WO2018159604A1 - Heparin conjugate - Google Patents

Heparin conjugate Download PDF

Info

Publication number
WO2018159604A1
WO2018159604A1 PCT/JP2018/007240 JP2018007240W WO2018159604A1 WO 2018159604 A1 WO2018159604 A1 WO 2018159604A1 JP 2018007240 W JP2018007240 W JP 2018007240W WO 2018159604 A1 WO2018159604 A1 WO 2018159604A1
Authority
WO
WIPO (PCT)
Prior art keywords
heparin
aggregate
polyamine
ufh
salt
Prior art date
Application number
PCT/JP2018/007240
Other languages
French (fr)
Japanese (ja)
Inventor
恭平 東
Original Assignee
国立大学法人 千葉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 千葉大学 filed Critical 国立大学法人 千葉大学
Publication of WO2018159604A1 publication Critical patent/WO2018159604A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/726Glycosaminoglycans, i.e. mucopolysaccharides
    • A61K31/727Heparin; Heparan
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors

Definitions

  • the present invention relates to an aggregate of heparin and polyamine, an anticoagulant comprising the aggregate, a pharmaceutical composition containing the aggregate, a kit for producing the aggregate, a sustained-release imparting agent, and a method for producing the aggregate Etc.
  • Unfractionated heparin cocoon (UFH) cocoon is a linear acidic polysaccharide in which uronic acid and glucosamine are alternately bonded and a sulfate group is added to a part of each sugar hydroxyl group, and is widely used as an anticoagulant.
  • Indications 1) Treatment of generalized intravascular blood coagulation syndrome, 2) Prevention of blood coagulation when using hemodialysis, cardiopulmonary bypass or other extracorporeal circulation devices, 3) Prevention of blood coagulation when inserting a vascular catheter, 4 ) Prevention of blood coagulation during blood transfusion and blood tests, 5) Thromboembolism (venous thrombosis, myocardial infarction, pulmonary embolism, cerebral embolism, limb arterial thromboembolism, thromboembolism during and after surgery And the like).
  • heparin modified from unfractionated heparin for example, trade name: Arikstra (registered trademark)
  • a new oral anticoagulant drug to replace warfarin for example, trade name: plazaxa (registered trademark), trade name: XXARElt ( The development of the registered trademark)
  • UFH is still in high demand because it is withdrawn and replaced with heparin at the time of surgery, and 10 pharmaceutical companies are currently producing only in Japan.
  • UFH is administered by intravenous infusion, intravenous intermittent injection, or subcutaneous injection.
  • Patent Document 1 by gradually releasing heparin or low molecular weight heparin locally over a long period of time, the production of hepatocyte growth factor (HGF) is efficiently promoted in a lesion while reducing bleeding tendency as a side effect.
  • HGF hepatocyte growth factor
  • Patent Document 1 a sustained release gelatin hydrogel composition containing cationized gelatin and heparin has been disclosed (Patent Document 1).
  • UFH has a high negative charge and a high number average molecular weight of about 13,000, oral absorption efficiency is extremely low, and administration is limited to intravenous injection or subcutaneous administration. Furthermore, it binds nonspecifically to blood and blood vessel proteins. Therefore, intravenous administration of UFH has a rapid elimination phase due to binding with vascular endothelial cells and macrophages and a slow elimination phase due to excretion from the kidney. In addition, UFH has a short half-life (about 40-60 minutes) and a narrow therapeutic window. Low molecular weight heparin has been developed to extend half-life, but its indication is limited compared to UFH. Therefore, development of new heparin is desired.
  • the present invention provides a novel association product of heparin and polyamine, an anticoagulant comprising the association product, a pharmaceutical composition containing the association product, a kit for producing the association product, a sustained release agent, and an association product It relates to the manufacturing method of Further, in one aspect, the present invention relates to an aggregate having a long half-life of heparin after administration and a long therapeutic range, an anticoagulant comprising the aggregate, a pharmaceutical composition containing the aggregate, and production of the aggregate The present invention relates to a kit, a sustained-release imparting agent, and a method for producing an aggregate.
  • the present invention relates to the following [1] to [16].
  • the polyamine has the formula (1): [Wherein R 1 , R 2 , R 3 and R 4 are each independently a divalent aliphatic hydrocarbon group having 3 or 4 carbon atoms. ]
  • the polyamine includes at least one selected from the group consisting of spermidine, spermine, theremin, cardopentamine, tris (3-aminopropyl) amine, and tetrakis (3-aminopropyl) ammonium.
  • An anticoagulant comprising the aggregate according to any one of [1] to [6].
  • a pharmaceutical composition comprising the aggregate according to any one of [1] to [6].
  • a kit for producing an aggregate comprising heparin or a salt thereof and a linear or branched polyamine having 3 or more amino groups, or a salt thereof.
  • a sustained release agent for imparting sustained release of heparin comprising a linear or branched polyamine having 3 or more amino groups, or a salt thereof.
  • a method for producing an aggregate comprising mixing an aqueous solution of heparin or a salt thereof and an aqueous solution of a linear or branched polyamine having 3 or more amino groups or a salt thereof.
  • [14] Use of the aggregate according to any one of [1] to [6] for the production of an anticoagulant.
  • a novel aggregate of heparin and polyamine, an anticoagulant comprising the aggregate, a pharmaceutical composition containing the aggregate, a kit for producing the aggregate, a sustained-release imparting agent, and an aggregate And the like is provided.
  • the heparin has a long half-life after administration and a long-lasting treatment area, an anticoagulant comprising the aggregate, a pharmaceutical composition containing the aggregate, and an aggregate And the like, a sustained-release imparting agent, and a method for producing an aggregate.
  • FIG. 1A is a graph showing the relationship between the amount of UFH and Taa in the supernatant and the ratio between the negative charge of UFH and the positive charge of Taa (negative / positive ratio, N / P ratio).
  • FIG. 3 shows changes over time in plasma Anti-Factor Xa activity after subcutaneous administration of UFH and UFH-Taa aggregates to mice.
  • FIG. 3A shows the results at a UFH dose of 4 mg / kg (body weight)
  • FIG.3B shows the results at a UFH dose of 30 mg / kg weight (body weight)
  • FIG. The results at a dose of 30 mg / kg (body weight) of Taa aggregates are shown.
  • FIG. 4 shows the time course of plasma Anti-Factor IIa activity after subcutaneous administration of UFH and UFH-Taa aggregates to mice.
  • FIG. 4A shows the results at a UFH dose of 4 mg / kg (body weight)
  • FIG.4B shows the results at a UFH dose of 30 mg / kg weight (body weight)
  • FIG. 5 shows changes over time in plasma Anti-Factor Xa activity after subcutaneous administration of LMWH and LMWH-Taa aggregates to mice.
  • Unfractionated heparin or its salt may be abbreviated as “UFH”.
  • Low molecular weight heparin or a salt thereof may be abbreviated as “LMWH”.
  • LMWH Low molecular weight heparin or a salt thereof
  • SPM Spermine
  • SPD Spermidine
  • Putrescine may be abbreviated as “PUT”.
  • Tetrakis (3-aminopropyl) ammonium may be abbreviated as “Taa”.
  • the aggregate of the present invention is an aggregate of heparin and a linear or branched polyamine having 3 or more amino groups.
  • a gel-like association or a solid association is obtained in water.
  • the aggregate is considered to form a polyion complex.
  • Heparin is gradually released in the blood after administration, and the heparin half-life is increased and the therapeutic area is prolonged.
  • Heparin is an acidic polysaccharide and has a high negative charge.
  • the surface charge is neutralized with polyamine to form an aggregate.
  • the aggregate is bound by electrostatic interaction due to, for example, a negative charge based on an acidic group present in the heparin molecule and a positive charge based on a basic group present in the polyamine molecule.
  • Heparin is a linear acidic polysaccharide in which uronic acid and glucosamine are alternately bonded, and a sulfate group is added to a part of each sugar hydroxyl group.
  • examples of heparin include unfractionated heparin (UFH), photolytic heparin (for example, HP7000 described later), and low molecular weight heparin (LMWH).
  • heparin or a salt thereof is used as a raw material of the aggregate.
  • heparin salts include sodium salts and calcium salts.
  • Heparin sodium is obtained, for example, from the liver, lungs, and intestinal mucosa of healthy food animals.
  • Heparin calcium is obtained, for example, from the intestinal mucosa of healthy pigs.
  • a method disclosed in the Japanese Pharmacopoeia can be used for the preparation of heparin.
  • Sodium salt is available as a Japanese pharmacopoeia product
  • calcium salt is available as a British pharmacopoeia product or, for example, CarboMer Inc.
  • a salt is used as a raw material, a part of the salt may remain.
  • the number average molecular weight of unfractionated heparin is preferably 5,000 or more, more preferably 8,000 or more, further preferably 10,000 or more, more preferably 12,000 or more, and preferably 15,000 or less, more preferably 14,000 or less, and still more preferably Is less than 13,000.
  • the number average molecular weight is measured by the method described in “Heparin molecular weight measurement” in the Examples.
  • Examples of commercially available unfractionated heparin used as a raw material include heparin sodium salt (manufactured by New Zealand Pharmaceutical) and “heparin calcium subcutaneous injection 5,000 units / 0.2 mL syringe” (manufactured by Mochida Pharmaceutical Co., Ltd.). .
  • Photolytic heparin is heparin obtained by reducing the molecular weight of unfractionated heparin by a photolytic reaction using titanium dioxide.
  • Photolytic heparin is not particularly limited, and can be obtained, for example, by the method described in International Publication No. WO2008 / 059869.
  • the number average molecular weight of the photolytic heparin is preferably 3,000 or more, preferably 5,000 or more, more preferably 6,000 or more, and preferably 10,000 or less, more preferably 9,000 or less, and further preferably 8,000 or less.
  • the number average molecular weight is measured by the method described in “Heparin number average molecular weight measurement” in the Examples.
  • Low molecular weight heparin is, for example, depolymerized heparin obtained by decomposing heparin derived from bovine or porcine intestinal mucosa with hydrogen peroxide and cupric sulfate.
  • the number average molecular weight of the low molecular weight heparin is preferably 2,000 or more, more preferably 2,500 or more, still more preferably 3,000 or more, and preferably 7,000 or less, more preferably 6,000 or less, and even more preferably 5,000 or less.
  • the number average molecular weight is measured by the method described in “Heparin number average molecular weight measurement” in the Examples.
  • Examples of the low molecular weight heparin include parnaparin, dalteparin (number average molecular weight of about 5,500), danaparoid, leviparin, and enoxaparin (number average molecular weight of about 3,500 to 4,500).
  • Examples of commercially available low molecular weight heparin used as a raw material include enoxaparin sodium injection “Clexane Subcutaneous Injection Kit 2000 IU” (manufactured by Sanofi Corporation).
  • unfractionated heparin or low molecular weight heparin is preferred, and unfractionated heparin is more preferred from the viewpoint of sustained release of heparin in blood, a long heparin half-life, and a long therapeutic range.
  • the titer of heparin is preferably 80 IU / mg or more, more preferably 90 IU / mg or more, and preferably 220 IU / mg or less, more preferably 210 IU / mg or less, and even more preferably 200 IU / mg. mg or less.
  • the unit of heparin titer is expressed in international units (IU).
  • the average negative charge per disaccharide of heparin is preferably -3.00 or less, more preferably -3.20 or less, further preferably -3.30 or less, and preferably -4.00 or more, more preferably -3.80 or more. Is -3.60 or more, more preferably -3.40 or more.
  • the average negative charge per disaccharide of heparin can be measured by the method described later.
  • a heparin preparation may be used as a raw material.
  • heparin preparations include pharmaceutically acceptable heparin-containing solutions and heparin-containing solid preparations (powder preparations, freeze-dried preparations, etc.) that are used after dissolution. Among these, a solution is preferable.
  • ⁇ Polyamine> An association is formed by a combination of heparin and a linear or branched polyamine having 3 or more amino groups.
  • the polyamine is preferably a branched polyamine, more preferably a cross-linked polyamine from the viewpoint of enhancing the formation of aggregates, and from the viewpoint of sustained release of heparin in the blood, a long heparin half-life, and a long therapeutic area.
  • a cruciform polyamine means an amine having four or more substituents bonded to one nitrogen atom. In the polyamine, each nitrogen atom may be connected to each other by a divalent aliphatic hydrocarbon group having 3 or 4 carbon atoms.
  • the number of amino groups of the polyamine is 3 or more, preferably 4 or more, and preferably 6 or less, more preferably 5 or less, from the viewpoint of forming an aggregate.
  • the number of carbon atoms of the polyamine is preferably 5 or more, more preferably 6 or more, still more preferably 8 or more, still more preferably 10 or more, still more preferably 11 or more, from the viewpoint of enhancing the formability of the aggregate. Is 20 or less, more preferably 18 or less, still more preferably 16 or less, and still more preferably 14 or less.
  • the polyamine preferably has a quaternary ammonium moiety in the molecule from the viewpoint of enhancing the formability of the aggregate and from the viewpoint of sustained release of heparin in the blood, a long heparin half-life, and a long therapeutic range.
  • the polyamine preferably has the formula (1): from the viewpoint of sustained release of heparin in the blood, long heparin half-life, and long treatment area.
  • R 1 , R 2 , R 3 and R 4 are each independently a divalent aliphatic hydrocarbon group having 3 or 4 carbon atoms. It is a compound represented by this.
  • the divalent aliphatic hydrocarbon group include a 1,3-propanediyl group and a 1,4-butanediyl group. Among these, 1,3-propanediyl is preferable.
  • the polyamine may contain a counter anion X ⁇ .
  • X ⁇ include halide ions such as Cl ⁇ , Br ⁇ and I ⁇ .
  • polyamine examples include spermidine, spermine, theremin, cardopentamine, tris (3-aminopropyl) amine (hereinafter also referred to as “mitubicin”), and tetrakis (3-aminopropyl) ammonium.
  • mitubicin tris (3-aminopropyl) amine
  • tetrakis (3-aminopropyl) ammonium is preferable from the viewpoint of enhancing the formation of aggregates and from the viewpoint of sustained release of heparin in the blood, long heparin half-life, and long treatment area.
  • the tetrakis (3-aminopropyl) ammonium described above is, for example, (dentification, chemical synthesis, and biological functions of unusual polyamines produced by extreme thermophiles By: Oshima, Tairo; Moriya, Toshiyuki; Terui, Yusuke Methods in Molecular Biology (New York , NY, United States) Vol. 720, Issue Polyamines, Pages 81-111. General Review, 2011].
  • the molar ratio of polyamine per 1 g of heparin is, for example, preferably 0.5 mmol / g or more, more preferably 0.7 / mmol / g or more, still more preferably 0.8 mmol / g or more, and preferably It is 8 mmol / g or less, more preferably 7 mmol / g or less, still more preferably 6 mmol / g or less.
  • the ratio of the negative charge of heparin to the positive charge of polyamine is preferably 5 or less, more preferably 3 or less, still more preferably 2 or less, and still more preferably. 1.5 or less, and preferably 0.2 or more, more preferably 0.5 or more, and still more preferably 0.8 or more.
  • the positive charge of a polyamine calculates the whole positive charge from the molar amount of a polyamine by making the number of amino groups and ammonium groups into the number of positive charges per molecule from molecular structure. For example, in the case of Taa, the charge per molecule is +5.
  • the negative charge of heparin is calculated from the average molecular weight per disaccharide and the average charge per disaccharide. For example, in the case of UFH, the calculation is performed using an average charge per disaccharide of ⁇ 3.38.
  • the charge ratio is an absolute value ratio.
  • the average molecular weight per disaccharide and the average charge per disaccharide are measured by the following methods.
  • Detected disaccharide composition ( ⁇ UA-GlcNAc (carboxy group number 1, sulfate group number 0, molecular weight 379.3), ⁇ UA-GlcNS (carboxy group number 1, sulfate group number 1, molecular weight 417.3), ⁇ UA-GlcNAc6S (carboxy group number 1, sulfate group number 1, molecular weight 459.3), ⁇ UA-GlcNS6S (carboxy group number 1, sulfate group number 2, molecular weight 497.4), ⁇ UA2S-GlcNS (carboxy group number 1, sulfate group number 2, molecular weight 497.4), ⁇ UA2S-GlcNS6S (carboxy group number 1, sulfate group number 3, The average molecular weight per disaccharide is calculated from the molecular weight 577.4)). The average charge per disaccharide is calculated from the average value of carboxy group and sulfate group per disaccharide
  • the aggregate includes, for example, an aqueous solution of heparin or a salt thereof (hereinafter also simply referred to as “heparin aqueous solution”), a linear or branched polyamine having three or more amino groups, or an aqueous solution of a salt thereof (hereinafter simply referred to as an “aqueous solution”). And “polyamine aqueous solution”).
  • the mixing ratio and concentration of the heparin aqueous solution and the polyamine aqueous solution are adjusted so that the concentration of each component after mixing is preferably as follows.
  • the heparin concentration after mixing the heparin aqueous solution is preferably 0.5 mg / mL or more, more preferably 1 mg / mL or more, still more preferably 3 mg / mL or more, and further preferably 5 from the viewpoint of enhancing the formation of aggregates.
  • the heparin aqueous solution may be, for example, a heparin preparation as described above.
  • the polyamine concentration after mixing with the polyamine aqueous solution is preferably 5 ⁇ mM or more, more preferably 10 ⁇ mM or more, further preferably 30 ⁇ mM or more, and preferably 80 ⁇ mM or less, from the viewpoint of enhancing the formability of the aggregate. More preferably, it is 60 ⁇ m or less, and still more preferably 50 ⁇ m or less.
  • the conditions at the time of mixing the heparin aqueous solution and the polyamine aqueous solution are not particularly limited, and the aggregate can be easily formed by mixing these aqueous solutions at room temperature.
  • the pH of the mixed solution containing the aggregate is preferably 1 or more, more preferably 3 or more, still more preferably 4 or more, and preferably 6 or less from the viewpoint of the formability of the aggregate.
  • the aggregate is preferably used as an anticoagulant.
  • heparin is gradually released in vivo, so that the half-life of heparin after administration is long and the treatment area is long. That is, it is used as a blood coagulation preventing method in which an aggregate is administered in vivo.
  • the aggregate is preferably an aggregate of unfractionated heparin and the compound represented by the above formula (1), more preferably unfractionated. It is an association of heparin and Taa.
  • the aggregate is preferably an aggregate of low molecular weight heparin and a compound represented by the above formula (1), and more Preferably, it is an aggregate of low molecular weight heparin and Taa.
  • the time for reaching the maximum blood concentration of heparin is extended, and the maximum blood concentration can be kept low.
  • the administration method includes, for example, oral administration, subcutaneous administration, and intravenous administration, preferably subcutaneous administration or intravenous administration, more preferably subcutaneous administration.
  • the aggregate is used as a drug composition containing the aggregate.
  • a mixture of the above-mentioned heparin aqueous solution and a polyamine aqueous solution may be used as it is as the drug composition.
  • the pharmaceutical composition may be used by mixing a mixture of the above-mentioned heparin aqueous solution and the polyamine aqueous solution by centrifugation, and mixing the separated aggregate with a vegetable oil such as corn oil.
  • the pharmaceutical composition may be suspended in physiological saline or the like from the viewpoint of intravenous administration.
  • the dose of the aggregate is, for example, from 1 to 60 mg / kg (body weight), more preferably from 10 to 50 mg / kg (body weight), more preferably from 20 to 20 in terms of the mass of heparin contained in the aggregate. 40 mg / kg (body weight).
  • kits The aggregate of the present invention can be easily obtained by mixing two aqueous solutions. Therefore, it can also be implemented as a kit containing heparin or a salt thereof and polyamine or a salt thereof.
  • a kit for producing the aggregate includes heparin or a salt thereof, and a linear or branched polyamine having three or more amino groups, or a salt thereof.
  • heparin or a salt thereof is preferably a heparin aqueous solution.
  • the polyamine or a salt thereof is preferably a polyamine aqueous solution.
  • the concentration of the aqueous heparin solution and the aqueous polyamine solution is preferably in the range of the concentration after the above-mentioned mixing.
  • the kit may contain heparin or a salt thereof and polyamine or a salt thereof as separate packaging units.
  • the kit may include instructions for mixing heparin or a salt thereof and polyamine or a salt thereof.
  • the kit may include instructions for centrifuging the mixture, mixing the separated aggregate with a vegetable oil such as corn oil, and administering subcutaneously.
  • Any of the compounds and drugs contained in the kit can contain one or more pharmaceutically acceptable carriers (pharmaceutical carriers) as described above, if necessary.
  • the aggregate of the present invention can be easily obtained by mixing two kinds of aqueous solutions, a linear or branched polyamine having three or more amino groups or a salt thereof is imparted with sustained release of heparin. It may be used as a sustained release imparting agent.
  • the sustained-release imparting agent can be used, for example, by mixing with a commercially available heparin preparation or the like to form an aggregate. That is, the use of the above-mentioned polyamine or a salt thereof for imparting sustained release of heparin, or the use of the above-mentioned polyamine or a salt thereof for forming an association with heparin is contemplated.
  • a novel aggregate an anticoagulant comprising the aggregate, a pharmaceutical composition containing the aggregate, a kit for producing the aggregate, a sustained release agent, and the aggregate
  • the heparin has a long half-life after administration and has a long therapeutic window, an association comprising the association, a pharmaceutical composition containing the association, a kit for producing the association, and imparting sustained release
  • the agent and the method for producing the aggregate are obtained.
  • Heparin sodium salt Unfractionated Heparin, used as “UFH”) (from porcine small intestine, titer 100 IU / mg, number average molecular weight 13,000, average molecular weight per disaccharide 534, average negative charge per disaccharide -3.38) was purchased from New Zealand Pharmaceutical.
  • Clexane Subcutaneous Injection Kit 2000 IU enoxaparin sodium injection solution
  • Heparin hexasaccharide MW: 1800
  • 10 sugar MW: 3000
  • 20 sugar MW: 5750
  • 1,3-diaminopropane, thermine, caldopentamine, mitsubishine and Tetrakis (3-aminopropyl) ammonium (Taa, chloride salt) were donated by Dr. Yusuke Terui of Chiba University of Science. All other reagents used were commercially available special grades and HPLC grade, and water was purified with a Milli-Q ultrapure water system.
  • [apparatus] 1-1 Determination of polyamine
  • the eluent pump is Chromaster 5110 Pump manufactured by Hitachi High-Tech Science Co., Ltd.
  • the autosampler is ELITE LaChrom L-7200 manufactured by Hitachi High-Tech Science Co., Ltd.
  • the column thermostat is ELITE LaChrom L- manufactured by Hitachi High-Tech Science Co., Ltd. 7300
  • JASCO Corporation Intelligent Fluorescence Detector FP-1520S was used as the fluorescence detector
  • Tosoh Corporation TSKgel Polyaminepak (4.6 mm x 50 mm) was used as the column.
  • the eluent pump is DP8020 manufactured by Tosoh Corporation
  • the degasser is DGU-12A manufactured by Shimadzu Corporation
  • the post pump is MINICHEMI PUMP manufactured by Japan Precision Science Co., Ltd.
  • the autosampler is manufactured by Tosoh Corporation AS-8020.
  • Dry reactor is Reactor 522 manufactured by FROM Co., Ltd.
  • Fluorescence detector is Intelligent Fluorescence Detector FP-1520S manufactured by JASCO Corporation, Asahipak NH2P-50 4E (4.6 mm x 250 mm) manufactured by Showa Denko KK, guard column Asahipak NH2P-50G 4A (4.6 mm x 10 mm) manufactured by Showa Denko KK was used.
  • the light source is Sen Special Light Source Co., Ltd. high pressure mercury lamp HL100CH-4
  • the power source is Sen Special Light Source Co., Ltd. HB100A-1
  • the lamp jacket is Sen Special Light Source Co., Ltd. water-cooled lamp jacket JW-1G
  • the reaction tank Used a reaction vessel VG500 manufactured by Sen Special Light Source Co., Ltd.
  • LMWH Purification Clexane Subcutaneous Injection Kit 2000 IU was dialyzed using Spectra Pore Dialysis Membrane 1K, and then freeze-dried to obtain LMWH (Low Molecular Weight Heparin, titer 120 IU / mg, average per disaccharide The molecular weight was 535, and the average negative charge per disaccharide was -3.43).
  • guanidine and 1.0 M NaOH used as post-column reagents were both sent by a double plunger pump at a flow rate of 0.25 mL / min. While passing through the reaction coil (0.5 mm id ⁇ 10 m), the mixed solution was heated and reacted at 120 ° C. using a dry reaction tank, and cooled with a cooling coil (0.25 mm id ⁇ 5 m). After the reaction, fluorescence was detected at an excitation wavelength of 320 nm and a fluorescence wavelength of 425 nm.
  • UFH was quantified by drawing a calibration curve using UFH 25 ppm, 50 ppm, 75 ppm, and 100 ppm as standard products.
  • SPM quantification Quantification of SPM was performed using a fluorescent post-column method (K. Igarashi, K. Kashiwagi, H. Hamasaki, A. Miura, T. Kakegawa, S. Hirose, S. Matsuzaki, Formation of a compensatory polyamine by Escherichia coli polyamine-requiring mutants during growth in the absence of polyamines, J. Bacteriol., 166 (1986) 128-34.).
  • Taa quantitative] Taa was quantified by modifying the above SPM quantification.
  • a buffer II adjusted to pH 3.2 with 3 M hydrochloric acid was used as an eluent, and the solution was fed at a flow rate of 0.7 mL / min.
  • the column temperature was 70 ° C.
  • 20 ⁇ L of Taa 20 ⁇ M solution was used.
  • Other conditions followed the SPM quantification method.
  • Heparin number average molecular weight measurement The number average molecular weight of heparin was measured using a fluorescent post column method. Asahipak GF-510 HQ column was used, the flow rate was 0.3 mL / min, and the column temperature was room temperature. The eluent was 10 mM ammonium hydrogen carbonate and analyzed under isocratic conditions. Detection was performed with UV at 204 nm. The number average molecular weight of heparin was measured by drawing a calibration curve using dp 6 (MW 1,800), dp 10 (MW 3,000) and dp 20 (MW 5,750) standards. For analysis of data, chromatoPRO-GPC manufactured by Instruments Inc. was used.
  • the dissociation of the aggregate was performed by using 2.0 mol / L NaOH to adjust the pH of the aggregate solution to 9 or more, and UFH and SPM were separated by centrifuging at 6,000 x g and 4 ° C for 30 minutes using Amikon Ultra 10K. The residue on Amikon Ultra 10K was made into a UFH solution and freeze-dried to obtain UFH. On the other hand, the passing fraction was used as the SPM fraction, and SPM was obtained by lyophilization.
  • the SPM and UFH contained in the aggregate prepared under each pH condition were dissociated, and the SPM in the aggregate was quantified by the method shown in the above [SPM quantification]. The results quantified by the method shown in [Heparin quantification] are shown in FIG.
  • the negative charge of UFH was calculated using an average molecular weight per disaccharide of 534, an average charge per disaccharide of -3.38.
  • the positive charge possessed by Taa was calculated using the charge +5 per molecule.
  • the ratio of the negative charge of UFH to the positive charge of Taa (negative / positive ratio, N / P ratio) was determined.
  • the UFH and Taa remaining in the supernatant were quantified to examine the aggregate formation.
  • FIG. 2 is a graph showing the relationship between the amount of UFH and Taa in the supernatant and the ratio of the negative charge of UFH to the positive charge of Taa (negative / positive ratio, N / P ratio).
  • the concentration of Taa is 80 mM for a, 40 mM for b, 20 mM for c, 10 mM for d, and 5 mM for e.
  • the ratio of UFH and Taa in the supernatant decreased, confirming an increase in PIC formation efficiency.
  • 20 mM (c) Taa is mixed, almost all UFH and Taa form PIC, and the ratio of the negative charge of the mixed UFH to the positive charge of Taa (negative / positive ratio, N / P ratio) ) was 1.3.
  • ddY mice Mouse Female ddY mice (hereinafter also referred to as “ddY mice”) were purchased from Japan SLC. The animal was preliminarily raised for more than a week in a gauge with a chip maintained at 25 ° C. and 55% relative humidity in the animal department of the Faculty of Pharmaceutical Sciences, Chiba University, and then used for the experiment. Food (MF, oriental yeast) and drinking water were all ad libitum. In the case of an oral administration experiment, fasting was performed for 24 hours in consideration of the effect of heparin contained in the diet.
  • Sample 2.1 Standard Protein, Synthetic Substrate Factor Xa, Normal Human Plasma, Antithrombin III and Chromogenic Synthetic Substrate S-2222 were purchased from Sekisui Medical Co., Ltd. using Heparin Kit Test Team (registered trademark) Heparin S. Thrombin and chromozyme TH were purchased from Roche Diagnostics GmbH.
  • Clexane subcutaneous injection 2000 IU (enoxaparin sodium injection solution) purchased from Sanofi Co., Ltd. was dialyzed using Spectra Pore Dialysis Membrane 1K, and then freeze-dried to use the heparin obtained from enoxaparin as LMWH (titer) 120 IU / mg, average molecular weight 535 per disaccharide, average negative charge per disaccharide -3.43).
  • LMWH Spectra Pore Dialysis Membrane 1K
  • Anti-Factor Xa activety assay ⁇ Preparation of standard solution Clexane subcutaneous injection kit (2000 IU / 0.2 mL) was used as a standard product. The standard product was diluted to 10 IU / mL with 0.9 w / w% sodium chloride aqueous solution, and further diluted to 0.2 IU / mL with 50 mM Tris buffer (pH 8.4). Dissolve dilutions 0, 6, 12, 18, 24 ⁇ L in 50 mM Tris buffer (pH 8.4) 48, 42, 36, 30, 24 ⁇ L, respectively, and add 1 U / mL ATIII 6 ⁇ L and human normal plasma 6 ⁇ L.
  • Anti-Factor Xa activity in the specimen after 0 hour was treated as a blank of the mouse.
  • Anti-Factor Xa activity in the measurement sample was larger than 0.8 U / mL, the measurement sample was diluted with human normal plasma to prepare a measurement sample solution, and measurement was performed again.
  • the therapeutic range for Anti-Factor Xa activity is 0.3 to 0.8 IU / mL.
  • Anti-Factor IIa activity assay -Preparation of standard solution As a standard product, heparin sodium salt (212 USP units / mg, sigma Aldrich) was used. Standards were diluted to 0.2 USP / mL with purified water. Diluted solutions 0, 10, 20, 30, 40 ⁇ L are dissolved in buffers (pH 8.4) 270, 260, 250, 240, 230 ⁇ L each containing 50 mM Tris-HCl and 227 mM NaCl, and 3 U / mL FIIa solution 6 ⁇ L and 9 ⁇ L of human normal plasma were added to prepare standard solutions of 0, 0.2, 0.4, 0.6, 0.8 USP / mL plasma, respectively.
  • buffers pH 8.4
  • a standard curve was used to plot the anti-factor IIa activity (USP / mL plasma) and absorbance to create a calibration curve, and the anti-factor IIa activity of each sample was calculated.
  • Anti-Factor IIa activity in the specimen after 0 hour was treated as a blank of the mouse.
  • Anti-Factor IIa activity in the measurement sample was larger than 0.8 U / mL, the measurement sample was diluted with human normal plasma to prepare a measurement sample solution, and measurement was performed again.
  • Subcutaneous administration of an aggregate consisting of UFH and Taa An aggregate consisting of UFH and Taa was subcutaneously administered to ddY mice. As for the aggregate, 20 mg / mL UFH and 80 mM Taa were mixed in the same volume, and then centrifuged at 800 ⁇ g for 10 minutes to remove the supernatant. Cone oil (1.7 mL / kg (body weight)) was added to the resulting precipitate, the aggregate was suspended in the oil, and then subcutaneously administered to the back of the mouse.
  • the amount of UFH was 4 mg / kg (body weight) administered UFH (heparin calcium subcutaneous injection 5,000 units / 0.2 mL syringe “Mochida” package insert, Mochida Pharmaceutical Co., Ltd., revised in January 2016, 5th edition)
  • the volume of UFH and Taa to be mixed was calculated and adjusted. That is, to 30 g of mice, 120 ⁇ g of UFH was subcutaneously administered by preparing an aggregate in which 6 ⁇ L of UFH and Taa were mixed. Thereafter, blood was collected from the tail vein after 2, 4, 8, 12, 16, 20, and 24 hours. Before subcutaneous administration, blood was collected from the tail vein and used as a sample after 0 hour.
  • Plasma was obtained by centrifuging the collected blood at 4 ° C. and 800 ⁇ g for 15 minutes. Moreover, the aggregate which mixed UFH and Taa was prepared so that the administered UFH might be set to 30 mg / kg (body weight), and it administered subcutaneously to the mouse
  • mice with UFH 4 mg / kg (body weight) and UFH 30 mg / kg (body weight) suspended in cone oil and administered subcutaneously were also administered subcutaneously 0, 0.5, 1, 2, 4, 6 8 and 12 hours later, blood was collected from the tail vein, and plasma was prepared in the same manner as in the aggregate group. Specifically, 20 mg / kg UFH 6 ⁇ L and 100 mg / kg UFH 9 ⁇ L were suspended in cone oil and administered subcutaneously to 30 g mice.
  • FIG. 3 shows changes over time in plasma Anti-Factor Xa activity after subcutaneous administration of UFH and UFH-Taa aggregates to mice.
  • FIG. 3A shows the results at a UFH dose of 4 mg / kg (body weight)
  • FIG. 3B shows the results at a UFH dose of 30 mg / kg (body weight)
  • FIG. The results at a dose of 30 mg / kg (body weight) of Taa aggregates are shown.
  • FIG. 3A shows the results at a UFH dose of 4 mg / kg (body weight)
  • FIG. 3B shows the results at a UFH dose of 30 mg / kg (body weight)
  • FIG. The results at a dose of 30 mg / kg (body weight) of Taa aggregates are shown.
  • In the 4 mg / kg (body weight) control group FIG.
  • the treatment duration of Anti-FXa activity is 0.86 hours, and at a UFH dose of 30 mg / kg (body weight), the treatment range of Anti-FXa activity is sustained.
  • the time was 1.3 hours, and at a dose of 30 mg / kg (body weight) of the UFH-Taa aggregate, the therapeutic range duration of Anti-FXa activity was 4.5 hours.
  • the duration of these treatment areas was calculated by calculating the duration of each treatment area from the blood concentration transition of each mouse. From the above results, it was suggested that the aggregate prepared from UFH and Taa has utility as a sustained-release preparation of UFH.
  • FIG. 4 shows changes over time in plasma Anti-Factor IIa activity after subcutaneous administration of UFH and UFH-Taa aggregates to mice.
  • FIG.4A shows the results at a UFH dose of 4 mg / kg (body weight)
  • FIG.4B shows the results at a UFH dose of 30 mg / kg (body weight)
  • FIG.4C shows UFH- The results at a dose of 30 mg / kg (body weight) of Taa aggregates are shown.
  • Anti-Factor IIa activity in plasma was also detected in the group of mice that received the aggregate.
  • Subcutaneous administration of an aggregate consisting of LMWH and Taa For an aggregate consisting of LMWH and Taa, an aggregate in which 20 mg / mL LMWH and 80 mM Taa were mixed in the same volume was prepared in the same manner as UFH and subcutaneously administered to mice.
  • the amount of LMWH should be 2 mg / kg (body weight) of the administered LMWH (Pharmaceutical Interview Form Clexane (Registered Trademark) Subcutaneous Injection Kit 2000 IU, Kaken Pharmaceutical Co., Ltd., Revised March 2015, 8th Edition)
  • the volume of LMWH and Taa to be mixed was calculated and prepared.
  • mice 60 ⁇ g of LMWH was subcutaneously administered by preparing an aggregate in which 3 ⁇ L each of LMWH and Taa were mixed. Thereafter, blood was collected from the tail vein 0.5, 1, 2, 4, 6, and 8 hours later, and the blood was centrifuged at 4 ° C. and 800 ⁇ g for 15 minutes to obtain plasma. Moreover, the aggregate which mixed LMWH and Taa was prepared so that the administered LMWH might be 10 mg / kg, and it administered subcutaneously to the mouse
  • LMWH 2 mg / kg (body weight) and LMWH 10 mg / kg (body weight) were suspended in cone oil and administered subcutaneously, blood was collected over time in the same manner as in the association group.
  • 20 mg / kg LMWH 3 ⁇ L or 15 ⁇ L was suspended in cone oil and administered subcutaneously.
  • Three ddY mice were administered subcutaneously with an aggregate prepared from LMWH and Taa, and the time course of plasma Anti-Factor Xa activity was examined.
  • FIG. 5 shows changes over time in plasma Anti-Factor Xa activity after subcutaneous administration of LMWH and LMWH-Taa aggregates to mice.
  • the aggregate of the present invention can be used, for example, as an anticoagulant having sustained release properties.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Dermatology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

The present invention relates to a novel conjugate of heparin and polyamine, an anticoagulant comprising the conjugate, a pharmaceutical composition containing the conjugate, a kit for producing the conjugate, a sustained release agent, a method for producing the conjugate, etc. (1) A conjugate of heparin and a linear or branched polyamine that has at least 3 amino groups; (2) an anticoagulant comprising the conjugate described in (1); (3) a pharmaceutical composition containing the conjugate described in (1); (4) a kit for producing the conjugate, which contains heparin or a salt thereof and a linear or branched polyamine having at least 3 amino groups or a salt thereof; (5) a sustained release agent for providing a sustained release behavior for heparin, comprising a linear or branched polyamine having at least 3 amino groups or a salt thereof; and (6) a method for producing the conjugate, the method comprising mixing an aqueous solution of heparin or a salt thereof with an aqueous solution of a linear or branched polyamine having at least 3 amino groups or a salt thereof.

Description

ヘパリンの会合体Heparin aggregate
 本発明は、ヘパリンとポリアミンとの会合体、会合体からなる抗血液凝固剤、会合体を含む薬剤組成物、会合体の製造のためのキット、徐放性付与剤、及び会合体の製造方法等に関する。 The present invention relates to an aggregate of heparin and polyamine, an anticoagulant comprising the aggregate, a pharmaceutical composition containing the aggregate, a kit for producing the aggregate, a sustained-release imparting agent, and a method for producing the aggregate Etc.
 未分画ヘパリン (UFH) は、ウロン酸とグルコサミンが交互に結合し、各糖水酸基の一部に硫酸基が付加した直鎖の酸性多糖類であり、抗血液凝固薬として汎用されている。効能・効果は、1) 汎発性血管内血液凝固症候群の治療、2) 血液透析・人工心肺その他の体外循環装置使用時の血液凝固防止、3) 血管カテーテル挿入時の血液凝固の防止、4) 輸血及び血液検査の際の血液凝固の防止、5) 血栓塞栓症 (静脈血栓症、心筋梗塞症、肺塞栓症、脳塞栓症、四肢動脈血栓塞栓症、手術中・術後の血栓塞栓症等)の治療及び予防が挙げられる。 Unfractionated heparin cocoon (UFH) cocoon is a linear acidic polysaccharide in which uronic acid and glucosamine are alternately bonded and a sulfate group is added to a part of each sugar hydroxyl group, and is widely used as an anticoagulant. Indications: 1) Treatment of generalized intravascular blood coagulation syndrome, 2) Prevention of blood coagulation when using hemodialysis, cardiopulmonary bypass or other extracorporeal circulation devices, 3) Prevention of blood coagulation when inserting a vascular catheter, 4 ) Prevention of blood coagulation during blood transfusion and blood tests, 5) Thromboembolism (venous thrombosis, myocardial infarction, pulmonary embolism, cerebral embolism, limb arterial thromboembolism, thromboembolism during and after surgery And the like).
 近年、未分画ヘパリンを改良した低分子量ヘパリン (例えば、商品名:アリクストラ(登録商標))やワルファリンに替わる新規経口抗凝固薬 (例えば、商品名:プラザキサ(登録商標)、商品名:イグザレルト(登録商標))が開発されたため市場規模は年々拡大し、2022年には1,647億円に続伸すると予想されている。しかしながら手術の際は休薬し、ヘパリン置換されることからUFHの需要は未だに高く、国内だけで現在10社の製薬企業が生産している。手術の際、UFHは静脈内点滴注射法、静脈内間歇注射法、皮下注射法により投与される。 In recent years, low-molecular-weight heparin modified from unfractionated heparin (for example, trade name: Arikstra (registered trademark)) and a new oral anticoagulant drug to replace warfarin (for example, trade name: plazaxa (registered trademark), trade name: XXARElt ( The development of the registered trademark)) is expected to increase year by year and continue to increase to 164.7 billion yen in 2022. However, UFH is still in high demand because it is withdrawn and replaced with heparin at the time of surgery, and 10 pharmaceutical companies are currently producing only in Japan. During surgery, UFH is administered by intravenous infusion, intravenous intermittent injection, or subcutaneous injection.
 特許文献1では、局所においてヘパリンあるいは低分子量ヘパリンを長時間にわたって徐放することにより、副作用となる出血傾向を軽減しつつ、病変部において効率よく肝細胞増殖因子(HGF)の産生を促進して、腎臓における線維化を抑制できる組成物を提供することを課題として、カチオン化ゼラチンとヘパリンを含む徐放性ゼラチンハイドロゲル組成物が開示されている(特許文献1)。 In Patent Document 1, by gradually releasing heparin or low molecular weight heparin locally over a long period of time, the production of hepatocyte growth factor (HGF) is efficiently promoted in a lesion while reducing bleeding tendency as a side effect. In order to provide a composition capable of suppressing fibrosis in the kidney, a sustained release gelatin hydrogel composition containing cationized gelatin and heparin has been disclosed (Patent Document 1).
特開2013-75835号公報JP 2013-75835 JP
 UFHは、高い負電荷を有し、数平均分子量が約13,000と高分子であるため、経口吸収効率は著しく低く、投与は静脈内注射か皮下投与に限られる。更に、血液や血管の蛋白質と非特異的に結合する。そのため、UFHの静脈内投与は、血管内皮細胞やマクロファージとの結合による急速な消失相と腎臓からの排泄に起因する緩慢な消失相がある。さらに、UFHは、半減期が短く (約40~60分) 治療域が狭いという課題があった。
 半減期を延長するため低分子量ヘパリンが開発されたが、適応がUFHに比べ限られている。そのため、新規ヘパリンの開発が望まれる。
 そこで、本発明は、ヘパリンとポリアミンとの新規会合体、会合体からなる抗血液凝固剤、会合体を含む薬剤組成物、会合体の製造のためのキット、徐放性付与剤、及び会合体の製造方法等に関する。
 また、ある側面で、本発明は、投与後のヘパリンの半減期が長く、治療域が長く持続する会合体、会合体からなる抗血液凝固剤、会合体を含む薬剤組成物、会合体の製造のためのキット、徐放性付与剤、及び会合体の製造方法等に関する。
Since UFH has a high negative charge and a high number average molecular weight of about 13,000, oral absorption efficiency is extremely low, and administration is limited to intravenous injection or subcutaneous administration. Furthermore, it binds nonspecifically to blood and blood vessel proteins. Therefore, intravenous administration of UFH has a rapid elimination phase due to binding with vascular endothelial cells and macrophages and a slow elimination phase due to excretion from the kidney. In addition, UFH has a short half-life (about 40-60 minutes) and a narrow therapeutic window.
Low molecular weight heparin has been developed to extend half-life, but its indication is limited compared to UFH. Therefore, development of new heparin is desired.
Accordingly, the present invention provides a novel association product of heparin and polyamine, an anticoagulant comprising the association product, a pharmaceutical composition containing the association product, a kit for producing the association product, a sustained release agent, and an association product It relates to the manufacturing method of
Further, in one aspect, the present invention relates to an aggregate having a long half-life of heparin after administration and a long therapeutic range, an anticoagulant comprising the aggregate, a pharmaceutical composition containing the aggregate, and production of the aggregate The present invention relates to a kit, a sustained-release imparting agent, and a method for producing an aggregate.
 本発明は、下記の〔1〕~〔16〕に関する。
〔1〕ヘパリンと、3以上のアミノ基を有する直鎖状又は分岐状のポリアミンとの会合体。
〔2〕ポリアミンが、分岐状のポリアミンである、〔1〕に記載の会合体。
〔3〕ポリアミンが、式( 1 ):
Figure JPOXMLDOC01-appb-C000002

〔式中、R1, R2, R3, R4は、それぞれ独立に炭素数3又は4の2価の脂肪族炭化水素基である。〕で表される化合物である、〔1〕又は〔2〕に記載の会合体。
〔4〕前記ヘパリンが、未分画ヘパリン又は低分子量ヘパリンである、〔1〕~〔3〕のいずれかに記載の会合体。
〔5〕前記ポリアミンが、スペルミジン、スペルミン、テルミン、カルドペンタミン、トリス(3-アミノプロピル)アミン、及びテトラキス(3-アミノプロピル)アンモニウムからなる群から選ばれる少なくとも1種を含む、〔1〕~〔4〕のいずれかに記載の会合体。
〔6〕前記ポリアミンが、テトラキス(3-アミノプロピル)アンモニウムを含む、〔1〕~〔5〕のいずれかに記載の会合体。
〔7〕〔1〕~〔6〕のいずれかに記載の会合体からなる抗血液凝固剤。
〔8〕〔1〕~〔6〕のいずれかに記載の会合体を含む薬剤組成物。
〔9〕ヘパリン又はその塩と、3以上のアミノ基を有する直鎖状若しくは分岐状のポリアミン、又はその塩とを含む、会合体の製造のためのキット。
〔10〕3以上のアミノ基を有する直鎖状若しくは分岐状のポリアミン、又はその塩からなる、ヘパリンの徐放性を付与するための徐放性付与剤。
〔11〕ヘパリン又はその塩の水溶液と、3以上のアミノ基を有する直鎖状若しくは分岐状のポリアミン又はその塩の水溶液とを混合すること含む、会合体の製造方法。
〔12〕抗血液凝固のための、〔1〕~〔6〕のいずれかに記載の会合体。
〔13〕抗血液凝固のための、〔1〕~〔6〕のいずれかに記載の会合体の使用。
〔14〕抗血液凝固剤の製造のための、〔1〕~〔6〕のいずれかに記載の会合体の使用。
〔15〕ヘパリンを含む抗血液凝固剤に徐放性を付与するための、3以上のアミノ基を有する直鎖状若しくは分岐状のポリアミン又はその塩の使用。
〔16〕〔1〕~〔6〕のいずれかに記載の会合体を生体内に投与する、血液凝固防止方法。
The present invention relates to the following [1] to [16].
[1] An association product of heparin and a linear or branched polyamine having 3 or more amino groups.
[2] The aggregate according to [1], wherein the polyamine is a branched polyamine.
[3] The polyamine has the formula (1):
Figure JPOXMLDOC01-appb-C000002

[Wherein R 1 , R 2 , R 3 and R 4 are each independently a divalent aliphatic hydrocarbon group having 3 or 4 carbon atoms. ] The association according to [1] or [2], which is a compound represented by
[4] The aggregate according to any one of [1] to [3], wherein the heparin is unfractionated heparin or low molecular weight heparin.
[5] The polyamine includes at least one selected from the group consisting of spermidine, spermine, theremin, cardopentamine, tris (3-aminopropyl) amine, and tetrakis (3-aminopropyl) ammonium. To [4].
[6] The aggregate according to any one of [1] to [5], wherein the polyamine contains tetrakis (3-aminopropyl) ammonium.
[7] An anticoagulant comprising the aggregate according to any one of [1] to [6].
[8] A pharmaceutical composition comprising the aggregate according to any one of [1] to [6].
[9] A kit for producing an aggregate comprising heparin or a salt thereof and a linear or branched polyamine having 3 or more amino groups, or a salt thereof.
[10] A sustained release agent for imparting sustained release of heparin, comprising a linear or branched polyamine having 3 or more amino groups, or a salt thereof.
[11] A method for producing an aggregate, comprising mixing an aqueous solution of heparin or a salt thereof and an aqueous solution of a linear or branched polyamine having 3 or more amino groups or a salt thereof.
[12] The aggregate according to any one of [1] to [6] for anticoagulation.
[13] Use of the aggregate according to any one of [1] to [6] for anticoagulation.
[14] Use of the aggregate according to any one of [1] to [6] for the production of an anticoagulant.
[15] Use of a linear or branched polyamine having 3 or more amino groups or a salt thereof for imparting sustained release to an anticoagulant containing heparin.
[16] A method for preventing blood coagulation, comprising administering the association according to any one of [1] to [6] in vivo.
 本発明によれば、ヘパリンとポリアミンとの新規会合体、会合体からなる抗血液凝固剤、会合体を含む薬剤組成物、会合体の製造のためのキット、徐放性付与剤、及び会合体の製造方法等を提供することができる。
 また、ある側面で、本発明によれば、投与後のヘパリンの半減期が長く、治療域が長く持続する会合体、会合体からなる抗血液凝固剤、会合体を含む薬剤組成物、会合体の製造のためのキット、徐放性付与剤、及び会合体の製造方法等を提供することができる。
According to the present invention, a novel aggregate of heparin and polyamine, an anticoagulant comprising the aggregate, a pharmaceutical composition containing the aggregate, a kit for producing the aggregate, a sustained-release imparting agent, and an aggregate And the like.
Further, in one aspect, according to the present invention, the heparin has a long half-life after administration and a long-lasting treatment area, an anticoagulant comprising the aggregate, a pharmaceutical composition containing the aggregate, and an aggregate And the like, a sustained-release imparting agent, and a method for producing an aggregate.
各pH条件下で調製した会合体に含まれるSPMとUFHを解離させ、会合体におけるSPMを〔SPM定量〕に示した方法により定量した結果を図1Aに、会合体におけるUFHを〔ヘパリン定量〕に示した方法により定量した結果を図1Bに示す。SPM and UFH contained in the aggregate prepared under each pH condition were dissociated, and the SPM in the aggregate was quantified by the method shown in [SPM quantification]. The results shown in FIG. 1A and UFH in the aggregate [quantification of heparin] The results quantified by the method shown in Fig. 1B are shown. 図2は、上清中のUFH及びTaaの量と、UFHが有する負電荷とTaaが有する正電荷の比 (negative/positive ratio, N/P ratio)との関係を示した図である。FIG. 2 is a graph showing the relationship between the amount of UFH and Taa in the supernatant and the ratio between the negative charge of UFH and the positive charge of Taa (negative / positive ratio, N / P ratio). 図3は、マウスにUFH及びUFH-Taaの会合体を皮下投与した後の血漿中Anti-Factor Xa activityの経時的な変化を示す。図3Aは、UFHの投与量4 mg/kg (body weight)での結果を示し、図3Bは、UFHの投与量30 mg/kg (body weight)での結果を示し、図3Cは、UFH-Taaの会合体の投与量30 mg/kg (body weight)での結果を示す。FIG. 3 shows changes over time in plasma Anti-Factor Xa activity after subcutaneous administration of UFH and UFH-Taa aggregates to mice. FIG. 3A shows the results at a UFH dose of 4 mg / kg (body weight), FIG.3B shows the results at a UFH dose of 30 mg / kg weight (body weight), and FIG. The results at a dose of 30 mg / kg (body weight) of Taa aggregates are shown. 図4は、マウスにUFH及びUFH-Taaの会合体を皮下投与した後の血漿中Anti-Factor IIa activityの経時的な変化を示す。図4Aは、UFHの投与量4 mg/kg (body weight)での結果を示し、図4Bは、UFHの投与量30 mg/kg (body weight)での結果を示し、図4Cは、UFH-Taaの会合体の投与量30 mg/kg (body weight)での結果を示す。FIG. 4 shows the time course of plasma Anti-Factor IIa activity after subcutaneous administration of UFH and UFH-Taa aggregates to mice. FIG. 4A shows the results at a UFH dose of 4 mg / kg (body weight), FIG.4B shows the results at a UFH dose of 30 mg / kg weight (body weight), and FIG. The results at a dose of 30 mg / kg (body weight) of Taa aggregates are shown. 図5は、マウスにLMWH及びLMWH-Taaの会合体を皮下投与した後の血漿中Anti-Factor Xa activityの経時的な変化を示す。FIG. 5 shows changes over time in plasma Anti-Factor Xa activity after subcutaneous administration of LMWH and LMWH-Taa aggregates to mice.
 本明細書において、各種用語について以下の略語を用いることがある。
 未分画ヘパリン又はその塩は、「UFH」と省略することがある。
 低分子量ヘパリン又はその塩は、「LMWH」と省略することがある。
 スペルミンは、「SPM」と省略することがある。
 スペルミジンは、「SPD」と省略することがある。
 プトレシンは、「PUT」と省略することがある。
 テトラキス(3-アミノプロピル)アンモニウムは、「Taa」と省略することがある。
In this specification, the following abbreviations may be used for various terms.
Unfractionated heparin or its salt may be abbreviated as “UFH”.
Low molecular weight heparin or a salt thereof may be abbreviated as “LMWH”.
Spermine may be abbreviated as “SPM”.
Spermidine is sometimes abbreviated as “SPD”.
Putrescine may be abbreviated as “PUT”.
Tetrakis (3-aminopropyl) ammonium may be abbreviated as “Taa”.
[会合体]
 本発明の会合体は、ヘパリンと、3以上のアミノ基を有する直鎖状又は分岐状のポリアミンとの会合体である。ヘパリンと当該ポリアミンとの会合体を形成することで、水中でゲル状の会合体乃至は固形状の会合体が得られる。当該会合体は、ポリイオンコンプレックスを形成していると考えられる。当該会合体を形成することで、投与後、血液内でヘパリンが徐放され、ヘパリン半減期が長くなり、治療域が長く持続するという効果を奏する。
 ヘパリンは、酸性多糖類であり高い負電荷を有する。当該表面の電荷をポリアミンで中和することで会合体を形成する。会合体は、例えば、ヘパリンの分子内に存在する酸性基に基づく負電荷と、ポリアミン分子内に存在する塩基性基に基づく正電荷とによる、静電的相互作用により結合している。
[Meeting]
The aggregate of the present invention is an aggregate of heparin and a linear or branched polyamine having 3 or more amino groups. By forming an association between heparin and the polyamine, a gel-like association or a solid association is obtained in water. The aggregate is considered to form a polyion complex. By forming the aggregate, heparin is gradually released in the blood after administration, and the heparin half-life is increased and the therapeutic area is prolonged.
Heparin is an acidic polysaccharide and has a high negative charge. The surface charge is neutralized with polyamine to form an aggregate. The aggregate is bound by electrostatic interaction due to, for example, a negative charge based on an acidic group present in the heparin molecule and a positive charge based on a basic group present in the polyamine molecule.
<ヘパリン>
 ヘパリンは、ウロン酸とグルコサミンが交互に結合し、各糖水酸基の一部に硫酸基が付加した直鎖の酸性多糖類である。
 ヘパリンとしては、例えば、未分画ヘパリン (UFH)、光分解ヘパリン (例えば、後述のHP7000) 、低分子量ヘパリン (LMWH)が挙げられる。
<Heparin>
Heparin is a linear acidic polysaccharide in which uronic acid and glucosamine are alternately bonded, and a sulfate group is added to a part of each sugar hydroxyl group.
Examples of heparin include unfractionated heparin (UFH), photolytic heparin (for example, HP7000 described later), and low molecular weight heparin (LMWH).
 会合体の原料としては、ヘパリン又はその塩が用いられる。
 ヘパリンの塩としては、例えば、ナトリウム塩、カルシウム塩が挙げられる。
 ヘパリンナトリウムは、例えば、健康な食用獣の肝、肺、腸粘膜から得たものである。
 ヘパリンカルシウムは、例えば、健康なブタの腸粘膜から得たものである。
 ヘパリンの調製は、例えば、日本薬局方に開示された方法等が利用できる。ナトリウム塩は日本薬局方収載品として、カルシウム塩はイギリス薬局方収載品あるいは例えば、カーボマー社(CarboMer Inc.)製として入手可能である。
 なお、原料として塩を用いた場合、当該塩の一部が残存している可能性もある。
As a raw material of the aggregate, heparin or a salt thereof is used.
Examples of heparin salts include sodium salts and calcium salts.
Heparin sodium is obtained, for example, from the liver, lungs, and intestinal mucosa of healthy food animals.
Heparin calcium is obtained, for example, from the intestinal mucosa of healthy pigs.
For the preparation of heparin, for example, a method disclosed in the Japanese Pharmacopoeia can be used. Sodium salt is available as a Japanese pharmacopoeia product, and calcium salt is available as a British pharmacopoeia product or, for example, CarboMer Inc.
In addition, when a salt is used as a raw material, a part of the salt may remain.
 未分画ヘパリンの数平均分子量は、好ましくは5,000以上、より好ましくは8,000以上、更に好ましくは10,000以上、更に好ましくは12,000以上であり、そして、好ましくは15,000以下、より好ましくは14,000以下、更に好ましくは13,000以下である。数平均分子量は、実施例の「ヘパリン分子量測定」に記載の方法により測定される。
 原料として用いられる未分画ヘパリンの市販品としては、例えば、ヘパリンナトリウム塩(New Zealand Pharmaceutical社製)、「ヘパリンカルシウム皮下注5千単位/0.2 mLシリンジ」(持田製薬株式会社製)が挙げられる。
The number average molecular weight of unfractionated heparin is preferably 5,000 or more, more preferably 8,000 or more, further preferably 10,000 or more, more preferably 12,000 or more, and preferably 15,000 or less, more preferably 14,000 or less, and still more preferably Is less than 13,000. The number average molecular weight is measured by the method described in “Heparin molecular weight measurement” in the Examples.
Examples of commercially available unfractionated heparin used as a raw material include heparin sodium salt (manufactured by New Zealand Pharmaceutical) and “heparin calcium subcutaneous injection 5,000 units / 0.2 mL syringe” (manufactured by Mochida Pharmaceutical Co., Ltd.). .
 光分解ヘパリンとは、未分画ヘパリンを、二酸化チタンを用いた光分解反応により低分子量化したヘパリンである。光分解ヘパリンは、特に限定されないが、例えば国際公開公報WO2008/059869号に記載された方法によって得られる。
 光分解ヘパリンの数平均分子量は、好ましくは3,000以上、好ましくは5,000以上、より好ましくは6,000以上であり、そして、好ましくは10,000以下、より好ましくは9,000以下、更に好ましくは8,000以下である。数平均分子量は、実施例の「ヘパリン数平均分子量測定」に記載の方法により測定される。
Photolytic heparin is heparin obtained by reducing the molecular weight of unfractionated heparin by a photolytic reaction using titanium dioxide. Photolytic heparin is not particularly limited, and can be obtained, for example, by the method described in International Publication No. WO2008 / 059869.
The number average molecular weight of the photolytic heparin is preferably 3,000 or more, preferably 5,000 or more, more preferably 6,000 or more, and preferably 10,000 or less, more preferably 9,000 or less, and further preferably 8,000 or less. The number average molecular weight is measured by the method described in “Heparin number average molecular weight measurement” in the Examples.
 低分子量ヘパリンは、例えば、ウシ又はブタ腸粘膜由来のヘパリンを過酸化水素と硫酸第二銅等により分解して得られた解重合ヘパリンである。
 低分子量ヘパリンの数平均分子量は、好ましくは2,000以上、より好ましくは2,500以上、更に好ましくは3,000以上であり、そして、好ましくは7,000以下、より好ましくは6,000以下、更に好ましくは5,000以下である。数平均分子量は、実施例の「ヘパリン数平均分子量測定」に記載の方法により測定される。
 低分子量ヘパリンとしては、例えば、パルナパリン、ダルテパリン(数平均分子量約5,500)、ダナパロイド、レビパリン、及びエノキサパリン(数平均分子量約3,500~4,500)が挙げられる。
 原料として用いられる低分子量ヘパリンの市販品としては、例えば、エノキサパリンナトリウム注射液「クレキサン皮下注キット2000 IU」(サノフィ株式会社製)が挙げられる。
Low molecular weight heparin is, for example, depolymerized heparin obtained by decomposing heparin derived from bovine or porcine intestinal mucosa with hydrogen peroxide and cupric sulfate.
The number average molecular weight of the low molecular weight heparin is preferably 2,000 or more, more preferably 2,500 or more, still more preferably 3,000 or more, and preferably 7,000 or less, more preferably 6,000 or less, and even more preferably 5,000 or less. The number average molecular weight is measured by the method described in “Heparin number average molecular weight measurement” in the Examples.
Examples of the low molecular weight heparin include parnaparin, dalteparin (number average molecular weight of about 5,500), danaparoid, leviparin, and enoxaparin (number average molecular weight of about 3,500 to 4,500).
Examples of commercially available low molecular weight heparin used as a raw material include enoxaparin sodium injection “Clexane Subcutaneous Injection Kit 2000 IU” (manufactured by Sanofi Corporation).
 これらのヘパリンの中でも、未分画ヘパリン又は低分子量ヘパリンが好ましく、血液内でヘパリンが徐放され、ヘパリン半減期が長く、治療域を長く持続する観点から、未分画ヘパリンがより好ましい。 Among these heparins, unfractionated heparin or low molecular weight heparin is preferred, and unfractionated heparin is more preferred from the viewpoint of sustained release of heparin in blood, a long heparin half-life, and a long therapeutic range.
 ヘパリンの力価は、好ましくは80 IU/mg以上、より好ましくは90 IU/mg以上であり、そして、好ましくは220 IU/mg以下、より好ましくは210 IU/mg以下、更に好ましくは200 IU/mg以下である。なお、ヘパリンの力価の単位は、国際単位(IU)で表記している。
 ヘパリンの二糖あたりの平均負電荷は、好ましくは-3.00以下、より好ましくは-3.20以下、更に好ましくは-3.30以下であり、そして、好ましくは-4.00以上、より好ましくは-3.80以上、更に好ましくは-3.60以上、更に好ましくは-3.40以上である。
 なお、ヘパリンの二糖あたりの平均負電荷は、後述の方法により測定できる。
The titer of heparin is preferably 80 IU / mg or more, more preferably 90 IU / mg or more, and preferably 220 IU / mg or less, more preferably 210 IU / mg or less, and even more preferably 200 IU / mg. mg or less. The unit of heparin titer is expressed in international units (IU).
The average negative charge per disaccharide of heparin is preferably -3.00 or less, more preferably -3.20 or less, further preferably -3.30 or less, and preferably -4.00 or more, more preferably -3.80 or more. Is -3.60 or more, more preferably -3.40 or more.
The average negative charge per disaccharide of heparin can be measured by the method described later.
 原料としてヘパリン製剤を用いてもよい。ヘパリン製剤としては、例えば、製薬学的に許容されるヘパリン含有溶液、用時溶解して用いるヘパリン含有固形製剤(粉末製剤、凍結乾燥製剤等)が挙げられる。これらの中でも、溶液が好ましい。 A heparin preparation may be used as a raw material. Examples of heparin preparations include pharmaceutically acceptable heparin-containing solutions and heparin-containing solid preparations (powder preparations, freeze-dried preparations, etc.) that are used after dissolution. Among these, a solution is preferable.
<ポリアミン>
 ヘパリンと、3以上のアミノ基を有する直鎖状又は分岐状のポリアミンとの組み合わせにより、会合体を形成する。
 ポリアミンは、会合体の形成性を高める観点、及び血液内でヘパリンが徐放され、ヘパリン半減期が長く、治療域を長く持続する観点から、好ましくは分岐状のポリアミンであり、より好ましくは十字状ポリアミンである。
 十字状ポリアミンとは、4以上の置換基が1の窒素原子に結合したアミンを意味する。
 ポリアミンは、それぞれの窒素原子が炭素数3若しくは4の2価の脂肪族炭化水素基で互いに連結されていてもよい。
 ポリアミンのアミノ基数は、会合体の形成の観点から、3以上であり、好ましくは4以上であり、そして、好ましくは6以下、より好ましくは5以下である。
 ポリアミンの炭素数は、会合体の形成性を高める観点から、好ましくは5以上、より好ましくは6以上、更に好ましくは8以上、更に好ましくは10以上、更に好ましくは11以上であり、そして、好ましくは20以下、より好ましくは18以下、更に好ましくは16以下、更に好ましくは14以下である。
 ポリアミンは、会合体の形成性を高める観点、及び血液内でヘパリンが徐放され、ヘパリン半減期が長く、治療域を長く維持する観点から、好ましくは分子内に4級アンモニウム部位を有する。
<Polyamine>
An association is formed by a combination of heparin and a linear or branched polyamine having 3 or more amino groups.
The polyamine is preferably a branched polyamine, more preferably a cross-linked polyamine from the viewpoint of enhancing the formation of aggregates, and from the viewpoint of sustained release of heparin in the blood, a long heparin half-life, and a long therapeutic area. A polyamine.
A cruciform polyamine means an amine having four or more substituents bonded to one nitrogen atom.
In the polyamine, each nitrogen atom may be connected to each other by a divalent aliphatic hydrocarbon group having 3 or 4 carbon atoms.
The number of amino groups of the polyamine is 3 or more, preferably 4 or more, and preferably 6 or less, more preferably 5 or less, from the viewpoint of forming an aggregate.
The number of carbon atoms of the polyamine is preferably 5 or more, more preferably 6 or more, still more preferably 8 or more, still more preferably 10 or more, still more preferably 11 or more, from the viewpoint of enhancing the formability of the aggregate. Is 20 or less, more preferably 18 or less, still more preferably 16 or less, and still more preferably 14 or less.
The polyamine preferably has a quaternary ammonium moiety in the molecule from the viewpoint of enhancing the formability of the aggregate and from the viewpoint of sustained release of heparin in the blood, a long heparin half-life, and a long therapeutic range.
 ポリアミンは、血液内でヘパリンが徐放され、ヘパリン半減期が長く、治療域を長く維持する観点から、好ましくは、式( 1 ):
Figure JPOXMLDOC01-appb-C000003

〔式中、R1, R2, R3, R4は、それぞれ独立に炭素数3又は4の2価の脂肪族炭化水素基である。〕で表される化合物である。
 2価の脂肪族炭化水素基は、例えば、1, 3-プロパンジイル基、1, 4-ブタンジイル基が挙げられる。これらの中でも好ましくは1,3-プロパンジイルである。
  ポリアミンには、カウンターアニオンX-が含まれていてもよい。X-としては、Cl-,Br-,I-等のハロゲン化物イオン等が挙げられる。
The polyamine preferably has the formula (1): from the viewpoint of sustained release of heparin in the blood, long heparin half-life, and long treatment area.
Figure JPOXMLDOC01-appb-C000003

[Wherein R 1 , R 2 , R 3 and R 4 are each independently a divalent aliphatic hydrocarbon group having 3 or 4 carbon atoms. It is a compound represented by this.
Examples of the divalent aliphatic hydrocarbon group include a 1,3-propanediyl group and a 1,4-butanediyl group. Among these, 1,3-propanediyl is preferable.
The polyamine may contain a counter anion X . Examples of X include halide ions such as Cl , Br and I .
 ポリアミンとしては、例えば、スペルミジン、スペルミン、テルミン、カルドペンタミン、トリス(3-アミノプロピル)アミン(以下、「ミツビシン」ともいう)、テトラキス(3-アミノプロピル)アンモニウムが挙げられる。
 これらの中でも、会合体の形成性を高める観点、及び血液内でヘパリンが徐放され、ヘパリン半減期が長く、治療域を長く維持する観点から、テトラキス(3-アミノプロピル)アンモニウムが好ましい。
 上述のテトラキス(3-アミノプロピル)アンモニウムは、例えば、[dentification, chemical synthesis, and biological functions of unusual polyamines produced by extreme thermophiles By: Oshima, Tairo; Moriya, Toshiyuki; Terui, Yusuke Methods in Molecular Biology (New York, NY, United States) Vol. 720, IssuePolyamines, Pages81-111. General Review, 2011]に記載を参考にした方法により得られる。
Examples of the polyamine include spermidine, spermine, theremin, cardopentamine, tris (3-aminopropyl) amine (hereinafter also referred to as “mitubicin”), and tetrakis (3-aminopropyl) ammonium.
Among these, tetrakis (3-aminopropyl) ammonium is preferable from the viewpoint of enhancing the formation of aggregates and from the viewpoint of sustained release of heparin in the blood, long heparin half-life, and long treatment area.
The tetrakis (3-aminopropyl) ammonium described above is, for example, (dentification, chemical synthesis, and biological functions of unusual polyamines produced by extreme thermophiles By: Oshima, Tairo; Moriya, Toshiyuki; Terui, Yusuke Methods in Molecular Biology (New York , NY, United States) Vol. 720, Issue Polyamines, Pages 81-111. General Review, 2011].
 会合体は、ヘパリン1 gあたりの、ポリアミンのモル比率が、例えば、好ましくは0.5 mmol/g以上、より好ましくは0.7 mmol/g以上、更に好ましくは0.8 mmol/g以上であり、そして、好ましくは8 mmol/g以下、より好ましくは7 mmol/g以下、更に好ましくは6 mmol/g以下である。 In the aggregate, the molar ratio of polyamine per 1 g of heparin is, for example, preferably 0.5 mmol / g or more, more preferably 0.7 / mmol / g or more, still more preferably 0.8 mmol / g or more, and preferably It is 8 mmol / g or less, more preferably 7 mmol / g or less, still more preferably 6 mmol / g or less.
 会合体における、ヘパリンが有する負電荷とポリアミンが有する正電荷の比(negative/positive ratio, N/P ratio)は、好ましくは5以下、より好ましくは3以下、更に好ましくは2以下、更に好ましくは1.5以下であり、そして、好ましくは0.2以上、より好ましくは0.5以上、更に好ましくは0.8以上である。
 なお、ポリアミンの正電荷は、分子構造からアミノ基及びアンモニウム基の数を一分子あたりの正電荷の数とし、ポリアミンのモル量から全体の正電荷を算出する。例えば、Taaの場合、一分子あたりの電荷+5とする。
 ヘパリンの負電荷は、二糖あたりの平均分子量及び二糖あたりの平均電荷から、ヘパリン全体の負電荷を算出する。例えば、UFHの場合、二糖あたりの平均電荷-3.38を用いて計算する。なお、上記電荷の比は絶対値の比率である。なお、二糖あたりの平均分子量及び二糖あたりの平均電荷は以下の方法により測定する。
In the aggregate, the ratio of the negative charge of heparin to the positive charge of polyamine (negative / positive ratio, N / P ratio) is preferably 5 or less, more preferably 3 or less, still more preferably 2 or less, and still more preferably. 1.5 or less, and preferably 0.2 or more, more preferably 0.5 or more, and still more preferably 0.8 or more.
In addition, the positive charge of a polyamine calculates the whole positive charge from the molar amount of a polyamine by making the number of amino groups and ammonium groups into the number of positive charges per molecule from molecular structure. For example, in the case of Taa, the charge per molecule is +5.
The negative charge of heparin is calculated from the average molecular weight per disaccharide and the average charge per disaccharide. For example, in the case of UFH, the calculation is performed using an average charge per disaccharide of −3.38. The charge ratio is an absolute value ratio. The average molecular weight per disaccharide and the average charge per disaccharide are measured by the following methods.
(ヘパリンの二糖組成、二糖あたりの平均分子量、及び二糖あたりの平均電荷の測定法)
 ヘパリンをへパリナーゼI,II及びIIIで切断した後に、逆相イオンペアクロマトグラフィーにより、不飽和二糖を分離し、蛍光検出器により二糖組成を同定する。
 検出された二糖の組成(ΔUA-GlcNAc (カルボキシ基数1, 硫酸基数0, 分子量379.3)、ΔUA-GlcNS (カルボキシ基数1, 硫酸基数1,分子量417.3)、ΔUA-GlcNAc6S (カルボキシ基数1, 硫酸基数1, 分子量459.3)、ΔUA-GlcNS6S (カルボキシ基数1, 硫酸基数2, 分子量497.4)、ΔUA2S-GlcNS (カルボキシ基数1, 硫酸基数2, 分子量497.4)、ΔUA2S-GlcNS6S (カルボキシ基数1, 硫酸基数3, 分子量577.4))から、二糖あたりの平均分子量を算出する。二糖あたりの平均電荷は、二糖あたりのカルボキシ基及び硫酸基の平均値から算出する。
(Measurement of disaccharide composition of heparin, average molecular weight per disaccharide, and average charge per disaccharide)
After heparin is cleaved with heparinase I, II and III, unsaturated disaccharides are separated by reversed-phase ion pair chromatography, and the disaccharide composition is identified by a fluorescence detector.
Detected disaccharide composition (ΔUA-GlcNAc (carboxy group number 1, sulfate group number 0, molecular weight 379.3), ΔUA-GlcNS (carboxy group number 1, sulfate group number 1, molecular weight 417.3), ΔUA-GlcNAc6S (carboxy group number 1, sulfate group number 1, molecular weight 459.3), ΔUA-GlcNS6S (carboxy group number 1, sulfate group number 2, molecular weight 497.4), ΔUA2S-GlcNS (carboxy group number 1, sulfate group number 2, molecular weight 497.4), ΔUA2S-GlcNS6S (carboxy group number 1, sulfate group number 3, The average molecular weight per disaccharide is calculated from the molecular weight 577.4)). The average charge per disaccharide is calculated from the average value of carboxy group and sulfate group per disaccharide.
[会合体の製造方法]
 会合体は、例えば、ヘパリン又はその塩の水溶液(以下、単に「ヘパリン水溶液」ともいう)と、3以上のアミノ基を有する直鎖状若しくは分岐状のポリアミン、又はその塩の水溶液(以下、単に「ポリアミン水溶液」ともいう)とを混合することにより得られる。
[Method for producing aggregate]
The aggregate includes, for example, an aqueous solution of heparin or a salt thereof (hereinafter also simply referred to as “heparin aqueous solution”), a linear or branched polyamine having three or more amino groups, or an aqueous solution of a salt thereof (hereinafter simply referred to as an “aqueous solution”). And "polyamine aqueous solution").
 ヘパリン水溶液とポリアミン水溶液との混合比率及びその濃度は、混合後の各成分の濃度が、好ましくは以下のとおりになるよう調整される。
 ヘパリン水溶液の混合後のヘパリン濃度は、会合体の形成性を高める観点から、好ましくは0.5 mg/mL以上、より好ましくは1 mg/mL以上、更に好ましくは3 mg/mL以上、更に好ましくは5 mg/mL以上、更に好ましくは8 mg/mL以上であり、そして、好ましくは20 mg/mL以下、より好ましくは15 mg/mL以下、更に好ましくは13 mg/mL以下である。
 なお、ヘパリン水溶液は、例えば、上述のとおりヘパリン製剤であってもよい。
The mixing ratio and concentration of the heparin aqueous solution and the polyamine aqueous solution are adjusted so that the concentration of each component after mixing is preferably as follows.
The heparin concentration after mixing the heparin aqueous solution is preferably 0.5 mg / mL or more, more preferably 1 mg / mL or more, still more preferably 3 mg / mL or more, and further preferably 5 from the viewpoint of enhancing the formation of aggregates. mg / mL or more, more preferably 8 mg / mL or more, and preferably 20 mg / mL or less, more preferably 15 mg / mL or less, and further preferably 13 mg / mL or less.
The heparin aqueous solution may be, for example, a heparin preparation as described above.
 ポリアミン水溶液の混合後のポリアミン濃度は、会合体の形成性を高める観点から、好ましくは5 mM以上、より好ましくは10 mM以上、更に好ましくは30 mM以上であり、そして、好ましくは80 mM以下、より好ましくは60 mM以下、更に好ましくは50 mM以下である。 The polyamine concentration after mixing with the polyamine aqueous solution is preferably 5 μmM or more, more preferably 10 μmM or more, further preferably 30 μmM or more, and preferably 80 μmM or less, from the viewpoint of enhancing the formability of the aggregate. More preferably, it is 60 μm or less, and still more preferably 50 μm or less.
 ヘパリン水溶液とポリアミン水溶液との混合時の条件は、特に限定されず、常温でこれらの水溶液を混合することで、簡便に会合体を形成することができる。
 会合体を含む混合液のpHは、会合体の形成性の観点から、好ましくは1以上、より好ましくは3以上、更に好ましく4以上であり、そして、好ましくは6以下である。
The conditions at the time of mixing the heparin aqueous solution and the polyamine aqueous solution are not particularly limited, and the aggregate can be easily formed by mixing these aqueous solutions at room temperature.
The pH of the mixed solution containing the aggregate is preferably 1 or more, more preferably 3 or more, still more preferably 4 or more, and preferably 6 or less from the viewpoint of the formability of the aggregate.
[会合体の用途]
 会合体は、好ましくは抗血液凝固剤として用いられる。会合体を抗血液凝固剤として用い、当該会合体を生体内に投与することで、ヘパリンが生体内で徐放されるため、投与後のヘパリンの半減期が長く、治療域が長く持続する。つまり、会合体を生体内に投与する、血液凝固防止方法として用いられる。
[Application of the aggregate]
The aggregate is preferably used as an anticoagulant. By using the aggregate as an anti-coagulant and administering the aggregate in vivo, heparin is gradually released in vivo, so that the half-life of heparin after administration is long and the treatment area is long. That is, it is used as a blood coagulation preventing method in which an aggregate is administered in vivo.
 抗血液凝固剤等の用途として用いる観点から、会合体は、好ましくは、未分画ヘパリンと、上述の式( 1 )で表される化合物との会合体であり、より好ましくは、未分画ヘパリンとTaaとの会合体である。当該会合体を用いることで、ヘパリンの最大血中濃度到達時間と半減期が延長され、更には、最大血中濃度も低く抑えることができる。 From the viewpoint of use as an anticoagulant or the like, the aggregate is preferably an aggregate of unfractionated heparin and the compound represented by the above formula (1), more preferably unfractionated. It is an association of heparin and Taa. By using the aggregate, the maximum blood concentration reaching time and half-life of heparin are extended, and the maximum blood concentration can be kept low.
 また、別の面において、抗血液凝固剤等の用途として用いる観点から、会合体は、好ましくは、低分子量ヘパリンと、上述の式( 1 )で表される化合物との会合体であり、より好ましくは、低分子量ヘパリンとTaaとの会合体であることが好ましい。当該会合体を用いることで、ヘパリンの最大血中濃度到達時間が延長され、更には最大血中濃度も低く抑えることができる。 In another aspect, from the viewpoint of use as an anticoagulant or the like, the aggregate is preferably an aggregate of low molecular weight heparin and a compound represented by the above formula (1), and more Preferably, it is an aggregate of low molecular weight heparin and Taa. By using the aggregate, the time for reaching the maximum blood concentration of heparin is extended, and the maximum blood concentration can be kept low.
 投与方法は、例えば、経口投与、皮下投与、静脈内投与が挙げられるが、好ましくは皮下投与又は静脈内投与、より好ましくは皮下投与である。 The administration method includes, for example, oral administration, subcutaneous administration, and intravenous administration, preferably subcutaneous administration or intravenous administration, more preferably subcutaneous administration.
 会合体は、会合体を含む薬物剤組成物として用いられる。
 薬物剤組成物は、経口投与に用いる観点から、例えば、上述のヘパリン水溶液と、ポリアミン水溶液の混合物をそのまま用いてもよい。
 薬剤組成物は、皮下投与に用いる観点から、上述のヘパリン水溶液と、ポリアミン水溶液の混合物を遠心分離にかけ、分離した会合体と、コーンオイル等の植物油とを混合して用いてもよい。
 薬剤組成物は、静脈投与に用いる観点から、生理食塩水等へ懸濁して用いてもよい。
The aggregate is used as a drug composition containing the aggregate.
From the viewpoint of oral administration, for example, a mixture of the above-mentioned heparin aqueous solution and a polyamine aqueous solution may be used as it is as the drug composition.
From the viewpoint of use in subcutaneous administration, the pharmaceutical composition may be used by mixing a mixture of the above-mentioned heparin aqueous solution and the polyamine aqueous solution by centrifugation, and mixing the separated aggregate with a vegetable oil such as corn oil.
The pharmaceutical composition may be suspended in physiological saline or the like from the viewpoint of intravenous administration.
 会合体の投与量は、例えば、会合体に含まれるヘパリンの質量換算で、1~60 mg/kg (body weight)、より好ましくは10~50 mg/kg (body weight)、更に好ましくは20~40 mg/kg (body weight)である。 The dose of the aggregate is, for example, from 1 to 60 mg / kg (body weight), more preferably from 10 to 50 mg / kg (body weight), more preferably from 20 to 20 in terms of the mass of heparin contained in the aggregate. 40 mg / kg (body weight).
[キット]
 本発明の会合体は、2種の水溶液を混合することで簡便に得られる。そのため、ヘパリン又はその塩と、ポリアミン又はその塩を含むキットとして実施することもできる。
 会合体の製造のためのキット(以下、単に「キット」ともいう)は、ヘパリン又はその塩と、3以上のアミノ基を有する直鎖状若しくは分岐状のポリアミン、又はその塩とを含む。
 キットにおいて、ヘパリン又はその塩は、ヘパリン水溶液であることが好ましい。
 キットにおいて、ポリアミン、又はその塩は、ポリアミン水溶液であることが好ましい。
 ヘパリン水溶液及びポリアミン水溶液の濃度は、好ましくは、上述の混合の後の濃度となる範囲である。
 キットは、ヘパリン又はその塩と、ポリアミン又はその塩とを、別々の包装単位として含んでいてもよい。
 キットは、ヘパリン又はその塩と、ポリアミン又はその塩とを混合する旨の説明書を含んでいてもよい。また、キットは、混合物を遠心分離にかけ、分離した会合体と、コーンオイル等の植物油とを混合して、皮下投与する旨の説明書を含んでいてもよい。
 キットに含まれる化合物及び薬剤はいずれも、必要に応じて、上記のような1種類又は2種類以上の医薬的に許容される担体(医薬用担体)を含むことができる。
[kit]
The aggregate of the present invention can be easily obtained by mixing two aqueous solutions. Therefore, it can also be implemented as a kit containing heparin or a salt thereof and polyamine or a salt thereof.
A kit for producing the aggregate (hereinafter also simply referred to as “kit”) includes heparin or a salt thereof, and a linear or branched polyamine having three or more amino groups, or a salt thereof.
In the kit, heparin or a salt thereof is preferably a heparin aqueous solution.
In the kit, the polyamine or a salt thereof is preferably a polyamine aqueous solution.
The concentration of the aqueous heparin solution and the aqueous polyamine solution is preferably in the range of the concentration after the above-mentioned mixing.
The kit may contain heparin or a salt thereof and polyamine or a salt thereof as separate packaging units.
The kit may include instructions for mixing heparin or a salt thereof and polyamine or a salt thereof. In addition, the kit may include instructions for centrifuging the mixture, mixing the separated aggregate with a vegetable oil such as corn oil, and administering subcutaneously.
Any of the compounds and drugs contained in the kit can contain one or more pharmaceutically acceptable carriers (pharmaceutical carriers) as described above, if necessary.
[徐放性付与剤]
 本発明の会合体は2種の水溶液を混合することで簡便に得られるため、3以上のアミノ基を有する直鎖状若しくは分岐状のポリアミン又はその塩を、ヘパリンの徐放性を付与するための徐放性付与剤として用いてもよい。
 徐放性付与剤は、例えば、市販品のヘパリン製剤等と混合し、会合体を形成して用いることができる。つまり、上述のポリアミン又はその塩の、ヘパリンの徐放性を付与するための使用、或いは、上述のポリアミン又はその塩の、ヘパリンとの会合体を形成するための使用が意図される。
[Slow release agent]
Since the aggregate of the present invention can be easily obtained by mixing two kinds of aqueous solutions, a linear or branched polyamine having three or more amino groups or a salt thereof is imparted with sustained release of heparin. It may be used as a sustained release imparting agent.
The sustained-release imparting agent can be used, for example, by mixing with a commercially available heparin preparation or the like to form an aggregate. That is, the use of the above-mentioned polyamine or a salt thereof for imparting sustained release of heparin, or the use of the above-mentioned polyamine or a salt thereof for forming an association with heparin is contemplated.
 以上、本発明の会合体によれば、新規会合体、会合体からなる抗血液凝固剤、会合体を含む薬剤組成物、会合体の製造のためのキット、徐放性付与剤、及び会合体の製造方法が提供され、更には、投与後のヘパリンの半減期が長く、治療域が長く持続する会合体、会合体を含む薬剤組成物、会合体の製造のためのキット、徐放性付与剤、及び会合体の製造方法が得られる。 As described above, according to the aggregate of the present invention, a novel aggregate, an anticoagulant comprising the aggregate, a pharmaceutical composition containing the aggregate, a kit for producing the aggregate, a sustained release agent, and the aggregate In addition, the heparin has a long half-life after administration and has a long therapeutic window, an association comprising the association, a pharmaceutical composition containing the association, a kit for producing the association, and imparting sustained release The agent and the method for producing the aggregate are obtained.
 以下、本発明の実施例を具体的に示すが、当該態様に限定されるものではない。 Hereinafter, although the Example of this invention is shown concretely, it is not limited to the said aspect.
[試料]
 ヘパリンナトリウム塩 (Unfractionated Heparin, 当該ヘパリンを「UFH」として用いた。) (ブタ小腸由来, 力価 100 IU/mg, 数平均分子量13,000, 二糖あたりの平均分子量534, 二糖あたりの平均負電荷-3.38) はNew Zealand Pharmaceutical社より購入した。クレキサン皮下注キット2000 IU (エノキサパリンナトリウム注射液)はサノフィ株式会社より購入した。ヘパリンの6糖 (MW : 1800), 10糖(MW : 3000)及び20糖(MW : 5750)の標準品はiduron社より購入した。 1,3-diaminopropane, thermine, caldopentamine, mitsubishine及びTetrakis(3-aminopropyl)ammonium (Taa,塩化物塩) は千葉科学大学の照井祐介先生より供与していただいた。その他の試薬は全て市販の特級品及びHPLCグレードを使用し、水はMilli-Q 超純水装置システムにより精製したものを用いた。
[sample]
Heparin sodium salt (Unfractionated Heparin, used as “UFH”) (from porcine small intestine, titer 100 IU / mg, number average molecular weight 13,000, average molecular weight per disaccharide 534, average negative charge per disaccharide -3.38) was purchased from New Zealand Pharmaceutical. Clexane Subcutaneous Injection Kit 2000 IU (enoxaparin sodium injection solution) was purchased from Sanofi Corporation. Heparin hexasaccharide (MW: 1800), 10 sugar (MW: 3000) and 20 sugar (MW: 5750) standard products were purchased from iduron. 1,3-diaminopropane, thermine, caldopentamine, mitsubishine and Tetrakis (3-aminopropyl) ammonium (Taa, chloride salt) were donated by Dr. Yusuke Terui of Chiba University of Science. All other reagents used were commercially available special grades and HPLC grade, and water was purified with a Milli-Q ultrapure water system.
[装置]
1-1. ポリアミン定量
 溶離液のポンプは株式会社日立ハイテクサイエンス製 Chromaster 5110 Pump, オートサンプラーは株式会社日立ハイテクサイエンス製 ELITE LaChrom L-7200, カラム恒温槽は株式会社日立ハイテクサイエンス製 ELITE LaChrom L-7300, 蛍光検出器は日本分光株式会社製Intelligent Fluorescence Detector FP-1520S, カラムは東ソー株式会社製 TSKgel Polyaminepak  (4.6 mm x 50 mm) をそれぞれ用いた。
[apparatus]
1-1. Determination of polyamine The eluent pump is Chromaster 5110 Pump manufactured by Hitachi High-Tech Science Co., Ltd., the autosampler is ELITE LaChrom L-7200 manufactured by Hitachi High-Tech Science Co., Ltd., and the column thermostat is ELITE LaChrom L- manufactured by Hitachi High-Tech Science Co., Ltd. 7300, JASCO Corporation Intelligent Fluorescence Detector FP-1520S was used as the fluorescence detector, and Tosoh Corporation TSKgel Polyaminepak (4.6 mm x 50 mm) was used as the column.
1-2. ヘパリン定量
 溶離液のポンプは東ソー株式会社製 DP8020, デガッサーは株式会社島津製作所製 DGU-12A, ポストポンプは日本精密科学株式会社製 MINICHEMI PUMP, オートサンプラーは東ソー株式会社製 AS-8020, ドライ反応槽は株式会社フロム製 Reactor 522, 蛍光検出器は日本分光株式会社製 Intelligent Fluorescence Detector FP-1520S, カラムは昭和電工株式会社製 Asahipak NH2P-50 4E (4.6 mm x 250 mm) , ガードカラムは昭和電工株式会社製Asahipak NH2P-50G 4A  (4.6 mm x 10 mm) をそれぞれ用いた。
1-2. Heparin determination The eluent pump is DP8020 manufactured by Tosoh Corporation, the degasser is DGU-12A manufactured by Shimadzu Corporation, the post pump is MINICHEMI PUMP manufactured by Japan Precision Science Co., Ltd., and the autosampler is manufactured by Tosoh Corporation AS-8020. , Dry reactor is Reactor 522 manufactured by FROM Co., Ltd., Fluorescence detector is Intelligent Fluorescence Detector FP-1520S manufactured by JASCO Corporation, Asahipak NH2P-50 4E (4.6 mm x 250 mm) manufactured by Showa Denko KK, guard column Asahipak NH2P-50G 4A (4.6 mm x 10 mm) manufactured by Showa Denko KK was used.
1-3. ヘパリン分子量測定
 1-2. ヘパリン定量で用いたものと同一の装置を用いた。 カラムは昭和電工株式会社製 Asahipak GF-510 HQ (7.6 mm x 300 mm) を用いた。
1-3. Measurement of heparin molecular weight 1-2. The same apparatus as that used for heparin determination was used. Asahipak GF-510 HQ (7.6 mm x 300 mm) manufactured by Showa Denko KK was used as the column.
1-4. データ解析
 ヘパリン定量には東ソー株式会社製LCデータ解析アプリケーションを、その他のデータ解析には株式会社ランタイムインスツルメンツ製 chromatoPRO-GPCとchromatoPROを用いた。
1-4. Data analysis Tosoh Corporation LC data analysis application was used for heparin quantification, and Runto Instruments Inc. chromatoPRO-GPC and chromatoPRO were used for other data analysis.
2. 光分解反応
 光源はセン特殊光源株式会社製高圧水銀ランプHL100CH-4, 電源はセン特殊光源株式会社製HB100A-1, ランプジャケットはセン特殊光源株式会社製水冷ランプジャケットJW-1G, 反応槽はセン特殊光源株式会社製反応槽VG500を使用した。
2. Photolytic reaction The light source is Sen Special Light Source Co., Ltd. high pressure mercury lamp HL100CH-4, the power source is Sen Special Light Source Co., Ltd. HB100A-1, the lamp jacket is Sen Special Light Source Co., Ltd. water-cooled lamp jacket JW-1G, the reaction tank Used a reaction vessel VG500 manufactured by Sen Special Light Source Co., Ltd.
[製造例]
LMWH精製
 クレキサン皮下注キット2000 IUをSpectra Pore Dialysis Membrane 1Kを用いて透析した後、凍結乾燥することで得られた粉末をLMWH(Low Molecular Weight Heparin, 力価 120 IU/mg, 二糖あたりの平均分子量535, 二糖あたりの平均負電荷-3.43)とした。
[Production example]
LMWH Purification Clexane Subcutaneous Injection Kit 2000 IU was dialyzed using Spectra Pore Dialysis Membrane 1K, and then freeze-dried to obtain LMWH (Low Molecular Weight Heparin, titer 120 IU / mg, average per disaccharide The molecular weight was 535, and the average negative charge per disaccharide was -3.43).
光分解ヘパリン(HP 7,000)の調製
 UFHの低分子量化は光分解反応装置を用いた(K. Higashi, S. Hosoyama, A. Ohno, S. Masuko, B. Yang, E.Sterner, Z. Wang, R.J. Linhardt, T. Toida, Photochemical Preparation of a Novel Low Molecular Weight Heparin, Carbohydr. Polym., 67 (2012) 1737-43.)。本装置は高圧水銀ランプ、反応槽、及び水冷ランプジャケットから成る。水冷ランプジャケットに冷却水を流しながら反応させることにより、反応時に発生する熱を冷却することが可能である。UFH 130 mgをガラスチューブに秤量し、二回蒸留水 (DDW) 13 mL に溶解した後、二酸化チタン 13 mgを加えよく撹拌した。このサンプルを計三本調製し、装置内で撹拌しながら一定時間光を照射することにより調製した。反応時間0, 0.5, 1, 2, 3, 3.5, 3.75, 4, 4.5時間で行い、それぞれのサンプルがMW : 6,700程度になったところで回収した。その後、遠心分離を行い、上清をシリンジフィルターで濾過することにより二酸化チタンを除去後、透析し、凍結乾燥を経て光分解ヘパリン (以下、「HP 7,000」ともいう, 力価 100 IU/mg, 二糖あたりの平均分子量523, 二糖あたりの平均負電荷-3.20) 粉末を得た。
Preparation of photolytic heparin (HP 7,000) The molecular weight of UFH was reduced using a photolysis reactor (K. Higashi, S. Hosoyama, A. Ohno, S. Masuko, B. Yang, E. Sterner, Z. Wang , RJ Linhardt, T. Toida, Photochemical Preparation of a Novel Low Molecular Weight Heparin, Carbohydr. Polym., 67 (2012) 1737-43.). The apparatus consists of a high-pressure mercury lamp, a reaction vessel, and a water-cooled lamp jacket. It is possible to cool the heat generated during the reaction by allowing the water-cooled lamp jacket to react while flowing cooling water. 130 mg of UFH was weighed into a glass tube and dissolved in 13 mL of double distilled water (DDW), and then 13 mg of titanium dioxide was added and stirred well. A total of three samples were prepared, and the sample was prepared by irradiating light for a predetermined time while stirring in the apparatus. The reaction time was 0, 0.5, 1, 2, 3, 3.5, 3.75, 4, 4.5 hours, and each sample was collected when it reached about MW: 6,700. Thereafter, centrifugation is performed, and the supernatant is filtered through a syringe filter to remove titanium dioxide, followed by dialysis, lyophilization, photolysis heparin (hereinafter also referred to as “HP 7,000”, titer 100 IU / mg, An average molecular weight of 523 per disaccharide and an average negative charge per disaccharide of 3.20) were obtained.
[測定方法]
〔ヘパリン定量〕
 pH 1からpH 3の会合体から得たUFHについては精製水5 mLに溶解し、pH 4からpH 9の会合体から得たUFHについては精製水500 μLに溶解したものをサンプルとした。ヘパリン定量は蛍光ポストカラム検出法を用いた (Y. Huang, Y. Washio, M. Hara, H. Toyoda, I. Koshiishi, T. Toida, T. Imanari., Simultaneous determination of dermatan sulfate and oversulfated dermatan sulfate in plasma by high-performance liquid chromatography with postcolumn fluorescence derivatization, Anal. Biochem., 240 (1996) 227-34.)。Asahipak NH2カラムを用い、流速0.5 mL/min、カラム温度は室温で行った。2液グラジエントのため、溶離液は (A) 0.1 M NaCl含む0.1 M sodium carbonate buffer (pH 10.0) と(B) 1.0M NaCl含む0.1 M sodium carbonate buffer (pH 10.0) を用いて、0-20 min (0-100 v/v% B) , 20-25 min (100 v/v% B) , 25-27 min (100-0 v/v% B) の条件でグラジエント溶出を行い、0 v/v% eluent Bで8分間平衡化した。ポストカラム試薬として用いた50 mM グアニジンと1.0 M NaOHはダブルプランジャーポンプで両液とも0.25 mL/minの流速で送液した。混合液は反応コイル (0.5 mm i.d. x 10 m) を通過中にドライ反応槽を用いて120℃で加熱、反応させ、冷却コイル (0.25 mm i.d. x 5 m) で冷却した。反応後は励起波長320 nm, 蛍光波長425 nmで蛍光検出した。標準品としてUFH 25 ppm, 50 ppm, 75 ppm, 100 ppmを用いて検量線を描くことでUFHを定量した。
[Measuring method]
[Quantification of heparin]
UFH obtained from pH 1 to pH 3 aggregates was dissolved in 5 mL of purified water, and UFH obtained from pH 4 to pH 9 aggregates was dissolved in 500 μL of purified water. Heparin quantification was performed using fluorescence post-column detection (Y. Huang, Y. Washio, M. Hara, H. Toyoda, I. Koshiishi, T. Toida, T. Imanari., Simultaneous determination of dermatan sulfate and oversulfated dermatan sulfate. in plasma by high-performance liquid chromatography with postcolumn fluorescence derivatization, Anal. Biochem., 240 (1996) 227-34.). Asahipak NH 2 column was used, the flow rate was 0.5 mL / min, and the column temperature was room temperature. Because of the two-liquid gradient, the eluent was (A) 0.1 M sodium carbonate buffer (pH 10.0) containing 0.1 M NaCl and (B) 0.1 M sodium carbonate buffer (pH 10.0) containing 1.0 M NaCl. Gradient elution under the conditions of (0-100 v / v% B), 20-25 min (100 v / v% B), 25-27 min (100-0 v / v% B), 0 v / v Equilibrated with% eluent B for 8 minutes. 50 mM guanidine and 1.0 M NaOH used as post-column reagents were both sent by a double plunger pump at a flow rate of 0.25 mL / min. While passing through the reaction coil (0.5 mm id × 10 m), the mixed solution was heated and reacted at 120 ° C. using a dry reaction tank, and cooled with a cooling coil (0.25 mm id × 5 m). After the reaction, fluorescence was detected at an excitation wavelength of 320 nm and a fluorescence wavelength of 425 nm. UFH was quantified by drawing a calibration curve using UFH 25 ppm, 50 ppm, 75 ppm, and 100 ppm as standard products.
〔SPM定量〕
 SPMの定量は蛍光ポストカラム法を用いて行った (K. Igarashi, K. Kashiwagi, H. Hamasaki, A. Miura, T. Kakegawa, S. Hirose, S. Matsuzaki, Formation of a compensatory polyamine by Escherichia coli polyamine-requiring mutants during growth in the absence of polyamines, J. Bacteriol., 166 (1986) 128-34.)。TSKgel polyaminepak (4.6 mm x 50mm) を用い、溶離液としてBuffer II (0.08 w/v% Briji-35, 20 v/v% MeOH, 0.64 mM ヘキサン酸, 2 M NaCl, 0.35 M クエン酸ナトリウム) を流速0.42 mL/minで送液した。ポストカラム試薬であるオルトフタルアルデヒド溶液 (0.63 v/v% MeOH, 0.1 w/v% Briji-35, 0.4 M ホウ酸, 0.35 M NaOH, 4 mM オルトフタルアルデヒド, 28 mM 2-メルカプトエタノール) は流速0.42 mL/minで送液した。反応後は励起波長336 nm, 蛍光波長470 nmの条件で検出した。カラム温度は50℃で行った。標準品にはSPM 5 μM溶液を20 μL用いた。
[SPM quantification]
Quantification of SPM was performed using a fluorescent post-column method (K. Igarashi, K. Kashiwagi, H. Hamasaki, A. Miura, T. Kakegawa, S. Hirose, S. Matsuzaki, Formation of a compensatory polyamine by Escherichia coli polyamine-requiring mutants during growth in the absence of polyamines, J. Bacteriol., 166 (1986) 128-34.). Using TSKgel polyaminepak (4.6 mm x 50 mm), Buffer II (0.08 w / v% Briji-35, 20 v / v% MeOH, 0.64 mM hexanoic acid, 2 M NaCl, 0.35 M sodium citrate) as the eluent flow rate The solution was fed at 0.42 mL / min. Post column reagent orthophthalaldehyde solution (0.63 v / v% MeOH, 0.1 w / v% Briji-35, 0.4 M boric acid, 0.35 M NaOH, 4 mM orthophthalaldehyde, 28 mM 2-mercaptoethanol) The solution was fed at 0.42 mL / min. After the reaction, detection was performed under conditions of an excitation wavelength of 336 nm and a fluorescence wavelength of 470 nm. The column temperature was 50 ° C. As a standard, 20 μL of 5 μM SPM solution was used.
〔Taa定量〕
 Taaの定量は上記のSPM定量を改変し行った。3 Mの塩酸を用いてBuffer IIをpH 3.2に調節したものを溶離液として用い、流速0.7 mL/minで送液した。カラム温度は70℃で行った。標準品にはTaa 20 μM溶液を20 μL用いた。その他の条件はSPM定量法に従った。
[Taa quantitative]
Taa was quantified by modifying the above SPM quantification. A buffer II adjusted to pH 3.2 with 3 M hydrochloric acid was used as an eluent, and the solution was fed at a flow rate of 0.7 mL / min. The column temperature was 70 ° C. As a standard, 20 μL of Taa 20 μM solution was used. Other conditions followed the SPM quantification method.
〔ヘパリン数平均分子量測定〕
 ヘパリンの数平均分子量測定は蛍光ポストカラム法を用いて行った。Asahipak GF-510 HQカラムを用い、流速 0.3 mL/min, カラム温度は室温で行った。溶離液は10 mM ammonium hydrogen carbonateを用い、アイソクラティック条件で分析した。 検出は204 nmのUVで行った。dp 6 (MW 1,800), dp 10 (MW 3,000)及びdp 20 (MW 5,750) の標準品を用いて検量線を描くことでヘパリンの数平均分子量を測定した。データの解析には株式会社インスツルメンツ製 chromatoPRO-GPCを用いた。
[Heparin number average molecular weight measurement]
The number average molecular weight of heparin was measured using a fluorescent post column method. Asahipak GF-510 HQ column was used, the flow rate was 0.3 mL / min, and the column temperature was room temperature. The eluent was 10 mM ammonium hydrogen carbonate and analyzed under isocratic conditions. Detection was performed with UV at 204 nm. The number average molecular weight of heparin was measured by drawing a calibration curve using dp 6 (MW 1,800), dp 10 (MW 3,000) and dp 20 (MW 5,750) standards. For analysis of data, chromatoPRO-GPC manufactured by Instruments Inc. was used.
〔透過率〕
 透過率はSPECTRONIC 20D+ (Thermo)で測定した。
[Transmissivity]
The transmittance was measured with SPECTRONIC 20D + (Thermo).
[会合体の製造]
会合体形成における濃度比の影響
 目的とする会合体溶液の2倍濃度となるように100μLのUFH水溶液及び100μLのポリアミン水溶液の濃度をそれぞれ精製水で調整した (表1) 。ポリアミン水溶液に同体積のUFH水溶液を混合することで目的濃度の溶液を調製し、よく混和した。白濁の程度は透過率(%T)で評価した。UFH水溶液と各ポリアミン水溶液を混合した結果を表1に示す。濃度は混合後の最終濃度として示した。
 三種のポリアミンの中ではSPMが高い形成効率を示し、SPD, PUTとアミノ基の数が減少するにつれて会合体形成効率が低下した。この結果は、PUTが他のポリアミンに比べて分子鎖が短く、一分子あたりの電荷も小さいためにUFHとの相互作用が弱かったためだと考えられ、会合体形成効率はポリアミンの長さや電荷の数に影響を受けることが示唆された。溶液中のUFHとSPMの濃度が高いほど高い形成効率を示したが、 UFH又はSPMいずれかの濃度が極端に高くなった場合は形成効率が低下する傾向が見られた。以上の結果より, 会合体形成効率には溶液中のUFHとポリアミンの比が影響することが示唆された。
[Manufacture of aggregates]
Effect of Concentration Ratio on Aggregate Formation The concentrations of 100 μL of UFH aqueous solution and 100 μL of polyamine aqueous solution were adjusted with purified water so that the concentration was twice the target aggregate solution (Table 1). A solution of the desired concentration was prepared by mixing the polyamine aqueous solution with the same volume of UFH aqueous solution and mixed well. The degree of cloudiness was evaluated by transmittance (% T). Table 1 shows the results of mixing the UFH aqueous solution and each polyamine aqueous solution. The concentration is shown as the final concentration after mixing.
Among the three polyamines, SPM showed high formation efficiency, and the aggregate formation efficiency decreased as the number of SPD, PUT and amino groups decreased. This result is thought to be due to the fact that PUT has a shorter molecular chain than other polyamines and has a small charge per molecule, so the interaction with UFH was weak. It was suggested that the number was affected. The higher the UFH and SPM concentrations in the solution, the higher the formation efficiency. However, when either the UFH or SPM concentration was extremely high, the formation efficiency tended to decrease. These results suggest that the aggregate formation efficiency is affected by the ratio of UFH to polyamine in the solution.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
会合体形成におけるヘパリン分子量の影響
 目的とする会合体溶液の2倍濃度となるようにヘパリン水溶液及びSPM水溶液の濃度をそれぞれ精製水で調整した (表2) 。ポリアミン水溶液に同体積のヘパリン水溶液を混合することで目的濃度の溶液を調製し、よく混和した。白濁の程度は透過率(%T)で評価した。ヘパリンの分子量を変化させた際の会合体形成効率の変化を表2に示す。ここで、ポリアミンにはSPM, SPD及びPUTの中で最も高い会合体形成効率を示したSPMを用いた。HP 7,000, LMWHを用いた場合にも会合体の形成が確認されたが、その形成効率は分子量が小さくなるにしたがって低下する傾向が見られた。
Effect of heparin molecular weight on aggregate formation The concentrations of the heparin aqueous solution and the SPM aqueous solution were adjusted with purified water so that the concentration of the target aggregate solution was doubled (Table 2). A solution of the desired concentration was prepared by mixing the polyamine aqueous solution with the same volume of heparin aqueous solution and mixed well. The degree of cloudiness was evaluated by transmittance (% T). Table 2 shows changes in aggregate formation efficiency when the molecular weight of heparin is changed. Here, as the polyamine, SPM having the highest aggregate formation efficiency among SPM, SPD and PUT was used. The formation of aggregates was also confirmed when HP 7,000 and LMWH were used, but the formation efficiency tended to decrease as the molecular weight decreased.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
会合体形成におけるpHの影響
 20 mg/mLのUFH水溶液と20 mmol/LのSPM水溶液を等体積混合することで、会合体を形成した後、1mol/L HCl及び0.2 mol/L NaOHを用いてpHを1から8まで調整した。pH 9の会合体溶液を作る際は2 mol/L NaOHを用いた。溶液を6,000 x gで5分間遠心にかけ、会合体層を沈殿させ水層を除いた後、同じpHに調整した水を用いて会合体を二度洗浄した。会合体の解離は2.0 mol/L NaOHを用いて会合体溶液のpHを 9以上とすることで行い、Amikon Ultra 10Kを用いて6,000 x g, 4℃で30分間遠心にかけてUFHとSPMを分離した。Amikon Ultra 10K上の残渣をUFH溶液とし、凍結乾燥することでUFHを得た。一方、通過画分をSPM画分とし、凍結乾燥することでSPMを得た。
 各pH条件下で調製した会合体に含まれるSPMとUFHを解離させ、会合体におけるSPMを上述の〔SPM定量〕に示した方法により定量した結果を図1Aに、会合体におけるUFHを上述の〔ヘパリン定量〕に示した方法により定量した結果を図1Bに示す。酸性側では会合体を形成するUFH量とSPM量はいずれも増大していた。UFHとSPMから調製した会合体は負電荷を帯びており、pHを変化させた会合体溶液のゼータ電位を測定すると、酸性側に進むにつれて表面電荷が0に近づいたことから、会合体溶液のpHを酸性側に傾けることで負電荷が中和され会合体の形成が亢進したと考えた(表3)。
 また、UFH一分子に対するSPMの分子数の比をとったものを表4に示す。pH が6より小さい範囲においてはUFH一分子あたり30分子から40分子のSPMが結合していた。
Effect of pH on aggregate formation After the formation of aggregates by mixing equal volumes of 20 mg / mL UFH aqueous solution and 20 mmol / L SPM aqueous solution, 1 mol / L HCl and 0.2 mol / L NaOH were used. The pH was adjusted from 1 to 8. 2 mol / L NaOH was used to make the pH 9 aggregate solution. The solution was centrifuged at 6,000 × g for 5 minutes to precipitate the aggregate layer, remove the aqueous layer, and then washed the aggregate twice with water adjusted to the same pH. The dissociation of the aggregate was performed by using 2.0 mol / L NaOH to adjust the pH of the aggregate solution to 9 or more, and UFH and SPM were separated by centrifuging at 6,000 x g and 4 ° C for 30 minutes using Amikon Ultra 10K. The residue on Amikon Ultra 10K was made into a UFH solution and freeze-dried to obtain UFH. On the other hand, the passing fraction was used as the SPM fraction, and SPM was obtained by lyophilization.
The SPM and UFH contained in the aggregate prepared under each pH condition were dissociated, and the SPM in the aggregate was quantified by the method shown in the above [SPM quantification]. The results quantified by the method shown in [Heparin quantification] are shown in FIG. 1B. On the acidic side, both the amount of UFH and SPM forming aggregates increased. Aggregates prepared from UFH and SPM are negatively charged, and when the zeta potential of the aggregate solution with varying pH was measured, the surface charge approached 0 as it proceeded to the acidic side. We thought that tilting the pH to the acidic side neutralized the negative charge and increased the formation of aggregates (Table 3).
Table 4 shows the ratio of the number of SPM molecules to one UFH molecule. In the range where the pH was less than 6, 30 to 40 SPM molecules were bound per UFH molecule.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
ポリアミンを用いた会合体の形成
 目的とする会合体溶液の2倍濃度となるように20μLのUFH水溶液及び20μLのポリアミン水溶液の濃度をそれぞれ精製水で調整した (表5)。ポリアミン水溶液に同体積のUFH水溶液を混合することで目的濃度の溶液を調製し、よく混和した。白濁の程度は目視で判断した。UFHと各ポリアミンを混合した結果を表5に示す。表示した濃度は混合後の最終濃度である。また、Taaを用いて形成した会合体は固体状であり、他のポリアミンを用いて形成した液状の会合体とは形態が大きく異なっていた。これらの結果から、ポリアミンの分子内に含まれるアミノ基の数及び分岐鎖構造が重要であることが示唆された。これらの中でも、UFHとTaaの相互作用は特に強いことがわかった。なお、UFHとTaaとの会合体については、膠状であった。そのため透過率が測定できなかったので、目視評価で示した。
Formation of aggregates using polyamine The concentrations of 20 μL of the UFH aqueous solution and 20 μL of the polyamine aqueous solution were adjusted with purified water so that the concentration of the target aggregate solution was doubled (Table 5). A solution of the desired concentration was prepared by mixing the polyamine aqueous solution with the same volume of UFH aqueous solution and mixed well. The degree of cloudiness was judged visually. Table 5 shows the results of mixing UFH and each polyamine. The displayed density is the final density after mixing. Further, the aggregate formed using Taa was in a solid state, and its form was greatly different from the liquid aggregate formed using other polyamines. From these results, it was suggested that the number of amino groups contained in the polyamine molecule and the branched chain structure are important. Of these, the interaction between UFH and Taa was found to be particularly strong. The aggregate of UFH and Taa was glued. Therefore, since the transmittance could not be measured, it was shown by visual evaluation.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
会合体形成における電荷比の影響
 20 mg/mLのUFH水溶液 20 μLと80, 40, 20, 10, 5 mMのTaa水溶液 20 μLをそれぞれ混合して調製したPIC溶液を6,000 x g で5分間遠心にかけ、会合体と上清を分離した。上清のうち20 μLに5 w/w% TCA (トリクロロ酢酸) 80 μLを加えて、Taaを定量した。また、上清のうち20 μLに80 μLの水を加えて希釈し、UFHを定量した。UFHが有する負電荷は二糖あたりの平均分子量 534 二糖あたり平均電荷 -3.38を用いて計算した。Taaが有する正電荷は、一分子あたり電荷 +5を用いて計算した。算出された電荷を用いて、UFHが有する負電荷とTaaが有する正電荷の比 (negative/positive ratio, N/P ratio) を求めた。
 上述のとおり、会合体を調製した後に、上清中に残存するUFH及びTaaを定量することで、会合体形成性を検討した。図2は、上清中のUFH及びTaaの量と、UFHが有する負電荷とTaaが有する正電荷の比 (negative/positive ratio, N/P ratio)との関係を示した図である。なお、図中、Taaの濃度は、aが80 mM, bが40 mM, cが20 mM, dが10 mM, eが5 mMである。Taaの濃度を5 mM (e), 10 mM (d), 20 mM (c) と高くするにつれて上清中のUFH及びTaaの割合が低下しており、PICの形成効率の増加が確認された。特に20 mM (c)のTaaを混合するとほぼすべてのUFHとTaaがPICを形成しており、混合したUFHが有する負電荷とTaaが有する正電荷の比 (negative/positive比, N/P比)は1.3であった。40 mM (b), 80 mM (a)とTaaの濃度を更に高くすると、上清中に遊離Taaが増加したことから、この条件下ではTaaは過剰であることが明らかとなった。以上の結果より、UFHとTaaから構成される会合体はN/P比が1となる濃度比で会合体形成効率が最も高くなることが示唆された。
 また、UFH一分子あたり20分子程度のTaaが会合していたことから、UFH二糖単位あたり1分子程度のTaaが会合していることが示唆された。
Effect of charge ratio on aggregate formation PIC solution prepared by mixing 20 μL of 20 mg / mL UFH aqueous solution and 20 μL of 80, 40, 20, 10, 5 mM Taa aqueous solution was centrifuged at 6,000 xg for 5 minutes. The aggregate and supernatant were separated. Taa was quantified by adding 80 μL of 5 w / w% TCA (trichloroacetic acid) to 20 μL of the supernatant. Further, 20 μL of the supernatant was diluted by adding 80 μL of water, and UFH was quantified. The negative charge of UFH was calculated using an average molecular weight per disaccharide of 534, an average charge per disaccharide of -3.38. The positive charge possessed by Taa was calculated using the charge +5 per molecule. Using the calculated charge, the ratio of the negative charge of UFH to the positive charge of Taa (negative / positive ratio, N / P ratio) was determined.
As described above, after the aggregate was prepared, the UFH and Taa remaining in the supernatant were quantified to examine the aggregate formation. FIG. 2 is a graph showing the relationship between the amount of UFH and Taa in the supernatant and the ratio of the negative charge of UFH to the positive charge of Taa (negative / positive ratio, N / P ratio). In the figure, the concentration of Taa is 80 mM for a, 40 mM for b, 20 mM for c, 10 mM for d, and 5 mM for e. As the Taa concentration was increased to 5 mM (e), 10 mM (d), and 20 mM (c), the ratio of UFH and Taa in the supernatant decreased, confirming an increase in PIC formation efficiency. . In particular, when 20 mM (c) Taa is mixed, almost all UFH and Taa form PIC, and the ratio of the negative charge of the mixed UFH to the positive charge of Taa (negative / positive ratio, N / P ratio) ) Was 1.3. When the concentrations of 40 mM (b), 80 mM (a), and Taa were further increased, free Taa increased in the supernatant, which revealed that Taa was excessive under these conditions. These results suggest that aggregates composed of UFH and Taa have the highest aggregate formation efficiency at a concentration ratio where the N / P ratio is 1.
In addition, approximately 20 molecules of Taa were associated with each UFH molecule, suggesting that approximately 1 molecule of Taa was associated with each UFH disaccharide unit.
[In vivo実験]
1.マウス
 雌性のddY系マウス (以下、「ddYマウス」ともいう)は日本エスエルシー株式会社より購入した。千葉大学薬学部動物舎で25℃、相対湿度 55%に保たれたチップ入りゲージの中で一週間以上予備飼育した後、実験に用いた。食餌 (MF, オリエンタル酵母)、飲水は全て自由摂取とした。経口投与実験を行う場合は、食餌中に含まれるヘパリンの影響を考慮し、24時間絶食させた。
[In vivo experiment]
1. Mouse Female ddY mice (hereinafter also referred to as “ddY mice”) were purchased from Japan SLC. The animal was preliminarily raised for more than a week in a gauge with a chip maintained at 25 ° C. and 55% relative humidity in the animal department of the Faculty of Pharmaceutical Sciences, Chiba University, and then used for the experiment. Food (MF, oriental yeast) and drinking water were all ad libitum. In the case of an oral administration experiment, fasting was performed for 24 hours in consideration of the effect of heparin contained in the diet.
2. 試料
2.1. 標準タンパク質, 合成基質
 Factor Xa, Normal human plasma, Antithrombin III及び発色性合成基質S-2222は積水メディカル株式会社よりヘパリンキット テストチーム(登録商標)ヘパリンSを購入し使用した。Thrombinとchromozyme THはRoche Diagnostics GmbHより購入した。
2.2. 試薬
 ヘパリンナトリウム塩 (20 kDa, ブタ小腸由来, 力価 100 IU/mg, 数平均分子量13,000, 二糖あたりの平均分子量534, 二糖あたりの平均負電荷-3.38, 当該ヘパリンを「UFH」として用いた。) はNew Zealand Pharmaceutical社より購入した。サノフィ株式会社より購入したクレキサン皮下注2000 IU (エノキサパリンナトリウム注射液) をSpectra Pore Dialysis Membrane 1Kを用いて透析した後、凍結乾燥することで、エノキサパリンを得た当該ヘパリンをLMWHとして用いた(力価 120 IU/mg, 二糖あたりの平均分子量535, 二糖あたりの平均負電荷-3.43)。H3393-50KU heparin sodium salt, grade I-A : from porcine imtestinal mucosa (212 USP units/mg) はシグマアルドリッチ社から購入した。
2. Sample
2.1. Standard Protein, Synthetic Substrate Factor Xa, Normal Human Plasma, Antithrombin III and Chromogenic Synthetic Substrate S-2222 were purchased from Sekisui Medical Co., Ltd. using Heparin Kit Test Team (registered trademark) Heparin S. Thrombin and chromozyme TH were purchased from Roche Diagnostics GmbH.
2.2. Reagents Heparin sodium salt (20 kDa, derived from porcine small intestine, titer 100 IU / mg, number average molecular weight 13,000, average molecular weight per disaccharide 534, average negative charge per disaccharide −3.38, the heparin “UFH” Was purchased from New Zealand Pharmaceutical. Clexane subcutaneous injection 2000 IU (enoxaparin sodium injection solution) purchased from Sanofi Co., Ltd. was dialyzed using Spectra Pore Dialysis Membrane 1K, and then freeze-dried to use the heparin obtained from enoxaparin as LMWH (titer) 120 IU / mg, average molecular weight 535 per disaccharide, average negative charge per disaccharide -3.43). H3393-50KU heparin sodium salt, grade IA: from porcine imtestinal mucosa (212 USP units / mg) was purchased from Sigma Aldrich.
2.3. その他
 その他の試薬は全て市販の特級品及びHPLCグレードを使用し、水はMilli-Q 超純水装置システムにより精製したものを用いた。
2.3. Others All other reagents used were commercially available special grades and HPLC grade, and water was purified using a Milli-Q ultrapure water system.
3.装置
3.1. 吸光度測定
 検出器として、TECAN Austria GmbH オーストリア製 サンライズサーモを用いた。
3. apparatus
3.1. Absorbance measurement TECAN Austria GmbH Austrian Sunrise Thermo was used as a detector.
Anti-Factor Xa activety assay
・標準溶液の調製 
 標準品にはクレキサン皮下注キット (2000 IU/0.2 mL) を用いた。標準品を0.9 w/w%塩化ナトリウム水溶液を用いて10 IU/mLに希釈し、更に50 mM Tris buffer (pH 8.4) を用いて0.2 IU/mLに希釈した。希釈液0, 6, 12, 18, 24 μLをそれぞれ50 mM Tris buffer (pH 8.4) 48, 42, 36, 30, 24 μLに溶解し、1 U/mL ATIII 6 μL及びヒト正常血漿6 μLを加え、それぞれ0, 0.2, 0.4, 0.6, 0.8 U/mL plasmaの標準溶液を調製した。
・測定
 測定試料6 μLを50 mM Tris buffer (pH 8.4) 48 μLに溶解した。これに1 U/mL ATIII 6 μLを加え、試料溶液を調製した。標準溶液又は測定試料60 μLを37℃で5分間加温した後、7.1 nkat/mL に調整したFactor Xa溶液30 μLを加え、37℃で正確に30秒加温した。これに0.75 mg/mLに調整したS-2222液60 μLを加え、37℃で正確に3分加温した後、50 w/w%酢酸水溶液90 μLを加え反応を停止させた。反応停止後、405 nmで測定した。標準液を用いてAnti-Factor Xa activity (IU/mL plasma) と吸光度をプロットして検量線を作成し、各試料のAnti-Factor Xa activityを算出した。この際、0時間後検体中のAnti-Factor Xa activityをそのマウスのブランクとして扱った。測定試料中のAnti-Factor Xa activityが0.8 U/mLより大きい場合には測定試料をヒト正常血漿で希釈して測定試料溶液を調製し、再度測定した。
 なお、Anti-Factor Xa activityの治療域は0.3~0.8 IU/mLである。
Anti-Factor Xa activety assay
・ Preparation of standard solution
Clexane subcutaneous injection kit (2000 IU / 0.2 mL) was used as a standard product. The standard product was diluted to 10 IU / mL with 0.9 w / w% sodium chloride aqueous solution, and further diluted to 0.2 IU / mL with 50 mM Tris buffer (pH 8.4). Dissolve dilutions 0, 6, 12, 18, 24 μL in 50 mM Tris buffer (pH 8.4) 48, 42, 36, 30, 24 μL, respectively, and add 1 U / mL ATIII 6 μL and human normal plasma 6 μL. In addition, standard solutions of 0, 0.2, 0.4, 0.6, 0.8 U / mL plasma were prepared.
Measurement 6 μL of the measurement sample was dissolved in 48 μL of 50 mM Tris buffer (pH 8.4). To this, 6 μL of 1 U / mL ATIII was added to prepare a sample solution. After 60 μL of the standard solution or measurement sample was heated at 37 ° C. for 5 minutes, 30 μL of Factor Xa solution adjusted to 7.1 nkat / mL was added, and heated exactly at 37 ° C. for 30 seconds. To this was added 60 μL of S-2222 solution adjusted to 0.75 mg / mL, and the mixture was heated at 37 ° C. for exactly 3 minutes, and then 90 μL of 50 w / w% acetic acid aqueous solution was added to stop the reaction. After stopping the reaction, measurement was performed at 405 nm. A standard curve was used to plot the anti-factor Xa activity (IU / mL plasma) and absorbance to create a calibration curve, and the anti-factor Xa activity of each sample was calculated. At this time, Anti-Factor Xa activity in the specimen after 0 hour was treated as a blank of the mouse. When Anti-Factor Xa activity in the measurement sample was larger than 0.8 U / mL, the measurement sample was diluted with human normal plasma to prepare a measurement sample solution, and measurement was performed again.
The therapeutic range for Anti-Factor Xa activity is 0.3 to 0.8 IU / mL.
Anti-Factor IIa activity assay
・標準溶液の調製
 標準品には heparin sodium salt (212 USP units/mg, sigma Aldrich) を用いた。標準品を精製水で0.2 USP/mLに希釈した。希釈液0, 10, 20, 30, 40 μLをそれぞれ50mM Tris-HClと227 mM NaCl から成る buffer (pH 8.4) 270, 260, 250, 240, 230 μLに溶解し、3 U/mL FIIa溶液 6 μL及びヒト正常血漿9 μLを加え、それぞれ0, 0.2, 0.4, 0.6, 0.8 USP/mL plasmaの標準溶液を調製した。
・測定
 測定試料9 μLをbuffer 270 μLに溶解した。これに3 U/mL FIIa 溶液 6 μLを加え、試料溶液を調製した。標準溶液又は測定試料285 μLを25℃で5分間加温した後、1.9 mmol/L に調整したChromozyme TH溶液15 μLを加え、25℃で正確に5分加温した。これに10 w/w%クエン酸水溶液100 μLを加え反応を停止させた。反応停止後、405 nmで測定した。標準液を用いてAnti-Factor IIa activity (USP/mL plasma) と吸光度をプロットして検量線を作成し、各試料のAnti-Factor IIa activityを算出した。この際、0時間後検体中のAnti-Factor IIa activityをそのマウスのブランクとして扱った。測定試料中のAnti-Factor IIa activityが0.8 U/mLより大きい場合には測定試料をヒト正常血漿で希釈して測定試料溶液を調製し、再度測定した。
Anti-Factor IIa activity assay
-Preparation of standard solution As a standard product, heparin sodium salt (212 USP units / mg, sigma Aldrich) was used. Standards were diluted to 0.2 USP / mL with purified water. Diluted solutions 0, 10, 20, 30, 40 μL are dissolved in buffers (pH 8.4) 270, 260, 250, 240, 230 μL each containing 50 mM Tris-HCl and 227 mM NaCl, and 3 U / mL FIIa solution 6 μL and 9 μL of human normal plasma were added to prepare standard solutions of 0, 0.2, 0.4, 0.6, 0.8 USP / mL plasma, respectively.
Measurement 9 μL of the measurement sample was dissolved in 270 μL of buffer. To this was added 6 μL of 3 U / mL FIIa solution to prepare a sample solution. After heating 285 μL of the standard solution or measurement sample at 25 ° C. for 5 minutes, 15 μL of Chromozyme TH solution adjusted to 1.9 mmol / L was added, and the mixture was heated accurately at 25 ° C. for 5 minutes. The reaction was stopped by adding 100 μL of a 10 w / w% aqueous citric acid solution. After stopping the reaction, measurement was performed at 405 nm. A standard curve was used to plot the anti-factor IIa activity (USP / mL plasma) and absorbance to create a calibration curve, and the anti-factor IIa activity of each sample was calculated. At this time, Anti-Factor IIa activity in the specimen after 0 hour was treated as a blank of the mouse. When Anti-Factor IIa activity in the measurement sample was larger than 0.8 U / mL, the measurement sample was diluted with human normal plasma to prepare a measurement sample solution, and measurement was performed again.
UFHとTaaからなる会合体の皮下投与
 UFHとTaaからなる会合体をddYマウスに皮下投与した。会合体については、20 mg/mL UFHと80 mM Taaを同体積混合した後、800 x gで10分間遠心を行い、上清を除いた。得られた沈殿にcone oil 1.7 mL/kg (body weight)を加え、oil中に会合体を懸濁した後、マウスの背部に皮下投与した。UFHの量は、投与したUFHが4 mg/kg (body weight) (ヘパリンカルシウム皮下注5千単位/0.2 mLシリンジ「モチダ」添付文書, 持田製薬株式会社, 2016年1月改訂 第5版) となるように混合するUFHとTaaの体積を計算して、調整した。すなわち、30 gのマウスに対してはUFHとTaaをそれぞれ6 μLずつ混合した会合体を調製することで120 μgのUFHを皮下投与した。その後、 2, 4, 8, 12, 16, 20, 24時間後に尾静脈より採血した。皮下投与前にも尾静脈より採血し、0時間後の検体とした。採取した血液を4℃, 800 x gで15分間遠心することで血漿を得た。また、投与したUFHが30 mg/kg (body weight) となるようにUFHとTaaを混合した会合体も調製し、同様の処理を施した後にマウスへ皮下投与した。すなわち、30 gのマウスに対してはUFHとTaaをそれぞれ45 μLずつ混合した会合体を調製し900 μgのUFHを皮下投与した。対照群として, UFH 4 mg/kg (body weight) 及びUFH 30 mg /kg (body weight) をそれぞれcone oilに懸濁し皮下投与したマウスについても、皮下投与0, 0.5, 1, 2, 4, 6, 8, 12時間後に尾静脈より採血し、会合体群と同様に血漿を調製した。すなわち、30 gのマウスに対しては20 mg/kg UFH 6 μL, 100 mg/kg UFH 9 μLをそれぞれcone oilに懸濁して皮下投与した。
Subcutaneous administration of an aggregate consisting of UFH and Taa An aggregate consisting of UFH and Taa was subcutaneously administered to ddY mice. As for the aggregate, 20 mg / mL UFH and 80 mM Taa were mixed in the same volume, and then centrifuged at 800 × g for 10 minutes to remove the supernatant. Cone oil (1.7 mL / kg (body weight)) was added to the resulting precipitate, the aggregate was suspended in the oil, and then subcutaneously administered to the back of the mouse. The amount of UFH was 4 mg / kg (body weight) administered UFH (heparin calcium subcutaneous injection 5,000 units / 0.2 mL syringe “Mochida” package insert, Mochida Pharmaceutical Co., Ltd., revised in January 2016, 5th edition) The volume of UFH and Taa to be mixed was calculated and adjusted. That is, to 30 g of mice, 120 μg of UFH was subcutaneously administered by preparing an aggregate in which 6 μL of UFH and Taa were mixed. Thereafter, blood was collected from the tail vein after 2, 4, 8, 12, 16, 20, and 24 hours. Before subcutaneous administration, blood was collected from the tail vein and used as a sample after 0 hour. Plasma was obtained by centrifuging the collected blood at 4 ° C. and 800 × g for 15 minutes. Moreover, the aggregate which mixed UFH and Taa was prepared so that the administered UFH might be set to 30 mg / kg (body weight), and it administered subcutaneously to the mouse | mouth after performing the same process. That is, for 30 g of mice, 45 μL each of UFH and Taa were mixed and 900 μg UFH was subcutaneously administered. As a control group, mice with UFH 4 mg / kg (body weight) and UFH 30 mg / kg (body weight) suspended in cone oil and administered subcutaneously were also administered subcutaneously 0, 0.5, 1, 2, 4, 6 8 and 12 hours later, blood was collected from the tail vein, and plasma was prepared in the same manner as in the aggregate group. Specifically, 20 mg / kg UFH 6 μL and 100 mg / kg UFH 9 μL were suspended in cone oil and administered subcutaneously to 30 g mice.
 上述のとおりddYマウス12匹にUFHとTaaから調製した会合体を皮下投与し血漿中Anti-Factor Xa activityの経時的な変化を検討した(図3)。
 図3は、マウスにUFH及びUFH-Taaの会合体を皮下投与した後の血漿中Anti-Factor Xa activityの経時的な変化を示す。図3Aは、UFHの投与量4 mg/kg (body weight)での結果を示し、図3Bは、UFHの投与量30 mg/kg (body weight)での結果を示し、図3Cは、UFH-Taaの会合体の投与量30 mg/kg (body weight)での結果を示す。4 mg/kg (body weight)対照群 (図3A) では最大血中濃度到達時間が投与0.5時間後であり、Anti-Factor Xa activityの半減期は1時間程度であった。また、4時間で血中から消失した。一方、30 mg/kg (body weight)のUFHを会合体として投与したマウスにおいては最大血中濃度到達時間が投与4時間後に延長され、20時間後までAnti-Factor Xa activity を検出することができた(図3C)。Anti-Factor Xa activityの半減期は6時間まで延長していた。会合体と同容量のUFH (20 mg/kg body weight)をマウスの皮下に投与したところ、最大血中濃度到達時間は1時間であり、投与後すぐに急激なAnti-FXa活性の上昇が確認された (図3B)。
 UFH投与量4 mg/kg (body weight)では、Anti-FXa活性の治療域持続時間は、0.86時間であり、UFH投与量30 mg/kg (body weight)では、Anti-FXa活性の治療域持続時間は、1.3時間であり、UFH-Taaの会合体の投与量30 mg/kg (body weight)では、Anti-FXa活性の治療域持続時間は、4.5時間であった。これらの治療域持続時間は、各マウスの血中濃度推移からそれぞれの治療域の持続時間を算出し、その平均値を求めた。
 以上の結果より、UFHとTaaから調製した会合体がUFHの徐放性製剤としての有用性を持つことが示唆された。
As described above, aggregates prepared from UFH and Taa were subcutaneously administered to 12 ddY mice, and changes in plasma Anti-Factor Xa activity over time were examined (FIG. 3).
FIG. 3 shows changes over time in plasma Anti-Factor Xa activity after subcutaneous administration of UFH and UFH-Taa aggregates to mice. FIG. 3A shows the results at a UFH dose of 4 mg / kg (body weight), FIG. 3B shows the results at a UFH dose of 30 mg / kg (body weight), and FIG. The results at a dose of 30 mg / kg (body weight) of Taa aggregates are shown. In the 4 mg / kg (body weight) control group (FIG. 3A), the time to reach the maximum blood concentration was 0.5 hours after administration, and the half-life of Anti-Factor Xa activity was about 1 hour. It disappeared from the blood in 4 hours. On the other hand, in mice administered 30 mg / kg (body weight) as UFH, the time to reach the maximum blood concentration was extended 4 hours after administration, and Anti-Factor Xa activity could be detected until 20 hours later. (FIG. 3C). The half-life of Anti-Factor Xa activity was extended to 6 hours. When the same volume of UFH (20 mg / kg body weight) as the aggregate was administered subcutaneously to the mouse, the maximum blood concentration time was 1 hour, and a rapid increase in Anti-FXa activity was confirmed immediately after administration. (Figure 3B).
At a UFH dose of 4 mg / kg (body weight), the treatment duration of Anti-FXa activity is 0.86 hours, and at a UFH dose of 30 mg / kg (body weight), the treatment range of Anti-FXa activity is sustained. The time was 1.3 hours, and at a dose of 30 mg / kg (body weight) of the UFH-Taa aggregate, the therapeutic range duration of Anti-FXa activity was 4.5 hours. The duration of these treatment areas was calculated by calculating the duration of each treatment area from the blood concentration transition of each mouse.
From the above results, it was suggested that the aggregate prepared from UFH and Taa has utility as a sustained-release preparation of UFH.
 同マウス群における血漿中Anti-Factor IIa activityの経時的な変化を検討した。
 図4は、マウスにUFH及びUFH-Taaの会合体を皮下投与した後の血漿中Anti-Factor IIa activityの経時的な変化を示す。図4Aは、UFHの投与量4 mg/kg (body weight)での結果を示し、図4Bは、UFHの投与量30 mg/kg (body weight)での結果を示し、図4Cは、UFH-Taaの会合体の投与量30 mg/kg (body weight)での結果を示す。会合体を投与したマウス群においても血漿中Anti-Factor IIa activityを検出することができた。
The time course of plasma Anti-Factor IIa activity in this group of mice was examined.
FIG. 4 shows changes over time in plasma Anti-Factor IIa activity after subcutaneous administration of UFH and UFH-Taa aggregates to mice. FIG.4A shows the results at a UFH dose of 4 mg / kg (body weight), FIG.4B shows the results at a UFH dose of 30 mg / kg (body weight), and FIG.4C shows UFH- The results at a dose of 30 mg / kg (body weight) of Taa aggregates are shown. Anti-Factor IIa activity in plasma was also detected in the group of mice that received the aggregate.
LMWHとTaaからなる会合体の皮下投与
 LMWHとTaaから成る会合体については、20 mg/mL LMWHと80 mM Taaを同体積混合した会合体をUFHと同様に調製し、マウスへ皮下投与した。LMWHの量は、投与したLMWHが2 mg/kg (body weight) (医薬品インタビューフォーム クレキサン(登録商標)皮下注キット2000 IU, 科研製薬株式会社, 2015年3月改訂 第8版) となるように混合するLMWHとTaaの体積を計算して、調製した。すなわち、30 gのマウスに対してはLMWHとTaaをそれぞれ3 μLずつ混合した会合体を調製することで60 μgのLMWHを皮下投与した。その後、0.5, 1, 2, 4, 6, 8時間後に尾静脈より採血し、血液を4℃, 800 x gで15分間遠心することで血漿を得た。また、投与したLMWHが10 mg/kgとなるようにLMWHとTaaを混合した会合体も調製し、同様の処理を施した後にマウスへ皮下投与した。すなわち、30 gのマウスに対してはLMWHとTaaをそれぞれ15 μLずつ混合した会合体を調製し300 μgのLMWHを皮下投与した。
 対照群としてLMWH 2 mg/kg (body weight) 及びLMWH 10 mg/kg (body weight) をそれぞれcone oilに懸濁し皮下投与したマウスについても、会合体群と同様に経時的な採血を行い、血漿を得た。すなわち30 gのマウスに対しては20 mg/kg LMWH 3 μL又は15 μLをそれぞれcone oilに懸濁して皮下投与した。
 ddYマウス3匹にLMWHとTaaから調製した会合体を皮下投与し血漿中Anti-Factor Xa activityの経時的な変化を検討した。
 図5は、マウスにLMWH及びLMWH-Taaの会合体を皮下投与した後の血漿中Anti-Factor Xa activityの経時的な変化を示す。
 2 mg/kg (body weight) 対照群及び10 mg/kg (body weight) 対照群では最大血中濃度到達時間が投与0.5時間後であった。一方、2 mg/kg (body weight), 10 mg/kg (body weight)のLMWHをそれぞれ会合体として投与したマウスにおいては最大血中濃度到達時間が投与2時間後に延長された。
Subcutaneous administration of an aggregate consisting of LMWH and Taa For an aggregate consisting of LMWH and Taa, an aggregate in which 20 mg / mL LMWH and 80 mM Taa were mixed in the same volume was prepared in the same manner as UFH and subcutaneously administered to mice. The amount of LMWH should be 2 mg / kg (body weight) of the administered LMWH (Pharmaceutical Interview Form Clexane (Registered Trademark) Subcutaneous Injection Kit 2000 IU, Kaken Pharmaceutical Co., Ltd., Revised March 2015, 8th Edition) The volume of LMWH and Taa to be mixed was calculated and prepared. That is, to 30 g of mice, 60 μg of LMWH was subcutaneously administered by preparing an aggregate in which 3 μL each of LMWH and Taa were mixed. Thereafter, blood was collected from the tail vein 0.5, 1, 2, 4, 6, and 8 hours later, and the blood was centrifuged at 4 ° C. and 800 × g for 15 minutes to obtain plasma. Moreover, the aggregate which mixed LMWH and Taa was prepared so that the administered LMWH might be 10 mg / kg, and it administered subcutaneously to the mouse | mouth after performing the same process. That is, for 30 g of mice, 15 μL each of LMWH and Taa were mixed and 300 μg LMWH was subcutaneously administered.
As a control group, LMWH 2 mg / kg (body weight) and LMWH 10 mg / kg (body weight) were suspended in cone oil and administered subcutaneously, blood was collected over time in the same manner as in the association group. Got. That is, for 30 g mice, 20 mg / kg LMWH 3 μL or 15 μL was suspended in cone oil and administered subcutaneously.
Three ddY mice were administered subcutaneously with an aggregate prepared from LMWH and Taa, and the time course of plasma Anti-Factor Xa activity was examined.
FIG. 5 shows changes over time in plasma Anti-Factor Xa activity after subcutaneous administration of LMWH and LMWH-Taa aggregates to mice.
In the 2 mg / kg (body weight) control group and the 10 mg / kg (body weight) control group, the time to reach the maximum blood concentration was 0.5 hours after administration. On the other hand, in mice administered with 2 mg / kg (body weight) and 10 mg / kg (body weight) LMWH as an aggregate, the time to reach the maximum blood concentration was prolonged 2 hours after administration.
 本発明の会合体は、例えば、徐放性を有する抗血液凝固剤として用いられ得る。 The aggregate of the present invention can be used, for example, as an anticoagulant having sustained release properties.

Claims (11)

  1.  ヘパリンと、3以上のアミノ基を有する直鎖状又は分岐状のポリアミンとの会合体。 An association of heparin and a linear or branched polyamine having 3 or more amino groups.
  2.  前記ポリアミンが、分岐状のポリアミンである、請求項1に記載の会合体。 The aggregate according to claim 1, wherein the polyamine is a branched polyamine.
  3.  ポリアミンが、式( 1 ):
    Figure JPOXMLDOC01-appb-C000001

    〔式中、R1, R2, R3, R4は、それぞれ独立に炭素数3又は4の2価の脂肪族炭化水素基である。〕で表される化合物である、請求項1又は2に記載の会合体。
    The polyamine has the formula (1):
    Figure JPOXMLDOC01-appb-C000001

    [Wherein R 1 , R 2 , R 3 and R 4 are each independently a divalent aliphatic hydrocarbon group having 3 or 4 carbon atoms. The association according to claim 1 or 2, which is a compound represented by the formula:
  4.  前記ヘパリンが、未分画ヘパリン又は低分子量ヘパリンである、請求項1~3のいずれか一項に記載の会合体。 The aggregate according to any one of claims 1 to 3, wherein the heparin is unfractionated heparin or low molecular weight heparin.
  5.  前記ポリアミンが、スペルミジン、スペルミン、テルミン、カルドペンタミン、トリス(3-アミノプロピル)アミン、及びテトラキス(3-アミノプロピル)アンモニウムからなる群から選ばれる少なくとも1種を含む、請求項1~4のいずれか一項に記載の会合体。 The polyamine includes at least one selected from the group consisting of spermidine, spermine, theremin, cardopentamine, tris (3-aminopropyl) amine, and tetrakis (3-aminopropyl) ammonium. The association according to any one of the above.
  6.  前記ポリアミンが、テトラキス(3-アミノプロピル)アンモニウムを含む、請求項1~5のいずれか一項に記載の会合体。 The aggregate according to any one of claims 1 to 5, wherein the polyamine contains tetrakis (3-aminopropyl) ammonium.
  7.  請求項1~6のいずれか一項に記載の会合体からなる抗血液凝固剤。 An anticoagulant comprising the aggregate according to any one of claims 1 to 6.
  8.  請求項1~7のいずれか一項に記載の会合体を含む薬剤組成物。 A pharmaceutical composition comprising the aggregate according to any one of claims 1 to 7.
  9.  ヘパリン又はその塩と、3以上のアミノ基を有する直鎖状若しくは分岐状のポリアミン、又はその塩とを含む、会合体の製造のためのキット。 A kit for producing an aggregate comprising heparin or a salt thereof and a linear or branched polyamine having 3 or more amino groups, or a salt thereof.
  10.  3以上のアミノ基を有する直鎖状若しくは分岐状のポリアミン、又はその塩からなる、ヘパリンの徐放性を付与するための徐放性付与剤。 A sustained release imparting agent for imparting sustained release of heparin, comprising a linear or branched polyamine having 3 or more amino groups, or a salt thereof.
  11.  ヘパリン又はその塩の水溶液と、3以上のアミノ基を有する直鎖状若しくは分岐状のポリアミン又はその塩の水溶液とを混合することを含む、会合体の製造方法。 A method for producing an aggregate, comprising mixing an aqueous solution of heparin or a salt thereof and an aqueous solution of a linear or branched polyamine having 3 or more amino groups or a salt thereof.
PCT/JP2018/007240 2017-03-02 2018-02-27 Heparin conjugate WO2018159604A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017039560A JP2020066638A (en) 2017-03-02 2017-03-02 Assembly of heparin
JP2017-039560 2017-03-02

Publications (1)

Publication Number Publication Date
WO2018159604A1 true WO2018159604A1 (en) 2018-09-07

Family

ID=63371064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007240 WO2018159604A1 (en) 2017-03-02 2018-02-27 Heparin conjugate

Country Status (2)

Country Link
JP (1) JP2020066638A (en)
WO (1) WO2018159604A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09276394A (en) * 1996-02-15 1997-10-28 Jinkou Ketsukan Gijutsu Kenkyu Center:Kk Antithrombogenic artificial blood vessel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09276394A (en) * 1996-02-15 1997-10-28 Jinkou Ketsukan Gijutsu Kenkyu Center:Kk Antithrombogenic artificial blood vessel

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AMANN, R. ET AL.: "Formation of complexes by heparin with histamine and other di-and polyamines", KLINISCHE WOCHENSCHRIFT, vol. 34, 1956, pages 207 - 209 *
HOMMA, R. ET AL.: "Modulation of blood coagulation and fibrinolysis by polyamines in the presence of glycosaminoglycans", INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, vol. 37, no. 9, September 2005 (2005-09-01), pages 1911 - 1920, XP055543129, Retrieved from the Internet <URL:https://doi.org/10.1016/j.biocel.2005.04.014> *
ITO, DAICHI ET AL.: "Creation of sustained-release formulation of heparin on the basis of interaction between polyamine and heparin", ANNUAL ABSTRACTS OF THE PHARMACEUTICAL SOCIEITY OF JAPAN, vol. 137, 24 March 2017 (2017-03-24) *
MIYAMA, HAJIME: "Synthesis and properties of heparinized nylon membrane", NIPPON KAGAKU KAISHI, vol. 6, 1985, pages 1242 - 1244 *

Also Published As

Publication number Publication date
JP2020066638A (en) 2020-04-30

Similar Documents

Publication Publication Date Title
US5013724A (en) Process for the sulfation of glycosaminoglycans, the sulfated glycosaminoglycans and their biological applications
US4686288A (en) Process for preparing mucopolysaccharide compositions having high antithrombotic activity, the compositions obtained and their use as medicaments
Yang et al. Effect of chitosan molecular weight and deacetylation degree on hemostasis
US9095666B2 (en) Polymers for reversing heparin-based anticoagulation
Palm et al. Pharmacokinetics of heparin and low molecular weight heparin fragment (Fragmin®) in rabbits with impaired renal or metabolic clearance
CA2856918C (en) Use of chemically modified heparin derivates in sickle cell disease
Fu et al. Structure and activity of a new low-molecular-weight heparin produced by enzymatic ultrafiltration
HUT64087A (en) Process for producing n,o-sulfated heparosanes of high molecular weigh and pharmaceutical compositions comprising such compounds
TW200846014A (en) Low molecular weight heparins comprising at least one covalent bond with biotin or a biotin derivative, preparation process therefor and use thereof
US5721357A (en) Preparation of sulfated polysaccharides for treatment or prevention of thromboses
Dumitriu et al. Polymeric Biomaterials: Medicinal and Pharmaceutical Applications, Volume 2
US8546354B2 (en) Acylated decasaccharides and their use as antithrombotic agents
Spadarella et al. From unfractionated heparin to pentasaccharide: Paradigm of rigorous science growing in the understanding of the in vivo thrombin generation
JPH03243601A (en) Mucopolysaccharide composition having ability to control blood coagulation and preparation thereof
TW201247209A (en) Polysaccharides comprising two antithrombin III-binding sites, preparation thereof and use thereof as antithrombotic medicaments
EP2617737A1 (en) High purity heparin and production method therefor
JP2012526172A (en) Novel sulfated heptasaccharide and its use as an antithrombotic agent
WO2018159604A1 (en) Heparin conjugate
CA1205011A (en) Heparin covalently bonded to antithrombin iii
JP5053512B2 (en) Epimerized derivatives of K5 polysaccharide with very high degree of sulfation
US20120108542A1 (en) Sulfated octasaccharide and its use as antithrombotic agent
US11498939B2 (en) Glucose polymers for peritoneal dialysis
JP4585072B2 (en) Heparin depolymerization method, depolymerized heparin, derivatives thereof and pharmaceutical composition
EP3381484A1 (en) Carbohydrate composition for dialysis
JP2003096104A (en) Process for manufacturing low-molecular heparin or salt thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP