WO2018159390A1 - 方向性電磁鋼板およびその製造方法 - Google Patents

方向性電磁鋼板およびその製造方法 Download PDF

Info

Publication number
WO2018159390A1
WO2018159390A1 PCT/JP2018/006040 JP2018006040W WO2018159390A1 WO 2018159390 A1 WO2018159390 A1 WO 2018159390A1 JP 2018006040 W JP2018006040 W JP 2018006040W WO 2018159390 A1 WO2018159390 A1 WO 2018159390A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
magnetic domain
irradiation
length
iron loss
Prior art date
Application number
PCT/JP2018/006040
Other languages
English (en)
French (fr)
Inventor
大村 健
博貴 井上
重宏 ▲高▼城
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MX2019010134A priority Critical patent/MX2019010134A/es
Priority to JP2018532474A priority patent/JP6432713B1/ja
Priority to CN201880014003.7A priority patent/CN110352255B/zh
Priority to KR1020197024959A priority patent/KR102292915B1/ko
Priority to US16/487,994 priority patent/US11387025B2/en
Priority to CA3054528A priority patent/CA3054528C/en
Priority to RU2019127613A priority patent/RU2717034C1/ru
Priority to EP18761106.6A priority patent/EP3591080B1/en
Publication of WO2018159390A1 publication Critical patent/WO2018159390A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a grain-oriented electrical steel sheet and a method for manufacturing the grain-oriented electrical steel sheet, and more particularly to a grain-oriented electrical steel sheet suitable for a core material of a transformer and a method for manufacturing the grain-oriented electrical steel sheet.
  • Patent Document 1 proposes a technique for reducing the iron loss of a steel sheet by irradiating a final product plate with a laser beam, introducing a high dislocation density region into the steel sheet surface layer, and narrowing the magnetic domain width. .
  • Patent Document 3 discloses that when performing electron domain subdivision processing by irradiating an electron beam in a dot shape, per point according to the output of the electron beam.
  • Patent Document 4 describes a technique for optimizing the relationship between the diameter A of the thermal strain introduction region and the irradiation pitch B in the magnetic domain subdivision processing by electron beam irradiation.
  • Patent Document 5 describes a technique for optimizing the rolling direction width, the plate thickness direction depth, and the rolling direction introduction interval of the reflux magnetic domain by an electron beam method.
  • beam irradiation with the full coil width is realized by connecting a plurality of irradiation devices in the plate width direction of the coil and connecting the beam irradiation from each device in the plate width direction of the coil.
  • a “discontinuous region” of the return magnetic domain is generated at the boundary of the irradiation region covered by each beam irradiation device.
  • the appearance looks like a continuous reflux magnetic domain.
  • the overlapping portion has a different energy introduction amount from the portion irradiated continuously by one electron gun, the continuity of the reflux magnetic domain structure is interrupted. Therefore, in the present invention, the reflux magnetic domain portion where the adjacent electron beam irradiation regions overlap is also defined as a “discontinuous region” together with the portion where the reflux magnetic domains do not directly overlap. Since the magnetic domain structure of the steel sheet is not uniform around the discontinuous region, it is more difficult to achieve both low iron loss and low noise in the transformer. Further, all the techniques relating to the above-described return magnetic domain are focused on areas other than the discontinuous area, and these techniques cannot be directly applied to the periphery of the discontinuous area.
  • Patent Document 6 discloses a technique for realizing low iron loss of a steel sheet by optimizing the lap width in the TD direction (plate width direction) of the discontinuous region.
  • the technique of Patent Document 6 is applied, the low iron loss of the steel sheet is realized, but only the irradiation areas of the electron guns are controlled in the overlapping direction. Since the wrap width does not change, the magnetostrictive characteristic that is sensitive to the influence of distortion is deteriorated as compared with a region that does not include a discontinuous region.
  • the deterioration amount of the iron loss is suppressed, there still remains a problem that the iron loss characteristic is not necessarily the same for a region not including the discontinuous region.
  • the present invention has been made in view of the above circumstances, and particularly suppresses both the iron loss and the deterioration of the magnetostrictive characteristics in the discontinuous region inevitably generated when the magnetic domain subdivision processing is performed by a plurality of irradiation apparatuses. It is an object of the present invention to provide a grain-oriented electrical steel sheet and a manufacturing method thereof.
  • the present inventors have found that as an index for evaluating the strain distribution, it is appropriate to compare the magnetic domain discontinuous regions on the steel plate surface irradiated with the beam and the back surface not irradiated with the beam.
  • the inventors of the present invention are that the state of the proper return magnetic domain is different between the periphery of the discontinuous region and the other portions, that is, the appropriate beam irradiation conditions are different between the periphery of the discontinuous region and the other portions.
  • the shape of the reflux magnetic domain in the thickness direction is different.
  • the configuration necessary for setting the iron loss and magnetostriction characteristics around the discontinuous region to the same level as the region (continuous region) that is not the discontinuous region is as follows. 1) There is a discontinuous region of the return magnetic domain in the TD direction which is a direction orthogonal to the rolling direction, and the overlap in the TD direction of the return magnetic domain between the beam irradiation surface and the beam non-irradiation surface is expressed by the following formulas (1) and (2) It must be a grain-oriented electrical steel sheet that satisfies the formula.
  • is the overlapping width of the lengths of adjacent reflux magnetic domains in the TD direction on the beam irradiation surface (hereinafter, the unit of ⁇ is mm in the present invention), and ⁇ is the beam non-irradiation surface. It is the overlapping width of the lengths of adjacent reflux magnetic domains in the TD direction (hereinafter, the unit of ⁇ is mm in the present invention).
  • ⁇ and ⁇ can be obtained by a magnet viewer capable of visualizing a magnetic domain pattern using a magnetic colloid.
  • 1 and 2 are schematic diagrams of magnetic domain observation results.
  • a region that exists so as to divide the main magnetic domain is defined as a reflux magnetic domain (indicated by 1 to 3 in FIG. 1).
  • a reflux magnetic domain formed in an irradiation region of an adjacent electron beam is defined as an adjacent reflux magnetic domain (indicated by 2 and 3 in FIG. 1).
  • FIG. 1 when the overlapping width of adjacent reflux magnetic domains is positive (overlapping), it means that there is no region where the main magnetic domain is not divided by the reflux magnetic domains.
  • the overlap width ⁇ of the present invention is the length in the direction perpendicular to the rolling direction of the overlapping portion of adjacent magnetic domains on the irradiated surface of the steel sheet (also referred to as one surface in the present invention). Show.
  • the overlap width ⁇ of the present invention is the length in the direction perpendicular to the rolling direction of the overlap portion on the non-irradiated surface (also referred to as the other surface in the present invention) of the steel sheet corresponding to ⁇ .
  • both ⁇ and ⁇ are the lengths in the direction perpendicular to the rolling direction of the overlapping portion that is closer (narrower) among adjacent magnetic domains.
  • the numerical value is naturally adopted.
  • Single-plate magnetic properties specified in JIS C 2556 were obtained from this coil by taking a test material with a width of 100 mm x length of 300 mm that includes a discontinuous region and a test material with a width of 100 mm and a length of 300 mm that does not include a discontinuous region. Magnetic properties were evaluated by testing. Magnetostriction, another important characteristic, is measured by the method described in Kawasaki Steel Technical Report Vol.29 No.3 pp.164-168 (1997) by measuring the contraction motion of a steel plate using a laser Doppler vibrometer. Evaluation was made with an index called magnetostrictive vibration acceleration level.
  • FIG. 3 shows the evaluation results of the iron loss characteristics.
  • FIG. 4 shows the evaluation results of the magnetostriction characteristics.
  • the test materials with and without the discontinuous region have different irradiation conditions showing good iron loss characteristics, but the iron loss obtained under the irradiation conditions showing the respective good iron loss characteristics.
  • the level was almost the same.
  • the magnetostrictive characteristics tend to deteriorate as the irradiation condition No. increases in the test materials having no discontinuous region and those having the discontinuous region. It is known that the magnetostrictive characteristic is extremely high in strain sensitivity. That is, from the results of FIG. 4, it is considered that the distortion introducing ability of each irradiation condition increases as the irradiation condition number increases, that is, as the beam current increases.
  • the magnetostriction characteristics of the test material having a discontinuous region deteriorated depending on conditions as compared to the test material without the discontinuous region. From FIG. 3 and FIG. 4, even if the iron loss characteristics are favorable, not all of these conditions have the result of having good magnetostriction characteristics. It has been found that the iron loss characteristics are more limited than good conditions.
  • the overlap width of the reflux magnetic domain on the irradiated surface / non-irradiated surface is greatly different from that of the irradiated surface and the non-irradiated surface. Means.
  • the reason why the overlap width of the non-irradiated surface is reduced under many irradiation conditions is that the strain introduced from the irradiated surface is difficult to spread in the thickness direction.
  • the behavior in FIG. 3 of the test material with the discontinuous region can be explained as follows.
  • the irradiation line interval in the rolling direction is narrower than the region without the discontinuous region, as the irradiation lines from different beam irradiation devices are shifted from each other in the rolling direction. Therefore, it is considered that the irradiation conditions No. 7, 8, and 9 with high strain introducing ability introduced excessive strain, greatly deteriorated the hysteresis loss, and increased the iron loss.
  • irradiation conditions No. 4, 5, and 6 have appropriate distortion amounts in regions where the irradiation line interval is narrow.
  • Irradiation conditions are: acceleration voltage 150kV, scanning speed 64m / sec, beam current 5.0mA, RD direction (rolling direction) irradiation line interval 4.5mm, irradiation area of each electron gun is equally divided, and reflux magnetic domain overlap width (beam polarization)
  • the overlap width (distance) was set to 0.1 to 10.0 mm.
  • the current value of the converging coil is set so that the focus is just outside the discontinuous region, and the current value of the converging coil is changed so that various focusing conditions are obtained in the discontinuous region.
  • “Focus” means the focal point of the beam
  • “just focus” means that the focal point of the beam is in a state where the distortion is most easily introduced. Specifically, the beam is the most on the steel plate. Refers to the state of convergence.
  • FIG. 6 shows the relationship between the iron loss and the overlap ratio ( ⁇ / ⁇ ) of the return magnetic domain when the return magnetic domain overlap width on the irradiated surface is changed.
  • the point where the overlapping ratio is “ ⁇ 1” or “ ⁇ 2” means that the non-irradiated surface does not overlap (negative) and the irradiated surface overlaps (positive). It was found that when the reflux magnetic domain overlap width was 4.0 mm, particularly good iron loss characteristics were exhibited when the ratio of the irradiated surface to the non-irradiated surface was 0.2 to 0.9. This iron loss characteristic was the same level as the iron loss characteristic of the test material having no discontinuous region evaluated as a reference.
  • the magnetostriction characteristics were evaluated for a test material having a reflux magnetic domain overlap width of 4.0 mm in which a good iron loss characteristic range was present.
  • the evaluation results are shown in FIG.
  • the iron loss and magnetostriction characteristics are compatible because the iron loss is good.
  • the ratio ⁇ / ⁇ of the overlap width ⁇ on the irradiated surface and the overlap width ⁇ on the non-irradiated surface is 0.2 to 0.8. It turned out to be.
  • the present invention is based on the above-described novel findings, and the gist of the present invention is as follows. 1. An overlap of the return magnetic domains in the discontinuous region on one side of the steel sheet, having a return magnetic domain extending partially with a discontinuous region in a direction within 30 ° with respect to the direction perpendicular to the rolling direction of the steel plate
  • the length ⁇ in the direction perpendicular to the rolling direction of the part is longer than the length ⁇ in the direction perpendicular to the rolling direction of the overlapping part on the other surface of the steel sheet, the length ⁇ satisfies the following formula (1), and the length ⁇ Is a grain-oriented electrical steel sheet that satisfies the following formula (2).
  • a high energy beam is irradiated from each of a plurality of high energy beam irradiation apparatuses to form a reflux magnetic domain extending partially with a discontinuous region in a direction within 30 ° with respect to a direction perpendicular to the rolling direction of the steel sheet.
  • each of the high energy beam irradiation devices by adjusting at least one of the focus and output of the high energy beam, the length in the direction perpendicular to the rolling direction of the overlapping portion of the reflux magnetic domains in the discontinuous region on the irradiation surface of the steel plate
  • the length ⁇ is longer than the length ⁇ in the direction perpendicular to the rolling direction of the overlapping portion on the non-irradiated surface of the steel sheet, the length ⁇ satisfies the following formula (1), and the length ⁇ is the following formula (2):
  • a method for producing a grain-oriented electrical steel sheet that satisfies the following conditions and forms the reflux magnetic domain.
  • the grain-oriented electrical steel sheet in which the iron loss and the magnetostriction characteristic deterioration are effectively suppressed, particularly in the region of the discontinuous region that inevitably occurs when the magnetic domain subdivision processing is performed by a plurality of irradiation apparatuses. And a method for manufacturing the same.
  • the component composition of the slab for grain-oriented electrical steel sheet may be a component composition that causes secondary recrystallization.
  • an inhibitor for example, when using an AlN-based inhibitor, Al and N, and when using an MnS / MnSe-based inhibitor, an appropriate amount of Mn and Se and / or S should be contained. Good. Of course, both inhibitors may be used in combination.
  • preferable contents of Al, N, S and Se are Al: 0.01 to 0.065 mass%, N: 0.005 to 0.012 mass%, S: 0.005 to 0.03 mass%, and Se: 0.005 to 0.03 mass%, respectively. is there.
  • Al, N, S and Se are purified, and the product plate is reduced to a content of inevitable impurities.
  • the present invention can also be applied to grain-oriented electrical steel sheets in which the contents of Al, N, S, and Se are limited and no inhibitor is used.
  • the amounts of Al, N, S and Se are preferably suppressed to Al: 100 mass ppm or less, N: 50 mass ppm or less, S: 50 mass ppm or less, and Se: 50 mass ppm or less, respectively.
  • C 0.08 mass% or less C is added to improve the hot rolled sheet structure. However, if it exceeds 0.08 mass%, it becomes difficult to reduce C to 50 mass ppm or less at which no magnetic aging occurs during the production process. Therefore, C is preferably 0.08% by mass or less. In addition, regarding the lower limit, since a secondary recrystallization is possible even for a material not containing C, it is not particularly necessary to provide it. Note that C is reduced by decarburization annealing, and the product plate has a content of inevitable impurities.
  • Si 2.0-8.0% by mass
  • Si is an element effective for increasing the electrical resistance of steel and improving iron loss.
  • the content is less than 2.0% by mass, a sufficient effect of reducing iron loss cannot be achieved.
  • the content exceeds 8.0% by mass, the workability is remarkably lowered and the magnetic flux density is also lowered. Therefore, the Si content is preferably in the range of 2.0 to 8.0% by mass.
  • Mn 0.005 to 1.0 mass% Mn is an element necessary for improving the hot workability, but if the content is less than 0.005% by mass, the effect of addition is poor. On the other hand, if the content exceeds 1.0% by mass, the magnetic flux density of the product plate decreases. Therefore, the amount of Mn is preferably in the range of 0.005 to 1.0% by mass.
  • Ni 0.03-1.50% by mass
  • Sn 0.01-1.50% by mass
  • Sb 0.005-1.50% by mass
  • Cu 0.03-3.0% by mass
  • P 0.03-0.50% by mass
  • Mo 0.005-0.10% by mass
  • Cr At least one Ni selected from 0.03 to 1.50% by mass is an element useful for improving the magnetic properties by improving the hot rolled sheet structure.
  • the amount of Ni is preferably in the range of 0.03 to 1.50% by mass.
  • Sn, Sb, Cu, P, Mo, and Cr are elements that are useful for improving the magnetic properties. However, if any of them is less than the lower limit of each component, the effect of improving the magnetic properties is small. On the other hand, when the upper limit amount of each component described above is exceeded, the development of secondary recrystallized grains is inhibited. Therefore, it is preferable to make it contain in said range, respectively.
  • the balance other than the above components is Fe and inevitable impurities mixed in in the manufacturing process.
  • the slab having the above component composition is heated according to a conventional method.
  • the heating temperature is preferably in the range of 1150 to 1450 ° C.
  • Hot rolling After the heating, hot rolling is performed. You may perform hot rolling immediately after casting, without heating. In the case of a thin slab, hot rolling may be performed, or hot rolling may be omitted. When hot rolling is performed, it is preferable that the rolling temperature in the final rough rolling pass is 900 ° C. or higher and the rolling temperature in the final rolling final pass is 700 ° C. or higher.
  • the hot-rolled sheet annealing temperature is preferably in the range of 800 to 1100 ° C.
  • the hot-rolled sheet annealing temperature is less than 800 ° C., a band structure in hot rolling remains, and it becomes difficult to obtain a sized primary recrystallized structure, which hinders the development of secondary recrystallization.
  • the intermediate annealing temperature is preferably in the range of 800 ° C to 1150 ° C.
  • the intermediate annealing time is preferably in the range of about 10 to 100 seconds.
  • decarburization annealing Thereafter, decarburization annealing is performed.
  • the decarburization annealing is preferably performed in the ranges of annealing temperature: 750 to 900 ° C., atmospheric oxidizing P H 2 O / P H 2 : 0.25 to 0.60, and annealing time: about 50 to 300 seconds, respectively.
  • the annealing separator is preferably composed of MgO as a main component and a coating amount in a range of about 8 to 15 g / m 2 .
  • annealing Thereafter, finish annealing is performed for the purpose of secondary recrystallization and forsterite film formation. It is preferable that the annealing temperature is 1100 ° C. or higher and the annealing time is 30 minutes or longer.
  • the flattening annealing is preferably performed in the range of annealing temperature: 750 to 950 ° C. and annealing time: about 10 to 200 seconds.
  • an insulating coating is applied to the steel sheet surface before or after planarization annealing.
  • the insulating coating here means a coating (tension coating) that imparts tension to the steel sheet in order to reduce iron loss. Examples of the tension coating include those in which an inorganic coating containing silica is formed by coating and baking, and those in which a ceramic coating is formed by physical vapor deposition, chemical vapor deposition, or the like.
  • Magnetic domain subdivision processing The grain-oriented electrical steel sheet thus obtained is subjected to a magnetic domain refinement process which is one of the features of the present invention.
  • strain introduction type magnetic domain subdivision processing is applied. The preferred conditions for this strain-introducing type will be described below.
  • a high energy beam irradiation device is used as the strain introducing device.
  • the high energy beam irradiation apparatus include a laser beam or electron beam irradiation apparatus. These apparatuses are already widely used, and a general irradiation apparatus can be appropriately used in the present invention.
  • a laser light source either a continuous wave laser or a pulse laser can be suitably used as the laser oscillation mode, and the laser medium can be used regardless of the type, such as a YAG laser or a CO 2 laser. it can.
  • the electron beam has a high ability to transmit a substance, it is possible to greatly change the strain introduction amount in the thickness direction. Therefore, when the strain distribution is controlled three-dimensionally as in the present invention, it is preferable because the strain distribution can be easily controlled within a suitable range.
  • the beam scanning speed and beam scanning width are restricted by various factors, and it is often difficult to perform the magnetic domain subdivision processing on the entire coil surface with one apparatus.
  • beam irradiation to the entire coil surface is performed using a plurality of irradiation devices in the plate width direction. Since the present invention solves the above-mentioned problems that occur when using a plurality of irradiation devices, the magnetic domain fragmentation processing according to the present invention uses two or more devices. Although it is preferable, even if one apparatus is used to irradiate discontinuously, it may be applied.
  • is the overlapping width (mm) of the length in the direction perpendicular to the rolling direction of the narrower (nearer) of the adjacent reflux magnetic domains formed by different high energy beam irradiation devices on the high energy beam irradiation surface, or this formation It is the length (mm) in the direction perpendicular to the rolling of the overlapping portion of the reflux magnetic domains.
  • is an overlapping portion corresponding to ⁇ , and is the length in the direction perpendicular to the rolling direction of the reflux magnetic domains formed by different high energy beam irradiation apparatuses on the non-irradiated surface of the high energy beam and overlapping or overlapping each other. (Mm).
  • ⁇ and ⁇ are formed at a plurality of positions in the direction perpendicular to the rolling direction of the steel sheet, but ⁇ is an overlapping portion on the non-irradiated surface caused by the formation of ⁇ .
  • the width of Further, the overlap width ⁇ on the irradiated surface is larger than the overlap width ⁇ on the non-irradiated surface.
  • the overlap width ⁇ of the present invention is preferably 1.0 mm or more.
  • the parameters may be changed so that the focus is just outside the vicinity of the discontinuous region, and the vicinity of the discontinuous region may be changed so as to satisfy the overlapping width control range.
  • the focus control parameters are not particularly limited.
  • the current value of the converging coil and the current value of the stigmator coil can be changed.
  • the position can be changed by changing the position of the dynamic focus lens. it can.
  • the current value of the stigmator coil is not a parameter that originally controls the convergence of the electron beam, but a parameter that changes the beam shape.
  • the amount of strain introduced into the steel sheet changes by changing the aspect ratio of the beam shape (when introducing strain more effectively, it is preferably close to a perfect circle), so it is regarded as a focus adjustment parameter. Can do.
  • it is also effective to change the beam output in accordance with the deflection position.
  • beam irradiation is performed with an output that is firmly subdivided into magnetic domains, and in the vicinity of the discontinuous region, the beam output is changed to a lower side, so that the irradiated surface and the non-irradiated surface are This is to control the overlapping width (heat effect width wrap state) of the reflux magnetic domain in the direction perpendicular to the rolling direction.
  • the control parameter of the beam output is not particularly limited.
  • an electron beam includes an acceleration voltage and a beam current
  • laser irradiation includes a current command value used for controlling the laser oscillator.
  • the average output power P of the laser irradiated to the steel plate there is no particular limitation on the average output power P of the laser irradiated to the steel plate, the scanning speed V of the laser beam, the laser beam diameter d, etc., and they may be combined so as to satisfy the above parameters of the present invention.
  • the amount of heat input P / V per unit length of scanning with the laser beam is preferably larger than 10 W ⁇ s / m.
  • the laser irradiation to the steel sheet may be continuously irradiated linearly or may be pulsed irradiated in a point sequence.
  • the pulse interval is preferably 0.01 to 1.00 mm.
  • the direction of the irradiation trace by a laser beam is a direction which makes an angle within 30 degrees with respect to the rolling perpendicular direction of a steel plate.
  • the acceleration voltage E, the beam current I, and the beam velocity V are not particularly limited, and may be combined so as to satisfy the above parameters of the present invention.
  • the amount of heat input (E ⁇ I / V) per unit length of scanning the beam is greater than 10 W ⁇ s / m.
  • the degree of vacuum at the time of electron beam irradiation is desirably 2 Pa or less. If the degree of vacuum is worse than this (over 2 Pa), the residual gas existing between the electron gun and the steel sheet degrades the quality of the electron beam and reduces the energy introduced into the steel sheet, resulting in the expected magnetic domain. This is because the subdividing effect cannot be obtained.
  • the direction of the irradiation trace by an electron beam is a direction which makes an angle within 30 degrees with respect to the rolling perpendicular direction of a steel plate.
  • the spot diameter of the laser and the electron beam is about 0.01 to 0.3 mm
  • the repetition interval in the rolling direction is preferably about 3 to 15 mm for each apparatus
  • the irradiation direction is preferably 60 to 120 ° with respect to the rolling direction of the steel sheet.
  • the direction is preferably 85 to 95 °.
  • the strain depth applied to the steel sheet is preferably about 10 to 40 ⁇ m.
  • Other manufacturing conditions other than those described above may follow a general method for manufacturing a grain-oriented electrical steel sheet.
  • Example 1 Contains C: 0.04 mass%, Si: 3.8 mass%, Mn: 0.1 mass%, Ni: 0.1 mass%, Al: 280 massppm, N: 100 massppm, Se: 120 massppm, and S: 5 massppm
  • a steel slab with a composition of Fe and inevitable impurities is produced by continuous casting, heated to 1430 ° C, and hot rolled into a hot-rolled sheet with a thickness of 2.0mm, then 20% at 1100 ° C.
  • Second hot-rolled sheet annealing was performed.
  • cold rolling was performed again to obtain a cold-rolled sheet having a thickness of 0.18 mm.
  • an insulating coating composed of 60% colloidal silica and aluminum phosphate was applied and baked at 850 ° C. This coating application treatment also serves as flattening annealing.
  • the laser beam was irradiated at right angles to the rolling direction, and the non-heat-resistant magnetic domain fragmentation process was implemented.
  • the processing conditions for non-heat-resistant magnetic domain subdivision are as follows: Six laser irradiation devices are used for a coil width of 1200 mm (the deflection distance is equally divided), the laser light source is a continuous laser, average output 150 W, beam diameter 200 ⁇ m, scanning speed 10 m / sec, with an irradiation line interval of 3.5 mm.
  • the amount of distortion introduced around the discontinuous area is controlled dynamically by adjusting the position of the focus coil to the deflection position (irradiation position of the beam (in the plate width direction)). It was implemented by changing the focus according to the location. More specifically, the focus conditions are determined according to each irradiation location of the steel sheet over 200 mm in the width direction, and the focus of each irradiation location is determined as the beam continuously deflects in the width direction. Continuously changed. In the area other than the discontinuous area, the focus coil position is controlled so that it is just focused. Under the discontinuous area, the under focus (where the focus is best (convergence position) is in the thickness direction of the steel plate.
  • test materials having different introduced strain amounts (strain distribution) around the discontinuous region were produced.
  • a 100 mm width test material including a discontinuous region and a 100 mm width sample not including the discontinuous region were collected, and the iron loss characteristics of 1.7 T and 50 Hz and the magnetostrictive vibration acceleration level of 1.5 T and 50 Hz were evaluated.
  • Table 1 shows the reflux magnetic domain overlap width (TD direction) on the beam irradiation surface, the reflux magnetic domain overlap ratio between the irradiated surface and the non-irradiated surface, iron loss characteristics, and magnetostriction characteristics.
  • Samples having discontinuous regions controlled within the scope of the present invention can provide iron loss characteristics and magnetostriction characteristics that are comparable to or higher than those of samples without discontinuous areas, and both iron loss characteristics and magnetostriction characteristics are compatible. I understand that. In Nos. 11, 16, 20, 24, 28, and 29 to 36, the strain introduction amount control is insufficient and the iron loss characteristics are good, but the magnetostriction characteristics with high strain sensitivity are not fully controlled. It can be seen that the iron loss characteristics and the magnetostriction characteristics are not compatible.
  • Example 2 C: 0.05% by mass, Si: 3.0% by mass, Mn: 0.5% by mass, Ni: 0.01% by mass, Al: 60% by mass, N: 33% by mass, Se: 10% by mass and S: 10% by mass
  • the remainder is manufactured by continuous casting of steel slabs with a composition of Fe and inevitable impurities.
  • the steel slabs shown in Table 2 are manufactured by continuous casting, heated to 1200 ° C., and then hot rolled to obtain the plate thickness.
  • a 2.7 mm hot-rolled sheet was finished and subjected to hot-rolled sheet annealing at 950 ° C. for 180 seconds. Subsequently, a cold rolled sheet having a thickness of 0.23 mm was formed by cold rolling.
  • the processing conditions for non-heat-resistant magnetic domain subdivision are as follows: Eight electron beam irradiation devices are used for a coil width of 1200 mm (the deflection distance is equally divided), acceleration voltage 200 kV beam current 9 mA, beam diameter 80 ⁇ m, scanning speed 100 m / sec, irradiation The line spacing was 5.5 mm.
  • the introduced distortion amount control (focus control) around the discontinuous region dynamically changes the current value of the converging coil or stigmator coil, that is, continuously controls the current value of the coil to be controlled at each irradiation place. This was done by changing the focus accordingly. In areas other than the discontinuous area, the current value is set so that it is just focused (conditions where distortion is most likely to be introduced). Various current values were set. Subsequently, a 100 mm width test material including a discontinuous region and a 100 mm width test material including no discontinuous region were sampled, and the iron loss characteristics of 1.7 T and 50 Hz and the magnetostriction vibration acceleration level of 1.5 T and 50 Hz were evaluated.
  • Table 2 shows the reflux magnetic domain overlap width (TD direction) on the beam irradiation surface, the return magnetic domain overlap ratio between the irradiated surface and the non-irradiated surface, iron loss characteristics, and magnetostriction characteristics.
  • a sample having a discontinuous region controlled within the scope of the present invention can obtain iron loss characteristics and magnetostriction characteristics comparable to or higher than those of a sample having no discontinuity area, and both iron loss characteristics and magnetostriction characteristics are compatible.
  • the control of the amount of strain introduced is insufficient and the iron loss characteristics are good, but the magnetostriction characteristics with high strain sensitivity are not fully controlled, and the iron loss characteristics. It can be seen that the magnetostrictive characteristics are not compatible.
  • Example 3 Contains C: 0.01 mass%, Si: 3.5 mass%, Mn: 0.15 mass%, Ni: 0.05 mass%, Al: 270 massppm, N: 100 massppm, Se: 5 massppm, and S: 60 massppm
  • the remainder is a steel slab with a composition of Fe and inevitable impurities, manufactured by continuous casting, heated to 1380 ° C, then finished into a hot-rolled sheet with a thickness of 1.8 mm by hot rolling, and 180 ° C at 1100 ° C. Hot-rolled sheet annealing was performed for 2 seconds. Next, a cold rolled sheet having a thickness of 0.27 mm was formed by cold rolling.
  • the processing conditions for non-heat-resistant domain subdivision are as follows: Eight electron beam irradiation devices are used for a coil width of 1200mm (the deflection distance is equally divided), acceleration voltage 60kV, beam diameter 300 ⁇ m, scanning speed 20m / sec, irradiation line interval 8mm I went there.
  • Control of the amount of distortion introduced around the discontinuous region was performed by dynamically changing the beam current according to the deflection position.
  • the beam current was set to 6 mA in a region other than the discontinuous region.
  • the beam current value at the end of deflection is set, and when reaching the lap part (circulating magnetic domain overlapping portion), the current value from the setting other than the discontinuous region to the beam current at the end of deflection. It was carried out by changing it linearly.
  • Table 3 shows the reflux magnetic domain overlap width (TD direction) on the beam irradiation surface, the return magnetic domain overlap ratio between the irradiated surface and the non-irradiated surface, iron loss characteristics, and magnetostriction characteristics.
  • Samples having discontinuous regions controlled within the scope of the present invention can provide iron loss characteristics and magnetostriction characteristics that are comparable to or higher than those of samples without discontinuous areas, and both iron loss characteristics and magnetostriction characteristics are compatible. I understand that.

Abstract

本発明に従い、鋼板の圧延直角方向に対して30°以内の向きに、不連続領域を部分的に有しながら延びる、還流磁区を有し、前記鋼板の一方の面における前記不連続領域での還流磁区の重複部の圧延直角方向の長さαが前記鋼板の他方の面における前記重複部の圧延直角方向の長さβより長く、前記長さαが0.5≦α≦5.0を満足し、前記長さβが0.2α≦β≦0.8αを満足することで、複数の照射装置で磁区細分化処理を行ったときに不可避的に生じる不連続領域について、鉄損と磁歪特性の劣化を抑制することができる。

Description

方向性電磁鋼板およびその製造方法
 本発明は、方向性電磁鋼板およびその製造方法に関し、特に、変圧器の鉄心材料に好適な方向性電磁鋼板およびその製造方法に関する。
 方向性電磁鋼板が使用される変圧器は、低鉄損と低騒音であることが求められている。ここで、変圧器の低鉄損化には、方向性電磁鋼板そのものの低鉄損化が有効であり、そのための技術の一つとして、鋼板表面にレーザビーム、プラズマビーム、電子ビーム等を照射することによって磁区を細分化する技術がある。例えば、特許文献1には、最終製品板にレーザビームを照射し、鋼板表層に高転位密度領域を導入し、磁区幅を狭くすることで、鋼板の鉄損を低減する技術が提案されている。また、特許文献2には、電子ビーム照射により方向性電磁鋼板の圧延方向と交差する向きに点列に熱歪みを導入するにあたり、照射点間隔や照射エネルギーを適正化することで、鉄損を低減する技術が記載されている。これらの技術は、主磁区を細分化するだけでなく、鋼板内部に還流磁区と呼ばれる新たな磁区構造を形成することで、低鉄損を実現するものである。
 しかしながら、鋼板内部の還流磁区が増大すると、かかる鋼板を変圧器に組み込んだときの騒音の発生が問題となる。これは、還流磁区の磁気モーメントが圧延方向に直交する面内に向いているため、方向性電磁鋼板の励磁過程で圧延方向にその向きが変化するのに伴って、磁気歪み(磁歪)が生じるためである。よって、低鉄損と低騒音を両立するためには磁区細分化によって新たに形成される還流磁区の適正化が必要となってくる。
 ここで、鉄損と騒音の両特性の改善技術として、特許文献3には、電子ビームを点状に照射して磁区細分化処理を行う場合に、電子ビームの出力に応じて、一点当たりの滞留時間tと点間隔Xとの関係を制御することで、優れた鉄損特性及び騒音特性を有する方向性電磁鋼板を提供する技術が記載されている。特許文献4には、電子ビーム照射による磁区細分化処理において、熱歪み導入領域の直径Aと照射ピッチBとの関係を適正化する技術が記載されている。また、特許文献5には、電子ビーム法によって、還流磁区の圧延方向幅、板厚方向深さ、圧延方向導入間隔を適正化する技術が記載されている。
特公昭57-2252号公報 特開2012-036450号公報 特開2012-172191号公報 特開2012-036445号公報 国際公開第2014/068962号 国際公開第2015/111434号
 ところで、鋼板表面に上記レーザビームや電子ビームなどの高エネルギービームを照射する場合、様々な要因によってビーム走査速度やビーム走査幅が制約され、1台の装置でコイル全面に磁区細分化処理を施すことは困難な場合が多い。この場合、コイルの板幅方向に複数台の照射装置を連ね各装置からのビーム照射をコイルの板幅方向につなぐことによって、コイル全幅でのビーム照射が実現する。ところが、このような複数台の照射装置を用いた場合は、それぞれのビーム照射装置がカバーする照射領域の境界部に、還流磁区の「不連続領域」が生じることになる。ここで、隣接する電子ビームの照射領域が重なっている場合、見た目は連続的な還流磁区に見える。しかしながら、重なっている部分は、一つの電子銃によって連続的に照射された部分とエネルギー導入量が異なるため、還流磁区構造の連続性は途絶えている。よって、本発明内では、この隣接する電子ビームの照射領域が重なっている還流磁区部分も還流磁区が直接重なっていない部分とともに「不連続領域」と定義する。
 この不連続領域の周辺では鋼板の磁区構造が不均一になるため、変圧器の低鉄損と低騒音を両立させることはより困難になる。また、上述した還流磁区にかかる技術は全て不連続領域以外に着目したものであり、これらの技術をそのまま不連続領域の周辺に適用できるわけではない。
 ここで、不連続領域の周辺に着目した先行技術としては、特許文献6に記載のものがある。特許文献6には、不連続領域のTD方向(板幅方向)のラップ幅を適正化することによって、鋼板の低鉄損を実現する技術が開示されている。しかしながら、特許文献6の技術を適用すれば、鋼板の低鉄損は実現するものの、各電子銃の照射エリアを重ねる方向に制御しているだけなので、電子銃の照射面と非照射面でのラップ幅が変わらないため、歪みの影響により敏感な磁歪特性については、不連続領域を含まない領域よりも劣化してしまう。また、鉄損の劣化量は抑制されているものの、不連続領域を含まない領域に対して必ずしも同じ鉄損特性にはならないといった問題も残っている。
 本発明は上記の事情に鑑みてなされたものであり、特に、複数の照射装置で磁区細分化処理を行ったときに不可避的に生じる不連続領域における、鉄損と磁歪特性の劣化が共に抑制された方向性電磁鋼板およびその製造方法を提供することを目的とする。
 さて、鉄損および磁歪特性に影響を与えているのは、ビーム照射によって導入される鋼板への歪み分布であることは知られている。本発明者らは、この歪み分布を評価する指標として、ビームが照射される鋼板表面とビームが照射されない裏面とにおける磁区不連続領域の対比を行うことが適していることを知見した。また、本発明者らは、不連続領域の周辺とそれ以外の部分とでは適正な還流磁区の状態が異なること、すなわち、不連続領域の周辺とそれ以外の部分における適正なビーム照射条件が相違すること、に起因して、板厚方向の還流磁区の形態がそれぞれ異なることを明らかにした。
 不連続領域の周辺の鉄損および磁歪特性を、不連続領域ではない領域(連続領域)と同レベルにするために必要な構成は以下の通りである。
 1)圧延方向に直交する方向であるTD方向に還流磁区の不連続領域が存在し、ビーム照射面とビーム非照射面の還流磁区のTD方向重複代が以下の(1)式および(2)式を満足する方向性電磁鋼板であること。
          0.5≦α≦5.0 … (1)
          0.2α≦β≦0.8α … (2)
 ここで、αは、ビーム照射面における、隣り合う還流磁区のTD方向の長さの重複幅(以下、本発明においてαの単位はmmである)であり、βは、ビーム非照射面における、隣り合う還流磁区のTD方向の長さの重複幅(以下、本発明においてβの単位はmmである)である。
 2)鋼板表面への熱エネルギー導入を、複数の高エネルギービーム照射装置(複数のレーザビーム照射装置または複数の電子ビーム照射装置)を設置することで実施する際に、ビーム照射面・非照射面の還流磁区の状態の制御を、ビームの偏向に合わせ、各照射装置のビームフォーカス調整を行うパラメータの中の少なくとも1つを変動させることにより実施すること。
 3)上記2)に代えて、または2)に加えて、鋼板表面への熱エネルギー導入を複数の高エネルギービーム照射装置を設置することで実施する際に、ビーム照射面・非照射面の還流磁区の状態の制御を、ビーム偏向に合わせ、各照射装置のビーム出力調整を行うパラメータの中の少なくとも1つを変動させることにより実施すること。
 上記αおよびβは、磁性コロイドを利用して磁区パターンの可視化が可能なマグネットビュアーによって求めることができる。図1および図2に、磁区観察結果の模式図を示す。本発明では、主磁区を分断するような形で存在している領域を還流磁区(図1中、1~3で示す)と定義する。また、隣接する電子ビームの照射領域に形成している還流磁区を隣り合う還流磁区(図1中、2および3で示す)と定義する。図1に示されるように、隣り合う還流磁区の重複幅が正(重複している)の場合は、還流磁区によって主磁区が分断されていない領域が存在しないことを意味する。なお、図2に示されるように、隣り合う還流磁区の重複幅が負(重複していない)の場合は、還流磁区によって主磁区が分断されていない領域が存在することを示している。
 さらに、本発明の重複幅αとは、鋼板の照射面(本発明において一方の面ともいう)における隣り合う磁区の重複部の圧延直角方向の長さであって、図1においてαおよびβで示す。また、本発明の重複幅βとは、上記αに対応する鋼板の非照射面(本発明において他方の面ともいう)における重複部の圧延直角方向の長さとする。なお、αおよびβは共に、隣り合う磁区のうち、より近接している(狭い)方の重複部の圧延直角方向の長さとする。また、隣り合う磁区が同じ幅で近接している場合は、当然にその数値を採用する。
 次に、本発明を導くに至った経緯について詳細に説明する。
<実験1>
 まず、市販の方向性電磁鋼板(0.25mm厚)に、複数台の電子ビーム照射装置を用いて照射線間隔:4.0mm、加速電圧:100kV、走査速度:70m/sec、ビーム電流:4~20mAの範囲で2mAずつ変更させて、それぞれ照射条件No.1(ビーム電流:4mA)~No.9(ビーム電流:20mA)とし、磁区細分化処理を施した。
 このコイルより不連続領域を含む幅100mm×長さ300mmの試験材および不連続領域を含まない幅100mm×長さ300mmの試験材をそれぞれ採取し、JIS C 2556に規定されている単板磁気特性試験によって磁気特性を評価した。もう一つの重要な特性である磁歪は、レーザドップラー式振動計を用いて鋼板の収縮運動を計測し、川崎製鉄技報 Vol.29 No.3 pp.164-168(1997)に記載の方法で磁歪振動加速度レベルと呼ばれる指標で評価した。ここでは、100~2000Hzまでの磁歪高調波成分を積算し、磁歪測定時の最大磁束密度は、最大磁束密度1.3~1.8Tの変圧器騒音と最も相関が高いとされる1.5Tとした。
 図3に、上記鉄損特性の評価結果を示す。また、図4に、上記磁歪特性の評価結果を示す。
 図3に示されるように、不連続領域なしとありの試験材では、良好な鉄損特性を示す照射条件が異なっているが、それぞれの良好な鉄損特性を示す照射条件で得られる鉄損レベルはほぼ同じであった。また、磁歪特性について、図4に示すように、照射条件No.が大きくなるほど特性が劣化する傾向は、不連続領域なしと不連続領域ありの試験材で同じであった。磁歪特性は極めて歪み感受性が高いことが知られている。すなわち、図4の結果から、各照射条件の歪み導入能は照射条件No.が大きくなるにつれて、すなわち、ビーム電流が高くなるにつれて増加していると考えられる。特に、不連続領域が存在する試験材では、条件によっては不連続領域なしの試験材よりも磁歪特性が劣化していた。図3および図4から、鉄損特性が良好な条件であっても、それらの条件の全てが良好な磁歪特性を有する結果にはなっておらず、鉄損と磁歪特性が両立する条件は、鉄損特性が良好な条件よりさらに限定されることが判明した。
 次に、不連続領域ありの試験材では、鉄損・磁歪特性ともにビーム電流の変化に対する挙動が、不連続領域なしの試験材と異なっていた。そこでその原因を調査するために、不連続領域あり試験材について電子ビームの照射面(表面)と非照射面(裏面)のそれぞれにおいて、還流磁区観察を行った。すなわち、前記αおよび前記βの大きさをそれぞれ調査した。
 図5に還流磁区の重複幅α、βを示す。
 照射面からの観察では照射条件による大きな差が認められなかったが、非照射面では照射条件によって大きく異なる結果が得られた。ここで、還流磁区は、鋼板の歪みによって形成されるので、照射面・非照射面の還流磁区重複幅が大きく異なっているのは、照射面と非照射面で歪み量が大きく異なっていることを意味している。多くの照射条件で非照射面の重複幅が減少したのは、照射面より導入される歪みが板厚方向には広がり難いためである。
 この結果より、不連続領域ありの試験材の図3の挙動は次のように説明することができる。
 還流磁区が重複している領域は、異なるビーム照射装置からの照射線が圧延方向に互いにずれているぶん、不連続領域なしの領域よりも圧延方向の照射線間隔が狭くなっている。それ故、歪み導入能が高い照射条件No.7、8、9は必要以上の歪みが導入されて、履歴損が大きく劣化し、鉄損が増大したと考えられる。なお、照射線間隔の狭い領域で適正な歪み量であったのは照射条件No.4、5、6である。また、照射条件No.1、2、3では歪み導入量が低く、歪み量が不足したため、十分な磁区細分化効果が得られずに鉄損が劣化したと考えられる。磁歪特性については、歪み感受性が高いので、歪み導入状態の適正範囲が鉄損の場合よりも限定されたと考えられる。
 以上の結果より、不連続領域付近の素材特性を良好な状態に制御するには、3次元歪み分布(板厚方向を含めた歪み分布)を制御することが重要である。そして、その制御パラメータとして、照射面における還流磁区の重複幅だけでなく、非照射面における還流磁区の重複幅についても組み合わせて用いることが有用であることがわかる。
<実験2>
 実験1の結果より、発明者らは、適正な不連続領域の板厚方向の歪み分布を得るために、鋼板表裏の還流磁区の重複幅をパラメータとして制御すればよいのではないかと考えた。まず、公知な方向性電磁鋼板(0.30mm厚)に、4台の電子銃を用いて磁区細分化処理を施した。照射条件は、加速電圧150kV、走査速度64m/sec、ビーム電流5.0mA、RD方向(圧延方向)の照射線間隔4.5mm、各電子銃の照射エリアは等分割とし、還流磁区重複幅(ビーム偏光距離の重複幅)を0.1~10.0mmになるようにした。
 このとき、ビーム照射面および非照射面の還流磁区重複幅を制御するために、フォーカスを制御している収束コイルの電流値を偏向位置に合わせて変化させることにした。また、不連続領域部分以外ではジャストフォーカスとなるように収束コイルの電流値を設定し、不連続領域部分ではさまざまなフォーカス条件になるように収束コイルの電流値を変化させた。なお、「フォーカス」とは、ビームの焦点を指し、「ジャストフォーカス」とは、ビームの焦点が、歪みの最も導入しやすい状態にあることを指し、具体的には、鋼板上でビームが最も収束している状態を指す。
 図6は照射面の還流磁区重複幅を変化させた場合における鉄損と還流磁区の重複割合(β/α)の関係を示している。なお、図6の横軸に関し、重複割合が「-1」や「-2」となる点は、非照射面では重複せず(負)、照射面では重複する(正)ことを意味する。還流磁区重複幅が4.0mmの場合では、照射面と非照射面の割合が0.2から0.9において、特に良好な鉄損特性を示していることが分かった。この鉄損特性は、基準として評価した不連続領域のない試験材の鉄損特性と同レベルであった。
 次に、良好な鉄損特性範囲が存在した還流磁区重複幅:4.0mmの試験材について磁歪特性を評価した。その評価結果を図7に示す。鉄損と磁歪特性が両立したのは、鉄損が良好であった条件から更に限定され、照射面での重複幅αと非照射面での重複幅βの比β/αが0.2から0.8であることが判明した。
 さらに、照射面の還流磁区重複幅と鉄損の関係を調査した。その調査結果を図8に示す。照射面の重複幅が0.5~6.0mmにおいて良好な特性(不連続領域なしサンプルと同レベル)を示していることが分かった。また、図6および図7の結果により判明した鉄損・磁歪特性が両立する範囲内にある還流磁区重複割合(β/α)は、0.46の試験材であった。この試験材について、磁歪特性を調査した結果を図9に示す。良好な鉄損特性を示した中でも重複幅が0.5~5.0mmの範囲では、不連続領域なしサンプルと同等レベルの磁歪特性が得られており、鉄損と磁歪特性が両立していることが分かった。
 以上の結果より、以下の点が明らかとなった。すなわち、不連続領域を含む試験材ついては、ビーム走査幅や照射面の還流磁区重複幅のみの制御だけでは、鋼板中の歪み分布制御は不十分であることが明らかになった。また、鋼板の板厚方向の歪分布は、照射面および非照射面の還流磁区重複幅を評価指標として考慮することが重要であることが明らかになった。
 本発明は、上記の新規な知見に立脚するものであり、その要旨構成は、以下のとおりである。
1.鋼板の圧延直角方向に対して30°以内の向きに、不連続領域を部分的に有して延びる、還流磁区を有し、前記鋼板の一方の面における前記不連続領域での還流磁区の重複部の圧延直角方向の長さαが前記鋼板の他方の面における前記重複部の圧延直角方向の長さβより長く、前記長さαが以下の式(1)を満足し、前記長さβが以下の式(2)を満足する方向性電磁鋼板。
           0.5≦α≦5.0 … (1)
           0.2α≦β≦0.8α … (2)
2.複数の高エネルギービーム照射装置のそれぞれから高エネルギービームを照射して、鋼板の圧延直角方向に対して30°以内の向きに、不連続領域を部分的に有して延びる、還流磁区を形成するに際し、
 前記高エネルギービーム照射装置の各々における、高エネルギービームのフォーカスおよび出力のいずれか少なくとも一方を調整して、前記鋼板の照射面における前記不連続領域での還流磁区の重複部の圧延直角方向の長さαが前記鋼板の非照射面における前記重複部の圧延直角方向の長さβより長く、前記長さαが以下の式(1)を満足し、前記長さβが以下の式(2)を満足する、前記還流磁区を形成する方向性電磁鋼板の製造方法。
           0.5≦α≦5.0 … (1)
           0.2α≦β≦0.8α … (2)
3.前記高エネルギービームは、レーザビームまたは電子ビームである、上記2に記載の方向性電磁鋼板の製造方法。
 本発明によれば、特に複数の照射装置で磁区細分化処理を行ったときに不可避的に生じる不連続領域の領域における、鉄損と磁歪特性の劣化が効果的に抑制された方向性電磁鋼板およびその製造方法を提供することができる。
磁区観察結果の模式図である。 磁区観察結果の他の模式図である。 鉄損特性の評価結果を示すグラフである。 磁歪特性の評価結果を示すグラフである。 還流磁区の重複幅の測定結果を示すグラフである。 照射面の還流磁区の重複幅を変化させた場合における、鉄損と還流磁区の重複割合との関係を示すグラフである。 磁歪特性と還流磁区の重複割合との関係を示すグラフである。 照射面の還流磁区の重複割合を変化させた場合における、鉄損と照射面の還流磁区重複幅との関係を示すグラフである。 磁歪特性と照射面の還流磁区の重複幅との関係を示すグラフである。
 本発明に従う方向性電磁鋼板について以下に具体的に説明する。
[成分組成]
 本発明において、方向性電磁鋼板用スラブの成分組成は、二次再結晶が生じる成分組成であればよい。また、インヒビターを利用する場合、例えばAlN系インヒビターを利用する場合であればAlおよびNを、またMnS・MnSe系インヒビターを利用する場合であればMnとSeおよび/またはSを適量含有させればよい。勿論、両インヒビターを併用してもよい。この場合におけるAl、N、SおよびSeの好適含有量は、それぞれ、Al:0.01~0.065質量%、N:0.005~0.012質量%、S:0.005~0.03質量%、Se:0.005~0.03質量%である。なお、仕上げ焼鈍においてAl、N、SおよびSeは純化され、製品板においてはそれぞれ不可避的不純物程度の含有量に低減される。
 さらに、本発明は、Al、N、S、Seの含有量を制限した、インヒビターを使用しない方向性電磁鋼板にも適用することができる。この場合には、Al、N、SおよびSe量はそれぞれ、Al:100質量ppm以下、N:50質量ppm以下、S:50質量ppm以下、Se:50質量ppm以下に抑制することが好ましい。
 本発明の方向性電磁鋼板用スラブの基本成分および任意添加成分について具体的に述べると次のとおりである。
C:0.08質量%以下
 Cは、熱延板組織の改善のために添加をする。しかしながら、0.08質量%を超えると製造工程中に磁気時効の起こらない50質量ppm以下までCを低減することが困難になる。そのため、Cは、0.08質量%以下とすることが好ましい。なお、下限に関しては、Cを含まない素材でも二次再結晶が可能であるので特に設ける必要はない。なお、Cは脱炭焼鈍により低減され、製品板においては不可避的不純物程度の含有量となる。
Si:2.0~8.0質量%
 Siは、鋼の電気抵抗を高め、鉄損を改善するのに有効な元素であるが、含有量が2.0質量%に満たないと十分な鉄損低減効果が達成できない。一方、その含有量が8.0質量%を超えると加工性が著しく低下し、また磁束密度も低下する。そのため、Si量は2.0~8.0質量%の範囲とすることが好ましい。
Mn:0.005~1.0質量%
 Mnは、熱間加工性を良好にする上で必要な元素であるが、含有量が0.005質量%未満ではその添加効果に乏しい。一方、その含有量が1.0質量%を超えると製品板の磁束密度が低下する。そのため、Mn量は0.005~1.0質量%の範囲とすることが好ましい。
 上記の基本成分以外に、磁気特性の改善成分として、次に述べる元素を適宜含有させることができる。
Ni:0.03~1.50質量%、Sn:0.01~1.50質量%、Sb:0.005~1.50質量%、Cu:0.03~3.0質量%、P:0.03~0.50質量%、Mo:0.005~0.10質量%およびCr:0.03~1.50質量%のうちから選んだ少なくとも1種
 Niは、熱延板組織を改善して磁気特性を向上させるために有用な元素である。しかしながら、含有量が0.03質量%未満では磁気特性の向上効果が小さい。一方、その含有量が1.50質量%を超えると二次再結晶が不安定になり磁気特性が劣化する。そのため、Ni量は0.03~1.50質量%の範囲とするのが好ましい。
 また、Sn、Sb、Cu、P、MoおよびCrはそれぞれ磁気特性の向上に有用な元素であるが、いずれも上記した各成分の下限に満たないと、磁気特性の向上効果が小さい。一方、上記した各成分の上限量を超えると、二次再結晶粒の発達が阻害される。そのため、それぞれ上記の範囲で含有させることが好ましい。
 なお、上記成分以外の残部は、Feおよび製造工程において混入する不可避的不純物である。
 次に、本発明の方向性電磁鋼板の製造方法について説明する。
[加熱]
 上記した成分組成を有するスラブは、常法に従い加熱する。加熱温度は、1150~1450℃の範囲が好ましい。
[熱間圧延]
 上記加熱後に、熱間圧延を行う。鋳造後、加熱せずに直ちに熱間圧延を行ってもよい。薄鋳片の場合には、熱間圧延を行うこととしてもよく、あるいは、熱間圧延を省略してもよい。熱間圧延を実施する場合は、粗圧延最終パスの圧延温度を900℃以上、仕上げ圧延最終パスの圧延温度を700℃以上で実施することが好ましい。
[熱延板焼鈍]
 その後、必要に応じて熱延板焼鈍を施す。このとき、製品板において、ゴス組織を高度に発達させるためには、熱延板焼鈍温度として800~1100℃の範囲が好適である。熱延板焼鈍温度が800℃未満であると、熱間圧延でのバンド組織が残留し、整粒した一次再結晶組織を得ることが困難になり、二次再結晶の発達が阻害される。一方、熱延板焼鈍温度が1100℃を超えると、熱延板焼鈍後の粒径が粗大化しすぎるために、整粒した一次再結晶組織を得ることが極めて困難となる。
[冷間圧延]
 その後、1回または中間焼鈍を挟む2回以上の冷間圧延を施す。中間焼鈍温度は800℃以上1150℃以下の範囲が好適である。また、中間焼鈍時間は、10~100秒程度の範囲とすることが好ましい。
[脱炭焼鈍]
 その後、脱炭焼鈍を行う。脱炭焼鈍は、それぞれ、焼鈍温度:750~900℃、雰囲気酸化性P H2O/P H2:0.25~0.60および焼鈍時間:50~300秒程度の範囲とすることが好ましい。
[焼鈍分離剤の塗布]
 その後、焼鈍分離剤を塗布する。ここで、焼鈍分離剤は、主成分をMgOとし、塗布量を8~15g/m2程度の範囲とすることが好適である。
[仕上げ焼鈍]
 その後、二次再結晶およびフォルステライト被膜の形成を目的として仕上げ焼鈍を施す。焼鈍温度は1100℃以上、焼鈍時間は30分以上とすることが好ましい。
[平坦化処理および絶縁コーティング]
 仕上げ焼鈍後には、平坦化焼鈍を行って形状を矯正することが有効である。平坦化焼鈍は、焼鈍温度:750~950℃および焼鈍時間:10~200秒程度の範囲で実施するのが好適である。
 なお、本発明では、平坦化焼鈍前または後に、鋼板表面に絶縁コーティングを施す。ここでの絶縁コーティングとは、鉄損低減のために、鋼板に張力を付与するコーティング(張力コーティング)を意味する。張力コーティングとしては、シリカを含有する無機系コーティングを塗布・焼付により形成したものや、セラミックコーティングを物理蒸着法、化学蒸着法等により形成したものが挙げられる。
[磁区細分化処理]
 かくして得られた方向性電磁鋼板に、本発明の特徴の1つである磁区細分化処理を施す。磁区細分化処理は歪み導入型と溝形成型の2種類があるが、本発明では歪み導入型の磁区細分化処理を適用する。以下に、この歪み導入型の好適条件について述べる。
[[歪み導入型の磁区細分化処理方法]]
 本発明では、歪み導入装置として高エネルギービーム照射装置を用いる。この高エネルギービーム照射装置としては、レーザビームまたは電子ビーム照射装置が挙げられる。これらの装置は、既に幅広く普及しており、本発明では一般的な照射装置を適宜使用することができる。また、レーザの光源としては、レーザ発振形態は連続波レーザ、パルスレーザのいずれもが好適に使用することができ、レーザ媒質はYAGレーザやCOレーザ等、種類を問わずに使用することができる。特に、電子ビームは、物質を透過する能力が高いので、板厚方向への歪み導入量を大きく変化させることが可能である。そのため、本発明のように3次元的に歪み分布を制御する場合には、歪み分布を好適範囲に制御しやすいので、好適である。
[[装置の台数]]
 さまざまな要因によってビーム走査速度やビーム走査幅が制約され、1台の装置ではコイル全面に対して磁区細分化処理を施すことが困難な場合が多々ある。この場合、コイル全面へのビーム照射は、板幅方向に複数台の照射装置を用いて行われることになる。本発明は、かかる複数台の照射装置を用いたときに生じる上記のような課題を解決するものであるため、本発明にかかる磁区細分化処理は、2台以上の複数の装置を用いることが好ましいが、1台の装置でも不連続に照射する場合があれば適用してもよい。
[[歪み導入分布制御方法]]
 本発明では、不連続領域付近の歪み導入分布を3次元に把握する方法として、照射面と非照射面の還流磁区の重複割合を使用することが有効であることを見出した。すなわち、不連続領域付近の鉄損・磁歪特性が、不連続領域なしの領域と同レベルになるためには以下の(1)式および(2)式を満足するように、照射面と非照射面の還流磁区重複割合および照射面の還流磁区重複幅、すなわちαおよびβを制御することが重要である。
           0.5≦α≦5.0 … (1)
           0.2α≦β≦0.8α … (2)
 ここで、
 αは、高エネルギービーム照射面における、互いに異なる高エネルギービーム照射装置により形成された隣り合う還流磁区のうちより狭い(近い)方の圧延直角方向の長さの重複幅(mm)、またはこの形成された還流磁区の重なっている部分の圧延直角方向の長さ(mm)である。
 一方、βは、上記αに対応する重複部分であって、高エネルギービーム非照射面における、互いに異なる高エネルギービーム照射装置により形成され隣り合って重複するまたは重なり合う還流磁区の圧延直角方向の長さ(mm)である。
 なお、高エネルギービーム照射装置を3台以上用いた場合、αおよびβは鋼板の圧延直角方向にそれぞれ複数箇所形成されるが、上記βは、上記αの形成により生じた非照射面における重複部分の幅とする。また、照射面における重複幅αは、非照射面における重複幅βより大きくなる。
 ここで、本発明の重複幅αは1.0mm以上とすることが好ましい。
 上記(1)式および(2)式を満足するように重複幅を制御する方法としては、フォーカスを制御するパラメータをビーム偏向位置に合わせて変更することが好ましい。具体的には、不連続領域付近以外ではジャストフォーカスになるようにパラメータを変化させ、不連続領域付近については、上記重複幅の制御範囲を満足するように変化させればよい。フォーカスの制御パラメータは特に限定されないが、電子ビーム照射の場合は、収束コイルの電流値やスティグメータコイルの電流値変更など、レーザ照射の場合は、ダイナミックフォーカスレンズの位置変更などでそれぞれ行うことができる。
 上記スティグメータコイルの電流値等は、本来、電子ビームの収束性を制御するパラメータではなく、ビーム形状を変化させるパラメータである。しかしながら、ビーム形状のアスペクト比を変化させることで、鋼板への歪み導入量が変化する(より効果的に歪みを導入する場合は、真円に近づけることが好ましい)ので、フォーカス調整パラメータとみなすことができる。また、別の方法としてはビーム出力を偏向位置に合わせて変化させることも有効である。具体的には、不連続領域以外の領域では、しっかりと磁区細分化される出力でビーム照射を行い、不連続領域付近ではビーム出力を低い側に変化させることで、照射面と非照射面の還流磁区の圧延直角方向の重複幅(熱影響幅ラップ状態)を制御するというものである。このとき、ビーム出力の制御パラメータは特に限定されないが、例えば、電子ビームでは加速電圧や、ビーム電流等が挙げられ、レーザ照射ではレーザ発振器の制御に用いる電流指令値等が挙げられる。
[[その他の条件]]
 鋼板に照射するレーザの平均出力Pや、レーザビームの走査速度V、レーザビーム径dなどは特に制限はなく、本発明の上記パラメータを充足するように組み合わせればよいが、磁区細分化効果を十分に得るためには、レーザビームを走査する単位長さ当たりのエネルギー入熱量P/Vは10W・s/mより大きいことが好ましい。
 また、鋼板へのレーザ照射は線状に連続照射しても、点列状にパルス照射してもよい。ここで、点列状にパルス照射する場合には、パルス間隔として0.01~1.00mmが好適である。また、点列状にパルス照射する場合には、これにより形成される複数の点列から1つの還流磁区が形成される。なお、レーザビームによる照射痕の方向は、鋼板の圧延直角方向に対して30°以内の角度をなす方向である。
 一方、電子ビームを照射する場合は、加速電圧E、ビーム電流I、ビーム速度Vに特に制限はなく、本発明の上記パラメータを充足するように組み合わせればよいが、磁区細分化効果を十分に得るためには、ビームを走査する単位長さ当たりのエネルギー入熱量(E×I/V)は10W・s/mより大きいことが好ましい。また、電子ビーム照射時の真空度は2Pa以下であることが望ましい。これより真空度が悪い(2Paを超える)場合、電子銃から鋼板までの間に存在する残存ガスによって、電子ビームの品質が劣化し、鋼板に導入されるエネルギーが小さくなって、期待通りの磁区細分化効果が得られなくなるためである。
 なお、電子ビームによる照射痕の方向は、鋼板の圧延直角方向に対して30°以内の角度をなす方向である。
 レーザおよび電子ビームのスポット径は、0.01~0.3mm程度とし、圧延方向の繰り返し間隔は装置毎に3~15mm程度、照射方向は、鋼板の圧延方向に対して、60~120°が好ましく、より好ましくは85~95°をなす方向であることが好ましい。なお、鋼板に付与される歪み深さは10~40μm程度とするのが好適である。
 上述した以外のその他の製造条件は、方向性電磁鋼板の一般的な製造方法に従えばよい。
 (実施例1)
 C:0.04質量%、Si:3.8質量%、Mn:0.1質量%、Ni:0.1質量%、Al:280質量ppm、N:100質量ppm、Se:120質量ppmおよびS:5質量ppmを含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、連続鋳造にて製造し、1430℃に加熱後、熱間圧延により板厚:2.0mmの熱延板としたのち、1100℃で20秒の熱延板焼鈍を施した。ついで、冷間圧延により中間板厚:0.40mmとし、雰囲気酸化性PH2O/PH2=0.40、温度:100℃、時間:70秒の条件で中間焼鈍を実施した。その後、塩酸酸洗により表面のサブスケールを除去したのち、再度、冷間圧延を実施して、板厚:0.18mmの冷延板とした。
 ついで、雰囲気酸化性PH2O/PH2=0.44、均熱温度820℃で300秒間保持する脱炭焼鈍を施し、その後、MgOを主成分とする焼鈍分離剤を塗布し、二次再結晶・フォルステライト被膜形成および純化を目的とした仕上げ焼鈍を1160℃、10hr保定の条件で実施した。そして、60%のコロイダルシリカとリン酸アルミニウムからなる絶縁コーティングを塗布、850℃にて焼付けた。このコーティング塗布処理は、平坦化焼鈍も兼ねている。その後、圧延方向と直角にレーザビームを照射し、非耐熱磁区細分化処理を実施した。非耐熱磁区細分化の処理条件は、コイル幅1200mmに対してレーザ照射装置を6台使用(偏向距離は等分割)、レーザの光源は連続レーザ、平均出力150W、ビーム径200μm、走査速度10m/sec、照射線間隔3.5mm、で行った。
 不連続領域の周辺の導入歪み量の制御は、フォーカスコイルの位置を偏向位置(ビームの(板幅方向の)照射位置)に合わせてダイナミックに変更すなわち、連続的にフォーカスコイルの位置を各照射場所に応じて変化させてフォーカスを変更させることで実施した。より具体的には、幅方向200mmにわたる鋼板の各照射場所に応じてフォーカス条件を決定しておき、ビームが連続的に幅方向に偏向するのに合わせて、各照射場所のフォーカスを決定した条件に連続的に変更させた。不連続領域以外の領域では、ジャストフォーカスになるようにフォーカスコイルの位置を制御し、不連続領域の周辺では、アンダーフォーカス(焦点が最もあっている場所(収束位置)が鋼板よりも板厚方向の上方に存在しており、鋼板が配置されている位置では焦点がずれた(歪みが導入されにくい)状態)~ジャストフォーカス~アッパーフォーカス(焦点が最もあっている場所が鋼板よりも板厚方向の下方に存在しており、鋼板部では焦点がずれた(歪みが導入されにくい)状態)まで様々なフォーカス状態になるように、位置設定を変化させた。これによって、不連続領域の周辺の導入歪み量(歪み分布)が異なる試験材を作製した。次いで、不連続領域を含む100mm幅試験材および不連続領域を含まない100mm幅サンプルを採取し、1.7T、50Hzの鉄損特性および1.5T、50Hzの磁歪振動加速度レベルを評価した。
 表1にビーム照射面の還流磁区重複幅(TD方向)および照射面と非照射面の還流磁区重複割合、鉄損特性そして磁歪特性を示す。本発明の範囲内に制御された不連続領域を有するサンプルでは、不連続領域がないサンプルと同程度若しくはそれ以上の鉄損特性と磁歪特性が得られ、鉄損特性と磁歪特性が両立していることが分かる。また、No.11、16、20、24、28、29~36では、歪み導入量制御が不十分で、鉄損特性は良好であるが、歪み感受性の高い磁歪特性を制御しきれておらず、鉄損特性と磁歪特性が両立していないことが分かる。
Figure JPOXMLDOC01-appb-T000001
 (実施例2)
 C:0.05質量%、Si:3.0質量%、Mn:0.5質量%、Ni:0.01質量%、Al:60質量ppm、N:33質量ppm、Se:10質量ppmおよびS:10質量ppmを含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、連続鋳造にて製造し、表2に示す鋼スラブを連続鋳造にて製造し、1200℃に加熱した後、熱間圧延により板厚2.7mmの熱延板に仕上げ、950℃で180秒間保持する熱延板焼鈍を施した。ついで、冷間圧延により板厚0.23mmの冷延板とした。
 ついで、雰囲気酸化性PH2O/PH2=0.58、均熱温度820℃で300秒間保持する脱炭焼鈍を施し、その後、MgOを主成分とする焼鈍分離剤を塗布し、二次再結晶・フォルステライト被膜形成および純化を目的とした仕上げ焼鈍を1250℃、100hr保定の条件で実施した。そして、60%のコロイダルシリカとリン酸アルミニウムからなる絶縁コーティングを塗布、800℃にて焼付けた。このコーティング塗布処理は、平坦化焼鈍も兼ねている。その後、圧延方向と直角に電子ビームを照射し、非耐熱磁区細分化の処理を実施した。非耐熱磁区細分化の処理条件は、コイル幅1200mmに対して電子ビーム照射装置を8台使用(偏向距離は等分割)、加速電圧200kVビーム電流9mA、ビーム径80μm、走査速度100m/sec、照射線間隔5.5mm、で行った。
 不連続領域の周辺の導入歪み量制御(フォーカス制御)は、収束コイル、またはスティグメータコイルの電流値をダイナミックに変更させる、すなわち、連続的に、制御を行うコイルの電流値を各照射場所に応じて変化させてフォーカスを変更させることで実施した。不連続領域以外の領域では、ジャストフォーカス(歪みが最も導入しやすい条件)になるように電流値を設定し、不連続領域の周辺では、歪み導入状況を変化させるためにジャストフォーカス条件だけでなく、さまざまな電流値を設定した。次いで、不連続領域を含む100mm幅試験材および不連続領域を含まない100mm幅試験材を採取し、1.7T、50Hzの鉄損特性および1.5T、50Hzの磁歪振動加速度レベルを評価した。
 表2にビーム照射面の還流磁区重複幅(TD方向)および照射面と非照射面の還流磁区重複割合、鉄損特性そして磁歪特性を示す。本発明の範囲内に制御された不連続領域を有するサンプルは、不連続領域がないサンプルと同程度若しくはそれ以上の鉄損特性と磁歪特性が得られ、鉄損特性と磁歪特性が両立していることが分かる。また、No.9、13、17、18~21では、歪み導入量制御が不十分で、鉄損特性は良好であるが、歪み感受性の高い磁歪特性を制御しきれておらず、鉄損特性と磁歪特性が両立していないことが分かる。
Figure JPOXMLDOC01-appb-T000002
 (実施例3)
 C:0.01質量%、Si:3.5質量%、Mn:0.15質量%、Ni:0.05質量%、Al:270質量ppm、N:100質量ppm、Se:5質量ppm、およびS:60質量ppmを含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、連続鋳造にて製造し、1380℃に加熱した後、熱間圧延により板厚1.8mmの熱延板に仕上げ、1100℃で180秒間保持する熱延板焼鈍を施した。ついで、冷間圧延により板厚0.27mmの冷延板とした。
 ついで、雰囲気酸化性PH2O/PH2=0.45、均熱温度860℃で100秒保持する脱炭焼鈍を施し、その後、MgOを主成分とする焼鈍分離剤を塗布し、二次再結晶・フォルステライト被膜形成および純化を目的とした仕上げ焼鈍を1200℃、60hr保定の条件で実施した。そして、40%のコロイダルシリカとリン酸アルミニウムからなる絶縁コーティングを塗布、820℃にて焼付けた。このコーティング塗布処理は、平坦化焼鈍も兼ねている。その後、圧延方向と直角に電子ビームを照射し、非耐熱磁区細分化処理を実施した。非耐熱磁区細分化の処理条件は、コイル幅1200mmに対して電子ビーム照射装置を8台使用(偏向距離は等分割)、加速電圧60kV、ビーム径300μm、走査速度20m/sec、照射線間隔8mmで行った。
 不連続領域の周辺の導入歪み量制御は、ビーム電流を偏向位置によってダイナミックに変更させることで実施した。具体的には、不連続領域以外の領域では、ビーム電流を6mAとした。不連続領域の周辺に関しては、偏向終了時のビーム電流値を設定し、ラップ部(還流磁区重複部)に到達した段階で、不連続領域以外の設定電流値より、偏向終了時のビーム電流までリニアに変動させることで実施した。偏向終了時のビーム電流をさまざまに変更することで、不連続領域の周辺の歪み分布を変更することが可能になる。次いで、不連続領域を含む100mm幅試験材および不連続領域を含まない100mm幅試験材を採取し、1.7T、50Hzの鉄損特性および1.5T、50Hzの磁歪振動加速度レベルを評価した。
 表3にビーム照射面の還流磁区重複幅(TD方向)および照射面と非照射面の還流磁区重複割合、鉄損特性そして磁歪特性を示す。本発明の範囲内に制御された不連続領域を有するサンプルでは、不連続領域がないサンプルと同程度若しくはそれ以上の鉄損特性と磁歪特性が得られ、鉄損特性と磁歪特性が両立していることが分かる。
Figure JPOXMLDOC01-appb-T000003
 1 還流磁区
 2 還流磁区A
 3 還流磁区Aに対して隣り合う還流磁区

Claims (3)

  1.  鋼板の圧延直角方向に対して30°以内の向きに、不連続領域を部分的に有して延びる、還流磁区を有し、前記鋼板の一方の面における前記不連続領域での還流磁区の重複部の圧延直角方向の長さα(mm)が前記鋼板の他方の面における前記重複部の圧延直角方向の長さβ(mm)より長く、前記長さα(mm)が以下の式(1)を満足し、前記長さβ(mm)が以下の式(2)を満足する方向性電磁鋼板。
           0.5(mm)≦α(mm)≦5.0(mm) … (1)
           0.2α(mm)≦β(mm)≦0.8α(mm) … (2)
  2.  複数の高エネルギービーム照射装置のそれぞれから高エネルギービームを照射して、鋼板の圧延直角方向に対して30°以内の向きに、不連続領域を部分的に有して延びる、還流磁区を形成するに際し、
     前記高エネルギービーム照射装置の各々における、高エネルギービームのフォーカスおよび出力のいずれか少なくとも一方を調整して、前記鋼板の照射面における前記不連続領域での還流磁区の重複部の圧延直角方向の長さα(mm)が前記鋼板の非照射面における前記重複部の圧延直角方向の長さβ(mm)より長く、前記長さα(mm)が以下の式(1)を満足し、前記長さβ(mm)が以下の式(2)を満足する方向性電磁鋼板の製造方法。
           0.5(mm)≦α(mm)≦5.0(mm) … (1)
           0.2α(mm)≦β(mm)≦0.8α(mm) … (2)
  3.  前記高エネルギービームは、レーザビームまたは電子ビームである、請求項2に記載の方向性電磁鋼板の製造方法。
PCT/JP2018/006040 2017-02-28 2018-02-20 方向性電磁鋼板およびその製造方法 WO2018159390A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MX2019010134A MX2019010134A (es) 2017-02-28 2018-02-20 Lamina de acero electrico de grano orientado y metodo de produccion de la misma.
JP2018532474A JP6432713B1 (ja) 2017-02-28 2018-02-20 方向性電磁鋼板およびその製造方法
CN201880014003.7A CN110352255B (zh) 2017-02-28 2018-02-20 方向性电磁钢板及其制造方法
KR1020197024959A KR102292915B1 (ko) 2017-02-28 2018-02-20 방향성 전자 강판 및 그의 제조 방법
US16/487,994 US11387025B2 (en) 2017-02-28 2018-02-20 Grain-oriented electrical steel sheet and production method therefor
CA3054528A CA3054528C (en) 2017-02-28 2018-02-20 Grain-oriented electrical steel sheet and production method therefor
RU2019127613A RU2717034C1 (ru) 2017-02-28 2018-02-20 Текстурированная электротехническая листовая сталь и способ ее производства
EP18761106.6A EP3591080B1 (en) 2017-02-28 2018-02-20 Grain-oriented electrical steel sheet and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017037495 2017-02-28
JP2017-037495 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159390A1 true WO2018159390A1 (ja) 2018-09-07

Family

ID=63370409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006040 WO2018159390A1 (ja) 2017-02-28 2018-02-20 方向性電磁鋼板およびその製造方法

Country Status (9)

Country Link
US (1) US11387025B2 (ja)
EP (1) EP3591080B1 (ja)
JP (1) JP6432713B1 (ja)
KR (1) KR102292915B1 (ja)
CN (1) CN110352255B (ja)
CA (1) CA3054528C (ja)
MX (1) MX2019010134A (ja)
RU (1) RU2717034C1 (ja)
WO (1) WO2018159390A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116188A1 (ja) * 2018-12-05 2020-06-11 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
EP4006181A4 (en) * 2019-07-31 2022-06-01 JFE Steel Corporation GRAIN ORIENTED ELECTRICAL STEEL SHEET

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108660295A (zh) * 2017-03-27 2018-10-16 宝山钢铁股份有限公司 一种低铁损取向硅钢及其制造方法
EP3780037A4 (en) * 2018-03-30 2021-06-16 JFE Steel Corporation IRON CORE FOR TRANSFORMER
US11961659B2 (en) 2018-03-30 2024-04-16 Jfe Steel Corporation Iron core for transformer

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572252B2 (ja) 1978-07-26 1982-01-14
JPH11279645A (ja) * 1998-03-26 1999-10-12 Nippon Steel Corp 低鉄損かつ低磁気歪み一方向性電磁鋼板およびその製造方法
JP2002012918A (ja) * 2000-04-24 2002-01-15 Nippon Steel Corp 磁気特性の優れた方向性電磁鋼板
JP2007277644A (ja) * 2006-04-07 2007-10-25 Nippon Steel Corp 磁気特性の優れた方向性電磁鋼板の製造方法
JP2012036445A (ja) 2010-08-06 2012-02-23 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2012036450A (ja) 2010-08-06 2012-02-23 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2012036442A (ja) * 2010-08-06 2012-02-23 Jfe Steel Corp 方向性電磁鋼板
JP2012172191A (ja) 2011-02-21 2012-09-10 Jfe Steel Corp 方向性電磁鋼板の製造方法
WO2012164702A1 (ja) * 2011-06-01 2012-12-06 新日鐵住金株式会社 方向性電磁鋼板の製造装置及び方向性電磁鋼板の製造方法
WO2013099258A1 (ja) * 2011-12-27 2013-07-04 Jfeスチール株式会社 方向性電磁鋼板
WO2014068962A1 (ja) 2012-10-31 2014-05-08 Jfeスチール株式会社 方向性電磁鋼板とその製造方法
JP2015052144A (ja) * 2013-09-06 2015-03-19 Jfeスチール株式会社 変圧器鉄心用方向性電磁鋼板およびその製造方法
WO2015111434A1 (ja) 2014-01-23 2015-07-30 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
KR20160057753A (ko) * 2014-11-14 2016-05-24 주식회사 포스코 방향성 전기강판용 절연피막 조성물, 이를 이용하여 표면에 절연피막이 형성된 방향성 전기강판 및 이의 제조방법
JP2016156047A (ja) * 2015-02-24 2016-09-01 Jfeスチール株式会社 方向性電磁鋼板及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK172081A (da) 1980-04-21 1981-10-22 Merck & Co Inc Mercaptoforbindelse og fremgangsmaade til fremstilling deraf
JPH11279654A (ja) * 1998-03-31 1999-10-12 Nisshin Steel Co Ltd Ti入りフェライト系ステンレス鋼帯の製造方法
DE60139222D1 (de) 2000-04-24 2009-08-27 Nippon Steel Corp Kornorientiertes Elektroblech mit ausgezeichneten magnetischen Eigenschaften
US7442260B2 (en) 2003-03-19 2008-10-28 Nippon Steel Corooration Grain-oriented electrical steel sheet superior in electrical characteristics and method of production of same
KR101421388B1 (ko) * 2010-08-06 2014-07-18 제이에프이 스틸 가부시키가이샤 방향성 전기 강판 및 그 제조 방법
DE102011054004A1 (de) * 2011-09-28 2013-03-28 Thyssenkrupp Electrical Steel Gmbh Verfahren zum Herstellen eines kornorientierten, für elektrotechnische Anwendungen bestimmten Elektrobands oder -blechs
JP6010907B2 (ja) 2011-12-28 2016-10-19 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP5884165B2 (ja) 2011-12-28 2016-03-15 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP6007501B2 (ja) * 2012-02-08 2016-10-12 Jfeスチール株式会社 方向性電磁鋼板
RU2569260C2 (ru) * 2014-04-08 2015-11-20 Владимир Иванович Пудов Способ изготовления анизотропной электротехнической стали

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572252B2 (ja) 1978-07-26 1982-01-14
JPH11279645A (ja) * 1998-03-26 1999-10-12 Nippon Steel Corp 低鉄損かつ低磁気歪み一方向性電磁鋼板およびその製造方法
JP2002012918A (ja) * 2000-04-24 2002-01-15 Nippon Steel Corp 磁気特性の優れた方向性電磁鋼板
JP2007277644A (ja) * 2006-04-07 2007-10-25 Nippon Steel Corp 磁気特性の優れた方向性電磁鋼板の製造方法
JP2012036445A (ja) 2010-08-06 2012-02-23 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2012036450A (ja) 2010-08-06 2012-02-23 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2012036442A (ja) * 2010-08-06 2012-02-23 Jfe Steel Corp 方向性電磁鋼板
JP2012172191A (ja) 2011-02-21 2012-09-10 Jfe Steel Corp 方向性電磁鋼板の製造方法
WO2012164702A1 (ja) * 2011-06-01 2012-12-06 新日鐵住金株式会社 方向性電磁鋼板の製造装置及び方向性電磁鋼板の製造方法
WO2013099258A1 (ja) * 2011-12-27 2013-07-04 Jfeスチール株式会社 方向性電磁鋼板
WO2014068962A1 (ja) 2012-10-31 2014-05-08 Jfeスチール株式会社 方向性電磁鋼板とその製造方法
JP2015052144A (ja) * 2013-09-06 2015-03-19 Jfeスチール株式会社 変圧器鉄心用方向性電磁鋼板およびその製造方法
WO2015111434A1 (ja) 2014-01-23 2015-07-30 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
KR20160057753A (ko) * 2014-11-14 2016-05-24 주식회사 포스코 방향성 전기강판용 절연피막 조성물, 이를 이용하여 표면에 절연피막이 형성된 방향성 전기강판 및 이의 제조방법
JP2016156047A (ja) * 2015-02-24 2016-09-01 Jfeスチール株式会社 方向性電磁鋼板及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAWASAKI STEEL TECHNICAL REPORT, vol. 29, no. 3, 1997, pages 164 - 168

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116188A1 (ja) * 2018-12-05 2020-06-11 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP6747627B1 (ja) * 2018-12-05 2020-08-26 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
US11923116B2 (en) 2018-12-05 2024-03-05 Jfe Steel Corporation Grain-oriented electrical steel sheet and method of producing same
EP4006181A4 (en) * 2019-07-31 2022-06-01 JFE Steel Corporation GRAIN ORIENTED ELECTRICAL STEEL SHEET

Also Published As

Publication number Publication date
CN110352255A (zh) 2019-10-18
KR102292915B1 (ko) 2021-08-23
JP6432713B1 (ja) 2018-12-05
KR20190112054A (ko) 2019-10-02
RU2717034C1 (ru) 2020-03-17
US11387025B2 (en) 2022-07-12
MX2019010134A (es) 2019-10-07
CA3054528C (en) 2021-09-07
EP3591080A1 (en) 2020-01-08
CN110352255B (zh) 2021-09-21
EP3591080A4 (en) 2020-01-08
CA3054528A1 (en) 2018-09-07
EP3591080B1 (en) 2021-01-13
US20200035392A1 (en) 2020-01-30
JPWO2018159390A1 (ja) 2019-03-07

Similar Documents

Publication Publication Date Title
JP6432713B1 (ja) 方向性電磁鋼板およびその製造方法
JP5919617B2 (ja) 方向性電磁鋼板およびその製造方法
US10395806B2 (en) Grain-oriented electrical steel sheet and method of manufacturing the same
KR101421391B1 (ko) 방향성 전기 강판
US10062483B2 (en) Grain-oriented electrical steel sheet and method for improving iron loss properties thereof
JP5742294B2 (ja) 方向性電磁鋼板の製造方法
WO2015111434A1 (ja) 方向性電磁鋼板およびその製造方法
JP2012177149A (ja) 方向性電磁鋼板およびその製造方法
JP5953690B2 (ja) 方向性電磁鋼板およびその製造方法
JP2012052232A (ja) 方向性電磁鋼板およびその製造方法
JP6973369B2 (ja) 方向性電磁鋼板およびその製造方法
JP2012057232A (ja) 方向性電磁鋼板およびその製造方法
JP5729014B2 (ja) 方向性電磁鋼板の製造方法
JP5983306B2 (ja) 鉄損に優れた変圧器鉄心の製造方法
JP5845848B2 (ja) 方向性電磁鋼板の製造方法
JP5594302B2 (ja) 方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018532474

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761106

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3054528

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20197024959

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018761106

Country of ref document: EP

Effective date: 20190930