WO2018159522A1 - Food composition and medical composition for preventing or alleviating metabolic syndrome - Google Patents

Food composition and medical composition for preventing or alleviating metabolic syndrome Download PDF

Info

Publication number
WO2018159522A1
WO2018159522A1 PCT/JP2018/006916 JP2018006916W WO2018159522A1 WO 2018159522 A1 WO2018159522 A1 WO 2018159522A1 JP 2018006916 W JP2018006916 W JP 2018006916W WO 2018159522 A1 WO2018159522 A1 WO 2018159522A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
dads
metabolic syndrome
green tea
preventing
Prior art date
Application number
PCT/JP2018/006916
Other languages
French (fr)
Japanese (ja)
Inventor
立花 宏文
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Publication of WO2018159522A1 publication Critical patent/WO2018159522A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/095Sulfur, selenium, or tellurium compounds, e.g. thiols
    • A61K31/10Sulfides; Sulfoxides; Sulfones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid, pantothenic acid
    • A61K31/198Alpha-aminoacids, e.g. alanine, edetic acids [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/82Theaceae (Tea family), e.g. camellia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/88Liliopsida (monocotyledons)
    • A61K36/896Liliaceae (Lily family), e.g. daylily, plantain lily, Hyacinth or narcissus
    • A61K36/8962Allium, e.g. garden onion, leek, garlic or chives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/48Drugs for disorders of the endocrine system of the pancreatic hormones
    • A61P5/50Drugs for disorders of the endocrine system of the pancreatic hormones for increasing or potentiating the activity of insulin

Definitions

  • the present invention relates to a food composition and a pharmaceutical composition for preventing or improving metabolic syndrome.
  • the metabolic syndrome is defined as a state corresponding to the following (1) and further corresponding to two or more of the following (2) to (4).
  • the waist circumference is 85 cm or more for men and 90 cm or more for women (corresponding to a visceral fat area of 100 cm 2 or more).
  • Blood triglyceride is 150 mg / dL or higher and / or blood HDL cholesterol is 40 mg / dL or lower
  • Systolic blood pressure is 130 mmHg or higher and / or diastolic blood pressure is 85 mmHg or higher
  • Fasting Blood glucose level is 110mg / dL or more
  • the 67 kDa laminin receptor (hereinafter sometimes referred to as “67LR”) is a cell membrane protein that binds to laminin, which is a main component of the basement membrane (see, for example, Non-Patent Document 1).
  • the inventors of the present invention bind to 67LR on the cell membrane, and epigallocatechin-gallate (hereinafter, sometimes referred to as “EGCG”), which is one of the main catechins contained in green tea, has anticancer activity. Has been clarified to exhibit (see, for example, Non-Patent Document 2).
  • EGCG epigallocatechin-gallate
  • An object of the present invention is to provide a composition effective for prevention, improvement or treatment of metabolic syndrome.
  • a food composition for preventing or improving metabolic syndrome comprising as an active ingredient a 67LR agonist and a sulfur-containing compound found in an Allium plant extract.
  • the food composition for preventing or improving metabolic syndrome according to [1] wherein the sulfur-containing compound found in the Allium plant extract contains alliin, allicin, diallyl disulfide, diallyl trisulfide, or diallyl tetrasulfide. object.
  • the 67LR agonist comprises EGCG, oolong tea polymerized polyphenol, procyanidin C1, or a derivative thereof.
  • a method for preventing or improving metabolic syndrome comprising a step of causing a human or animal to ingest the food composition according to any one of [1] to [3] (excluding medical practice for humans).
  • a pharmaceutical composition for preventing or treating metabolic syndrome comprising as an active ingredient a 67LR agonist and a sulfur-containing compound found in an Allium plant extract.
  • (A) is a graph which shows the result of having measured the transition of the body weight of the mouse
  • FIG. (B) is a graph which shows the result of having measured transition of calorie intake of the mouse of each group in example 1 of an experiment.
  • (A) is a graph which shows the result of having measured the mass of the white adipose tissue of the mouse
  • FIG. (B) is a graph showing the results of measuring the mass of adipose tissue around the kidney of each group of mice in Experimental Example 2.
  • (C) is a graph which shows the result of having measured the mass of the testicular periphery fat tissue of each group of mice in Experimental Example 2.
  • FIG. (A) is a graph which shows the result of having measured the triglyceride in the serum of the mouse
  • FIG. (B) is a graph showing the results of measurement of triglycerides in the liver tissue of each group of mice in Experimental Example 3. In Experimental example 4, it is a graph which shows the result of having measured the cholesterol in the serum of the mouse
  • (A) to (h) are graphs showing the results of measuring the expression level of mRNA of a gene encoding a lipid metabolism-related protein in Experimental Example 5.
  • (A)-(i) is a graph which shows the result of having measured the expression level of mRNA of the gene which codes a lipid metabolism related protein in Experimental example 6.
  • FIG. (A)-(f) is a graph which shows the result of having measured the expression level of mRNA of the gene which codes a lipid metabolism related protein in Experimental example 7.
  • FIG. (A)-(j) is a graph which shows the result of having measured the expression level of mRNA of the gene which codes a lipid metabolism related protein in Experimental example 8.
  • FIG. (A)-(f) is a graph which shows the result of having measured the expression level of mRNA of the gene which codes a lipid metabolism related protein in Experimental example 9.
  • FIG. 11 is a graph which shows the result of having measured the free fatty acid in the serum of the mouse
  • (A) is a graph which shows the result of having measured the blood insulin density
  • FIG. (B) is a graph showing the results of calculating HOMA-IR values of mice in each group in Experimental Example 12.
  • (A) is a graph showing the results of measuring the expression of the MCP1 gene in mesenteric adipose tissue in Experimental Example 13.
  • (B) is a graph showing the results of measuring the expression of the MCP1 gene in the adipose tissue around the kidney in Experimental Example 13.
  • (A) is a graph showing the results of measuring Aspartate Aminotransferase (AST) activity in the serum of mice of each group in Experimental Example 14.
  • (B) is a graph showing the results of measurement of Alanine aminotransferase (ALT) activity in the serum of each group of mice in Experimental Example 14.
  • (A)-(c) is a graph which shows the result of having measured the expression level of mRNA of the gene which codes a lipid metabolism related protein in Experimental example 15.
  • the present invention provides a food composition for preventing or improving metabolic syndrome, comprising a 67LR agonist and a sulfur-containing compound found in an onion plant extract as active ingredients.
  • mice ingested the food composition of the present embodiment were able to suppress weight gain, suppress body fat accumulation, and serum.
  • the food composition of the present embodiment can be suitably used for the prevention or improvement of metabolic syndrome.
  • the inventors have found that the above-described effects of preventing or improving the metabolic syndrome are observed when a 67LR agonist alone or a sulfur-containing compound alone found in an Allium plant extract is ingested. It was clarified that it was observed only when a 67LR agonist and a sulfur-containing compound found in an Allium plant extract were used in combination.
  • containing as an active ingredient means that the composition contains a 67LR agonist and a sulfur-containing compound found in an Allium plant extract in an amount sufficient to obtain the effects of the present invention. Meaning containing, specific content can be suitably set according to a composition (other components).
  • 67LR agonist In the food composition of the present embodiment, as the 67LR agonist, any substance that can transmit a signal to the 67 kDa laminin receptor (67LR) can be used without particular limitation.
  • the 67LR agonist is preferably one that can be added to food.
  • More specific 67LR agonists include, for example, EGCG, oolong tea polymerized polyphenol, procyanidin C1, and derivatives thereof.
  • EGCG is an ester of epigallocatechin and gallic acid and is a kind of catechin. EGCG is a catechin that is particularly abundant in tea among plants.
  • Examples of EGCG derivatives include compounds in which some functional groups are changed using EGCG as a basic skeleton. More specifically, methylated EGCG is mentioned, for example. Specific examples of methylated EGCG include ( ⁇ )-epigallocatechin-3-O- (3-O-methyl) gallate represented by the following formula (1).
  • the compound represented by the following formula (1) is a compound contained in “Benifuuki”, which is one of green tea varieties, and is safe to add to food.
  • Oolong tea polymerization polyphenol is a general term for compounds in which catechins are bound in a complex manner formed by an enzymatic reaction or a thermal polymerization reaction in a unique method of producing oolong tea called semi-fermentation.
  • Oolong tea polymerization polyphenols include, for example, dimers of catechins and trimers of catechins. Examples of catechin dimers include oolong homobisflavans such as oolong homobisflavan A, monodesgaloyl oolong homobisflavan A, oolong homobisflavan B, oolong homobisflavan C, and the like.
  • Examples of the derivative of oolong tea polymerized polyphenol include compounds in which some functional groups are changed using oolong tea polymerized polyphenol as a basic skeleton.
  • Procyanidin C1 is a trimer of epicatechin that is abundant in plants such as apples and grapes.
  • Examples of the derivatives of procyanidin C1 include compounds in which some functional groups are changed using procyanidin C1 as a basic skeleton.
  • EGCG oolong tea polymerized polyphenol, procyanidin C1, etc.
  • physical properties such as water solubility and fat solubility of these compounds, biology such as 67LR agonist activity, retention in blood, biotoxicity, etc. Activity and the like can be adjusted to a desired range.
  • the 67LR agonist may be a solvate of EGCG, oolong tea polymerized polyphenol, procyanidin C1, or a derivative thereof, a pharmaceutically acceptable salt, or a solvate of a pharmaceutically acceptable salt. It may be.
  • Examples of the pharmaceutically acceptable salt include inorganic acid salts, alkali metal salts, alkaline earth metal salts, metal salts, ammonium salts, organic amine addition salts, amino acid addition salts, and the like. More specifically, for example, inorganic acid salts such as hydrochloride, sulfate, hydrobromide, nitrate, phosphate; acetate, mesylate, succinate, maleate, fumarate, Organic salts such as citrate and tartrate; alkali metal salts such as sodium salt and potassium salt; alkaline earth metal salts such as magnesium salt and calcium salt; metal salts such as aluminum salt and zinc salt; ammonium salt and tetra Examples include ammonium salts such as methylammonium salts; organic amine addition salts such as morpholine and piperidine; amino acid addition salts such as glycine, phenylalanine, lysine, aspartic acid, and glutamic acid.
  • inorganic acid salts such as
  • solvates of EGCG, oolong tea polymerized polyphenol, procyanidin C1 or derivatives thereof, and solvates of pharmaceutically acceptable salts are particularly pharmaceutically acceptable solvates.
  • examples thereof include hydrates and organic solvates.
  • the 67LR agonist may be chemically synthesized or purified from a natural product. Or you may make it contain by using the natural product containing a 67LR agonist for the raw material of a food composition.
  • natural products containing 67LR agonist include green tea, green tea extract, oolong tea, oolong tea extract, black tea, black tea extract, apple, apple extract, grape, grape extract, grape seed, grape seed extract, Cocoa beans, cacao bean extract, apricot, apricot extract, kiwi, kiwi extract, cherry, sanranbo extract, strawberry, strawberry extract, cranberry, cranberry extract, blueberry, blueberry extract, loquat, loquat extract Product, black soybean, black soybean extract, cinnamon, cinnamon extract, pine bark, pine bark extract, peanut, peanut extract and the like.
  • the food composition of the present embodiment may contain one of the 67LR agonists described above alone, or may contain a mixture of two or more.
  • examples of the Allium plant include garlic, leeks, leeks, onions, and rakkyo.
  • sulfur-containing compounds found in the genus plant extract include alliin, allicin, diallyl disulfide, diallyl trisulfide, diallyl tetrasulfide, and the like.
  • alliin is a sulfur-containing compound contained in, for example, about 1% by mass in garlic. Alliin is an odorless compound and is stored in the cytoplasm of bulb mesophyll storage cells. On the other hand, alliinase, an enzyme that acts on alliin, is stored in the vacuole of vascular sheath cells.
  • Allicin is a compound that has a characteristic smell of garlic.
  • allicin is highly reactive, it reacts with other compounds and allicin itself. As a result, diallyl disulfide and the like are produced from allicin. Further, diallyl disulfide changes to diallyl trisulfide, diallyl tetrasulfide and the like having different numbers of sulfur. These sulfur-containing compounds derived from allicin also have a odor characteristic of garlic.
  • the term “sulfur-containing compound found in an onion plant extract” is not limited to a sulfur-containing compound derived from an allium plant, but in an extract obtained by crushing an onion plant. Means a sulfur-containing compound present in any one of its origins.
  • the “sulfur-containing compound found in the genus Leek plant extract” may be, for example, a sulfur-containing compound extracted from a genus Leek plant, or a sulfur-containing compound extracted from a natural product other than a genus Leek plant. It may be alliin, allicin, diallyl disulfide, diallyl trisulfide, diallyl tetrasulfide and the like which are chemically synthesized.
  • the sulfur-containing compound found in the Allium plant extract may contain a purified compound, or may be contained by using the above-mentioned crushed material of the Allium plant as a raw material of the food composition.
  • the food composition of the present embodiment may contain one kind of sulfur-containing compound found in the Allium plant extract alone, or may contain a mixture of two or more kinds.
  • the food composition of the present embodiment seems to ingest a sulfur-containing compound found in 0.1 to 100 mg / kg body weight of 67LR agonist and 0.05 to 50 mg / kg body weight of an onion plant extract per day. May be used. Further, the food composition may be used so as to be taken once a day or divided into about 2 to 4 times a day.
  • the food composition of this embodiment may be, for example, in the form of a supplement, in the form of a beverage, in the form of a solid, semi-solid or gel food, It may be in the form of any cooked food.
  • supplement shapes include capsule shapes.
  • the food composition of the present embodiment may be a functional display food.
  • “Functional labeling food” means food that has been reported to the Consumer Affairs Agency as indicating the functionality on the product package based on scientific evidence.
  • “prevent or improve metabolic syndrome” means food that has been reported to the Consumer Affairs Agency as indicating the functionality on the product package based on scientific evidence.
  • “prevent or improve metabolic syndrome” means food that has been reported to the Consumer Affairs Agency as indicating the functionality on the product package based on scientific evidence.
  • “prevent or improve metabolic syndrome” means food that has been reported to the Consumer Affairs Agency as indicating the functionality on the product package based on scientific evidence.
  • “prevent or improve metabolic syndrome” means food that has been reported to the Consumer Affairs Agency as indicating the functionality on the product package based on scientific evidence.
  • “prevent or improve metabolic syndrome” means food that has been reported to the Consumer Affairs Agency as indicating the functionality on the product package based on scientific evidence.
  • “prevent or improve metabolic syndrome” means food that has been reported to the Consumer Affairs Agency as
  • the food composition of the present embodiment may be a special purpose food.
  • Special-purpose food means food that is labeled for special use that is suitable for the growth, maintenance and recovery of health of infants, toddlers, pregnant women, sick people, etc. with the permission of the government.
  • the food composition of the present embodiment may be a food for a sick person among special-purpose foods.
  • the food composition of the present embodiment may be a food for specified health use among special purpose foods.
  • Specified health food means food that has been recognized on the basis of scientific evidence to be useful for maintaining and improving health and is allowed to display its effects. The government will review the displayed effects and safety, and each food will be approved by the Commissioner of the Consumer Affairs Agency.
  • the present invention provides a method for preventing or ameliorating metabolic syndrome (excluding medical practice for humans), comprising the step of causing a human or animal to take the food composition described above.
  • the medical action means an action in which a doctor (including a person who receives an instruction from a doctor) performs a treatment on a human.
  • the amount of the food composition to be ingested by humans or animals is 0.1 to 100 mg / kg body weight of 67LR agonist and 0.05 to 50 mg / kg per day.
  • the amount of the sulfur-containing compound found in the Allium plant extract of body weight can be mentioned.
  • the food composition may be taken once a day or divided into about 2 to 4 times a day.
  • the present invention provides a pharmaceutical composition for preventing or treating metabolic syndrome, which comprises a 67LR agonist and a sulfur-containing compound found in an Allium plant extract as active ingredients.
  • examples of the 67LR agonist include EGCG, oolong tea polymerized polyphenol, procyanidin C1, EGCG derivative, oolong tea polymerized polyphenol derivative, procyanidin C1 derivative, for example, anti-67LR antibody (67LR agonist antibody),
  • a compound represented by the following formula (2), which is methylated EGCG synthesized chemically, can be used.
  • sulfur-containing compound found in the genus plant extract the same compounds as described above can be used, and may be alliin, allicin, diallyl disulfide, diallyl trisulfide, diallyl tetrasulfide and the like.
  • the pharmaceutical composition of the present embodiment is administered orally, for example, in the form of tablets, capsules, elixirs, microcapsules, etc., or parenterally in the form of injections, suppositories, skin external preparations, etc. can do. More specifically, examples of the external preparation for skin include dosage forms such as ointments and patches.
  • the pharmaceutical composition of this embodiment may contain a pharmaceutically acceptable carrier.
  • a pharmaceutically acceptable carrier those usually used for the preparation of pharmaceutical compositions can be used without particular limitation. More specifically, for example, binders such as gelatin, corn starch, gum tragacanth and gum arabic; excipients such as starch and crystalline cellulose; swelling agents such as alginic acid; solvents for injections such as water, ethanol and glycerin; Examples thereof include adhesives such as rubber adhesives and silicone adhesives.
  • the pharmaceutical composition may contain an additive.
  • Additives include lubricants such as calcium stearate and magnesium stearate; sweeteners such as sucrose, lactose, saccharin and maltitol; flavoring agents such as peppermint and red mono oil; stabilizers such as benzyl alcohol and phenol; phosphoric acid Buffers such as salts and sodium acetate; Solubilizing agents such as benzyl benzoate and benzyl alcohol; Antioxidants; Preservatives and the like.
  • lubricants such as calcium stearate and magnesium stearate
  • sweeteners such as sucrose, lactose, saccharin and maltitol
  • flavoring agents such as peppermint and red mono oil
  • stabilizers such as benzyl alcohol and phenol
  • phosphoric acid Buffers such as salts and sodium acetate
  • Solubilizing agents such as benzyl benzoate and benzyl alcohol
  • Antioxidants Preservatives and
  • the pharmaceutical composition is required for generally accepted pharmaceutical practice by appropriately combining the 67LR agonist described above, the sulfur-containing compound found in the Allium plant extract, the pharmaceutically acceptable carriers and additives described above. It can be formulated by mixing in unit dosage form.
  • the dosage of the pharmaceutical composition varies depending on the patient's symptoms, body weight, age, sex, etc., and cannot be generally determined, but in the case of oral administration, for example, 0.1 to 100 mg / kg body weight per dosage unit form And a sulfur-containing compound found in an onion extract of 0.05 to 50 mg / kg body weight may be administered.
  • the daily dose of the pharmaceutical composition varies depending on the patient's symptoms, body weight, age, sex, etc., and cannot be determined unconditionally. For example, 0.1-100 mg / kg body weight per adult day
  • the amount to be a sulfur-containing compound found in the 67LR agonist and 0.05 to 50 mg / kg body weight of the onion plant extract may be administered once a day or divided into about 2 to 4 times a day.
  • the present invention provides a method for preventing or treating metabolic syndrome comprising administering to a patient in need of treatment an effective amount of a 67LR agonist and a sulfur-containing compound found in an Allium plant extract.
  • a 67LR agonist and a sulfur-containing compound found in an Allium plant extract are the same as those described above for the pharmaceutical composition.
  • the present invention provides a composition for preventing or treating metabolic syndrome, comprising a 67LR agonist and a sulfur-containing compound found in an Allium plant extract as active ingredients.
  • the composition of this embodiment may be a pharmaceutical composition.
  • the 67LR agonist and the sulfur-containing compound found in the Allium plant extract are the same as those described above for the pharmaceutical composition.
  • the present invention provides the use of a 67LR agonist and a sulfur-containing compound found in an Allium plant extract for the manufacture of a preventive or therapeutic agent for metabolic syndrome.
  • the 67LR agonist and the sulfur-containing compound found in the Allium plant extract are the same as those described above for the pharmaceutical composition.
  • Example 1 Anti-obesity effect by combined use of green tea extract and diallyl disulfide
  • Mice were ingested in combination with a high-fat, high-sucrose diet, green tea extract, and diallyl disulfide (hereinafter sometimes referred to as “DADS”), and the effect on obesity was examined.
  • DADS diallyl disulfide
  • a normal diet (AIN-93G compliant diet) is fed so that the average body weight is equal.
  • HF / HS group that ingests a high sucrose (High Fat High Sugar, HF / HS) diet
  • green tea extract group that ingests a high fat, high sucrose diet and green tea extract, high fat, high sucrose
  • the food was divided into 5 groups: a “DADS group” for taking a combination of food and DADS, and a “green tea extract + DADS group” for taking a high fat and high sucrose diet, a green tea extract and DADS together. Subsequently, each group of mice was given each feed at 4 g / day and was reared for 10 weeks with free drinking water.
  • mice were killed by blood sampling of the abdominal aorta under isoflurane anesthesia after fasting for 10 hours. Body weight and food intake were measured every other week until sacrifice.
  • Green tea extract was prepared as follows. First, dried Yabukita tea leaves obtained by steaming dried Yabukita tea leaves were pulverized to about 5 mm with a mill. Subsequently, 20 times (w / w) of 70 ° C. warm water was added to the ground tea leaves. After stirring at 70 ⁇ 2 ° C. for 10 minutes, solid-liquid separation was performed with a 100-mesh wire mesh to obtain an extract. Subsequently, the extract was centrifuged at 700 ⁇ g for 10 minutes, and the supernatant was collected. Subsequently, the recovered supernatant was treated with a vacuum freeze dryer (model “FZ-12CS”, manufactured by LABCONCO) and freeze-dried to obtain a powdery green tea extract. The powdered green tea extract contained 11.9% by weight of EGCG. Table 1 below shows the results of component analysis of the prepared green tea extract (powder).
  • the prepared green tea extract was added to the feed of “green tea extract group” and “green tea extract + DADS group” so as to be 0.1% by mass.
  • DADS was added to the feed of “DADS group” and “green tea extract + DADS group” so as to be 0.0189 g / kg feed. Table 2 below shows the composition of the feed of each group.
  • FIG. 1 (a) is a graph showing the results of measuring the change in body weight of mice in each group.
  • Tukey's test was used for statistical processing of the experimental results, and a p value of less than 0.05 was considered significant.
  • FIG. 1 (b) is a graph showing the results of measuring changes in caloric intake of mice in each group. As a result, it was clarified that the caloric intake was similar in all groups of mice. The reason why the calorie intake of the control group is low is that a normal diet was given.
  • Example 2 (Inhibition of body fat accumulation by combined use of green tea extract and DADS) From each group of mice sacrificed in Experimental Example 1, white adipose tissue, kidney peripheral adipose tissue, and testicular periphery adipose tissue were extracted and their masses were measured.
  • Fig.2 (a) is a graph which shows the result of having measured the mass of the white adipose tissue.
  • FIG.2 (b) is a graph which shows the result of having measured the mass of the kidney periphery fat tissue.
  • FIG.2 (c) is a graph which shows the result of having measured the mass of the testicular periphery fat tissue.
  • the green tea extract group and the DADS group showed no significant effect on the accumulation of body fat induced by the HF / HS diet.
  • the green tea extract + DADS group ingested in combination with the green tea extract and DADS it was revealed that the accumulation of body fat induced by the HF / HS diet was significantly suppressed.
  • FIG. 3 (a) is a graph showing the measurement results of triglycerides in the serum of each group of mice.
  • FIG.3 (b) is a graph which shows the measurement result of the triglyceride in the liver tissue of the mouse
  • Example 4 (Serum cholesterol lowering effect by combined use of green tea extract and DADS) Total cholesterol in the serum of each group of mice prepared in Experimental Example 3 was measured using a commercially available cholesterol measurement kit (Wako Pure Chemical Industries, Ltd.).
  • FIG. 4 is a graph showing the measurement results of cholesterol in the serum of each group of mice.
  • the green tea extract group and the DADS group there was no significant effect on the increase in serum cholesterol induced by the HF / HS diet.
  • the increase in serum cholesterol induced by the HF / HS diet was significantly suppressed in the green tea extract + DADS group ingested in combination with the green tea extract and DADS.
  • Example 5 (Effects of combined use of green tea extract and DADS on expression of genes related to lipid metabolism) CDNA was prepared from liver tissue collected from each group of mice sacrificed in Experimental Example 1, and the expression level of mRNA of each gene encoding each lipid metabolism-related protein shown in Table 3 was measured by real-time PCR. Table 3 also shows the sequence numbers of the base sequences of the primers used for PCR of each gene.
  • SREBP-1c is a protein involved in fatty acid control.
  • ACC1 is an enzyme involved in the control of fatty acid synthesis and fatty acid ⁇ oxidation.
  • FAS is a multi-active domain enzyme that synthesizes fatty acids from malonyl CoA and acetyl CoA.
  • SCD1 is an enzyme that converts saturated fatty acids into unsaturated fatty acids.
  • ACOX1 is a fatty acid ⁇ -oxidizing enzyme.
  • RXR ⁇ , RXR ⁇ , and RXR ⁇ each form a heterodimer with peroxisome proliferator-activated receptor alpha (PPAR), which is a transcription factor that regulates various target genes involved in sugar / lipid metabolism. It is a nuclear receptor that functions as an inducible transcription factor.
  • PPAR peroxisome proliferator-activated receptor alpha
  • FIGS. 5 (a) to 5 (h) are graphs showing the results of measuring the expression levels of mRNAs of genes encoding the lipid metabolism-related proteins shown in Table 3, respectively.
  • the green tea extract group and the DADS group no significant effect on changes in lipid metabolism-related gene expression induced by the HF / HS diet was observed.
  • Example 6 (Effects of combined use of green tea extract and DADS on expression of lipid metabolism-related genes in white adipose tissue) CDNA was prepared from white adipose tissue collected from each group of mice sacrificed in Experimental Example 1, and the expression level of mRNA of each gene encoding each lipid metabolism-related protein shown in Table 4 was measured by real-time PCR. Table 4 also shows the SEQ ID NOs of the base sequences of the primers used for PCR of each gene.
  • PGC1 ⁇ is a transcriptional regulator of PPAR. It promotes the expression of various genes involved in energy metabolism and mitochondrial biogenesis, and is also involved in lipolysis.
  • PPAR ⁇ and PPAR ⁇ are transcription factors that regulate various target genes involved in sugar / lipid metabolism.
  • UCP1 and UCP2 are proteins encoded by PPAR target genes. Uncouples oxidative phosphorylation in the inner mitochondrial membrane and dissipates energy as heat.
  • UCP1 is abundant in brown adipocytes, and UCP2 is present in white adipocytes, skeletal muscle, spleen, small intestine and the like.
  • CPT1 ⁇ is an enzyme involved in lipolysis.
  • RXR ⁇ , RXR ⁇ , and RXR ⁇ are as described above.
  • 6 (a) to 6 (i) are graphs showing the results of measuring the expression level of the mRNA of the gene encoding each lipid metabolism-related protein shown in Table 4, respectively.
  • Table 4 shows the results of measuring the expression level of the mRNA of the gene encoding each lipid metabolism-related protein shown in Table 4, respectively.
  • the green tea extract group and the DADS group there was no significant effect on the decrease in lipid metabolism-related gene expression in white adipose tissue induced by the HF / HS diet.
  • the green tea extract + DADS group ingested in combination with the green tea extract and DADS the decrease in lipid metabolism-related gene expression in white adipose tissue induced by the HF / HS diet can be significantly suppressed. It became clear.
  • UCP1 is a protein directly involved in fat burning, and UCP2 has a similar function.
  • the combined use of green tea extract and DADS significantly suppresses the decrease in the expression of these proteins indicates that the combined use of green tea extract and DADS directly improves lipid metabolism.
  • Example 7 (Effects of combined use of green tea extract and DADS on expression of lipid metabolism-related genes in adipose tissue around the kidney) CDNA was prepared from the perirenal adipose tissue collected from each group of mice sacrificed in Experimental Example 1, and the expression level of mRNA of a gene encoding each lipid metabolism-related protein shown in Table 5 below was measured by real-time PCR. Table 5 also shows the SEQ ID NOs of the base sequences of the primers used for PCR of each gene.
  • UCP3 is a protein encoded by the target gene of PPAR, like UCP1 and UCP2, and has a function of uncoupling oxidative phosphorylation in the inner mitochondrial membrane and dissipating energy as heat.
  • UCP3 is mainly present in muscle tissues such as skeletal muscle and heart.
  • FIGS. 7 (a) to (f) are graphs showing the results of measuring the mRNA expression levels of the genes encoding the lipid metabolism-related proteins shown in Table 5, respectively.
  • the green tea extract group and the DADS group there was no significant effect on the decrease in the expression of genes related to lipid metabolism in the perirenal adipose tissue induced by the HF / HS diet.
  • the green tea extract + DADS group ingested in combination with the green tea extract and DADS the decrease in the expression of lipid metabolism-related genes in the adipose tissue around the kidney induced by the HF / HS diet is significantly suppressed. Became clear.
  • Example 8 (Effects of combined use of green tea extract and DADS on expression of lipid metabolism-related genes in brown adipose tissue) CDNA was prepared from the brown adipose tissue collected from each group of mice sacrificed in Experimental Example 1, and the expression level of mRNA of the gene encoding each lipid metabolism-related protein shown in Table 6 below was measured by real-time PCR. Table 6 also shows the sequence numbers of the base sequences of the primers used for PCR of each gene.
  • CD36 is a membrane glycoprotein present in platelets, mononuclear phagocytes, adipocytes, hepatocytes, muscle cells and some epithelia, and is involved in fatty acid transport.
  • 8 (a) to 8 (j) are graphs showing the results of measuring the expression level of the mRNA of the gene encoding each lipid metabolism-related protein shown in Table 6, respectively.
  • Table 6 shows the results of measuring the expression level of the mRNA of the gene encoding each lipid metabolism-related protein shown in Table 6, respectively.
  • the green tea extract group and the DADS group there was no significant effect on the decrease in lipid metabolism-related gene expression in brown adipose tissue induced by the HF / HS diet.
  • the green tea extract + DADS group ingested in combination with the green tea extract and DADS there is a tendency to significantly suppress the decrease in lipid metabolism-related gene expression in brown adipose tissue induced by the HF / HS diet. It became clear that there was.
  • Example 9 (Effects of combined use of green tea extract and DADS on expression of lipid metabolism-related genes in skeletal muscle) CDNA was prepared from the skeletal muscle collected from each group of mice sacrificed in Experimental Example 1, and the expression level of mRNA of the gene encoding each lipid metabolism-related protein shown in Table 7 below was measured by real-time PCR. Table 7 also shows the sequence numbers of the base sequences of the primers used for PCR of each gene.
  • LPL is an enzyme that is synthesized and secreted by adipose tissue or the like and is present on the surface of vascular endothelial cells of capillaries. LPL has a function of degrading neutral fat in blood outside the cell into free fatty acid and glycerol and taking the free fatty acid into the cell.
  • PDK4 is an enzyme that converts the intracellular energy source from carbohydrates to lipids by inhibiting the synthesis of acetyl-CoA from pyruvic acid.
  • FIGS. 9 (a) to 9 (f) are graphs showing the results of measuring the expression level of mRNA of genes encoding the lipid metabolism-related proteins shown in Table 7, respectively.
  • the green tea extract group and the DADS group there was no significant effect on changes in lipid metabolism-related gene expression in skeletal muscle.
  • FIG. 10 is a graph showing the measurement results of the glucose concentration (blood glucose level) in the serum of each group of mice.
  • FIG. 11 is a graph showing the measurement results of free fatty acids in the serum of each group of mice.
  • the green tea extract group and the DADS group no significant effect on the free fatty acid concentration in serum was observed.
  • the green tea extract + DADS group ingested in combination with the green tea extract and DADS it was revealed that the free fatty acid concentration in the serum was significantly reduced.
  • FIG. 12 (a) is a graph showing the measurement results of blood insulin concentration in each group of mice.
  • the green tea extract group and the DADS group there was no significant effect on the increase in blood insulin concentration induced by the HF / HS diet.
  • the green tea extract + DADS group ingested in combination with the green tea extract and DADS it was revealed that the increase in blood insulin concentration induced by the HF / HS diet was significantly suppressed.
  • the increase in blood insulin concentration is caused by a decrease in insulin sensitivity.
  • FIG. 12 (b) is a graph showing the HOMA-IR value of each group of mice. A high HOMA-IR value indicates that insulin resistance is high, that is, insulin sensitivity is low.
  • Example 13 (Inhibition of expression of inflammation-related genes in white adipose tissue by combined use of green tea extract and DADS) Chronic inflammation in adipose tissue is said to contribute to obesity. Therefore, cDNA was prepared from white adipose tissue collected from each group of mice sacrificed in Experimental Example 1, and the mRNA expression level of the gene encoding monocytic chemical protein 1 (MCP1), which is an inflammation-related protein, was determined by real-time PCR. It was measured. As the primer, a sense primer (SEQ ID NO: 37) and an antisense primer (SEQ ID NO: 38) were used. MCP1 is a protein involved in tissue infiltration of monocytes and T cells in various inflammatory diseases.
  • SEQ ID NO: 37 sense primer
  • SEQ ID NO: 38 antisense primer
  • FIG. 13 (a) is a graph showing the results of measuring the expression of the MCP1 gene in mesenteric adipose tissue.
  • FIG. 13 (b) is a graph showing the results of measuring the expression of the MCP1 gene in the adipose tissue around the kidney.
  • FIG. 14 (a) is a graph showing the measurement results of AST activity in the serum of each group of mice.
  • FIG.14 (b) is a graph which shows the measurement result of the ALT activity in the serum of the mouse
  • dexamethasone (1 ⁇ M), insulin (10 ⁇ g / mL), and 3-isobutyl-1-methylxanthine (IBMX, 0.5 ⁇ M) were added to the medium.
  • IBMX 3-isobutyl-1-methylxanthine
  • the medium was replaced with 10% FCS-DMEM supplemented with insulin (10 mg / mL).
  • the medium was replaced with 10% FCS-DMEM twice every 48 hours to differentiate the cells into mature adipocytes.
  • EGCG (5 ⁇ M), DADS (10 ⁇ M), or EGCG (5 ⁇ M) and DADS (10 ⁇ M) were added to 3T3-L1 cells differentiated into mature adipocytes, respectively, and cultured for 24 hours.
  • cells to which neither EGCG nor DADS were added were used as controls. Thereafter, each cell was recovered and RNA was extracted. After synthesizing cDNA, the expression level of mRNA of a gene encoding each lipid metabolism-related protein shown in Table 8 below was measured by real-time PCR. Table 8 also shows the sequence numbers of the base sequences of the primers used for PCR of each gene.
  • 15 (a) to 15 (c) are graphs showing the results of measuring the mRNA expression levels of the genes encoding the lipid metabolism-related proteins shown in Table 8, respectively.
  • EGCG indicates the result of the EGCG group to which EGCG was added
  • DADS represents the result of the DADS group to which DADS was added
  • EGCG + DADS represents the result of the EGCG + DADS group to which EGCG and DADS were added in combination. Results are shown.

Abstract

Provided is a food composition for preventing or alleviating metabolic syndrome, the food composition containing, as active ingredients, a 67 kDa laminine receptor (67LR) agonist and a sulfur-containing compound found from an allium plant extract.

Description

メタボリックシンドロームの予防又は改善用食品組成物及び医薬組成物Food composition and pharmaceutical composition for preventing or improving metabolic syndrome
 本発明は、メタボリックシンドロームの予防又は改善用食品組成物及び医薬組成物に関する。本願は、2017年3月1日に、日本に出願された特願2017-038595号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a food composition and a pharmaceutical composition for preventing or improving metabolic syndrome. This application claims priority on March 1, 2017 based on Japanese Patent Application No. 2017-038595 filed in Japan, the contents of which are incorporated herein by reference.
 メタボリックシンドロームとは、下記(1)に該当し、更に下記(2)~(4)のうちの2以上に該当する状態と定義されている。
(1)ウエスト周囲径が、男性の場合で85cm以上、女性の場合で90cm以上(内臓脂肪面積100cm以上に相当する。)
(2)血中トリグリセリドが150mg/dL以上、且つ/又は、血中HDLコレステロールが40mg/dL以下
(3)収縮期血圧が130mmHg以上、且つ/又は、拡張期血圧が85mmHg以上
(4)空腹時血糖値が110mg/dL以上
The metabolic syndrome is defined as a state corresponding to the following (1) and further corresponding to two or more of the following (2) to (4).
(1) The waist circumference is 85 cm or more for men and 90 cm or more for women (corresponding to a visceral fat area of 100 cm 2 or more).
(2) Blood triglyceride is 150 mg / dL or higher and / or blood HDL cholesterol is 40 mg / dL or lower (3) Systolic blood pressure is 130 mmHg or higher and / or diastolic blood pressure is 85 mmHg or higher (4) Fasting Blood glucose level is 110mg / dL or more
 メタボリックシンドロームの状態であると、心筋梗塞や脳梗塞の原因となる動脈硬化が急速に進行することが知られている。このため、メタボリックシンドロームに対する消費者の関心は高く、抗メタボリックシンドロームを謳った様々なサプリメント等が市販されている。 In the state of metabolic syndrome, it is known that arteriosclerosis that causes myocardial infarction and cerebral infarction proceeds rapidly. For this reason, consumers are highly interested in metabolic syndrome, and various supplements and the like for anti-metabolic syndrome are commercially available.
 ところで、67kDaラミニンレセプター(以下、「67LR」という場合がある。)は、基底膜の主要な構成成分であるラミニンと結合する細胞膜タンパク質である(例えば、非特許文献1を参照。)。発明者らは、緑茶に含まれる主要なカテキンの一種であるエピガロカテキンガレート(Epigallocatechin-O-gallate、以下、「EGCG」という場合がある。)が細胞膜上の67LRに結合し、抗癌作用を発揮することを明らかにしてきた(例えば、非特許文献2を参照。)。 Incidentally, the 67 kDa laminin receptor (hereinafter sometimes referred to as “67LR”) is a cell membrane protein that binds to laminin, which is a main component of the basement membrane (see, for example, Non-Patent Document 1). The inventors of the present invention bind to 67LR on the cell membrane, and epigallocatechin-gallate (hereinafter, sometimes referred to as “EGCG”), which is one of the main catechins contained in green tea, has anticancer activity. Has been clarified to exhibit (see, for example, Non-Patent Document 2).
 本発明は、メタボリックシンドロームの予防、改善又は治療に有効な組成物を提供することを目的とする。 An object of the present invention is to provide a composition effective for prevention, improvement or treatment of metabolic syndrome.
 本発明は以下の態様を含む。
[1]67LRアゴニストと、ネギ属植物抽出物中に見出される含硫化合物とを有効成分として含有する、メタボリックシンドロームの予防又は改善用食品組成物。
[2]前記ネギ属植物抽出物中に見出される含硫化合物が、アリイン、アリシン、ジアリルジスルフィド、ジアリルトリスルフィド又はジアリルテトラスルフィドを含む、[1]に記載のメタボリックシンドロームの予防又は改善用食品組成物。
[3]前記67LRアゴニストが、EGCG、ウーロン茶重合ポリフェノール、プロシアニジンC1又はこれらの誘導体を含む、[1]又は[2]に記載のメタボリックシンドロームの予防又は改善用食品組成物。
[4][1]~[3]のいずれかに記載の食品組成物をヒト又は動物に摂取させる工程を備える、メタボリックシンドロームの予防又は改善方法(但し、ヒトに対する医療行為を除く。)。
[5]67LRアゴニストと、ネギ属植物抽出物中に見出される含硫化合物とを有効成分として含有する、メタボリックシンドロームの予防又は治療用医薬組成物。
[6]前記ネギ属植物抽出物中に見出される含硫化合物が、アリイン、アリシン、ジアリルジスルフィド、ジアリルトリスルフィド又はジアリルテトラスルフィドを含む、[5]に記載のメタボリックシンドロームの予防又は治療用医薬組成物。
[7]前記67LRアゴニストが、EGCG、ウーロン茶重合ポリフェノール、プロシアニジンC1、これらの誘導体又は67LRアゴニスト抗体を含む、[5]又は[6]に記載のメタボリックシンドロームの予防又は治療用医薬組成物。
The present invention includes the following aspects.
[1] A food composition for preventing or improving metabolic syndrome, comprising as an active ingredient a 67LR agonist and a sulfur-containing compound found in an Allium plant extract.
[2] The food composition for preventing or improving metabolic syndrome according to [1], wherein the sulfur-containing compound found in the Allium plant extract contains alliin, allicin, diallyl disulfide, diallyl trisulfide, or diallyl tetrasulfide. object.
[3] The food composition for preventing or improving metabolic syndrome according to [1] or [2], wherein the 67LR agonist comprises EGCG, oolong tea polymerized polyphenol, procyanidin C1, or a derivative thereof.
[4] A method for preventing or improving metabolic syndrome, comprising a step of causing a human or animal to ingest the food composition according to any one of [1] to [3] (excluding medical practice for humans).
[5] A pharmaceutical composition for preventing or treating metabolic syndrome, comprising as an active ingredient a 67LR agonist and a sulfur-containing compound found in an Allium plant extract.
[6] The pharmaceutical composition for prevention or treatment of metabolic syndrome according to [5], wherein the sulfur-containing compound found in the Allium plant extract contains alliin, allicin, diallyl disulfide, diallyl trisulfide or diallyl tetrasulfide object.
[7] The pharmaceutical composition for preventing or treating metabolic syndrome according to [5] or [6], wherein the 67LR agonist comprises EGCG, oolong tea polymerized polyphenol, procyanidin C1, a derivative thereof, or a 67LR agonist antibody.
 本発明によれば、メタボリックシンドロームの予防、改善又は治療に有効な組成物を提供することができる。 According to the present invention, it is possible to provide a composition effective for prevention, improvement or treatment of metabolic syndrome.
(a)は、実験例1において、各群のマウスの体重の推移を測定した結果を示すグラフである。(b)は、実験例1において、各群のマウスのカロリー摂取量の推移を測定した結果を示すグラフである。(A) is a graph which shows the result of having measured the transition of the body weight of the mouse | mouth of each group in Experimental example 1. FIG. (B) is a graph which shows the result of having measured transition of calorie intake of the mouse of each group in example 1 of an experiment. (a)は、実験例2において、各群のマウスの白色脂肪組織の質量を測定した結果を示すグラフである。(b)は、実験例2において、各群のマウスの腎臓周辺脂肪組織の質量を測定した結果を示すグラフである。(c)は、実験例2において、各群のマウスの睾丸周辺脂肪組織の質量を測定した結果を示すグラフである。(A) is a graph which shows the result of having measured the mass of the white adipose tissue of the mouse | mouth of each group in Experimental example 2. FIG. (B) is a graph showing the results of measuring the mass of adipose tissue around the kidney of each group of mice in Experimental Example 2. (C) is a graph which shows the result of having measured the mass of the testicular periphery fat tissue of each group of mice in Experimental Example 2. (a)は、実験例3において、各群のマウスの血清中のトリグリセリドを測定した結果を示すグラフである。(b)は、実験例3において、各群のマウスの肝臓組織中のトリグリセリドを測定した結果を示すグラフである。(A) is a graph which shows the result of having measured the triglyceride in the serum of the mouse | mouth of each group in Experimental example 3. FIG. (B) is a graph showing the results of measurement of triglycerides in the liver tissue of each group of mice in Experimental Example 3. 実験例4において、各群のマウスの血清中のコレステロールを測定した結果を示すグラフである。In Experimental example 4, it is a graph which shows the result of having measured the cholesterol in the serum of the mouse | mouth of each group. (a)~(h)は、実験例5において、脂質代謝関連タンパク質をコードする遺伝子のmRNAの発現量を測定した結果を示すグラフである。(A) to (h) are graphs showing the results of measuring the expression level of mRNA of a gene encoding a lipid metabolism-related protein in Experimental Example 5. (a)~(i)は、実験例6において、脂質代謝関連タンパク質をコードする遺伝子のmRNAの発現量を測定した結果を示すグラフである。(A)-(i) is a graph which shows the result of having measured the expression level of mRNA of the gene which codes a lipid metabolism related protein in Experimental example 6. FIG. (a)~(f)は、実験例7において、脂質代謝関連タンパク質をコードする遺伝子のmRNAの発現量を測定した結果を示すグラフである。(A)-(f) is a graph which shows the result of having measured the expression level of mRNA of the gene which codes a lipid metabolism related protein in Experimental example 7. FIG. (a)~(j)は、実験例8において、脂質代謝関連タンパク質をコードする遺伝子のmRNAの発現量を測定した結果を示すグラフである。(A)-(j) is a graph which shows the result of having measured the expression level of mRNA of the gene which codes a lipid metabolism related protein in Experimental example 8. FIG. (a)~(f)は、実験例9において、脂質代謝関連タンパク質をコードする遺伝子のmRNAの発現量を測定した結果を示すグラフである。(A)-(f) is a graph which shows the result of having measured the expression level of mRNA of the gene which codes a lipid metabolism related protein in Experimental example 9. FIG. 実験例10において、各群のマウスの血清中のグルコース濃度(血糖値)を測定した結果を示すグラフである。In Experimental example 10, it is a graph which shows the result of having measured the glucose level (blood glucose level) in the serum of the mouse | mouth of each group. 実験例11において、各群のマウスの血清中の遊離脂肪酸を測定した結果を示すグラフである。In Experimental example 11, it is a graph which shows the result of having measured the free fatty acid in the serum of the mouse | mouth of each group. (a)は、実験例12において、各群のマウスの血中インスリン濃度を測定した結果を示すグラフである。(b)は、実験例12において、各群のマウスのHOMA-IR値を算出した結果を示すグラフである。(A) is a graph which shows the result of having measured the blood insulin density | concentration of the mouse | mouth of each group in Experimental example 12. FIG. (B) is a graph showing the results of calculating HOMA-IR values of mice in each group in Experimental Example 12. (a)は、実験例13において、腸間膜脂肪組織におけるMCP1遺伝子の発現を測定した結果を示すグラフである。(b)は、実験例13において、腎臓周辺脂肪組織におけるMCP1遺伝子の発現を測定した結果を示すグラフである。(A) is a graph showing the results of measuring the expression of the MCP1 gene in mesenteric adipose tissue in Experimental Example 13. (B) is a graph showing the results of measuring the expression of the MCP1 gene in the adipose tissue around the kidney in Experimental Example 13. (a)は、実験例14において、各群のマウスの血清中のAspartate Aminotransferase(AST)活性を測定した結果を示すグラフである。(b)は、実験例14において、各群のマウスの血清中のAlanine aminotransferase(ALT)活性を測定した結果を示すグラフである。(A) is a graph showing the results of measuring Aspartate Aminotransferase (AST) activity in the serum of mice of each group in Experimental Example 14. (B) is a graph showing the results of measurement of Alanine aminotransferase (ALT) activity in the serum of each group of mice in Experimental Example 14. (a)~(c)は、実験例15において、脂質代謝関連タンパク質をコードする遺伝子のmRNAの発現量を測定した結果を示すグラフである。(A)-(c) is a graph which shows the result of having measured the expression level of mRNA of the gene which codes a lipid metabolism related protein in Experimental example 15. FIG.
[メタボリックシンドロームの予防又は改善用食品組成物]
 1実施形態において、本発明は、67LRアゴニストと、ネギ属植物抽出物中に見出される含硫化合物とを有効成分として含有する、メタボリックシンドロームの予防又は改善用食品組成物を提供する。
[Food Composition for Prevention or Improvement of Metabolic Syndrome]
In one embodiment, the present invention provides a food composition for preventing or improving metabolic syndrome, comprising a 67LR agonist and a sulfur-containing compound found in an onion plant extract as active ingredients.
 実施例において後述するように、発明者らは、高脂肪高ショ糖食を摂取させるとともに、本実施形態の食品組成物を摂取させたマウスは、体重増加の抑制、体脂肪蓄積の抑制、血清中及び肝臓における中性脂肪の低下、血中コレステロールの低下、遺伝子レベルでの脂質代謝の改善、血糖値上昇抑制、血清中の遊離脂肪酸の低下、インスリン抵抗性の改善、白色脂肪組織における炎症関連遺伝子の発現抑制、肝障害の抑制等の有意な効果を示すことを明らかにした。 As will be described later in the Examples, the inventors ingested a high-fat high-sucrose diet, and mice ingested the food composition of the present embodiment were able to suppress weight gain, suppress body fat accumulation, and serum. Decreased neutral fat in the middle and liver, decreased blood cholesterol, improved lipid metabolism at the gene level, suppressed blood sugar level increase, decreased serum free fatty acid, improved insulin resistance, inflammation related to white adipose tissue It was clarified that it showed significant effects such as suppression of gene expression and suppression of liver damage.
 したがって、本実施形態の食品組成物は、メタボリックシンドロームの予防又は改善の用途に好適に用いることができる。 Therefore, the food composition of the present embodiment can be suitably used for the prevention or improvement of metabolic syndrome.
 また、実施例において後述するように、発明者らは、上記のメタボリックシンドロームの予防又は改善の効果は、67LRアゴニスト単独、又はネギ属植物抽出物中に見出される含硫化合物単独の摂取では認められず、67LRアゴニストとネギ属植物抽出物中に見出される含硫化合物とを併用して摂取させた場合にのみ認められることを明らかにした。 In addition, as will be described later in the Examples, the inventors have found that the above-described effects of preventing or improving the metabolic syndrome are observed when a 67LR agonist alone or a sulfur-containing compound alone found in an Allium plant extract is ingested. It was clarified that it was observed only when a 67LR agonist and a sulfur-containing compound found in an Allium plant extract were used in combination.
 本明細書において、「有効成分として含有する」とは、組成物が、67LRアゴニストとネギ属植物抽出物中に見出される含硫化合物とを、本発明の効果が得られるのに十分な量で含有することを意味し、具体的な含有量は組成(他の成分)に応じて適宜設定することができる。 In the present specification, “containing as an active ingredient” means that the composition contains a 67LR agonist and a sulfur-containing compound found in an Allium plant extract in an amount sufficient to obtain the effects of the present invention. Meaning containing, specific content can be suitably set according to a composition (other components).
(67LRアゴニスト)
 本実施形態の食品組成物において、67LRアゴニストとしては、67kDaラミニンレセプター(67LR)にシグナルを伝達することができる物質であれば特に制限なく用いることができる。67LRアゴニストは食品への添加が認められるものであることが好ましい。
(67LR agonist)
In the food composition of the present embodiment, as the 67LR agonist, any substance that can transmit a signal to the 67 kDa laminin receptor (67LR) can be used without particular limitation. The 67LR agonist is preferably one that can be added to food.
 より具体的な67LRアゴニストとしては、例えば、EGCG、ウーロン茶重合ポリフェノール、プロシアニジンC1、これらの誘導体等が挙げられる。 More specific 67LR agonists include, for example, EGCG, oolong tea polymerized polyphenol, procyanidin C1, and derivatives thereof.
 EGCGは、エピガロカテキンと没食子酸のエステルであり、カテキンの一種である。EGCGは、植物の中でも特に茶に豊富に含まれているカテキンである。 EGCG is an ester of epigallocatechin and gallic acid and is a kind of catechin. EGCG is a catechin that is particularly abundant in tea among plants.
 EGCGの誘導体としては、例えばEGCGを基本骨格として、一部の官能基を変更する等した化合物が挙げられる。より具体的には、例えばメチル化EGCGが挙げられる。具体的なメチル化EGCGとしては、例えば、下記式(1)で表される(-)-エピガロカテキン-3-O-(3-O-メチル)ガレート等が挙げられる。下記式(1)で表される化合物は、緑茶の品種の1種である「べにふうき」等に含まれる化合物であり、食品に添加しても安全である。 Examples of EGCG derivatives include compounds in which some functional groups are changed using EGCG as a basic skeleton. More specifically, methylated EGCG is mentioned, for example. Specific examples of methylated EGCG include (−)-epigallocatechin-3-O- (3-O-methyl) gallate represented by the following formula (1). The compound represented by the following formula (1) is a compound contained in “Benifuuki”, which is one of green tea varieties, and is safe to add to food.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 ウーロン茶重合ポリフェノールは、半発酵というウーロン茶の独特の製造方法において、酵素反応や熱重合反応により形成される、カテキン類が複雑に結合した化合物の総称である。ウーロン茶重合ポリフェノールには、例えばカテキン類の2量体、カテキン類の3量体等が含まれる。カテキン類の2量体としては、例えば、ウーロンホモビスフラバンA、モノデスガロイルウーロンホモビスフラバンA、ウーロンホモビスフラバンB、ウーロンホモビスフラバンC等のウーロンホモビスフラバン類等が挙げられる。 Oolong tea polymerization polyphenol is a general term for compounds in which catechins are bound in a complex manner formed by an enzymatic reaction or a thermal polymerization reaction in a unique method of producing oolong tea called semi-fermentation. Oolong tea polymerization polyphenols include, for example, dimers of catechins and trimers of catechins. Examples of catechin dimers include oolong homobisflavans such as oolong homobisflavan A, monodesgaloyl oolong homobisflavan A, oolong homobisflavan B, oolong homobisflavan C, and the like.
 ウーロン茶重合ポリフェノールの誘導体としては、例えばウーロン茶重合ポリフェノールを基本骨格として、一部の官能基を変更する等した化合物が挙げられる。 Examples of the derivative of oolong tea polymerized polyphenol include compounds in which some functional groups are changed using oolong tea polymerized polyphenol as a basic skeleton.
 プロシアニジンC1は、りんごやブドウ等の植物中に多く含まれるエピカテキンの3量体である。プロシアニジンC1の誘導体としては、例えばプロシアニジンC1を基本骨格として、一部の官能基を変更する等した化合物が挙げられる。 Procyanidin C1 is a trimer of epicatechin that is abundant in plants such as apples and grapes. Examples of the derivatives of procyanidin C1 include compounds in which some functional groups are changed using procyanidin C1 as a basic skeleton.
 EGCG、ウーロン茶重合ポリフェノール、プロシアニジンC1等を誘導体化することにより、例えば、これらの化合物の水溶性、脂溶性等の物理的な性質や、67LRアゴニスト活性、血中滞留性、生体毒性等の生物学的な活性等を所望の範囲に調節することができる。 By derivatizing EGCG, oolong tea polymerized polyphenol, procyanidin C1, etc., for example, physical properties such as water solubility and fat solubility of these compounds, biology such as 67LR agonist activity, retention in blood, biotoxicity, etc. Activity and the like can be adjusted to a desired range.
 67LRアゴニストは、EGCG、ウーロン茶重合ポリフェノール、プロシアニジンC1又はこれらの誘導体の溶媒和物であってもよく、薬学的に許容される塩であってもよく、薬学的に許容される塩の溶媒和物であってもよい。 The 67LR agonist may be a solvate of EGCG, oolong tea polymerized polyphenol, procyanidin C1, or a derivative thereof, a pharmaceutically acceptable salt, or a solvate of a pharmaceutically acceptable salt. It may be.
 薬学的に許容される塩としては、例えば、無機酸塩、アルカリ金属塩、アルカリ土類金属塩、金属塩、アンモニウム塩、有機アミン付加塩、アミノ酸付加塩等が挙げられる。より具体的には、例えば、塩酸塩、硫酸塩、臭化水素酸塩、硝酸塩、リン酸塩等の無機酸塩;酢酸塩、メシル酸塩、コハク酸塩、マレイン酸塩、フマル酸塩、クエン酸塩、酒石酸塩等の有機酸塩;ナトリウム塩、カリウム塩等のアルカリ金属塩;マグネシウム塩、カルシウム塩等のアルカリ土類金属塩;アルミニウム塩、亜鉛塩等の金属塩;アンモニウム塩、テトラメチルアンモニウム塩等のアンモニウム塩;モルホリン、ピペリジン等の有機アミン付加塩;グリシン、フェニルアラニン、リジン、アスパラギン酸、グルタミン酸等のアミノ酸付加塩等が挙げられる。 Examples of the pharmaceutically acceptable salt include inorganic acid salts, alkali metal salts, alkaline earth metal salts, metal salts, ammonium salts, organic amine addition salts, amino acid addition salts, and the like. More specifically, for example, inorganic acid salts such as hydrochloride, sulfate, hydrobromide, nitrate, phosphate; acetate, mesylate, succinate, maleate, fumarate, Organic salts such as citrate and tartrate; alkali metal salts such as sodium salt and potassium salt; alkaline earth metal salts such as magnesium salt and calcium salt; metal salts such as aluminum salt and zinc salt; ammonium salt and tetra Examples include ammonium salts such as methylammonium salts; organic amine addition salts such as morpholine and piperidine; amino acid addition salts such as glycine, phenylalanine, lysine, aspartic acid, and glutamic acid.
 また、EGCG、ウーロン茶重合ポリフェノール、プロシアニジンC1又はこれらの誘導体の溶媒和物の溶媒和物、薬学的に許容される塩の溶媒和物としては、薬学的に許容される溶媒和物であれば特に制限されず、例えば、水和物、有機溶媒和物等が挙げられる。 In addition, solvates of EGCG, oolong tea polymerized polyphenol, procyanidin C1 or derivatives thereof, and solvates of pharmaceutically acceptable salts are particularly pharmaceutically acceptable solvates. There is no limitation, and examples thereof include hydrates and organic solvates.
 67LRアゴニストは、化学的に合成されたものであってもよく、天然物から精製されたものであってもよい。あるいは、67LRアゴニストを含む天然物を食品組成物の原料に用いることにより含有させてもよい。67LRアゴニストを含有する天然物としては、例えば、緑茶、緑茶抽出物、ウーロン茶、ウーロン茶抽出物、紅茶、紅茶抽出物、りんご、りんご抽出物、ぶどう、ぶどう抽出物、ぶどう種子、ぶどう種子抽出物、カカオ豆、カカオ豆抽出物、アプリコット、アプリコット抽出物、キウイ、キウイ抽出物、さくらんぼ、さんらんぼ抽出物、いちご、いちご抽出物、クランベリー、クランベリー抽出物、ブルーベリー、ブルーベリー抽出物、びわ、びわ抽出物、黒大豆、黒大豆抽出物、シナモン、シナモン抽出物、松樹皮、松樹皮抽出物、ピーナッツ、ピーナッツ抽出物等が挙げられる。 The 67LR agonist may be chemically synthesized or purified from a natural product. Or you may make it contain by using the natural product containing a 67LR agonist for the raw material of a food composition. Examples of natural products containing 67LR agonist include green tea, green tea extract, oolong tea, oolong tea extract, black tea, black tea extract, apple, apple extract, grape, grape extract, grape seed, grape seed extract, Cocoa beans, cacao bean extract, apricot, apricot extract, kiwi, kiwi extract, cherry, sanranbo extract, strawberry, strawberry extract, cranberry, cranberry extract, blueberry, blueberry extract, loquat, loquat extract Product, black soybean, black soybean extract, cinnamon, cinnamon extract, pine bark, pine bark extract, peanut, peanut extract and the like.
 本実施形態の食品組成物は、上述した67LRアゴニストの1種を単独で含有していてもよいし、2種以上を混合して含有していてもよい。 The food composition of the present embodiment may contain one of the 67LR agonists described above alone, or may contain a mixture of two or more.
(ネギ属植物抽出物中に見出される含硫化合物)
 本実施形態の食品組成物において、ネギ属植物としては、ニンニク、ネギ、ニラ、タマネギ、ラッキョウ等が挙げられる。
(Sulfur-containing compounds found in allium plant extracts)
In the food composition of the present embodiment, examples of the Allium plant include garlic, leeks, leeks, onions, and rakkyo.
 また、ネギ属植物抽出物中に見出される含硫化合物としては、例えば、アリイン、アリシン、ジアリルジスルフィド、ジアリルトリスルフィド、ジアリルテトラスルフィド等が挙げられる。 Also, examples of sulfur-containing compounds found in the genus plant extract include alliin, allicin, diallyl disulfide, diallyl trisulfide, diallyl tetrasulfide, and the like.
 ここで、アリインは、例えばニンニクに約1質量%含まれる含硫化合物である。アリインは無臭の化合物であり、鱗茎の葉肉貯蔵細胞の細胞質に貯蔵されている。一方、アリインに作用する酵素であるアリイナーゼは、維管束鞘細胞の液胞に貯蔵されている。 Here, alliin is a sulfur-containing compound contained in, for example, about 1% by mass in garlic. Alliin is an odorless compound and is stored in the cytoplasm of bulb mesophyll storage cells. On the other hand, alliinase, an enzyme that acts on alliin, is stored in the vacuole of vascular sheath cells.
 無傷のニンニクでは、酵素と基質が異なる部位に存在するため臭いは検出されない。しかしながら、ニンニクの鱗茎組織が損傷を受けると、酵素のアリイナーゼと基質のアリインが反応し、アリシンが生成される。アリシンはニンニク特有の臭いを有する化合物である。 In intact garlic, no odor is detected because the enzyme and substrate are in different parts. However, when the garlic bulb tissue is damaged, the enzyme alliinase and the substrate alliin react to produce allicin. Allicin is a compound that has a characteristic smell of garlic.
 アリシンは反応性が高いため、他の化合物やアリシン自身と反応する。その結果、アリシンからジアリルジスルフィド等が生成される。また、ジアリルジスルフィドは硫黄の数が異なるジアリルトリスルフィド、ジアリルテトラスルフィド等へと変化する。これらのアリシン由来の含硫化合物もニンニク特有の臭いを有している。 Because allicin is highly reactive, it reacts with other compounds and allicin itself. As a result, diallyl disulfide and the like are produced from allicin. Further, diallyl disulfide changes to diallyl trisulfide, diallyl tetrasulfide and the like having different numbers of sulfur. These sulfur-containing compounds derived from allicin also have a odor characteristic of garlic.
 本明細書において、「ネギ属植物抽出物中に見出される含硫化合物」とは、ネギ属植物に由来する含硫化合物には限定されず、ネギ属植物を破砕して得られた抽出物中に存在する含硫化合物を意味し、その由来は問わない。「ネギ属植物抽出物中に見出される含硫化合物」は、例えば、ネギ属植物から抽出された含硫化合物であってもよいし、ネギ属植物以外の天然物から抽出された含硫化合物であってもよいし、化学的に合成された、アリイン、アリシン、ジアリルジスルフィド、ジアリルトリスルフィド、ジアリルテトラスルフィド等であってもよい。 In the present specification, the term “sulfur-containing compound found in an onion plant extract” is not limited to a sulfur-containing compound derived from an allium plant, but in an extract obtained by crushing an onion plant. Means a sulfur-containing compound present in any one of its origins. The “sulfur-containing compound found in the genus Leek plant extract” may be, for example, a sulfur-containing compound extracted from a genus Leek plant, or a sulfur-containing compound extracted from a natural product other than a genus Leek plant. It may be alliin, allicin, diallyl disulfide, diallyl trisulfide, diallyl tetrasulfide and the like which are chemically synthesized.
 ネギ属植物抽出物中に見出される含硫化合物は、精製された化合物を含有させてもよいし、上述したネギ属植物の破砕物等を食品組成物の原料に用いることにより含有させてもよい。本実施形態の食品組成物は、ネギ属植物抽出物中に見出される含硫化合物の1種を単独で含有していてもよいし、2種以上を混合して含有していてもよい。 The sulfur-containing compound found in the Allium plant extract may contain a purified compound, or may be contained by using the above-mentioned crushed material of the Allium plant as a raw material of the food composition. . The food composition of the present embodiment may contain one kind of sulfur-containing compound found in the Allium plant extract alone, or may contain a mixture of two or more kinds.
 本実施形態の食品組成物は、1日あたり、0.1~100mg/kg体重の67LRアゴニスト及び0.05~50mg/kg体重のネギ属植物抽出物中に見出される含硫化合物を摂取するように用いられてもよい。また、食品組成物は、1日1回又は2~4回程度に分けて摂取するように用いられてもよい。 The food composition of the present embodiment seems to ingest a sulfur-containing compound found in 0.1 to 100 mg / kg body weight of 67LR agonist and 0.05 to 50 mg / kg body weight of an onion plant extract per day. May be used. Further, the food composition may be used so as to be taken once a day or divided into about 2 to 4 times a day.
 本実施形態の食品組成物は、例えば、サプリメントの形態であってもよいし、飲料の形態であってもよいし、固形状、半固形状又はゲル状食品の形態であってもよいし、任意の調理済み食品の形態等であってもよい。サプリメントの形状としては、例えば、カプセル等の形状が挙げられる。 The food composition of this embodiment may be, for example, in the form of a supplement, in the form of a beverage, in the form of a solid, semi-solid or gel food, It may be in the form of any cooked food. Examples of supplement shapes include capsule shapes.
 本実施形態の食品組成物は、機能性表示食品であってもよい。「機能性表示食品」とは、科学的根拠を基に商品パッケージに機能性を表示するものとして、消費者庁に届け出られた食品を意味する。当該表示として、例えば、「メタボリックシンドロームを予防又は改善する」、「体重増加を抑制する」、「体脂肪蓄積を抑制する」、「中性脂肪を低下させる」、「血中コレステロールを低下させる」、「脂質代謝を改善する」、「血糖値上昇を抑制する」、「遊離脂肪酸を低下させる」、「インスリン抵抗性を改善する」等が挙げられるが、これらに限定されない。また、機能性表示のない食品組成物であっても、機能性をチラシ、広告等に記載又は音声等で表示して製造、販売することも考えらえる。 The food composition of the present embodiment may be a functional display food. “Functional labeling food” means food that has been reported to the Consumer Affairs Agency as indicating the functionality on the product package based on scientific evidence. As the display, for example, “prevent or improve metabolic syndrome”, “suppress body weight gain”, “suppress body fat accumulation”, “decrease triglyceride”, “decrease blood cholesterol” , “Improving lipid metabolism”, “suppressing an increase in blood glucose level”, “decreasing free fatty acid”, “improving insulin resistance”, etc., but are not limited thereto. Moreover, even if it is a food composition without a functional display, it is also conceivable that the functionality is described in a flyer, an advertisement, etc., or displayed by voice or the like to be manufactured and sold.
 本実施形態の食品組成物は、特別用途食品であってもよい。特別用途食品とは、国の許可を受けて、乳児、幼児、妊産婦、病者等の発育、健康の保持・回復等に適するという特別の用途について表示する食品を意味する。本実施形態の食品組成物は、特別用途食品のうちの病者用食品であってもよい。あるいは、本実施形態の食品組成物は、特別用途食品のうちの特定保健用食品であってもよい。特定保健用食品とは、健康の維持増進に役立つことが科学的根拠に基づいて認められ、その効果の表示が許可されている食品を意味する。表示されている効果や安全性については国が審査を行い、食品ごとに消費者庁長官により許可される。 The food composition of the present embodiment may be a special purpose food. Special-purpose food means food that is labeled for special use that is suitable for the growth, maintenance and recovery of health of infants, toddlers, pregnant women, sick people, etc. with the permission of the government. The food composition of the present embodiment may be a food for a sick person among special-purpose foods. Alternatively, the food composition of the present embodiment may be a food for specified health use among special purpose foods. Specified health food means food that has been recognized on the basis of scientific evidence to be useful for maintaining and improving health and is allowed to display its effects. The government will review the displayed effects and safety, and each food will be approved by the Commissioner of the Consumer Affairs Agency.
[メタボリックシンドロームの予防又は改善方法]
 1実施形態において、本発明は、上述した食品組成物をヒト又は動物に摂取させる工程を備える、メタボリックシンドロームの予防又は改善方法(但し、ヒトに対する医療行為を除く。)を提供する。本実施形態のメタボリックシンドロームの予防又は改善方法において、医療行為とは、医師(医師の指示を受けた者を含む。)がヒトに対して治療を実施する行為を意味する。
[Prevention or improvement of metabolic syndrome]
In one embodiment, the present invention provides a method for preventing or ameliorating metabolic syndrome (excluding medical practice for humans), comprising the step of causing a human or animal to take the food composition described above. In the method for preventing or improving metabolic syndrome of the present embodiment, the medical action means an action in which a doctor (including a person who receives an instruction from a doctor) performs a treatment on a human.
 本実施形態のメタボリックシンドロームの予防又は改善方法において、ヒト又は動物に摂取させる食品組成物の量としては、1日あたり、0.1~100mg/kg体重の67LRアゴニスト及び0.05~50mg/kg体重のネギ属植物抽出物中に見出される含硫化合物を摂取する量が挙げられる。食品組成物は、1日1回又は2~4回程度に分けて摂取させてもよい。 In the method for preventing or improving metabolic syndrome of the present embodiment, the amount of the food composition to be ingested by humans or animals is 0.1 to 100 mg / kg body weight of 67LR agonist and 0.05 to 50 mg / kg per day. The amount of the sulfur-containing compound found in the Allium plant extract of body weight can be mentioned. The food composition may be taken once a day or divided into about 2 to 4 times a day.
[メタボリックシンドロームの予防又は治療用医薬組成物]
 1実施形態において、本発明は、67LRアゴニストと、ネギ属植物抽出物中に見出される含硫化合物とを有効成分として含有する、メタボリックシンドロームの予防又は治療用医薬組成物を提供する。
[Pharmaceutical composition for prevention or treatment of metabolic syndrome]
In one embodiment, the present invention provides a pharmaceutical composition for preventing or treating metabolic syndrome, which comprises a 67LR agonist and a sulfur-containing compound found in an Allium plant extract as active ingredients.
 本実施形態の医薬組成物において、67LRアゴニストとしては、上述したEGCG、ウーロン茶重合ポリフェノール、プロシアニジンC1、EGCG誘導体、ウーロン茶重合ポリフェノール誘導体、プロシアニジンC1誘導体のほか、例えば、抗67LR抗体(67LRアゴニスト抗体)、化学的に合成されたメチル化EGCGである下記式(2)で表される化合物等を用いることができる。 In the pharmaceutical composition of the present embodiment, examples of the 67LR agonist include EGCG, oolong tea polymerized polyphenol, procyanidin C1, EGCG derivative, oolong tea polymerized polyphenol derivative, procyanidin C1 derivative, for example, anti-67LR antibody (67LR agonist antibody), A compound represented by the following formula (2), which is methylated EGCG synthesized chemically, can be used.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 また、ネギ属植物抽出物中に見出される含硫化合物としては上述したものと同様のものを用いることができ、アリイン、アリシン、ジアリルジスルフィド、ジアリルトリスルフィド、ジアリルテトラスルフィド等であってよい。 Further, as the sulfur-containing compound found in the genus plant extract, the same compounds as described above can be used, and may be alliin, allicin, diallyl disulfide, diallyl trisulfide, diallyl tetrasulfide and the like.
 本実施形態の医薬組成物は、例えば、錠剤、カプセル剤、エリキシル剤、マイクロカプセル剤等の形態で経口的に、あるいは、注射剤、坐剤、皮膚外用剤等の形態で非経口的に投与することができる。皮膚外用剤としては、より具体的には、軟膏剤、貼付剤等の剤型が挙げられる。 The pharmaceutical composition of the present embodiment is administered orally, for example, in the form of tablets, capsules, elixirs, microcapsules, etc., or parenterally in the form of injections, suppositories, skin external preparations, etc. can do. More specifically, examples of the external preparation for skin include dosage forms such as ointments and patches.
 本実施形態の医薬組成物は、薬学的に許容可能な担体を含んでいてもよい。薬学的に許容される担体としては、通常医薬組成物の製剤に用いられるものを特に制限なく用いることができる。より具体的には、例えば、ゼラチン、コーンスターチ、トラガントガム、アラビアゴム等の結合剤;デンプン、結晶性セルロース等の賦形剤;アルギン酸等の膨化剤;水、エタノール、グリセリン等の注射剤用溶剤;ゴム系粘着剤、シリコーン系粘着剤等の粘着剤等が挙げられる。 The pharmaceutical composition of this embodiment may contain a pharmaceutically acceptable carrier. As the pharmaceutically acceptable carrier, those usually used for the preparation of pharmaceutical compositions can be used without particular limitation. More specifically, for example, binders such as gelatin, corn starch, gum tragacanth and gum arabic; excipients such as starch and crystalline cellulose; swelling agents such as alginic acid; solvents for injections such as water, ethanol and glycerin; Examples thereof include adhesives such as rubber adhesives and silicone adhesives.
 医薬組成物は添加剤を含んでいてもよい。添加剤としては、ステアリン酸カルシウム、ステアリン酸マグネシウム等の潤滑剤;ショ糖、乳糖、サッカリン、マルチトール等の甘味剤;ペパーミント、アカモノ油等の香味剤;ベンジルアルコール、フェノール等の安定剤;リン酸塩、酢酸ナトリウム等の緩衝剤;安息香酸ベンジル、ベンジルアルコール等の溶解補助剤;酸化防止剤;防腐剤等が挙げられる。 The pharmaceutical composition may contain an additive. Additives include lubricants such as calcium stearate and magnesium stearate; sweeteners such as sucrose, lactose, saccharin and maltitol; flavoring agents such as peppermint and red mono oil; stabilizers such as benzyl alcohol and phenol; phosphoric acid Buffers such as salts and sodium acetate; Solubilizing agents such as benzyl benzoate and benzyl alcohol; Antioxidants; Preservatives and the like.
 医薬組成物は、上述した67LRアゴニスト、ネギ属植物抽出物中に見出される含硫化合物、上述した薬学的に許容される担体及び添加剤を適宜組み合わせて、一般に認められた製薬実施に要求される単位用量形態で混和することによって製剤化することができる。 The pharmaceutical composition is required for generally accepted pharmaceutical practice by appropriately combining the 67LR agonist described above, the sulfur-containing compound found in the Allium plant extract, the pharmaceutically acceptable carriers and additives described above. It can be formulated by mixing in unit dosage form.
 医薬組成物の投与量は、患者の症状、体重、年齢、性別等によって異なり、一概には決定できないが、経口投与の場合には、例えば、投与単位形態あたり、0.1~100mg/kg体重の67LRアゴニスト及び0.05~50mg/kg体重のネギ属植物抽出物中に見出される含硫化合物を投与すればよい。また、注射剤の場合には、例えば、投与単位形態あたり、0.1~100mg/kg体重の67LRアゴニスト及び0.05~50mg/kg体重のネギ属植物抽出物中に見出される含硫化合物を投与すればよい。 The dosage of the pharmaceutical composition varies depending on the patient's symptoms, body weight, age, sex, etc., and cannot be generally determined, but in the case of oral administration, for example, 0.1 to 100 mg / kg body weight per dosage unit form And a sulfur-containing compound found in an onion extract of 0.05 to 50 mg / kg body weight may be administered. In the case of injections, for example, per unit dosage form, a sulfur-containing compound found in a 0.1 to 100 mg / kg body weight 67LR agonist and 0.05 to 50 mg / kg body weight onion plant extract. What is necessary is just to administer.
 また、医薬組成物の1日あたりの投与量は、患者の症状、体重、年齢、性別等によって異なり、一概には決定できないが、例えば、成人1日あたり、0.1~100mg/kg体重の67LRアゴニスト及び0.05~50mg/kg体重のネギ属植物抽出物中に見出される含硫化合物となる量を、1日1回又は2~4回程度に分けて投与すればよい。 In addition, the daily dose of the pharmaceutical composition varies depending on the patient's symptoms, body weight, age, sex, etc., and cannot be determined unconditionally. For example, 0.1-100 mg / kg body weight per adult day The amount to be a sulfur-containing compound found in the 67LR agonist and 0.05 to 50 mg / kg body weight of the onion plant extract may be administered once a day or divided into about 2 to 4 times a day.
[その他の実施形態]
 1実施形態において、本発明は、67LRアゴニスト及びネギ属植物抽出物中に見出される含硫化合物の有効量を、治療を必要とする患者に投与することを含む、メタボリックシンドロームの予防又は治療方法を提供する。ここで、67LRアゴニスト、ネギ属植物抽出物中に見出される含硫化合物としては、医薬組成物について上述したものと同様である。
[Other Embodiments]
In one embodiment, the present invention provides a method for preventing or treating metabolic syndrome comprising administering to a patient in need of treatment an effective amount of a 67LR agonist and a sulfur-containing compound found in an Allium plant extract. provide. Here, the 67LR agonist and the sulfur-containing compound found in the Allium plant extract are the same as those described above for the pharmaceutical composition.
 1実施形態において、本発明は、メタボリックシンドロームの予防又は治療のための組成物であって、67LRアゴニスト及びネギ属植物抽出物中に見出される含硫化合物を有効成分として含有する組成物を提供する。本実施形態の組成物は医薬組成物であってもよい。ここで、67LRアゴニスト、ネギ属植物抽出物中に見出される含硫化合物としては、医薬組成物について上述したものと同様である。 In one embodiment, the present invention provides a composition for preventing or treating metabolic syndrome, comprising a 67LR agonist and a sulfur-containing compound found in an Allium plant extract as active ingredients. . The composition of this embodiment may be a pharmaceutical composition. Here, the 67LR agonist and the sulfur-containing compound found in the Allium plant extract are the same as those described above for the pharmaceutical composition.
 1実施形態において、本発明は、メタボリックシンドロームの予防又は治療薬を製造するための、67LRアゴニスト及びネギ属植物抽出物中に見出される含硫化合物の使用を提供する。ここで、67LRアゴニスト、ネギ属植物抽出物中に見出される含硫化合物としては、医薬組成物について上述したものと同様である。 In one embodiment, the present invention provides the use of a 67LR agonist and a sulfur-containing compound found in an Allium plant extract for the manufacture of a preventive or therapeutic agent for metabolic syndrome. Here, the 67LR agonist and the sulfur-containing compound found in the Allium plant extract are the same as those described above for the pharmaceutical composition.
 次に実験例を示して本発明を更に詳細に説明するが、本発明は以下の実験例に限定されるものではない。 Next, the present invention will be described in more detail with reference to experimental examples, but the present invention is not limited to the following experimental examples.
[実験例1]
(緑茶抽出物及びジアリルジスルフィドの併用摂取による抗肥満作用)
 マウスに高脂肪高ショ糖食、緑茶抽出物、ジアリルジスルフィド(以下、「DADS」という場合がある。)を組み合わせて摂取させ、肥満に対する影響を検討した。
[Experimental Example 1]
(Anti-obesity effect by combined use of green tea extract and diallyl disulfide)
Mice were ingested in combination with a high-fat, high-sucrose diet, green tea extract, and diallyl disulfide (hereinafter sometimes referred to as “DADS”), and the effect on obesity was examined.
 具体的には、12週齢のオスのC57BL/6Jマウスを1週間予備飼育したのち、平均体重が等しくなるように、通常食(AIN-93G準拠食)を摂取させる「対照群」、高脂肪高ショ糖(High Fat High Sugar、HF/HS)食を摂取させる「HF/HS群」、高脂肪高ショ糖食及び緑茶抽出物を併用摂取させる「緑茶抽出物群」、高脂肪高ショ糖食及びDADSを併用摂取させる「DADS群」、及び高脂肪高ショ糖食、緑茶抽出物及びDADSを併用摂取させる「緑茶抽出物+DADS群」の5群に分けた。続いて、各群のマウスにそれぞれ各飼料を4g/日で与え、自由飲水で10週間飼育した。 Specifically, after a 12-week-old male C57BL / 6J mouse is preliminarily raised for 1 week, a normal diet (AIN-93G compliant diet) is fed so that the average body weight is equal. "HF / HS group" that ingests a high sucrose (High Fat High Sugar, HF / HS) diet, "green tea extract group" that ingests a high fat, high sucrose diet and green tea extract, high fat, high sucrose The food was divided into 5 groups: a “DADS group” for taking a combination of food and DADS, and a “green tea extract + DADS group” for taking a high fat and high sucrose diet, a green tea extract and DADS together. Subsequently, each group of mice was given each feed at 4 g / day and was reared for 10 weeks with free drinking water.
 その後、10時間絶食後イソフルラン麻酔下で、腹部大動脈採血により屠殺した。屠殺まで1週間おきに体重及び摂食量を測定した。 Thereafter, the mice were killed by blood sampling of the abdominal aorta under isoflurane anesthesia after fasting for 10 hours. Body weight and food intake were measured every other week until sacrifice.
 緑茶抽出物は次のようにして調製した。まず、やぶきた種の茶葉を蒸し葉乾燥して得られた、やぶきた乾燥茶葉をミルで5mm程度に粉砕した。続いて、粉砕した茶葉にその20倍量(w/w)の70℃の温水を加えた。70±2℃で10分間撹拌後、100メッシュの金網で固液分離して抽出液を得た。続いて、抽出液を700×gで10分間遠心分離し、上清を回収した。続いて、回収した上清を真空凍結乾燥機(型式「FZ-12CS」、LABCONCO社製)で処理してフリーズドライ後、粉末の緑茶抽出物を得た。粉末の緑茶抽出物は、11.9質量%のEGCGを含有していた。下記表1に、調製した緑茶抽出物(粉末)の成分分析の結果を示す。 Green tea extract was prepared as follows. First, dried Yabukita tea leaves obtained by steaming dried Yabukita tea leaves were pulverized to about 5 mm with a mill. Subsequently, 20 times (w / w) of 70 ° C. warm water was added to the ground tea leaves. After stirring at 70 ± 2 ° C. for 10 minutes, solid-liquid separation was performed with a 100-mesh wire mesh to obtain an extract. Subsequently, the extract was centrifuged at 700 × g for 10 minutes, and the supernatant was collected. Subsequently, the recovered supernatant was treated with a vacuum freeze dryer (model “FZ-12CS”, manufactured by LABCONCO) and freeze-dried to obtain a powdery green tea extract. The powdered green tea extract contained 11.9% by weight of EGCG. Table 1 below shows the results of component analysis of the prepared green tea extract (powder).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 調製した緑茶抽出物を、「緑茶抽出物群」及び「緑茶抽出物+DADS群」の飼料に0.1質量%となるように添加した。また、DADSを、「DADS群」及び「緑茶抽出物+DADS群」の飼料に0.0189g/kg飼料となるように添加した。下記表2に各群の飼料の組成を示す。 The prepared green tea extract was added to the feed of “green tea extract group” and “green tea extract + DADS group” so as to be 0.1% by mass. In addition, DADS was added to the feed of “DADS group” and “green tea extract + DADS group” so as to be 0.0189 g / kg feed. Table 2 below shows the composition of the feed of each group.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 図1(a)は、各群のマウスの体重の推移を測定した結果を示すグラフである。本実験例及び以下の実験例において、実験結果の統計処理にはTukey’s testを用い、p値0.05未満を有意とした。 FIG. 1 (a) is a graph showing the results of measuring the change in body weight of mice in each group. In this experimental example and the following experimental examples, Tukey's test was used for statistical processing of the experimental results, and a p value of less than 0.05 was considered significant.
 その結果、緑茶抽出物群、DADS群では、HF/HS食によって誘導される体重の増加への有意な影響は認められなかった。これに対し、緑茶抽出物及びDADSを併用して摂取させた緑茶抽出物+DADS群では、HF/HS食によって誘導される体重の増加が有意に抑制されたことが明らかとなった。 As a result, in the green tea extract group and the DADS group, no significant effect on the weight increase induced by the HF / HS diet was observed. On the other hand, it was revealed that the increase in body weight induced by the HF / HS diet was significantly suppressed in the green tea extract + DADS group ingested in combination with the green tea extract and DADS.
 図1(b)は、各群のマウスのカロリー摂取量の推移を測定した結果を示すグラフである。その結果、いずれの群のマウスも、カロリー摂取量は同程度であることが明らかとなった。なお、対照群のカロリー摂取量が低いのは、通常食を与えたためである。 FIG. 1 (b) is a graph showing the results of measuring changes in caloric intake of mice in each group. As a result, it was clarified that the caloric intake was similar in all groups of mice. The reason why the calorie intake of the control group is low is that a normal diet was given.
 以上の結果より、緑茶抽出物及びDADSを併用摂取させることにより、抗肥満作用が奏されることが明らかとなった。 From the above results, it was clarified that anti-obesity action was exhibited by ingesting the green tea extract and DADS together.
[実験例2]
(緑茶抽出物及びDADSの併用摂取による体脂肪蓄積抑制作用)
 実験例1で屠殺した各群のマウスから、白色脂肪組織、腎臓周辺脂肪組織及び睾丸周辺脂肪組織を摘出し、それぞれ質量を測定した。図2(a)は、白色脂肪組織の質量を測定した結果を示すグラフである。図2(b)は、腎臓周辺脂肪組織の質量を測定した結果を示すグラフである。図2(c)は、睾丸周辺脂肪組織の質量を測定した結果を示すグラフである。
[Experiment 2]
(Inhibition of body fat accumulation by combined use of green tea extract and DADS)
From each group of mice sacrificed in Experimental Example 1, white adipose tissue, kidney peripheral adipose tissue, and testicular periphery adipose tissue were extracted and their masses were measured. Fig.2 (a) is a graph which shows the result of having measured the mass of the white adipose tissue. FIG.2 (b) is a graph which shows the result of having measured the mass of the kidney periphery fat tissue. FIG.2 (c) is a graph which shows the result of having measured the mass of the testicular periphery fat tissue.
 その結果、緑茶抽出物群、DADS群では、HF/HS食によって誘導される体脂肪の蓄積に対する有意な影響は認められなかった。これに対し、緑茶抽出物及びDADSを併用して摂取させた緑茶抽出物+DADS群では、HF/HS食によって誘導される体脂肪の蓄積が有意に抑制されたことが明らかとなった。 As a result, the green tea extract group and the DADS group showed no significant effect on the accumulation of body fat induced by the HF / HS diet. In contrast, in the green tea extract + DADS group ingested in combination with the green tea extract and DADS, it was revealed that the accumulation of body fat induced by the HF / HS diet was significantly suppressed.
[実験例3]
(緑茶抽出物及びDADSの併用摂取による中性脂肪低下作用)
 実験例1で屠殺した各群のマウスから採血した血液を37℃で2時間静置して凝固させた後、4℃、2,000×gで15分間遠心して血清を採取した。続いて、得られた血清中の中性脂肪を、市販のトリグリセリド測定キット(和光純薬工業社製)を用いて測定した。また、実験例1で各群のマウスから採取した肝臓組織中の中性脂肪を、市販のトリグリセリド測定キット(和光純薬工業社製)を用いて測定した。
[Experiment 3]
(Triglyceride lowering effect by combined use of green tea extract and DADS)
Blood collected from each group of mice sacrificed in Experimental Example 1 was allowed to stand at 37 ° C. for 2 hours to clot, and then centrifuged at 4 ° C. and 2,000 × g for 15 minutes to collect serum. Subsequently, the neutral fat in the obtained serum was measured using a commercially available triglyceride measurement kit (manufactured by Wako Pure Chemical Industries, Ltd.). Further, the neutral fat in the liver tissue collected from each group of mice in Experimental Example 1 was measured using a commercially available triglyceride measurement kit (manufactured by Wako Pure Chemical Industries, Ltd.).
 図3(a)は、各群のマウスの血清中のトリグリセリドの測定結果を示すグラフである。また、図3(b)は、各群のマウスの肝臓組織中のトリグリセリドの測定結果を示すグラフである。 FIG. 3 (a) is a graph showing the measurement results of triglycerides in the serum of each group of mice. Moreover, FIG.3 (b) is a graph which shows the measurement result of the triglyceride in the liver tissue of the mouse | mouth of each group.
 その結果、緑茶抽出物群、DADS群では、HF/HS食によって誘導される中性脂肪の増加に対する有意な影響は認められなかった。これに対し、緑茶抽出物及びDADSを併用して摂取させた緑茶抽出物+DADS群では、HF/HS食によって誘導される中性脂肪の増加が有意に抑制されたことが明らかとなった。 As a result, in the green tea extract group and the DADS group, there was no significant effect on the increase in neutral fat induced by the HF / HS diet. On the other hand, in the green tea extract + DADS group ingested in combination with the green tea extract and DADS, it was revealed that the increase in neutral fat induced by the HF / HS diet was significantly suppressed.
[実験例4]
(緑茶抽出物及びDADSの併用摂取による血清コレステロール低下作用)
 実験例3で調製した各群のマウスの血清中の総コレステロールを、市販のコレステロール測定キット(和光純薬工業社製)を用いて測定した。
[Experimental Example 4]
(Serum cholesterol lowering effect by combined use of green tea extract and DADS)
Total cholesterol in the serum of each group of mice prepared in Experimental Example 3 was measured using a commercially available cholesterol measurement kit (Wako Pure Chemical Industries, Ltd.).
 図4は、各群のマウスの血清中のコレステロールの測定結果を示すグラフである。その結果、緑茶抽出物群、DADS群では、HF/HS食によって誘導される血清コレステロールの増加に対する有意な影響は認められなかった。これに対し、緑茶抽出物及びDADSを併用して摂取させた緑茶抽出物+DADS群では、HF/HS食によって誘導される血清コレステロールの増加が有意に抑制されたことが明らかとなった。 FIG. 4 is a graph showing the measurement results of cholesterol in the serum of each group of mice. As a result, in the green tea extract group and the DADS group, there was no significant effect on the increase in serum cholesterol induced by the HF / HS diet. In contrast, it was revealed that the increase in serum cholesterol induced by the HF / HS diet was significantly suppressed in the green tea extract + DADS group ingested in combination with the green tea extract and DADS.
[実験例5]
(緑茶抽出物及びDADSの併用摂取による脂質代謝関連遺伝子の発現に対する効果)
 実験例1で屠殺した各群のマウスから採取した肝臓組織からcDNAを調製し、リアルタイムPCRにより、下記表3に示す各脂質代謝関連タンパク質をコードする遺伝子のmRNAの発現量を測定した。表3には、各遺伝子のPCRに用いたプライマーの塩基配列の配列番号も示す。
[Experimental Example 5]
(Effects of combined use of green tea extract and DADS on expression of genes related to lipid metabolism)
CDNA was prepared from liver tissue collected from each group of mice sacrificed in Experimental Example 1, and the expression level of mRNA of each gene encoding each lipid metabolism-related protein shown in Table 3 was measured by real-time PCR. Table 3 also shows the sequence numbers of the base sequences of the primers used for PCR of each gene.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 ここで、SREBP-1cは、脂肪酸制御に関わるタンパク質である。また、ACC1は、脂肪酸合成と脂肪酸β酸化の制御に関わる酵素である。また、FASは、マロニルCoAとアセチルCoAから脂肪酸を合成する複活性ドメイン酵素である。また、SCD1は、飽和脂肪酸を不飽和脂肪酸へ変換する酵素である。また、ACOX1は脂肪酸β酸化系酵素である。また、RXRα、RXRβ及びRXRγは、それぞれ、糖・脂質代謝に関与する種々の標的遺伝子を調節している転写因子であるperoxisome proliferator-activated receptor alpha(PPAR)とヘテロ二量体を形成し、リガンド誘導性の転写因子として機能する核内受容体である。 Here, SREBP-1c is a protein involved in fatty acid control. ACC1 is an enzyme involved in the control of fatty acid synthesis and fatty acid β oxidation. FAS is a multi-active domain enzyme that synthesizes fatty acids from malonyl CoA and acetyl CoA. SCD1 is an enzyme that converts saturated fatty acids into unsaturated fatty acids. ACOX1 is a fatty acid β-oxidizing enzyme. RXRα, RXRβ, and RXRγ each form a heterodimer with peroxisome proliferator-activated receptor alpha (PPAR), which is a transcription factor that regulates various target genes involved in sugar / lipid metabolism. It is a nuclear receptor that functions as an inducible transcription factor.
 図5(a)~(h)は、それぞれ、表3に示す各脂質代謝関連タンパク質をコードする遺伝子のmRNAの発現量を測定した結果を示すグラフである。その結果、緑茶抽出物群、DADS群では、HF/HS食によって誘導される脂質代謝関連遺伝子発現の変化に対する有意な影響は認められなかった。これに対し、緑茶抽出物及びDADSを併用して摂取させた緑茶抽出物+DADS群では、HF/HS食によって誘導される脂質代謝関連遺伝子発現の変化を有意に抑制することが明らかとなった。すなわち、HF/HS食により発現が上昇する脂質代謝関連遺伝子の発現変動を抑制し、HF/HS食により発現が低下する脂質代謝関連遺伝子の発現変動を抑制することが明らかとなった。 FIGS. 5 (a) to 5 (h) are graphs showing the results of measuring the expression levels of mRNAs of genes encoding the lipid metabolism-related proteins shown in Table 3, respectively. As a result, in the green tea extract group and the DADS group, no significant effect on changes in lipid metabolism-related gene expression induced by the HF / HS diet was observed. On the other hand, it was revealed that the change in lipid metabolism-related gene expression induced by the HF / HS diet was significantly suppressed in the green tea extract + DADS group ingested in combination with the green tea extract and DADS. That is, it became clear that the expression variation of the lipid metabolism-related gene whose expression is increased by the HF / HS diet is suppressed, and the expression variation of the lipid metabolism-related gene whose expression is decreased by the HF / HS diet is suppressed.
 この結果から、緑茶抽出物及びDADSを併用して摂取させることにより、HF/HS食により誘導される脂質代謝関連遺伝子の発現変動を抑制し、脂質代謝が改善されることが明らかになった。 From this result, it was clarified that, when ingested in combination with green tea extract and DADS, the expression change of lipid metabolism-related genes induced by HF / HS diet is suppressed, and lipid metabolism is improved.
[実験例6]
(緑茶抽出物及びDADSの併用摂取による、白色脂肪組織における脂質代謝関連遺伝子の発現に対する効果)
 実験例1で屠殺した各群のマウスから採取した白色脂肪組織からcDNAを調製し、リアルタイムPCRにより、下記表4に示す各脂質代謝関連タンパク質をコードする遺伝子のmRNAの発現量を測定した。表4には、各遺伝子のPCRに用いたプライマーの塩基配列の配列番号も示す。
[Experimental Example 6]
(Effects of combined use of green tea extract and DADS on expression of lipid metabolism-related genes in white adipose tissue)
CDNA was prepared from white adipose tissue collected from each group of mice sacrificed in Experimental Example 1, and the expression level of mRNA of each gene encoding each lipid metabolism-related protein shown in Table 4 was measured by real-time PCR. Table 4 also shows the SEQ ID NOs of the base sequences of the primers used for PCR of each gene.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 ここで、PGC1αはPPARの転写調節因子である。エネルギー代謝とミトコンドリアのバイオジェネシスに関与する様々な遺伝子の発現を促進し、また、脂質分解に関わる。また、PPARγ及びPPARδは、糖・脂質代謝に関与する種々の標的遺伝子を調節している転写因子である。また、UCP1及びUCP2は、PPARの標的遺伝子にコードされるタンパク質である。ミトコンドリア内膜での酸化的リン酸化反応を脱共役させ、エネルギーを熱として散逸する機能を持つ。UCP1は褐色脂肪細胞に多く存在し、UCP2は白色脂肪細胞、骨格筋、脾臓、小腸等に存在する。また、CPT1αは脂質分解に関わる酵素である。また、RXRα、RXRβ及びRXRγは上述した通りである。 Here, PGC1α is a transcriptional regulator of PPAR. It promotes the expression of various genes involved in energy metabolism and mitochondrial biogenesis, and is also involved in lipolysis. PPARγ and PPARδ are transcription factors that regulate various target genes involved in sugar / lipid metabolism. UCP1 and UCP2 are proteins encoded by PPAR target genes. Uncouples oxidative phosphorylation in the inner mitochondrial membrane and dissipates energy as heat. UCP1 is abundant in brown adipocytes, and UCP2 is present in white adipocytes, skeletal muscle, spleen, small intestine and the like. CPT1α is an enzyme involved in lipolysis. RXRα, RXRβ, and RXRγ are as described above.
 図6(a)~(i)は、それぞれ、表4に示す各脂質代謝関連タンパク質をコードする遺伝子のmRNAの発現量を測定した結果を示すグラフである。その結果、緑茶抽出物群、DADS群では、HF/HS食によって誘導される、白色脂肪組織における脂質代謝関連遺伝子発現の低下に対する有意な影響は認められなかった。これに対し、緑茶抽出物及びDADSを併用して摂取させた緑茶抽出物+DADS群では、HF/HS食によって誘導される、白色脂肪組織における脂質代謝関連遺伝子発現の低下を有意に抑制することが明らかとなった。 6 (a) to 6 (i) are graphs showing the results of measuring the expression level of the mRNA of the gene encoding each lipid metabolism-related protein shown in Table 4, respectively. As a result, in the green tea extract group and the DADS group, there was no significant effect on the decrease in lipid metabolism-related gene expression in white adipose tissue induced by the HF / HS diet. In contrast, in the green tea extract + DADS group ingested in combination with the green tea extract and DADS, the decrease in lipid metabolism-related gene expression in white adipose tissue induced by the HF / HS diet can be significantly suppressed. It became clear.
 特に、UCP1は、脂肪の燃焼に直接関与するタンパク質であり、UCP2にも同様の機能がある。このため、緑茶抽出物及びDADSの併用がこれらのタンパク質の発現低下を有意に抑制することは、緑茶抽出物及びDADSの併用が直接的に脂質代謝を改善することを示す。 In particular, UCP1 is a protein directly involved in fat burning, and UCP2 has a similar function. For this reason, the combined use of green tea extract and DADS significantly suppresses the decrease in the expression of these proteins indicates that the combined use of green tea extract and DADS directly improves lipid metabolism.
[実験例7]
(緑茶抽出物及びDADSの併用摂取による、腎臓周辺脂肪組織織における脂質代謝関連遺伝子の発現に対する効果)
 実験例1で屠殺した各群のマウスから採取した腎臓周辺脂肪組織からcDNAを調製し、リアルタイムPCRにより、下記表5に示す各脂質代謝関連タンパク質をコードする遺伝子のmRNAの発現量を測定した。表5には、各遺伝子のPCRに用いたプライマーの塩基配列の配列番号も示す。
[Experimental Example 7]
(Effects of combined use of green tea extract and DADS on expression of lipid metabolism-related genes in adipose tissue around the kidney)
CDNA was prepared from the perirenal adipose tissue collected from each group of mice sacrificed in Experimental Example 1, and the expression level of mRNA of a gene encoding each lipid metabolism-related protein shown in Table 5 below was measured by real-time PCR. Table 5 also shows the SEQ ID NOs of the base sequences of the primers used for PCR of each gene.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 ここで、PPARγ、PPARδ、PGC1α、UCP1、UCP2は上述した通りである。また、UCP3は、UCP1及びUCP2と同様にPPARの標的遺伝子にコードされるタンパク質であり、ミトコンドリア内膜での酸化的リン酸化反応を脱共役させ、エネルギーを熱として散逸する機能を持つ。UCP3は、主に骨格筋、心臓等の筋組織に多く存在する。 Here, PPARγ, PPARδ, PGC1α, UCP1, and UCP2 are as described above. UCP3 is a protein encoded by the target gene of PPAR, like UCP1 and UCP2, and has a function of uncoupling oxidative phosphorylation in the inner mitochondrial membrane and dissipating energy as heat. UCP3 is mainly present in muscle tissues such as skeletal muscle and heart.
 図7(a)~(f)は、それぞれ、表5に示す各脂質代謝関連タンパク質をコードする遺伝子のmRNAの発現量を測定した結果を示すグラフである。その結果、緑茶抽出物群、DADS群では、HF/HS食によって誘導される、腎臓周辺脂肪組織における脂質代謝関連遺伝子発現の低下に対する有意な影響は認められなかった。これに対し、緑茶抽出物及びDADSを併用して摂取させた緑茶抽出物+DADS群では、HF/HS食によって誘導される、腎臓周辺脂肪組織における脂質代謝関連遺伝子発現の低下を有意に抑制することが明らかとなった。 FIGS. 7 (a) to (f) are graphs showing the results of measuring the mRNA expression levels of the genes encoding the lipid metabolism-related proteins shown in Table 5, respectively. As a result, in the green tea extract group and the DADS group, there was no significant effect on the decrease in the expression of genes related to lipid metabolism in the perirenal adipose tissue induced by the HF / HS diet. In contrast, in the green tea extract + DADS group ingested in combination with the green tea extract and DADS, the decrease in the expression of lipid metabolism-related genes in the adipose tissue around the kidney induced by the HF / HS diet is significantly suppressed. Became clear.
[実験例8]
(緑茶抽出物及びDADSの併用摂取による、褐色脂肪組織における脂質代謝関連遺伝子の発現に対する効果)
 実験例1で屠殺した各群のマウスから採取した褐色脂肪組織からcDNAを調製し、リアルタイムPCRにより、下記表6に示す各脂質代謝関連タンパク質をコードする遺伝子のmRNAの発現量を測定した。表6には、各遺伝子のPCRに用いたプライマーの塩基配列の配列番号も示す。
[Experimental Example 8]
(Effects of combined use of green tea extract and DADS on expression of lipid metabolism-related genes in brown adipose tissue)
CDNA was prepared from the brown adipose tissue collected from each group of mice sacrificed in Experimental Example 1, and the expression level of mRNA of the gene encoding each lipid metabolism-related protein shown in Table 6 below was measured by real-time PCR. Table 6 also shows the sequence numbers of the base sequences of the primers used for PCR of each gene.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 ここで、UCP1、UCP2、UCP3、PGC1α、PPARγ、PPARδ、CPT1α、RXRα及びRXRβは上述した通りである。また、CD36は、血小板、単核食細胞、脂肪細胞、肝細胞、筋細胞及び一部の上皮に存在する膜糖タンパク質であり、脂肪酸輸送に関与する。 Here, UCP1, UCP2, UCP3, PGC1α, PPARγ, PPARδ, CPT1α, RXRα and RXRβ are as described above. CD36 is a membrane glycoprotein present in platelets, mononuclear phagocytes, adipocytes, hepatocytes, muscle cells and some epithelia, and is involved in fatty acid transport.
 図8(a)~(j)は、それぞれ、表6に示す各脂質代謝関連タンパク質をコードする遺伝子のmRNAの発現量を測定した結果を示すグラフである。その結果、緑茶抽出物群、DADS群では、HF/HS食によって誘導される、褐色脂肪組織における脂質代謝関連遺伝子発現の低下に対する有意な影響は認められなかった。これに対し、緑茶抽出物及びDADSを併用して摂取させた緑茶抽出物+DADS群では、HF/HS食によって誘導される、褐色脂肪組織における脂質代謝関連遺伝子発現の低下を有意に抑制する傾向があることが明らかとなった。 8 (a) to 8 (j) are graphs showing the results of measuring the expression level of the mRNA of the gene encoding each lipid metabolism-related protein shown in Table 6, respectively. As a result, in the green tea extract group and the DADS group, there was no significant effect on the decrease in lipid metabolism-related gene expression in brown adipose tissue induced by the HF / HS diet. In contrast, in the green tea extract + DADS group ingested in combination with the green tea extract and DADS, there is a tendency to significantly suppress the decrease in lipid metabolism-related gene expression in brown adipose tissue induced by the HF / HS diet. It became clear that there was.
 特に、緑茶抽出物及びDADSの併用により、脂肪燃焼に直接関与するUCP1の発現が有意に増加することが明らかとなった。この結果は、緑茶抽出物及びDADSの併用が直接的に脂質代謝を改善することを示す。 In particular, it was revealed that the combined use of green tea extract and DADS significantly increased the expression of UCP1 directly involved in fat burning. This result indicates that the combined use of green tea extract and DADS directly improves lipid metabolism.
[実験例9]
(緑茶抽出物及びDADSの併用摂取による、骨格筋における脂質代謝関連遺伝子の発現に対する効果)
 実験例1で屠殺した各群のマウスから採取した骨格筋からcDNAを調製し、リアルタイムPCRにより、下記表7に示す各脂質代謝関連タンパク質をコードする遺伝子のmRNAの発現量を測定した。表7には、各遺伝子のPCRに用いたプライマーの塩基配列の配列番号も示す。
[Experimental Example 9]
(Effects of combined use of green tea extract and DADS on expression of lipid metabolism-related genes in skeletal muscle)
CDNA was prepared from the skeletal muscle collected from each group of mice sacrificed in Experimental Example 1, and the expression level of mRNA of the gene encoding each lipid metabolism-related protein shown in Table 7 below was measured by real-time PCR. Table 7 also shows the sequence numbers of the base sequences of the primers used for PCR of each gene.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 ここで、UCP2、UCP3、PGC1α及びCD36は上述した通りである。また、LPLは、脂肪組織等で合成・分泌され、毛細血管の血管内皮細胞表面に存在する酵素である。LPLは、細胞外で血液中の中性脂肪を遊離脂肪酸及びグリセロールに分解し、遊離脂肪酸を細胞内に取り込ませる機能を有する。また、PDK4はピルビン酸からのアセチルCoAの合成を阻害することで細胞内でのエネルギー源を糖質から脂質へと変換する酵素である。 Here, UCP2, UCP3, PGC1α and CD36 are as described above. LPL is an enzyme that is synthesized and secreted by adipose tissue or the like and is present on the surface of vascular endothelial cells of capillaries. LPL has a function of degrading neutral fat in blood outside the cell into free fatty acid and glycerol and taking the free fatty acid into the cell. PDK4 is an enzyme that converts the intracellular energy source from carbohydrates to lipids by inhibiting the synthesis of acetyl-CoA from pyruvic acid.
 図9(a)~(f)は、それぞれ、表7に示す各脂質代謝関連タンパク質をコードする遺伝子のmRNAの発現量を測定した結果を示すグラフである。その結果、緑茶抽出物群、DADS群では、骨格筋における脂質代謝関連遺伝子発現の変動に対する有意な影響は認められなかった。これに対し、緑茶抽出物及びDADSを併用して摂取させた緑茶抽出物+DADS群では、骨格筋における脂質代謝関連遺伝子の発現を有意に上昇させることが明らかとなった。 FIGS. 9 (a) to 9 (f) are graphs showing the results of measuring the expression level of mRNA of genes encoding the lipid metabolism-related proteins shown in Table 7, respectively. As a result, in the green tea extract group and the DADS group, there was no significant effect on changes in lipid metabolism-related gene expression in skeletal muscle. On the other hand, it was revealed that the expression of lipid metabolism-related genes in skeletal muscle was significantly increased in the green tea extract + DADS group ingested in combination with the green tea extract and DADS.
[実験例10]
(緑茶抽出物及びDADSの併用摂取による血糖値上昇抑制効果)
 実験例3で調製した各群のマウスの血清中のグルコース濃度(血糖値)を、市販のグルコース測定キット(和光純薬工業社製)を用いて測定した。
[Experimental Example 10]
(Inhibition of blood glucose level increase by combined use of green tea extract and DADS)
The glucose concentration (blood glucose level) in the serum of each group of mice prepared in Experimental Example 3 was measured using a commercially available glucose measurement kit (Wako Pure Chemical Industries, Ltd.).
 図10は、各群のマウスの血清中のグルコース濃度(血糖値)の測定結果を示すグラフである。その結果、緑茶抽出物群、DADS群では、HF/HS食によって誘導される血糖値の上昇に対する有意な影響は認められなかった。これに対し、緑茶抽出物及びDADSを併用して摂取させた緑茶抽出物+DADS群では、HF/HS食によって誘導される血糖値の上昇が有意に抑制されたことが明らかとなった。 FIG. 10 is a graph showing the measurement results of the glucose concentration (blood glucose level) in the serum of each group of mice. As a result, in the green tea extract group and the DADS group, no significant effect on the increase in blood glucose level induced by the HF / HS diet was observed. On the other hand, in the green tea extract + DADS group ingested in combination with the green tea extract and DADS, it was revealed that the increase in blood glucose level induced by the HF / HS diet was significantly suppressed.
[実験例11]
(緑茶抽出物及びDADSの併用摂取による血清遊離脂肪酸低下作用)
 実験例3で調製した各群のマウスの血清中の遊離脂肪酸濃度を、市販の遊離脂肪酸測定キット(和光純薬工業社製)を用いて測定した。
[Experimental Example 11]
(Serum free fatty acid lowering effect by combined use of green tea extract and DADS)
The free fatty acid concentration in the serum of each group of mice prepared in Experimental Example 3 was measured using a commercially available free fatty acid measurement kit (Wako Pure Chemical Industries, Ltd.).
 図11は、各群のマウスの血清中の遊離脂肪酸の測定結果を示すグラフである。その結果、緑茶抽出物群、DADS群では、血清中の遊離脂肪酸濃度に対する有意な影響は認められなかった。これに対し、緑茶抽出物及びDADSを併用して摂取させた緑茶抽出物+DADS群では、血清中の遊離脂肪酸濃度が有意に低下したことが明らかとなった。 FIG. 11 is a graph showing the measurement results of free fatty acids in the serum of each group of mice. As a result, in the green tea extract group and the DADS group, no significant effect on the free fatty acid concentration in serum was observed. On the other hand, in the green tea extract + DADS group ingested in combination with the green tea extract and DADS, it was revealed that the free fatty acid concentration in the serum was significantly reduced.
[実験例12]
(緑茶抽出物及びDADSの併用摂取によるインスリン抵抗性改善効果)
 実験例3で調製した各群のマウスの血清中のインスリン濃度をELISA法により測定した。また、測定したインスリン濃度と、実験例10で測定した血糖値に基づいて、インスリン抵抗性の指標であるHOMA-IR値を算出した。HOMA-IR値は、下記式(F1)にしたがって算出した。
 HOMA-IR値=(空腹時の血中インスリン濃度(μU/mL)×空腹時血糖値(mg/dL))/405 …(F1)
[Experimental example 12]
(Insulin resistance improvement effect by combined use of green tea extract and DADS)
The insulin concentration in the serum of each group of mice prepared in Experimental Example 3 was measured by ELISA. Further, based on the measured insulin concentration and the blood glucose level measured in Experimental Example 10, a HOMA-IR value that is an index of insulin resistance was calculated. The HOMA-IR value was calculated according to the following formula (F1).
HOMA-IR value = (fasting blood insulin concentration (μU / mL) × fasting blood glucose level (mg / dL)) / 405 (F1)
 図12(a)は、各群のマウスの血中インスリン濃度の測定結果を示すグラフである。その結果、緑茶抽出物群、DADS群では、HF/HS食によって誘導される血中インスリン濃度の上昇に対する有意な影響は認められなかった。これに対し、緑茶抽出物及びDADSを併用して摂取させた緑茶抽出物+DADS群では、HF/HS食によって誘導される血中インスリン濃度の上昇が有意に抑制されたことが明らかとなった。なお、血中インスリン濃度の上昇は、インスリンの感受性が低下することにより生じる。 FIG. 12 (a) is a graph showing the measurement results of blood insulin concentration in each group of mice. As a result, in the green tea extract group and the DADS group, there was no significant effect on the increase in blood insulin concentration induced by the HF / HS diet. On the other hand, in the green tea extract + DADS group ingested in combination with the green tea extract and DADS, it was revealed that the increase in blood insulin concentration induced by the HF / HS diet was significantly suppressed. The increase in blood insulin concentration is caused by a decrease in insulin sensitivity.
 また、図12(b)は、各群のマウスのHOMA-IR値を示すグラフである。HOMA-IR値が高いことは、インスリン抵抗性が高いこと、すなわちインスリンの感受性が低いことを示す。 FIG. 12 (b) is a graph showing the HOMA-IR value of each group of mice. A high HOMA-IR value indicates that insulin resistance is high, that is, insulin sensitivity is low.
 その結果、緑茶抽出物群、DADS群では、HF/HS食によるインスリン抵抗性の上昇に対する有意な影響は認められなかった。これに対し、緑茶抽出物及びDADSを併用して摂取させた緑茶抽出物+DADS群では、HF/HS食によるインスリン抵抗性の上昇が有意に改善したことが明らかとなった。 As a result, in the green tea extract group and the DADS group, there was no significant effect on the increase in insulin resistance due to the HF / HS diet. In contrast, in the green tea extract + DADS group ingested in combination with the green tea extract and DADS, it was revealed that the increase in insulin resistance due to the HF / HS diet was significantly improved.
[実験例13]
(緑茶抽出物及びDADSの併用摂取による、白色脂肪組織における炎症関連遺伝子の発現抑制効果)
 脂肪組織における慢性的な炎症が肥満の一因であるといわれている。そこで、実験例1で屠殺した各群のマウスから採取した白色脂肪組織からcDNAを調製し、リアルタイムPCRにより、炎症関連タンパク質であるmonocyte chemotactic protein 1(MCP1)をコードする遺伝子のmRNAの発現量を測定した。プライマーとしては、センスプライマー(配列番号37)及びアンチセンスプライマー(配列番号38)を使用した。MCP1は、各種炎症性疾患において単球及びT細胞の組織浸潤に関与するタンパク質である。
[Experimental Example 13]
(Inhibition of expression of inflammation-related genes in white adipose tissue by combined use of green tea extract and DADS)
Chronic inflammation in adipose tissue is said to contribute to obesity. Therefore, cDNA was prepared from white adipose tissue collected from each group of mice sacrificed in Experimental Example 1, and the mRNA expression level of the gene encoding monocytic chemical protein 1 (MCP1), which is an inflammation-related protein, was determined by real-time PCR. It was measured. As the primer, a sense primer (SEQ ID NO: 37) and an antisense primer (SEQ ID NO: 38) were used. MCP1 is a protein involved in tissue infiltration of monocytes and T cells in various inflammatory diseases.
 図13(a)は、腸間膜脂肪組織におけるMCP1遺伝子の発現を測定した結果を示すグラフである。また、図13(b)は、腎臓周辺脂肪組織におけるMCP1遺伝子の発現を測定した結果を示すグラフである。 FIG. 13 (a) is a graph showing the results of measuring the expression of the MCP1 gene in mesenteric adipose tissue. FIG. 13 (b) is a graph showing the results of measuring the expression of the MCP1 gene in the adipose tissue around the kidney.
 その結果、緑茶抽出物群、DADS群では、HF/HS食によって誘導されるMCP1遺伝子の発現の上昇に対する有意な影響は認められなかった。これに対し、緑茶抽出物及びDADSを併用して摂取させた緑茶抽出物+DADS群では、HF/HS食によって誘導されるMCP1遺伝子の発現の上昇を有意に抑制又は低下させることが明らかとなった。 As a result, in the green tea extract group and the DADS group, there was no significant effect on the increase in expression of the MCP1 gene induced by the HF / HS diet. In contrast, in the green tea extract + DADS group ingested in combination with the green tea extract and DADS, it was revealed that the increase in the expression of the MCP1 gene induced by the HF / HS diet was significantly suppressed or reduced. .
[実験例14]
(緑茶抽出物及びDADSの併用摂取による、肝障害の評価)
 実験例3で調製した各群のマウスの血清中のAspartate Aminotransferase(AST)活性及びAlanine aminotransferase(ALT)活性を市販のキット(和光純薬工業社製)を用いて測定した。AST活性及びALT活性は肝障害の指標である。
[Experimental Example 14]
(Evaluation of liver damage by combined use of green tea extract and DADS)
Aspartate Aminotransferase (AST) activity and Alanine aminotransferase (ALT) activity in the serum of each group of mice prepared in Experimental Example 3 were measured using a commercially available kit (manufactured by Wako Pure Chemical Industries, Ltd.). AST activity and ALT activity are indicators of liver damage.
 図14(a)は、各群のマウスの血清中のAST活性の測定結果を示すグラフである。また、図14(b)は、各群のマウスの血清中のALT活性の測定結果を示すグラフである。 FIG. 14 (a) is a graph showing the measurement results of AST activity in the serum of each group of mice. Moreover, FIG.14 (b) is a graph which shows the measurement result of the ALT activity in the serum of the mouse | mouth of each group.
 その結果、緑茶抽出物群、DADS群では、HF/HS食によって誘導される肝障害に対する有意な影響は認められなかった。これに対し、緑茶抽出物及びDADSを併用して摂取させた緑茶抽出物+DADS群では、HF/HS食によって誘導される肝障害が有意に抑制されたことが明らかとなった。 As a result, in the green tea extract group and the DADS group, there was no significant effect on liver damage induced by the HF / HS diet. In contrast, in the green tea extract + DADS group ingested in combination with the green tea extract and DADS, it was revealed that liver damage induced by the HF / HS diet was significantly suppressed.
[実験例15]
(EGCG及びDADSの併用処理による、脂肪細胞における脂質代謝関連遺伝子の発現に対する効果)
 まず、前駆脂肪細胞株を成熟脂肪細胞に分化させた。具体的には、マウス前駆脂肪細胞株である3T3-L1細胞を、2mLディッシュに1×10個/mLとなるように播種し、37℃、水蒸気飽和した5%CO条件下で培養した。培地には10%ウシ胎児血清(FCS)を添加したダルベッコ改変イーグル培地(DMEM)を用いた。続いて、細胞がコンフルエントの状態になってから48時間後に、培地を、デキサメタゾン(1μM)、インスリン(10μg/mL)、3-イソブチル-1-メチルキサンチン(IBMX、0.5μM)を添加した10%FCS-DMEMに置換した。更に48時間培養後に、培地を、インスリン(10mg/mL)を添加した10%FCS-DMEMに置換した。その後、48時間毎に培地を10%FCS-DMEMに2回置換し、細胞を成熟脂肪細胞へと分化させた。
[Experimental Example 15]
(Effects of combined treatment of EGCG and DADS on expression of lipid metabolism-related genes in adipocytes)
First, the preadipocyte cell line was differentiated into mature adipocytes. Specifically, 3T3-L1 cells, a mouse preadipocyte cell line, were seeded in a 2 mL dish at 1 × 10 5 cells / mL and cultured at 37 ° C. under 5% CO 2 with water vapor saturation. . Dulbecco's modified Eagle medium (DMEM) supplemented with 10% fetal calf serum (FCS) was used as the medium. Subsequently, 48 hours after the cells became confluent, dexamethasone (1 μM), insulin (10 μg / mL), and 3-isobutyl-1-methylxanthine (IBMX, 0.5 μM) were added to the medium. Replaced with% FCS-DMEM. After further incubation for 48 hours, the medium was replaced with 10% FCS-DMEM supplemented with insulin (10 mg / mL). Thereafter, the medium was replaced with 10% FCS-DMEM twice every 48 hours to differentiate the cells into mature adipocytes.
 続いて、成熟脂肪細胞に分化させた3T3-L1細胞に、EGCG(5μM)、DADS(10μM)、又は、EGCG(5μM)及びDADS(10μM)をそれぞれ添加し、24時間培養した。また、EGCGもDADSも添加しなかった細胞を対照に用いた。その後、各細胞をそれぞれ回収してRNAを抽出し、cDNAを合成後、リアルタイムPCRにより下記表8に示す各脂質代謝関連タンパク質をコードする遺伝子のmRNAの発現量を測定した。表8には、各遺伝子のPCRに用いたプライマーの塩基配列の配列番号も示す。 Subsequently, EGCG (5 μM), DADS (10 μM), or EGCG (5 μM) and DADS (10 μM) were added to 3T3-L1 cells differentiated into mature adipocytes, respectively, and cultured for 24 hours. In addition, cells to which neither EGCG nor DADS were added were used as controls. Thereafter, each cell was recovered and RNA was extracted. After synthesizing cDNA, the expression level of mRNA of a gene encoding each lipid metabolism-related protein shown in Table 8 below was measured by real-time PCR. Table 8 also shows the sequence numbers of the base sequences of the primers used for PCR of each gene.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 ここで、PGC1α、PPARγ、LPLは上述した通りである。図15(a)~(c)は、それぞれ、表8に示す各脂質代謝関連タンパク質をコードする遺伝子のmRNAの発現量を測定した結果を示すグラフである。 Here, PGC1α, PPARγ, and LPL are as described above. 15 (a) to 15 (c) are graphs showing the results of measuring the mRNA expression levels of the genes encoding the lipid metabolism-related proteins shown in Table 8, respectively.
 図15中、「EGCG」はEGCGを添加したEGCG群の結果を示し、「DADS」はDADSを添加したDADS群の結果を示し、「EGCG+DADS」はEGCG及びDADSを併用して添加したEGCG+DADS群の結果を示す。 In FIG. 15, “EGCG” indicates the result of the EGCG group to which EGCG was added, “DADS” represents the result of the DADS group to which DADS was added, and “EGCG + DADS” represents the result of the EGCG + DADS group to which EGCG and DADS were added in combination. Results are shown.
 その結果、EGCG群、DADS群では、脂肪細胞における脂質代謝関連遺伝子発現の変化に対する有意な影響は認められなかった。これに対し、EGCG及びDADSを併用して添加したEGCG+DADS群では、脂肪細胞における脂質代謝関連遺伝子の発現が有意に上昇したことが明らかとなった。 As a result, in the EGCG group and the DADS group, no significant effect on the change in the expression of genes related to lipid metabolism in adipocytes was observed. In contrast, in the EGCG + DADS group to which EGCG and DADS were added in combination, it became clear that the expression of lipid metabolism-related genes in adipocytes was significantly increased.
 この結果は、EGCG及びDADSの併用が直接的に脂質代謝を改善することを更に支持するものである。 This result further supports that the combined use of EGCG and DADS directly improves lipid metabolism.
 本発明によれば、メタボリックシンドロームの予防、改善又は治療に有効な組成物を提供することができる。 According to the present invention, it is possible to provide a composition effective for prevention, improvement or treatment of metabolic syndrome.

Claims (7)

  1.  67kDaラミニンレセプター(67LR)アゴニストと、ネギ属植物抽出物中に見出される含硫化合物とを有効成分として含有する、メタボリックシンドロームの予防又は改善用食品組成物。 A food composition for preventing or improving metabolic syndrome, comprising as an active ingredient a 67 kDa laminin receptor (67LR) agonist and a sulfur-containing compound found in an extract of the genus Allium.
  2.  前記ネギ属植物抽出物中に見出される含硫化合物が、アリイン、アリシン、ジアリルジスルフィド、ジアリルトリスルフィド又はジアリルテトラスルフィドを含む、請求項1に記載のメタボリックシンドロームの予防又は改善用食品組成物。 The food composition for preventing or ameliorating metabolic syndrome according to claim 1, wherein the sulfur-containing compound found in the Allium plant extract contains alliin, allicin, diallyl disulfide, diallyl trisulfide or diallyl tetrasulfide.
  3.  前記67LRアゴニストが、エピガロカテキンガレート(EGCG)、ウーロン茶重合ポリフェノール、プロシアニジンC1又はこれらの誘導体を含む、請求項1又は2に記載のメタボリックシンドロームの予防又は改善用食品組成物。 The food composition for preventing or improving metabolic syndrome according to claim 1 or 2, wherein the 67LR agonist comprises epigallocatechin gallate (EGCG), oolong tea polymerized polyphenol, procyanidin C1, or a derivative thereof.
  4.  請求項1~3のいずれか一項に記載の食品組成物をヒト又は動物に摂取させる工程を備える、メタボリックシンドロームの予防又は改善方法(但し、ヒトに対する医療行為を除く。)。 A method for preventing or ameliorating metabolic syndrome, comprising a step of allowing a human or animal to take the food composition according to any one of claims 1 to 3 (however, excluding medical practice for humans).
  5.  67LRアゴニストと、ネギ属植物抽出物中に見出される含硫化合物とを有効成分として含有する、メタボリックシンドロームの予防又は治療用医薬組成物。 A pharmaceutical composition for preventing or treating metabolic syndrome, comprising a 67LR agonist and a sulfur-containing compound found in an onion plant extract as active ingredients.
  6.  前記ネギ属植物抽出物中に見出される含硫化合物が、アリイン、アリシン、ジアリルジスルフィド、ジアリルトリスルフィド又はジアリルテトラスルフィドを含む、請求項5に記載のメタボリックシンドロームの予防又は治療用医薬組成物。 6. The pharmaceutical composition for prevention or treatment of metabolic syndrome according to claim 5, wherein the sulfur-containing compound found in the Allium plant extract contains alliin, allicin, diallyl disulfide, diallyl trisulfide or diallyl tetrasulfide.
  7.  前記67LRアゴニストが、EGCG、ウーロン茶重合ポリフェノール、プロシアニジンC1、これらの誘導体又は67LRアゴニスト抗体を含む、請求項5又は6に記載のメタボリックシンドロームの予防又は治療用医薬組成物。 The pharmaceutical composition for preventing or treating metabolic syndrome according to claim 5 or 6, wherein the 67LR agonist comprises EGCG, oolong tea polymerized polyphenol, procyanidin C1, a derivative thereof or a 67LR agonist antibody.
PCT/JP2018/006916 2017-03-01 2018-02-26 Food composition and medical composition for preventing or alleviating metabolic syndrome WO2018159522A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017038595A JP6967261B2 (en) 2017-03-01 2017-03-01 Food compositions and pharmaceutical compositions for the prevention or improvement of metabolic syndrome
JP2017-038595 2017-03-01

Publications (1)

Publication Number Publication Date
WO2018159522A1 true WO2018159522A1 (en) 2018-09-07

Family

ID=63370900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006916 WO2018159522A1 (en) 2017-03-01 2018-02-26 Food composition and medical composition for preventing or alleviating metabolic syndrome

Country Status (2)

Country Link
JP (1) JP6967261B2 (en)
WO (1) WO2018159522A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6589157B1 (en) * 2019-04-27 2019-10-16 株式会社アクト・フォ Beverages, food compositions, health food compositions, oral compositions, and taste improvers

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006001909A (en) * 2004-06-21 2006-01-05 Suntory Ltd New compound having lipase inhibiting activity
WO2007037438A1 (en) * 2005-09-30 2007-04-05 Fuji Chemical Industry Co., Ltd. Ameliorating agent for metabolic syndrome
US20080131534A1 (en) * 2006-11-15 2008-06-05 Melbrosin International Produktions- Und Vertriebs Gesmbh & Co Kg Use of a plant extract or plant juice
JP2009298742A (en) * 2008-06-16 2009-12-24 Toyobo Co Ltd Life style related disease improving agent
JP2010106001A (en) * 2008-10-31 2010-05-13 Theravalues Corp Ppar activator
JP2011501667A (en) * 2007-10-16 2011-01-13 エグジコール エスエー. Composition for controlling lipid metabolism
JP2011063557A (en) * 2009-09-18 2011-03-31 Lion Corp Ppar activator
JP2012523239A (en) * 2009-04-10 2012-10-04 ウウシィ ハーグ ファーマスーティカルズ,インク. Novel anti-aging agents and methods for identifying them
WO2014208760A1 (en) * 2013-06-27 2014-12-31 国立大学法人九州大学 Anticancer monoclonal antibody and method for producing same
JP2015155383A (en) * 2014-02-19 2015-08-27 株式会社東洋新薬 Receptor expression promotor
WO2017026471A1 (en) * 2015-08-10 2017-02-16 株式会社明治 Composition for ameliorating arterial stiffness
JP2018027935A (en) * 2016-08-10 2018-02-22 国立大学法人九州大学 67kda laminin receptor agonist and use thereof

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006001909A (en) * 2004-06-21 2006-01-05 Suntory Ltd New compound having lipase inhibiting activity
WO2007037438A1 (en) * 2005-09-30 2007-04-05 Fuji Chemical Industry Co., Ltd. Ameliorating agent for metabolic syndrome
US20080131534A1 (en) * 2006-11-15 2008-06-05 Melbrosin International Produktions- Und Vertriebs Gesmbh & Co Kg Use of a plant extract or plant juice
JP2011501667A (en) * 2007-10-16 2011-01-13 エグジコール エスエー. Composition for controlling lipid metabolism
JP2009298742A (en) * 2008-06-16 2009-12-24 Toyobo Co Ltd Life style related disease improving agent
JP2010106001A (en) * 2008-10-31 2010-05-13 Theravalues Corp Ppar activator
JP2012523239A (en) * 2009-04-10 2012-10-04 ウウシィ ハーグ ファーマスーティカルズ,インク. Novel anti-aging agents and methods for identifying them
JP2011063557A (en) * 2009-09-18 2011-03-31 Lion Corp Ppar activator
WO2014208760A1 (en) * 2013-06-27 2014-12-31 国立大学法人九州大学 Anticancer monoclonal antibody and method for producing same
JP2015155383A (en) * 2014-02-19 2015-08-27 株式会社東洋新薬 Receptor expression promotor
WO2017026471A1 (en) * 2015-08-10 2017-02-16 株式会社明治 Composition for ameliorating arterial stiffness
JP2018027935A (en) * 2016-08-10 2018-02-22 国立大学法人九州大学 67kda laminin receptor agonist and use thereof

Also Published As

Publication number Publication date
JP6967261B2 (en) 2021-11-17
JP2018143110A (en) 2018-09-20

Similar Documents

Publication Publication Date Title
Semwal et al. A comprehensive scientific overview of Garcinia cambogia
WO2008023266A2 (en) Kiwi extract
US20200100534A1 (en) Method of reducing weight regain in mammals
Mostafa Effect of green tea and green tea rich with catechin on blood glucose levels, serum lipid profile and liver and kidney functions in diabetic rats
JP2009173652A (en) Neutral fat absorption inhibitor composition comprising black tea extract as active ingredient
JP6161438B2 (en) Fat accumulation inhibitor and / or fat accumulation reducing agent
WO2018159522A1 (en) Food composition and medical composition for preventing or alleviating metabolic syndrome
KR101567573B1 (en) Composition comprising extracts of Codonopsis lanceolata or compounds isolated therefrom for preventing, improving or treating obesity or obesity-related disease
JP6524222B2 (en) Composition for improving muscle function or exercise capacity comprising kilenol or extract of Sieges vecchia herb
US11717502B2 (en) Blood flow improver
KR20170023910A (en) Pharmaceutical Compositions for Prevention or Treatment of nonalcoholic fatty liver disease Comprising Quercetin-3-O-glucoside
JP2007314475A (en) Agent for suppressing triacylglycerol synthesis
KR20150097442A (en) Composition comprising extracts of Codonopsis lanceolata or compounds isolated therefrom for preventing, improving or treating obesity or obesity-related disease
KR20100040270A (en) Novel use of panduratin derivatives or extract of boesenbergia pandurata
US20080279967A1 (en) Composition and method for increasing the metabolism of free fatty acids and facilitating a favorable blood lipid
EP4043022A1 (en) Composition for preventing, ameliorating, or treating metabolic syndromes including obesity, diabetes, hyperlipidemia, and fatty liver
KR20210021333A (en) Anti-obese composition comprising Gymnaster koraiensis
JP2001261569A (en) Antiobestic agent
JP2020535222A (en) Composition for weight control by regulating peptide levels involved in satiety and / or appetite
JP5783552B2 (en) Body fat reducing agent and body fat reducing food
Corrêa et al. Role of tea polyphenols in metabolic syndrome
KR20230056234A (en) A composition for improving metabolic syndrome-related diseases caused by endocrine disruptors comprising cirsium setidens extract
JP5706142B2 (en) Blood glucose lowering agent, visceral fat accumulation inhibitor, TG lowering agent, faecal fat excretion promoter containing ethanol extract of Fuyubodaiju flower as an active ingredient
US20080279968A1 (en) Composition and method for inducing lipolysis and increasing the metabolism of free fatty acids
KR20230101740A (en) A composition for improving, preventing and treating of obesity metabolic disease comprising Rosa multiflora root extract

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761307

Country of ref document: EP

Kind code of ref document: A1