WO2014208760A1 - Anticancer monoclonal antibody and method for producing same - Google Patents

Anticancer monoclonal antibody and method for producing same Download PDF

Info

Publication number
WO2014208760A1
WO2014208760A1 PCT/JP2014/067288 JP2014067288W WO2014208760A1 WO 2014208760 A1 WO2014208760 A1 WO 2014208760A1 JP 2014067288 W JP2014067288 W JP 2014067288W WO 2014208760 A1 WO2014208760 A1 WO 2014208760A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
esm
activity
cells
cell lines
Prior art date
Application number
PCT/JP2014/067288
Other languages
French (fr)
Japanese (ja)
Inventor
立花 宏文
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Publication of WO2014208760A1 publication Critical patent/WO2014208760A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39558Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the present invention relates to a monoclonal antibody, and more particularly to a monoclonal antibody useful for treating cancer, obesity, arteriosclerosis, allergy, inflammation or muscle atrophy, and a method for producing the same.
  • Cancer is a disease that causes one third of the nation to die, and there is a strong demand for the establishment of appropriate treatment.
  • leukemia which is known as a blood cancer
  • ATRA all-trans retinoic acid
  • molecular targeting drugs for BCR / ABL proteins caused by the Philadelphia chromosome. It's getting on.
  • tumors acquire resistance to these drugs and treatment is difficult, and there are still many problems. Therefore, the development of an anticancer agent having a completely different mechanism of action from the past provides a new option for patients whose conventional anticancer agents have become ineffective.
  • the dose-limiting toxicity is different, it can be combined with conventional treatment, and a more effective treatment strategy can be formulated.
  • 67 kDa laminin receptor protein (67 kDa Laminin Receptor, hereinafter also referred to as 67LR) was originally discovered as a cell membrane protein that binds to laminin, which is a major component of the basement membrane (Non-patent Document 1).
  • 67LR is abnormally enhanced in cancer cells (Non-Patent Document 2), and a strong correlation has been observed between its expression and proliferation, invasion, and metastasis (Non-Patent Documents 3 to 4). 9).
  • 67LR is highly expressed in all cancer cells such as breast cancer, stomach cancer, pancreatic cancer, prostate cancer, acute myeloid leukemia, multiple myeloma, bile duct cancer, colon cancer, uterine cancer, and mesothelioma.
  • EGCG Epigallocatechin gallate
  • Non-patent Document 16 Epigallocatechin gallate
  • Non-patent Document 17 The present inventors have clarified that the target molecule on the cell membrane responsible for the anticancer activity of EGCG is a 67 kDa laminin receptor protein (Non-Patent Documents 18 to 21).
  • EGCG is anticancer against cancer cells such as breast cancer, lung cancer, cervical cancer, colon cancer, melanoma, acute myeloid leukemia, multiple myeloma, pancreatic cancer, prostate cancer via 67LR. It has been reported to exert its action (Non-patent Documents 10 to 12, 18 to 21). That is, it has been clarified that EGCG can be a molecular targeting agent for 67LR positive cancer cells. Thus, since EGCG targets 67LR highly expressed in tumors, it has an ideal selective toxicity as a molecular target anticancer agent.
  • EGCG has been shown to exert anticancer activity by binding to the amino acid sequence of 161-170 of 67LR (67LR 161-170 peptide; IPCNNKGAHS).
  • This peptide sequence is EGCG sensing motif [EGCG Sensing Motif (ESM)] (Non-patent Document 22).
  • Epigallocatechin-3-gallate induces cell death in acetic myeloid leukaeemia cells and supportall-transretinotropic acid-induced neutrality.
  • Kumazoe M, Sugihara K, Tsukamoto S, et al 67-kDa laminin receptor increase cGMP to inducement-selective apoptosis. J Clin Invest, 2013; 123: 787-799.
  • Epigallocinchin-3-O-gallate disrupts stress fibers and the contractile ring by reducing myosin regulative light chain resistance. Biochem Biophys Res Commun, 2005; 333: 628-635. Umeda D, Yano S, Yamada K, Tachibana H. Involvement of 67-kDa laminin receptor-mediated myosin phosphatase activation in epoxidativecinction-3 -O-galcological. Biochem Biophys Res Commun, 2008; 371: 172-176. Umeda D, Yano S, Yamada K, Tachibana H. Green tea polyphenol epigallocatechin-3-gallate (EGCG) signaling pathway through 67-kDa laminin receptor.
  • EGCG epigallocatechin-3-gallate
  • an antibody that specifically binds to 67LR and can activate the action of 67LR is expected to be useful for diagnosis and treatment of cancer.
  • a monoclonal antibody that specifically binds to 67LR and can activate the action of 67LR has not been established so far. Therefore, the present invention provides a monoclonal antibody that specifically binds to 67LR and can activate the action of 67LR (in this specification, when expressed as a monoclonal antibody, it also includes a chimeric antigen receptor) and a method for producing the same There is to do.
  • the present inventors prepared a hybridoma by using a partial peptide of 67LR as an immunogen, established a monoclonal antibody-producing hybridoma strain that specifically reacts with 67LR, and cultured the hybridoma strain to obtain the following book. Completed the invention. That is, the present invention relates to the following (1) to (25).
  • ESM EGCG sensing motif
  • the antibody according to any one of (1) to (3) which is a humanized antibody.
  • the antibody according to any one of (1) to (3) which is a canine antibody.
  • the antibody according to any one of (1) to (3) which is a cat antibody.
  • Green tea catechin EGCG has any of the anti-cancer activity, anti-obesity, anti-arteriosclerotic action, anti-allergy, anti-inflammatory or muscular atrophy inhibition physiological activity expressed through 67LR, (1) to (9 The antibody according to any one of 1).
  • the antibody according to any one of (1) to (9) which has an apoptosis-inducing activity by activating acidic sphingomyelinase that directly participates in apoptosis induction of green tea catechin EGCG.
  • An anticancer agent comprising a combination of the antibody according to any one of (1) to (9) and any one of a PDE3 inhibitor, a PDE5 inhibitor, a Shpk1 inhibitor, or a gemcitabine.
  • (21) When combined with a PDE3 inhibitor, PDE5 inhibitor, Shpk1 inhibitor, or gemcitabine, any of anti-cancer activity, anti-obesity, anti-arteriosclerotic effect, anti-allergy, anti-inflammatory, or muscle atrophy inhibiting physiological activity is enhanced Antibody screening method.
  • a method for treating cancer, obesity, arteriosclerosis, allergy, inflammation or muscle atrophy comprising administering the antibody according to any one of (1) to (9) to a subject.
  • the gene of ESM-8 antibody is a group consisting of a human-derived cell line, a hamster-derived cell line, a mouse-derived cell line, an insect-derived cell line, a sugar chain biosynthesis mutant cell line of these cell lines, and Escherichia coli and yeast.
  • the gene of ESM-16 antibody is derived from a human cell line, a hamster cell line, a mouse cell line, an insect cell line, a sugar chain biosynthesis mutant cell line of these cell lines, and a group consisting of E. coli and yeast.
  • the antibody according to any one of (1) to (9), which comprises introducing into a selected host cell, culturing the host cell to express the antibody, and collecting the expressed antibody. how to.
  • an antibody that specifically binds to a 67 kDa laminin receptor protein can be provided.
  • FIG. 1 (a) is a graph showing antibody titers against 67LR 161-170 peptide in serum using sera collected from mice immunized with KLH, KLH, and recombinant 67LR to which 67LR 158-170 peptide is bound as antigens. It is. The horizontal axis shows the immunogen, and the vertical axis shows the absorbance obtained by the ELISA method.
  • FIG. 1 (b) shows the result of measuring the antibody titer by ELISA method for the binding activity of the antibody produced by each hybridoma to 67LR 161-170 peptide after cloning the obtained hybridoma by limiting dilution method. Hybridoma clone no.
  • FIG. 2 shows the results of measurement of anti-67LR 161-170 peptide antibody in the culture supernatant obtained from each hybridoma clone. Hybridoma clone no.
  • the absorbance obtained by the ELISA method is shown on the vertical axis.
  • FIG. 3 is a graph showing the results of measuring the binding of the ESM-8 antibody to the 67LR 161-170 peptide and the control peptide by ELISA.
  • the horizontal axis represents the antibody concentration
  • the vertical axis represents the absorbance obtained by the ELISA method.
  • FIG. 4 is a graph showing the results of measuring the binding of the ESM-16 antibody to the 67LR 161-170 peptide and the control peptide by ELISA.
  • the horizontal axis represents the antibody concentration, and the vertical axis represents the absorbance obtained by the ELISA method.
  • FIG. 5 shows the DNA sequence of the ESM-8 antibody variable region. Leader sequences are in lower case, CDRs are in bold, and FRs are underlined.
  • FIG. 6 shows the DNA sequence of the ESM-16 antibody variable region. Leader sequences are in lower case, CDRs are in bold, and FRs are underlined.
  • FIG. 7 is a graph showing the results of examining the cell growth inhibitory activity of ESM-8 antibody against human acute myeloid leukemia cell line HL60.
  • FIG. 8 shows the results of examining the binding activity of ESM-8 antibody to the cell surface of human acute myeloid leukemia cell line HL60.
  • the horizontal axis indicates the light intensity, and the vertical axis indicates the number of cells.
  • FIG. 9 shows the results of examining the binding activity of the ESM-16 antibody to the cell surface of human multiple myeloma cell line U266.
  • the horizontal axis indicates the light intensity, and the vertical axis indicates the number of cells.
  • FIG. 10 (a) shows the results of measuring the sphingomyelinase activity of the ESM-8 antibody.
  • FIG. 10 (a) shows the results of measuring the sphingomyelinase activity of the ESM-8 antibody.
  • FIG. 10 (a) is a photograph showing the results of TLC
  • FIG. 10 (b) shows the relative sphingomyelinase activity.
  • FIG. 11 shows the results of testing whether the EMS-8 antibody exhibits a cytostatic effect on the human acute myeloid leukemia cell line HL60.
  • the horizontal axis indicates the combination of samples, and the vertical axis indicates the relative number of living cells.
  • FIG. 12 shows the results of examining the cell growth inhibitory activity of the recombinant ESM-8 antibody against human acute myeloid leukemia cell line HL60, human pancreatic cancer cell line PANC-1 and human mesothelioma cell line MESO-4 It is a graph.
  • FIG. 13 shows the results of measuring the sphingomyelinase activity of the recombinant ESM-8 antibody.
  • FIG. 14 shows evaluation of the binding activity of recombinant ESM-8 antibody to the surface of acute myeloid leukemia cell line HL60 cells.
  • FIG. 15 shows the anticancer activity of the recombinant ESM-8 antibody when combined with each inhibitor of PDE3 inhibitor, PDE5 inhibitor and sphingosine kinase. In the figure, + indicates that each inhibitor is used, and-indicates that each inhibitor is not used.
  • the vertical axis shows the relative number of living cells.
  • FIG. 16 shows the anticancer activity of the recombinant ESM-8 antibody in combination with gemcitabine.
  • + indicates that gemcitabine is used, and ⁇ indicates that gemcitabine is not used.
  • the vertical axis shows the relative number of living cells.
  • FIG. 17 is a graph showing the cell proliferation activity of EMS-16 antibody against human multiple myeloma cell U266, mouse melanoma cell line B16 and human pancreatic cancer cell line PANC-1. The number of viable cells is shown on the vertical axis.
  • the 67 kDa laminin receptor protein is a protein discovered as a cell membrane protein that binds to laminin, which is a major component of the basement membrane, specifically the amino acid represented by SEQ ID NO: 1. It means a protein having a sequence.
  • 67LR is abnormally enhanced in cancer cells, and a strong correlation has been observed between its expression and proliferation, invasion, and metastasis. There have been many reports that 67LR is hardly expressed in normal lymphocytes and is highly expressed in leukemia cells.
  • epigallocatechin gallate (hereinafter also referred to as EGCG), which is one of the main catechins contained in green tea, has been reported to have an anticancer activity, and is currently clinically used in patients with chronic lymphocytic leukemia. A test is being conducted. The present inventors have clarified that the target molecule on the cell membrane responsible for the anticancer activity of EGCG is a 67 kDa laminin receptor protein.
  • the monoclonal antibody of the present invention may be any antibody that specifically binds to 67LR, but preferably recognizes a peptide sequence consisting of amino acids 161 to 170 from the N-terminus of 67LR. .
  • the monoclonal antibody of the present invention can be established by a specific known production method.
  • the target molecule on the cell membrane responsible for the anticancer activity of EGCG contained in green tea catechin has been clarified to be a 67 kDa laminin receptor protein
  • the peptide sequence on 67LR to which EGCG binds is represented. It can be used as an immunizing antigen to obtain antibodies.
  • the antibody obtained as described later exhibits anticancer activity.
  • the present invention uses a peptide sequence on a 67 kDa laminin receptor protein molecule to which epigallocatechin gallate in green tea catechin binds as an immunizing antigen, and epigallocatechin gallate in green tea catechin is mediated through a 67 kDa laminin receptor protein.
  • a method for screening an antibody having one or more physiological activities selected from the group consisting of anti-cancer activity, anti-obesity action, anti-arteriosclerosis action, anti-allergic action, anti-inflammatory action and muscle atrophy inhibiting action To do.
  • antibodies can be screened by the following method.
  • Antigens used to produce anti-67LR monoclonal antibodies include cells that produce 67LR or cell fractions thereof, or host cells transformed with DNA encoding 67LR, ie prokaryotic host cells such as E. coli A full-length or partial fragment of cDNA encoding 67LR into a eukaryotic host cell such as an insect cell or a mammalian cell using a known method, and expressed or purified as it is or as a fusion protein; A 67LR partial peptide synthesized using a peptide synthesizer can be used.
  • a peptide consisting of a sequence of 3 or more residues in the peptide sequence consisting of amino acids 161 to 170 from the N-terminal of 67LR can be used, preferably 161 to 170th from the N-terminal of 67LR.
  • the monoclonal antibody of the present invention consists of an amino acid sequence in which one or more amino acids are deleted, substituted, inserted or added in the amino acid sequence constituting the monoclonal antibody, and is substantially the same biology as the monoclonal antibody. Antibodies that have specific activity are also encompassed by the present invention.
  • the number of amino acids to be deleted, substituted, inserted and / or added is one or more, and the number is not particularly limited. However, deletion, substitution, insertion or addition is performed by a well-known technique such as site-directed mutagenesis. It is a number that can be done. For example, the number is 1 to several tens, preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5.
  • deletion, substitution, insertion or addition of one or more amino acid residues in the amino acid sequence constituting the monoclonal antibody means the following. It means that there is a deletion, substitution, insertion or addition of one or more amino acid residues in any and one or more amino acid sequences in the same sequence. Deletions, substitutions, insertions or additions may occur simultaneously.
  • Monoclonal antibodies of the present invention include monoclonal antibody ESM-8 and monoclonal antibody ESM-16. Further, the monoclonal antibody of the present invention may contain a peptide sequence of a part or all of the complementarity determining region of the variable region of the monoclonal antibody ESM-8 or ESM-16.
  • the complementarity determining region of the variable region means three regions, CDR1, CDR2, and CDR3, which are sites that exist in the variable region of an antibody and directly complementarily bind to an antigen.
  • Monoclonal antibodies ESM-8 and ESM-16 can be prepared by the methods described in the Examples described later. Specific examples of the monoclonal antibody of the present invention include the following monoclonal antibodies.
  • the amino acid sequence of the heavy chain variable region includes the amino acid sequence represented by SEQ ID NO: 6 or 22, and / or the amino acid sequence of the light chain variable region includes the amino acid sequence represented by SEQ ID NO: 8 or 24 Monoclonal antibody
  • C a monoclonal antibody in which the amino acid sequence of the heavy chain variable region comprises the amino acid sequence represented by SEQ ID NO: 22 and / or the amino acid sequence of the light chain variable region comprises the amino acid sequence represented by SEQ ID NO: 24
  • the amino acid sequence of CDR of heavy chain variable region includes the amino acid sequence represented by SEQ ID NO: 10, 12, 14 or SEQ ID NO: 26, 28, 30 And / or monoclonal antibody comprising the amino acid sequence of CDR of light chain variable region represented by SEQ ID NO: 16,
  • chimeric antigen receptor comprise a peptide sequence of the variable region.
  • a chimeric antigen receptor is a genetically engineered linkage of a variable region of a light chain and a heavy chain of a monoclonal antibody specific for a tumor antigen and a T cell receptor ⁇ chain. Means a chimeric protein.
  • a chimeric antigen receptor that has been artificially designed to recognize cancer cell surface molecules. It is characterized by a high antitumor effect of T cells into which a gene has been introduced and expressed, and versatility independent of HLA (Human Leukocyte Antigen).
  • HLA Human Leukocyte Antigen
  • the monoclonal antibody of the present invention includes antibodies produced by genetic recombination such as human chimeric antibodies, humanized antibodies, human antibodies or antibody fragments thereof. Recombinant antibodies are particularly preferred for use as therapeutic agents because they have the characteristics of monoclonal antibodies and reduce the heteroantigenicity of humans. These modified antibodies can be produced using known methods.
  • the chimeric antibody includes an antibody in which the variable region and the constant region of the antibody are heterologous to each other. For example, mammals other than humans, for example, the heavy chain of a mouse antibody, the variable region of a light chain and the heavy chain of a human antibody, An antibody consisting of the constant region of the chain can be mentioned. Such an antibody can be obtained by ligating DNA encoding the variable region of a mouse antibody with DNA encoding the constant region of a human antibody, incorporating it into an expression vector, introducing it into a host, and producing it.
  • the monoclonal antibody of the present invention when administered to dogs and cats, is preferably a canine antibody, a canine antibody, a cat antibody, or a cat antibody.
  • “Inuization” is defined as a method of transferring non-canine antigen binding information from a donor antibody to a weaker immunogenic canine antibody acceptor, producing a treatment useful as a therapy in a dog.
  • Catification is defined as a method of transferring non-cat antigen binding information from a donor antibody to a weaker immunogenic cat antibody acceptor to produce a treatment useful as a therapy in a cat.
  • Known methods can be used for producing canine antibodies, canine antibodies, feline antibodies, and feline antibodies.
  • the monoclonal antibodies of the invention can be labeled for detection.
  • Monoclonal antibodies can be labeled by binding radioisotopes, fluorescent agents or enzymes.
  • radioisotope examples include 32 P, 14 C, 125 I, 3 H, and 131 I.
  • fluorescent agent examples include fluorescein and rhodamine.
  • the enzyme examples include various enzymes well known in the art such as alkaline phosphatase, horseradish peroxidase, ⁇ -galactosidase, xanthine oxidase, glucose oxidase or other sugar oxidase or luciferase.
  • the monoclonal antibody of the present invention may be conjugated with a cytotoxin.
  • cytotoxin By binding with a cytotoxin, it becomes possible to direct a toxic agent to the cell expressing the antigen of the monoclonal antibody of the present invention.
  • cytotoxin include Pseudomonas exogenous toxin.
  • the method for binding the radioisotope, the fluorescent agent, the enzyme or the cytotoxin to the monoclonal antibody There is no limitation on the method for binding the radioisotope, the fluorescent agent, the enzyme or the cytotoxin to the monoclonal antibody, and it can be carried out by a conventionally known method.
  • the medicament of the present invention contains the monoclonal antibody of the present invention as an active ingredient.
  • the medicament of the present invention can treat various diseases involving 67LR.
  • Diseases involving 67LR include cancer, obesity, arteriosclerosis, allergy, inflammation and muscle atrophy.
  • cancer breast cancer, stomach cancer, pancreatic cancer, prostate cancer, acute myeloid leukemia, multiple myeloma, bile duct cancer, colon cancer, cervical cancer and 67LR high expression like these cancers Mesothelioma.
  • the monoclonal antibody of the present invention is a melanoma cell line B16 cell in which EGCG exerts an anticancer action via 67LR, acute myeloid leukemia cell line HL60, pancreatic cancer cell line PANC-1, mesothelioma cell line MRSO- 4 exhibits anti-cancer activity.
  • EGCG activates acidic sphingomyelinase to cancer cells and exhibits anticancer activity
  • the monoclonal antibody of the present invention activates acidic sphingomyelinase to cancer cells in the same manner as EGCG.
  • the monoclonal antibody of the present invention exhibits an anticancer activity in a 67LR-dependent manner, like EGCG.
  • the monoclonal antibody of the present invention functions as a 67LR agonist like EGCG, and breast cancer, stomach cancer, pancreatic cancer, which are cancer types in which EGCG exerts an anticancer action via 67LR.
  • antibodies and ESM-16 antibodies can be anticancer agents (Non-Patent Documents 9 to 15).
  • the medicament of the present invention may further contain a PDE3 inhibitor, a PDE5 inhibitor, a sphingosine kinase inhibitor, or gemcitabine.
  • PDE3 inhibitors include, for example, trekinsin, cilostazol (6- [4- (1-cyclohexyl-1H-tetrazol-5-yl) butoxy] -3,4-dihydro-2 (1H) -quinolone, or 6- [4- (1-cyclohexyl-1H-tetrazol-5-yl) butoxy] -3,4-dihydro-2 (1H) -quinolinone) and the like. May be used.
  • Examples of the PDE5 inhibitor include sildenafil, vardenafil, tadalafil, udenafil and the like.
  • Sphingosine kinase inhibitors include, for example, saphingol (L-threo-dihydrosphingosine), N, N-dimethylsphingosine, trimethylsphingosine and analogs and derivatives of sphingosine such as dihydrosphingosine and myriocin.
  • the medicament of the present invention can be administered alone, but usually mixed together with one or more pharmacologically acceptable carriers, and any well known in the technical field of pharmaceutics It is preferably provided as a pharmaceutical preparation produced by the method.
  • administration route examples include oral administration and parenteral administration such as buccal, intratracheal, rectal, subcutaneous, intramuscular and intravenous. In the case of protein preparations, intravenous administration is preferred.
  • administration forms include sprays, capsules, tablets, granules, syrups, emulsions, suppositories, injections, ointments, and tapes.
  • preparations suitable for oral administration include emulsions, syrups, capsules, tablets, powders, and granules.
  • Liquid preparations such as emulsions and syrups include sugars such as water, sucrose, sorbitol and fructose, glycols such as polyethylene glycol and propylene glycol, oils such as sesame oil, olive oil and soybean oil, p- Preservatives such as hydroxybenzoic acid esters, and flavors such as strawberry flavor and peppermint can be used as additives.
  • sugars such as water, sucrose, sorbitol and fructose
  • glycols such as polyethylene glycol and propylene glycol
  • oils such as sesame oil, olive oil and soybean oil
  • p- Preservatives such as hydroxybenzoic acid esters
  • flavors such as strawberry flavor and peppermint can be used as additives.
  • Capsules, tablets, powders, granules, etc. are excipients such as lactose, glucose, sucrose and mannitol, disintegrants such as starch and sodium alginate, lubricants such as magnesium stearate and talc, polyvinyl A binder such as alcohol, hydroxypropylcellulose, and gelatin, a surfactant such as fatty acid ester, and a plasticizer such as glycerin can be used as additives.
  • preparations suitable for parenteral administration include injections, suppositories, and sprays.
  • the injection is prepared using, for example, a carrier made of a salt solution, a glucose solution, or a mixture of both.
  • the suppository is prepared using a carrier such as cacao butter, hydrogenated fat or carboxylic acid.
  • the spray is prepared using a carrier that does not irritate the drug itself or the recipient's oral cavity and airway mucosa, and that disperses the drug as fine particles to facilitate absorption.
  • the carrier include lactose and glycerin.
  • preparations such as aerosols and dry powders are possible.
  • the components exemplified as additives for oral preparations can also be added.
  • the dose or frequency of administration varies depending on the intended therapeutic effect, administration method, treatment period, age, weight, etc., but it is usually preferably 1 to 30 mg / kg as the amount of antibody per adult.
  • the drug used in combination with the antibody is preferably at the same dose or less than the dose when used alone clinically.
  • Non-patent Document 24 Cancer-specific drugs targeting 67LR
  • the medicament of the present invention can be used for breast cancer, stomach cancer, pancreatic cancer, prostate cancer, acute myeloid leukemia, multiple myeloma, bile duct cancer, colon cancer.
  • Cervical mesothelioma cancers that highly express 67LR, tumors targeting 67LR and carriers for accumulating radiation sources, radioisotopes, fluorescent agents, enzymes, cytotoxins, anticancer agents, etc. Diagnosis, sensitivity evaluation, and armed antibody.
  • EGCG not only works directly on cancer cells to exert an anticancer effect, but also activates tumor immunity via 67LR to develop an anticancer effect (Non-patent Document 25). Therefore, since the monoclonal antibody of the present invention has a property as a 67LR ligand, it is expected to be applied as a tumor immunity activator that exhibits anticancer activity against a wide range of cancers by activating tumor immunity in the same manner as EGCG. it can. That is, the medicament of the present invention can be expected to be applied as a tumor immune activator.
  • the monoclonal antibody of the present invention activates acidic sphingomyelinase that is directly involved in the induction of apoptosis of EGCG, it is considered to have an apoptosis-inducing activity. Therefore, the medicament of the present invention can induce apoptosis in cancer cells.
  • EGCG not only has an anti-cancer effect but also an inflammatory reaction inhibitory effect (Non-patent document 26), anti-allergic effect (Non-patent document 27), arteriosclerosis / thromboprophylaxis (Non-patent document 28), and muscle atrophy suppression Because of its action (Non-Patent Document 29), a medicament containing the monoclonal antibody of the present invention showing the same activity as EGCG by binding to the EGCG binding site on the 67LR molecule is an antiallergic agent, antiarteriosclerosis / thrombosis It can be expected to be used as a preventive agent and a muscle atrophy inhibitor.
  • Non-patent Document 30 inhibits glucose uptake caused by insulin via 67LR (Non-patent Document 30), and inhibits release of histamine, which is an adipocyte hypertrophy inducer, via 67LR ( Non-patent document 31) can be expected to be used as a pharmaceutical anti-obesity drug containing the monoclonal antibody of the present invention.
  • the monoclonal antibody of the present invention and the medicament of the present invention can also be used as a diagnostic antibody for discriminating the appropriate person who applies the monoclonal antibody of the present invention.
  • the monoclonal antibody of the present invention specifically binds to 67LR, it can be used for immunological detection, detection and quantification of 67LR. Since the monoclonal antibody of the present invention specifically binds to 67LR, it can be used for discriminating who can apply the monoclonal antibody of the present invention.
  • the medicament of the present invention can be used for treatment of a disease involving 67LR, but it can be determined using the monoclonal antibody of the present invention whether or not the disease to be treated is a disease associated with 67LR. is there.
  • the monoclonal antibody of the present invention and the pharmaceutical agent of the present invention are useful for the treatment of diseases involving 67LR, such as cancer, obesity, arteriosclerosis, allergy, inflammation and muscle atrophy.
  • diseases involving 67LR such as cancer, obesity, arteriosclerosis, allergy, inflammation and muscle atrophy.
  • the present invention provides a method for treating cancer, obesity, arteriosclerosis, allergy, inflammation or muscle atrophy, comprising administering to a subject a monoclonal antibody of the present invention.
  • Example 1 Immunization using recombinant 67LR (r-hLR 1-295 ) and 67LR 158-170
  • Preparation and immunization of immunogens Kanamycin used in the following examples is from Wako Pure Chemical Industries, Ltd., IPTG is Funakoshi Corporation Further, imidazole was purchased from Nacalai Tesque Co., Ltd. and HiTrap Chelating HP column was purchased from GE Healthcare (UK). The ultrasonic disruption of E. coli was performed by Handy Sonic (Tomy Seiko Co., Ltd.).
  • the LB liquid medium was prepared by dissolving Tryptone (BD, USA) 10 g / L, Yeast Extract (BD, USA) 5 g / L, and NaCl (Wako Pure Chemical Industries, Ltd.) 10 g / L in ultrapure water.
  • PBS pH 7.4 is NaCl (Wako Pure Chemical Industries, Ltd.) 8.0 g / L, KCl (Nacalai Tesque Co., Ltd.) 0.2 g / L, Na 2 HPO 4 (Wako Pure Chemical Industries, Ltd.) 1.15 g / L, KH 2 PO 4 (Nacalai Tesque Co., Ltd.) 0.2 g / L was dissolved in ultrapure water.
  • recombinant 67LR (r-hLR 1-295 ) was prepared by the following procedure.
  • One Escherichia coli (pET30a-h67LR-introduced BL21) was inoculated into 18 mL of LB liquid medium containing kanamycin (final concentration: 50 ⁇ g / mL) and cultured overnight at 37 ° C. with shaking.
  • the bacterial cell culture solution was added to two 250 mL LB liquid media and cultured with shaking at 37 ° C. Thereafter, IPTG (final concentration: 1 mM) was added, and cultured with shaking at 37 ° C.
  • E. coli was pelleted by centrifugation at 5000 rpm for 15 minutes, washed with PBS, and the resulting pellet was stored frozen at -20 ° C. The cryopreserved pellet was suspended in a crushing buffer (pH 8.0 Tris-HCl / NaCl) and then sonicated. Thereafter, the mixture was centrifuged at 15000 rpm for 10 minutes, and the supernatant was collected and used as a sample.
  • a crushing buffer pH 8.0 Tris-HCl / NaCl
  • the sample obtained as described above was applied to a HiTrap Chelating HP column (5 mL). Column adsorption washing was performed with 10 mM imidazole (E0), and elution was performed using 20, 40, 60, 100, 300, 500 mM imidazole-containing buffer. 5 mL of each elution fraction was collected, and the collected sample was dialyzed with the same solvent as the KLH-MB-ESM peptide complex solution at 4 ° C. for about 16 hours. At this time, the solution was exchanged twice in the middle. Samples were collected in siliconized tubes and stored frozen at -20 ° C. Hemocyanin (keyhole limpet hemocyanin; KLH) was purchased from Wako Pure Chemical Industries.
  • Hemocyanin keyhole limpet hemocyanin
  • MBS m-maleimidobenzoyl-N-hydroxysuccinimide ester
  • DMF dimethylformamide
  • 10 mM sodium phosphate buffer (pH 7.2) was mixed with 0.2 M NaH 2 PO 4 solution and 0.2 M Na 2 HPO 4 solution at a ratio of 7:18, and the mixture was diluted 20 times with ultrapure water.
  • a product prepared by dilution and autoclaved was used.
  • 50 mM sodium phosphate buffer (pH 6.0) was mixed with 0.2 M NaH 2 PO 4 solution and 0.2 M Na 2 HPO 4 solution at a ratio of 877: 123, and the mixture was quadrupled with ultrapure water.
  • NaH 2 PO 4 and Na 2 HPO 4 were purchased from Wako Pure Chemical Industries, Ltd.
  • the 67LR 158-170 peptide was synthesized by a conventional method.
  • 67LR 158-170 peptide sequence: DIAIPCNNKGAHSVG) (SEQ ID NO: 2) was combined with KLH by the MBS method to obtain an immunogen. That is, 20 mg of KLH was dissolved in 1 mL of 10 mM sodium phosphate buffer (pH 7.2), and 3.3 mg of MBS dissolved in 11 ⁇ mL of dimethylformamide (DMF) was added to this solution and reacted at room temperature for 30 minutes. . Subsequently, the reaction solution was centrifuged (18000 ⁇ g, 5 minutes, 4 ° C.), and the supernatant was collected. The supernatant sample was dialyzed with 50 mM sodium phosphate buffer (pH 6.0) at 4 ° C.
  • DMF dimethylformamide
  • a recombinant 67LR (r-hLR 1-295 ) or KLH-MB-67LR 158-170 solution as an antigen and an equal amount of a complete adjuvant (Sigma) are vigorously mixed to prepare an emulsion.
  • a complete adjuvant Sigma
  • mice were intraperitoneally administered with 0.2 mL of emulsion.
  • an incomplete adjuvant (Sigma) was used, and an emulsion was prepared and administered in the same manner as the first time. Immunization was performed at intervals of 2 weeks.
  • the hybridoma is cultured in an E-RDF medium containing 15% FCS, 9.3 ⁇ 10 ⁇ 5 M hypoxanthine at 37 ° C., 5% CO 2 until cell scale is increased from 96 well plate to 24 well plate.
  • the measurement was performed under the same conditions, and after scaling up to 24 well plate, the same procedure was performed with an FCS concentration of 5%.
  • Three days after the final immunization one of three immunized mice was sacrificed by blood sampling of the abdominal aorta under isoflurane (Merck Pharmaceutical, Germany, Darmstadt) anesthesia, and the spleen was removed. After excision, lymphocytes were prepared, suspended in 10 mL of E-RDF medium, and the number of viable cells was examined by trypan blue method.
  • the Sp2 / O suspension with 1/10 cell count relative to the total number of spleen cells was added to the spleen cell suspension, mixed, and centrifuged at 300 ⁇ g for 5 minutes. The supernatant was completely removed, the cells were loosened by tapping and the temperature was returned to room temperature. 1 mL of a 50% strength polyethylene glycol (PEG) solution was taken into a Pasteur pipette and mixed with the cells for 1 minute. At this time, the pipette tip was gently and surely stirred so that the cells were uniformly dispersed in PEG. Immediately after PEG addition, the whole solution was tapped once, and then 9 mL of ERDF medium was slowly added at a rate of 1 mL / 30 seconds.
  • PEG polyethylene glycol
  • the liquid was mixed using the tip of a pipette. After centrifugation at 300 ⁇ g for 5 minutes to completely remove the supernatant, the density of splenocytes was 4.6 ⁇ 10 6 cells in E-RDF medium containing 15% FCS and 9.3 ⁇ 10 ⁇ 5 M hypoxanthine. / ML to float. This cell suspension was dispensed onto six 96 well plates at a rate of 100 ⁇ L / well. After culturing at 37 ° C.
  • E-RDF medium containing 15% FCS, 9.3 ⁇ 10 ⁇ 5 M hypoxanthine, 8.0 ⁇ 10 ⁇ 7 M aminopterin was added to a 96-well plate.
  • the culture was dispensed at a rate of 100 ⁇ L / well, and the culture conditions were adjusted to HAT. Static culture was performed at 37 ° C. in the presence of 5% CO 2 .
  • hybridoma producing anti-67LR 161-170 peptide monoclonal antibody The hybridoma cell cells selected by the HAT medium were seeded on a 96-well plate so as to be 0.2 cells / well with 15% FCS ERDF, and cloning was performed.
  • a solution obtained by diluting 67LR 161-170 peptide (IPCNNKGAHS) to a concentration of 10 ⁇ g / mL with a solid phase antigen dilution solution was added to ELISA plate Nunc-Immuno plate, Thermo Scientific Nunc, Denmark, and 100 ⁇ l was added at 37 ° C. Let stand for hours.
  • NaHCO 3 Nacalai Tesque
  • 50 mM NaHCO 3 was mixed with Na 2 CO 3 (Nacalai Tesque) with ultrapure water.
  • a 50 mM carbonate buffer prepared by mixing 50 mM Na 2 CO 3 prepared to 65 g / 500 mL until pH 9.6 was used.
  • 50 ⁇ L of the culture supernatant of each hybridoma was added and allowed to stand at 37 ° C. for 1 hour.
  • PBS TPBS
  • Tween 20 Nacalai Tesque, Inc.
  • ABTS Diammonium salt
  • FIG. 1 (a) is a graph showing antibody titers against 67LR 161-170 peptide in serum using sera collected from mice immunized with KLH, KLH, and recombinant 67LR to which 67LR 158-170 peptide is bound as antigens. It is. As apparent from FIG. 1 (a), although the mice immunized with KLH conjugated with 67LR 158-170 peptide induced the production of antibodies that bind to 67LR 161-170 peptide, the KLH or recombinant 67LR as antigen No antibody production against the 67LR 161-170 peptide was observed in the immunized mice.
  • FIG. 1 (b) shows the result of measuring the antibody titer by ELISA method for the binding activity of the antibody produced by each hybridoma to the 67LR 161-170 peptide after cloning of the obtained hybridoma by the limiting dilution method.
  • FIG. 1 (b) a plurality of hybridomas producing antibodies against the 67LR 161-170 peptide were obtained.
  • Example 2 Screening for Anti-67LR 161-170 Peptide Antibody-Producing Hybridoma Having Anticancer Activity
  • Mouse melanoma cell line B16 was seeded in 96 well plate at 1.0 ⁇ 10 4 cells / mL, and 24% in 5% FCS-DMEM medium. Pre-cultured for hours. Next, the culture supernatant was removed by aspiration, and 50 ⁇ l / well of the culture supernatant of each hybridoma clone and 250 ⁇ L / well of 12% FCS-DMEM were added instead. After 96 hours of culture, mitochondrial dehydrogenase activity at 430 nm was measured by the WST-1 method.
  • Hybridoma culture supernatant not producing anti-67LR 161-170 peptide antibody was added to Control.
  • WST-1 was purchased from Roche (Basel, Switzerland) and stored frozen at ⁇ 20 ° C. under light shielding before use.
  • the microplate reader used was Sic System (Tokyo, Japan).
  • FIG. 2 shows the results of measurement of anti-67LR 161-170 peptide antibody in the culture supernatant obtained from each hybridoma clone.
  • strong growth inhibitory activity was observed in the culture supernatant of the hybridoma clone (No. 8).
  • 67LR 161-170 peptide IPCNNKGAHS, SEQ ID NO: 3
  • MNAANVGWNGSTFA MNAANVGWNGSTFA, SEQ ID NO: 4
  • Binding to was measured using an ELISA method. That is, 67LR 161-170 peptide or control peptide was diluted with 50 ⁇ M carbonate buffer so as to be 10 ⁇ g / mL, and 100 ⁇ L was added to each well of the Immuno plate, followed by incubation at 37 ° C. for 2 hours.
  • the plate was washed with TPBS, 1% BSA-TPBS as a blocking agent was added in an amount of 300 ⁇ L to each well, and the plate was left at 4 ° C. overnight.
  • 50 ⁇ L / well of 4 ⁇ g / mL, 8 ⁇ g / mL, and 16 ⁇ g / mL ESM-8 antibody was added and reacted at 37 ° C. for 1 hour.
  • 100 ⁇ L of HRP-labeled goat anti-mouse IgG (Abcam, Cambridge, UK) (10000-fold dilution) was added and reacted at 37 ° C. for 1 hour.
  • FIG. 3 is a graph showing the results of measuring the binding of the ESM-8 antibody to the 67LR 161-170 peptide and the control peptide by ELISA. As is apparent from FIG. 3, it was found that the ESM-8 antibody did not bind to the control peptide but specifically bound to the 67LR 161-170 peptide. The ESM-16 antibody was similarly tested. The results are shown in FIG. FIG.
  • FIG. 4 is a graph showing the results of measuring the binding of the ESM-16 antibody to the 67LR 161-170 peptide and the control peptide by ELISA. As is apparent from FIG. 4, it was found that the ESM-16 antibody did not bind to the control peptide but specifically bound to the 67LR 161-170 peptide.
  • Example 4 Identification of DNA sequence of heavy and light chain variable regions of monoclonal antibody and preparation of recombinant antibody expression vector mRNA was prepared from ESM-8 cells and ESM-16 cells obtained in Example 1, and cDNA was prepared.
  • the nucleotide sequences of the antibody heavy chain and light chain variable region DNAs were determined using an antibody-specific primer set (Genescript, Piscataway, NJ).
  • the DNA base sequence was determined with a DNA sequencer.
  • the base sequence or amino acid sequence of the heavy chain, light chain variable region and CDR DNA of the ESM-8 antibody are shown in FIG. 5 and Table 1 (SEQ ID NOs: 5 to 20).
  • the base sequence or amino acid sequence of the heavy chain, light chain variable region and CDR DNA of the ESM-16 antibody are shown in FIG.
  • ESM-8 Antibody and Recombinant ESM-8 Antibody 500 ⁇ L of pristane (Funakoshi Co., Ltd.) was intraperitoneally administered to BALB / c mice. Six days later, ESM-8 cells were administered intraperitoneally at 1 ⁇ 10 7 cells / mL, and after confirming that the abdomen of the mouse was enlarged, the abdomen was dissected to collect ascites. Ascites was applied to a HiTrap Protein A column (GE Healthcare, UK) to purify the ESM-8 antibody.
  • the column was equilibrated with a binding buffer (100 mM Sodium Phosphate / 2.5 M NaCl pH 7.4), and ascites diluted 10-fold with the binding buffer was fed to the column.
  • a binding buffer 100 mM Sodium Phosphate / 2.5 M NaCl pH 7.4
  • the ESM-8 antibody was eluted with an elution buffer (100 mM sodium citrate, pH 5.6).
  • the eluted ESM-8 antibody solution was neutralized with a neutralization buffer (1M Tris-HCl, pH 9) (hereinafter, the antibody obtained by this method is simply referred to as ESM-8 antibody, and Differentiated from recombinant ESM-18 antibody).
  • the ESM-8 antibody expression vector obtained in Example 3 was introduced into HEK293 cells (ATCC, Manassas, VA) using Fugene 6 (Promega, Fitchburg, Wisconsin) to produce cells producing recombinant ESM-8 antibody. did. Recombinant ESM-8 antibody was prepared from the culture supernatant of HEK293 cells producing this ESM-8 antibody.
  • Example 6 Measurement of anti-cancer activity
  • the human acute myeloid leukemia cell line HL60 is 10% fetal bovine serum (FCS) (BILOGICAL INDUSTRIES) -added RPMI RPMI 1640 medium (Nissui Pharmaceutical Co., Ltd.) at 37 ° C. and 5% CO 2 saturated with water vapor Passaged and maintained under conditions. Cells were maintained in culture in the logarithmic growth phase.
  • FCS fetal bovine serum
  • FCS fetal bovine serum
  • RPMI RPMI 1640 medium Nasui Pharmaceutical Co., Ltd.
  • RPMI1640 medium used for the culture was 10.4 g of RPMI1640 medium (Cosmo Bio Co., Ltd.), 2.38 g of HEPES (Wako Pure Chemical Industries, Ltd.) per liter of ultrapure water, 200,000 units of penicillin G potassium for injection (Meiji Seika Co., Ltd.) Co., Ltd.) 0.5 vial, 1 g of streptomycin sulfate for injection (Meiji Seika Co., Ltd., Tokyo) 0.1 vial, NaHCO 3 (Nacalai Tesque Co., Ltd.) 2.0 g were suspended and then sterilized by filter. Thereafter, fetal calf serum (FCS) was added to RPMI 1640 medium and used for cell culture.
  • FCS fetal calf serum
  • HL60 was seed
  • Control mIgG R & D systems, Inc., Minneapolis, USA
  • ESM-8 antibody 0.4 ⁇ g / mL, 0.8 ⁇ g / mL
  • live cells were detected by ATPlite (PerkinElmer, Inc., MA, USA).
  • a test section was named in which green tea catechin EGCG was named. The results are shown in FIG. FIG.
  • FIG. 7 is a graph showing the results of examining the cell growth inhibitory activity of ESM-8 antibody against human acute myeloid leukemia cell line HL60. As shown in FIG. 7, it can be seen that in the presence of the ESM-8 antibody, cell proliferation against the human acute myeloid leukemia cell line HL60 is suppressed. Therefore, it can be seen that the ESM-8 antibody suppresses the growth of the human acute myeloid leukemia cell line HL60, like EGCG.
  • Example 7 Evaluation of cancer cell surface binding activity of antibody The binding of ESM-8 antibody to the cell surface was evaluated by flow cytometry analysis.
  • the flow cytometer used was FACSalbibur (Becton, Dickinson and Company, New Jersey, USA).
  • HL60 was prepared to 1.0 ⁇ 10 6 cells / mL and then suspended in 1% FCS-PBS containing 0.4 ⁇ g / mL of ESM-8 antibody and Control mIgG (R & D systems, Inc., Minneapolis, USA). Incubated for 2 hours on ice.
  • the suspension was suspended in AF488-labeled rabbit anti-mIgG (x1000) (Invitrogen, San Diego, USA), and incubated on ice for 1 hour. After washing twice with PBS, it was suspended again in PBS and detected by flow cytometry analysis.
  • U266 cells were prepared to 1.0 ⁇ 10 7 cells / mL, then suspended in RPMI 1640 medium containing 5 ⁇ g / mL of ESM-16 antibody and Isotype Control mIg (Cosmo Bio Inc.), and 2 times on ice. Time incubation was performed.
  • the suspension was suspended in a secondary antibody solution goat anti-mouse IgM Alexa fluor 488 (Invitrogen) and incubated on ice for 1 hour. After washing twice with PBS, it was suspended again in PBS and detected by flow cytometry analysis.
  • the results for the ESM-8 antibody are shown in FIG. 8, and the results for the ESM-16 antibody are shown in FIG.
  • FIG. 8 since cells were detected by flow cytometry in the presence of EMS-18 antibody, it was found that EMS-8 antibody binds to the cell surface of human acute myeloid leukemia cell line HL60. It was. Further, as shown in FIG. 9, cells are detected by flow cytometry in the presence of EMS-16 antibody, so that ESM-16 antibody binds to the cell surface of human multiple myeloma cell line U266 cell. I understood.
  • RPMI1640 medium used for the culture was 10.4 g of RPMI1640 medium (Cosmo Bio Co., Ltd.), 2.38 g of HEPES (Wako Pure Chemical Industries, Ltd.) per liter of ultrapure water, 200,000 units of penicillin G potassium for injection (Meiji Seika Co., Ltd.) Co., Ltd.) 0.5 vial, 1 g of streptomycin sulfate for injection (Meiji Seika Co., Ltd.) 0.1 vial, NaHCO 3 (Nacalai Tesque Co., Ltd.) 2.0 g were suspended and then filter sterilized. Thereafter, fetal calf serum (FCS) was added to RPMI 1640 medium and used for cell culture.
  • FCS fetal calf serum
  • BODIPY-C12-Sphingomyelin (1 mg / mL; dissolved in DMSO) was purchased from Sigma (St. Louis, MO). After centrifugal concentration, it was dissolved in methanol to 1 mM and stored at ⁇ 20 ° C. 20 ⁇ 20 silica gel plates were purchased from Merck (Darmstadt, Germany).
  • Cell Lysis Buffer 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% (v / v) Triton-X100, 1 mM EDTA, 50 mM NaF, 30 mM Na 4 P 2 O 7 , 1 mM Phenylmethylsulfuric fluoride, 2 ⁇ g / mL Aprotin;
  • the cells were lysed at pH 4.5), stirred by inversion at 4 ° C. for 1 hour, and centrifuged (15000 ⁇ g, 30 minutes) to recover the supernatant.
  • BCA Protein Assay Reagent was used and adjusted to 20 ⁇ g / sample.
  • a substrate solution (1 mM BODIPY-C12-Sphingomyelin, 10% Triton X-100, 1M sodium acetate (pH 4.5), dH 2 O) was added to each sample so that BODIPY-C12-Sphingomyelin was 400 pmol / sample, and the temperature was 37 ° C.
  • the enzyme substrate reaction was carried out for 16 hours.
  • the reaction was stopped by adding 60 ⁇ L of CHCl 3 —CH 3 OH 2: 1 (v / v), centrifuged (12000 ⁇ g, 4 ° C., 5 minutes), then 10 ⁇ L of the lower layer was spotted onto a silica gel plate, and the developing solution (CH 3 Cl—CH 3 OH—H 2 O 65: 25: 4 (v / v / v)).
  • HL60 cells were seeded in 24 well plate at 5 ⁇ 10 5 cells / mL, and 1% supplemented with Control mIgG (R & D systems, Inc., Minneapolis, USA) or ESM-8 antibody (final concentration 0.4 ⁇ g / ml) Treated with FCS-RPMI1640 medium for 3 hours.
  • Example 9 Evaluation of Effect of Anti-67LR Antibody on Cancer Cell Growth Inhibitory Effect of ESM-8 Antibody It has been reported that EGCG exhibits anticancer activity via 67LR (Non-patent Documents 18 to 21). Thus, it was examined whether the ESM-8 antibody exerts anticancer activity via 67LR as in EGCG.
  • the human acute myeloid leukemia cell line HL60 was subcultured in RPMI RPMI 1640 medium (Nissui Pharmaceutical Co., Ltd.) supplemented with 10% fetal calf serum (FCS) under conditions of 5% CO 2 with water vapor saturation. Maintained. Cells were maintained in culture in the logarithmic growth phase.
  • RPMI1640 medium used for the culture was 10.4 g of RPMI1640 medium (Cosmo Bio Co., Ltd.), 2.38 g of HEPES (Wako Pure Chemical Industries, Ltd.) per liter of ultrapure water, 200,000 units of penicillin G potassium for injection (Meiji Seika Co., Ltd.) Co., Ltd.) 0.5 vial, 1 g of streptomycin sulfate for injection (Meiji Seika Co., Ltd.) 0.1 vial, NaHCO 3 (Nacalai Tesque Co., Ltd.) 2.0 g were suspended and then filter sterilized. Thereafter, fetal calf serum (FCS) was added to RPMI 1640 medium and used for cell culture.
  • FCS fetal calf serum
  • HL60 was seeded on a 96-well plate at 1.0 ⁇ 10 4 cells / mL, and precultured in 5% FCS-RPMI medium for 24 hours. Thereafter, the original medium was aspirated and replaced with 1% FCS-RPMI medium containing Control mIgM (Cosmo Bio Inc.) or anti-67LR monoclonal antibody MLuC5 (Abcam, Cambridge, UK) (30 ⁇ g / mL). Let stand for hours. Thereafter, the medium was added at 100 ⁇ L / well so as to obtain a 1% FCS-RPMI medium containing Control mIgG (R & D systems, Inc., Minneapolis, USA) or ESM-8 antibody (0.4 ⁇ g / mL).
  • Control mIgM Cosmo Bio Inc.
  • MLuC5 Anti-67LR monoclonal antibody
  • ESM-8 antibody After 96 hours, viable cells were detected by ATP lite (PerkinElmer, Inc., MA, USA). The results are shown in FIG. As can be seen from FIG. 11, when not pretreated with anti-67LR monoclonal antibody, ESM-8 antibody showed cytostatic activity against human acute myeloid leukemia cell line HL60, but pretreated with anti-67LR monoclonal antibody. In that case, ESM-8 cells did not show cytostatic activity on HL60. From these results, it was shown that the EMS-8 antibody exerts anticancer activity through binding to 67LR, and that the ESM-8 antibody functions as a 67LR agonist like EGCG.
  • Recombinant ESM-8 antibody inhibits cell proliferation against human acute myeloid leukemia cell line HL60, human pancreatic cancer cell line PANC-1 and human mesothelioma cell line MESO-4 10% human acute myeloid leukemia cell line HL60 It was subcultured and maintained at 37 ° C. under 5% CO 2 with water vapor saturation in RPMI RPMI 1640 medium (Nissui Pharmaceutical Co., Ltd.) supplemented with fetal calf serum (FCS) (BIOLOGICAL INDUSTRIES). Cells were maintained in culture in the logarithmic growth phase.
  • FCS fetal calf serum
  • RPMI1640 medium used for the culture was 10.4 g of RPMI1640 medium (Cosmo Bio Co., Ltd.) per liter of ultrapure water, 2.38 g of HEPES (Wako Pure Chemical Industries, Ltd.), 200,000 units of penicillin G for injection (Meiji Seika) Co., Ltd.) 0.5 vial, 1 g of streptomycin sulfate for injection (Meiji Seika Co., Ltd., Tokyo) 0.1 vial, NaHCO 3 (Nacalai Tesque Co., Ltd.) 2.0 g were suspended and then sterilized by filter. Thereafter, fetal calf serum (FCS) was added to RPMI 1640 medium and used for cell culture.
  • FCS fetal calf serum
  • HL60 was seeded on a 96-well plate (100 ⁇ L / well) so as to be 1.0 ⁇ 10 4 cells / mL, and cultured for 24 hours.
  • Control mIgG R & D systems, Inc., Minneapolis, USA
  • recombinant ESM-8 antibody was added to 1 ⁇ g / mL.
  • live cells were detected by ATPlite (PerkinElmer, Inc., MA, USA).
  • the human pancreatic cancer cell line PANC-1 was subcultured in RPMI RPMI 1640 medium (Nissui Pharmaceutical Co., Ltd.) supplemented with 10% fetal calf serum (FCS) under conditions of 5% CO 2 with water vapor saturation.
  • FCS fetal calf serum
  • RPMI1640 medium used for the culture was 10.4 g of RPMI1640 medium (Cosmo Bio Co., Ltd.), 2.38 g of HEPES (Wako Pure Chemical Industries, Ltd.) per liter of ultrapure water, 200,000 units of penicillin G potassium for injection (Meiji Seika Co., Ltd.) Co., Ltd.) 0.5 vial, 1 g of streptomycin sulfate for injection (Meiji Seika Co., Ltd.) 0.1 vial, NaHCO 3 (Nacalai Tesque Co., Ltd.) 2.0 g were suspended and then filter sterilized.
  • FCS fetal calf serum
  • PANC-1 cells were seeded on a 96-well plate (100 ⁇ L / well) at 1.0 ⁇ 10 4 cells / mL and cultured for 24 hours.
  • Control mIgG R & D systems, Inc., Minneapolis, USA
  • ESM-8 antibody was added to 1 ⁇ g / mL.
  • live cells were detected by ATPlite (PerkinElmer, Inc., MA, USA).
  • the human mesothelioma cell line MESO-4 was subcultured in RPMI1640 medium (Nissui Pharmaceutical Co., Ltd.) supplemented with 10% fetal bovine serum (FCS) under a 5% CO 2 condition saturated with water vapor. Maintained. Cells were maintained in culture in the logarithmic growth phase.
  • RPMI1640 medium used for the culture was 10.4 g of RPMI1640 medium (Cosmo Bio Co., Ltd.), 2.38 g of HEPES (Wako Pure Chemical Industries, Ltd.) per liter of ultrapure water, 200,000 units of penicillin G potassium for injection (Meiji Seika Co., Ltd.) Co., Ltd.) 0.5 vial, 1 g of streptomycin sulfate for injection (Meiji Seika Co., Ltd.) 0.1 vial, NaHCO 3 (Nacalai Tesque Co., Ltd.) 2.0 g were suspended and then filter sterilized. Thereafter, fetal calf serum (FCS) was added to RPMI 1640 medium and used for cell culture.
  • FCS fetal calf serum
  • FIG. 12 is a graph showing the results of examining the cell growth inhibitory activity of recombinant ESM-8 antibody on human acute myeloid leukemia cell line HL60, human pancreatic cancer cell line PANC-1 and human mesothelioma cell line MESO-4.
  • the recombinant ESM-8 antibody has cytostatic activity against human acute myeloid leukemia cell line HL60, human pancreatic cancer cell line PANC-1 and human mesothelioma cell line MESO-4. It was found to have
  • Example 11 Acidic sphingomyelinase activation ability of the recombinant ESM-8 antibody The ability to activate acidic sphingomyelinase was evaluated in the same manner as in Example 8 except that the ESM-8 antibody was replaced with the recombinant ESM-8 antibody. The results are shown in FIG. As is clear from FIG. 13, it was found that the recombinant ESM-8 antibody had a higher ability to activate sphingomyelinase than the control.
  • Example 12 Evaluation of the binding activity of the recombinant ESM-8 antibody to the surface of the acute myeloid leukemia cell line HL60 cell The binding of the recombinant ESM-8 antibody to the cell surface was evaluated by flow cytometry analysis. The same flow cytometer as in Example 7 was used. After preparing human acute myeloid leukemia cell line HL60 to 1.0 ⁇ 10 6 cells / mL, 1% FCS-PBS to which recombinant ESM-8 antibody or Control mIgG was added to a final concentration of 1 ⁇ g / mL was added. Suspended and incubated on ice for 7 h.
  • the suspension was suspended in AF488-labeled rabbit anti-mIgG (x300) and incubated on ice for 1 h. After washing twice with PBS, it was suspended again in PBS and detected by flow cytometry analysis. The results are shown in FIG. As shown in FIG. 14, since cells are detected by flow cytometry in the presence of the recombinant ESM-8 antibody, the recombinant ESM-8 antibody can bind to the cell surface of the acute myeloid leukemia cell line HL60 cell. I understood.
  • Example 13 Anti-cancer activity of recombinant ESM-8 antibody in combination with PDE3 inhibitor, PDE5 inhibitor and sphingosine kinase inhibitor PANC-1 cells were added to RPMI RPMI 1640 medium (Nissui Pharmaceutical Co., Ltd.) supplemented with 10% FCS. It was subcultured and maintained at 37 ° C. under 5% CO 2 with water vapor saturation. Cells were maintained in culture in the logarithmic growth phase.
  • RPMI1640 medium used for the culture was 10.4 g of RPMI1640 medium (Cosmo Bio Co., Ltd.), 2.38 g of HEPES (Wako Pure Chemical Industries, Ltd.) per liter of ultrapure water, 200,000 units of penicillin G potassium for injection (Meiji Seika Co., Ltd.) Co., Ltd.) 0.5 vial, 1 g of streptomycin sulfate for injection (Meiji Seika Co., Ltd.) 0.1 vial, NaHCO 3 (Nacalai tesque, Inc. Kyoto) 2.0 g was suspended and then filter sterilized. FCS was then added to RPMI 1640 medium and used for cell culture.
  • PANC-1 cells were seeded on a 96-well plate at 100 ⁇ 10 4 cells / mL (100 ⁇ L / well).
  • PDE3 inhibitor Tequinsin (trequinsin), 1.25 ⁇ M Calbiochem La Jolla, CA), phosphodiesterase 5 (PDE5) (Vardenafil (Vardenafil), 5 ⁇ M TRC Canada), sphingosine kinase inhibitor (Safingin kinase ol (Safine) Goal)
  • PDE3 inhibitor Tequinsin (trequinsin)
  • PDE5 phosphodiesterase 5
  • Vardenafil Vardenafil
  • 5 ⁇ M TRC Canada phosphodiesterase 5
  • sphingosine kinase inhibitor Sefingin kinase ol (Safine) Goal
  • Pretreatment was performed with 5 ⁇ M Alabaster, AL).
  • Example 14 Anti-cancer activity of recombinant ESM-8 antibody in combination with gemcitabine Using human mesothelioma cell line MESO-4 instead of human pancreatic cancer cell line PANC-1 cell, using 1 ⁇ M gemcitabine as inhibitor, ESM-8 The same procedure as in Example 12 was performed except that the recombinant ESM-8 antibody was used instead of the antibody, and the anticancer activity of the recombinant ESM-8 antibody was evaluated. The results are shown in FIG. As shown in FIG. 16, the number of viable cells decreased when gemcitabine was used in combination. This indicates that gemcitabine enhances the anticancer effect of recombinant ESM-8 antibody.
  • Example 15 Cancer cell growth inhibitory activity of ESM-16 antibody Human multiple myeloma cells U266 were saturated with water vapor at 37 ° C. in RPMI RPMI 1640 medium (Nissui Pharmaceutical Co., Ltd.) supplemented with 10% fetal calf serum (FCS) (BILOGICAL INDUSTRIES). Passaged and maintained under 5% CO 2 conditions. Cells were maintained in culture in the logarithmic growth phase.
  • FCS fetal calf serum
  • RPMI1640 medium used for the culture was 10.4 g of RPMI1640 medium (Cosmo Bio Co., Ltd.), 2.38 g of HEPES (Wako Pure Chemical Industries, Ltd.) per liter of ultrapure water, 200,000 units of penicillin G potassium for injection (Meiji Seika Co., Ltd.) Co., Ltd.) 0.5 vial, 1 g of streptomycin sulfate for injection (Meiji Seika Co., Ltd.) 0.1 vial, NaHCO 3 (Nacalai Tesque Co., Ltd.) 2.0 g were suspended and then filter sterilized. Thereafter, fetal calf serum (FCS) was added to RPMI 1640 medium and used for cell culture.
  • FCS fetal calf serum
  • U266 cells were seeded on a 96-well plate at 5.0 ⁇ 10 4 cells / mL (100 ⁇ L / well). Next, Control mIgG (R & D systems, Inc., Minneapolis, USA) or ESM-16 antibody was added to 300 ng / mL. After 96 hours of culture, live cells were detected by ATPlite (PerkinElmer, Inc., MA, USA). The mouse melanoma cell line B16 was subcultured and maintained in DMEM medium (Kyokuto Pharmaceutical Co., Ltd.) supplemented with 10% fetal calf serum (FCS) at 37 ° C. under 5% CO 2 with water vapor saturation. Cells were maintained in culture in the logarithmic growth phase.
  • FCS fetal calf serum
  • the DMEM medium used for the culture was 3.7 g of NaHCO 3 (Wako Pure Chemical Industries, Ltd.), 100 U / mL penicillin (Meiji Seika Co., Ltd.), 100 ⁇ g / mL streptomycin (Meiji pharmaceutical Company), and 1 L of DMEM medium. 25 mM HEPES (Wako Pure Chemical Industries, Ltd.) was added. Cells were maintained in culture in the logarithmic growth phase. B16 cells were seeded on a 96-well plate at 100 ⁇ 10 4 cells / mL (100 ⁇ L / well). After 24 hours, Control mIgM (Cosmo Bio Inc.) or ESM-16 antibody was added to 300 ng / mL.
  • the human pancreatic cancer cell line PANC-1 was subcultured in RPMI RPMI 1640 medium (Nissui Pharmaceutical Co., Ltd.) supplemented with 10% fetal calf serum (FCS) under conditions of 5% CO 2 with water vapor saturation. , Maintained. Cells were maintained in culture in the logarithmic growth phase.
  • the RPMI 1640 medium used for the culture was 10.4 g of RPMI 1640 medium (Cosmo Bio Inc.), 2.38 g of HEPES (Wako Pure Chemical Industries, Ltd.) per liter of ultrapure water, 200,000 units of penicillin G potassium for injection (Meiji).
  • Confectionery Co., Ltd. 0.5 vial, 1 g of streptomycin sulfate for injection (Meiji Seika Co., Ltd.) 0.1 vial, NaHCO 3 (Nacalai Tesque Co., Ltd.) 2.0 g were suspended, and then filter sterilized. Thereafter, fetal calf serum (FCS) was added to RPMI 1640 medium and used for cell culture.
  • FACS fetal calf serum
  • PANC-1 cells were seeded on a 96-well plate at 100 ⁇ 10 4 cells / mL (100 ⁇ L / well). Next, Control mIgM (Cosmo Bio, Tokyo, Japan) or ESM-16 antibody was added to PANC-1 cells at 300 ng / mL.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Cell Biology (AREA)
  • Biomedical Technology (AREA)
  • Oncology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention addresses the problem of providing a monoclonal antibody which specifically binds to 67LR and is capable of activating the actions of 67LR (it is to be understood that in the specification, a monoclonal antibody includes a chimeric antigen receptor) and a method for producing the same, and as a means for solving the problem, an antibody is produced using a partial peptide of 67LR, for example, 67LR158-170 peptide sequence: DIAIPCNNKGAHSVG) as an antigen.

Description

抗がんモノクローナル抗体及びその製造方法Anti-cancer monoclonal antibody and method for producing the same
 本発明は、モノクローナル抗体に関し、特にがん、肥満、動脈硬化、アレルギー、炎症または筋萎縮の治療に有用なモノクローナル抗体、その製造方法に関する。 The present invention relates to a monoclonal antibody, and more particularly to a monoclonal antibody useful for treating cancer, obesity, arteriosclerosis, allergy, inflammation or muscle atrophy, and a method for producing the same.
 がんは国民の三分の一を死に至らしめる病であり、適切な治療手段の確立が強く求められている。血液のがんとして知られている白血病においては、オールトランスレチノイン酸(ATRA)を用いた分化誘導療法やフィラデルフィア染色体を起因とするBCR/ABLタンパクに対する分子標的薬の導入により治療業績が改善しつつある。しかしながら、これらの薬剤に対して腫瘍が抵抗性を獲得し、治療が困難となるケースが非常に多く、未だ問題点が多い。したがって、従来とは全く異なった作用機作を持つ抗がん剤を開発することにより、従来の抗がん剤が効奏しなくなった患者に新たな選択肢がもたらされる。さらに、その用量規定毒性が異なったものであれば、従来の治療と組み合わせることが可能であり、より有効な治療戦略の立案が可能となる。 Cancer is a disease that causes one third of the nation to die, and there is a strong demand for the establishment of appropriate treatment. In leukemia, which is known as a blood cancer, the therapeutic performance has been improved by the induction of differentiation using all-trans retinoic acid (ATRA) and the introduction of molecular targeting drugs for BCR / ABL proteins caused by the Philadelphia chromosome. It's getting on. However, there are many cases in which tumors acquire resistance to these drugs and treatment is difficult, and there are still many problems. Therefore, the development of an anticancer agent having a completely different mechanism of action from the past provides a new option for patients whose conventional anticancer agents have become ineffective. Furthermore, if the dose-limiting toxicity is different, it can be combined with conventional treatment, and a more effective treatment strategy can be formulated.
 67kDaラミニン・レセプタータンパク質(67kDa Laminin Receptor、以下、67LRともいう)は当初、基底膜の主要な構成成分であるラミニンと結合する細胞膜タンパク質として発見された(非特許文献1)。近年の研究において、67LRはがん細胞において発現が異常に亢進しており(非特許文献2)、その発現と増殖、浸潤、転移の間に強い相関が認められている(非特許文献3~9)。実際に、乳がん、胃がん、膵臓がん、前立腺がん、急性骨髄性白血病、多発性骨髄腫、胆管がん、結腸がん、子宮がん、中皮腫といったあらゆるがん細胞において67LRが高発現していることが示されている(非特許文献9-15)。 A 67 kDa laminin receptor protein (67 kDa Laminin Receptor, hereinafter also referred to as 67LR) was originally discovered as a cell membrane protein that binds to laminin, which is a major component of the basement membrane (Non-patent Document 1). In recent studies, 67LR is abnormally enhanced in cancer cells (Non-Patent Document 2), and a strong correlation has been observed between its expression and proliferation, invasion, and metastasis (Non-Patent Documents 3 to 4). 9). In fact, 67LR is highly expressed in all cancer cells such as breast cancer, stomach cancer, pancreatic cancer, prostate cancer, acute myeloid leukemia, multiple myeloma, bile duct cancer, colon cancer, uterine cancer, and mesothelioma. (Non-Patent Documents 9-15).
 緑茶に含まれる主要なカテキンの一種である没食子酸エピガロカテキン(以下、EGCGともいう)は抗がん作用を持つことが報告されており(非特許文献16)、現在、慢性リンパ性白血病患者において臨床試験が行われている(非特許文献17)。本発明者らは、これまでにEGCGの抗がん作用を担う細胞膜上の標的分子が67kDaラミニン・レセプタータンパク質であることを明らかにした(非特許文献18~21)。さらに、EGCGは67LRを介して乳がん、肺がん、子宮頸がん、結腸がん、メラノーマ、急性骨髄性白血病、多発性骨髄腫、膵臓がん、前立腺がんといったがん細胞に対して抗がん作用を発揮することが報告されている(非特許文献10~12、18~21)。すなわち、EGCGは広く67LR陽性がん細胞に対する分子標的剤となり得ることが明らかになった。このように、EGCGは腫瘍に高発現した67LRを標的とすることから分子標的抗がん剤として理想的な選択毒性を有する。
 一方、EGCGは67LRの161~170のアミノ酸配列部位(67LR161-170ペプチド;IPCNNKGAHS)に結合することで抗がん活性を発揮することが明らかにされ、このペプチド配列はEGCGセンシングモチーフ[EGCG Sensing Motif(ESM)]と定義されている(非特許文献22)。
Epigallocatechin gallate (hereinafter also referred to as EGCG), which is one of the main catechins contained in green tea, has been reported to have anticancer activity (Non-patent Document 16), and currently has chronic lymphocytic leukemia patients Is undergoing clinical trials (Non-patent Document 17). The present inventors have clarified that the target molecule on the cell membrane responsible for the anticancer activity of EGCG is a 67 kDa laminin receptor protein (Non-Patent Documents 18 to 21). Furthermore, EGCG is anticancer against cancer cells such as breast cancer, lung cancer, cervical cancer, colon cancer, melanoma, acute myeloid leukemia, multiple myeloma, pancreatic cancer, prostate cancer via 67LR. It has been reported to exert its action (Non-patent Documents 10 to 12, 18 to 21). That is, it has been clarified that EGCG can be a molecular targeting agent for 67LR positive cancer cells. Thus, since EGCG targets 67LR highly expressed in tumors, it has an ideal selective toxicity as a molecular target anticancer agent.
On the other hand, EGCG has been shown to exert anticancer activity by binding to the amino acid sequence of 161-170 of 67LR (67LR 161-170 peptide; IPCNNKGAHS). This peptide sequence is EGCG sensing motif [EGCG Sensing Motif (ESM)] (Non-patent Document 22).
 以上のことから、67LRに特異的に結合し、67LRの作用を活性化し得る抗体は、がんの診断や治療に有用であることが期待される。しかしながら、67LRに特異的に結合し、67LRの作用を活性化し得るモノクローナル抗体はこれまで確立されていない。したがって、本発明は、67LRに特異的に結合し、67LRの作用を活性化し得るモノクローナル抗体(本明細書において、モノクローナル抗体と表記した場合、キメラ抗原受容体も含むものとする)、その製造方法を提供することにある。 From the above, an antibody that specifically binds to 67LR and can activate the action of 67LR is expected to be useful for diagnosis and treatment of cancer. However, a monoclonal antibody that specifically binds to 67LR and can activate the action of 67LR has not been established so far. Therefore, the present invention provides a monoclonal antibody that specifically binds to 67LR and can activate the action of 67LR (in this specification, when expressed as a monoclonal antibody, it also includes a chimeric antigen receptor) and a method for producing the same There is to do.
 本発明者らは、67LRの部分ペプチドを免疫原として用いることによってハイブリドーマを作製し、67LRに特異的に反応するモノクローナル抗体産生ハイブリドーマ株を確立し、該ハイブリドーマ株を培養することによって、以下の本発明を完成させた。
 すなわち、本発明は、以下の(1)~(25)に関する。
(1)67kDaラミニン・レセプタータンパク質(以下、67LRと称する)を活性化することによって抗がん活性を有する抗体。
(2)EGCGセンシングモチーフ(以下、ESMと称する)-8抗体の可変領域を抗原結合領域として含む抗体。
(3)ESM-16抗体の可変領域を抗原結合領域として含む抗体。
(4)ヒト化抗体である、(1)~(3)のいずれか1項に記載の抗体。
(5)イヌ抗体である、(1)~(3)のいずれか1項に記載の抗体。
(6)ネコ抗体である、(1)~(3)のいずれか1項に記載の抗体。
(7)ESM-8抗体の可変領域の相補性決定領域(complementary determining region:CDR)のペプチド配列を含む抗体。
(8)ESM-16抗体の可変領域の相補性決定領域(complementary determining region:CDR)のペプチド配列を含む抗体。
(9)(1)~(8)のいずれか1項に記載の抗体が有するアミノ酸配列において1または複数のアミノ酸が置換、欠失、付加および/または挿入され、かつ(1)~(8)のいずれか1項に記載の抗体と同等の活性を有する抗体。
(10)ESM-8抗体の可変領域のペプチド配列を含むキメラ抗原受容体。
(11)ESM-16抗体の可変領域のペプチド配列を含むキメラ抗原受容体。
(12)(1)~(9)のいずれか1項に記載の抗体が有するアミノ酸配列において1または複数のアミノ酸が置換、欠失、付加および/または挿入され、かつ(1)~(9)のいずれか1項に記載の抗体と同等の活性を有するキメラ抗原受容体。
(13)緑茶カテキンEGCGが67LRを介して発現する抗がん活性、抗肥満、抗動脈硬化作用、抗アレルギー、抗炎症または筋萎縮阻害のいずれかの生理活性を有する、(1)~(9)のいずれか1項に記載の抗体。
(14)緑茶カテキンEGCGのアポトーシス誘導に直接関与する酸性スフィンゴミエリナーゼを活性化することによってアポトーシス誘導活性を有する、(1)~(9)のいずれか1項に記載の抗体。
(15)(1)~(9)のいずれか1項に記載の抗体とPDE3阻害剤、PDE5阻害剤、Shpk1阻害剤またはゲムシタビンのいずれかを組み合わせた抗がん剤。
(16)(1)~(9)のいずれか1項に記載の抗体の適応者を判別するための診断用抗体。
(17)(1)~(9)のいずれか1項に記載の抗体に放射性同位体、蛍光剤、酵素、細胞毒素などを結合させた抗体。
(18)緑茶カテキンEGCGが結合する67LR分子上のペプチド配列を免疫抗原として抗体を獲得する方法。
(19)緑茶カテキンEGCGが結合する67LR分子上のペプチド配列を免疫抗原として抗がん活性を示す抗体を獲得する方法。
(20)緑茶カテキンEGCGが結合する67LR分子上のペプチド配列を免疫抗原として緑茶カテキンEGCGが67LRを介して発現する抗がん活性、抗肥満、抗動脈硬化作用、抗アレルギー、抗炎症または筋萎縮阻害生理活性のいずれかを有する抗体のスクリーニング方法。
(21)PDE3阻害剤、PDE5阻害剤、Shpk1阻害剤、またはゲムシタビンと組み合わせることで抗がん活性、抗肥満、抗動脈硬化作用、抗アレルギー、抗炎症または筋萎縮阻害生理活性のいずれかが増強される抗体のスクリーニング方法。
(22)(18)~(21)のいずれか1項に記載の方法によって得られる抗体。
(23)(1)~(9)のいずれか1項に記載の抗体を対象に投与することを含む、がん、肥満、動脈硬化、アレルギー、炎症または筋萎縮を治療する方法。
(24)ESM-8抗体の遺伝子を、ヒト由来細胞株、ハムスター由来細胞株、マウス由来細胞株、昆虫由来細胞株及びこれら細胞株の糖鎖生合成変異細胞株、ならびに大腸菌及び酵母からなる群より選択される宿主細胞に導入し、当該宿主細胞を培養して抗体を発現させ、発現した抗体を回収することを含む、(1)~(9)のいずれか1項に記載の抗体を製造する方法。
(25)ESM-16抗体の遺伝子を、ヒト由来細胞株、ハムスター由来細胞株、マウス由来細胞株、昆虫由来細胞株及びこれら細胞株の糖鎖生合成変異細胞株、ならびに大腸菌及び酵母からなる群より選択される宿主細胞に導入し、当該宿主細胞を培養して抗体を発現させ、発現した抗体を回収することを含む、(1)~(9)のいずれか1項に記載の抗体を製造する方法。
The present inventors prepared a hybridoma by using a partial peptide of 67LR as an immunogen, established a monoclonal antibody-producing hybridoma strain that specifically reacts with 67LR, and cultured the hybridoma strain to obtain the following book. Completed the invention.
That is, the present invention relates to the following (1) to (25).
(1) An antibody having anticancer activity by activating 67 kDa laminin receptor protein (hereinafter referred to as 67LR).
(2) An antibody comprising a variable region of EGCG sensing motif (hereinafter referred to as ESM) -8 antibody as an antigen-binding region.
(3) An antibody comprising the variable region of the ESM-16 antibody as an antigen-binding region.
(4) The antibody according to any one of (1) to (3), which is a humanized antibody.
(5) The antibody according to any one of (1) to (3), which is a canine antibody.
(6) The antibody according to any one of (1) to (3), which is a cat antibody.
(7) An antibody comprising a peptide sequence of the complementary determining region (CDR) of the variable region of the ESM-8 antibody.
(8) An antibody comprising a peptide sequence of the complementarity determining region (CDR) of the variable region of the ESM-16 antibody.
(9) In the amino acid sequence of the antibody according to any one of (1) to (8), one or more amino acids are substituted, deleted, added and / or inserted, and (1) to (8) An antibody having an activity equivalent to that of the antibody according to any one of the above.
(10) A chimeric antigen receptor comprising the peptide sequence of the variable region of the ESM-8 antibody.
(11) A chimeric antigen receptor comprising the peptide sequence of the variable region of the ESM-16 antibody.
(12) In the amino acid sequence of the antibody according to any one of (1) to (9), one or more amino acids are substituted, deleted, added and / or inserted, and (1) to (9) A chimeric antigen receptor having an activity equivalent to that of the antibody according to any one of the above.
(13) Green tea catechin EGCG has any of the anti-cancer activity, anti-obesity, anti-arteriosclerotic action, anti-allergy, anti-inflammatory or muscular atrophy inhibition physiological activity expressed through 67LR, (1) to (9 The antibody according to any one of 1).
(14) The antibody according to any one of (1) to (9), which has an apoptosis-inducing activity by activating acidic sphingomyelinase that directly participates in apoptosis induction of green tea catechin EGCG.
(15) An anticancer agent comprising a combination of the antibody according to any one of (1) to (9) and any one of a PDE3 inhibitor, a PDE5 inhibitor, a Shpk1 inhibitor, or a gemcitabine.
(16) A diagnostic antibody for discriminating an adaptor of the antibody according to any one of (1) to (9).
(17) An antibody in which a radioisotope, a fluorescent agent, an enzyme, a cytotoxin, or the like is bound to the antibody according to any one of (1) to (9).
(18) A method for obtaining an antibody using a peptide sequence on the 67LR molecule to which green tea catechin EGCG binds as an immunizing antigen.
(19) A method for obtaining an antibody exhibiting anticancer activity using a peptide sequence on the 67LR molecule to which green tea catechin EGCG binds as an immune antigen.
(20) Anti-cancer activity, anti-obesity, anti-arteriosclerosis action, anti-allergy, anti-inflammatory or muscle atrophy expressed by green tea catechin EGCG via 67LR with the peptide sequence on 67LR molecule bound by green tea catechin EGCG A screening method for an antibody having any of the inhibitory physiological activities.
(21) When combined with a PDE3 inhibitor, PDE5 inhibitor, Shpk1 inhibitor, or gemcitabine, any of anti-cancer activity, anti-obesity, anti-arteriosclerotic effect, anti-allergy, anti-inflammatory, or muscle atrophy inhibiting physiological activity is enhanced Antibody screening method.
(22) An antibody obtained by the method according to any one of (18) to (21).
(23) A method for treating cancer, obesity, arteriosclerosis, allergy, inflammation or muscle atrophy, comprising administering the antibody according to any one of (1) to (9) to a subject.
(24) The gene of ESM-8 antibody is a group consisting of a human-derived cell line, a hamster-derived cell line, a mouse-derived cell line, an insect-derived cell line, a sugar chain biosynthesis mutant cell line of these cell lines, and Escherichia coli and yeast. The antibody according to any one of (1) to (9), which comprises introducing into a selected host cell, culturing the host cell to express the antibody, and collecting the expressed antibody. how to.
(25) The gene of ESM-16 antibody is derived from a human cell line, a hamster cell line, a mouse cell line, an insect cell line, a sugar chain biosynthesis mutant cell line of these cell lines, and a group consisting of E. coli and yeast. The antibody according to any one of (1) to (9), which comprises introducing into a selected host cell, culturing the host cell to express the antibody, and collecting the expressed antibody. how to.
 本発明によれば、67kDaラミニン・レセプタータンパク質に特異的に結合する抗体を提供することができる。 According to the present invention, an antibody that specifically binds to a 67 kDa laminin receptor protein can be provided.
図1(a)は、67LR158-170ペプチドを結合させたKLH、KLH、リコンビナント67LRをそれぞれ抗原として免疫したマウスから採取した血清を用い、血清中の67LR161-170 ペプチドに対する抗体価を示すグラフである。横軸に免疫原を示し、縦軸にELISA法により得られた吸光度を示す。図1(b)は、得られたハイブリドーマを限界希釈法にてクローニング後、各ハイブリドーマの産生する抗体の67LR161-170ペプチドに対する結合活性をELISA法により抗体価を測定した結果を示す。横軸にハイブリドーマのクローンNo.を示し、縦軸にELISA法により得られた吸光度を示す。FIG. 1 (a) is a graph showing antibody titers against 67LR 161-170 peptide in serum using sera collected from mice immunized with KLH, KLH, and recombinant 67LR to which 67LR 158-170 peptide is bound as antigens. It is. The horizontal axis shows the immunogen, and the vertical axis shows the absorbance obtained by the ELISA method. FIG. 1 (b) shows the result of measuring the antibody titer by ELISA method for the binding activity of the antibody produced by each hybridoma to 67LR 161-170 peptide after cloning the obtained hybridoma by limiting dilution method. Hybridoma clone no. The absorbance obtained by the ELISA method is shown on the vertical axis. 図2は、各ハイブリドーマクローンから得られた培養上清中の抗67LR161-170ペプチド抗体を測定した結果を示す。横軸にハイブリドーマのクローンNo.を示し、縦軸にELISA法により得られた吸光度を示す。FIG. 2 shows the results of measurement of anti-67LR 161-170 peptide antibody in the culture supernatant obtained from each hybridoma clone. Hybridoma clone no. The absorbance obtained by the ELISA method is shown on the vertical axis. 図3は、ESM-8抗体の、67LR161-170ペプチドおよびコントロールペプチドに対する結合をELISAにより測定した結果を示すグラフである。横軸に抗体濃度を示し、縦軸にELISA法により得られた吸光度を示す。FIG. 3 is a graph showing the results of measuring the binding of the ESM-8 antibody to the 67LR 161-170 peptide and the control peptide by ELISA. The horizontal axis represents the antibody concentration, and the vertical axis represents the absorbance obtained by the ELISA method. 図4は、ESM-16抗体の、67LR161-170ペプチドおよびコントロールペプチドに対する結合をELISAにより測定した結果を示すグラフである。横軸に抗体濃度を示し、縦軸にELISA法により得られた吸光度を示す。FIG. 4 is a graph showing the results of measuring the binding of the ESM-16 antibody to the 67LR 161-170 peptide and the control peptide by ELISA. The horizontal axis represents the antibody concentration, and the vertical axis represents the absorbance obtained by the ELISA method. 図5は、ESM-8抗体可変領域のDNA配列を示す。Leaderシーケンスを小文字で、また、CDRを太字で示し、FRには下線で示す。FIG. 5 shows the DNA sequence of the ESM-8 antibody variable region. Leader sequences are in lower case, CDRs are in bold, and FRs are underlined. 図6は、ESM-16抗体可変領域のDNA配列を示す。Leaderシーケンスを小文字で、また、CDRを太字で示し、FRには下線で示す。FIG. 6 shows the DNA sequence of the ESM-16 antibody variable region. Leader sequences are in lower case, CDRs are in bold, and FRs are underlined. 図7は、ESM-8抗体のヒト急性骨髄性白血病細胞株HL60に対する細胞増殖抑制活性を調べた結果を示すグラフである。横軸にサンプルの種類、使用濃度を示し、縦軸に生細胞数を示す。FIG. 7 is a graph showing the results of examining the cell growth inhibitory activity of ESM-8 antibody against human acute myeloid leukemia cell line HL60. The horizontal axis indicates the sample type and the concentration used, and the vertical axis indicates the number of living cells. 図8は、ESM-8抗体のヒト急性骨髄性白血病細胞株HL60の細胞表面への結合活性を調べた結果を示す。横軸に光強度を示し、縦軸に細胞数を示す。FIG. 8 shows the results of examining the binding activity of ESM-8 antibody to the cell surface of human acute myeloid leukemia cell line HL60. The horizontal axis indicates the light intensity, and the vertical axis indicates the number of cells. 図9は、ESM-16抗体のヒト多発性骨髄腫細胞株U266の細胞表面への結合活性を調べた結果を示す。横軸に光強度を示し、縦軸に細胞数を示す。FIG. 9 shows the results of examining the binding activity of the ESM-16 antibody to the cell surface of human multiple myeloma cell line U266. The horizontal axis indicates the light intensity, and the vertical axis indicates the number of cells. 図10(a)は、ESM-8抗体のスフィンゴミエリナーゼ活性を測定した結果を示す。図10(a)はTLCの結果を示す写真であり、図10(b)は相対的なスフィンゴミエリナーゼ活性を示す。FIG. 10 (a) shows the results of measuring the sphingomyelinase activity of the ESM-8 antibody. FIG. 10 (a) is a photograph showing the results of TLC, and FIG. 10 (b) shows the relative sphingomyelinase activity. 図11は、EMS-8抗体がヒト急性骨髄性白血病細胞株HL60に対する細胞増殖抑制作用を示すかどうかを試験した結果を示す。横軸に、サンプルの組み合わせを示し、縦軸に相対的な生細胞数を示す。FIG. 11 shows the results of testing whether the EMS-8 antibody exhibits a cytostatic effect on the human acute myeloid leukemia cell line HL60. The horizontal axis indicates the combination of samples, and the vertical axis indicates the relative number of living cells. 図12は、リコンビナントESM-8抗体の、ヒト急性骨髄性白血病細胞株HL60、ヒト膵臓がん細胞株 PANC-1およびヒト中皮腫細胞株MESO-4に対する細胞増殖抑制活性を調べた結果を示すグラフである。横軸にサンプルの種類、使用濃度を示し、縦軸に生細胞数を示す。FIG. 12 shows the results of examining the cell growth inhibitory activity of the recombinant ESM-8 antibody against human acute myeloid leukemia cell line HL60, human pancreatic cancer cell line PANC-1 and human mesothelioma cell line MESO-4 It is a graph. The horizontal axis indicates the type of sample and the concentration used, and the vertical axis indicates the number of living cells. 図13は、リコンビナントESM-8抗体のスフィンゴミエリナーゼ活性を測定した結果を示す。FIG. 13 shows the results of measuring the sphingomyelinase activity of the recombinant ESM-8 antibody. 図14は、リコンビナントESM-8抗体の急性骨髄性白血病細胞株HL60細胞表面への結合活性の評価を示す。FIG. 14 shows evaluation of the binding activity of recombinant ESM-8 antibody to the surface of acute myeloid leukemia cell line HL60 cells. 図15は、PDE3阻害剤、PDE5阻害剤、スフィンゴシンキナーゼの各阻害剤併用時のリコンビナントESM-8抗体の抗がん活性を示す。図中、+は、各阻害剤を使用した場合、-は各阻害剤を使用しなかった場合を示す。縦軸は相対的な生細胞数を示す。FIG. 15 shows the anticancer activity of the recombinant ESM-8 antibody when combined with each inhibitor of PDE3 inhibitor, PDE5 inhibitor and sphingosine kinase. In the figure, + indicates that each inhibitor is used, and-indicates that each inhibitor is not used. The vertical axis shows the relative number of living cells. 図16は、ゲムシタビン併用時のリコンビナントESM-8抗体の抗がん活性を示す。図中、+は、ゲムシタビンを使用した場合、-はゲムシタビンを使用しなかった場合を示す。縦軸は相対的な生細胞数を示す。FIG. 16 shows the anticancer activity of the recombinant ESM-8 antibody in combination with gemcitabine. In the figure, + indicates that gemcitabine is used, and − indicates that gemcitabine is not used. The vertical axis shows the relative number of living cells. 図17は、EMS-16抗体の、ヒト多発性骨髄腫細胞U266、マウスメラノーマ細胞株B16およびヒト膵臓がん細胞株PANC-1に対する細胞増殖活性を示すグラフである。縦軸に生細胞数を示す。FIG. 17 is a graph showing the cell proliferation activity of EMS-16 antibody against human multiple myeloma cell U266, mouse melanoma cell line B16 and human pancreatic cancer cell line PANC-1. The number of viable cells is shown on the vertical axis.
 本発明において、67kDaラミニン・レセプタータンパク質(67LR)とは、基底膜の主要な構成成分であるラミニンと結合する細胞膜タンパク質として発見されたタンパク質であり、具体的には配列番号1で表されるアミノ酸配列を有するタンパク質を意味する。67LRは、近年の研究において、がん細胞で発現が異常に亢進しており、その発現と増殖、浸潤、転移の間に強い相関が認められている。また、リンパ球においても、67LRは正常リンパ球にはほとんど発現せず、白血病細胞において高発現しているという報告が数多くなされている。一方、緑茶に含まれる主要なカテキンの一種である没食子酸エピガロカテキン(以下、EGCGともいう)は抗がん作用を有していることが報告されており、現在慢性リンパ性白血病患者において臨床試験が行われている。本発明者らは、これまでにEGCGの抗がん作用を担う細胞膜上の標的分子が67kDaラミニン・レセプタータンパク質であることを明らかにしている。 In the present invention, the 67 kDa laminin receptor protein (67LR) is a protein discovered as a cell membrane protein that binds to laminin, which is a major component of the basement membrane, specifically the amino acid represented by SEQ ID NO: 1. It means a protein having a sequence. In recent studies, 67LR is abnormally enhanced in cancer cells, and a strong correlation has been observed between its expression and proliferation, invasion, and metastasis. There have been many reports that 67LR is hardly expressed in normal lymphocytes and is highly expressed in leukemia cells. On the other hand, epigallocatechin gallate (hereinafter also referred to as EGCG), which is one of the main catechins contained in green tea, has been reported to have an anticancer activity, and is currently clinically used in patients with chronic lymphocytic leukemia. A test is being conducted. The present inventors have clarified that the target molecule on the cell membrane responsible for the anticancer activity of EGCG is a 67 kDa laminin receptor protein.
 本発明のモノクローナル抗体は、67LRに特異的に結合するものであればいかなるものであってもよいが、好ましくは67LRのN末端から161~170番目のアミノ酸からなるペプチド配列を認識するものである。また、本発明のモノクローナル抗体は、特定の公知の製造方法によって確立することができる。 The monoclonal antibody of the present invention may be any antibody that specifically binds to 67LR, but preferably recognizes a peptide sequence consisting of amino acids 161 to 170 from the N-terminus of 67LR. . In addition, the monoclonal antibody of the present invention can be established by a specific known production method.
 上述したように、緑茶カテキンに含まれるEGCGの抗がん作用を担う細胞膜上の標的分子が67kDaラミニン・レセプタータンパク質であることを明らかになっているので、EGCGが結合する67LR上のペプチド配列を免疫抗原として用い、抗体を獲得することができる。また、後述するように得られる抗体は抗がん活性を示すものである。本発明は、緑茶カテキン中の没食子酸エピガロカテキンが結合する67kDaラミニン・レセプタータンパク質分子上のペプチド配列を免疫抗原として用いて、緑茶カテキン中の没食子酸エピガロカテキンが67kDaラミニン・レセプタータンパク質を介して発現する、抗がん活性、抗肥満作用、抗動脈硬化作用、抗アレルギー作用、抗炎症作用および筋萎縮阻害作用からなる群から選択される1以上の生理活性を有する抗体のスクリーニング方法を提供する。具体的には、以下の方法により、抗体をスクリーニングすることができる。 As described above, since the target molecule on the cell membrane responsible for the anticancer activity of EGCG contained in green tea catechin has been clarified to be a 67 kDa laminin receptor protein, the peptide sequence on 67LR to which EGCG binds is represented. It can be used as an immunizing antigen to obtain antibodies. In addition, the antibody obtained as described later exhibits anticancer activity. The present invention uses a peptide sequence on a 67 kDa laminin receptor protein molecule to which epigallocatechin gallate in green tea catechin binds as an immunizing antigen, and epigallocatechin gallate in green tea catechin is mediated through a 67 kDa laminin receptor protein. A method for screening an antibody having one or more physiological activities selected from the group consisting of anti-cancer activity, anti-obesity action, anti-arteriosclerosis action, anti-allergic action, anti-inflammatory action and muscle atrophy inhibiting action To do. Specifically, antibodies can be screened by the following method.
 抗67LRモノクローナル抗体を作製するために使用される抗原としては、67LRを産生する細胞またはその細胞画分、または67LRをコードするDNAにより形質転換された宿主細胞、すなわち、大腸菌などの原核性宿主細胞および昆虫細胞、哺乳動物細胞等の真核性宿主細胞中に、67LRをコードするcDNAの全長または部分断片を公知の方法を用いて組み込み、そのまままたは融合タンパク質として発現、精製されたタンパク質、さらには、ペプチド合成機を用いて合成された67LRの部分ペプチド等を用いることができる。部分ペプチドとしては、67LRのN末端から161~170番目のアミノ酸からなるペプチド配列中の3残基以上の連続した配列からなるペプチドを用いることができ、好ましくは67LRのN末端から161~170番目のアミノからなるペプチド配列を含むペプチドであり、更に好ましくは、67LRのN末端から161~170番目のアミノからなるペプチド配列からなるペプチドである。また、67LRのN末端から161~170番目のアミノ酸からなるペプチド配列を含む全長30残基以内のペプチドであってもよい。 Antigens used to produce anti-67LR monoclonal antibodies include cells that produce 67LR or cell fractions thereof, or host cells transformed with DNA encoding 67LR, ie prokaryotic host cells such as E. coli A full-length or partial fragment of cDNA encoding 67LR into a eukaryotic host cell such as an insect cell or a mammalian cell using a known method, and expressed or purified as it is or as a fusion protein; A 67LR partial peptide synthesized using a peptide synthesizer can be used. As the partial peptide, a peptide consisting of a sequence of 3 or more residues in the peptide sequence consisting of amino acids 161 to 170 from the N-terminal of 67LR can be used, preferably 161 to 170th from the N-terminal of 67LR. A peptide comprising a peptide sequence consisting of the amino acids 161 to 170 from the N-terminal of 67LR, more preferably a peptide comprising a peptide sequence consisting of the amino acid. Further, it may be a peptide having a total length of 30 residues or less including a peptide sequence consisting of amino acids 161 to 170 from the N-terminal of 67LR.
 本発明のモノクローナル抗体は、モノクローナル抗体を構成するアミノ酸配列においては、1又複数のアミノ酸が欠失、置換、挿入若しくは付加されたアミノ酸配列からなり、かつ上記モノクローナル抗体と実質的に同一の生物学的活性を有するモノクローナル抗体も、本発明に包含される。欠失、置換、挿入および/または付加されるアミノ酸の数は1個以上でありその数は特に限定されないが、部位特異的変異導入法等の周知の技術により、欠失、置換、挿入もしくは付加できる程度の数である。例えば、1~数十個、好ましくは1~20個、より好ましくは1~10個、さらに好ましくは1~5個である。 The monoclonal antibody of the present invention consists of an amino acid sequence in which one or more amino acids are deleted, substituted, inserted or added in the amino acid sequence constituting the monoclonal antibody, and is substantially the same biology as the monoclonal antibody. Antibodies that have specific activity are also encompassed by the present invention. The number of amino acids to be deleted, substituted, inserted and / or added is one or more, and the number is not particularly limited. However, deletion, substitution, insertion or addition is performed by a well-known technique such as site-directed mutagenesis. It is a number that can be done. For example, the number is 1 to several tens, preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5.
 上記のモノクローナル抗体を構成するアミノ酸配列において1又は複数のアミノ酸残基が欠失、置換、挿入または付加されたとは、以下のことを意味する。同一配列中の任意、かつ1もしくは複数のアミノ酸配列中において、1または複数のアミノ酸残基の欠失、置換、挿入または付加があることを意味する。また、欠失、置換、挿入または付加が同時に生じてもよい。 The deletion, substitution, insertion or addition of one or more amino acid residues in the amino acid sequence constituting the monoclonal antibody means the following. It means that there is a deletion, substitution, insertion or addition of one or more amino acid residues in any and one or more amino acid sequences in the same sequence. Deletions, substitutions, insertions or additions may occur simultaneously.
 本発明のモノクローナル抗体としては、モノクローナル抗体ESM-8およびモノクローナル抗体ESM-16が挙げられる。また、本発明のモノクローナル抗体は、モノクローナル抗体ESM-8またはESM-16の可変領域の相補性決定領域の一部または全部のペプチド配列を含むものであってもよい。可変領域の相補性決定領域とは、抗体の可変領域中に存在し、抗原と相補的に直接結合する部位である3つの領域、CDR1、CDR2、CDR3を意味する。
 モノクローナル抗体ESM-8およびESM-16は、後述する実施例に記載の方法により作製することができる。
 本発明のモノクローナル抗体の具体例として以下のモノクローナル抗体が挙げられる。
(a)重鎖可変領域のアミノ酸配列が配列番号6または22で表されるアミノ酸配列を含み、および/または、軽鎖可変領域のアミノ酸配列が配列番号8または24で表されるアミノ酸列を含むモノクローナル抗体
(b)重鎖可変領域のアミノ酸配列が配列番号6で表されるアミノ酸配列を含み、および/または、軽鎖可変領域のアミノ酸配列が配列番号8で表されるアミノ酸列を含むモノクローナル抗体
(c)重鎖可変領域のアミノ酸配列が配列番号22で表されるアミノ酸配列を含み、および/または、軽鎖可変領域のアミノ酸配列が配列番号24で表されるアミノ酸列を含むモノクローナル抗体
(d)重鎖可変領域のCDRのアミノ酸配列が配列番号10、12、14もしくは配列番号26、28、30で表されるアミノ酸配列を含み、および/または、軽鎖可変領域のCDRのアミノ酸配列が配列番号16、18、20もしくは配列番号32、34、36で表されるアミノ酸配列を含むモノクローナル抗体
(e)重鎖可変領域のCDRのアミノ酸配列が配列番号10、12、14で表されるアミノ酸配列を含み、および/または、軽鎖可変領域のCDRのアミノ酸配列が配列番号16、18、20で表されるアミノ酸配列を含むモノクローナル抗体
(f)重鎖可変領域のCDRのアミノ酸配列が配列番号26、28、30で表されるアミノ酸配列を含み、および/または、軽鎖可変領域のCDRのアミノ酸配列が配列番号32、34、36で表されるアミノ酸配列を含むモノクローナル抗体
 本発明は、モノクローナル抗体ESM-8またはモノクローナル抗体ESM-16の可変領域のペプチド配列を含むキメラ抗原受容体をも提供する。
 本明細書において、キメラ抗原受容体(chimeric antigen receptor;CAR)とは、腫瘍抗原に特異的なモノクローナル抗体の軽鎖と重鎖の可変領域とT細胞受容体ζ鎖を遺伝子工学的に連結させたキメラタンパク質を意味する。今日では、がんに対するT細胞受容体遺伝子改変免疫細胞療法が注目されているが、この療法ではがん細胞表面分子を認識するよう人工的にデザインしたキメラ抗原受容体(chimeric antigen receptor;CAR)遺伝子を導入発現させたT細胞の高い抗腫瘍効果とHLA(Human Leukocyte Antigen)に依存しない汎用性を特徴としている。腫瘍抗原の一種67LRに対するモノクローナル抗体であるESM-8ならびにESM-16の可変領域は新規のキメラ抗原受容体CARの創成に活用することができる。
Monoclonal antibodies of the present invention include monoclonal antibody ESM-8 and monoclonal antibody ESM-16. Further, the monoclonal antibody of the present invention may contain a peptide sequence of a part or all of the complementarity determining region of the variable region of the monoclonal antibody ESM-8 or ESM-16. The complementarity determining region of the variable region means three regions, CDR1, CDR2, and CDR3, which are sites that exist in the variable region of an antibody and directly complementarily bind to an antigen.
Monoclonal antibodies ESM-8 and ESM-16 can be prepared by the methods described in the Examples described later.
Specific examples of the monoclonal antibody of the present invention include the following monoclonal antibodies.
(A) The amino acid sequence of the heavy chain variable region includes the amino acid sequence represented by SEQ ID NO: 6 or 22, and / or the amino acid sequence of the light chain variable region includes the amino acid sequence represented by SEQ ID NO: 8 or 24 Monoclonal antibody (b) Monoclonal antibody in which the amino acid sequence of the heavy chain variable region comprises the amino acid sequence represented by SEQ ID NO: 6 and / or the amino acid sequence of the light chain variable region comprises the amino acid sequence represented by SEQ ID NO: 8 (C) a monoclonal antibody in which the amino acid sequence of the heavy chain variable region comprises the amino acid sequence represented by SEQ ID NO: 22 and / or the amino acid sequence of the light chain variable region comprises the amino acid sequence represented by SEQ ID NO: 24 (d ) The amino acid sequence of CDR of heavy chain variable region includes the amino acid sequence represented by SEQ ID NO: 10, 12, 14 or SEQ ID NO: 26, 28, 30 And / or monoclonal antibody comprising the amino acid sequence of CDR of light chain variable region represented by SEQ ID NO: 16, 18, 20 or SEQ ID NO: 32, 34, 36 (e) amino acid of CDR of heavy chain variable region A monoclonal antibody comprising an amino acid sequence represented by SEQ ID NO: 10, 12, 14 and / or a CDR amino acid sequence of the light chain variable region comprising an amino acid sequence represented by SEQ ID NO: 16, 18, 20 ( f) The amino acid sequence of the CDR of the heavy chain variable region includes the amino acid sequence represented by SEQ ID NO: 26, 28, 30 and / or the amino acid sequence of the CDR of the light chain variable region is SEQ ID NO: 32, 34, 36 The present invention relates to a monoclonal antibody ESM-8 or a monoclonal antibody ESM-16. Also provides chimeric antigen receptor comprise a peptide sequence of the variable region.
In the present specification, a chimeric antigen receptor (CAR) is a genetically engineered linkage of a variable region of a light chain and a heavy chain of a monoclonal antibody specific for a tumor antigen and a T cell receptor ζ chain. Means a chimeric protein. Today, T cell receptor gene-modified immune cell therapy for cancer has attracted attention, and in this therapy, a chimeric antigen receptor (CAR) that has been artificially designed to recognize cancer cell surface molecules. It is characterized by a high antitumor effect of T cells into which a gene has been introduced and expressed, and versatility independent of HLA (Human Leukocyte Antigen). The variable regions of ESM-8 and ESM-16, which are monoclonal antibodies against a kind of tumor antigen 67LR, can be used to create a novel chimeric antigen receptor CAR.
 本発明のモノクローナル抗体としては、ヒト型キメラ抗体、ヒト化抗体、ヒト抗体またはそれらの抗体断片など、遺伝子組換えにより製造される抗体を包含する。遺伝子組換え抗体において、モノクローナル抗体の特徴を有し、ヒトに対する異種抗原性を低下させることなどから、治療薬として用いるのに特に好ましい。これらの改変抗体は、既知の方法を用いて製造することができる。キメラ抗体は、抗体の可変領域と定常領域が互いに異種である抗体などが挙げられ、例えばヒト以外の哺乳動物、例えば、マウス抗体の重鎖、軽鎖の可変領域とヒト抗体の重鎖、軽鎖の定常領域からなる抗体が挙げられる。このような抗体は、マウス抗体の可変領域をコードするDNAをヒト抗体の定常領域をコードするDNAと連結し、これを発現ベクターに組み込んで宿主に導入し産生させることにより得ることができる。 The monoclonal antibody of the present invention includes antibodies produced by genetic recombination such as human chimeric antibodies, humanized antibodies, human antibodies or antibody fragments thereof. Recombinant antibodies are particularly preferred for use as therapeutic agents because they have the characteristics of monoclonal antibodies and reduce the heteroantigenicity of humans. These modified antibodies can be produced using known methods. The chimeric antibody includes an antibody in which the variable region and the constant region of the antibody are heterologous to each other. For example, mammals other than humans, for example, the heavy chain of a mouse antibody, the variable region of a light chain and the heavy chain of a human antibody, An antibody consisting of the constant region of the chain can be mentioned. Such an antibody can be obtained by ligating DNA encoding the variable region of a mouse antibody with DNA encoding the constant region of a human antibody, incorporating it into an expression vector, introducing it into a host, and producing it.
 また、イヌ、ネコを対象とし、本発明のモノクローナル抗体を投与する場合には、本発明のモノクローナル抗体を、イヌ抗体、イヌ化抗体、ネコ抗体、ネコ化抗体とすることが好ましい。
 「イヌ化」は、ドナー抗体由来の非イヌ抗原結合情報をより弱い免疫原性のイヌ抗体アクセプターに移し、イヌにおける治療として有用な処置を産生する方法として定義される。
In addition, when a monoclonal antibody of the present invention is administered to dogs and cats, the monoclonal antibody of the present invention is preferably a canine antibody, a canine antibody, a cat antibody, or a cat antibody.
“Inuization” is defined as a method of transferring non-canine antigen binding information from a donor antibody to a weaker immunogenic canine antibody acceptor, producing a treatment useful as a therapy in a dog.
 「ネコ化」は、ドナー抗体由来の非ネコ抗原結合情報をより弱い免疫原性のネコ抗体アクセプターに移し、ネコにおける治療として有用な処置を産生する方法として定義される。
 イヌ抗体、イヌ化抗体、ネコ抗体、ネコ化抗体の製造方法については公知の方法を用いることができる。
“Catification” is defined as a method of transferring non-cat antigen binding information from a donor antibody to a weaker immunogenic cat antibody acceptor to produce a treatment useful as a therapy in a cat.
Known methods can be used for producing canine antibodies, canine antibodies, feline antibodies, and feline antibodies.
 本発明のモノクローナル抗体は、検出のために標識することができる。モノクローナル抗体は、放射性同位体、蛍光剤または酵素を結合して標識することができる。放射性同位体としては、例えば32P、14C、125I、H又は131Iが挙げられ、蛍光剤としては、例えば、フルオレセイン又はローダミン等が挙げられる。酵素としては、例えば、アルカリホスファターゼ、西洋ワサビペルオキシダーゼ、β-ガラクトシダーゼ、キサンチンオキシダーゼ、グルコースオキシダーゼ若しくは他の糖オキシダーゼ又はルシフェラーゼなど、本分野において周知の様々な酵素が挙げられる。
 また、本発明のモノクローナル抗体は、細胞毒素と結合させてもよい。このように、細胞毒素と結合させることにより、本発明のモノクローナル抗体の抗原を発現する細胞に対し毒性剤を指向させることが可能となる。細胞毒素としては、例えばシュードモナス外生毒素等が挙げられる。
 モノクローナル抗体に、放射性同位体、蛍光剤、酵素または細胞毒素を結合させる方法に制限はなく、従来公知の方法により実施することができる。
The monoclonal antibodies of the invention can be labeled for detection. Monoclonal antibodies can be labeled by binding radioisotopes, fluorescent agents or enzymes. Examples of the radioisotope include 32 P, 14 C, 125 I, 3 H, and 131 I. Examples of the fluorescent agent include fluorescein and rhodamine. Examples of the enzyme include various enzymes well known in the art such as alkaline phosphatase, horseradish peroxidase, β-galactosidase, xanthine oxidase, glucose oxidase or other sugar oxidase or luciferase.
Further, the monoclonal antibody of the present invention may be conjugated with a cytotoxin. Thus, by binding with a cytotoxin, it becomes possible to direct a toxic agent to the cell expressing the antigen of the monoclonal antibody of the present invention. Examples of the cytotoxin include Pseudomonas exogenous toxin.
There is no limitation on the method for binding the radioisotope, the fluorescent agent, the enzyme or the cytotoxin to the monoclonal antibody, and it can be carried out by a conventionally known method.
 次に、本発明の医薬について説明する。
 本発明の医薬は、本発明のモノクローナル抗体を有効成分として含有する。
 本発明の医薬は、67LRが関与する各種疾患を治療することができる。
 67LRが関与する疾患としては、がん、肥満、動脈硬化、アレルギー、炎症および筋萎縮が挙げられる。がんとしては、乳がん、胃がん、膵臓がん、前立腺がん、急性骨髄性白血病、多発性骨髄腫、胆管がん、結腸がん、子宮頸がんやこれらがんと同様に67LRを高発現している中皮腫が挙げられる。
Next, the medicament of the present invention will be described.
The medicament of the present invention contains the monoclonal antibody of the present invention as an active ingredient.
The medicament of the present invention can treat various diseases involving 67LR.
Diseases involving 67LR include cancer, obesity, arteriosclerosis, allergy, inflammation and muscle atrophy. As cancer, breast cancer, stomach cancer, pancreatic cancer, prostate cancer, acute myeloid leukemia, multiple myeloma, bile duct cancer, colon cancer, cervical cancer and 67LR high expression like these cancers Mesothelioma.
 本発明のモノクローナル抗体は、EGCGが67LRを介して抗がん作用を発揮するメラノーマ細胞株B16細胞、急性骨髄性白血病細胞株HL60、膵臓がん細胞株PANC-1、中皮腫細胞株MRSO-4に対して抗がん作用を発揮する。また、EGCG はがん細胞に対して酸性スフィンゴミエリナーゼを活性化させ抗がん活性を示すが、本発明のモノクローナル抗体はEGCG同様にがん細胞に対して酸性スフィンゴミエリナーゼを活性化する。さらに、本発明のモノクローナル抗体はEGCGと同様に、67LR依存的に抗がん作用を示す。このことより、本発明のモノクローナル抗体がEGCGと同様に67LRアゴニストとして機能することを示しており、EGCGが67LRを介して抗がん作用を発揮するがん種である乳がん、胃がん、膵臓がん、前立腺がん、急性骨髄性白血病、多発性骨髄腫、胆管がん、結腸がん、子宮頸がんやこれらがんと同様に67LRを高発現している中皮腫に対してESM-8抗体およびESM-16抗体が抗がん剤となり得ること示している(非特許文献9~15)。 The monoclonal antibody of the present invention is a melanoma cell line B16 cell in which EGCG exerts an anticancer action via 67LR, acute myeloid leukemia cell line HL60, pancreatic cancer cell line PANC-1, mesothelioma cell line MRSO- 4 exhibits anti-cancer activity. In addition, EGCG activates acidic sphingomyelinase to cancer cells and exhibits anticancer activity, but the monoclonal antibody of the present invention activates acidic sphingomyelinase to cancer cells in the same manner as EGCG. Furthermore, the monoclonal antibody of the present invention exhibits an anticancer activity in a 67LR-dependent manner, like EGCG. This shows that the monoclonal antibody of the present invention functions as a 67LR agonist like EGCG, and breast cancer, stomach cancer, pancreatic cancer, which are cancer types in which EGCG exerts an anticancer action via 67LR. ESM-8 for prostate cancer, acute myeloid leukemia, multiple myeloma, bile duct cancer, colon cancer, cervical cancer and mesothelioma that expresses 67LR as well as these cancers It has been shown that antibodies and ESM-16 antibodies can be anticancer agents (Non-Patent Documents 9 to 15).
 本発明の医薬は、PDE3阻害剤、PDE5阻害剤、スフィンゴシンキナーゼ阻害剤、またはゲムシタビンを更に含んでもよい。PDE3阻害剤としては、例えば、トレキンシン、シロスタゾール(6‐[4‐(1‐シクロヘキシル‐1H‐テトラゾール‐5‐イル)ブトキシ]‐3,4‐ジヒドロ‐2(1H)‐キノロン、または、6‐[4‐(1‐シクロヘキシル‐1H‐テトラゾール‐5‐イル)ブトキシ]‐3,4‐ジヒドロ‐2(1H)‐キノリノン)等が挙げられる。を用いてもよい。PDE5阻害剤としては、例えば、シルデナフィル、バルデナフィル、タダラフィル、ウデナフィル等が挙げられる。スフィンゴシンキナーゼ阻害剤としては、例えば、サフィンゴール(L-スレオ-ジヒドロスフィンゴシン)、N,N-ジメチルスフィンゴシン、トリメチルスフィンゴシンおよびスフィンゴシンのアナログおよび誘導体、例えば、ジヒドロスフィンゴシン、およびミリオシンが挙げられる。 The medicament of the present invention may further contain a PDE3 inhibitor, a PDE5 inhibitor, a sphingosine kinase inhibitor, or gemcitabine. PDE3 inhibitors include, for example, trekinsin, cilostazol (6- [4- (1-cyclohexyl-1H-tetrazol-5-yl) butoxy] -3,4-dihydro-2 (1H) -quinolone, or 6- [4- (1-cyclohexyl-1H-tetrazol-5-yl) butoxy] -3,4-dihydro-2 (1H) -quinolinone) and the like. May be used. Examples of the PDE5 inhibitor include sildenafil, vardenafil, tadalafil, udenafil and the like. Sphingosine kinase inhibitors include, for example, saphingol (L-threo-dihydrosphingosine), N, N-dimethylsphingosine, trimethylsphingosine and analogs and derivatives of sphingosine such as dihydrosphingosine and myriocin.
 本発明の医薬は、単独で投与することも可能ではあるが、通常は薬理学的に許容される一つあるいはそれ以上の担体と一緒に混合し、製剤学の技術分野においてよく知られる任意の方法により製造した医薬製剤として提供するのが好ましい。 The medicament of the present invention can be administered alone, but usually mixed together with one or more pharmacologically acceptable carriers, and any well known in the technical field of pharmaceutics It is preferably provided as a pharmaceutical preparation produced by the method.
 投与経路は、治療に際して最も効果的なものを使用するのが好ましい。投与経路としては、例えば、経口投与、または口腔内、気道内、直腸内、皮下、筋肉内および静脈内等の非経口投与を挙げることができる。蛋白質製剤の場合、静脈内投与が好ましい。 It is preferable to use the most effective route for treatment. Examples of the administration route include oral administration and parenteral administration such as buccal, intratracheal, rectal, subcutaneous, intramuscular and intravenous. In the case of protein preparations, intravenous administration is preferred.
 投与形態としては、例えば、噴霧剤、カプセル剤、錠剤、顆粒剤、シロップ剤、乳剤、座剤、注射剤、軟膏、およびテープ剤等が挙げられる。 Examples of administration forms include sprays, capsules, tablets, granules, syrups, emulsions, suppositories, injections, ointments, and tapes.
 経口投与に適当な製剤としては、例えば、乳剤、シロップ剤、カプセル剤、錠剤、散剤、および顆粒剤等が挙げられる。 Examples of preparations suitable for oral administration include emulsions, syrups, capsules, tablets, powders, and granules.
 乳剤およびシロップ剤のような液体調製物は、水、ショ糖、ソルビトール、および果糖等の糖類、ポリエチレングリコール、およびプロピレングリコール等のグリコール類、ごま油、オリーブ油、および大豆油等の油類、p-ヒドロキシ安息香酸エステル類等の防腐剤、並びにストロベリーフレーバー、およびペパーミント等のフレーバー類等を添加剤として用いて製造できる。 Liquid preparations such as emulsions and syrups include sugars such as water, sucrose, sorbitol and fructose, glycols such as polyethylene glycol and propylene glycol, oils such as sesame oil, olive oil and soybean oil, p- Preservatives such as hydroxybenzoic acid esters, and flavors such as strawberry flavor and peppermint can be used as additives.
 カプセル剤、錠剤、散剤、顆粒剤等は、乳糖、ブドウ糖、ショ糖、およびマンニトール等の賦形剤、デンプン、およびアルギン酸ナトリウム等の崩壊剤、ステアリン酸マグネシウム、およびタルク等の滑沢剤、ポリビニルアルコール、ヒドロキシプロピルセルロース、およびゼラチン等の結合剤、脂肪酸エステル等の界面活性剤、並びにグリセリン等の可塑剤等を添加剤として用いて製造できる。 Capsules, tablets, powders, granules, etc. are excipients such as lactose, glucose, sucrose and mannitol, disintegrants such as starch and sodium alginate, lubricants such as magnesium stearate and talc, polyvinyl A binder such as alcohol, hydroxypropylcellulose, and gelatin, a surfactant such as fatty acid ester, and a plasticizer such as glycerin can be used as additives.
 非経口投与に適当な製剤としては、例えば、注射剤、座剤、および噴霧剤等が挙げられる。 Examples of preparations suitable for parenteral administration include injections, suppositories, and sprays.
 注射剤は、例えば、塩溶液、またはブドウ糖溶液、あるいは両者の混合物からなる担体等を用いて調製される。 The injection is prepared using, for example, a carrier made of a salt solution, a glucose solution, or a mixture of both.
 座剤は、例えば、カカオ脂、水素化脂肪またはカルボン酸等の担体を用いて調製される。 The suppository is prepared using a carrier such as cacao butter, hydrogenated fat or carboxylic acid.
 また、噴霧剤は該医薬そのもの、ないしは受容者の口腔および気道粘膜を刺激せず、かつ該医薬を微細な粒子として分散させ吸収を容易にさせる担体等を用いて調製される。 The spray is prepared using a carrier that does not irritate the drug itself or the recipient's oral cavity and airway mucosa, and that disperses the drug as fine particles to facilitate absorption.
 担体として具体的には、例えば、乳糖、およびグリセリン等が挙げられる。該医薬および用いる担体の性質により、エアロゾル、ドライパウダー等の製剤が可能である。また、これらの非経口剤においても経口剤で添加剤として例示した成分を添加することもできる。 Specific examples of the carrier include lactose and glycerin. Depending on the properties of the medicine and the carrier used, preparations such as aerosols and dry powders are possible. In these parenteral preparations, the components exemplified as additives for oral preparations can also be added.
 投与量または投与回数は、目的とする治療効果、投与方法、治療期間、年齢、体重等により異なるが、通常成人1回当たり抗体量として1~30mg/kgであることが好ましい。抗体と併用する薬剤は、単独で臨床に用いられる場合の投与量と同用量またはそれより少ない用量であることが好ましい。 The dose or frequency of administration varies depending on the intended therapeutic effect, administration method, treatment period, age, weight, etc., but it is usually preferably 1 to 30 mg / kg as the amount of antibody per adult. The drug used in combination with the antibody is preferably at the same dose or less than the dose when used alone clinically.
 EGCGをドラッグデリバリーシステム(DDS)の担体とすることで、67LRを標的としてがん特異的に薬剤を集積させることが可能であることが報告されている(非特許文献24)。本発明のモノクローナル抗体は67LRに特異的に結合することから、本発明の医薬は、乳がん、胃がん、膵臓がん、前立腺がん、急性骨髄性白血病、多発性骨髄腫、胆管がん、結腸癌、子宮頸、中皮腫といった67LRを高発現するがんに、放射線源、放射性同位体、蛍光剤、酵素、細胞毒素、抗がん剤などを集積させるための担体や67LRを標的とした腫瘍の診断、感受性評価、armed antibodyとして利用することができる。 It has been reported that by using EGCG as a carrier for a drug delivery system (DDS), it is possible to accumulate cancer-specific drugs targeting 67LR (Non-patent Document 24). Since the monoclonal antibody of the present invention specifically binds to 67LR, the medicament of the present invention can be used for breast cancer, stomach cancer, pancreatic cancer, prostate cancer, acute myeloid leukemia, multiple myeloma, bile duct cancer, colon cancer. , Cervical, mesothelioma cancers that highly express 67LR, tumors targeting 67LR and carriers for accumulating radiation sources, radioisotopes, fluorescent agents, enzymes, cytotoxins, anticancer agents, etc. Diagnosis, sensitivity evaluation, and armed antibody.
 EGCGはがん細胞に直接働きかけて抗がん作用を発揮するだけでなく、67LR を介して腫瘍免疫を賦活させて抗がん作用を発現する(非特許文献25)。したがって、本発明のモノクローナル抗体は67LRリガンドとしての性質を有することから、EGCGと同様に腫瘍免疫を活性化することで幅広いがんに抗がん作用を示す腫瘍免疫活性化剤としての応用が期待できる。すなわち、本発明の医薬は、腫瘍免疫活性化剤としての応用が期待できる。
 本発明のモノクローナル抗体はEGCGのアポトーシス誘導に直接関与する酸性スフィンゴミエリナーゼを活性化することから、アポトーシス誘導活性を有すると考えられる。従って、本発明の医薬はがん細胞にアポトーシスを誘導し得る。
EGCG not only works directly on cancer cells to exert an anticancer effect, but also activates tumor immunity via 67LR to develop an anticancer effect (Non-patent Document 25). Therefore, since the monoclonal antibody of the present invention has a property as a 67LR ligand, it is expected to be applied as a tumor immunity activator that exhibits anticancer activity against a wide range of cancers by activating tumor immunity in the same manner as EGCG. it can. That is, the medicament of the present invention can be expected to be applied as a tumor immune activator.
Since the monoclonal antibody of the present invention activates acidic sphingomyelinase that is directly involved in the induction of apoptosis of EGCG, it is considered to have an apoptosis-inducing activity. Therefore, the medicament of the present invention can induce apoptosis in cancer cells.
 EGCGは抗がん作用のみならず67LRを介して炎症反応阻害作用(非特許文献26)、抗アレルギー作用(非特許文献27)、動脈硬化・血栓予防作用(非特許文献28)、筋萎縮抑制作用(非特許文献29)を示すことから、67LR分子上のEGCG結合部位に結合することでEGCGと同様の活性を示す本発明のモノクローナル抗体を含む医薬は、抗アレルギー剤、抗動脈硬化・血栓予防剤、筋萎縮抑制剤としての利用が期待できる。また、脂肪細胞においてEGCG は67LR を介してインスリンによって引き起こされるグルコースの取り込みを阻害すること(非特許文献30)、脂肪細胞の肥大化誘導因子であるヒスタミンの遊離を67LRを介して阻害すること(非特許文献31)から、本発明のモノクローナル抗体を含む医薬抗肥満薬としての利用が期待できる。 EGCG not only has an anti-cancer effect but also an inflammatory reaction inhibitory effect (Non-patent document 26), anti-allergic effect (Non-patent document 27), arteriosclerosis / thromboprophylaxis (Non-patent document 28), and muscle atrophy suppression Because of its action (Non-Patent Document 29), a medicament containing the monoclonal antibody of the present invention showing the same activity as EGCG by binding to the EGCG binding site on the 67LR molecule is an antiallergic agent, antiarteriosclerosis / thrombosis It can be expected to be used as a preventive agent and a muscle atrophy inhibitor. Moreover, in fat cells, EGCG inhibits glucose uptake caused by insulin via 67LR (Non-patent Document 30), and inhibits release of histamine, which is an adipocyte hypertrophy inducer, via 67LR ( Non-patent document 31) can be expected to be used as a pharmaceutical anti-obesity drug containing the monoclonal antibody of the present invention.
 本発明のモノクローナル抗体および本発明の医薬は、本発明のモノクローナル抗体の適応者を判別するための診断用抗体としても使用することができる。 The monoclonal antibody of the present invention and the medicament of the present invention can also be used as a diagnostic antibody for discriminating the appropriate person who applies the monoclonal antibody of the present invention.
 本発明のモノクローナル抗体は、67LRに特異的に結合するので、67LRを免疫学的に検出し、検出および定量するために使用することができる。
 本発明のモノクローナル抗体は、67LRに特異的に結合するので、本発明のモノクローナル抗体の適応者を判別するために使用することができる。本発明の医薬は、67LRが関与する疾患の治療に使用することができるが、治療すべき疾患が67LRが関与する疾患であるか否かを、本発明のモノクローナル抗体を使用して判別可能である。
Since the monoclonal antibody of the present invention specifically binds to 67LR, it can be used for immunological detection, detection and quantification of 67LR.
Since the monoclonal antibody of the present invention specifically binds to 67LR, it can be used for discriminating who can apply the monoclonal antibody of the present invention. The medicament of the present invention can be used for treatment of a disease involving 67LR, but it can be determined using the monoclonal antibody of the present invention whether or not the disease to be treated is a disease associated with 67LR. is there.
 上述したように、本発明のモノクローナル抗体および本発明の医薬品は、67LRが関与する疾患、例えばがん、肥満、動脈硬化、アレルギー、炎症および筋萎縮の治療に有用である。したがって、本発明は、本発明のモノクローナル抗体を対象に投与することを含む、がん、肥満、動脈硬化、アレルギー、炎症または筋萎縮を治療する方法を提供する。 As described above, the monoclonal antibody of the present invention and the pharmaceutical agent of the present invention are useful for the treatment of diseases involving 67LR, such as cancer, obesity, arteriosclerosis, allergy, inflammation and muscle atrophy. Accordingly, the present invention provides a method for treating cancer, obesity, arteriosclerosis, allergy, inflammation or muscle atrophy, comprising administering to a subject a monoclonal antibody of the present invention.
 以下の実施例により本発明をより具体的に説明するが、実施例は本発明の例示であり、本発明の範囲を限定するものではない。 The present invention will be described more specifically by the following examples, but the examples are illustrative of the present invention and do not limit the scope of the present invention.
[実施例1]
 リコンビナント67LR(r-hLR1-295)及び67LR158-170を用いた免疫
(1)免疫原の調製及び免疫
 以下の実施例において使用するカナマイシンは和光純薬工業株式会社より、IPTGはフナコシ株式会社より、イミダゾールはナカライテスク株式会社より、HiTrap Chelating HPカラムはGE Healthcare(UK)より購入した。大腸菌の超音波破砕はHandy Sonic(株式会社トミー精工)により行った。LB液体培地は、Tryptone(BD,USA)10g/L、Yeast Extract(BD,USA)5g/L、NaCl(和光純薬工業株式会社)10g/Lを超純水に溶解して作製した。PBS(pH7.4)は、NaCl(和光純薬工業株式会社)8.0g/L、KCl(ナカライテスク株式会社)0.2g/L、NaHPO(和光純薬株式会社)1.15g/L、KHPO(ナカライテスク株式会社)0.2g/Lを超純水に溶解して作製した。
[Example 1]
Immunization using recombinant 67LR (r-hLR 1-295 ) and 67LR 158-170 (1) Preparation and immunization of immunogens Kanamycin used in the following examples is from Wako Pure Chemical Industries, Ltd., IPTG is Funakoshi Corporation Further, imidazole was purchased from Nacalai Tesque Co., Ltd. and HiTrap Chelating HP column was purchased from GE Healthcare (UK). The ultrasonic disruption of E. coli was performed by Handy Sonic (Tomy Seiko Co., Ltd.). The LB liquid medium was prepared by dissolving Tryptone (BD, USA) 10 g / L, Yeast Extract (BD, USA) 5 g / L, and NaCl (Wako Pure Chemical Industries, Ltd.) 10 g / L in ultrapure water. PBS (pH 7.4) is NaCl (Wako Pure Chemical Industries, Ltd.) 8.0 g / L, KCl (Nacalai Tesque Co., Ltd.) 0.2 g / L, Na 2 HPO 4 (Wako Pure Chemical Industries, Ltd.) 1.15 g / L, KH 2 PO 4 (Nacalai Tesque Co., Ltd.) 0.2 g / L was dissolved in ultrapure water.
 ESMペプチドの比較対照として、以下の手順でリコンビナント67LR(r-hLR1-295)の作製を行った。大腸菌(pET30a-h67LR 導入 BL21)をカナマイシン(終濃度:50μg/mL)含有LB液体培地18mLに1本播種し、37℃で一晩振とう培養した。培養後、菌体培養液を250mL LB液体培地2本に添加し、37℃にて振とう培養した。その後、IPTG(終濃度:1mM)を添加し、37℃で22時間振とう培養してT7プロモーターを誘導し、r-hLR1-295を発現させた。大腸菌を5000rpm、15分間の遠心分離によってペレットとし、PBSで洗浄後、得られたペレットを-20℃にて凍結保存した。凍結保存していたペレットを破砕バッファー(pH8.0 Tris-HCl/NaCl)に懸濁後、超音波破砕した。その後、15000rpmで10分間遠心分離を行い、上清を回収し、サンプルとした。 As a control for the ESM peptide, recombinant 67LR (r-hLR 1-295 ) was prepared by the following procedure. One Escherichia coli (pET30a-h67LR-introduced BL21) was inoculated into 18 mL of LB liquid medium containing kanamycin (final concentration: 50 μg / mL) and cultured overnight at 37 ° C. with shaking. After culturing, the bacterial cell culture solution was added to two 250 mL LB liquid media and cultured with shaking at 37 ° C. Thereafter, IPTG (final concentration: 1 mM) was added, and cultured with shaking at 37 ° C. for 22 hours to induce the T7 promoter to express r-hLR 1-295 . E. coli was pelleted by centrifugation at 5000 rpm for 15 minutes, washed with PBS, and the resulting pellet was stored frozen at -20 ° C. The cryopreserved pellet was suspended in a crushing buffer (pH 8.0 Tris-HCl / NaCl) and then sonicated. Thereafter, the mixture was centrifuged at 15000 rpm for 10 minutes, and the supernatant was collected and used as a sample.
 上述のようにして得られたサンプルをHiTrap Chelating HPカラム(5mL)に供した。カラム吸着洗浄は10mMイミダゾール(E0)で行い、20,40,60,100,300,500mMイミダゾール含有バッファーを用いて溶出を行った。それぞれの溶出画分を5mLずつ回収し、回収したサンプルを4℃で約16時間、KLH-MB-ESMペプチド複合体溶液と同じ溶媒で透析を行った。このとき、途中で2回溶液の交換を行った。サンプルをシリコナイズドチューブに回収し、-20℃で凍結保存した。
 ヘモシアニン(keyhole limpet hemocyanin;KLH)は和光純薬工業より購入した。m-マレイミドベンゾイル-N-ヒドロキシスクシニミドエステル(m-maleimidobenzoyl-N-hydroxysuccinimide ester;MBS)はPIERCE社より、ジメチルホルムアミド(DMF)はSigma(St.Louis,MO)より購入した。10mMリン酸ナトリウムバッファー(pH7.2)は、0.2M NaHPO溶液と0.2M NaHPO溶液を7:18の割合で混合した後、その混合液を超純水で20倍希釈して作製し、オートクレーブ処理したものを使用した。50mMリン酸ナトリウムバッファー(pH6.0)は、0.2M NaHPO溶液と0.2M NaHPO溶液を877:123の割合で混合した後、その混合液を超純水で4倍希釈して作製し、オートクレーブ処理したものを使用した。NaHPO及びNaHPOは和光純薬工業株式会社より購入したものを用いた。67LR158-170ペプチドの合成は常法により行った。
The sample obtained as described above was applied to a HiTrap Chelating HP column (5 mL). Column adsorption washing was performed with 10 mM imidazole (E0), and elution was performed using 20, 40, 60, 100, 300, 500 mM imidazole-containing buffer. 5 mL of each elution fraction was collected, and the collected sample was dialyzed with the same solvent as the KLH-MB-ESM peptide complex solution at 4 ° C. for about 16 hours. At this time, the solution was exchanged twice in the middle. Samples were collected in siliconized tubes and stored frozen at -20 ° C.
Hemocyanin (keyhole limpet hemocyanin; KLH) was purchased from Wako Pure Chemical Industries. m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) was purchased from PIERCE, and dimethylformamide (DMF) was purchased from Sigma (St. Louis, MO). 10 mM sodium phosphate buffer (pH 7.2) was mixed with 0.2 M NaH 2 PO 4 solution and 0.2 M Na 2 HPO 4 solution at a ratio of 7:18, and the mixture was diluted 20 times with ultrapure water. A product prepared by dilution and autoclaved was used. 50 mM sodium phosphate buffer (pH 6.0) was mixed with 0.2 M NaH 2 PO 4 solution and 0.2 M Na 2 HPO 4 solution at a ratio of 877: 123, and the mixture was quadrupled with ultrapure water. A product prepared by dilution and autoclaved was used. NaH 2 PO 4 and Na 2 HPO 4 were purchased from Wako Pure Chemical Industries, Ltd. The 67LR 158-170 peptide was synthesized by a conventional method.
 67LR158-170ペプチド配列:DIAIPCNNKGAHSVG)(配列番号2)を、MBS法によりKLHと結合させ免疫原とした。すなわち、20mgのKLHを1mLの10mMリン酸ナトリウムバッファー(pH7.2)に溶解し、この溶液に11μmLのジメチルホルムアミド(DMF)に溶解した3.3mgのMBSを加え、室温で30分間反応させた。次いで、反応溶液を遠心(18000xgで5分,4℃)し、上清を回収した。この上清サンプルを4℃で約16時間、50mMリン酸ナトリウムバッファー(pH6.0)にて透析を行い、KLH-MBと遊離のMBSを分離した。このとき、途中で2回バッファー交換を行った後、サンプルをシリコナイズドチューブに回収した。67LR158-170ペプチド1mgを滅菌超純水500μmLに溶解し、この液と、上記で回収したKLH-MB100μLを混合し、滅菌した0.2M NaHPO溶液にてpHを7.3~7.5に調製した。この混合液に窒素ガスを吹きかけ、室温で3時間振とうして反応させた。その後、反応液を4℃で約16時間、反応液と同じ組成及びpHの溶液で透析を行った。このとき、途中で2回溶液の交換を行った。サンプルをシリコナイズドチューブに回収し、-20℃で凍結保存した。
 6週齢のBALB/cマウスを九動株式会社より購入し、SPF(specific-pathogen free)環境下にて飼育した(飼育室温20±1℃、相対湿度60±5%)。照明は天井に装着した白色蛍光灯で調節し、明暗12時間周期とした。照明時間は8:00~20:00の12時間に設定した。初回免疫として、抗原となるリコンビナント67LR(r-hLR1-295)またはKLH-MB-67LR158-170溶液と、その等量の完全アジュバント(Sigma社)を激しく混和してエマルジョンを作製し、マウス1匹あたりエマルジョン0.2mLを腹腔内投与した。追加免疫は不完全アジュバント(Sigma社)を用い、初回同様エマルジョンを作製して投与した。免疫は2週間の間隔をあけて行った。
67LR 158-170 peptide sequence: DIAIPCNNKGAHSVG) (SEQ ID NO: 2) was combined with KLH by the MBS method to obtain an immunogen. That is, 20 mg of KLH was dissolved in 1 mL of 10 mM sodium phosphate buffer (pH 7.2), and 3.3 mg of MBS dissolved in 11 μmL of dimethylformamide (DMF) was added to this solution and reacted at room temperature for 30 minutes. . Subsequently, the reaction solution was centrifuged (18000 × g, 5 minutes, 4 ° C.), and the supernatant was collected. The supernatant sample was dialyzed with 50 mM sodium phosphate buffer (pH 6.0) at 4 ° C. for about 16 hours to separate KLH-MB and free MBS. At this time, the buffer was exchanged twice in the middle, and then the sample was collected in a siliconized tube. 1 mg of 67LR 158-170 peptide is dissolved in 500 μmL of sterilized ultrapure water, this solution is mixed with 100 μL of KLH-MB recovered above, and the pH is adjusted to 7.3-7 with a sterilized 0.2 M Na 2 HPO 4 solution. .5. Nitrogen gas was blown into the mixed solution, and the mixture was shaken at room temperature for 3 hours to be reacted. Thereafter, the reaction solution was dialyzed with a solution having the same composition and pH as the reaction solution at 4 ° C. for about 16 hours. At this time, the solution was exchanged twice in the middle. Samples were collected in siliconized tubes and stored frozen at -20 ° C.
Six-week-old BALB / c mice were purchased from Kudo Co., Ltd., and reared in a SPF (specific-pathogen free) environment (bred room temperature 20 ± 1 ° C., relative humidity 60 ± 5%). Illumination was adjusted with a white fluorescent lamp mounted on the ceiling, and the period was 12 hours. The illumination time was set to 12 hours from 8:00 to 20:00. As an initial immunization, a recombinant 67LR (r-hLR 1-295 ) or KLH-MB-67LR 158-170 solution as an antigen and an equal amount of a complete adjuvant (Sigma) are vigorously mixed to prepare an emulsion. Each mouse was intraperitoneally administered with 0.2 mL of emulsion. For booster immunization, an incomplete adjuvant (Sigma) was used, and an emulsion was prepared and administered in the same manner as the first time. Immunization was performed at intervals of 2 weeks.
(2)抗67LR161-170ペプチドモノクローナル抗体産生ハイブリドーマの作製
 50%ポリエチレングリコール溶液はSigma(St.Louis,MO)より、HAT培地におけるチミジン、ヒポキサンチン、アミノプテリンは和光純薬株式会社より購入した。細胞融合に用いたマウスミエローマ細胞株Sp2/O-Ag14の培養は、5%ウシ胎児血清(FCS)(Bio Source International,Camarillo,CA)添加 E-RDF培地(極東製薬工業株式会社)で37℃、水蒸気飽和した5%CO条件下で継代、維持した。E-RDF培地1L中に1.125gのNaHCO(和光純薬工業株式会社)を添加した。8-アザグアニンはジメチルスルホキシド(ナカライテスク株式会社)に500倍濃縮で溶解したものを調製し、1日おきに添加した。細胞は対数増殖期で培養維持した。Sp2/O-Ag14は8-アザグアニン(東京化成工業株式会社)20μmg/mLの存在下で1週間継代培養し、8-アザグアニン耐性株、すなわちHGPRT欠損株のみを細胞融合に用いた。ハイブリドーマの培養は、細胞融合後、96 well plateから24 well plateにスケールアップするまでは、15%FCS、9.3×10-5Mヒポキサンチン含有E-RDF培地で37℃、5%CO条件下で行い、24 well plateにスケールアップしてからは FCS濃度5%にして同様に行った。
 最終免疫3日後、免疫したマウス3匹のうち1匹をイソフルラン(メルク製薬,Germany,Darmstadt)麻酔下で腹部大動脈採血により屠殺を行い、脾臓を摘出した。摘出後はリンパ球の調製を行い、E-RDF培地10mLに懸濁して生細胞数をトリパンブルー法で調べた。全脾細胞数に対し細胞数が1/10量のSp2/O浮遊液を脾細胞浮遊液に加えて混和し、300×gで5分遠心した。上清を完全に除き、細胞をタッピングによってほぐし、温度を室温に戻した。50%濃度のポリエチレングリコール(PEG)溶液1mLをパスツールピペットに取り、これを1分間かけて細胞に混和した。このときピペット先端で、細胞が均一にPEG中に分散するよう、緩やかに確実に攪拌した。PEG 添加後、直ちに一度全液をタッピングし、次いで9mLのERDF培地を1mL/30秒の速さでゆっくり加えた。このときピペットの先を使って液を混和した。300×gで5分遠心して上清を完全に除いた後、脾細胞の密度が15%FCS、9.3×10-5Mヒポキサンチン含有E-RDF培地中に4.6×10cells/mLとなるよう浮遊させた。この細胞懸濁液を96 well plate6枚に100μL/wellの割合で分注した。5%CO存在下、37℃で12 時間培養後、15%FCS、9.3×10-5Mヒポキサンチン、8.0×10-7Mアミノプテリン含有E-RDF培地を96 well plateに100μL/wellの割合で分注し、培養条件を HATに整えた。5%CO存在下、37℃で静置培養した。
(2) Preparation of anti-67LR 161-170 peptide monoclonal antibody-producing hybridoma 50% polyethylene glycol solution was purchased from Sigma (St. Louis, MO), and thymidine, hypoxanthine, and aminopterin in HAT medium were purchased from Wako Pure Chemical Industries, Ltd. . The mouse myeloma cell line Sp2 / O-Ag14 used for cell fusion was cultured at 37 ° C. in an E-RDF medium (Kyokuto Pharmaceutical Co., Ltd.) supplemented with 5% fetal calf serum (FCS) (Bio Source International, Camarillo, Calif.). And passaged and maintained under steam saturated 5% CO 2 conditions. 1.125 g of NaHCO 3 (Wako Pure Chemical Industries, Ltd.) was added to 1 L of E-RDF medium. 8-Azaguanine dissolved in dimethyl sulfoxide (Nacalai Tesque, Inc.) at 500 times concentration was prepared and added every other day. Cells were maintained in culture in the logarithmic growth phase. Sp2 / O-Ag14 was subcultured for 1 week in the presence of 20 μmg / mL of 8-azaguanine (Tokyo Chemical Industry Co., Ltd.), and only the 8-azaguanine resistant strain, that is, the HGPRT-deficient strain was used for cell fusion. The hybridoma is cultured in an E-RDF medium containing 15% FCS, 9.3 × 10 −5 M hypoxanthine at 37 ° C., 5% CO 2 until cell scale is increased from 96 well plate to 24 well plate. The measurement was performed under the same conditions, and after scaling up to 24 well plate, the same procedure was performed with an FCS concentration of 5%.
Three days after the final immunization, one of three immunized mice was sacrificed by blood sampling of the abdominal aorta under isoflurane (Merck Pharmaceutical, Germany, Darmstadt) anesthesia, and the spleen was removed. After excision, lymphocytes were prepared, suspended in 10 mL of E-RDF medium, and the number of viable cells was examined by trypan blue method. The Sp2 / O suspension with 1/10 cell count relative to the total number of spleen cells was added to the spleen cell suspension, mixed, and centrifuged at 300 × g for 5 minutes. The supernatant was completely removed, the cells were loosened by tapping and the temperature was returned to room temperature. 1 mL of a 50% strength polyethylene glycol (PEG) solution was taken into a Pasteur pipette and mixed with the cells for 1 minute. At this time, the pipette tip was gently and surely stirred so that the cells were uniformly dispersed in PEG. Immediately after PEG addition, the whole solution was tapped once, and then 9 mL of ERDF medium was slowly added at a rate of 1 mL / 30 seconds. At this time, the liquid was mixed using the tip of a pipette. After centrifugation at 300 × g for 5 minutes to completely remove the supernatant, the density of splenocytes was 4.6 × 10 6 cells in E-RDF medium containing 15% FCS and 9.3 × 10 −5 M hypoxanthine. / ML to float. This cell suspension was dispensed onto six 96 well plates at a rate of 100 μL / well. After culturing at 37 ° C. for 12 hours in the presence of 5% CO 2 , E-RDF medium containing 15% FCS, 9.3 × 10 −5 M hypoxanthine, 8.0 × 10 −7 M aminopterin was added to a 96-well plate. The culture was dispensed at a rate of 100 μL / well, and the culture conditions were adjusted to HAT. Static culture was performed at 37 ° C. in the presence of 5% CO 2 .
(3)抗67LR161-170ペプチドモノクローナル抗体を産生するハイブリドーマのスクリーニング 
HAT培地によって選択されたハイブリドーマ細胞細胞を、15%FCS ERDFにて0.2cells/wellとなるように96 well plateに播種し、クローニングを実施した。
 67LR161-170ペプチド(IPCNNKGAHS)を固相抗原希釈溶液にて10μg/mL濃度になるよう希釈した溶液をELISAプレートNunc-Immuno plate,Thermo Scientific Nunc社,Denmark)に100μl添加し、37℃で1時間静置した。固相抗原希釈溶液としては、NaHCO(ナカライテスク株式会社)を超純水で4.2g/Lに調製した50mM NaHCOにNaCO(ナカライテスク株式会社)を超純水で2.65g/500mLに調製した50mM NaCOをpH9.6になるまで混合した50mM炭酸緩衝液を用いた。ELISAプレートを洗浄後、各ハイブリドーマの培養上清を50μL添加し、37℃で1時間静置した。ELISAプレートの洗浄には、0.05%Tween20(ナカライテスク株式会社)を添加したPBS(TPBS)を用いた。ELISAプレートを洗浄後、HRP標識抗マウスIgG抗体(Zymed Laboratories,Inc,San Fracisco,CA)の10000倍希釈液、もしくはHRP標識抗マウスIgM抗体の10000倍希釈液を100μL添加し、37℃で1時間静置した。ELISAプレートを洗浄後、発色基質溶液を100μl添加した。発色基質は使用直前に0.006%H添加0.2Mクエン酸緩衝液(pH4.0):超純水:6mg/mL2,2-アニゾ-ビス(3’-エチルベンゾニン-6-スルホン酸)ジアンモニウム塩(ABTS)溶液=10:9:1で混合して用いた。吸光度の測定には東ソー株式会社のImmunoMini NJ-2300を使用し、吸光度405nmを測定した。
(3) Screening of hybridoma producing anti-67LR 161-170 peptide monoclonal antibody
The hybridoma cell cells selected by the HAT medium were seeded on a 96-well plate so as to be 0.2 cells / well with 15% FCS ERDF, and cloning was performed.
A solution obtained by diluting 67LR 161-170 peptide (IPCNNKGAHS) to a concentration of 10 μg / mL with a solid phase antigen dilution solution was added to ELISA plate Nunc-Immuno plate, Thermo Scientific Nunc, Denmark, and 100 μl was added at 37 ° C. Let stand for hours. As a solid phase antigen diluted solution, NaHCO 3 (Nacalai Tesque) was prepared to 4.2 g / L with ultrapure water and 50 mM NaHCO 3 was mixed with Na 2 CO 3 (Nacalai Tesque) with ultrapure water. A 50 mM carbonate buffer prepared by mixing 50 mM Na 2 CO 3 prepared to 65 g / 500 mL until pH 9.6 was used. After washing the ELISA plate, 50 μL of the culture supernatant of each hybridoma was added and allowed to stand at 37 ° C. for 1 hour. For washing the ELISA plate, PBS (TPBS) to which 0.05% Tween 20 (Nacalai Tesque, Inc.) was added was used. After washing the ELISA plate, 100 μL of a 10,000-fold diluted solution of an HRP-labeled anti-mouse IgG antibody (Zymed Laboratories, Inc, San Frascisco, Calif.) Or a HRP-labeled anti-mouse IgM antibody was added at 100 μL, and 1 at 37 ° C. Let stand for hours. After washing the ELISA plate, 100 μl of chromogenic substrate solution was added. The chromogenic substrate was 0.2 M citrate buffer (pH 4.0) containing 0.006% H 2 O 2 immediately before use: ultrapure water: 6 mg / mL 2,2-anizo-bis (3′-ethylbenzonin-6) -Sulphonic acid) Diammonium salt (ABTS) solution = 10: 9: 1. For measuring the absorbance, ImmunoMini NJ-2300 manufactured by Tosoh Corporation was used, and the absorbance at 405 nm was measured.
 測定結果を図1(a)、(b)に示す。図1(a)は、67LR158-170ペプチドを結合させたKLH、KLH、リコンビナント67LRをそれぞれ抗原として免疫したマウスから採取した血清を用い、血清中の67LR161-170 ペプチドに対する抗体価を示すグラフである。図1(a)から明らかなように、67LR158-170ペプチドを結合させたKLHを免疫したマウスでは67LR161-170ペプチドに結合する抗体の産生が誘導されたが、KLHもしくはリコンビナント67LRを抗原として免疫したマウスでは67LR161-170 ペプチドに対する抗体の産生は観察されなかった。
 次に、67LR158-170ペプチドを抗原として免疫することで抗67LR161-170ペプチド抗体の産生が誘導されたマウス脾臓とSP2細胞を融合することで作製したハイブリドーマの抗体について評価した。得られたハイブリドーマを限界希釈法にてクローニング後、各ハイブリドーマの産生する抗体の67LR161-170ペプチドに対する結合活性をELISA法により抗体価を測定した結果を図1(b)に示す。図1(b)から明らかなように、67LR161-170ペプチドに対する抗体を産生する複数のハイブリドーマが得られた。中でも、ハイブリドーマクローン(No.8)およびハイブリドーマクローン(No.16)の培養上清においてESMペプチドに強い反応性を示す抗体が得られた。これらのハイブリドーマを、それぞれESM-8細胞およびESM-16細胞と命名し、これらのハイブリドーマが産生するモノクローナル抗体を、それぞれESM-8抗体(ESM-8モノクローナル抗体)およびESM-16抗体(ESM-16モノクローナル抗体)と命名した。
The measurement results are shown in FIGS. FIG. 1 (a) is a graph showing antibody titers against 67LR 161-170 peptide in serum using sera collected from mice immunized with KLH, KLH, and recombinant 67LR to which 67LR 158-170 peptide is bound as antigens. It is. As apparent from FIG. 1 (a), although the mice immunized with KLH conjugated with 67LR 158-170 peptide induced the production of antibodies that bind to 67LR 161-170 peptide, the KLH or recombinant 67LR as antigen No antibody production against the 67LR 161-170 peptide was observed in the immunized mice.
Next, the antibody of the hybridoma prepared by fusing the mouse spleen in which the production of anti-67LR 161-170 peptide antibody was induced by immunization with 67LR 158-170 peptide as an antigen and SP2 cells was evaluated. FIG. 1 (b) shows the result of measuring the antibody titer by ELISA method for the binding activity of the antibody produced by each hybridoma to the 67LR 161-170 peptide after cloning of the obtained hybridoma by the limiting dilution method. As is clear from FIG. 1 (b), a plurality of hybridomas producing antibodies against the 67LR 161-170 peptide were obtained. Among them, antibodies showing strong reactivity to ESM peptides were obtained in the culture supernatants of the hybridoma clone (No. 8) and the hybridoma clone (No. 16). These hybridomas are named ESM-8 cells and ESM-16 cells, respectively, and the monoclonal antibodies produced by these hybridomas are respectively ESM-8 antibody (ESM-8 monoclonal antibody) and ESM-16 antibody (ESM-16). Monoclonal antibody).
[実施例2]
 抗がん作用を有する抗67LR161-170ペプチド抗体産生ハイブリドーマのスクリーニング
 マウスメラノーマ細胞株B16を1.0×10cells/mLにて96 well plateに播種し、5%FCS-DMEM培地にて24時間、前培養した。次に、培養上清を吸引除去し、代わりに各ハイブリドーマクローンの培養上清50μl/wellならびに12% FCS-DMEM地を250μL/well添加した。96時間培養後、WST-1法により430nmにおけるミトコンドリア脱水素酵素活性を測定した。Controlには抗67LR161-170ペプチド抗体を産生していないハイブリドーマ培養上清を添加した。WST-1はRoche(Basel,Switzerland)より購入し、遮光下、-20℃にて凍結保存しておいたものを融解して用いた。マイクロプレートリーダーはSic System(Tokyo,Japan)を用いた。
 結果を図2に示す。図2は、各ハイブリドーマクローンから得られた培養上清中の抗67LR161-170ペプチド抗体を測定した結果を示す。図2から明らかなように、ハイブリドーマクローン(No.8)の培養上清において強い増殖抑制活性が観察された。
[Example 2]
Screening for Anti-67LR 161-170 Peptide Antibody-Producing Hybridoma Having Anticancer Activity Mouse melanoma cell line B16 was seeded in 96 well plate at 1.0 × 10 4 cells / mL, and 24% in 5% FCS-DMEM medium. Pre-cultured for hours. Next, the culture supernatant was removed by aspiration, and 50 μl / well of the culture supernatant of each hybridoma clone and 250 μL / well of 12% FCS-DMEM were added instead. After 96 hours of culture, mitochondrial dehydrogenase activity at 430 nm was measured by the WST-1 method. Hybridoma culture supernatant not producing anti-67LR 161-170 peptide antibody was added to Control. WST-1 was purchased from Roche (Basel, Switzerland) and stored frozen at −20 ° C. under light shielding before use. The microplate reader used was Sic System (Tokyo, Japan).
The results are shown in FIG. FIG. 2 shows the results of measurement of anti-67LR 161-170 peptide antibody in the culture supernatant obtained from each hybridoma clone. As is clear from FIG. 2, strong growth inhibitory activity was observed in the culture supernatant of the hybridoma clone (No. 8).
[実施例3]
 抗体の67LR161-170ペプチドに対する特異性
 ESM-8抗体の67LR161-170ペプチドに対する特異性を確認するため、67LR161-170ペプチド(IPCNNKGAHS、配列番号3)ならびにコントロールペプチド(MNAANVGWNGSTFA、配列番号4)に対する結合を、ELISA法を用いて測定した。すなわち、67LR161-170ペプチドまたはコントロールペプチドを10μg/mLになるように50μM炭酸緩衝液で希釈し、Immuno plateの各穴に100μLずつ添加した後、37℃で2時間インキュベートを行った。その後、TPBSで洗浄し、ブロッキング剤として1%BSA-TPBSを各穴に300μLずつ添加した後、4℃で一晩放置した。TPBSで洗浄後、4μg/mL、8μg/mL、16μg/mLのESM-8抗体を50μL/well添加し、37℃で1時間反応させた。TPBSで洗浄後、HRP標識goat anti-mouse IgG(Abcam,Cambridge,UK)(10000倍希釈)を100μLずつ添加し、37℃で1時間反応させた。TPBSで洗浄後、発色基質溶液を100μLずつ添加し、37℃で15分間反応させた後、405nmにおける吸光度を測定した。結果を図3に示す。図3は、ESM-8抗体の、67LR161-170ペプチドおよびコントロールペプチドに対する結合をELISAにより測定した結果を示すグラフである。図3から明らかなように、ESM-8抗体はコントロールペプチドには結合せず、67LR161-170ペプチドに対して特異的に結合することがわかった。
 また、ESM-16抗体について、同様に試験を行った。結果を図4に示す。図4は、ESM-16抗体の、67LR161-170ペプチドおよびコントロールペプチドに対する結合をELISAにより測定した結果を示すグラフである。図4から明らかなように、ESM-16抗体はコントロールペプチドには結合せず、67LR161-170ペプチドに対して特異的に結合することがわかった。
[Example 3]
To confirm the specificity for 67LR 161-170 peptide specific ESM-8 antibody to 67LR 161-170 peptide antibodies, 67LR 161-170 peptide (IPCNNKGAHS, SEQ ID NO: 3) and control peptide (MNAANVGWNGSTFA, SEQ ID NO: 4) Binding to was measured using an ELISA method. That is, 67LR 161-170 peptide or control peptide was diluted with 50 μM carbonate buffer so as to be 10 μg / mL, and 100 μL was added to each well of the Immuno plate, followed by incubation at 37 ° C. for 2 hours. Thereafter, the plate was washed with TPBS, 1% BSA-TPBS as a blocking agent was added in an amount of 300 μL to each well, and the plate was left at 4 ° C. overnight. After washing with TPBS, 50 μL / well of 4 μg / mL, 8 μg / mL, and 16 μg / mL ESM-8 antibody was added and reacted at 37 ° C. for 1 hour. After washing with TPBS, 100 μL of HRP-labeled goat anti-mouse IgG (Abcam, Cambridge, UK) (10000-fold dilution) was added and reacted at 37 ° C. for 1 hour. After washing with TPBS, 100 μL of the chromogenic substrate solution was added and reacted at 37 ° C. for 15 minutes, and then the absorbance at 405 nm was measured. The results are shown in FIG. FIG. 3 is a graph showing the results of measuring the binding of the ESM-8 antibody to the 67LR 161-170 peptide and the control peptide by ELISA. As is apparent from FIG. 3, it was found that the ESM-8 antibody did not bind to the control peptide but specifically bound to the 67LR 161-170 peptide.
The ESM-16 antibody was similarly tested. The results are shown in FIG. FIG. 4 is a graph showing the results of measuring the binding of the ESM-16 antibody to the 67LR 161-170 peptide and the control peptide by ELISA. As is apparent from FIG. 4, it was found that the ESM-16 antibody did not bind to the control peptide but specifically bound to the 67LR 161-170 peptide.
[実施例4]
 モノクローナル抗体の重鎖及び軽鎖可変領域のDNA配列の同定及びリコンビナント抗体発現ベクターの作製
 実施例1で得られたESM-8細胞およびESM-16細胞からmRNAを調製し、cDNAを作製した。抗体特異的なプライマーセット(Genescript,Piscataway,NJ)を用いて抗体の重鎖および軽鎖可変領域のDNAの塩基配列の決定を行った。DNA塩基配列の決定はDNAシーケンサーにて行った。ESM-8抗体の重鎖、軽鎖可変領域およびCDRのDNAの塩基配列ないしアミノ酸配列を図5及び表1に示す(配列番号5~20)。また、ESM-16抗体の重鎖、軽鎖可変領域およびCDRのDNAの塩基配列ないしアミノ酸配列を図6及び表1に示す(配列番号21~36)。次いで、ESM-8抗体またはESM-16抗体の遺伝子の重鎖可変領域のDNA配列をマウスIgG重鎖定常域遺伝子と、ESM-8抗体遺伝子またはESM-16抗体の軽鎖の可変領域のDNA配列をマウスカッパー型軽鎖の定常域遺伝子とそれぞれ連結させ、さらに、pCep4ベクター(Invitrogen,San Diego,USA)に組み込むことでリコンビナントESM-8抗体およびリコンビナントESM-16抗体発現ベクターを作製した。
[Example 4]
Identification of DNA sequence of heavy and light chain variable regions of monoclonal antibody and preparation of recombinant antibody expression vector mRNA was prepared from ESM-8 cells and ESM-16 cells obtained in Example 1, and cDNA was prepared. The nucleotide sequences of the antibody heavy chain and light chain variable region DNAs were determined using an antibody-specific primer set (Genescript, Piscataway, NJ). The DNA base sequence was determined with a DNA sequencer. The base sequence or amino acid sequence of the heavy chain, light chain variable region and CDR DNA of the ESM-8 antibody are shown in FIG. 5 and Table 1 (SEQ ID NOs: 5 to 20). The base sequence or amino acid sequence of the heavy chain, light chain variable region and CDR DNA of the ESM-16 antibody are shown in FIG. 6 and Table 1 (SEQ ID NOs: 21 to 36). Subsequently, the DNA sequence of the heavy chain variable region of the gene of the ESM-8 antibody or ESM-16 antibody is converted into the DNA of the variable region of the light chain of the mouse IgG 1 heavy chain constant region and the ESM-8 antibody gene or ESM-16 antibody. Recombinant ESM-8 antibody and recombinant ESM-16 antibody expression vectors were prepared by linking the sequences to the mouse kappa light chain constant region genes and further incorporating them into pCep4 vector (Invitrogen, San Diego, USA).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例5]
 ESM-8抗体ならびにリコンビナントESM-8抗体の調製
 BALB/cマウスにプリスタン(フナコシ株式会社)を500μL腹腔内投与した。その6日後、ESM-8細胞を1×10cells/mL腹腔内投与し、マウスの腹部が肥大したのを確認後、腹部を切開して腹水を回収した。腹水をHiTrap Protein Aカラム(GE Healthcare,UK)に供し、ESM-8抗体を精製した。精製は、結合buffer(100mM Sodium Phosphate/2.5M NaCl pH7.4)でカラムを平衡化した後、結合bufferにて10倍希釈した腹水をカラムに送液した。結合bufferでカラムを洗浄後、溶出 buffer(100mM Sodium Citrate,pH5.6)でESM-8抗体を溶出させた。溶出したESM-8抗体溶液は中和buffer(1M Tris-HCl,pH9)にて中和処理を行った(以下、この方法により得られた抗体を、単にESM-8抗体と記述し、以下のリコンビナントESM-18抗体と区別する)。一方、実施例3で得られたESM-8抗体発現ベクターをHEK293細胞(ATCC,Manassas,VA)にFugene6(Promega,Fitchburg,Wisconsin)を用いて導入しリコンビナントESM-8抗体を産生する細胞を作製した。このESM-8抗体を産生するHEK293細胞の培養上清からリコンビナントESM-8抗体を調製した。
[Example 5]
Preparation of ESM-8 Antibody and Recombinant ESM-8 Antibody 500 μL of pristane (Funakoshi Co., Ltd.) was intraperitoneally administered to BALB / c mice. Six days later, ESM-8 cells were administered intraperitoneally at 1 × 10 7 cells / mL, and after confirming that the abdomen of the mouse was enlarged, the abdomen was dissected to collect ascites. Ascites was applied to a HiTrap Protein A column (GE Healthcare, UK) to purify the ESM-8 antibody. For purification, the column was equilibrated with a binding buffer (100 mM Sodium Phosphate / 2.5 M NaCl pH 7.4), and ascites diluted 10-fold with the binding buffer was fed to the column. After washing the column with the binding buffer, the ESM-8 antibody was eluted with an elution buffer (100 mM sodium citrate, pH 5.6). The eluted ESM-8 antibody solution was neutralized with a neutralization buffer (1M Tris-HCl, pH 9) (hereinafter, the antibody obtained by this method is simply referred to as ESM-8 antibody, and Differentiated from recombinant ESM-18 antibody). On the other hand, the ESM-8 antibody expression vector obtained in Example 3 was introduced into HEK293 cells (ATCC, Manassas, VA) using Fugene 6 (Promega, Fitchburg, Wisconsin) to produce cells producing recombinant ESM-8 antibody. did. Recombinant ESM-8 antibody was prepared from the culture supernatant of HEK293 cells producing this ESM-8 antibody.
[実施例6]
 抗がん活性の測定
 ヒト急性骨髄性白血病細胞株HL60は10%ウシ胎児血清(FCS)(BIOLOGICAL INDUSTRIES)添加RPMI RPMI1640培地(日水製薬株式会社)にて37℃、水蒸気飽和した5%CO条件下で継代、維持した。細胞は対数増殖期で培養維持した。培養に使用したRPMI1640培地は、超純水1LあたりRPMI1640培地(コスモ・バイオ株式会社)10.4g、HEPES(和光純薬工業株式会社)2.38g、注射用ペニシリンGカリウム20万単位(明治製菓株式会社)0.5vial、硫酸ストレプトマイシン注射用1g(明治製菓株式会社、東京)0.1vial、NaHCO(ナカライテスク株式会社)2.0gを懸濁した後、フィルター滅菌した。その後、ウシ胎児血清(FCS)をRPMI1640培地に添加し、細胞培養に使用した。HL60を2.0×10cells/mLになるよう96 well plateに播種した(100μL/well)。次に、Control mIgG(R&D systems,Inc.,Minneapolis,USA)またはESM-8抗体(0.4μg/mL、0.8μg/mL)を上から100μL/well添加した。96時間培養後、ATPlite(PerkinElmer,Inc.,MA,USA)により生細胞を検出した。また、67LRの活性化剤のコントロールとして緑茶カテキンEGCGを手名した試験区を設けた。
 結果を図7に示す。図7は、ESM-8抗体のヒト急性骨髄性白血病細胞株HL60に対する細胞増殖抑制活性を調べた結果を示すグラフである。図7に示すように、ESM-8抗体の存在下では、ヒト急性骨髄性白血病細胞株HL60に対する細胞増殖が抑制されることがわかる。したがって、ESM-8抗体が、EGCGと同様、ヒト急性骨髄性白血病細胞株HL60の増殖を抑制することがわかる。
[Example 6]
Measurement of anti-cancer activity The human acute myeloid leukemia cell line HL60 is 10% fetal bovine serum (FCS) (BILOGICAL INDUSTRIES) -added RPMI RPMI 1640 medium (Nissui Pharmaceutical Co., Ltd.) at 37 ° C. and 5% CO 2 saturated with water vapor Passaged and maintained under conditions. Cells were maintained in culture in the logarithmic growth phase. RPMI1640 medium used for the culture was 10.4 g of RPMI1640 medium (Cosmo Bio Co., Ltd.), 2.38 g of HEPES (Wako Pure Chemical Industries, Ltd.) per liter of ultrapure water, 200,000 units of penicillin G potassium for injection (Meiji Seika Co., Ltd.) Co., Ltd.) 0.5 vial, 1 g of streptomycin sulfate for injection (Meiji Seika Co., Ltd., Tokyo) 0.1 vial, NaHCO 3 (Nacalai Tesque Co., Ltd.) 2.0 g were suspended and then sterilized by filter. Thereafter, fetal calf serum (FCS) was added to RPMI 1640 medium and used for cell culture. HL60 was seed | inoculated to 96 well plate so that it might become 2.0 * 10 < 4 > cells / mL (100 microliter / well). Next, Control mIgG (R & D systems, Inc., Minneapolis, USA) or ESM-8 antibody (0.4 μg / mL, 0.8 μg / mL) was added from the top at 100 μL / well. After 96 hours of culture, live cells were detected by ATPlite (PerkinElmer, Inc., MA, USA). In addition, as a control for the 67LR activator, a test section was named in which green tea catechin EGCG was named.
The results are shown in FIG. FIG. 7 is a graph showing the results of examining the cell growth inhibitory activity of ESM-8 antibody against human acute myeloid leukemia cell line HL60. As shown in FIG. 7, it can be seen that in the presence of the ESM-8 antibody, cell proliferation against the human acute myeloid leukemia cell line HL60 is suppressed. Therefore, it can be seen that the ESM-8 antibody suppresses the growth of the human acute myeloid leukemia cell line HL60, like EGCG.
[実施例7]
 抗体のがん細胞表面結合活性の評価
 フローサイトメトリー解析にて、ESM-8抗体の細胞表面への結合を評価した。フローサイトメーターはFACSalbibur(Becton,Dickinson and Company,New Jersey,USA)を使用した。HL60を1.0×10cells/mLになるように調製した後、ESM-8抗体およびControl mIgG(R&Dsystems,Inc.,Minneapolis,USA)0.4μg/mL含有1%FCS-PBSに懸濁し、氷上で2時間インキュベートを行った。遠心(300xg,5min)して上清を除去した後、AF488標識rabbit anti-mIgG(x1000)(Invitrogen,San Diego,USA)にて懸濁し、氷上で1時間インキュベートを行った。PBSで2 回洗浄後、再びPBSに懸濁し、フローサイトメトリー解析にて検出を行った。
 また、U266細胞を1.0×10cells/mLになるように調製した後、ESM-16抗体及びIsotype Control mIgM(コスモ・バイオ株式会社)5μg/mL含有RPMI1640培地に懸濁し、氷上で2時間インキュベートを行った。遠心(300xg,5min)して上清を除去した後、二次抗体溶液goat anti-mouse IgM Alexa fluor 488(Invitrogen)にて懸濁し、氷上で1時間インキュベートを行った。PBSで2回洗浄後、再びPBSに懸濁し、フローサイトメトリー解析にて検出した。
 ESM-8抗体についての結果を図8に、ESM-16抗体についての結果を図9に示す。図8に示すように、EMS-18抗体の存在下、フローサイトメトリ-で細胞が検出されることから、EMS-8抗体はヒト急性骨髄性白血病細胞株HL60の細胞表面に結合することがわかった。また、図9に示すように、EMS-16抗体の存在下、フローサイトメトリーで細胞が検出されることから、ESM-16抗体はヒト多発性骨髄腫細胞株U266細胞の細胞表面に結合することがわかった。
[Example 7]
Evaluation of cancer cell surface binding activity of antibody The binding of ESM-8 antibody to the cell surface was evaluated by flow cytometry analysis. The flow cytometer used was FACSalbibur (Becton, Dickinson and Company, New Jersey, USA). HL60 was prepared to 1.0 × 10 6 cells / mL and then suspended in 1% FCS-PBS containing 0.4 μg / mL of ESM-8 antibody and Control mIgG (R & D systems, Inc., Minneapolis, USA). Incubated for 2 hours on ice. After removing the supernatant by centrifugation (300 × g, 5 min), the suspension was suspended in AF488-labeled rabbit anti-mIgG (x1000) (Invitrogen, San Diego, USA), and incubated on ice for 1 hour. After washing twice with PBS, it was suspended again in PBS and detected by flow cytometry analysis.
In addition, U266 cells were prepared to 1.0 × 10 7 cells / mL, then suspended in RPMI 1640 medium containing 5 μg / mL of ESM-16 antibody and Isotype Control mIg (Cosmo Bio Inc.), and 2 times on ice. Time incubation was performed. After removing the supernatant by centrifugation (300 × g, 5 min), the suspension was suspended in a secondary antibody solution goat anti-mouse IgM Alexa fluor 488 (Invitrogen) and incubated on ice for 1 hour. After washing twice with PBS, it was suspended again in PBS and detected by flow cytometry analysis.
The results for the ESM-8 antibody are shown in FIG. 8, and the results for the ESM-16 antibody are shown in FIG. As shown in FIG. 8, since cells were detected by flow cytometry in the presence of EMS-18 antibody, it was found that EMS-8 antibody binds to the cell surface of human acute myeloid leukemia cell line HL60. It was. Further, as shown in FIG. 9, cells are detected by flow cytometry in the presence of EMS-16 antibody, so that ESM-16 antibody binds to the cell surface of human multiple myeloma cell line U266 cell. I understood.
[実施例8]
 抗体の酸性スフィンゴミエリナーゼ活性化能
 HL60は10%ウシ胎児血清(FCS)(BIOLOGICAL INDUSTRIES)添加RPMI RPMI1640培地(日水製薬株式会社)にて37℃、水蒸気飽和した5%CO条件下で継代、維持した。細胞は対数増殖期で培養維持した。培養に使用したRPMI1640培地は、超純水1LあたりRPMI1640培地(コスモ・バイオ株式会社)10.4g、HEPES(和光純薬工業株式会社)2.38g、注射用ペニシリンGカリウム20万単位(明治製菓株式会社)0.5vial、硫酸ストレプトマイシン注射用1g(明治製菓株式会社)0.1vial、NaHCO(ナカライテスク株式会社)2.0gを懸濁した後、フィルター滅菌した。その後、ウシ胎児血清(FCS)をRPMI1640培地に添加し、細胞培養に使用した。BODIPY-C12-Sphingomyelin(1mg/mL;DMSOに溶解)はSigma(St.Louis,MO)より購入した。遠心濃縮後、1mMとなるようメタノールに溶解し、-20℃にて保存した。20×20シリカゲルプレートはMerck(Darmstadt,Germany)より購入した。細胞溶解Buffer(50mM Tris-HCl,pH7.5,150mM NaCl,1%(v/v)Triton-X100,1mM EDTA,50mM NaF,30mM Na,1mM Phenylmethylsulfonic fluoride,2μg/mL Aprotinin;pH4.5)で細胞を溶解し、4℃で1時間転倒撹拌し、遠心(15000xg,30分)して上清を回収した。タンパク質定量にはBCA Protein Assay Reagentを用い、20μg/sampleに調製した。各サンプルに基質溶液(1mM BODIPY-C12-Sphingomyelin、10%TritonX-100、1M sodium acetate(pH4.5),dHO)をBODIPY-C12-Sphingomyelinが400pmol/sampleとなるように加え、37℃で16時間酵素基質反応を行った。CHCl-CHOH 2:1(v/v)を60μLずつ加え反応を止め、遠心(12000×g,4℃,5分)後、下層を10μLずつシリカゲルプレートへスポットし、展開液(CHCl-CHOH-HO 65:25:4(v/v/v))中で展開した。
 HL60細胞を5×10cells/mLで24 well plate に播種し、Control mIgG(R&D systems,Inc.,Minneapolis,USA)またはESM-8抗体(最終濃度0.4μg/ml)を添加した1%FCS-RPMI1640培地で3時間処理した。その後細胞を回収し、pH4.5の細胞溶解バッファーに溶解した。細胞溶解液と基質であるBODIPY-C12-Sphingomyelinを16時間反応させた後、TLC解析により酸性スフィンゴミエリナーゼの活性を測定した。
 結果を図10(a)、(b)に示す。図10(b)から明らかなように、ESM-8抗体は、コントロールに比較し、約3倍のスフィンゴミエリナーゼ活性化能を有することがわかった。
[Example 8]
Acid Sphingomyelinase Activation Ability of Antibody HL60 was passaged in RPMI RPMI 1640 medium (Nissui Pharmaceutical Co., Ltd.) supplemented with 10% fetal calf serum (FCS) under conditions of 5% CO 2 with water vapor saturation. , Maintained. Cells were maintained in culture in the logarithmic growth phase. RPMI1640 medium used for the culture was 10.4 g of RPMI1640 medium (Cosmo Bio Co., Ltd.), 2.38 g of HEPES (Wako Pure Chemical Industries, Ltd.) per liter of ultrapure water, 200,000 units of penicillin G potassium for injection (Meiji Seika Co., Ltd.) Co., Ltd.) 0.5 vial, 1 g of streptomycin sulfate for injection (Meiji Seika Co., Ltd.) 0.1 vial, NaHCO 3 (Nacalai Tesque Co., Ltd.) 2.0 g were suspended and then filter sterilized. Thereafter, fetal calf serum (FCS) was added to RPMI 1640 medium and used for cell culture. BODIPY-C12-Sphingomyelin (1 mg / mL; dissolved in DMSO) was purchased from Sigma (St. Louis, MO). After centrifugal concentration, it was dissolved in methanol to 1 mM and stored at −20 ° C. 20 × 20 silica gel plates were purchased from Merck (Darmstadt, Germany). Cell Lysis Buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% (v / v) Triton-X100, 1 mM EDTA, 50 mM NaF, 30 mM Na 4 P 2 O 7 , 1 mM Phenylmethylsulfuric fluoride, 2 μg / mL Aprotin; The cells were lysed at pH 4.5), stirred by inversion at 4 ° C. for 1 hour, and centrifuged (15000 × g, 30 minutes) to recover the supernatant. For protein quantification, BCA Protein Assay Reagent was used and adjusted to 20 μg / sample. A substrate solution (1 mM BODIPY-C12-Sphingomyelin, 10% Triton X-100, 1M sodium acetate (pH 4.5), dH 2 O) was added to each sample so that BODIPY-C12-Sphingomyelin was 400 pmol / sample, and the temperature was 37 ° C. The enzyme substrate reaction was carried out for 16 hours. The reaction was stopped by adding 60 μL of CHCl 3 —CH 3 OH 2: 1 (v / v), centrifuged (12000 × g, 4 ° C., 5 minutes), then 10 μL of the lower layer was spotted onto a silica gel plate, and the developing solution (CH 3 Cl—CH 3 OH—H 2 O 65: 25: 4 (v / v / v)).
HL60 cells were seeded in 24 well plate at 5 × 10 5 cells / mL, and 1% supplemented with Control mIgG (R & D systems, Inc., Minneapolis, USA) or ESM-8 antibody (final concentration 0.4 μg / ml) Treated with FCS-RPMI1640 medium for 3 hours. Thereafter, the cells were collected and lysed in a cell lysis buffer having a pH of 4.5. The cell lysate was reacted with BODIPY-C12-Sphingomyelin as a substrate for 16 hours, and then the activity of acidic sphingomyelinase was measured by TLC analysis.
The results are shown in FIGS. 10 (a) and 10 (b). As is clear from FIG. 10 (b), it was found that the ESM-8 antibody had about three times the sphingomyelinase activation ability compared to the control.
[実施例9]
 ESM-8抗体のがん細胞増殖抑制作用に及ぼす抗67LR抗体の影響評価
 EGCGは67LRを介して抗がん活性を発揮することが報告されている(非特許文献18~21)。そこで、ESM-8抗体がEGCGと同様に67LRを介して抗がん活性を発揮するかを検討した。
 ヒト急性骨髄性白血病細胞株HL60は10%ウシ胎児血清(FCS)(BIOLOGICAL INDUSTRIES)添加RPMI RPMI1640培地(日水製薬株式会社)にて37℃、水蒸気飽和した5%CO条件下で継代、維持した。細胞は対数増殖期で培養維持した。培養に使用したRPMI1640培地は、超純水1LあたりRPMI1640培地(コスモ・バイオ株式会社)10.4g、HEPES(和光純薬工業株式会社)2.38g、注射用ペニシリンGカリウム20万単位(明治製菓株式会社)0.5vial、硫酸ストレプトマイシン注射用1g(明治製菓株式会社)0.1vial、NaHCO(ナカライテスク株式会社)2.0gを懸濁した後、フィルター滅菌した。その後、ウシ胎児血清(FCS)をRPMI1640培地に添加し、細胞培養に使用した。
 HL60を1.0×10cells/mLにて96well plateに播種し、5%FCS-RPMI培地で24時間、前培養した。その後、元の培地を吸引し、Control mIgM(コスモ・バイオ株式会社)または抗67LRモノクローナル抗体であるMLuC5(Abcam,Cambridge,UK)(30μg/mL)含有1%FCS-RPMI培地に置換し、3時間静置した。その後、Control mIgG(R&D systems,Inc.,Minneapolis,USA)またはESM-8抗体(0.4μg/mL)含有1%FCS-RPMI培地になるように培地を100μL/well添加した。96時間経過後、ATP lite(PerkinElmer,Inc.,MA,USA)により生細胞を検出した。
 結果を図11に示す。図11から明らかなように、抗67LRモノクローナル抗体で前処理しない場合には、ESM-8抗体はヒト急性骨髄性白血病細胞株HL60に対する細胞増殖抑制作用を示したが、抗67LRモノクローナル抗体で前処理した場合には、ESM-8細胞はHL60に対する細胞増殖抑制作用を示さなかった。この結果により、EMS-8抗体は、67LRへの結合を介して抗がん活性を発揮すること、ESM-8抗体がEGCGと同様、67LRアゴニストとして機能することが示された。
[Example 9]
Evaluation of Effect of Anti-67LR Antibody on Cancer Cell Growth Inhibitory Effect of ESM-8 Antibody It has been reported that EGCG exhibits anticancer activity via 67LR (Non-patent Documents 18 to 21). Thus, it was examined whether the ESM-8 antibody exerts anticancer activity via 67LR as in EGCG.
The human acute myeloid leukemia cell line HL60 was subcultured in RPMI RPMI 1640 medium (Nissui Pharmaceutical Co., Ltd.) supplemented with 10% fetal calf serum (FCS) under conditions of 5% CO 2 with water vapor saturation. Maintained. Cells were maintained in culture in the logarithmic growth phase. RPMI1640 medium used for the culture was 10.4 g of RPMI1640 medium (Cosmo Bio Co., Ltd.), 2.38 g of HEPES (Wako Pure Chemical Industries, Ltd.) per liter of ultrapure water, 200,000 units of penicillin G potassium for injection (Meiji Seika Co., Ltd.) Co., Ltd.) 0.5 vial, 1 g of streptomycin sulfate for injection (Meiji Seika Co., Ltd.) 0.1 vial, NaHCO 3 (Nacalai Tesque Co., Ltd.) 2.0 g were suspended and then filter sterilized. Thereafter, fetal calf serum (FCS) was added to RPMI 1640 medium and used for cell culture.
HL60 was seeded on a 96-well plate at 1.0 × 10 4 cells / mL, and precultured in 5% FCS-RPMI medium for 24 hours. Thereafter, the original medium was aspirated and replaced with 1% FCS-RPMI medium containing Control mIgM (Cosmo Bio Inc.) or anti-67LR monoclonal antibody MLuC5 (Abcam, Cambridge, UK) (30 μg / mL). Let stand for hours. Thereafter, the medium was added at 100 μL / well so as to obtain a 1% FCS-RPMI medium containing Control mIgG (R & D systems, Inc., Minneapolis, USA) or ESM-8 antibody (0.4 μg / mL). After 96 hours, viable cells were detected by ATP lite (PerkinElmer, Inc., MA, USA).
The results are shown in FIG. As can be seen from FIG. 11, when not pretreated with anti-67LR monoclonal antibody, ESM-8 antibody showed cytostatic activity against human acute myeloid leukemia cell line HL60, but pretreated with anti-67LR monoclonal antibody. In that case, ESM-8 cells did not show cytostatic activity on HL60. From these results, it was shown that the EMS-8 antibody exerts anticancer activity through binding to 67LR, and that the ESM-8 antibody functions as a 67LR agonist like EGCG.
[実施例10]
 リコンビナントESM-8抗体のヒト急性骨髄性白血病細胞株HL60、ヒト膵臓がん細胞株PANC-1、ヒト中皮腫細胞株MESO-4に対する細胞増殖抑制作用
 ヒト急性骨髄性白血病細胞株HL60は10%ウシ胎児血清(FCS)(BIOLOGICAL INDUSTRIES)添加RPMI RPMI1640培地(日水製薬株式会社)にて37℃、水蒸気飽和した5%CO条件下で継代、維持した。細胞は対数増殖期で培養維持した。培養に使用した RPMI1640培地は、超純水1LあたりRPMI1640培地(コスモ・バイオ株式会社)10.4g、HEPES(和光純薬工業株式会社)2.38g、注射用ペニシリンGカリウム20万単位(明治製菓株式会社)0.5vial、硫酸ストレプトマイシン注射用1g(明治製菓株式会社、東京)0.1vial、NaHCO(ナカライテスク株式会社)2.0gを懸濁した後、フィルター滅菌した。その後、ウシ胎児血清(FCS)をRPMI1640培地に添加し、細胞培養に使用した。HL60を1.0×10cells/mLになるよう96 well plateに播種し(100μL/well)、24時間培養した。次に、Control mIgG(R&D systems,Inc.,Minneapolis,USA)またはリコンビナントESM-8抗体を1μg/mLとなるように添加した。96時間培養後、ATPlite(PerkinElmer,Inc.,MA,USA)により生細胞を検出した。
 ヒト膵臓がん細胞株PANC-1は10%ウシ胎児血清(FCS)(BIOLOGICAL INDUSTRIES)添加RPMI RPMI1640培地(日水製薬株式会社)にて37℃、水蒸気飽和した5%CO条件下で継代、維持した。細胞は対数増殖期で培養維持した。培養に使用したRPMI1640培地は、超純水1LあたりRPMI1640培地(コスモ・バイオ株式会社)10.4g、HEPES(和光純薬工業株式会社)2.38g、注射用ペニシリンGカリウム20万単位(明治製菓株式会社)0.5vial、硫酸ストレプトマイシン注射用1g(明治製菓株式会社)0.1vial、NaHCO(ナカライテスク株式会社)2.0gを懸濁した後、フィルター滅菌した。その後、ウシ胎児血清(FCS)をRPMI1640培地に添加し、細胞培養に使用した。PANC-1細胞を1.0×10cells/mLになるよう96well plateに播種し(100μL/well)、24時間培養した。次に、Control mIgG(R&D systems,Inc.,Minneapolis,USA)またはESM-8抗体を1μg/mLになるように添加した。96時間培養後、ATPlite(PerkinElmer,Inc.,MA,USA)により生細胞を検出した。
 ヒト中皮腫細胞株MESO-4は10%ウシ胎児血清(FCS)(BIOLOGICAL INDUSTRIES)添加RPMI1640培地(日水製薬株式会社)にて37℃、水蒸気飽和した5%CO条件下で継代、維持した。細胞は対数増殖期で培養維持した。培養に使用したRPMI1640培地は、超純水1LあたりRPMI1640培地(コスモ・バイオ株式会社)10.4g、HEPES(和光純薬工業株式会社)2.38g、注射用ペニシリンGカリウム20万単位(明治製菓株式会社)0.5vial、硫酸ストレプトマイシン注射用1g(明治製菓株式会社)0.1vial、NaHCO(ナカライテスク株式会社)2.0gを懸濁した後、フィルター滅菌した。その後、ウシ胎児血清(FCS)をRPMI1640培地に添加し、細胞培養に使用した。MESO-4細胞を1.0×10cells/mL になるよう96 well plateに播種し(100μL/well)、24時間培養した。次に、Control mIgG(R&D systems,Inc.,Minneapolis,USA)またはESM-8抗体を1.0μg/mLになるように添加した。96時間培養後、ATPlite(PerkinElmer,Inc.,MA,USA)により生細胞を検出した。
 結果を図12に示す。図12は、リコンビナントESM-8抗体のヒト急性骨髄性白血病細胞株HL60、ヒト膵臓がん細胞株PANC-1およびヒト中皮腫細胞株MESO-4に対する細胞増殖抑制活性を調べた結果を示すグラフである。図12から明らかなように、リコンビナントESM-8抗体が、ヒト急性骨髄性白血病細胞株HL60、ヒト膵臓がん細胞株PANC-1およびヒト中皮腫細胞株MESO-4に対して細胞増殖抑制活性を有することがわかった。
[Example 10]
Recombinant ESM-8 antibody inhibits cell proliferation against human acute myeloid leukemia cell line HL60, human pancreatic cancer cell line PANC-1 and human mesothelioma cell line MESO-4 10% human acute myeloid leukemia cell line HL60 It was subcultured and maintained at 37 ° C. under 5% CO 2 with water vapor saturation in RPMI RPMI 1640 medium (Nissui Pharmaceutical Co., Ltd.) supplemented with fetal calf serum (FCS) (BIOLOGICAL INDUSTRIES). Cells were maintained in culture in the logarithmic growth phase. RPMI1640 medium used for the culture was 10.4 g of RPMI1640 medium (Cosmo Bio Co., Ltd.) per liter of ultrapure water, 2.38 g of HEPES (Wako Pure Chemical Industries, Ltd.), 200,000 units of penicillin G for injection (Meiji Seika) Co., Ltd.) 0.5 vial, 1 g of streptomycin sulfate for injection (Meiji Seika Co., Ltd., Tokyo) 0.1 vial, NaHCO 3 (Nacalai Tesque Co., Ltd.) 2.0 g were suspended and then sterilized by filter. Thereafter, fetal calf serum (FCS) was added to RPMI 1640 medium and used for cell culture. HL60 was seeded on a 96-well plate (100 μL / well) so as to be 1.0 × 10 4 cells / mL, and cultured for 24 hours. Next, Control mIgG (R & D systems, Inc., Minneapolis, USA) or recombinant ESM-8 antibody was added to 1 μg / mL. After 96 hours of culture, live cells were detected by ATPlite (PerkinElmer, Inc., MA, USA).
The human pancreatic cancer cell line PANC-1 was subcultured in RPMI RPMI 1640 medium (Nissui Pharmaceutical Co., Ltd.) supplemented with 10% fetal calf serum (FCS) under conditions of 5% CO 2 with water vapor saturation. , Maintained. Cells were maintained in culture in the logarithmic growth phase. RPMI1640 medium used for the culture was 10.4 g of RPMI1640 medium (Cosmo Bio Co., Ltd.), 2.38 g of HEPES (Wako Pure Chemical Industries, Ltd.) per liter of ultrapure water, 200,000 units of penicillin G potassium for injection (Meiji Seika Co., Ltd.) Co., Ltd.) 0.5 vial, 1 g of streptomycin sulfate for injection (Meiji Seika Co., Ltd.) 0.1 vial, NaHCO 3 (Nacalai Tesque Co., Ltd.) 2.0 g were suspended and then filter sterilized. Thereafter, fetal calf serum (FCS) was added to RPMI 1640 medium and used for cell culture. PANC-1 cells were seeded on a 96-well plate (100 μL / well) at 1.0 × 10 4 cells / mL and cultured for 24 hours. Next, Control mIgG (R & D systems, Inc., Minneapolis, USA) or ESM-8 antibody was added to 1 μg / mL. After 96 hours of culture, live cells were detected by ATPlite (PerkinElmer, Inc., MA, USA).
The human mesothelioma cell line MESO-4 was subcultured in RPMI1640 medium (Nissui Pharmaceutical Co., Ltd.) supplemented with 10% fetal bovine serum (FCS) under a 5% CO 2 condition saturated with water vapor. Maintained. Cells were maintained in culture in the logarithmic growth phase. RPMI1640 medium used for the culture was 10.4 g of RPMI1640 medium (Cosmo Bio Co., Ltd.), 2.38 g of HEPES (Wako Pure Chemical Industries, Ltd.) per liter of ultrapure water, 200,000 units of penicillin G potassium for injection (Meiji Seika Co., Ltd.) Co., Ltd.) 0.5 vial, 1 g of streptomycin sulfate for injection (Meiji Seika Co., Ltd.) 0.1 vial, NaHCO 3 (Nacalai Tesque Co., Ltd.) 2.0 g were suspended and then filter sterilized. Thereafter, fetal calf serum (FCS) was added to RPMI 1640 medium and used for cell culture. MESO-4 cells were seeded on a 96-well plate at 100 × 10 4 cells / mL (100 μL / well) and cultured for 24 hours. Next, Control mIgG (R & D systems, Inc., Minneapolis, USA) or ESM-8 antibody was added to 1.0 μg / mL. After 96 hours of culture, live cells were detected by ATPlite (PerkinElmer, Inc., MA, USA).
The results are shown in FIG. FIG. 12 is a graph showing the results of examining the cell growth inhibitory activity of recombinant ESM-8 antibody on human acute myeloid leukemia cell line HL60, human pancreatic cancer cell line PANC-1 and human mesothelioma cell line MESO-4. It is. As is clear from FIG. 12, the recombinant ESM-8 antibody has cytostatic activity against human acute myeloid leukemia cell line HL60, human pancreatic cancer cell line PANC-1 and human mesothelioma cell line MESO-4. It was found to have
[実施例11]
 リコンビナントESM-8抗体の酸性スフィンゴミエリナーゼ活性化能
 ESM-8抗体をリコンビナントESM-8抗体に代えた以外は、実施例8と同様に操作を行い、酸性スフィンゴミエリナーゼ活性化能を評価した。結果を図13に示す。図13から明らかなように、リコンビナントESM-8抗体は、コントロールに比較して、高いスフィンゴミエリナーゼ活性化能を有することがわかった。
[Example 11]
Acidic sphingomyelinase activation ability of the recombinant ESM-8 antibody The ability to activate acidic sphingomyelinase was evaluated in the same manner as in Example 8 except that the ESM-8 antibody was replaced with the recombinant ESM-8 antibody. The results are shown in FIG. As is clear from FIG. 13, it was found that the recombinant ESM-8 antibody had a higher ability to activate sphingomyelinase than the control.
[実施例12]
 リコンビナントESM-8抗体の急性骨髄性白血病細胞株HL60細胞表面への結合活性の評価
 フローサイトメトリー解析にて、リコンビナントESM-8抗体の細胞表面への結合を評価した。フローサイトメーターは、実施例7と同じものを使用した。ヒト急性骨髄性白血病細胞株HL60を1.0x10cells/mLになるように調製した後、リコンビナントESM-8抗体もしくはControl mIgGを終濃度1μg/mLとなるように添加した1%FCS-PBSに懸濁し、氷上で7hインキュベートを行った。遠心(300xg,5min)して上清を除去した後、AF488標識rabbit anti-mIgG(x300)にて懸濁し、氷上で1hインキュベートを行った。PBSで2回洗浄後、再びPBSに懸濁し、フローサイトメトリー解析にて検出を行った。
 結果を図14に示す。図14に示すように、リコンビナントESM-8抗体の存在下、フローサイトメトリーで細胞が検出されることから、リコンビナントESM-8抗体は急性骨髄性白血病細胞株HL60細胞の細胞表面に結合することが分かった。
[Example 12]
Evaluation of the binding activity of the recombinant ESM-8 antibody to the surface of the acute myeloid leukemia cell line HL60 cell The binding of the recombinant ESM-8 antibody to the cell surface was evaluated by flow cytometry analysis. The same flow cytometer as in Example 7 was used. After preparing human acute myeloid leukemia cell line HL60 to 1.0 × 10 6 cells / mL, 1% FCS-PBS to which recombinant ESM-8 antibody or Control mIgG was added to a final concentration of 1 μg / mL was added. Suspended and incubated on ice for 7 h. After removing the supernatant by centrifugation (300 xg, 5 min), the suspension was suspended in AF488-labeled rabbit anti-mIgG (x300) and incubated on ice for 1 h. After washing twice with PBS, it was suspended again in PBS and detected by flow cytometry analysis.
The results are shown in FIG. As shown in FIG. 14, since cells are detected by flow cytometry in the presence of the recombinant ESM-8 antibody, the recombinant ESM-8 antibody can bind to the cell surface of the acute myeloid leukemia cell line HL60 cell. I understood.
[実施例13]
 PDE3阻害剤、PDE5阻害剤、スフィンゴシンキナーゼの各阻害剤併用時のリコンビナントESM-8抗体の抗がん活性
 PANC-1細胞は10%FCSを添加したRPMI RPMI1640培地(日水製薬株式会社)にて37℃、水蒸気飽和した5%CO条件下で継代、維持した。細胞は対数増殖期で培養維持した。培養に使用したRPMI1640培地は、超純水1LあたりRPMI1640培地(コスモ・バイオ株式会社)10.4g、HEPES(和光純薬工業株式会社)2.38g、注射用ペニシリンGカリウム20万単位(明治製菓株式会社)0.5vial、硫酸ストレプトマイシン注射用1g(明治製菓株式会社)0.1vial、NaHCO(Nacalai tesque,Inc.Kyoto)2.0gを懸濁した後、フィルター滅菌した。その後、FCSをRPMI1640培地に添加し、細胞培養に使用した。
 PANC-1細胞を1.0×10cells/mLになるよう96 well plateに播種した(100μL/well)。次に、ホスホジエステラーゼ3(PDE3)阻害剤(Trequinsin(トレキンシン)、1.25μM Calbiochem La Jolla,CA)、ホスホジエステラーゼ5(PDE5)(Vardenafil(バルデナフィル)、5μM TRC Canada)、スフィンゴシンキナーゼ阻害剤(Safingol(サフィンゴール)、5μM Alabaster,AL)にて前処理を行った。3時間後にControl mIgG(R&D systems,Inc.,Minneapolis,USA)またはリコンビナントESM-8抗体を100μL/well添加した。96h培養後、ATPlite(PerkinElmer,Inc.,MA,USA)により生細胞を検出した。
 結果を図15に示す。図15に示すように、PDE3阻害剤、PDE5阻害剤、スフィンゴシンキナーゼ阻害剤を併用した場合には、いずれも生細胞数が減少している。このことから、PDE3阻害剤、PDE5阻害剤、スフィンゴシンキナーゼ阻害剤がリコンビナントSM-8抗体の抗がん作用を増強することがわかった。
[Example 13]
Anti-cancer activity of recombinant ESM-8 antibody in combination with PDE3 inhibitor, PDE5 inhibitor and sphingosine kinase inhibitor PANC-1 cells were added to RPMI RPMI 1640 medium (Nissui Pharmaceutical Co., Ltd.) supplemented with 10% FCS. It was subcultured and maintained at 37 ° C. under 5% CO 2 with water vapor saturation. Cells were maintained in culture in the logarithmic growth phase. RPMI1640 medium used for the culture was 10.4 g of RPMI1640 medium (Cosmo Bio Co., Ltd.), 2.38 g of HEPES (Wako Pure Chemical Industries, Ltd.) per liter of ultrapure water, 200,000 units of penicillin G potassium for injection (Meiji Seika Co., Ltd.) Co., Ltd.) 0.5 vial, 1 g of streptomycin sulfate for injection (Meiji Seika Co., Ltd.) 0.1 vial, NaHCO 3 (Nacalai tesque, Inc. Kyoto) 2.0 g was suspended and then filter sterilized. FCS was then added to RPMI 1640 medium and used for cell culture.
PANC-1 cells were seeded on a 96-well plate at 100 × 10 4 cells / mL (100 μL / well). Next, phosphodiesterase 3 (PDE3) inhibitor (Trequinsin (trequinsin), 1.25 μM Calbiochem La Jolla, CA), phosphodiesterase 5 (PDE5) (Vardenafil (Vardenafil), 5 μM TRC Canada), sphingosine kinase inhibitor (Safingin kinase ol (Safine) Goal) Pretreatment was performed with 5 μM Alabaster, AL). After 3 hours, 100 μL / well of Control mIgG (R & D systems, Inc., Minneapolis, USA) or recombinant ESM-8 antibody was added. After 96 hours of culture, live cells were detected by ATPlite (PerkinElmer, Inc., MA, USA).
The results are shown in FIG. As shown in FIG. 15, when a PDE3 inhibitor, a PDE5 inhibitor, and a sphingosine kinase inhibitor are used in combination, the number of living cells is reduced. From this, it was found that a PDE3 inhibitor, a PDE5 inhibitor, and a sphingosine kinase inhibitor enhance the anticancer effect of the recombinant SM-8 antibody.
[実施例14]
 ゲムシタビン併用時のリコンビナントESM-8抗体の抗がん活性
 ヒト膵臓がん細胞株PANC-1細胞に代えてヒト中皮腫細胞株MESO-4を用い、阻害剤としてゲムシタビンを1μM用い、ESM-8抗体に代えてリコンビナントESM-8抗体を用いた以外は、実施例12と同様に操作を行い、リコンビナントESM-8抗体の抗がん活性を評価した。
 結果を図16に示す。図16に示すように、ゲムシタビンを併用した場合には生細胞数が減少していた。このことから、ゲムシタビンはリコンビナントESM-8抗体の抗がん作用を増強することがわかった。
[Example 14]
Anti-cancer activity of recombinant ESM-8 antibody in combination with gemcitabine Using human mesothelioma cell line MESO-4 instead of human pancreatic cancer cell line PANC-1 cell, using 1 μM gemcitabine as inhibitor, ESM-8 The same procedure as in Example 12 was performed except that the recombinant ESM-8 antibody was used instead of the antibody, and the anticancer activity of the recombinant ESM-8 antibody was evaluated.
The results are shown in FIG. As shown in FIG. 16, the number of viable cells decreased when gemcitabine was used in combination. This indicates that gemcitabine enhances the anticancer effect of recombinant ESM-8 antibody.
[実施例15]
 ESM-16抗体のがん細胞増殖抑制活性
ヒト多発性骨髄腫細胞U266は10%ウシ胎児血清(FCS)(BIOLOGICAL INDUSTRIES)添加RPMI RPMI1640培地(日水製薬株式会社)にて37℃、水蒸気飽和した5%CO条件下で継代、維持した。細胞は対数増殖期で培養維持した。培養に使用したRPMI1640培地は、超純水1LあたりRPMI1640培地(コスモ・バイオ株式会社)10.4g、HEPES(和光純薬工業株式会社)2.38g、注射用ペニシリンGカリウム20万単位(明治製菓株式会社)0.5vial、硫酸ストレプトマイシン注射用1g(明治製菓株式会社)0.1vial、NaHCO(ナカライテスク株式会社)2.0gを懸濁した後、フィルター滅菌した。その後、ウシ胎児血清(FCS)をRPMI1640培地に添加し、細胞培養に使用した。U266細胞を5.0x10cells/mLになるよう96well plateに播種した(100μL/well)。次に、Control mIgG(R&D systems,Inc.,Minneapolis,USA)またはESM-16抗体を300ng/mLとなるよう添加した。96時間培養後、ATPlite(PerkinElmer,Inc.,MA,USA)により生細胞を検出した。
 マウスメラノーマ細胞株B16は10%ウシ胎児血清(FCS)(BIOLOGICAL INDUSTRIES)添加DMEM培地(極東製薬工業株式会社)にて37℃、水蒸気飽和した5%CO条件下で継代、維持した。細胞は対数増殖期で培養維持した。培養に使用したDMEM培地は、DMEM培地1L中に3.7gのNaHCO(和光純薬工業株式会社)、100U/mLペニシリン(明治製菓株式会社)、100μg/mLストレプトマイシン(Meiji pharmaceutical Company)、および25mM HEPES(和光純薬工業株式会社)を添加した。細胞は対数増殖期で培養維持した。B16細胞を1.0×10cells/mLになるよう96well plateに播種した(100μL/well)。24時間後、Control mIgM(コスモ・バイオ株式会社)またはESM-16抗体を300ng/mLとなるよう添加した。96時間培養後、ATPlite(PerkinElmer,Inc.,MA,USA)により生細胞を検出した。
 ヒト膵臓がん細胞株 PANC-1は10%ウシ胎児血清(FCS)(BIOLOGICAL INDUSTRIES)添加RPMI RPMI1640培地(日水製薬株式会社)にて37℃、水蒸気飽和した5%CO条件下で継代、維持した。細胞は対数増殖期で培養維持した。培養に使用したRPMI1640培地は、超純水1LあたりRPMI 1640培地(コスモ・バイオ株式会社)10.4g、HEPES(和光純薬工業株式会社)2.38g、注射用ペニシリンGカリウム20万単位(明治製菓株式会社)0.5vial、硫酸ストレプトマイシン注射用1g(明治製菓株式会社)0.1vial、NaHCO(ナカライテスク株式会社)2.0gを懸濁した後、フィルター滅菌した。その後、ウシ胎児血清(FCS)をRPMI1640培地に添加し、細胞培養に使用した。PANC-1細胞を1.0×10cells/mLになるよう96well plateに播種した(100μL/well)。次に、PANC-1細胞にControl mIgM(コスモ・バイオ,Tokyo,Japan)またはESM-16抗体を300ng/mLとなるよう添加した。96時間培養後、ATPlite(PerkinElmer,Inc.,MA,USA)により生細胞を検出した。
 結果を図17に示す。図17に示すように、EMS-16抗体の存在下、ヒト多発性骨髄腫細胞U266、マウスメラノーマ細胞株B16およびヒト膵臓がん細胞株 PANC-1のいずれの細胞に対しても、生細胞数が減少することが示された。このことはEMS-16抗体が、ヒト多発性骨髄腫細胞U266、マウスメラノーマ細胞株B16およびヒト膵臓がん細胞株PANC-1の各細胞に対し、細胞増殖抑制活性を有することを示す。
[Example 15]
Cancer cell growth inhibitory activity of ESM-16 antibody Human multiple myeloma cells U266 were saturated with water vapor at 37 ° C. in RPMI RPMI 1640 medium (Nissui Pharmaceutical Co., Ltd.) supplemented with 10% fetal calf serum (FCS) (BILOGICAL INDUSTRIES). Passaged and maintained under 5% CO 2 conditions. Cells were maintained in culture in the logarithmic growth phase. RPMI1640 medium used for the culture was 10.4 g of RPMI1640 medium (Cosmo Bio Co., Ltd.), 2.38 g of HEPES (Wako Pure Chemical Industries, Ltd.) per liter of ultrapure water, 200,000 units of penicillin G potassium for injection (Meiji Seika Co., Ltd.) Co., Ltd.) 0.5 vial, 1 g of streptomycin sulfate for injection (Meiji Seika Co., Ltd.) 0.1 vial, NaHCO 3 (Nacalai Tesque Co., Ltd.) 2.0 g were suspended and then filter sterilized. Thereafter, fetal calf serum (FCS) was added to RPMI 1640 medium and used for cell culture. U266 cells were seeded on a 96-well plate at 5.0 × 10 4 cells / mL (100 μL / well). Next, Control mIgG (R & D systems, Inc., Minneapolis, USA) or ESM-16 antibody was added to 300 ng / mL. After 96 hours of culture, live cells were detected by ATPlite (PerkinElmer, Inc., MA, USA).
The mouse melanoma cell line B16 was subcultured and maintained in DMEM medium (Kyokuto Pharmaceutical Co., Ltd.) supplemented with 10% fetal calf serum (FCS) at 37 ° C. under 5% CO 2 with water vapor saturation. Cells were maintained in culture in the logarithmic growth phase. The DMEM medium used for the culture was 3.7 g of NaHCO 3 (Wako Pure Chemical Industries, Ltd.), 100 U / mL penicillin (Meiji Seika Co., Ltd.), 100 μg / mL streptomycin (Meiji pharmaceutical Company), and 1 L of DMEM medium. 25 mM HEPES (Wako Pure Chemical Industries, Ltd.) was added. Cells were maintained in culture in the logarithmic growth phase. B16 cells were seeded on a 96-well plate at 100 × 10 4 cells / mL (100 μL / well). After 24 hours, Control mIgM (Cosmo Bio Inc.) or ESM-16 antibody was added to 300 ng / mL. After 96 hours of culture, live cells were detected by ATPlite (PerkinElmer, Inc., MA, USA).
The human pancreatic cancer cell line PANC-1 was subcultured in RPMI RPMI 1640 medium (Nissui Pharmaceutical Co., Ltd.) supplemented with 10% fetal calf serum (FCS) under conditions of 5% CO 2 with water vapor saturation. , Maintained. Cells were maintained in culture in the logarithmic growth phase. The RPMI 1640 medium used for the culture was 10.4 g of RPMI 1640 medium (Cosmo Bio Inc.), 2.38 g of HEPES (Wako Pure Chemical Industries, Ltd.) per liter of ultrapure water, 200,000 units of penicillin G potassium for injection (Meiji). Confectionery Co., Ltd.) 0.5 vial, 1 g of streptomycin sulfate for injection (Meiji Seika Co., Ltd.) 0.1 vial, NaHCO 3 (Nacalai Tesque Co., Ltd.) 2.0 g were suspended, and then filter sterilized. Thereafter, fetal calf serum (FCS) was added to RPMI 1640 medium and used for cell culture. PANC-1 cells were seeded on a 96-well plate at 100 × 10 4 cells / mL (100 μL / well). Next, Control mIgM (Cosmo Bio, Tokyo, Japan) or ESM-16 antibody was added to PANC-1 cells at 300 ng / mL. After 96 hours of culture, live cells were detected by ATPlite (PerkinElmer, Inc., MA, USA).
The results are shown in FIG. As shown in FIG. 17, in the presence of the EMS-16 antibody, the number of viable cells was any against human multiple myeloma cell U266, mouse melanoma cell line B16, and human pancreatic cancer cell line PANC-1. Was shown to decrease. This indicates that the EMS-16 antibody has cytostatic activity against human multiple myeloma cell U266, mouse melanoma cell line B16 and human pancreatic cancer cell line PANC-1.

Claims (25)

  1.  67kDaラミニン・レセプタータンパク質(以下、67LRと称する)を活性化することによって抗がん活性を有する抗体。 An antibody having anticancer activity by activating 67 kDa laminin receptor protein (hereinafter referred to as 67LR).
  2.  EGCGセンシングモチーフ(以下、ESMと称する)-8抗体の可変領域を抗原結合領域として含む抗体。 EGCG sensing motif (hereinafter referred to as ESM) -8 An antibody comprising the variable region of an antibody as an antigen-binding region.
  3.  ESM-16抗体の可変領域を抗原結合領域として含む抗体。 An antibody comprising the variable region of the ESM-16 antibody as an antigen-binding region.
  4.  ヒト化抗体である、請求項1~3のいずれか1項に記載の抗体。 The antibody according to any one of claims 1 to 3, which is a humanized antibody.
  5.  イヌ抗体である、請求項1~3のいずれか1項に記載の抗体。 The antibody according to any one of claims 1 to 3, which is a canine antibody.
  6.  ネコ抗体である、請求項1~3のいずれか1項に記載の抗体。 The antibody according to any one of claims 1 to 3, which is a feline antibody.
  7.  ESM-8抗体の可変領域の相補性決定領域(complementary determining region:CDR)のペプチド配列を含む抗体。 An antibody comprising the peptide sequence of the complementarity determining region (CDR) of the variable region of the ESM-8 antibody.
  8.  ESM-16抗体の可変領域の相補性決定領域(complementary determining region:CDR)のペプチド配列を含む抗体。 An antibody comprising a peptide sequence of the complementary determining region (CDR) of the variable region of the ESM-16 antibody.
  9.  請求項1~8のいずれか1項に記載の抗体が有するアミノ酸配列において1または複数のアミノ酸が置換、欠失、付加および/または挿入され、かつ請求項1~8のいずれか1項に記載の抗体と同等の活性を有する抗体。 The amino acid sequence of the antibody according to any one of claims 1 to 8, wherein one or more amino acids are substituted, deleted, added and / or inserted, and according to any one of claims 1 to 8. An antibody having an activity equivalent to that of the antibody.
  10.  ESM-8抗体の可変領域のペプチド配列を含むキメラ抗原受容体。 A chimeric antigen receptor containing the peptide sequence of the variable region of the ESM-8 antibody.
  11.  ESM-16抗体の可変領域のペプチド配列を含むキメラ抗原受容体。 A chimeric antigen receptor comprising the peptide sequence of the variable region of the ESM-16 antibody.
  12.  請求項1~9のいずれか1項に記載の抗体が有するアミノ酸配列において1または複数のアミノ酸が置換、欠失、付加および/または挿入され、かつ請求項1~9のいずれか1項に記載の抗体と同等の活性を有するキメラ抗原受容体。 The amino acid sequence of the antibody according to any one of claims 1 to 9, wherein one or more amino acids are substituted, deleted, added and / or inserted, and according to any one of claims 1 to 9. A chimeric antigen receptor having an activity equivalent to that of the antibody.
  13.  緑茶カテキンEGCGが67LRを介して発現する抗がん活性、抗肥満、抗動脈硬化作用、抗アレルギー、抗炎症または筋萎縮阻害のいずれかの生理活性を有する、請求項1~9のいずれか1項に記載の抗体。 The green tea catechin EGCG has any one of the anti-cancer activity, anti-obesity, anti-arteriosclerotic action, anti-allergy, anti-inflammatory or muscle atrophy inhibition physiological activity expressed through 67LR. The antibody according to item.
  14.  緑茶カテキンEGCGのアポトーシス誘導に直接関与する酸性スフィンゴミエリナーゼを活性化することによってアポトーシス誘導活性を有する、請求項1~9のいずれか1項に記載の抗体。 The antibody according to any one of claims 1 to 9, which has an apoptosis-inducing activity by activating acidic sphingomyelinase directly involved in apoptosis induction of green tea catechin EGCG.
  15.  請求項1~9のいずれか1項に記載の抗体とPDE3阻害剤、PDE5阻害剤、Shpk1阻害剤またはゲムシタビンのいずれかを組み合わせた抗がん剤。 An anticancer agent comprising a combination of the antibody according to any one of claims 1 to 9 and any one of a PDE3 inhibitor, a PDE5 inhibitor, a Shpk1 inhibitor, or a gemcitabine.
  16.  請求項1~9のいずれか1項に記載の抗体の適応者を判別するための診断用抗体。 10. A diagnostic antibody for discriminating a person who has applied the antibody according to any one of claims 1 to 9.
  17.  請求項1~9のいずれか1項に記載の抗体に放射性同位体、蛍光剤、酵素、細胞毒素などを結合させた抗体。 An antibody obtained by binding a radioisotope, a fluorescent agent, an enzyme, a cytotoxin, or the like to the antibody according to any one of claims 1 to 9.
  18.  緑茶カテキンEGCGが結合する67LR分子上のペプチド配列を免疫抗原として抗体を獲得する方法。 A method for obtaining an antibody using a peptide sequence on the 67LR molecule to which green tea catechin EGCG binds as an immunizing antigen.
  19.  緑茶カテキンEGCGが結合する67LR分子上のペプチド配列を免疫抗原として抗がん活性を示す抗体を獲得する方法。 A method for obtaining an antibody exhibiting anticancer activity using a peptide sequence on the 67LR molecule to which green tea catechin EGCG binds as an immunizing antigen.
  20.  緑茶カテキンEGCGが結合する67LR分子上のペプチド配列を免疫抗原として緑茶カテキンEGCGが67LRを介して発現する抗がん活性、抗肥満、抗動脈硬化作用、抗アレルギー、抗炎症または筋萎縮阻害生理活性のいずれかを有する抗体のスクリーニング方法。 Anti-cancer activity, anti-obesity, anti-arteriosclerotic action, anti-allergy, anti-inflammatory or muscle atrophy inhibiting physiological activity expressed by green tea catechin EGCG via 67LR with the peptide sequence on 67LR molecule to which green tea catechin EGCG binds A screening method for an antibody having any of the above.
  21.  PDE3阻害剤、PDE5阻害剤、Shpk1阻害剤、またはゲムシタビンと組み合わせることで抗がん活性、抗肥満、抗動脈硬化作用、抗アレルギー、抗炎症または筋萎縮阻害生理活性のいずれかが増強される抗体のスクリーニング方法。 Antibody in which any of anti-cancer activity, anti-obesity, anti-arteriosclerotic effect, anti-allergy, anti-inflammatory or muscular atrophy inhibiting physiological activity is enhanced by combining with PDE3 inhibitor, PDE5 inhibitor, Shpk1 inhibitor, or gemcitabine Screening method.
  22.  請求項18~21のいずれか1項に記載の方法によって得られる抗体。 An antibody obtained by the method according to any one of claims 18 to 21.
  23.  請求項1~9のいずれか1項に記載の抗体を対象に投与することを含む、がん、肥満、動脈硬化、アレルギー、炎症または筋萎縮を治療する方法。 A method for treating cancer, obesity, arteriosclerosis, allergy, inflammation or muscle atrophy, comprising administering the antibody according to any one of claims 1 to 9 to a subject.
  24.  ESM-8抗体の遺伝子を、ヒト由来細胞株、ハムスター由来細胞株、マウス由来細胞株、昆虫由来細胞株及びこれら細胞株の糖鎖生合成変異細胞株、ならびに大腸菌及び酵母からなる群より選択される宿主細胞に導入し、当該宿主細胞を培養して抗体を発現させ、発現した抗体を回収することを含む、請求項1~9のいずれか1項に記載の抗体を製造する方法。 The gene of the ESM-8 antibody is selected from the group consisting of human-derived cell lines, hamster-derived cell lines, mouse-derived cell lines, insect-derived cell lines, sugar chain biosynthesis mutant cell lines of these cell lines, and Escherichia coli and yeast. A method for producing an antibody according to any one of claims 1 to 9, comprising introducing the antibody into a host cell, culturing the host cell to express the antibody, and collecting the expressed antibody.
  25.  ESM-16抗体の遺伝子を、ヒト由来細胞株、ハムスター由来細胞株、マウス由来細胞株、昆虫由来細胞株及びこれら細胞株の糖鎖生合成変異細胞株、ならびに大腸菌及び酵母からなる群より選択される宿主細胞に導入し、当該宿主細胞を培養して抗体を発現させ、発現した抗体を回収することを含む、請求項1~9のいずれか1項に記載の抗体を製造する方法。 The gene of ESM-16 antibody is selected from the group consisting of human-derived cell lines, hamster-derived cell lines, mouse-derived cell lines, insect-derived cell lines, sugar chain biosynthesis mutant cell lines of these cell lines, and Escherichia coli and yeast. A method for producing an antibody according to any one of claims 1 to 9, comprising introducing the antibody into a host cell, culturing the host cell to express the antibody, and collecting the expressed antibody.
PCT/JP2014/067288 2013-06-27 2014-06-27 Anticancer monoclonal antibody and method for producing same WO2014208760A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361839963P 2013-06-27 2013-06-27
US61/839,963 2013-06-27

Publications (1)

Publication Number Publication Date
WO2014208760A1 true WO2014208760A1 (en) 2014-12-31

Family

ID=52142082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067288 WO2014208760A1 (en) 2013-06-27 2014-06-27 Anticancer monoclonal antibody and method for producing same

Country Status (1)

Country Link
WO (1) WO2014208760A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016123143A1 (en) 2015-01-26 2016-08-04 The University Of Chicago CAR T-CELLS RECOGNIZING CANCER-SPECIFIC IL 13Rα2
WO2018159522A1 (en) * 2017-03-01 2018-09-07 国立大学法人九州大学 Food composition and medical composition for preventing or alleviating metabolic syndrome
US10189908B2 (en) 2014-02-05 2019-01-29 The University Of Chicago Chimeric antigen receptors recognizing cancer-specific TN glycopeptide variants
US10308719B2 (en) 2015-01-26 2019-06-04 The University Of Chicago IL13Rα2 binding agents and use thereof in cancer treatment
US20200158726A1 (en) * 2013-05-10 2020-05-21 Nordic Bioscience A/S Collagen Type X Alpha-1 Assay

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063234A (en) * 2005-09-02 2007-03-15 Kyushu Univ Catechin-bondable peptide
JP2008503476A (en) * 2004-06-16 2008-02-07 ジェネンテック・インコーポレーテッド Treatment of platinum resistant cancer
JP2009143928A (en) * 2008-12-26 2009-07-02 Kyushu Univ Method for promoting antioxidative activity of galloyl catechins
WO2011162320A1 (en) * 2010-06-23 2011-12-29 国立大学法人九州大学 Combination of egcg or methylated egcg and a pde inhibitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008503476A (en) * 2004-06-16 2008-02-07 ジェネンテック・インコーポレーテッド Treatment of platinum resistant cancer
JP2007063234A (en) * 2005-09-02 2007-03-15 Kyushu Univ Catechin-bondable peptide
JP2009143928A (en) * 2008-12-26 2009-07-02 Kyushu Univ Method for promoting antioxidative activity of galloyl catechins
WO2011162320A1 (en) * 2010-06-23 2011-12-29 国立大学法人九州大学 Combination of egcg or methylated egcg and a pde inhibitor

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KUMAZOE, M. ET AL.: "67-kDa laminin receptor increases cGMP to induce cancer-selective apoptosis", J. CLIN. INVEST., vol. 123, no. 2, February 2013 (2013-02-01), pages 787 - 799 *
MARTIGNONE, S. ET AL.: "Characterization of two monoclonal antibodies directed against the 67 kDa high affinity laminin receptor and application for the study of breast carcinoma progression", CLIN. EXP. METASTASIS, vol. 10, 1992, pages 379 - 386, XP002347728 *
SHI, Y. E. ET AL.: "Expression of 67 kDa laminin receptor in human breast cancer cells: regulation by progestins", CLIN. EXP. METASTASIS, vol. 11, 1993, pages 251 - 261 *
YUKARI TSURUDOME ET AL.: "Ryokucha Catechin Juyotai 67LR o Hyoteki to shita Monoclonal Kotai no Sakusei Oyobi sono Seiri Kassei", JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY NISHI NIPPON SHIBU.CHUSHIKOKU SHIBU GODO TAIKAI KOEN YOSHISHU, vol. H23TH, 2011, pages 68 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200158726A1 (en) * 2013-05-10 2020-05-21 Nordic Bioscience A/S Collagen Type X Alpha-1 Assay
US11531028B2 (en) * 2013-05-10 2022-12-20 Nordic Bioscience A/S Collagen type X alpha-1 assay
US10189908B2 (en) 2014-02-05 2019-01-29 The University Of Chicago Chimeric antigen receptors recognizing cancer-specific TN glycopeptide variants
WO2016123143A1 (en) 2015-01-26 2016-08-04 The University Of Chicago CAR T-CELLS RECOGNIZING CANCER-SPECIFIC IL 13Rα2
US10308719B2 (en) 2015-01-26 2019-06-04 The University Of Chicago IL13Rα2 binding agents and use thereof in cancer treatment
US10851169B2 (en) 2015-01-26 2020-12-01 The University Of Chicago Conjugates of IL13Rα2 binding agents and use thereof in cancer treatment
US11673935B2 (en) 2015-01-26 2023-06-13 The University Of Chicago Car T-cells recognizing cancer-specific IL 13Ra2
US11827712B2 (en) 2015-01-26 2023-11-28 The University Of Chicago IL13Rα2 binding agents and use thereof
WO2018159522A1 (en) * 2017-03-01 2018-09-07 国立大学法人九州大学 Food composition and medical composition for preventing or alleviating metabolic syndrome

Similar Documents

Publication Publication Date Title
JP6010241B2 (en) DLL3 modulator and method of use
JP2023085465A (en) Anti-trop2 antibody-drug conjugate
JP5909442B2 (en) Humanized AXL antibody
US8158124B2 (en) Compositions and methods for binding lysophosphatidic acid
EP2794661B1 (en) Single domain antibodies as inhibitors of pcsk9
JP2021035968A (en) Antibodies and assays for detecting folate receptor 1
JP2019528083A (en) Anti-PD-L1 antibody
WO2014208760A1 (en) Anticancer monoclonal antibody and method for producing same
IL258322B2 (en) Anti-garp antibodies, nucleotides encoding same, vectors, cells and compositions comparising same, methods of producing same and uses thereof
JP7181181B2 (en) Method for treating EGFR-TKI-resistant non-small cell lung cancer by administration of anti-HER3 antibody-drug conjugate
JP2015509948A (en) Anti-SEZ6 antibody and method of use
ES2753419T3 (en) Complement factor H inhibitors
JP7090545B2 (en) Antibodies and molecules that immunospecifically bind to BTN1A1 and their therapeutic use
JP7487938B2 (en) Anti-CD5L antibodies and uses thereof
CN110891970B (en) AMHRII-binding compounds for preventing or treating cancer
WO2012043634A1 (en) Antibody against human prostaglandin e2 receptor ep4
US20230142972A1 (en) Membrane Ubiquitin ligases to target protein degradation
KR20200014277A (en) AMHRII-binding compounds for preventing or treating lung cancer
TWI523867B (en) Anti-c-met antibody and methods of use thereof
Xuan et al. Targeting CD276 by CAR-T cells induces regression of esophagus squamous cell carcinoma in xenograft mouse models
JP6280040B2 (en) Anti-human Dlk-1 antibody having antitumor activity in vivo
JP2022507294A (en) CDCP1-Targeted therapy
Niesen et al. In vitro effects and ex vivo binding of an EGFR-specific immunotoxin on rhabdomyosarcoma cells
JP2024028867A (en) Methods of treating lung cancer with pd-1 axis binding antagonist, platinum agent, and topoisomerase ii inhibitor
TW202210523A (en) Anti-vsig4 compositions and methods for modulating myeloid cell inflammatory phenotypes and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14818649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP