a solvent or dispersion medium.
 装飾層5の形成に用いられる印刷インキの着色剤としては、特に制限されないが、例えば、アルミニウム、クロム、ニッケル、錫、チタン、リン化鉄、銅、金、銀、真鍮等の金属、合金、又は金属化合物の鱗片状箔粉からなるメタリック顔料;マイカ状酸化鉄、二酸化チタン被覆雲母、二酸化チタン被覆オキシ塩化ビスマス、オキシ塩化ビスマス、二酸化チタン被覆タルク、魚鱗箔、着色二酸化チタン被覆雲母、塩基性炭酸鉛等の箔粉からなる真珠光沢(パール)顔料;アルミン酸ストロンチウム、アルミン酸カルシウム、アルミン酸バリウム、硫化亜鉛、硫化カルシウム等の蛍光顔料;二酸化チタン、亜鉛華、三酸化アンチモン等の白色無機顔料;亜鉛華、弁柄、朱、群青、コバルトブルー、チタン黄、黄鉛、カーボンブラック等の無機顔料;イソインドリノンイエロー、ハンザイエローA、キナクリドンレッド、パーマネントレッド4R、フタロシアニンブルー、インダスレンブルーRS、アニリンブラック等の有機顔料(染料も含む)等が挙げられる。これらの着色剤は、1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。 The colorant of the printing ink used for forming the decorative layer 5 is not particularly limited, but for example, metals such as aluminum, chromium, nickel, tin, titanium, iron phosphide, copper, gold, silver, brass, alloys, Or metallic pigments made of scale-like foil powder of metal compounds; mica-like iron oxide, titanium dioxide-coated mica, titanium dioxide-coated bismuth oxychloride, bismuth oxychloride, titanium dioxide-coated talc, fish scale foil, colored titanium dioxide-coated mica, basic Pearl pigment made of foil powder such as lead carbonate; fluorescent pigments such as strontium aluminate, calcium aluminate, barium aluminate, zinc sulfide, calcium sulfide; white inorganics such as titanium dioxide, zinc white, antimony trioxide Pigment: Inorganic such as zinc white, petal, vermilion, ultramarine, cobalt blue, titanium yellow, yellow lead, carbon black Fee; isoindolinone yellow, Hansa yellow A, quinacridone red, permanent red 4R, phthalocyanine blue, indanthrene blue RS, and organic pigments such as aniline black (including dyes) and the like. These colorants may be used alone or in combination of two or more.
 また、装飾層5の形成に用いられる印刷インキのバインダー樹脂としては、特に制限されないが、例えば、アクリル系樹脂、スチレン系樹脂、ポリエステル系樹脂、ウレタン系樹脂、塩素化ポリオレフィン系樹脂、塩化ビニル-酢酸ビニル共重合体系樹脂、ポリビニルブチラール樹脂、アルキド系樹脂、石油系樹脂、ケトン樹脂、エポキシ系樹脂、メラミン系樹脂、フッ素系樹脂、シリコーン系樹脂、繊維素誘導体、ゴム系樹脂等が挙げられる。これらのバインダー樹脂は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 Further, the binder resin of the printing ink used for forming the decorative layer 5 is not particularly limited. For example, acrylic resin, styrene resin, polyester resin, urethane resin, chlorinated polyolefin resin, vinyl chloride- Examples thereof include vinyl acetate copolymer resins, polyvinyl butyral resins, alkyd resins, petroleum resins, ketone resins, epoxy resins, melamine resins, fluorine resins, silicone resins, fibrin derivatives, rubber resins, and the like. These binder resins may be used individually by 1 type, and may be used in combination of 2 or more type.
 また、装飾層5の形成に用いられる印刷インキの溶剤又は分散媒としては、特に制限されないが、例えば、ヘキサン、ヘプタン、オクタン、トルエン、キシレン、エチルベンゼン、シクロヘキサン、メチルシクロヘキサン等の石油系有機溶剤;酢酸エチル、酢酸ブチル、酢酸-2-メトキシエチル、酢酸-2-エトキシエチル等のエステル系有機溶剤;メチルアルコール、エチルアルコール、ノルマルプロピルアルコール、イソプロピルアルコール、イソブチルアルコール、エチレングリコール、プロピレングリコール等のアルコール系有機溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系有機溶剤;ジエチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル系有機溶剤;ジクロロメタン、四塩化炭素、トリクロロエチレン、テトラクロロエチレン等の塩素系有機溶剤;水等が挙げられる。これらの溶剤又は分散媒は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 Moreover, the solvent or dispersion medium of the printing ink used for forming the decorative layer 5 is not particularly limited. For example, petroleum organic solvents such as hexane, heptane, octane, toluene, xylene, ethylbenzene, cyclohexane, and methylcyclohexane; Ester organic solvents such as ethyl acetate, butyl acetate, 2-methoxyethyl acetate, and 2-ethoxyethyl acetate; alcohols such as methyl alcohol, ethyl alcohol, normal propyl alcohol, isopropyl alcohol, isobutyl alcohol, ethylene glycol, and propylene glycol Organic solvents; ketone organic solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; ether organic solvents such as diethyl ether, dioxane, and tetrahydrofuran; dichloromethane Tan, carbon tetrachloride, trichlorethylene, chlorinated organic solvents such as tetrachlorethylene; water and the like. These solvents or dispersion media may be used individually by 1 type, and may be used in combination of 2 or more type.
 また、装飾層5の形成に使用される印刷インキには、必要に応じて、沈降防止剤、硬化触媒、紫外線吸収剤、酸化防止剤、レベリング剤、増粘剤、消泡剤、滑剤等が含まれていてもよい。 In addition, the printing ink used for forming the decorative layer 5 includes an anti-settling agent, a curing catalyst, an ultraviolet absorber, an antioxidant, a leveling agent, a thickener, an antifoaming agent, a lubricant, and the like as necessary. It may be included.
 装飾層5は、例えば保護層3やプライマー層4上など隣接する層の上に、グラビア印刷、フレキソ印刷、シルクスクリーン印刷、オフセット印刷等の公知の印刷法によって形成することができる。また、装飾層5を絵柄層及び隠蔽層の組み合わせとする場合には、一方の層を積層させて乾燥させた後に、もう一方の層を積層させて乾燥させればよい。 The decorative layer 5 can be formed on an adjacent layer such as the protective layer 3 or the primer layer 4 by a known printing method such as gravure printing, flexographic printing, silk screen printing, or offset printing. When the decorative layer 5 is a combination of a pattern layer and a concealing layer, one layer may be stacked and dried, and then the other layer may be stacked and dried.
 装飾層5の厚さについては、特に制限されないが、例えば、1~40μm、好ましくは3~30μmが挙げられる。 The thickness of the decorative layer 5 is not particularly limited, but may be 1 to 40 μm, preferably 3 to 30 μm, for example.
 装飾層5は金属薄膜層であってもよい。金属薄膜層を形成する金属としては、例えば、スズ、インジウム、クロム、アルミニウム、ニッケル、銅、銀、金、白金、亜鉛、及びこれらのうち少なくとも1種を含む合金などが挙げられる。金属薄膜層の形成方法は特に制限されず、例えば上記の金属を用いた、真空蒸着法などの蒸着法、スパッタリング法、イオンプレーティング法などが挙げられる。また、隣接する層との密着性を向上させるため、金属薄膜層の表面や裏面には公知の樹脂を用いたプライマー層を設けてもよい。 The decoration layer 5 may be a metal thin film layer. Examples of the metal forming the metal thin film layer include tin, indium, chromium, aluminum, nickel, copper, silver, gold, platinum, zinc, and alloys containing at least one of these. The method for forming the metal thin film layer is not particularly limited, and examples thereof include a vapor deposition method such as a vacuum vapor deposition method, a sputtering method, and an ion plating method using the above-described metal. Moreover, in order to improve adhesiveness with an adjacent layer, you may provide the primer layer using well-known resin in the surface and back surface of a metal thin film layer.
[接着層6]
 本発明において、接着層6は、三次元成形用転写フィルムと成形樹脂層8との密着性を向上させることなどを目的として、装飾層5、透明樹脂層7などの裏面(成形樹脂層8側)に必要に応じて設けられる層である。接着層6を形成する樹脂としては、これらの層間の密着性や接着性を向上させることができるものであれば、特に制限されず、例えば、熱可塑性樹脂または熱硬化性樹脂が用いられる。熱可塑性樹脂としては、例えば、アクリル樹脂、アクリル変性ポリオレフィン樹脂、塩素化ポリオレフィン樹脂、塩化ビニル-酢酸ビニル共重合体、熱可塑性ウレタン樹脂、熱可塑性ポリエステル樹脂、ポリアミド樹脂、ゴム系樹脂などが挙げられる。熱可塑性樹脂は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。また、熱硬化性樹脂としては、例えば、ウレタン樹脂、エポキシ樹脂等挙げられる。熱硬化性樹脂は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
[Adhesive layer 6]
In the present invention, the adhesive layer 6 is used for the purpose of improving the adhesion between the transfer film for three-dimensional molding and the molded resin layer 8, and the like (on the molded resin layer 8 side) such as the decorative layer 5 and the transparent resin layer 7. ) If necessary. The resin forming the adhesive layer 6 is not particularly limited as long as it can improve the adhesion and adhesiveness between these layers, and for example, a thermoplastic resin or a thermosetting resin is used. Examples of the thermoplastic resin include acrylic resins, acrylic-modified polyolefin resins, chlorinated polyolefin resins, vinyl chloride-vinyl acetate copolymers, thermoplastic urethane resins, thermoplastic polyester resins, polyamide resins, rubber resins, and the like. . A thermoplastic resin may be used individually by 1 type, and may be used in combination of 2 or more types. Examples of the thermosetting resin include a urethane resin and an epoxy resin. A thermosetting resin may be used individually by 1 type, and may be used in combination of 2 or more types.
 接着層6は必ずしも必要な層ではないが、本発明の三次元成形用転写フィルムを、例えば後述する真空圧着法など、予め用意された樹脂成形体上へ貼着による加飾方法に適用することを想定した場合は、設けられていることが好ましい。真空圧着法に用いる場合、上記した各種の樹脂のうち、加圧又は加熱により接着性を発現する樹脂として慣用のものを使用して接着層6を形成することが好ましい。 Although the adhesive layer 6 is not necessarily a necessary layer, the transfer film for three-dimensional molding of the present invention is applied to a decorating method by sticking onto a resin molded body prepared in advance, such as a vacuum pressing method described later. Is preferably provided. When used in the vacuum pressure bonding method, it is preferable to form the adhesive layer 6 by using a conventional resin that exhibits adhesiveness by pressurization or heating among the various resins described above.
 接着層6の厚みは、特に制限されないが、例えば、0.1~30μm程度、好ましくは0.5~20μm程度、さらに好ましくは1~8μm程度が挙げられる。 The thickness of the adhesive layer 6 is not particularly limited, but may be about 0.1 to 30 μm, preferably about 0.5 to 20 μm, and more preferably about 1 to 8 μm.
[透明樹脂層7]
 本発明の三次元成形用転写フィルムにおいては、プライマー層4と接着層6との密着性を向上させることなどを目的として、必要に応じて、透明樹脂層7を設けてもよい。透明樹脂層7は、本発明の三次元成形用転写フィルムが装飾層5を有さない態様において、プライマー層4と接着層6との密着性を向上させることができるので、本発明の三次元成形用転写フィルムを透明性が要求される樹脂成形品の製造に供する場合において設けることが特に有用である。透明樹脂層7は、透明性のものであれば特に限定されず、無色透明、着色透明、半透明等のいずれも含む。透明樹脂層7を形成する樹脂成分としては、装飾層5で例示したバインダー樹脂などが挙げられる。
[Transparent resin layer 7]
In the three-dimensional molding transfer film of the present invention, a transparent resin layer 7 may be provided as necessary for the purpose of improving the adhesion between the primer layer 4 and the adhesive layer 6. Since the transparent resin layer 7 can improve the adhesion between the primer layer 4 and the adhesive layer 6 in the embodiment in which the three-dimensional molding transfer film of the present invention does not have the decorative layer 5, the three-dimensional structure of the present invention. It is particularly useful to provide the molding transfer film when it is used for the production of a resin molded product requiring transparency. The transparent resin layer 7 is not particularly limited as long as it is transparent, and includes any of colorless and transparent, colored and transparent, and translucent. Examples of the resin component that forms the transparent resin layer 7 include the binder resin exemplified in the decorative layer 5.
 透明樹脂層7には、必要に応じて、充填剤、艶消し剤、発泡剤、難燃剤、滑剤、帯電防止剤、酸化防止剤、紫外線吸収剤、光安定化剤、ラジカル捕捉剤、軟質成分(例えばゴム)等の各種の添加剤が含まれていてもよい。 As necessary, the transparent resin layer 7 may include a filler, a matting agent, a foaming agent, a flame retardant, a lubricant, an antistatic agent, an antioxidant, an ultraviolet absorber, a light stabilizer, a radical scavenger, and a soft component. Various additives such as rubber (for example, rubber) may be included.
 透明樹脂層7は、グラビア印刷、フレキソ印刷、シルクスクリーン印刷、オフセット印刷等の公知の印刷法によって形成することができる。 The transparent resin layer 7 can be formed by a known printing method such as gravure printing, flexographic printing, silk screen printing, or offset printing.
 透明樹脂層7の厚みとしては、特に限定されないが、一般的には0.1~10μm程度、好ましくは1~10μm程度が挙げられる。 The thickness of the transparent resin layer 7 is not particularly limited, but is generally about 0.1 to 10 μm, preferably about 1 to 10 μm.
[三次元成形用転写フィルムの製造]
 第1の実施態様の三次元成形用転写フィルムは、例えば以下の工程を備える製造方法により製造することができる。
 転写用基材上に、ポリカーボネート(メタ)アクリレートを含む電離放射線硬化性樹脂組成物からなる層を積層する工程
 前記電離放射線硬化性樹脂組成物に電離放射線を照射し、前記電離放射線硬化性樹脂組成物からなる層を硬化させて、前記転写用基材上に、マルテンス硬さが、6~40N/mm2の保護層を形成する工程
[Manufacture of three-dimensional molding transfer film]
The transfer film for three-dimensional molding of the first embodiment can be manufactured by a manufacturing method including the following steps, for example.
A step of laminating a layer made of an ionizing radiation curable resin composition containing polycarbonate (meth) acrylate on a substrate for transfer. The ionizing radiation curable resin composition is irradiated with ionizing radiation to form the ionizing radiation curable resin composition. A step of curing a layer made of a material to form a protective layer having a Martens hardness of 6 to 40 N / mm 2 on the transfer substrate.
 また、第1の実施態様の三次元成形用転写フィルムが離型層2を有する場合、例えば以下の工程を備える製造方法により製造することができる。
 転写用基材1上に、離型層形成用塗膜を形成する工程
 前記離型層形成用塗膜の上に、保護層形成用塗膜を形成する工程
 離型層形成用塗膜及び保護層形成用塗膜に電離放射線を照射して、離型層形成用塗膜が硬化した離型層と、保護層形成用塗膜が硬化した保護層を形成する工程。このとき、保護層のマルテンス硬さが6~40N/mm2、好ましくは7~35N/mm2となるように調整し、さらに、離型層のマルテンス硬さが7~45N/mm2となるように調整することが好ましい。
Moreover, when the three-dimensional shaping | molding transfer film of a 1st embodiment has the mold release layer 2, it can manufacture by the manufacturing method provided with the following processes, for example.
Step of forming release layer forming coating on transfer substrate 1 Step of forming protective layer forming coating on release layer forming coating Release layer forming coating and protection A step of irradiating the layer forming coating film with ionizing radiation to form a release layer in which the release layer forming coating film is cured and a protective layer in which the protective layer forming coating film is cured. At this time, Martens hardness of the protective layer 6 ~ 40N / mm 2, preferably adjusted to 7 ~ 35N / mm 2, further Martens hardness of the release layer is 7 ~ 45N / mm 2 It is preferable to adjust so that.
 また、第2の実施態様の三次元成形用転写フィルムは、例えば以下の工程を備える製造方法により製造することができる。
 転写用基材1上に、離型層形成用塗膜を形成する工程
 離型層形成用塗膜に電離放射線を照射して、離型層形成用塗膜が硬化した離型層を形成する工程(このとき、離型層の硬さが7~45N/mm2の範囲となるように調整する)
 離型層の上に転写層を積層する工程。
Moreover, the transfer film for three-dimensional shaping | molding of a 2nd embodiment can be manufactured with a manufacturing method provided with the following processes, for example.
Step of forming release layer forming coating film on transfer substrate 1 Irradiating the release layer forming coating film with ionizing radiation forms a release layer in which the release layer forming coating film is cured. Step (At this time, the mold release layer is adjusted so that the hardness is in the range of 7 to 45 N / mm 2 )
A step of laminating a transfer layer on the release layer.
 また、第2の実施態様の三次元成形用転写フィルムが保護層3を有する場合、例えば以下の工程を備える製造方法により製造することができる。
 転写用基材1上に、離型層形成用塗膜を形成する工程
 前記離型層形成用塗膜の上に、保護層形成用塗膜を形成する工程
 離型層形成用塗膜及び保護層形成用塗膜に電離放射線を照射して、離型層形成用塗膜が硬化した離型層と、保護層形成用塗膜が硬化した保護層を形成する工程(このとき、離型層の硬さが7~45N/mm2の範囲となるように調整する)。
Moreover, when the three-dimensional shaping | molding transfer film of a 2nd embodiment has the protective layer 3, it can manufacture by the manufacturing method provided with the following processes, for example.
Step of forming release layer forming coating on transfer substrate 1 Step of forming protective layer forming coating on release layer forming coating Release layer forming coating and protection A step of irradiating the layer forming coating film with ionizing radiation to form a release layer in which the release layer forming coating film is cured and a protective layer in which the protective layer forming coating film is cured (in this case, the release layer) Is adjusted to be in the range of 7 to 45 N / mm 2 ).
2.樹脂成形品及びその製造方法
 本発明の樹脂成形品は、本発明の三次元成形用転写フィルムと成形樹脂とを一体化させることにより成形されてなるものである。具体的には、第1の実施態様においては、三次元成形用転写フィルムの支持体10とは反対側に成形樹脂層8を積層することにより、少なくとも成形樹脂層8と、保護層3と、支持体10とがこの順に積層された、支持体付き樹脂成形品が得られる(例えば図3を参照)。次に、支持体付き樹脂成形品から支持体10を剥離することにより、少なくとも成形樹脂層8と保護層3とがこの順に積層された本発明の樹脂成形品が得られる(例えば図4を参照)。また、第2の実施態様においては、三次元成形用転写フィルムの支持体10とは反対側に成形樹脂層8を積層することにより、成形樹脂層8と、転写層9と、支持体10とがこの順に積層された、支持体付き樹脂成形品が得られる(例えば図3を参照)。次に、支持体付き樹脂成形品から支持体10を剥離することにより、少なくとも成形樹脂層8と転写層9とが積層された本発明の樹脂成形品が得られる(例えば図4を参照)。図4に示されるように、第1の実施態様の樹脂成形品では、必要に応じて、上述の装飾層5、プライマー層4、接着層6、透明樹脂層7などの少なくとも1層がさらに設けられていてもよく、第2の実施態様の樹脂成形品では、必要に応じて、上述の保護層3、装飾層5、プライマー層4、接着層6、透明樹脂層7などの少なくとも1層がさらに設けられていてもよい。
2. Resin molded product and method for producing the same The resin molded product of the present invention is formed by integrating the three-dimensional molding transfer film of the present invention and a molded resin. Specifically, in the first embodiment, by laminating the molding resin layer 8 on the side opposite to the support 10 of the three-dimensional molding transfer film, at least the molding resin layer 8, the protective layer 3, A resin molded product with a support in which the support 10 is laminated in this order is obtained (see, for example, FIG. 3). Next, by peeling the support 10 from the resin molded product with the support, the resin molded product of the present invention in which at least the molded resin layer 8 and the protective layer 3 are laminated in this order is obtained (see, for example, FIG. 4). ). In the second embodiment, the molding resin layer 8, the transfer layer 9, the support 10, and the molding resin layer 8 are laminated on the side opposite to the support 10 of the three-dimensional molding transfer film. Are laminated in this order to obtain a resin molded product with a support (see, for example, FIG. 3). Next, the support 10 is peeled from the resin molded product with the support to obtain the resin molded product of the present invention in which at least the molded resin layer 8 and the transfer layer 9 are laminated (see, for example, FIG. 4). As shown in FIG. 4, the resin molded product of the first embodiment is further provided with at least one layer such as the decorative layer 5, the primer layer 4, the adhesive layer 6, and the transparent resin layer 7 as necessary. In the resin molded product of the second embodiment, if necessary, at least one layer such as the protective layer 3, the decorative layer 5, the primer layer 4, the adhesive layer 6, and the transparent resin layer 7 is included. Further, it may be provided.
 第1の実施態様の樹脂成形品は、以下の工程を備える製造方法により製造することができる。
 三次元成形用転写フィルムの転写用基材とは反対側に成形樹脂層を積層する工程、
 転写用基材を前記保護層から剥離する工程
The resin molded product of the first embodiment can be manufactured by a manufacturing method including the following steps.
A step of laminating a molding resin layer on the opposite side of the transfer substrate of the three-dimensional molding transfer film;
Step of peeling the transfer substrate from the protective layer
 また、第2の実施態様の樹脂成形品は、以下の工程を備える製造方法により製造することができる。
 三次元成形用転写フィルムの支持体とは反対側に成形樹脂層を積層する工程、
 支持体を転写層から剥離する工程
Moreover, the resin molded product of the second embodiment can be manufactured by a manufacturing method including the following steps.
A step of laminating a molding resin layer on the opposite side of the three-dimensional molding transfer film support
Step of peeling the support from the transfer layer
 第1の実施態様において、三次元成形用転写フィルムを例えば射出成形同時転写加飾法に適用する場合、第1の実施態様の樹脂成形品の製造方法としては、例えば以下の工程(1)~(5)を含む方法が挙げられる。
(1)まず、任意に、上記転写用三次元成形用転写フィルムの保護層側(支持体と反対側)を金型内に向けて、熱盤によって保護層側から三次元成形用転写フィルムを加熱する工程(必要に応じて行う工程であり、当該工程を有していなくてもよい)、
(2)該三次元成形用転写フィルムを金型内形状に沿うように予備成形(真空成形)して金型内面に密着させて型締する工程、
(3)樹脂を金型内に射出する工程、
(4)該射出樹脂を冷却した後に金型から樹脂成形品(支持体付き樹脂成形品)を取り出す工程、及び
(5)樹脂成形品の保護層から支持体を剥離する工程。
In the first embodiment, when the three-dimensional molding transfer film is applied to, for example, the injection molding simultaneous transfer decorating method, as a method for producing a resin molded product of the first embodiment, for example, the following steps (1) to The method containing (5) is mentioned.
(1) First, the protective layer side (opposite to the support) of the transfer three-dimensional transfer film is directed into the mold, and the three-dimensional transfer film is transferred from the protective layer side by a hot platen. A step of heating (it is a step to be performed if necessary, and may not have the step),
(2) A step of pre-molding (vacuum molding) the three-dimensional molding transfer film along the inner shape of the mold and closely contacting the inner surface of the mold to clamp the mold;
(3) A step of injecting resin into the mold,
(4) A step of taking out a resin molded product (resin molded product with a support) from the mold after cooling the injection resin, and (5) a step of peeling the support from the protective layer of the resin molded product.
 一方、第2の実施態様において、三次元成形用転写フィルムを例えば射出成形同時転写加飾法に適用する場合、第2の実施態様の樹脂成形品の製造方法としては、例えば以下の工程(1)~(5)を含む方法が挙げられる。
(1)まず、任意に、上記転写用三次元成形用転写フィルムの転写層側(支持体と反対側)を金型内に向けて、熱盤によって転写層側から三次元成形用転写フィルムを加熱する工程(必要に応じて行う工程であり、当該工程を有していなくてもよい)、
(2)該三次元成形用転写フィルムを金型内形状に沿うように予備成形(真空成形)して金型内面に密着させて型締する工程、
(3)樹脂を金型内に射出する工程、
(4)該射出樹脂を冷却した後に金型から樹脂成形品(支持体付き樹脂成形品)を取り出す工程、及び
(5)樹脂成形品の転写層から支持体を剥離する工程。
On the other hand, in the second embodiment, when the transfer film for three-dimensional molding is applied to, for example, the injection molding simultaneous transfer decoration method, as a method for producing a resin molded product of the second embodiment, for example, the following steps (1 ) To (5).
(1) First, optionally, the transfer layer side of the transfer three-dimensional molding transfer film (the side opposite to the support) is directed into the mold, and the three-dimensional molding transfer film is transferred from the transfer layer side by a hot platen. A step of heating (it is a step to be performed if necessary, and may not have the step),
(2) A step of pre-molding (vacuum molding) the three-dimensional molding transfer film along the inner shape of the mold and closely contacting the inner surface of the mold to clamp the mold;
(3) A step of injecting resin into the mold,
(4) A step of taking out a resin molded product (resin molded product with a support) from the mold after cooling the injection resin, and (5) a step of peeling the support from the transfer layer of the resin molded product.
 第1の実施態様及び第2の実施態様の上記両工程(1)及び(2)において、三次元成形用転写フィルムを加熱する温度は、転写用基材1のガラス転移温度近傍以上で、かつ、溶融温度(又は融点)未満の範囲であることが好ましい。通常はガラス転移温度近傍の温度で行うことが、より好ましい。なお、上記のガラス転移温度近傍とは、ガラス転移温度±5℃程度の範囲を指し、転写用基材1として好適なポリエステルフィルムを使用する場合には、一般に70~130℃程度である。なお、あまり複雑でない形状の金型を用いる場合は、三次元成形用転写フィルムを加熱する工程や、三次元成形用転写フィルムを予備成形する工程を省略し、後記する工程(3)において、射出樹脂の熱と圧力によって三次元成形用転写フィルムを金型の形状に成形してもよい。 In both the steps (1) and (2) of the first embodiment and the second embodiment, the temperature for heating the three-dimensional molding transfer film is not less than the glass transition temperature of the transfer substrate 1 and The melting point (or melting point) is preferably in the range. Usually, it is more preferable to carry out at a temperature near the glass transition temperature. The vicinity of the glass transition temperature mentioned above refers to a range of glass transition temperature ± 5 ° C., and is generally about 70 to 130 ° C. when a polyester film suitable as the transfer substrate 1 is used. In the case of using a mold having a less complicated shape, the step of heating the transfer film for three-dimensional molding and the step of preforming the transfer film for three-dimensional molding are omitted, and in the step (3) described later, injection is performed. The transfer film for three-dimensional molding may be formed into a mold shape by the heat and pressure of the resin.
 上記両工程(3)において、後述する成形用樹脂を溶融させて、キャビティ内に射出して該三次元成形用転写フィルムと成形用樹脂とを一体化させる。成形用樹脂が熱可塑性樹脂の場合は、加熱溶融によって流動状態にして、また、成形用樹脂が熱硬化性樹脂の場合は、未硬化の液状組成物を室温又は適宜加熱して流動状態で射出して、冷却して固化させる。これによって、三次元成形用転写フィルムが、形成された樹脂成形体と一体化して貼り付き、支持体付き樹脂成形品となる。成形用樹脂の加熱温度は、成形用樹脂の種類によるが、一般に180~320℃程度である。 In both the above steps (3), the molding resin described later is melted and injected into the cavity to integrate the three-dimensional molding transfer film and the molding resin. When the molding resin is a thermoplastic resin, it is made into a fluid state by heating and melting, and when the molding resin is a thermosetting resin, the uncured liquid composition is injected at room temperature or appropriately heated and injected in a fluid state. Then, it is cooled and solidified. As a result, the three-dimensional molding transfer film is integrally bonded to the formed resin molded body to form a resin molded product with a support. The heating temperature of the molding resin depends on the type of the molding resin, but is generally about 180 to 320 ° C.
 このようにして得られた支持体付き樹脂成形品は、工程(4)において冷却した後に金型から取り出した後、第1の実施態様では工程(5)において支持体10を保護層3から剥離することにより樹脂成形品を得、第2の実施態様では工程(5)において支持体10を転写層9から剥離することにより樹脂成形品を得る。また、第1の実施態様において、支持体10を保護層3から剥離する工程は、加飾樹脂成形品を金型から取り出す工程と同時に行われてもよいし、第2の実施態様において、支持体10を転写層9から剥離する工程は、樹脂成形品を金型から取り出す工程と同時に行われてもよい。すなわち、第1の実施態様及び第2の実施態様において、工程(5)は工程(4)に含まれるものであってもよい。 After the resin molded product with the support thus obtained is cooled in the step (4) and taken out of the mold, the support 10 is peeled off from the protective layer 3 in the step (5) in the first embodiment. Thus, a resin molded product is obtained. In the second embodiment, the resin molded product is obtained by peeling the support 10 from the transfer layer 9 in the step (5). Further, in the first embodiment, the step of peeling the support 10 from the protective layer 3 may be performed simultaneously with the step of taking out the decorative resin molded product from the mold, and in the second embodiment, the support The step of peeling the body 10 from the transfer layer 9 may be performed simultaneously with the step of taking out the resin molded product from the mold. That is, in the first embodiment and the second embodiment, step (5) may be included in step (4).
 さらに、樹脂成形品の製造は、真空圧着法により行うこともできる。真空圧着法では、まず、上側に位置する第1真空室及び下側に位置する第2真空室からなる真空圧着機内に、本発明の三次元成形用転写フィルム及び樹脂成形体を、三次元成形用転写フィルムが第1真空室側、樹脂成形体が第2真空室側となるように、且つ三次元成形用転写フィルムの成形樹脂層8を積層する側が樹脂成形体側に向くように真空圧着機内に設置し、2つの真空室を真空状態とする。樹脂成形体は、第2真空室側に備えられた、上下に昇降可能な昇降台上に設置される。次いで、第1の真空室を加圧すると共に、昇降台を用いて成形体を三次元成形用転写フィルムに押し当て、2つの真空室間の圧力差を利用して、三次元成形用転写フィルムを延伸しながら樹脂成形体の表面に貼着する。最後に2つの真空室を大気圧に開放し、支持体10を剥離し、必要に応じて三次元成形用転写フィルムの余分な部分をトリミングすることにより、本発明の樹脂成形品を得ることができる。 Furthermore, the resin molded product can be manufactured by a vacuum pressure bonding method. In the vacuum pressure bonding method, first, the three-dimensional molding transfer film and the resin molded body of the present invention are three-dimensionally molded in a vacuum pressure bonding machine including a first vacuum chamber located on the upper side and a second vacuum chamber located on the lower side. Inside the vacuum press so that the transfer film for the first vacuum chamber is on the side of the first vacuum chamber, the resin molding is on the side of the second vacuum chamber, and the side on which the molding resin layer 8 of the three-dimensional molding transfer film is laminated faces the resin molding And set the two vacuum chambers in a vacuum state. The resin molding is installed on a lifting platform that is provided on the second vacuum chamber side and can be moved up and down. Next, while pressurizing the first vacuum chamber, the molded body is pressed against the three-dimensional molding transfer film using an elevator, and the pressure difference between the two vacuum chambers is used to form the three-dimensional molding transfer film. It sticks to the surface of the resin molding while stretching. Finally, the two vacuum chambers are opened to atmospheric pressure, the support 10 is peeled off, and an excess portion of the three-dimensional molding transfer film is trimmed as necessary to obtain the resin molded product of the present invention. it can.
 真空圧着法においては、上記の成形体を三次元成形用転写フィルムに押し当てる工程の前に、三次元成形用転写フィルムを軟化させて成形性を高めるため、三次元成形用転写フィルムを加熱する工程を備えることが好ましい。当該工程を備える真空圧着法は、特に真空加熱圧着法と呼ばれることがある。当該工程における加熱温度は、三次元成形用転写フィルムを構成する樹脂の種類や、三次元成形用転写フィルムの厚みなどによって適宜選択すればよいが、例えば転写用基材1としてポリエステル樹脂フィルムやアクリル樹脂フィルムを使用する場合であれば、通常60~200℃程度とすることができる。 In the vacuum pressure bonding method, before the step of pressing the molded body against the three-dimensional molding transfer film, the three-dimensional molding transfer film is heated in order to soften the three-dimensional molding transfer film and improve the moldability. It is preferable to provide a process. The vacuum pressure bonding method provided with the said process may be especially called a vacuum thermocompression bonding method. The heating temperature in this step may be appropriately selected depending on the type of resin constituting the three-dimensional molding transfer film, the thickness of the three-dimensional molding transfer film, and the like. If a resin film is used, the temperature can usually be about 60 to 200 ° C.
 本発明の樹脂成形品において、成形樹脂層8は、用途に応じた樹脂を選択して形成すればよい。成形樹脂層8を形成する成形用樹脂としては、熱可塑性樹脂であってもよく、また熱硬化性樹脂であってもよい。 In the resin molded product of the present invention, the molded resin layer 8 may be formed by selecting a resin according to the application. The molding resin for forming the molding resin layer 8 may be a thermoplastic resin or a thermosetting resin.
 熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ABS樹脂、スチレン樹脂、ポリカーボネート樹脂、アクリル樹脂、塩化ビニル系樹脂等が挙げられる。これらの熱可塑性樹脂は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 Examples of the thermoplastic resin include polyolefin resins such as polyethylene and polypropylene, ABS resins, styrene resins, polycarbonate resins, acrylic resins, and vinyl chloride resins. These thermoplastic resins may be used individually by 1 type, and may be used in combination of 2 or more type.
 また、熱硬化性樹脂としては、例えば、ウレタン樹脂、エポキシ樹脂等が挙げられる。これらの熱硬化性樹脂は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 Further, examples of the thermosetting resin include urethane resin and epoxy resin. These thermosetting resins may be used individually by 1 type, and may be used in combination of 2 or more type.
 なお、支持体付き樹脂成形品において、支持体10は、樹脂成形品の保護シートとしての役割を果たすので、支持体付き樹脂成形品の製造後に剥離させずにそのまま保管しておき、用時に支持体10を剥がしてもよい。このような態様で使用することにより、輸送時の擦れ等によって樹脂成形品に傷付きが生じるのを防止することができる。 In the resin molded product with a support, since the support 10 serves as a protective sheet for the resin molded product, it is stored as it is without being peeled after the production of the resin molded product with a support and is supported at the time of use. The body 10 may be peeled off. By using in this manner, it is possible to prevent the resin molded product from being damaged due to rubbing during transportation.
 本発明の樹脂成形品は、優れた耐傷性及び耐薬品性を有するため、例えば、自動車等の車両の内装材又は外装材;窓枠、扉枠等の建具;壁、床、天井等の建築物の内装材;テレビ受像機、空調機等の家電製品の筐体;容器等として利用することができる。 Since the resin molded product of the present invention has excellent scratch resistance and chemical resistance, for example, interior materials or exterior materials of vehicles such as automobiles; fittings such as window frames and door frames; architectures such as walls, floors, and ceilings It can be used as an interior material of a product; a housing of a household electric appliance such as a television receiver or an air conditioner;
 以下に実施例及び比較例を示して本発明を詳細に説明する。但し本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the examples.
(実施例1A~6A及び比較例1A~2A)
[三次元成形用転写フィルムの製造]
 転写用基材として、一方面に易接着剤層が形成されたポリエチレンテレフタレートフィルム(厚さ50μm)を用いた。ポリエチレンテレフタレートフィルムの易接着剤層の面に、2官能ポリカーボネートアクリレート(重量平均分子量:8,000)85質量%とペンタエリスリトールトリアクリレート(PETA)15質量%とを含む電子放射線硬化性樹脂組成物(UVA2.2%、HALS0.6%を含む)をグラビア印刷にて印刷して離型層形成用塗膜(厚さ1.5μm)を形成した。次に、この塗膜上から加速電圧165kV、照射線量7Mradの電子線を照射して、離型層形成用塗膜を硬化させて離型層を形成した。
(Examples 1A to 6A and Comparative Examples 1A to 2A)
[Manufacture of three-dimensional molding transfer film]
As a transfer substrate, a polyethylene terephthalate film (thickness 50 μm) having an easy-adhesive layer formed on one surface was used. Electron radiation curable resin composition comprising 85% by mass of bifunctional polycarbonate acrylate (weight average molecular weight: 8,000) and 15% by mass of pentaerythritol triacrylate (PETA) on the surface of the easy adhesive layer of the polyethylene terephthalate film ( (Including UVA 2.2%, HALS 0.6%) was printed by gravure printing to form a release layer-forming coating film (thickness 1.5 μm). Next, an electron beam with an acceleration voltage of 165 kV and an irradiation dose of 7 Mrad was applied from above the coating film to cure the release layer forming coating film to form a release layer.
 次いで、実施例1A~6A及び比較例1Aでは、離型層の上に、後述の電離放射線硬化性樹脂組成物を、硬化後の厚さが表1Aの厚さとなるようにバーコーダーにより塗工し、保護層形成用塗布膜を形成した。保護層の形成に用いた電子放射線硬化性樹脂組成物に含まれるペンタエリスリトールトリアクリレート(PETA)の含有量(残部は、ポリカーボネートアクリレート及びアクリルポリマー)は、表1Aに記載のとおりである。一方、比較例2Aにおいては、離型層の上に、ポリメチルメタクリレート(PMMA 重量平均分子量2万、Tg105℃)とPETAを、PETA/PMMA=4/6の質量比で含む樹脂組成物(UVA2.2%、HALS0.6%を含む)を、硬化後の厚さが表1Aの厚さとなるようにバーコーダーにより塗工し、保護層を形成した。次に、この塗膜上から加速電圧165kV、表1Aに記載の照射線量(単位:Mrad)の電子線を照射して、保護層形成用塗布膜を硬化させて保護層を形成した。 Next, in Examples 1A to 6A and Comparative Example 1A, an ionizing radiation curable resin composition described later was applied onto the release layer with a bar coder so that the thickness after curing would be the thickness shown in Table 1A. Then, a protective layer-forming coating film was formed. The content of pentaerythritol triacrylate (PETA) contained in the electron radiation curable resin composition used for forming the protective layer (the balance is polycarbonate acrylate and acrylic polymer) is as shown in Table 1A. On the other hand, in Comparative Example 2A, a resin composition (UVA2) containing polymethyl methacrylate (PMMA, weight average molecular weight 20,000, Tg 105 ° C.) and PETA in a mass ratio of PETA / PMMA = 4/6 on the release layer. .2% and HALS 0.6%) were coated with a bar coder so that the thickness after curing was the thickness shown in Table 1A to form a protective layer. Next, an electron beam having an acceleration voltage of 165 kV and an irradiation dose (unit: Mrad) described in Table 1A was irradiated on the coating film to cure the coating film for forming the protective layer, thereby forming a protective layer.
 この保護層の上に、表1Aに記載の組成を有するプライマー層形成用の樹脂組成物をグラビア印刷により塗工し、プライマー層(厚み1.5μm)を形成した。さらに、プライマー層上に、アクリル系樹脂及び塩化ビニル-酢酸ビニル系共重合体樹脂をバインダー樹脂(アクリル樹脂50質量%、塩化ビニル-酢酸ビニル系共重合体樹脂50質量%)として含む装飾層形成用黒色系インキ組成物を用いて、黒ベタの装飾層(厚さ2μm)をグラビア印刷により形成した。更に、装飾層上に、アクリル系樹脂(軟化温度:125℃)を含む接着層形成用の樹脂組成物を用いて、接着層(1.5μm)をグラビア印刷により形成することにより、転写用基材/離型層/保護層/プライマー層/装飾層/接着層が順に積層された各三次元成形用転写フィルムを製造した。 On this protective layer, a primer layer-forming resin composition having the composition shown in Table 1A was applied by gravure printing to form a primer layer (thickness: 1.5 μm). In addition, a decorative layer is formed on the primer layer containing an acrylic resin and a vinyl chloride-vinyl acetate copolymer resin as a binder resin (acrylic resin 50 mass%, vinyl chloride-vinyl acetate copolymer resin 50 mass%). A black solid decorative layer (thickness 2 μm) was formed by gravure printing using the black ink composition for printing. Furthermore, by using a resin composition for forming an adhesive layer containing an acrylic resin (softening temperature: 125 ° C.) on the decorative layer, an adhesive layer (1.5 μm) is formed by gravure printing, thereby transferring a transfer substrate. Each three-dimensional molding transfer film in which the material / release layer / protective layer / primer layer / decoration layer / adhesive layer were laminated in this order was produced.
[保護層の形成に用いた成分]
4官能のポリカーボネートアクリレート(重量平均分子量:10,000)
ペンタエリスリトールトリアクリレート(PETA)
アクリルポリマー(アクリル樹脂、メタクリル酸メチルとメタクリル酸との共重合体、Tg105℃、重量平均分子量:約20,000)2.5重量%
[Ingredients used to form protective layer]
Tetrafunctional polycarbonate acrylate (weight average molecular weight: 10,000)
Pentaerythritol triacrylate (PETA)
Acrylic polymer (acrylic resin, copolymer of methyl methacrylate and methacrylic acid, Tg 105 ° C., weight average molecular weight: about 20,000) 2.5% by weight
<保護層のマルテンス硬さの測定>
 まず、剥離強度の測定対象とする三次元成形用転写フィルムと、これを成形するための金型と、三次元成形用転写フィルムに積層する樹脂(成形樹脂層を形成する樹脂)を用意した。金型の形状は、三次元成形用転写フィルムが金型内で成形された際に、三次元成形用転写フィルムの表面の面積伸び率が実質的に0%となる平面部を有するものとした。また、金型の温度は、60℃に設定した。三次元成形用転写フィルムに射出する樹脂(成形樹脂層を形成する樹脂)としては、ABS樹脂とポリカーボネート樹脂との混合樹脂(CYCOLOYTM Resin XCY620)を265℃に加熱して溶融させたものとした。また、三次元成形用転写フィルムを金型に入れて、真空成形で金型内の形状に沿うように予備成形して型締めした上で射出成型を行った。射出成型後、金型から取り出すと共に支持体を剥離することで得られた樹脂成形品について、最表面の保護層上からマルテンス硬さの測定を行った。マルテンス硬さは、表面皮膜物性試験機(PICODENTOR HM-500、株式会社フィッシャー・インストルメンツ製)を用いて測定される値であり、具体的な測定方法は以下の通りである。この測定方法では、温度25℃及び相対湿度50%の環境下、図5(a)に示されるような対面角136°のダイヤモンド圧子(ビッカース圧子)を用いて、各三次元成形用転写フィルムの保護層にダイヤモンド圧子を押し込み、押し込み荷重Fと押し込み深さh(圧痕深さ)から下記の式(1)により硬さを求めた。押し込み条件は、保護層または離型層に対して、室温(実験室環境温度)において、図5(b)に示される通り、先ず0~0.1mNまでの負荷を20秒間で加え、次に0.1mNの負荷で5秒間保持し、最後に0.1~0mNまでの除荷を20秒間で行った。離型層のマルテンス硬さについては、後述の実施例1B~7B及び比較例1B~2Bと同様にして測定を行った。結果を表1Aに示す。
Figure JPOXMLDOC01-appb-M000003
<Measurement of Martens hardness of protective layer>
First, a three-dimensional molding transfer film to be measured for peel strength, a mold for molding the same, and a resin (resin for forming a molding resin layer) to be laminated on the three-dimensional molding transfer film were prepared. The shape of the mold is such that when the three-dimensional molding transfer film is molded in the mold, the mold has a flat portion in which the area elongation percentage of the surface of the three-dimensional molding transfer film is substantially 0%. . The mold temperature was set to 60 ° C. As a resin (resin for forming a molding resin layer) to be injected onto the three-dimensional molding transfer film, a mixed resin of ABS resin and polycarbonate resin (CYCOLOY Resin XCY620) was heated to 265 ° C. and melted. . Further, the transfer film for three-dimensional molding was put in a mold, and pre-molded so as to conform to the shape in the mold by vacuum molding, and then injection-molded. After the injection molding, the Martens hardness was measured on the outermost protective layer of the resin molded product obtained by removing from the mold and peeling the support. The Martens hardness is a value measured using a surface film physical property tester (PICODERTOR HM-500, manufactured by Fisher Instruments Co., Ltd.), and a specific measurement method is as follows. In this measurement method, a diamond indenter (Vickers indenter) having a facing angle of 136 ° as shown in FIG. 5A is used in an environment of a temperature of 25 ° C. and a relative humidity of 50%. A diamond indenter was pushed into the protective layer, and the hardness was determined from the indentation load F and the indentation depth h (indentation depth) by the following formula (1). The indentation condition was that a load of 0 to 0.1 mN was first applied for 20 seconds at room temperature (laboratory environment temperature) to the protective layer or the release layer as shown in FIG. The load was maintained at a load of 0.1 mN for 5 seconds, and finally unloading from 0.1 to 0 mN was performed in 20 seconds. The Martens hardness of the release layer was measured in the same manner as in Examples 1B to 7B and Comparative Examples 1B to 2B described later. The results are shown in Table 1A.
Figure JPOXMLDOC01-appb-M000003
<樹脂成形品の製造>
 上記で得られた各三次元成形用転写フィルムを金型に入れて、真空成形で金型内の形状に沿うように予備成形して型締した(最大延伸倍率100%)。その後、射出樹脂を金型のキャビティ内に射出し、該三次元成形用転写フィルムと射出樹脂とを一体化成形し、金型から取り出すと同時に支持体(転写用基材及び離型層)を剥離除去することにより、樹脂成形品を得た。
<Manufacture of resin molded products>
Each of the three-dimensional molding transfer films obtained above was placed in a mold, preformed so as to conform to the shape in the mold by vacuum molding, and clamped (maximum draw ratio 100%). Thereafter, the injection resin is injected into the cavity of the mold, the three-dimensional molding transfer film and the injection resin are integrally molded, and taken out from the mold, and at the same time, the support (transfer base material and release layer) is removed. A resin molded product was obtained by peeling and removing.
<成形性の評価>
 上記の樹脂成形品の製造において、三次元成形用転写フィルムの金型への追従性を以下の基準に従い目視で評価した。結果を表1Aに示す。
A:成形品外観に割れ、白化等の外観不良が見られなかった。(最大伸度100%)
B:最大伸展部に微細な割れ、白化等が見られるが、浅絞り形状(伸度50%)では、割れ、白化等の外観不良が見られなかった。
C:浅絞り形状(伸度50%)で、割れ、白化等の外観不良が見られた。
<Evaluation of formability>
In the production of the above resin molded product, the followability of the three-dimensional molding transfer film to the mold was visually evaluated according to the following criteria. The results are shown in Table 1A.
A: Appearance defects such as cracking and whitening were not observed in the appearance of the molded product. (Maximum elongation 100%)
B: Although fine cracks, whitening and the like are observed in the maximum extension portion, appearance defects such as cracks and whitening were not observed in the shallow drawn shape (elongation 50%).
C: Appearance defects such as cracking and whitening were observed in the shallow drawn shape (elongation 50%).
<耐傷性の評価>
 上記で得られた各三次元成形用転写フィルムから支持体を剥離し、保護層を露出させた状態で、保護層の表面を、マーチンデール摩耗試験機を用いて、平面サイズが215.9mm×279mmの研磨紙281Q WOD Schleifpapier(3M社製)を試験治具先端に張り付け、荷重800gfで100回擦り、試験後の20°グロス値の低下率を以下の基準に従って評価した。結果を表1Aに示す。グロス値の低下率が小さいものは傷が少なく、且つ、しばらくすると傷が消えた。これは保護層3に自己修復性があることを示す。
A:試験5分後に5%未満。且つ、試験30分後に1%未満に回復。
B:試験5分後に5%以上30%未満。且つ、試験30分後に5%未満に回復。
C:試験5分後に30%以上、且つ、試験30分後でも30%以上のまま。
<Evaluation of scratch resistance>
With the support peeled off from each of the three-dimensional molding transfer films obtained above and the protective layer exposed, the surface of the protective layer was measured using a Martindale abrasion tester and the planar size was 215.9 mm x 279 mm. Abrasive paper 281Q WOD Schleifpapier (manufactured by 3M) was affixed to the tip of the test jig and rubbed 100 times with a load of 800 gf, and the rate of decrease in 20 ° gloss value after the test was evaluated according to the following criteria. The results are shown in Table 1A. Those with a small decrease in the gloss value had few scratches, and the scratches disappeared after a while. This indicates that the protective layer 3 has self-healing properties.
A: Less than 5% after 5 minutes of test. And recovered to less than 1% after 30 minutes of testing.
B: 5% or more and less than 30% after 5 minutes of the test. And recovered to less than 5% after 30 minutes of testing.
C: 30% or more after 5 minutes of the test and 30% or more after 30 minutes of the test.
<艶の評価>
 上記で得られた各三次元成形用転写フィルムから支持体を剥離し、保護層を露出させた状態で、以下の基準に従い艶の評価を目視で行った。結果を表1Aに示す。
A:蛍光灯を反射させると照らすとギラギラして眩しい。
B:蛍光灯を反射させると明るいが、眩しいほどではない。
C:蛍光灯を反射させると、薄暗く感じる。
<Evaluation of gloss>
The gloss was evaluated visually according to the following criteria in the state where the support was peeled off from each of the three-dimensional molding transfer films obtained above and the protective layer was exposed. The results are shown in Table 1A.
A: Glittering and dazzling when reflected from a fluorescent lamp.
B: Bright when reflected by a fluorescent lamp, but not so bright.
C: When a fluorescent lamp is reflected, it feels dim.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1Aに示されるように、保護層のマルテンス硬さが、6~40N/mm2の範囲にある実施例1A~6Aの三次元成形用転写フィルムは、成形性に優れており、さらに、耐傷性に優れ、黒色の高艶の意匠(ピアノブラック)を備えていた。 As shown in Table 1A, the three-dimensional molding transfer films of Examples 1A to 6A, in which the Martens hardness of the protective layer is in the range of 6 to 40 N / mm 2 , are excellent in moldability and are scratch resistant. Excellent blackness and high-gloss black design (piano black).
(実施例1B~7B及び比較例1B~2B)
[三次元成形用転写フィルムの製造]
 転写用基材として、一方面に易接着剤層が形成されたポリエチレンテレフタレートフィルム(厚さ50μm)を用いた。ポリエチレンテレフタレートフィルムの易接着剤層の面に、後述の電子放射線硬化性樹脂とペンタエリスリトールトリアクリレート(PETA)とを含む電子放射線硬化性樹脂組成物をグラビア印刷にて印刷して離型層形成用塗膜を形成した。EB樹脂の官能基数(ポリカーボネートアクリレートの官能基数)、PETAの添加量(残部はポリカーボネートアクリレート)、離型層の厚みは表1Bに記載のとおりである。次に、この塗膜上から加速電圧165kV、表1Bに記載の照射線量(単位:Mrad)の電子線を照射して、離型層形成用塗膜を硬化させて離型層を形成した。なお、比較例2Bにおいては、アクリルメラミン系樹脂を主成分とする塗工液をグラビア印刷にて印刷し、150℃で熱硬化させ、離型層を形成した。
(Examples 1B-7B and Comparative Examples 1B-2B)
[Manufacture of three-dimensional molding transfer film]
As a transfer substrate, a polyethylene terephthalate film (thickness 50 μm) having an easy-adhesive layer formed on one surface was used. For release layer formation, an electron radiation curable resin composition containing an electron radiation curable resin and pentaerythritol triacrylate (PETA), which will be described later, is printed on the surface of the polyethylene terephthalate film adhesive layer by gravure printing. A coating film was formed. The number of functional groups of the EB resin (the number of functional groups of the polycarbonate acrylate), the amount of PETA added (the balance is polycarbonate acrylate), and the thickness of the release layer are as shown in Table 1B. Next, an electron beam having an acceleration voltage of 165 kV and an irradiation dose (unit: Mrad) described in Table 1B was irradiated on the coating film to cure the release layer forming coating film to form a release layer. In Comparative Example 2B, a coating liquid containing an acrylic melamine resin as a main component was printed by gravure printing and thermally cured at 150 ° C. to form a release layer.
 次いで、離型層の上に、後述の電離放射線硬化性樹脂組成物を、硬化後の厚さが4μmとなるようにバーコーダーにより塗工し、保護層形成用塗膜を形成した。次に、この保護層形成用塗膜上から加速電圧165kV、照射線量5MRadの電子線を照射して、保護層形成用塗布膜を硬化させて保護層を形成した。 Next, an ionizing radiation curable resin composition described later was applied on the release layer with a bar coder so that the thickness after curing was 4 μm, thereby forming a protective layer-forming coating film. Next, an electron beam with an acceleration voltage of 165 kV and an irradiation dose of 5 MRad was irradiated on the protective layer-forming coating film to cure the protective layer-forming coating film, thereby forming a protective layer.
 この保護層の上に、アクリルポリオールを含むプライマー層形成用の樹脂組成物をグラビア印刷により塗工し、プライマー層(厚み1.5μm)を形成した。さらに、プライマー層上に、アクリル系樹脂及び塩化ビニル-酢酸ビニル系共重合体樹脂をバインダー樹脂(アクリル樹脂50質量%、塩化ビニル-酢酸ビニル系共重合体樹脂50質量%)として含む装飾層形成用黒色系インキ組成物を用いて、ヘアライン柄の装飾層(厚さ5μm)をグラビア印刷により形成した。更に、装飾層上に、アクリル系樹脂(軟化温度:125℃)を含む接着層形成用の樹脂組成物を用いて、接着層(厚さ1.5μm)をグラビア印刷により形成することにより、転写用基材/離型層/保護層/プライマー層/装飾層/接着層が順に積層された各三次元成形用転写フィルムを製造した。 On the protective layer, a primer layer-forming resin composition containing acrylic polyol was applied by gravure printing to form a primer layer (thickness 1.5 μm). In addition, a decorative layer is formed on the primer layer containing an acrylic resin and a vinyl chloride-vinyl acetate copolymer resin as a binder resin (acrylic resin 50 mass%, vinyl chloride-vinyl acetate copolymer resin 50 mass%). A hairline decorative layer (thickness 5 μm) was formed by gravure printing using the black ink composition for printing. Further, the adhesive layer (thickness: 1.5 μm) is formed on the decorative layer by gravure printing using a resin composition for forming an adhesive layer containing an acrylic resin (softening temperature: 125 ° C.). Each three-dimensional forming transfer film in which a base material for the substrate / release layer / protective layer / primer layer / decoration layer / adhesive layer was laminated in order was produced.
[離型層の形成に用いた成分]
2官能ポリカーボネートアクリレート(重量平均分子量:8,000)
4官能ポリカーボネートアクリレート(重量平均分子量:8,000)
ペンタエリスリトールトリアクリレート(PETA)
[Components used to form release layer]
Bifunctional polycarbonate acrylate (weight average molecular weight: 8,000)
Tetrafunctional polycarbonate acrylate (weight average molecular weight: 8,000)
Pentaerythritol triacrylate (PETA)
[保護層の形成に用いた成分]
4官能のポリカーボネートアクリレート(重量平均分子量:10,000)95質量%
アクリルポリマー(アクリル樹脂、メタクリル酸メチルとメタクリル酸との共重合体、Tg105℃、重量平均分子量:約20,000)2.5質量%、その他添加剤2.5質量%
[Ingredients used to form protective layer]
95% by mass of tetrafunctional polycarbonate acrylate (weight average molecular weight: 10,000)
Acrylic polymer (acrylic resin, copolymer of methyl methacrylate and methacrylic acid, Tg 105 ° C., weight average molecular weight: about 20,000) 2.5% by mass, other additives 2.5% by mass
<離型層のマルテンス硬さの測定>
 マルテンス硬さは、表面皮膜物性試験機(PICODENTOR HM-500、株式会社フィッシャー・インストルメンツ製)を用いて測定される値であり、具体的な測定方法は以下の通りである。この測定方法では、温度25℃及び相対湿度50%の環境下、図5(a)に示されるような対面角136°のダイヤモンド圧子(ビッカース圧子)を用いて、各三次元成形用転写フィルムの離型層にダイヤモンド圧子を押し込み、押し込み荷重Fと押し込み深さh(圧痕深さ)から下記の式(1)により硬さを求めた。押し込み条件は、離型層に対して、室温(実験室環境温度)において、図5(b)に示される通り、先ず0~0.1mNまでの負荷を20秒間で加え、次に0.1mNの負荷で5秒間保持し、最後に0.1~0mNまでの除荷を20秒間で行った。三次元成形フィルムについて、セロハンテープを用いて転写層を離型層との界面で剥離して取り除くことで、転写用基材及び離型層を有する支持体を得、この支持体の離型層側の面について、測定を実施した。離型層のマルテンス硬さについては、後述の実施例1B~7B及び比較例1B~2Bと同様にして測定を行った。結果を表1Bに示す。
Figure JPOXMLDOC01-appb-M000005
<Measurement of Martens hardness of release layer>
The Martens hardness is a value measured using a surface film physical property tester (PICODERTOR HM-500, manufactured by Fisher Instruments Co., Ltd.), and a specific measurement method is as follows. In this measurement method, a diamond indenter (Vickers indenter) having a facing angle of 136 ° as shown in FIG. 5A is used in an environment of a temperature of 25 ° C. and a relative humidity of 50%. A diamond indenter was pushed into the release layer, and the hardness was determined from the indentation load F and the indentation depth h (indentation depth) by the following formula (1). The indentation conditions were as follows. First, a load of 0 to 0.1 mN was applied for 20 seconds to the release layer at room temperature (laboratory environmental temperature) as shown in FIG. 5B, and then 0.1 mN. Was held for 5 seconds, and finally unloading from 0.1 to 0 mN was performed for 20 seconds. For a three-dimensional molded film, the transfer layer is peeled off at the interface with the release layer using a cellophane tape, and a support having a transfer substrate and a release layer is obtained. The release layer of this support Measurements were made on the side surface. The Martens hardness of the release layer was measured in the same manner as in Examples 1B to 7B and Comparative Examples 1B to 2B described later. The results are shown in Table 1B.
Figure JPOXMLDOC01-appb-M000005
<成形性の評価>
 上記各三次元成形用転写フィルムから離型層が付いた支持体を剥離し、その支持体を長さ150mm×幅1インチの短冊形に切り出し、着色層のみの評価用サンプルを作成した。前記サンプルを、引張試験機を用いて、初期引張チャック間距離100mmとし、引張速度を100mm/分として引張試験を行った。測定は予め100℃の温度に設定した恒温槽中にフィルムサンプルをセットし、60秒間の予熱の後で引張試験を行い、離型層にクラックが入るまでの伸び量(破断伸度)を測定した。測定は各水準あたり3サンプルずつ行い、3サンプルの平均値を当該破壊伸度とした。結果を表1Bに示す。
A:破壊伸度80%以上。一般に深絞りと呼ばれる金型でも対応可能なレベル。
B:破壊伸度50%以上80%未満。成型上、問題にならないレベル。
C:破壊伸度50%未満。多くの金型において成型上、問題になるレベル。
<Evaluation of formability>
The support with a release layer was peeled off from each of the above three-dimensional molding transfer films, and the support was cut into a strip having a length of 150 mm and a width of 1 inch to prepare a sample for evaluation with only a colored layer. The sample was subjected to a tensile test using a tensile tester with an initial tensile chuck distance of 100 mm and a tensile speed of 100 mm / min. Measurement is performed by setting a film sample in a thermostat set at a temperature of 100 ° C in advance, performing a tensile test after preheating for 60 seconds, and measuring the amount of elongation (breaking elongation) until the release layer cracks. did. Three samples were measured for each level, and the average value of the three samples was taken as the breaking elongation. The results are shown in Table 1B.
A: Elongation at break 80% or more. A level that can be used with a die generally called deep drawing.
B: The breaking elongation is 50% or more and less than 80%. A level that does not cause a problem in molding.
C: Fracture elongation is less than 50%. A level that is problematic in many molds.
<樹脂成形品の製造>
 上記で得られた各三次元成形用転写フィルムを金型に入れて、真空成形で金型内の形状に沿うように予備成形して型締した(最大延伸倍率50%)。その後、射出樹脂を金型のキャビティ内に射出し、該三次元成形用転写フィルムと射出樹脂とを一体化成形し、金型から取り出すと同時に支持体(転写用基材及び離型層)を剥離除去することにより、樹脂成形品を得た。
<Manufacture of resin molded products>
Each of the three-dimensional molding transfer films obtained above was placed in a mold, pre-formed by vacuum molding so as to conform to the shape in the mold, and clamped (maximum draw ratio 50%). Thereafter, the injection resin is injected into the cavity of the mold, the three-dimensional molding transfer film and the injection resin are integrally molded, and taken out from the mold, and at the same time, the support (transfer base material and release layer) is removed. A resin molded product was obtained by peeling and removing.
<耐久性の評価>
 上記で得られた各樹脂成形品を、温度90℃、相対湿度95%の湿熱環境下で72時間保管し、以下の基準に従い目視で耐久性(耐湿熱性)を評価した。結果を表1Bに示す。
A:成型品の艶変化がない。試験前と比べて60°艶が95%以上。
+:成型品に白化が見られない。試験前と比べて60°艶が90%以上~95%未満。
B:成型品に若干の白化が見られるが、実用上問題のないレベル。試験前と比べて60°艶が90%以上~95%未満。
C:成型品に白化が見られ、試験前と比べて60°艶が90%未満。
<Durability evaluation>
Each resin molded product obtained above was stored for 72 hours in a humid heat environment at a temperature of 90 ° C. and a relative humidity of 95%, and the durability (wet heat resistance) was evaluated visually according to the following criteria. The results are shown in Table 1B.
A: There is no gloss change of a molded product. The 60 ° gloss is 95% or more compared to before the test.
B + : Whitening is not observed in the molded product. 60 ° gloss is 90% or more and less than 95% compared to before testing.
B: Slight whitening is observed in the molded product, but there is no practical problem. 60 ° gloss is 90% or more and less than 95% compared to before testing.
C: Whitening was observed in the molded product, and the 60 ° gloss was less than 90% compared to before the test.
<耐薬品性の評価>
 上記で得られた各樹脂成形品の保護層の表面に、室温(25℃)下において、95%のエタノール水溶液をスポイトで1滴垂らし、10分間そのまま放置した。次に、成型品を60度のオーブンで30分間乾燥させ、保護層表面の変化を目視及び光沢計で観察して、以下の基準に従い耐薬品性を評価した。結果を表1Bに示す。
A:成型品の艶変化がない。試験前と比べて60°艶が95%以上。
+:成型品に白化が見られない。試験前と比べて60°艶が90%以上~95%未満。
B:成型品に若干の白化が見られるが、実用上問題のないレベル。試験前と比べて60°艶が90%以上~95%未満。
C:成型品に白化が見られ、試験前と比べて60°艶が90%未満。
<Evaluation of chemical resistance>
On the surface of the protective layer of each resin molded product obtained above, one drop of 95% ethanol aqueous solution was dropped with a dropper at room temperature (25 ° C.) and left as it was for 10 minutes. Next, the molded product was dried in an oven at 60 degrees for 30 minutes, and changes in the surface of the protective layer were observed visually and with a gloss meter, and chemical resistance was evaluated according to the following criteria. The results are shown in Table 1B.
A: There is no gloss change of a molded product. The 60 ° gloss is 95% or more compared to before the test.
B + : Whitening is not observed in the molded product. 60 ° gloss is 90% or more and less than 95% compared to before testing.
B: Slight whitening is observed in the molded product, but there is no practical problem. 60 ° gloss is 90% or more and less than 95% compared to before testing.
C: Whitening was observed in the molded product, and the 60 ° gloss was less than 90% compared to before the test.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1Bにおいて、EB樹脂とは、電離放射線硬化性樹脂を意味している。 In Table 1B, EB resin means ionizing radiation curable resin.
 表1Bに示されるように、離型層のマルテンス硬さが、7~45N/mm2の範囲にある実施例1B~7Bの三次元成形用転写フィルムは、成形性に優れており、さらに、成形後の樹脂成形品の耐久性及び耐薬品性にも優れていた。 As shown in Table 1B, the three-dimensional molding transfer films of Examples 1B to 7B in which the Martens hardness of the release layer is in the range of 7 to 45 N / mm 2 are excellent in moldability. The resin molded product after molding was also excellent in durability and chemical resistance.
1 転写用基材
2 離型層
3 保護層
4 プライマー層
5 装飾層
6 接着層
7 透明樹脂層
8 成形樹脂層
9 転写層
10 支持体
DESCRIPTION OF SYMBOLS 1 Transfer base material 2 Release layer 3 Protective layer 4 Primer layer 5 Decoration layer 6 Adhesive layer 7 Transparent resin layer 8 Molded resin layer 9 Transfer layer 10 Support body

Claims (16)

  1.  転写用基材上に、少なくとも保護層を有する三次元成形用転写フィルムであって、
     前記保護層が、ポリカーボネート(メタ)アクリレートを含む電離放射線硬化性樹脂組成物の硬化物により形成されており、
     前記保護層のマルテンス硬さが、6N/mm2以上、40N/mm2以下である、三次元成形用転写フィルム。
    A transfer film for three-dimensional molding having at least a protective layer on a transfer substrate,
    The protective layer is formed of a cured product of an ionizing radiation curable resin composition containing polycarbonate (meth) acrylate,
    A transfer film for three-dimensional molding, wherein the protective layer has a Martens hardness of 6 N / mm 2 or more and 40 N / mm 2 or less.
  2.  前記転写用基材上に、少なくとも、前記保護層及びプライマー層をこの順に有する、請求項1に記載の三次元成形用転写フィルム。 The transfer film for three-dimensional molding according to claim 1, comprising at least the protective layer and the primer layer in this order on the transfer substrate.
  3.  前記プライマー層が、ポリオール及び/又はその硬化物を含む、請求項2に記載の三次元成形用転写フィルム。 The transfer film for three-dimensional molding according to claim 2, wherein the primer layer contains a polyol and / or a cured product thereof.
  4.  前記ポリオールが、アクリルポリオールを含む、請求項3に記載の三次元成形用転写フィルム。 The transfer film for three-dimensional molding according to claim 3, wherein the polyol contains an acrylic polyol.
  5.  前記保護層の前記転写用基材とは反対側に、装飾層、接着層、及び透明樹脂層からなる群より選択された少なくとも1種を有する、請求項1~4のいずれかに記載の三次元成形用転写フィルム。 The tertiary according to any one of claims 1 to 4, comprising at least one selected from the group consisting of a decorative layer, an adhesive layer, and a transparent resin layer on the opposite side of the protective layer from the transfer substrate. Original transfer film.
  6.  転写用基材上に、ポリカーボネート(メタ)アクリレートを含む電離放射線硬化性樹脂組成物からなる層を積層する工程と、
     前記電離放射線硬化性樹脂組成物に電離放射線を照射し、前記電離放射線硬化性樹脂組成物からなる層を硬化させて、前記転写用基材上に、マルテンス硬さが、6N/mm2以上、40N/mm2以下の保護層を形成する工程と、
     を備える、三次元成形用転写フィルムの製造方法。
    Laminating a layer made of an ionizing radiation curable resin composition containing polycarbonate (meth) acrylate on a transfer substrate;
    The ionizing radiation curable resin composition is irradiated with ionizing radiation, the layer made of the ionizing radiation curable resin composition is cured, and the Martens hardness is 6 N / mm 2 or more on the transfer substrate. Forming a protective layer of 40 N / mm 2 or less;
    A method for producing a transfer film for three-dimensional molding, comprising:
  7.  請求項1~5のいずれかに記載の三次元成形用転写フィルムの前記保護層側に成形樹脂層を積層する工程と、
     前記転写用基材を前記保護層から剥離する工程と、
    を備える、樹脂成形品の製造方法。
    Laminating a molding resin layer on the protective layer side of the transfer film for three-dimensional molding according to any one of claims 1 to 5,
    Peeling the substrate for transfer from the protective layer;
    A method for producing a resin molded product.
  8.  少なくとも転写用基材及び離型層を有する支持体の前記離型層上に、転写層を有する三次元成形用転写フィルムであって、
     前記離型層のマルテンス硬さが、7N/mm2以上、45N/mm2以下である、三次元成形用転写フィルム。
    A transfer film for three-dimensional molding having a transfer layer on the release layer of the support having at least a transfer substrate and a release layer,
    A transfer film for three-dimensional molding, wherein the release layer has a Martens hardness of 7 N / mm 2 or more and 45 N / mm 2 or less.
  9.  前記離型層が、電離放射線硬化性樹脂組成物の硬化物により構成されている、請求項8に記載の三次元成形用転写フィルム。 The transfer film for three-dimensional molding according to claim 8, wherein the release layer is composed of a cured product of an ionizing radiation curable resin composition.
  10.  前記離型層の前記電離放射線硬化性樹脂組成物が、ポリカーボネート(メタ)アクリレート及び多官能(メタ)アクリレートを含んでいる、請求項8又は9に記載の三次元成形用転写フィルム。 The transfer film for three-dimensional molding according to claim 8 or 9, wherein the ionizing radiation curable resin composition of the release layer contains polycarbonate (meth) acrylate and polyfunctional (meth) acrylate.
  11.  前記離型層の厚みが、2.0μm以下である、請求項8~10のいずれかに記載の三次元成形用転写フィルム。 The transfer film for three-dimensional molding according to any one of claims 8 to 10, wherein the release layer has a thickness of 2.0 µm or less.
  12.  前記転写層が保護層を有しており、
     前記保護層が、前記離型層と接面している、請求項8~11のいずれかに記載の三次元成形用転写フィルム。
    The transfer layer has a protective layer;
    The transfer film for three-dimensional molding according to any one of claims 8 to 11, wherein the protective layer is in contact with the release layer.
  13.  前記保護層が、電離放射線硬化性樹脂組成物の硬化物により構成されている、請求項12に記載の三次元成形用転写フィルム。 The transfer film for three-dimensional molding according to claim 12, wherein the protective layer is composed of a cured product of an ionizing radiation curable resin composition.
  14.  前記保護層の前記電離放射線硬化性樹脂組成物が、ポリカーボネート(メタ)アクリレートを含んでいる、請求項12又は13に記載の三次元成形用転写フィルム。 The transfer film for three-dimensional molding according to claim 12 or 13, wherein the ionizing radiation curable resin composition of the protective layer contains polycarbonate (meth) acrylate.
  15.  前記転写層が、装飾層、接着層、及び透明樹脂層からなる群より選択された少なくとも1種を有する、請求項8~14のいずれかに記載の三次元成形用転写フィルム。 15. The transfer film for three-dimensional molding according to claim 8, wherein the transfer layer has at least one selected from the group consisting of a decorative layer, an adhesive layer, and a transparent resin layer.
  16.  請求項8~15のいずれかに記載の三次元成形用転写フィルムの前記転写層側に成形樹脂層を積層する工程と、
     前記支持体を前記転写層から剥離する工程と、
    を備える、樹脂成形品の製造方法。
    Laminating a molding resin layer on the transfer layer side of the transfer film for three-dimensional molding according to any one of claims 8 to 15,
    Peeling the support from the transfer layer;
    A method for producing a resin molded product.
PCT/JP2018/007522 2017-02-28 2018-02-28 Three-dimensional molding transfer film and method for manufacturing same, and method for manufacturing resin molded article WO2018159684A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-037558 2017-02-28
JP2017037558 2017-02-28
JP2017-037559 2017-02-28
JP2017037559 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159684A1 true WO2018159684A1 (en) 2018-09-07

Family

ID=63370580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007522 WO2018159684A1 (en) 2017-02-28 2018-02-28 Three-dimensional molding transfer film and method for manufacturing same, and method for manufacturing resin molded article

Country Status (1)

Country Link
WO (1) WO2018159684A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166474A1 (en) * 2019-02-15 2020-08-20 Dic株式会社 Method for recycling plastic container and transfer film to be applied to plastic container

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012056236A (en) * 2010-09-10 2012-03-22 Dainippon Printing Co Ltd Three dimensional molding decorative sheet and decorative molded product using the same
JP2013111929A (en) * 2011-11-30 2013-06-10 Dainippon Printing Co Ltd Film for injection molding simultaneous lamination and molding, and manufacturing method for the same
JP2014069520A (en) * 2012-09-28 2014-04-21 Dainippon Printing Co Ltd Decorative sheet, and decorative resin molding
WO2015147056A1 (en) * 2014-03-26 2015-10-01 大日本印刷株式会社 Transfer film for three-dimensional molding
JP2017177615A (en) * 2016-03-30 2017-10-05 大日本印刷株式会社 Plastic card

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012056236A (en) * 2010-09-10 2012-03-22 Dainippon Printing Co Ltd Three dimensional molding decorative sheet and decorative molded product using the same
JP2013111929A (en) * 2011-11-30 2013-06-10 Dainippon Printing Co Ltd Film for injection molding simultaneous lamination and molding, and manufacturing method for the same
JP2014069520A (en) * 2012-09-28 2014-04-21 Dainippon Printing Co Ltd Decorative sheet, and decorative resin molding
WO2015147056A1 (en) * 2014-03-26 2015-10-01 大日本印刷株式会社 Transfer film for three-dimensional molding
JP2017177615A (en) * 2016-03-30 2017-10-05 大日本印刷株式会社 Plastic card

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166474A1 (en) * 2019-02-15 2020-08-20 Dic株式会社 Method for recycling plastic container and transfer film to be applied to plastic container
AU2020223598B2 (en) * 2019-02-15 2022-10-27 Dic Corporation Method for recycling plastic container and transfer film to be applied to plastic container

Similar Documents

Publication Publication Date Title
WO2015147056A1 (en) Transfer film for three-dimensional molding
JP6427911B2 (en) 3D molding sheet
JPWO2016052628A1 (en) Decorative sheet
JP6870675B2 (en) Transfer film for 3D molding
JP6414496B2 (en) Transfer film for 3D molding
WO2018062486A1 (en) Transfer film for three-dimensional molding, manufacturing method therefor, and method for manufacturing resin molded article
CN110815995B (en) Decorative sheet and decorative resin molded article
JP2023078211A (en) Transfer sheet and method for manufacturing resin molded article using the same
JP2020163865A (en) Decorative sheet and decorative resin molding
JP6936977B2 (en) Manufacturing method of transfer sheet for three-dimensional molding and decorative resin molded product
WO2018159684A1 (en) Three-dimensional molding transfer film and method for manufacturing same, and method for manufacturing resin molded article
JP6906981B2 (en) Manufacturing method of transfer sheet for three-dimensional molding and decorative resin molded product
WO2015046549A1 (en) Decorative sheet and decorative resin molded article
JP7192218B2 (en) Transfer film for three-dimensional molding, method for producing the same, and method for producing resin molded product
JP7155540B2 (en) Transfer film for three-dimensional molding and method for producing resin molded product
JP7119506B2 (en) TRANSFER FILM FOR THREE-DIMENSIONAL MOLDING, RESIN MOLDED PRODUCT, AND PRODUCTION METHOD THEREOF
JP7355099B2 (en) Transfer film for three-dimensional molding and method for manufacturing resin molded products
JP6988332B2 (en) Three-dimensional molded film and resin molded products
JP7354533B2 (en) Method for manufacturing decorative sheets and resin molded products
JP6273954B2 (en) Decorative sheet
US20230133852A1 (en) Decorative sheet and decorative resin molded article
JP2022058141A (en) Decorative sheet and decorative resin molding
JP2022056330A (en) Transfer sheet and method for manufacturing resin molding using the same
JP2022056331A (en) Transfer sheet and method for manufacturing resin molding using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18760806

Country of ref document: EP

Kind code of ref document: A1