WO2018159374A1 - Electrically conductive paste, flexible wiring obtained using same, and garment-type electronic device having flexible wiring - Google Patents

Electrically conductive paste, flexible wiring obtained using same, and garment-type electronic device having flexible wiring Download PDF

Info

Publication number
WO2018159374A1
WO2018159374A1 PCT/JP2018/005896 JP2018005896W WO2018159374A1 WO 2018159374 A1 WO2018159374 A1 WO 2018159374A1 JP 2018005896 W JP2018005896 W JP 2018005896W WO 2018159374 A1 WO2018159374 A1 WO 2018159374A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
conductive filler
conductive film
binder resin
filler
Prior art date
Application number
PCT/JP2018/005896
Other languages
French (fr)
Japanese (ja)
Inventor
桂也 ▲徳▼田
達彦 入江
佑子 中尾
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2019502893A priority Critical patent/JP7167909B2/en
Publication of WO2018159374A1 publication Critical patent/WO2018159374A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D1/00Garments
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern

Definitions

  • the present invention relates to a conductive paste composed of a conductive filler and a binder resin, and particularly relates to a conductive paste capable of forming a conductive film having stretch properties.
  • the present invention also relates to a conductive material used in a clothes-type wearable electronic device in which an electronic function or an electric function is incorporated in a garment, and a stretchable electrical wiring is formed, and the garment has a natural feeling of wear.
  • Type electronic equipment is a clothes-type wearable electronic device in which an electronic function or an electric function is incorporated in a garment, and a stretchable electrical wiring is formed, and the garment has a natural feeling of wear.
  • wearable electronic devices intended to use electronic devices having input / output, arithmetic and communication functions in close proximity to or close to the body have been developed.
  • devices having an accessory-type outer shape such as a wristwatch, glasses, and earphones, and textile integrated devices in which electronic functions are incorporated into clothes are known.
  • An example of such a textile integrated device is disclosed in Patent Document 1.
  • Electronic equipment requires electrical wiring for power supply and signal transmission.
  • the electrical wiring is required to be stretchable in accordance with the stretchable clothes.
  • electrical wiring made of metal wires or metal foils is not practically elastic, so the metal wires or metal foils are placed in a corrugated or repeated horseshoe shape to give a pseudo expansion / contraction function.
  • the method is used.
  • wiring can be formed by regarding the metal wire as an embroidery thread and sewing it onto clothes.
  • a method of forming a wiring by etching a metal foil is a general method for producing a printed wiring board.
  • a technique is known in which a metal foil is bonded to a stretchable resin sheet, and corrugated wiring is formed by a technique similar to that of a printed wiring board to make a pseudo stretchable wiring.
  • Such a technique is to give a pseudo expansion / contraction characteristic by torsional deformation of the corrugated wiring portion.
  • the metal foil is also deformed in the thickness direction by torsional deformation, When used, it was very uncomfortable and unpleasant.
  • permanent plastic deformation occurs in the metal foil, and there is a problem in the durability of the wiring.
  • Conductive particles such as silver particles, carbon particles, carbon nanotubes and elastomers such as stretchable urethane resin, natural rubber, synthetic rubber, solvent, etc. are kneaded to form a paste, directly on clothes or stretchable film base
  • the wiring is printed and drawn in combination with a material.
  • a conductive composition composed of conductive particles and a stretchable binder resin can realize a stretchable conductor.
  • the conductive composition obtained from such a paste maintains its conductivity within a range in which the resin binder portion is deformed when external force is applied and the electrical chain of the conductive particles is not interrupted.
  • Patent Document 2 discloses a technique for suppressing a decrease in conductivity at the time of elongation by combining silver particles and silicone rubber and further coating a conductive film on a silicone rubber substrate with silicone rubber.
  • Patent Document 3 discloses a combination of silver particles and a polyurethane emulsion, and it is said that a conductive film having high conductivity and high elongation can be obtained. Further, many examples have been proposed in which characteristics are improved by combining high aspect ratio conductive particles such as carbon nanotubes and silver fillers.
  • Patent Document 4 discloses a technique for directly forming electrical wiring on clothes using a printing method.
  • the present invention has the following configuration.
  • Conductive paste used for forming stretchable wiring characterized by [2] The conductive paste according to [1], wherein the binder resin is a nitrile group-containing elastomer or a urethane resin.
  • the conductive material according to [1] or [2] which contains 0.1 to 3.0% by mass of an additive having a surface free energy of 30 mJ / m 2 or less based on the conductive filler.
  • Sex paste [4] From [1] to [3], wherein the additive is polydimethylsiloxane having at least one functional group selected from an amino group, a carboxyl group, and a glycidyl group at least at one end.
  • the electrically conductive paste in any one.
  • the conductive material according to [7] or [8] which contains 0.1 to 3.0% by mass of a treatment agent having a surface free energy of 30 mJ / m 2 or less based on the conductive filler. Film.
  • the additive is polydimethylsiloxane having at least one functional group selected from an amino group, a carboxyl group, and a glycidyl group at least at one end.
  • the conductive film in any one.
  • the additive is polydimethylsiloxane having a carboxyl group at least at one end.
  • the conductive filler composed of the metal-coated particles contains at least two types of conductive filler A and conductive filler B, and the conductive filler A has an aspect ratio which is a ratio of a major axis to a minor axis of 1.5 or less.
  • the conductive filler contains at least two types of conductive filler A and conductive filler B as the conductive filler, and the conductive filler A has a ratio of the major axis to the minor axis.
  • a certain aspect ratio is 1.5 or less, is a metal-coated particle having a metal layer on the surface of a non-conductive core particle, a center particle diameter D is 0.5 ⁇ m or more and 15 ⁇ m or less, and the conductive filler B is The ratio of the major axis to the minor axis is a metal-coated particle having an aspect ratio of 5 or more and having a metal layer on the surface of the non-conductive core particle, the average length L of the major axis is 10 ⁇ m or more and 30 ⁇ m or less.
  • a conductive film having stretchability characterized in that the ratio of the conductive filler B to the total filler is 25 to 60% by mass, and the binder resin is an elastomer.
  • the conductive film has a specific resistance of the sheet after repeating the twist cycle of the following twist test 100 times within 3.0 times the initial specific resistance [20] to [24] ]
  • the electroconductive film in any one of. [Torsion test: sample: width 10 mm, length 100 mm (fixed at one end in the longitudinal direction of the sample, twisted by rotation of the other end) Twisting cycle: 10 rotations (3600 °) in the positive direction, return to the initial state, 10 rotations (-3600 °) in the negative direction, return to the initial state]
  • a stretchable electronic component having an electrical wiring comprising the conductive film according to any one of [20] to [25].
  • a clothes-type electronic device having an electrical wiring made of the conductive film according to any one of [20] to [25].
  • the present invention preferably further has the following configuration.
  • At least a conductive filler composed of metal-coated particles having a metal layer on the surface of non-conductive core particles, a binder resin composed of an elastomer, and an organic solvent, and the surface of the conductive filler has 3 or more carbon atoms in advance.
  • a mono- or polyvalent carboxylic acid having 28 or less and 0 to 3 double bonds in the molecule, an aliphatic amine having 3 to 24 carbon atoms and 0 to 2 double bonds in the molecule
  • a conductive paste used for forming stretchable wiring characterized in that it is not surface-treated with at least one selected surface treatment agent.
  • Mono- or polyvalent carboxylic acid having 28 to 28 and the number of double bonds in the molecule is 0 to 3, and aliphatic amine having 3 to 24 carbon atoms and the number of the double bond in the molecule is 0 to 2
  • a stretchable conductive film characterized by being not surface-treated with at least one surface treatment agent selected from [31] Mono- or polyvalent carboxylic acid having 3 to 28 carbon atoms and 0 to 3 double bonds in the molecule, and having 3 to 24 carbon atoms and 0 double bonds in the molecule
  • a clothes-type electronic device having the electrical wiring according to [15], comprising the stretchable conductive film according to [30] or [31].
  • metal-coated particles and an elastomer that are not subjected to surface treatment such as high dispersion treatment on the surface in advance are used.
  • a surface treatment agent for high dispersion treatment or the like a mono- or polyvalent carboxylic acid having 3 to 28 carbon atoms and having 0 to 3 double bonds in the molecule, and / or 3 or more carbon atoms. Examples thereof include aliphatic amines having 24 or less and 0 to 2 double bonds in the molecule, or derivatives thereof.
  • the treatment with these surface treatment agents that improves the dispersibility of the metal-coated particles is not performed, so that the particles tend to agglomerate during the preparation of the coating film.
  • the electroconductive particle formed by coating the particle surface portion with a metal has a merit that the raw material cost is lower than that of the metal particle, a stretchable conductive paste can be produced at a lower cost.
  • the conductive fillers A and B are blended in the elastomer so that the ratio of the conductive filler B to the total conductive filler is 25 to 60% by mass.
  • the ratio of the conductive filler B to the total conductive filler is 25 to 60% by mass.
  • FIG. 1 is an SEM image (magnification 5000 times) of particles which are silver-coated particles of the present invention and are an example of conductive filler A.
  • FIG. 2 is an SEM image showing an example of the conductive filler B of the present invention.
  • FIG. 3 is a schematic diagram for explaining the extension recovery rate.
  • FIG. 4 is a schematic process diagram showing a method of forming electrodes and electrical wiring using the transfer method in the present invention.
  • FIG. 5 is an example of an electrode wiring manufactured using the conductive paste of the present invention.
  • FIG. 6 is a schematic view showing the arrangement of electrode wirings in FIG. 5 of the present invention.
  • the electrically conductive paste in this invention is comprised from the electrically conductive filler which has a metal layer on the surface of a nonelectroconductive core particle, a binder, and an organic solvent.
  • the conductive filler of the present invention is a metal-coated particle made of a material having a specific resistance of the surface metal layer of 1 ⁇ 10 ⁇ 2 ⁇ ⁇ cm or less, which has not been previously subjected to high dispersion treatment with mono- or polyvalent carboxylic acid.
  • the center particle diameter is 0.5 ⁇ m or more and 15 ⁇ m or less, more preferably 0.5 ⁇ m or more and 3 ⁇ m or less, and still more preferably 0.5 ⁇ m or more and 2 ⁇ m or less.
  • Examples of the material having a specific resistance of 1 ⁇ 10 ⁇ 2 ⁇ cm or less include silver, gold, platinum, palladium, copper, nickel, aluminum, zinc, lead, and tin.
  • a conductive filler having a metal layer on the surface of the nonconductive core particles can be used as the conductive filler A.
  • the conductive filler B is made of a material having a specific resistance of the surface metal layer of 1 ⁇ 10 ⁇ 2 ⁇ cm or less, and has an aspect ratio of 5 or more, preferably 4 or more, more preferably, a ratio of major axis to minor axis. 20 or more, more preferably 30 or more, and particles having an average length L of the major axis of 3 ⁇ m or more and 30 ⁇ m or less.
  • the non-conductive particles in the present invention are particles having a specific resistance of 30 ⁇ 10 14 ⁇ ⁇ cm or more.
  • the ratio of the conductive filler B to the total conductive filler is desirably 25 to 60% by mass.
  • the weight ratio is small, the effect of maintaining the conductive network when stretched by the high aspect ratio conductive filler is small, and when the weight ratio is large, the effect of maintaining the conductive network when stretched is large, but the conductive film is formed by the filler arrangement by coating. The strength of is reduced.
  • a surface treatment agent such as a high dispersion treatment
  • the fact that the high dispersion treatment with mono- or polyvalent carboxylic acid or the like has not been performed in advance means that the surface treatment with these surface treatment agents has not been performed. More specifically, the content of these surface treatment agents with respect to the entire paste is 5000 ppm or less, preferably 2000 ppm or less, and more preferably 1200 ppm or less.
  • These surface treatment agents are effective to pre-treat the raw material metal filler in advance, but the effect can also be obtained by adding at the time of paste mixing and kneading. include.
  • Mono- or polyvalent carboxylic acids having 3 to 28 carbon atoms and 0 to 3 double bonds in the molecule include crotonic acid, acrylic acid, methacrylic acid, caprylic acid, pelargonic acid, capric acid, Lauric acid, myristic acid, pentadecylic acid, palmitic acid, palmitoleic acid, margaric acid, stearic acid, oleic acid, vaccenic acid, linoleic acid, (9,12,15) -linolenic acid, (6,9,12) -linolene Acid, dihomo- ⁇ -linolenic acid, eleostearic acid, tuberculostearic acid, arachidic acid (eicosanoic acid), 8,11-eicosadienoic acid, 5,8,11-eicosatrienoic acid, arachidonic acid, behenic acid, Lignoceric acid, nervonic acid, elaidic acid, erucic acid, do
  • Examples thereof include trivalent or higher carboxylic acids such as trimellitic anhydride and pyromellitic anhydride, unsaturated dicarboxylic acids such as fumaric acid, and carboxylic acid diols such as dimethylolbutanoic acid and dimethylolpropionic acid.
  • carboxylic acids such as trimellitic anhydride and pyromellitic anhydride
  • unsaturated dicarboxylic acids such as fumaric acid
  • carboxylic acid diols such as dimethylolbutanoic acid and dimethylolpropionic acid.
  • Examples of the aliphatic amine having 3 to 24 carbon atoms and 0 to 2 double bonds in the molecule include capriylamine, laurylamine, myristylamine, pentadecylamine, palmitic acid. Ruamine, palmitolylamine, margarylylamine, stearylylamine, oleylamine, buxeylamine, linoleylamine, (9,12,15) -linoleylamine, (6,9,12) -linoleylamine, dihomo- ⁇ -linoleylamine, eleostearylamine, tuberculosearylamine, arachidiylamine (eicosylamine), 8,11-eicosadienylamine, 5,8,11-eicosatrienylamine, arachidonylamine, Behenylamine, lignosericylamine, nerbonylua Emissions, Elias isoxazolidinyl amines,
  • the conductive paste may contain a surface treatment agent that is not intended for high dispersion.
  • the amount of the surface treatment agent not intended for high dispersion is preferably 0.1 to 3.0% by mass, more preferably 1.0 to 2.0% by mass with respect to the conductive filler.
  • the surface treatment agent not intended for high dispersion means an antioxidant, a reducing agent, an adhesion promoter and the like.
  • the additive in the present invention is a compound having a molecular structure exhibiting low surface free energy and having a functional group at least at one end.
  • the structure exhibiting low surface free energy include polydimethylsiloxane and fluorine-containing groups.
  • the functional group include an amino group, a carboxyl group, and a glycidyl group, and a carboxyl group is more preferable.
  • the additive in the present invention is preferably a liquid which is liquid at room temperature.
  • the surface free energy of the additive in the present invention is less than 30 mJ / m 2, further preferably 26 mJ / m 2 or less, further preferably 24 mJ / m 2 or less, 20 mJ / m @ 2 or less More preferably it is.
  • the amount of the additive is preferably 0.1 to 3.0% by mass, more preferably 0.12 to 2.0% by mass with respect to the conductive filler.
  • an additive preferably used in the present invention there can be exemplified dimethylsiloxane having a molecular weight in the range of 300 or more and 8000 or less and carboxy-modified at one end.
  • the additive preferably used in the present invention include fluoromonocarboxylic acids having a molecular weight in the range of 100 to 1,000.
  • fluorine-based additive partial fluorine or fluoromonocarboxylic acid which is not completely fluorine is preferable.
  • non-conductive particles having an average particle size of 0.3 ⁇ m or more and 10 ⁇ m or less may be included.
  • the non-conductive particles in the present invention are mainly metal oxide particles, such as silicon oxide, titanium oxide, magnesium oxide, calcium oxide, aluminum oxide, iron oxide, metal sulfate, metal carbonate, metal A titanate or the like can be used.
  • metal oxide particles such as silicon oxide, titanium oxide, magnesium oxide, calcium oxide, aluminum oxide, iron oxide, metal sulfate, metal carbonate, metal A titanate or the like can be used.
  • the binder resin used in the stretchable conductor layer of the present invention preferably has a stretch recovery rate after stretching 20% of 99% or more, more preferably 99.5% or more, and still more 99.85%.
  • the above is preferable.
  • the elongation recovery rate of the binder resin is measured in an environment of 25 ⁇ 3 ° C. by molding the binder resin on a sheet having a thickness of 20 to 200 ⁇ m and a film thickness unevenness of 10% or less. If the stretch recovery rate of the binder resin is less than this range, it becomes difficult to make the stretch recovery rate of the stretchable conductor layer above a predetermined range. Further, if the elongation recovery rate of the binder resin is less than this range, the repeated stretchability and torsion resistance of the conductive paste are lowered.
  • the stretch recovery rate in the present invention means that the initial length is L 0 , when an elastic conductive sheet is suspended as shown in FIG.
  • L 1 the length when stretched by 20% to a predetermined percentage
  • L 2 the length when the stretch load is removed
  • a similar measurement method is stipulated in the JIS L 1096 woven and knitted fabric test method, but it is not the recovery rate after stretching under a constant load, but the recovery rate when stretched to a certain length. Different. In actual use, the load applied to the stretchable conductor layer is often repeatedly stretched to a predetermined length regardless of the load, so that the practical performance cannot be expressed by the stretch recovery rate by the constant load method. Unless otherwise specified, the extension recovery rate is evaluated under an environment of 25 ° C. ⁇ 3 ° C.
  • a crosslinked or non-crosslinked elastomer is used as the binder resin in the present invention.
  • a non-crosslinked elastomer preferably has a modulus of elasticity of 3 to 600 MPa, and a thermoplastic elastomer resin having a glass transition temperature in the range of ⁇ 60 ° C. to 0 ° C. can be preferably used. Examples include rigid rubber and natural rubber. In order to develop the stretchability of the coating film (sheet), rubber, polyurethane resin, and polyester resin are preferable.
  • urethane rubber acrylic rubber, silicone rubber, butadiene rubber, nitrile group-containing rubber such as nitrile rubber and hydrogenated nitrile rubber, isoprene rubber, sulfurized rubber, styrene butadiene rubber, butyl rubber, chlorosulfonated polyethylene rubber, ethylene propylene Examples include rubber and vinylidene fluoride copolymer.
  • nitrile group-containing rubber, chloroprene rubber, chlorosulfonated polyethylene rubber and styrene butadiene rubber are preferable, and nitrile group-containing rubber is particularly preferable.
  • the elastic modulus of the flexible resin is preferably 3 to 600 MPa, more preferably 10 to 500 MPa, still more preferably 15 to 300 MPa, still more preferably 20 to 150 MPa, and particularly preferably 25 to 100 MPa.
  • the urethane resin of the present invention can be obtained by reacting a soft segment made of a polyether, polyester, or polycarbonate polyol with a hard segment made of diisocyanate or the like.
  • a soft segment component polyester polyol is more preferable from the viewpoint of molecular design freedom.
  • polyether polyol in the present invention examples include copolymerization of monomer materials such as polyethylene glycol, polypropylene glycol, polypropylene triol, polypropylene tetraol, polytetramethylene glycol, polytetramethylene triol, and cyclic ether for synthesizing these.
  • monomer materials such as polyethylene glycol, polypropylene glycol, polypropylene triol, polypropylene tetraol, polytetramethylene glycol, polytetramethylene triol, and cyclic ether for synthesizing these.
  • polyalkylene glycols such as copolymers, derivatives obtained by introducing side chains or branched structures, modified products, and mixtures thereof. Of these, polytetramethylene glycol is preferred. The reason is that the mechanical properties are excellent.
  • polyester polyol in the present invention aromatic polyester polyol, aromatic / aliphatic copolymer polyester polyol, aliphatic polyester polyol, and alicyclic polyester polyol can be used.
  • polyester polyol in the present invention either a saturated type or an unsaturated type may be used. Of these, aliphatic polyester polyols are preferred.
  • a commercial item can also be used as said aliphatic polyester polyol.
  • Specific examples of commercially available products include, for example, Polylite ODX-688, ODX-2044, ODX-240 (manufactured by DIC), Kuraray polyol P-2010, P-2050, P-1010 (Kuraray), Teslac 2461, 2455, 2469 (manufactured by Hitachi Chemical).
  • polycaprolactone diol in the present invention examples include polycaprolactone diol compounds obtained by ring-opening addition reaction of lactones such as ⁇ -butyllactone, ⁇ -caprolactone, and ⁇ -valerolactone.
  • Examples of commercially available polycarbonate diol compounds that can be used in the present invention include Kuraray Kuraray Polyol C Series, Asahi Kasei Chemicals Duranol Series, and the like.
  • T5650E DURANOL-T5651 and DURANOL-T5652.
  • diisocyanate compound in the present invention examples include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, p-phenylene diisocyanate, 4,4′-diphenylmethane diisocyanate, m-phenylene diisocyanate, 3,3′-dimethoxy-4.
  • 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, and isophorone diisocyanate are preferable. Moreover, you may use together the said isocyanate combined use and the polyfunctional compound more than trifunctional as needed.
  • the polyurethane resin of the present invention may be copolymerized with a diol compound or the like generally called a chain extender if necessary.
  • diol compound used as a chain extender examples include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,3-propanediol, 2-methyl-1,3-propanediol.
  • triols such as trimethylolpropane and triethanolamine, diamine compounds such as diethylamine and 4,4'-diaminodiphenylmethane, and trimethylolpropane can be used.
  • 1,6-hexanediol is particularly preferable.
  • the glass transition temperature of the polyurethane resin of the present invention is preferably 0 ° C. or lower, more preferably ⁇ 60 ° C. or higher and ⁇ 10 ° C. or lower, and most preferably ⁇ 50 ° C. or higher and ⁇ 20 ° C. or lower.
  • the glass transition temperature exceeds 0 ° C., the elongation of the produced conductive coating film becomes small, and there is a possibility that the resistance increase at the time of elongation becomes worse.
  • the temperature is lower than ⁇ 60 ° C., the produced conductive coating film may cause blocking.
  • the reduced viscosity is from 0.2 dl / g to 3.0 dl / g, preferably from 0.3 dl / g to 2.5 dl / g, more preferably from 0.4 dl / g to 2.0 dl / g. It is. If it is less than 0.2 dl / g, the conductive coating film becomes brittle and there is a risk that the resistance increase at the time of elongation will worsen. Moreover, when it exceeds 3.0 dl / g, there exists a possibility that the solution viscosity of a polyurethane resin composition may become high and handling may become difficult.
  • stannous octylate dibutyltin dilaurate, triethylamine, bismuth metal, or the like may be used as a catalyst.
  • the rubber containing a nitrile group is not particularly limited as long as it is a rubber or elastomer containing a nitrile group, but nitrile rubber and hydrogenated nitrile rubber are preferable.
  • Nitrile rubber is a copolymer of butadiene and acrylonitrile. If the amount of bound acrylonitrile is large, the affinity with metal increases, but the rubber elasticity contributing to stretchability decreases conversely. Therefore, the amount of bound acrylonitrile is preferably 18 to 50% by mass, more preferably 30 to 50% by mass, and more preferably 40 to 50% by mass in 100% by mass of nitrile-containing rubber (for example, acrylonitrile butadiene copolymer rubber). It is particularly preferable that the content is% by mass.
  • the glass transition temperature of such a binder resin is preferably 0 ° C. or lower, more preferably ⁇ 8 ° C. or lower, even more preferably ⁇ 16 ° C. or lower, still more preferably ⁇ 24 ° C. or lower. When the glass transition temperature exceeds this range, the stretch recovery property is hardly exhibited.
  • the glass transition temperature can be determined by differential scanning calorimetry (DSC) according to a conventional method.
  • the organic solvent used in the conductive paste of the present invention preferably has a boiling point of 100 ° C. or higher and lower than 300 ° C., more preferably 150 ° C. or higher and lower than 290 ° C. If the boiling point of the organic solvent is too low, the solvent volatilizes during the paste manufacturing process or use of the paste, and there is a concern that the component ratio of the conductive paste is likely to change. On the other hand, if the boiling point of the organic solvent is too high, when a low-temperature drying step is required (for example, 150 ° C. or less), a large amount of the solvent may remain in the coating film, causing a decrease in the reliability of the coating film. There are concerns.
  • high-boiling solvents examples include cyclohexanone, toluene, isophorone, ⁇ -butyrolactone, benzyl alcohol, Exxon Chemical Solvesso 100, 150, 200, propylene glycol monomethyl ether acetate, terpionol, butyl glycol acetate, diamylbenzene ( Boiling point: 260 to 280 ° C., triamylbenzene (boiling point: 300 to 320 ° C.), n-dodecanol (boiling point: 255 to 29 ° C.), diethylene glycol (boiling point: 245 ° C.), ethylene glycol monoethyl ether acetate (boiling point: 145 ° C), diethylene glycol monoethyl ether acetate (boiling point 217 ° C), diethylene glycol monobutyl ether acetate (boiling point: 247 ° C
  • AF Solvent No. 4 (boiling point: 240 to 265 ° C.), No. 5 (boiling point: 275 to 306 ° C.), No. 6 (boiling point: 296 to 317 ° C.) manufactured by Nippon Oil Corporation No. 7, (boiling point: 259-282 ° C.), and No. 0 solvent H (boiling point: 245-265 ° C.), etc., and two or more of them may be included if necessary.
  • Such an organic solvent is appropriately contained so that the conductive silver paste has a viscosity suitable for printing or the like.
  • the blending ratio of the total conductive filler: binder is preferably 25 to 50% by volume: 50 to 75% by volume, more preferably 30 to 40% by volume: 60 to 70% by volume.
  • the compounding ratio of the organic solvent in the present invention is 15 to 35% by weight, preferably 20 to 30% by weight, based on the elastomer.
  • the conductive paste of the present invention can be obtained by mixing and dispersing with a disperser such as a dissolver, a three-roll mill, a self-revolving mixer, an attritor, a ball mill, and a sand mill.
  • a disperser such as a dissolver, a three-roll mill, a self-revolving mixer, an attritor, a ball mill, and a sand mill.
  • the conductive paste of the present invention includes a thixotropic agent, an antifoaming agent, a flame retardant, a tackifier, a hydrolysis inhibitor, a leveling agent, a plasticizer, an antioxidant, and an ultraviolet ray as long as the content of the invention is not impaired.
  • Addition agents such as an absorbent, a pigment, and a dye can be blended.
  • the amount of the imparting agent in the present invention is preferably 0.1 to 10% by weight, more preferably 0.3 to 5% by weight, based on the total amount of the conductive fillers.
  • the conductive paste thus obtained can be applied or printed on a substrate, and then an organic solvent is evaporated and dried to form a conductive coating film.
  • the range of the film thickness is not particularly limited, but 1 ⁇ m to 1 mm is preferable. When the thickness is 1 ⁇ m or less, coating film defects such as pinholes are likely to occur, which may cause a problem. When it exceeds 1 mm, the organic solvent tends to remain inside the coating film, and the reproducibility of the coating film properties may be inferior.
  • the substrate to which the conductive silver paste is applied is not particularly limited, but a flexible or stretchable substrate is preferable.
  • flexible substrates include paper, cloth, polyethylene terephthalate, polyvinyl chloride, polyethylene, polyimide, and the like.
  • stretchable base material include polyurethane, polydimethylsiloxane (PDMS), nitrile rubber, butadiene rubber, SBS elastomer, SEBS elastomer, and the like. These base materials can be creased and are preferably stretchable in the surface direction. In this respect, a base material made of rubber or elastomer is preferable.
  • the conductive silver paste coating film is peeled off from the base material and the wiring, electrodes, and sheets only with the coating film are formed, and then transfer is performed, it is preferable to select a base material having excellent peelability.
  • a base material having excellent peelability include a silicon sheet and a Teflon (registered trademark) sheet, and the conductive coating film can be easily peeled off.
  • coating an electroconductive silver paste on a base material is not specifically limited, For example, it can carry out by the coating method, the printing method, etc.
  • the printing method include screen printing method, planographic offset printing method, ink jet method, flexographic printing method, gravure printing method, gravure offset printing method, stamping method, dispensing method, squeegee printing and the like.
  • the conductive paste of the present invention can be used by a method of forming a sheet by a coating method, processing the sheet into a predetermined shape by a method such as punching, punching, laser cutting, or cutting and laminating it on a substrate.
  • the step of heating the substrate coated with the conductive silver paste can be performed in the air, in a vacuum atmosphere, in an inert gas atmosphere, in a reducing gas atmosphere, or the like.
  • the heating temperature is in the range of 20 to 200 ° C., and is selected in consideration of the required conductivity and the heat resistance of the substrate.
  • the organic solvent is volatilized, the curing reaction proceeds under heating in some cases, and the conductivity, adhesion, and surface hardness of the conductive film after drying become good. If it is less than 20 degreeC, a solvent may remain in a coating film and electroconductivity may not be acquired. If treated for a long period of time, conductivity is exhibited, but the specific resistance may be significantly inferior.
  • a preferred heating temperature is 70 to 180 ° C.
  • the heat shrink of a coating film becomes small, the conductive network of the silver powder in a coating film cannot fully be formed, and a specific resistance may become high.
  • the elongation rate and repeated stretchability may also deteriorate due to the denseness of the coating film.
  • the temperature exceeds 180 ° C., the base material is limited due to the heat resistance, and when it is treated for a long time, the base material may be thermally deteriorated, and the elongation rate and repeated stretchability may deteriorate.
  • the conductive paste of the present invention is preferably capable of forming a coating film having a specific resistance of less than 1.0 ⁇ 10 ⁇ 3 ( ⁇ ⁇ cm).
  • the specific resistance is 1.0 ⁇ 10 ⁇ 3 ( ⁇ ⁇ cm) or more
  • the extension wiring, extension antenna, etc. used in the fields of FPC, robot, smart wear, healthcare sensor, display, solar cell, RFID, game machine, etc.
  • restrictions such as the coating thickness, wiring length, wiring width, etc. may arise and may not be applicable.
  • the conductive paste of the present invention is capable of forming a coating film having a breaking elongation greater than 35% and capable of forming a coating that does not break by repeated stretching and stretching 50 times or more when an elongation rate of 20% is repeatedly evaluated.
  • the breaking elongation of the coating film is more preferably 60% or more in view of adapting to the human body or robot joints, and more preferably 100% or more from the viewpoint of reliability.
  • repeated stretch evaluation of the coating film is performed at a coating film elongation rate of 20%, it is more preferable that breakage does not occur due to repeated stretching of 100 times or more. In the case where it is formed, it is more preferable that no breakage occurs due to repeated expansion and contraction 1000 times or more.
  • ⁇ Surface energy> As a solid material, a mirror-plated metal plate, a polyethylene terephthalate film, and a fluororesin plate subjected to silver plating were used, and the contact angle between each solid material and the additive was determined and calculated based on the extended Fowkes equation.
  • the contact angle was DM-501 from Kyowa Interface Chemical Co., Ltd., and the surface roughness of the solid material was polished with emery polishing paper so that the center line average roughness was 0.10 ⁇ to 0.20 ⁇ .
  • the droplet was about 1 ⁇ L.
  • the measurement environment was 25 ° C.
  • a polyurethane resin composition was applied onto a polypropylene film (pyrene OT; 50 ⁇ m thickness) manufactured by Toyobo Co., Ltd. using an applicator having a 300 ⁇ m gap and a width of 130 mm (applied surface is 130 mm ⁇ 200 mm).
  • the coated product was fixed on cardboard, dried using a hot air dryer (DH42 manufactured by Yamato Scientific Co., Ltd.) at 120 ° C. for 30 minutes, and then cooled. Then, it peeled from the polypropylene film and obtained the sample for evaluation.
  • DSC differential scanning calorimeter
  • a sample with a sample size of 10 mm x 50 mm is cut out from the sample prepared based on the sample preparation method for measuring mechanical properties, and is clamped and fixed to the sample fixing chuck of a tensile tester (Orientec RTA-100) by 20 mm each, and the distance between chucks The measurement was performed under the conditions of 10 mm, a pulling speed of 20 mm / min, and a temperature of 25 ° C. and 60 RH%, and the elastic modulus and elongation were measured five times and averaged from the SS curve.
  • a tensile tester Orientec RTA-100
  • ⁇ Preparation of conductive film> A conductive paste was applied by an applicator on a stretchable urethane sheet having a thickness of 100 ⁇ m, and dried at 120 ° C. for 20 minutes to produce a sheet having a conductive film having a thickness of about 80 ⁇ m. Specific resistance and repeated stretchability were evaluated together with the urethane sheet on the conductive film formed on the urethane sheet.
  • the average particle diameter of the core particles, the average particle diameter of the silver-coated particles, and the aspect ratio were measured using a scanning electron microscope (model number: S-4500) manufactured by Hitachi High-Technologies Corporation, with software (product name: EMAX). It was determined by measuring 300 core particles at 2000 times.
  • ⁇ Resin production example 2 Synthesis of polyurethane resin composition (B) In a 1 L four-necked flask, 100 parts of ODX-2044 (DIC polyester diol), 33 parts of 1,6-hexanediol (manufactured by Ube Industries) as a chain extender, diethylene glycol monoethyl ether It put into 100 parts of acetate and set to the mantle heater. A stir bar with a stirring seal, a reflux condenser, a temperature detector, and a ball stopper were set in the flask and dissolved by stirring at 50 ° C. for 30 minutes.
  • ODX-2044 DIC polyester diol
  • 1,6-hexanediol manufactured by Ube Industries
  • conductive filler 1 Silver coated powder, general-purpose type (average particle size 2 ⁇ m) manufactured by Mitsubishi Materials Corporation Conductive filler 2: Silver coated powder, general-purpose type (average particle size 1.2 ⁇ m), manufactured by Mitsubishi Materials Corporation
  • Binder resin 1 JSR Corporation very high nitrile type N215SL
  • Binder resin 2 Polyurethane resin composition A obtained in Resin Production Example 1
  • Binder resin 3 Polyurethane resin composition B obtained in Resin Production Example 2
  • Additive 1 Pentadecafluorooctanoic acid manufactured by Tokyo Chemical Industry Co., Ltd.
  • Additive 2 Reactive silicone oil one-end type (average one-terminal carboxyl modification) manufactured by Shin-Etsu Chemical Co., Ltd. (surface free energy: 22 mJ / m 2 )
  • Additive 3 Tokyo Chemical Industry Co., Ltd.
  • Dodecanedioic acid surface free energy: 31 mJ / m 2
  • Solvent 1 Isophorone solvent 2: Diethylene glycol monoethyl ether acetate
  • Example 1 in Table 2 is an example in which a conductive filler 1 and a binder resin 1 were used, and 0.1 wt% of additive 1 was added to the conductive filler to produce a paste.
  • the initial specific resistance is 5.9 ⁇ 10 ⁇ 4 ( ⁇ ⁇ cm)
  • the specific resistance at 100% elongation is 86 ⁇ 10 ⁇ 4 ( ⁇ ⁇ cm)
  • the specific resistance after 1000% expansion and contraction 20% is 5000 ⁇ 10. -4 ( ⁇ ⁇ cm).
  • Example 2 in Table 2 is an example in which the conductive filler 1 and the binder resin 1 were used, and 1% by weight of the additive 1 was added to the conductive filler to produce a paste.
  • the initial specific resistance is 5.4 ⁇ 10 ⁇ 4 ( ⁇ ⁇ cm)
  • the specific resistance at 100% elongation is 52 ⁇ 10 ⁇ 4 ( ⁇ ⁇ cm)
  • the specific resistance after 1000% expansion and contraction 20% is 1300 ⁇ 10 -4 ( ⁇ ⁇ cm), which was very good.
  • Example 3 in Table 2 is an example in which a conductive filler 1 and a binder resin 1 were used and 2% by weight of additive 1 was added to the conductive filler to produce a paste.
  • the initial specific resistance is 6.4 ⁇ 10 ⁇ 4 ( ⁇ ⁇ cm)
  • the specific resistance at 100% elongation is 83 ⁇ 10 ⁇ 4 ( ⁇ ⁇ cm)
  • the specific resistance after 1000% expansion and contraction 20% is 1100 ⁇ 10 -4 ( ⁇ ⁇ cm), which was very good.
  • Example 4 in Table 2 is an example in which the conductive filler 2 and the binder resin 1 were used, and 1% by weight of the additive 1 was added to the conductive filler to produce a paste.
  • the initial specific resistance is 3.5 ⁇ 10 ⁇ 4 ( ⁇ ⁇ cm)
  • the specific resistance at 100% elongation is 30 ⁇ 10 ⁇ 4 ( ⁇ ⁇ cm)
  • the specific resistance after 1000% expansion and contraction 20% is 790 ⁇ 10. -4 ( ⁇ ⁇ cm), which was very good.
  • Example 5 in Table 2 is an example in which the conductive filler 1 and the binder resin 1 were used, and 1% by weight of the additive 2 was added to the conductive filler to produce a paste.
  • the initial specific resistance is 36.6 ⁇ 10 ⁇ 4 ( ⁇ ⁇ cm)
  • the specific resistance at 100% elongation is 93 ⁇ 10 ⁇ 4 ( ⁇ ⁇ cm)
  • the specific resistance after 1000% expansion and contraction 20% is 1600 ⁇ 10 -4 ( ⁇ ⁇ cm), which was very good.
  • Example 6 in Table 2 is an example in which a conductive filler 1 and a binder resin 1 were used and a paste was prepared without adding additives.
  • Initial resistivity is 7.6 ⁇ 10 -4 ( ⁇ ⁇ cm )
  • Example 7 in Table 2 is an example in which a conductive filler 1 and a binder resin 2 were used, and 1% by weight of additive 1 was added to the conductive filler to produce a paste.
  • the initial specific resistance is 5.1 ⁇ 10 ⁇ 4 ( ⁇ ⁇ cm)
  • the specific resistance at 100% elongation is 39 ⁇ 10 ⁇ 4 ( ⁇ ⁇ cm)
  • the specific resistance after 1000% expansion and contraction 20% is 1250 ⁇ 10. It was ⁇ 4 ( ⁇ ⁇ cm), which was very good.
  • Example 8 in Table 2 is an example in which the conductive filler 1 and the binder resin 3 were used, and 1% by weight of the additive 1 was added to the conductive filler to produce a paste.
  • the initial specific resistance is 5.2 ⁇ 10 ⁇ 4 ( ⁇ ⁇ cm)
  • the specific resistance at 100% elongation is 54 ⁇ 10 ⁇ 4 ( ⁇ ⁇ cm)
  • the specific resistance after 1000 times of 20% repeated expansion and contraction is 1000 ⁇ 10 It was ⁇ 4 ( ⁇ ⁇ cm), which was very good.
  • Comparative Example 1 in Table 2 is an example in which conductive paste 1 and binder resin 1 were used, and 5.0 wt% of additive 1 was added to the conductive filler to produce a paste.
  • the initial specific resistance was 7.2 ⁇ 10 ⁇ 4 ( ⁇ ⁇ cm)
  • the specific resistance at 100% elongation was 125 ⁇ 10 ⁇ 4 ( ⁇ ⁇ cm)
  • conduction was lost after 1000 times of 20% repeated expansion and contraction.
  • Comparative Example 2 in Table 2 is an example in which conductive paste 1 and binder resin 1 were used, and 1.0 wt% of additive 3 was added to the conductive filler to produce a paste.
  • the initial specific resistance was 21 ⁇ 10 ⁇ 4 ( ⁇ ⁇ cm), and when 100% stretched, conduction was lost after 20% repeated stretching 1000 times.
  • the conductive film obtained from the conductive paste obtained in Example 1 was used as a stretchable conductor layer, and the elastic insulating polymer layer used was an elastomer sheet “Mobilon” with a hot melt layer manufactured by Nisshinbo Co., Ltd.
  • the sports shirt with electrodes and wiring was obtained by omitting the layers and cutting each sheet into a predetermined shape and laminating and laminating.
  • the obtained sports shirt with electrodes and wiring has a circular electrode with a diameter of 50 mm at the intersection of the left and right posterior axillary lines and the seventh rib, and further, by a striped stretchable conductor composition from the circular electrode to the center of the chest Electrical wiring is formed on the inside. Note that the chest central side of the wiring extending from the left and right electrodes to the center of the back of the neck is a rectangle with a side of 20 mm.
  • a stainless steel hook is attached to the surface side of the pair of electrode parts at the center of the chest, and a stretchable conductor using conductive yarn twisted with a thin metal wire to ensure electrical continuity with the wiring part on the back side.
  • the composition layer and the stainless steel hook were electrically connected.
  • An Apple smartphone incorporating the app “myBeat” dedicated to the heart rate sensor WHS-2.
  • a sports shirt incorporating a heart rate measurement function was produced as described above.
  • the electrocardiogram data while driving a car was acquired by wearing this shirt on a subject.
  • the obtained electrocardiogram data has low noise, high resolution, and quality that can be analyzed from the heartbeat interval change, electrocardiogram waveform, etc., as the electrocardiogram mental state, physical condition, fatigue level, sleepiness, tension level, etc. It was.
  • the same shirt was worn by 10 subjects, and the feeling of wearing was evaluated. None of the subjects complained of discomfort or discomfort.
  • a conductive paste was manufactured according to the composition ratio shown in Table 4.
  • the binder resin is dissolved in half the solvent amount of the predetermined solvent amount, the metal particles are added to the resulting solution, premixed, and then dispersed by a three-roll mill, whereby the conductive paste D11 shown in Table 1 is obtained.
  • the conductive paste D11 shown in Table 1 is obtained.
  • conductive filler A1 Silver coated powder, general-purpose type manufactured by Mitsubishi Materials Corporation (average particle size 2 ⁇ m)
  • Conductive filler A2 Silver coated powder, general-purpose type (average particle size 1.2 ⁇ m) manufactured by Mitsubishi Materials Corporation
  • Conductive filler B YCC techno powder silver coated potassium titanate fiber YTA-1575 manufactured by Yokozawa Metal Industry Co., Ltd.
  • Binder resin 11 Extremely high nitrile type N215SL made by JSR Corporation Elongation recovery rate 99.9% or more
  • Binder resin 12 Polyurethane resin composition (B) Elongation recovery rate 99.9% or more
  • Solvent 1 Isophorone solvent 3: Ethylene glycol monoethyl ether acetate
  • ⁇ Preparation of conductive film> A conductive paste D11 obtained by an applicator was applied on a stretchable urethane sheet having a thickness of 1 mm, and dried at 120 ° C. for 20 minutes to produce a sheet having a conductive film with a thickness of about 80 ⁇ m.
  • the conductive film formed on the urethane sheet was evaluated using a test piece that was slit into a strip shape with a width of 10 mm together with the urethane sheet. The evaluation results are shown in Table 4.
  • Examples 12 to 15 and Comparative Examples 11 to 14> Thereafter, the same operation as in Example 11 was performed according to the composition ratio in Table 4, and conductive pastes D12 to D19 were obtained. The obtained conductive paste was evaluated in the same manner as in Example 11. The results are shown in Table 4. Shown in
  • a clothes-type electronic device for measuring an electrocardiogram having electrical wiring by the transfer method shown in FIG. 4 was manufactured.
  • a carbon paste serving as an electrode surface layer was first screen-printed in a predetermined pattern on a release PET film having a thickness of 125 ⁇ m, and then dried and cured.
  • an insulating paste serving as an insulating cover layer was screen-printed in a predetermined pattern and dried and cured.
  • the electrode surface layer for electrocardiogram measurement is a circle with a diameter of 30 mm.
  • the insulating cover layer has a donut shape with an inner diameter of 30 mm and an outer diameter of 36 mm at the electrode portion, the wiring portion extending from the electrode has a width of 14 mm, and the end of the wiring portion has a diameter of 10 mm to attach a hook for connection with the sensor.
  • the circular electrodes are similarly printed with carbon paste.
  • the thickness of the carbon paste layer is 25 ⁇ m in terms of dry film thickness, and the insulating cover layer is 15 ⁇ m.
  • the electrode part and the wiring part are screen-printed using the conductive paste D11 as the conductor layer, and dried under predetermined conditions. Cured.
  • the electrode part was circular with a diameter of 32 mm, the wiring part was 10 mm wide, and the dry thickness on the insulating cover layer was adjusted to 30 ⁇ m. Furthermore, the base layer is adjusted to a dry thickness of 20 ⁇ m using the same insulating paste as that of the insulating cover layer, screen-printed and dried, and the base layer is printed again under the same conditions, and the drying time is adjusted and the solvent is adjusted. The surface tackiness was left so that 25% by mass remained, and printed electric wiring having transferability was obtained.
  • the transferable printed electrical wiring obtained by the above process is superimposed on a predetermined part of a sports shirt made of knitted fabric turned upside down, pressed at room temperature to temporarily bond the printed electrical wiring to the backside of the sports shirt, and release
  • the PET film was peeled off, the sports shirt was hung on a hanger, and further dried at 115 ° C. for 30 minutes to obtain a sports shirt with electrical wiring.
  • the wiring pattern is shown in FIG. 5, and the layout of the wiring pattern with respect to the shirt is shown in FIG.
  • the resulting sports shirt with electrical wiring has a circular electrode with a diameter of 30 mm at the intersection of the left and right posterior axillary lines and the seventh rib, and further with a stretchable conductor with a width of 10 mm from the circular electrode to the center of the posterior neck. Electrical wiring is formed on the inside.
  • the wiring extending from the left and right electrodes to the center of the rear neck has a gap of 5 mm at the center of the neck, and both are not short-circuited.
  • a stainless steel hook is attached to the surface side of the central end of the rear neck, and a stretchable conductor composition layer using a conductive thread twisted with a thin metal wire to ensure electrical continuity with the wiring part on the back side And a stainless steel hook were electrically connected.
  • a heart rate sensor WHS-2 made by Union Tool through a stainless steel hook, and receive heart rate data with an Apple smartphone incorporating the app “myBeat” dedicated to the heart rate sensor WHS-2.
  • a sports shirt incorporating a heart rate measurement function was produced as described above.
  • the subject was made to wear this shirt, and radio exercises 1 and 2 were continuously performed, and electrocardiographic data during that time was acquired.
  • the obtained electrocardiogram data has low noise, high resolution, and quality that can be analyzed from the heartbeat interval change, electrocardiogram waveform, etc., as the electrocardiogram mental state, physical condition, fatigue level, sleepiness, tension level, etc. It was.
  • the same shirt was worn by 10 subjects, and the feeling of wearing was evaluated. None of the subjects complained of discomfort or discomfort.
  • the conductive paste and the conductive film obtained from the conductive paste according to the present invention can be manufactured at low cost, and have elasticity, so that the conductive film obtained from the paste is repeatedly bent. Excellent in twisting, repetitive twisting, and repetitive stretchability, and less uncomfortable when worn.
  • information on the human body that is, a sensor provided with biological information such as bioelectric potential such as myoelectric potential and cardiac potential, body temperature, pulse, blood pressure, etc.
  • Wearable device for detection, or clothing incorporating an electrical heating device wearable device incorporating a sensor for measuring clothing pressure, clothing for measuring body size using clothing pressure, sole of foot Socks-type devices for measuring pressure, wiring parts such as clothes, tents and bags with flexible solar cell modules integrated in textiles, low-frequency treatment devices with joints, wiring parts such as thermotherapy machines, flexion degree It can be applied to sensing parts.
  • Such wearable devices can be applied not only to the human body but also to animals such as pets and livestock, or mechanical devices having a telescopic part, a bent part, etc. It can also be used as electrical wiring for systems that are connected. It can also be applied as a wiring material for implant devices that are embedded and specified in the body, patchable devices that are used by being attached to the surface of the body or mucous membrane, or edible devices that measure biological information in the digestive tract.
  • Base material (fabric) 2. 2. Insulating underlayer Stretchable conductor composition layer (stretchable conductor layer) 4). Elastic cover layer (insulation cover layer) 5). Stretchable carbon layer (electrode surface layer) 6). Adhesive layer (insulating underlayer) 10. Temporary support (release indicator)

Abstract

[Problem] To realize a flexible electrically conductive coating film that is inexpensive and has high durability, and to provide a wearable device using such coating film as wiring. [Solution] An electrically conductive paste is obtained by blending and kneading at least: an electrically conductive filler which comprises metal-coated particles having a non-surface-treated metal layer on the surface of electrically non-conductive core particles; a binder resin comprising an elastomer; and an organic solvent. By further adding an additive having a surface of free energy of 30 mJ/m2 or less, repetition durability is improved. An electrically conductive coating film obtained from the electrically conductive paste exhibits high durability to repeated expansion and contraction, is suitable for use in wearable applications requiring flexibility, and is inexpensive.

Description

導電性ペーストおよびそれを用いた伸縮性配線、伸縮性配線を有する衣服型電子機器Conductive paste, elastic wiring using the same, and clothes-type electronic device having elastic wiring
 本発明は導電フィラーとバインダー樹脂からなる導電性ペーストに関し、特に詳しくは伸縮特性を有する導電被膜を形成可能な導電性ペーストに関する。また本発明は電子機能ないし電気機能を衣服に組み込んで使用する衣服型のウェアラブル電子機器に使用される導電材料に関し、伸縮性を有する電気配線が形成されており、さらに自然な着用感のある衣服型電子機器に関する。 The present invention relates to a conductive paste composed of a conductive filler and a binder resin, and particularly relates to a conductive paste capable of forming a conductive film having stretch properties. The present invention also relates to a conductive material used in a clothes-type wearable electronic device in which an electronic function or an electric function is incorporated in a garment, and a stretchable electrical wiring is formed, and the garment has a natural feeling of wear. Type electronic equipment.
 昨今、入出力、演算、通信機能を有する電子機器を身体に極近接、ないしは密着した状態で使用することを意図したウェアラブル電子機器が開発されている。ウェアラブル電子機器には腕時計、メガネ、イヤホンのようなアクセサリ型の外形を有する機器、衣服に電子機能を組み込んだテキスタイル集積型機器が知られている。かかるテキスタイル集積型機器の一例が特許文献1に開示されている。 Recently, wearable electronic devices intended to use electronic devices having input / output, arithmetic and communication functions in close proximity to or close to the body have been developed. As wearable electronic devices, devices having an accessory-type outer shape such as a wristwatch, glasses, and earphones, and textile integrated devices in which electronic functions are incorporated into clothes are known. An example of such a textile integrated device is disclosed in Patent Document 1.
 電子機器には、電力供給用や信号伝送用の電気配線が必要である。特にテキスタイル集積型ウェアラブル電子機器には、伸縮する衣服に合わせて電気配線にも伸縮性が求められる。通常、金属線や金属箔からなる電気配線には、本質的に実用的な伸縮性は無いため、金属線や金属箔を波形、あるいは繰り返し馬蹄形に配置して、擬似的に伸縮機能を持たせる手法が用いられている。
 金属線の場合には、金属線を刺繍糸と見なして、衣服に縫い付けることにより配線形成が可能である。しかしながら、かかる手法が大量生産に向いていないことは自明である。
 金属箔のエッチングにより配線を形成する手法は、プリント配線板の製法として一般的である。金属箔を伸縮性のある樹脂シートに貼り合わせ、プリント配線板と同様の手法で波形配線を形成して、擬似的に伸縮性配線とする手法が知られている。(非特許文献1参照)かかる手法は波形配線部の捻れ変形により擬似的に伸縮特性を持たせるものであるが、捻れ変形により金属箔が厚さ方向にも変形するため、衣服の一部として用いると、非常に違和感のある着用感となり好ましいものではなかった。また洗濯時のような過度な変形を受けた場合には金属箔に永久塑性変形が生じ、配線の耐久性にも問題があった。
Electronic equipment requires electrical wiring for power supply and signal transmission. In particular, in textile-integrated wearable electronic devices, the electrical wiring is required to be stretchable in accordance with the stretchable clothes. Usually, electrical wiring made of metal wires or metal foils is not practically elastic, so the metal wires or metal foils are placed in a corrugated or repeated horseshoe shape to give a pseudo expansion / contraction function. The method is used.
In the case of a metal wire, wiring can be formed by regarding the metal wire as an embroidery thread and sewing it onto clothes. However, it is obvious that this method is not suitable for mass production.
A method of forming a wiring by etching a metal foil is a general method for producing a printed wiring board. A technique is known in which a metal foil is bonded to a stretchable resin sheet, and corrugated wiring is formed by a technique similar to that of a printed wiring board to make a pseudo stretchable wiring. (Refer to Non-Patent Document 1) Such a technique is to give a pseudo expansion / contraction characteristic by torsional deformation of the corrugated wiring portion. However, since the metal foil is also deformed in the thickness direction by torsional deformation, When used, it was very uncomfortable and unpleasant. In addition, when subjected to excessive deformation as in washing, permanent plastic deformation occurs in the metal foil, and there is a problem in the durability of the wiring.
 伸縮性の導体配線を実現する手法として、特殊な導電ペーストを用いる方法が提案されている。銀粒子、カーボン粒子、カーボンナノチューブ等の導電性粒子と伸縮性を持つウレタン樹脂などのエラストマー、天然ゴム、合成ゴム、溶剤などを混練してペースト状とし、衣服に直接、ないし伸縮性のフィルム基材などと組み合わせて配線を印刷描画するものである。
 導電粒子と伸縮性バインダー樹脂とからなる導電性組成物は、巨視的には伸縮可能な導体を実現することができる。かかるペーストから得られる導電性組成物は、微視的に見れば、外力を受けた際に樹脂バインダー部が変形し、導電性粒子の電気的連鎖が途切れない範囲で導電性が維持されるものである。巨視的に観察される比抵抗は、金属線や金属箔に比較すると高い値であるが、組成物自体が伸縮性を持つために波形配線などの形状を採る必要が無く、配線幅と厚さには自由度が高いため実用的には金属線に比較して低抵抗な配線を実現可能である。
As a technique for realizing a stretchable conductor wiring, a method using a special conductive paste has been proposed. Conductive particles such as silver particles, carbon particles, carbon nanotubes and elastomers such as stretchable urethane resin, natural rubber, synthetic rubber, solvent, etc. are kneaded to form a paste, directly on clothes or stretchable film base The wiring is printed and drawn in combination with a material.
Macroscopically, a conductive composition composed of conductive particles and a stretchable binder resin can realize a stretchable conductor. When viewed microscopically, the conductive composition obtained from such a paste maintains its conductivity within a range in which the resin binder portion is deformed when external force is applied and the electrical chain of the conductive particles is not interrupted. It is. The specific resistance observed macroscopically is higher than that of metal wires and metal foils, but because the composition itself has elasticity, there is no need to adopt a shape such as corrugated wiring, and the wiring width and thickness. Since there is a high degree of freedom, it is practically possible to realize a low resistance wiring compared to a metal wire.
 特許文献2では、銀粒子とシリコ-ンゴムを組合せ、シリコーンゴム基板上の導電性膜をさらにシリコーンゴムで被覆することにより、伸長時の導電率低下を抑制する技術が開示されている。特許文献3には銀粒子とポリウレタンエマルジョンの組合せが開示されており、高導電率でかつ高伸長率の導電膜が得られるとされている。さらにカーボンナノチューブや銀フィラーなど、高アスペクト比の導電性粒子を組み合わせて特性改善を試みた例も多々提案されている。 Patent Document 2 discloses a technique for suppressing a decrease in conductivity at the time of elongation by combining silver particles and silicone rubber and further coating a conductive film on a silicone rubber substrate with silicone rubber. Patent Document 3 discloses a combination of silver particles and a polyurethane emulsion, and it is said that a conductive film having high conductivity and high elongation can be obtained. Further, many examples have been proposed in which characteristics are improved by combining high aspect ratio conductive particles such as carbon nanotubes and silver fillers.
 特許文献4では、印刷法を用いて電気配線を衣服に直接的に形成する技術が開示されている。 Patent Document 4 discloses a technique for directly forming electrical wiring on clothes using a printing method.
特開平2-234901号公報JP-A-2-234901 特開2007-173226号公報JP 2007-173226 A 特開2012-54192号公報JP 2012-54192 A 特許第3723565号公報Japanese Patent No. 3723565
導電性粒子としては銀などの貴金属が多用されているが、これらの貴金属は高価であり、これらを用いて作製するペースト、導電性被膜のケミカルコストの殆どを占める。一方で、フィラーの低コスト化を目的として、非導電性粒子ないしは、安価な金属の粒子に貴金属を被覆して導電被膜のフィラーとして用いる試みは昔から行われている。
こうした金属被覆粒子は、製造の過程で凝集を防ぐため、表面処理剤による高分散化処理を施されているが、高分散化処理粒子を導電性フィラーとして用いると、フィラー同士の凝集が阻害され、被膜伸長時に導電性ネットワークを維持しにくく、被膜中の導電性粒子の配合比を高くする必要がある。しかしながら被膜中の導電性粒子の配合比を高くすると、バインダー成分比率が低くなり、伸縮時の耐久性が悪化するという問題点があった。
本発明者等は、伸縮性導電性被膜形成するための導電性ペーストにおいて、銀被覆粒子の応用を検討してきた。伸縮導電皮膜用として銀被覆粒子が検討されたことは希である。
Although noble metals such as silver are frequently used as the conductive particles, these noble metals are expensive and occupy most of the chemical cost of pastes and conductive films produced using these noble metals. On the other hand, for the purpose of reducing the cost of fillers, attempts have been made for a long time to use non-conductive particles or inexpensive metal particles as a filler for conductive films by coating noble metals.
These metal-coated particles are subjected to high dispersion treatment with a surface treatment agent in order to prevent agglomeration during the manufacturing process. However, when the highly dispersed particles are used as conductive fillers, aggregation of fillers is inhibited. It is difficult to maintain the conductive network when the coating is elongated, and it is necessary to increase the compounding ratio of the conductive particles in the coating. However, when the blending ratio of the conductive particles in the coating is increased, there is a problem that the binder component ratio is decreased and durability during expansion and contraction is deteriorated.
The inventors have studied the application of silver-coated particles in a conductive paste for forming a stretchable conductive film. Silver coated particles have rarely been investigated for use in stretchable conductive films.
 本発明者は、低コストで高い耐久性を有する、伸縮性導電被膜を得るための導電性ペーストを開発するべく、鋭意研究を進めた結果、表面処理が施されていない銀被覆粒子を用い、さらに特定の添加剤を組み合わせる事により、被膜伸長時に高い導電性が得られることを見出し、以下の発明に到達した。 As a result of intensive research to develop a conductive paste for obtaining a stretchable conductive film having low durability at a low cost, the present inventors have used silver-coated particles that have not been subjected to surface treatment. Furthermore, it discovered that high electroconductivity was acquired at the time of film expansion | extension by combining a specific additive, and reached the following invention.
 すなわち、本発明は以下の構成を持つ。
[1] 非導電性のコア粒子の表面に金属層を有する金属被覆粒子からなる導電フィラー、エラストマーからなるバインダー樹脂、有機溶剤を少なくとも含有し、上記導電フィラーの表面が予め表面処理されていない事を特長とする伸縮可能な配線を形成する用途に用いられる導電性ペースト。
[2] 前記バインダー樹脂がニトリル基含有エラストマーもしくはウレタン樹脂であることを特長とする[1]に記載の導電性ペースト。
[3] 表面自由エネルギーが30mJ/m以下である添加剤を導電フィラーに対して0.1~3.0質量%、含有することを特長とする[1]または[2]に記載の導電性ペースト。
[4] 前記添加剤が、少なくとも片末端に、アミノ基、カルボキシル基、グリシジル基から選択される一種以上の官能基を有するポリジメチルシロキサンであることを特長とする[1]から[3]のいずれかに記載の導電性ペースト。
[5] 前記添加剤の表面自由エネルギーが25mJ/m以下であることを特長とする[1]から[4]のいずれかに記載の導電性ペースト。
[6] 前記添加剤が、少なくとも片末端にカルボキシル基を有するポリジメチルシロキサンであることを特長とする[1]から[5]のいずれかに記載の導電ペースト。
[7] 少なくとも、非導電性のコア粒子の表面に金属層を有する金属被覆粒子からなる導電フィラー、エラストマーからなるバインダー樹脂、有機溶剤を含有し、上記導電フィラーの表面が予め表面処理されていない事を特長とする伸縮可能な導電性被膜。
[8] 上記バインダー樹脂がニトリル基含有エラストマーもしくはウレタン樹脂であることを特長とする[7]に記載の導電性被膜。
[9] 表面自由エネルギーが30mJ/m以下である処理剤を導電フィラーに対して0.1~3.0質量%、含有することを特長とする[7]または[8]に記載の導電性皮膜。
[10] 前記添加剤が、少なくとも片末端に、アミノ基、カルボキシル基、グリシジル基から選択される一種以上の官能基を有するポリジメチルシロキサンであることを特長とする[7]から[9]のいずれかに記載の導電性皮膜。
[11] 前記添加剤の表面自由エネルギーが25mJ/m以下であることを特長とする[7]から[10]のいずれかに記載の導電性皮膜。
[12] 前記添加剤が、少なくとも片末端にカルボキシル基を有するポリジメチルシロキサンであることを特長とする[7]から[11]のいずれかに記載の導電性皮膜。
[13] 前記導電性被膜の、100%伸張時の比抵抗が、非伸張時の比抵抗の20倍以内であることを特長とする[7]から[12]のいずれかに記載の伸縮性を有する導電性被膜。
[14] 前記導電性被膜の、20%繰り返し伸縮1000回後の導電性が維持されることを特長とする[7]から[12]に記載の伸縮性を有する導電性被膜。
[15] 前記[7]から[14]に記載の伸縮性を有する導電性被膜からなる電気配線を有する衣服型電子機器。
[16]  前記金属被覆粒子からなる導電フィラーが、少なくとも導電フィラーA、導電フィラーBの二種類を含有し、前記導電フィラーAは長径と短径の比であるアスペクト比が1.5以下であり、非導電性のコア粒子の表面に金属層を有する金属被覆粒子であり、中心粒子径Dが0.5μm以上15μm以下であり、前記導電フィラーBは、長径と短径の比であるアスペクト比が5以上であり、非導電性のコア粒子表面に金属層を有する金属被覆粒子であり、長径の平均長さLが3μm以上30μm以下であり、導電フィラー合計に対する導電フィラーBの割合が25~60質量%である事を特長とする[1]に記載の導電性ペースト。
[17] 前記バインダー樹脂として用いられるエラストマーが非架橋のエラストマーである事を特長とする[16]に記載の導電性ペースト。
[18] 前記バインダー樹脂がニトリル基含有エラストマーであることを特長とする[16]または[17]に記載の導電性ペースト。
[19] 前記バインダー樹脂がウレタン樹脂であることを特長とする[16]または[17]に記載の導電性ペースト。
[20] 導電フィラーと、バインダー樹脂を少なくとも構成成分とする導電性被膜において、導電フィラーとして少なくとも導電フィラーA、導電フィラーBの二種類を含有し、前記導電フィラーAは長径と短径の比であるアスペクト比が1.5以下であり、非導電性のコア粒子の表面に金属層を有する金属被覆粒子であり、中心粒子径Dが0.5 μm以上15μm以下であり、前記導電フィラーBは、長径と短径の比であるアスペクト比が5以上であり、非導電性のコア粒子表面に金属層を有する金属被覆粒子であり、長径の平均長さLが10μm以上30μm以下であり、導電フィラー合計に対する導電フィラーBの割合が25~60質量%であり、前記バインダー樹脂がエラストマーである事を特長とする伸縮性を有する導電性被膜。
[21] 前記バインダー樹脂がニトリル基含有エラストマーであることを特長とする[20]に記載の導電性被膜。
[22] 前記バインダー樹脂がウレタン樹脂であることを特長とする[20]に記載の導電性被膜。
[23] 前記導電性被膜の、100%伸張時の比抵抗が、非伸張時の比抵抗の10倍以内であることを特長とする[20]から[22]のいずれかに記載の伸縮性を有する導電性被膜。
[24] 前記導電性被膜の、20%繰り返し伸縮1000回後の導電性が維持されることを特長とする[20]から[23]のいずれかに記載の伸縮性を有する導電性被膜。
[25] 前記導電皮膜の、以下の捻り試験の捻りサイクルを100回繰り返した後のシートの比抵抗が、初期比抵抗の3.0倍以内であることを特徴とする[20]から[24]のいずれかに記載の導電性皮膜。
[捻り試験:試料:幅10mm、長さ100mm(試料の長手方向の片端固定、他の片端の回転による捻り)
捻りサイクル:正方向10回転(3600°)捻り、初期状態への戻り、負方向10回転(-3600°)捻り、初期状態への戻り]
[26] 前記[20]から[25]のいずれかに記載の導電性被膜からなる電気配線を有する伸縮性電子部品。
[27] 前記[20]から[25]のいずれかに記載の導電性被膜からなる電気配線を有する衣服型電子機器。
 
That is, the present invention has the following configuration.
[1] At least a conductive filler composed of metal-coated particles having a metal layer on the surface of non-conductive core particles, a binder resin composed of an elastomer, and an organic solvent, and the surface of the conductive filler is not previously surface-treated. Conductive paste used for forming stretchable wiring characterized by
[2] The conductive paste according to [1], wherein the binder resin is a nitrile group-containing elastomer or a urethane resin.
[3] The conductive material according to [1] or [2], which contains 0.1 to 3.0% by mass of an additive having a surface free energy of 30 mJ / m 2 or less based on the conductive filler. Sex paste.
[4] From [1] to [3], wherein the additive is polydimethylsiloxane having at least one functional group selected from an amino group, a carboxyl group, and a glycidyl group at least at one end. The electrically conductive paste in any one.
[5] The conductive paste according to any one of [1] to [4], wherein a surface free energy of the additive is 25 mJ / m 2 or less.
[6] The conductive paste according to any one of [1] to [5], wherein the additive is polydimethylsiloxane having a carboxyl group at least at one end.
[7] At least a conductive filler composed of metal-coated particles having a metal layer on the surface of non-conductive core particles, a binder resin composed of an elastomer, and an organic solvent, and the surface of the conductive filler is not surface-treated in advance. An electrically conductive film that can be stretched.
[8] The conductive film according to [7], wherein the binder resin is a nitrile group-containing elastomer or a urethane resin.
[9] The conductive material according to [7] or [8], which contains 0.1 to 3.0% by mass of a treatment agent having a surface free energy of 30 mJ / m 2 or less based on the conductive filler. Film.
[10] From [7] to [9], wherein the additive is polydimethylsiloxane having at least one functional group selected from an amino group, a carboxyl group, and a glycidyl group at least at one end. The conductive film in any one.
[11] The conductive film according to any one of [7] to [10], wherein a surface free energy of the additive is 25 mJ / m 2 or less.
[12] The conductive film according to any one of [7] to [11], wherein the additive is polydimethylsiloxane having a carboxyl group at least at one end.
[13] The stretchability according to any one of [7] to [12], wherein the conductive film has a specific resistance when 100% stretched within 20 times of a specific resistance when not stretched. A conductive coating having
[14] The conductive film having stretchability according to [7] to [12], wherein the conductivity of the conductive film after 1000 times of 20% repeated stretch is maintained.
[15] A clothes-type electronic device having an electrical wiring made of the conductive film having elasticity described in [7] to [14].
[16] The conductive filler composed of the metal-coated particles contains at least two types of conductive filler A and conductive filler B, and the conductive filler A has an aspect ratio which is a ratio of a major axis to a minor axis of 1.5 or less. The metal-coated particles having a metal layer on the surface of the non-conductive core particles, the center particle diameter D is not less than 0.5 μm and not more than 15 μm, and the conductive filler B has an aspect ratio that is a ratio of the major axis to the minor axis Is a metal-coated particle having a metal layer on the surface of the non-conductive core particle, the average length L of the major axis is 3 μm or more and 30 μm or less, and the ratio of the conductive filler B to the total conductive filler is 25 to 25 The conductive paste according to [1], which is 60% by mass.
[17] The conductive paste according to [16], wherein the elastomer used as the binder resin is a non-crosslinked elastomer.
[18] The conductive paste according to [16] or [17], wherein the binder resin is a nitrile group-containing elastomer.
[19] The conductive paste according to [16] or [17], wherein the binder resin is a urethane resin.
[20] In the conductive film having at least the conductive filler and the binder resin as the constituent components, the conductive filler contains at least two types of conductive filler A and conductive filler B as the conductive filler, and the conductive filler A has a ratio of the major axis to the minor axis. A certain aspect ratio is 1.5 or less, is a metal-coated particle having a metal layer on the surface of a non-conductive core particle, a center particle diameter D is 0.5 μm or more and 15 μm or less, and the conductive filler B is The ratio of the major axis to the minor axis is a metal-coated particle having an aspect ratio of 5 or more and having a metal layer on the surface of the non-conductive core particle, the average length L of the major axis is 10 μm or more and 30 μm or less. A conductive film having stretchability, characterized in that the ratio of the conductive filler B to the total filler is 25 to 60% by mass, and the binder resin is an elastomer.
[21] The conductive film according to [20], wherein the binder resin is a nitrile group-containing elastomer.
[22] The conductive film according to [20], wherein the binder resin is a urethane resin.
[23] The stretchability according to any one of [20] to [22], wherein the conductive film has a specific resistance when 100% stretched within 10 times of a specific resistance when not stretched. A conductive coating having
[24] The conductive film having stretchability according to any one of [20] to [23], wherein the conductivity of the conductive film after 1000 times of 20% repeated stretch is maintained.
[25] The conductive film has a specific resistance of the sheet after repeating the twist cycle of the following twist test 100 times within 3.0 times the initial specific resistance [20] to [24] ] The electroconductive film in any one of.
[Torsion test: sample: width 10 mm, length 100 mm (fixed at one end in the longitudinal direction of the sample, twisted by rotation of the other end)
Twisting cycle: 10 rotations (3600 °) in the positive direction, return to the initial state, 10 rotations (-3600 °) in the negative direction, return to the initial state]
[26] A stretchable electronic component having an electrical wiring comprising the conductive film according to any one of [20] to [25].
[27] A clothes-type electronic device having an electrical wiring made of the conductive film according to any one of [20] to [25].
 本発明ではさらに以下の構成を有することが好ましい。
[28] 非導電性のコア粒子の表面に金属層を有する金属被覆粒子からなる導電フィラー、エラストマーからなるバインダー樹脂、有機溶剤を少なくとも含有し、上記導電フィラーの表面が予め、炭素数が3以上28以下であり分子内の二重結合数が0~3個のモノまたは多価カルボン酸、炭素数が3以上24以下であり分子内の二重結合数が0~2個の脂肪属アミンから選択される少なくとも一種以上の表面処理剤で表面処理されていない事を特長とする伸縮可能な配線を形成する用途に用いられる導電性ペースト。
[29] 炭素数が3以上28以下であり分子内の二重結合数が0~3個のモノまたは多価カルボン酸、炭素数が3以上24以下であり分子内の二重結合数が0~2個の脂肪属アミンから選択される少なくとも一種以上の表面処理剤の含有量が3質量%以下である事を特長とする[1]から[6]のいずれかに記載の導電性ペースト。
[30] 少なくとも、非導電性のコア粒子の表面に金属層を有する金属被覆粒子からなる導電フィラー、エラストマーからなるバインダー樹脂、有機溶剤を含有し、上記導電フィラーの表面が予め、炭素数が3以上28以下であり分子内の二重結合数が0~3個のモノまたは多価カルボン酸、炭素数が3以上24以下であり分子内の二重結合数が0~2個の脂肪属アミンから選択される少なくとも一種以上の表面処理剤で表面処理されていない事を特長とする伸縮可能な導電性被膜。
[31] 炭素数が3以上28以下であり分子内の二重結合数が0~3個のモノまたは多価カルボン酸、炭素数が3以上24以下であり分子内の二重結合数が0~2個の脂肪属アミンから選択される少なくとも一種以上の表面処理剤の含有量が5質量%以下である事を特長とする[7]から[14]のいずれかに記載の導電性ペースト。
[32] 前記[30]または[31]に記載の伸縮性を有する導電性被膜からなる[15]に記載の電気配線を有する衣服型電子機器。
The present invention preferably further has the following configuration.
[28] At least a conductive filler composed of metal-coated particles having a metal layer on the surface of non-conductive core particles, a binder resin composed of an elastomer, and an organic solvent, and the surface of the conductive filler has 3 or more carbon atoms in advance. A mono- or polyvalent carboxylic acid having 28 or less and 0 to 3 double bonds in the molecule, an aliphatic amine having 3 to 24 carbon atoms and 0 to 2 double bonds in the molecule A conductive paste used for forming stretchable wiring, characterized in that it is not surface-treated with at least one selected surface treatment agent.
[29] A mono- or polyvalent carboxylic acid having 3 to 28 carbon atoms and 0 to 3 double bonds in the molecule, and having 3 to 24 carbon atoms and 0 double bonds in the molecule The conductive paste according to any one of [1] to [6], wherein the content of at least one surface treatment agent selected from two aliphatic amines is 3% by mass or less.
[30] At least a conductive filler composed of metal-coated particles having a metal layer on the surface of non-conductive core particles, a binder resin composed of an elastomer, and an organic solvent, and the surface of the conductive filler has 3 carbon atoms in advance. Mono- or polyvalent carboxylic acid having 28 to 28 and the number of double bonds in the molecule is 0 to 3, and aliphatic amine having 3 to 24 carbon atoms and the number of the double bond in the molecule is 0 to 2 A stretchable conductive film characterized by being not surface-treated with at least one surface treatment agent selected from
[31] Mono- or polyvalent carboxylic acid having 3 to 28 carbon atoms and 0 to 3 double bonds in the molecule, and having 3 to 24 carbon atoms and 0 double bonds in the molecule The conductive paste according to any one of [7] to [14], wherein the content of at least one surface treatment agent selected from 2 aliphatic amines is 5% by mass or less.
[32] A clothes-type electronic device having the electrical wiring according to [15], comprising the stretchable conductive film according to [30] or [31].
 本発明の導電性ペーストによれば、表面に予め高分散化処理などの表面処理がなされていない金属被覆粒子とエラストマーを用いることを特徴としている。
 ここに高分散化処理などの表面処理剤として、炭素数が3以上28以下であり、分子内の二重結合数が0~3個のモノまたは多価カルボン酸、およびまたは炭素数が3以上24以下であり、分子内の二重結合数が0~2個の脂肪属アミン、またはこれらの誘導体を例示することができる。これらの表面処理剤によるところの、金属被覆粒子に分散性を向上させる処理が、施されていないことで、塗膜作製時に粒子同士の凝集が起こりやすくなり、低い導電性粒子配合比でも導電性ネットワークが形成されやすくなるので、伸縮時の耐久性が保たれる。
  さらに表面自由エネルギー30mJ/m以下の添加剤を用いる事で、粒子同士の凝集がさらに起こり易くなり、伸縮時の耐久性がより高くなる。
また、粒子表面部を金属で被覆してなる導電性粒子は、金属粒子に比べて原料コストが低いというメリットを有するため、より低コストで伸縮性導導電ペーストを作製することができる。
According to the conductive paste of the present invention, metal-coated particles and an elastomer that are not subjected to surface treatment such as high dispersion treatment on the surface in advance are used.
Here, as a surface treatment agent for high dispersion treatment or the like, a mono- or polyvalent carboxylic acid having 3 to 28 carbon atoms and having 0 to 3 double bonds in the molecule, and / or 3 or more carbon atoms. Examples thereof include aliphatic amines having 24 or less and 0 to 2 double bonds in the molecule, or derivatives thereof. The treatment with these surface treatment agents that improves the dispersibility of the metal-coated particles is not performed, so that the particles tend to agglomerate during the preparation of the coating film. Since it is easy to form a network, durability during expansion and contraction is maintained.
Further, by using an additive having a surface free energy of 30 mJ / m 2 or less, the particles are more easily aggregated, and durability during expansion and contraction is further increased.
Moreover, since the electroconductive particle formed by coating the particle surface portion with a metal has a merit that the raw material cost is lower than that of the metal particle, a stretchable conductive paste can be produced at a lower cost.
本発明の導電性ペーストによれば、導電フィラーAおよびBを、導電フィラー合計に対する導電フィラーBの割合が25~60質量%になるようにエラストマーに配合することを特徴としている。アスペクト比を異にする2種類の導電フィラーを組み合わせることで、導電性ネットワークを形成しやすくなるので、繰り返し伸縮に対する耐久性が向上する。また、粒子表面部を金属で被覆してなる導電性粒子は、金属粒子に比べて原料コストが低いというメリットを有するため、より低コストで伸縮性導導電ペーストを作製することができる。
 
According to the conductive paste of the present invention, the conductive fillers A and B are blended in the elastomer so that the ratio of the conductive filler B to the total conductive filler is 25 to 60% by mass. By combining two kinds of conductive fillers having different aspect ratios, it becomes easy to form a conductive network, and thus durability against repeated expansion and contraction is improved. Moreover, since the electroconductive particle formed by coating the particle surface portion with a metal has a merit that the raw material cost is lower than that of the metal particle, a stretchable conductive paste can be produced at a lower cost.
図1は本発明の銀被覆粒子であり、導電フィラーAの一例である粒子のSEM像(倍率5千倍)である。FIG. 1 is an SEM image (magnification 5000 times) of particles which are silver-coated particles of the present invention and are an example of conductive filler A. 図2は本発明の導電フィラーBの一例を示すSEM画像である。FIG. 2 is an SEM image showing an example of the conductive filler B of the present invention. 図3は伸張回復率を説明するための概略図である。FIG. 3 is a schematic diagram for explaining the extension recovery rate. 図4は本発明において転写法を利用した電極と電気配線の形成法を示す概略工程図である。FIG. 4 is a schematic process diagram showing a method of forming electrodes and electrical wiring using the transfer method in the present invention. 図5は本発明の導電ペーストを用いて製作した電極配線の一例である。FIG. 5 is an example of an electrode wiring manufactured using the conductive paste of the present invention. 図6は本発明の図5に於ける電極配線の配置を示した概略図である。FIG. 6 is a schematic view showing the arrangement of electrode wirings in FIG. 5 of the present invention.
 本発明における導電ペーストは、非導電性のコア粒子の表面に金属層を有する導電フィラーと、バインダー、有機溶剤から構成される。
 本発明の導電フィラーは、予めモノまたは多価カルボン酸などによる高分散化処理が施されておらず、表面金属層の比抵抗が1×10-2Ω・cm以下の物質からなる金属被覆粒子であり、好ましくは中心粒子径が0.5μm以上15μm以下であり、より好ましくは0.5μm以上3μm以下であり、さらに好ましくは0.5μm以上2μm以下の粒子である。比抵抗が1×10-2Ωcm以下の物質としては、銀、金、白金、パラジウム、銅、ニッケル、アルミニウム、亜鉛、鉛、錫などを例示することができる。
The electrically conductive paste in this invention is comprised from the electrically conductive filler which has a metal layer on the surface of a nonelectroconductive core particle, a binder, and an organic solvent.
The conductive filler of the present invention is a metal-coated particle made of a material having a specific resistance of the surface metal layer of 1 × 10 −2 Ω · cm or less, which has not been previously subjected to high dispersion treatment with mono- or polyvalent carboxylic acid. Preferably, the center particle diameter is 0.5 μm or more and 15 μm or less, more preferably 0.5 μm or more and 3 μm or less, and still more preferably 0.5 μm or more and 2 μm or less. Examples of the material having a specific resistance of 1 × 10 −2 Ωcm or less include silver, gold, platinum, palladium, copper, nickel, aluminum, zinc, lead, and tin.
 本発明において、導電フィラーAと導電フィラーBを配合して用いる場合には、前記の導電フィラーAとして、前記非導電性のコア粒子の表面に金属層を有する導電フィラーを用いる事ができる。
 また、導電フィラーBは、表面金属層の比抵抗が1×10-2Ωcm以下の物質からなる、長径と短径の比であるアスペクト比が5以上であり、好ましくは4以上、より好ましくは20以上、さらに好ましくは30以上であり、長径の平均長さLが3μm以上30μm以下の粒子である。
In the present invention, when the conductive filler A and the conductive filler B are mixed and used, a conductive filler having a metal layer on the surface of the nonconductive core particles can be used as the conductive filler A.
The conductive filler B is made of a material having a specific resistance of the surface metal layer of 1 × 10 −2 Ωcm or less, and has an aspect ratio of 5 or more, preferably 4 or more, more preferably, a ratio of major axis to minor axis. 20 or more, more preferably 30 or more, and particles having an average length L of the major axis of 3 μm or more and 30 μm or less.
 本発明における非導電性粒子とは、比抵抗が30×1014Ω・cm以上の粒子である。 The non-conductive particles in the present invention are particles having a specific resistance of 30 × 10 14 Ω · cm or more.
 本発明では、導電フィラー合計に対する導電フィラーBの割合が25~60質量%であることが望ましい。重量比が小さいと、高アスペクト比導電フィラーによる伸長時の導電性ネットワーク維持効果が小さく、重量比大きいと、伸長時の導電性ネットワーク維持効果は大きくなるが、塗工によるフィラー配列により導電性被膜の強度が小さくなる。 In the present invention, the ratio of the conductive filler B to the total conductive filler is desirably 25 to 60% by mass. When the weight ratio is small, the effect of maintaining the conductive network when stretched by the high aspect ratio conductive filler is small, and when the weight ratio is large, the effect of maintaining the conductive network when stretched is large, but the conductive film is formed by the filler arrangement by coating. The strength of is reduced.
 本発明において、高分散化処理などの表面処理剤として、炭素数が3以上28以下であり分子内の二重結合数が0~3個のモノまたは多価カルボン酸、炭素数が3以上24以下であり分子内の二重結合数が0~2個の脂肪属アミン、またはこれらの誘導体を例示することができる。本発明において、予めモノまたは多価カルボン酸などによる高分散化処理が施されていないとは、これらの表面処理剤による表面処理が行われていないことを意味する。
 より詳しくは ペースト全体に対するこれら表面処理剤の含有量が5000ppm以下であり、2000ppm以下である事が好ましく、さらに1200ppm以下である事が好ましい。
 これらの表面処理剤は、原料の金属フィラーにあらかじめ処理することが効果的であるが、ペースト混合、混練時に添加することでも、効果を得ることができるため、所謂後添加も表面書の範疇に含める。 
In the present invention, as a surface treatment agent such as a high dispersion treatment, a mono- or polyvalent carboxylic acid having 3 to 28 carbon atoms and 0 to 3 double bonds in the molecule, having 3 to 24 carbon atoms. Examples thereof include aliphatic amines having 0 to 2 double bonds in the molecule and derivatives thereof. In the present invention, the fact that the high dispersion treatment with mono- or polyvalent carboxylic acid or the like has not been performed in advance means that the surface treatment with these surface treatment agents has not been performed.
More specifically, the content of these surface treatment agents with respect to the entire paste is 5000 ppm or less, preferably 2000 ppm or less, and more preferably 1200 ppm or less.
These surface treatment agents are effective to pre-treat the raw material metal filler in advance, but the effect can also be obtained by adding at the time of paste mixing and kneading. include.
 炭素数が3以上28以下であり、分子内の二重結合数が0~3個のモノまたは多価カルボン酸としては、クロトン酸、アクリル酸、メタクリル酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、パルミトレイン酸、マルガリン酸、ステアリン酸、オレイン酸、バクセン酸、リノール酸、(9,12,15)-リノレン酸、(6,9,12)-リノレン酸、ジホモ-γ-リノレン酸、エレオステアリン酸、ツベルクロステアリン酸、アラキジン酸(エイコサン酸)、8,11-エイコサジエン酸、5,8,11-エイコサトリエン酸、アラキドン酸、ベヘン酸、リグノセリン酸、ネルボン酸、エライジン酸、エルカ酸、ドコサヘキサエン酸、エイコサペンタエン酸、ステアリドン酸、テレフタル酸、イソフタル酸、オルソフタル酸、等の芳香族ジカルボン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、ドデカンジカルボン酸、アゼライン酸等のジカルボン酸、マレイン酸、ダイマー酸等の炭素数12~28の二塩基酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、4-メチルヘキサヒドロ無水フタル酸、3-メチルヘキサヒドロ無水フタル酸、2-メチルヘキサヒドロ無水フタル酸、ジカルボキシ水素添加ビスフェノールA、ジカルボキシ水素添加ビスフェノールS、ダイマー酸、水素添加ダイマー酸、水素添加ナフタレンジカルボン酸、トリシクロデカンジカルボン酸等の脂環族ジカルボン酸、ヒドロキシ安息香酸、乳酸等のヒドロキシカルボン酸を挙げることができる。また無水トリメリット酸、無水ピロメリット酸等の三価以上のカルボン酸、フマール酸等の不飽和ジカルボン酸、ジメチロールブタン酸、ジメチロールプロピオン酸等のカルボン酸ジオールを例示できる。 Mono- or polyvalent carboxylic acids having 3 to 28 carbon atoms and 0 to 3 double bonds in the molecule include crotonic acid, acrylic acid, methacrylic acid, caprylic acid, pelargonic acid, capric acid, Lauric acid, myristic acid, pentadecylic acid, palmitic acid, palmitoleic acid, margaric acid, stearic acid, oleic acid, vaccenic acid, linoleic acid, (9,12,15) -linolenic acid, (6,9,12) -linolene Acid, dihomo-γ-linolenic acid, eleostearic acid, tuberculostearic acid, arachidic acid (eicosanoic acid), 8,11-eicosadienoic acid, 5,8,11-eicosatrienoic acid, arachidonic acid, behenic acid, Lignoceric acid, nervonic acid, elaidic acid, erucic acid, docosahexaenoic acid, eicosapentaenoic acid, stearidonic acid, Aromatic dicarboxylic acids such as rephthalic acid, isophthalic acid, orthophthalic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, dodecanedicarboxylic acid, azelaic acid and other dicarboxylic acids, maleic acid, dimer acid Dibasic acids having 12 to 28 carbon atoms such as 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 4-methylhexahydrophthalic anhydride, 3-methylhexahydro Alicyclic rings such as phthalic anhydride, 2-methylhexahydrophthalic anhydride, dicarboxy hydrogenated bisphenol A, dicarboxy hydrogenated bisphenol S, dimer acid, hydrogenated dimer acid, hydrogenated naphthalenedicarboxylic acid, tricyclodecane dicarboxylic acid Group dicarboxylic acid, hydroxybenzoic acid, Mention may be made of hydroxycarboxylic acids such as lactic acid. Examples thereof include trivalent or higher carboxylic acids such as trimellitic anhydride and pyromellitic anhydride, unsaturated dicarboxylic acids such as fumaric acid, and carboxylic acid diols such as dimethylolbutanoic acid and dimethylolpropionic acid.
 本発明における炭素数が3以上24以下であり、分子内の二重結合数が0~2個の脂肪属アミンとしては、カプリイルアミン、ラウリイルアミン、ミリスチイルアミン、ペンタデシルアミン、パルミチイルアミン、パルミトレイルアミン、マルガリイルアミン、ステアリイルアミン、オレイルアミン、バクセイルアミン、リノーリイルアミン、(9,12,15)-リノレイルアミン、(6,9,12)-リノレイルアミン、ジホモ-γ-リノレイルアミン、エレオステアリイルアミン、ツベルクロステアリイルアミン、アラキジイルアミン(エイコサイルアミン)、8,11-エイコサジエニイルアミン、5,8,11-エイコサトリエニイルアミン、アラキドニイルアミン、ベヘニイルアミン、リグノセリイルアミン、ネルボニイルアミン、エライジニルアミン、エルキイルアミン、ドコサヘキサエニイルアミン、エイコサペンタエニイルアミン、ステアリドニイルアミン等を例示できる。 Examples of the aliphatic amine having 3 to 24 carbon atoms and 0 to 2 double bonds in the molecule include capriylamine, laurylamine, myristylamine, pentadecylamine, palmitic acid. Ruamine, palmitolylamine, margarylylamine, stearylylamine, oleylamine, buxeylamine, linoleylamine, (9,12,15) -linoleylamine, (6,9,12) -linoleylamine, dihomo- γ-linoleylamine, eleostearylamine, tuberculosearylamine, arachidiylamine (eicosylamine), 8,11-eicosadienylamine, 5,8,11-eicosatrienylamine, arachidonylamine, Behenylamine, lignosericylamine, nerbonylua Emissions, Elias isoxazolidinyl amines, exemplified Erukiiruamin, docosahexaenoyl anycast propylamine, eicosapentaenoic anycast propylamine, the steering Lido Niiru amine.
 本発明では、導電ペーストに、高分散化を目的としない表面処理剤を含んでも良い。高分散化を目的としない表面処理剤の量は導電フィラーに対し、0.1~3.0質量%であることが望ましく、より望ましくは1.0~2.0質量%である。高分散化を目的としない表面処理剤とは、酸化防止剤、還元剤、接着性促進剤などをいう。 In the present invention, the conductive paste may contain a surface treatment agent that is not intended for high dispersion. The amount of the surface treatment agent not intended for high dispersion is preferably 0.1 to 3.0% by mass, more preferably 1.0 to 2.0% by mass with respect to the conductive filler. The surface treatment agent not intended for high dispersion means an antioxidant, a reducing agent, an adhesion promoter and the like.
 本発明における添加剤とは、低表面自由エネルギーを示す分子構造を持つ化合物であり、かつ、少なくとも片末端に官能基を有する化合物である。
 低表面自由エネルギーを示す構造としてはポリジメチルシロキサン、含フッ素基などが挙げられる。また、官能基としては、アミノ基やカルボキシル基、グリシジル基などが挙げられるが、より好ましくはカルボキシル基である。
The additive in the present invention is a compound having a molecular structure exhibiting low surface free energy and having a functional group at least at one end.
Examples of the structure exhibiting low surface free energy include polydimethylsiloxane and fluorine-containing groups. In addition, examples of the functional group include an amino group, a carboxyl group, and a glycidyl group, and a carboxyl group is more preferable.
 本発明における添加剤は室温にて液体である異が好ましい。
 本発明における添加剤の表面自由エネルギーは30mJ/m以下であることが好ましく、26mJ/m以下であることがさらに好ましく、24mJ/m以下であることがさらに好ましく、20mJ/m2以下であることがさらに好ましい。
 また添加剤の配合量は導電フィラーに対して0.1~3.0質量%であることが好ましく、0.12~2.0質量%であることがさらに好ましい。
The additive in the present invention is preferably a liquid which is liquid at room temperature.
Preferably the surface free energy of the additive in the present invention is less than 30 mJ / m 2, further preferably 26 mJ / m 2 or less, further preferably 24 mJ / m 2 or less, 20 mJ / m @ 2 or less More preferably it is.
The amount of the additive is preferably 0.1 to 3.0% by mass, more preferably 0.12 to 2.0% by mass with respect to the conductive filler.
 本発明で好ましく用いられる添加剤として、分子量が300以上8000以下の範囲の片末端をカルボキシ変性したジメチルシロキサンを例示することができる。
 本発明で好ましく用いられる添加剤として分子量が100以上1000以下の範囲のフルオロモノカルボン酸を例示することができる。またフッ素系の添加剤としては完全フッ素かされていない部分フッ素かフルオロモノカルボン酸が好ましい。
As an additive preferably used in the present invention, there can be exemplified dimethylsiloxane having a molecular weight in the range of 300 or more and 8000 or less and carboxy-modified at one end.
Examples of the additive preferably used in the present invention include fluoromonocarboxylic acids having a molecular weight in the range of 100 to 1,000. As the fluorine-based additive, partial fluorine or fluoromonocarboxylic acid which is not completely fluorine is preferable.
 本発明では平均粒子径が0.3μm以上10μm以下の非導電性粒子を含んでも良い。本発明における非導電性粒子としては主には金属酸化物の粒子であり、酸化ケイ素、酸化チタン、酸化マグネシウム、酸化カルシウム、酸化アルミニウム、酸化鉄、金属の硫酸塩、金属の炭酸塩、金属のチタン酸塩等を用いることができる。本発明ではかかる非導電性粒子の中で、硫酸バリウム粒子を用いることが好ましい。 In the present invention, non-conductive particles having an average particle size of 0.3 μm or more and 10 μm or less may be included. The non-conductive particles in the present invention are mainly metal oxide particles, such as silicon oxide, titanium oxide, magnesium oxide, calcium oxide, aluminum oxide, iron oxide, metal sulfate, metal carbonate, metal A titanate or the like can be used. In the present invention, it is preferable to use barium sulfate particles among such non-conductive particles.
本発明の伸縮性導体層に用いられるバインダー樹脂は、20%伸張後の伸張回復率が99%以上であることが好ましく、さらに99.5%以上である事が好ましく、なおさらに99.85%以上であることが好ましい。バインダー樹脂の伸張回復率は、バインダー樹脂を厚さ20から200μm、かつ膜厚斑10%以下のシート上に成型し25±3℃の環境下にて測定される。バインダー樹脂の伸張回復率がこの範囲に満たないと、伸縮性導体層の伸張回復率を所定の範囲以上にすることが困難となる。さらにバインダー樹脂の伸張回復率がこの範囲に満たないと、導電ペーストの繰り返し伸縮性や耐捻り性が低下する。 The binder resin used in the stretchable conductor layer of the present invention preferably has a stretch recovery rate after stretching 20% of 99% or more, more preferably 99.5% or more, and still more 99.85%. The above is preferable. The elongation recovery rate of the binder resin is measured in an environment of 25 ± 3 ° C. by molding the binder resin on a sheet having a thickness of 20 to 200 μm and a film thickness unevenness of 10% or less. If the stretch recovery rate of the binder resin is less than this range, it becomes difficult to make the stretch recovery rate of the stretchable conductor layer above a predetermined range. Further, if the elongation recovery rate of the binder resin is less than this range, the repeated stretchability and torsion resistance of the conductive paste are lowered.
本発明における伸張回復率とは、図3に示す如く伸縮性導電シートを懸垂し、荷重を加えて伸張させ、荷重を除去して収縮させる作用を加えた際に、初期長さをL、20%ないし所定%伸張させた際の長さをL、伸張荷重を除去した際の長さをLとした場合に、
(数1)
伸張回復率=((L1-L2)/(L1-L0))×100    [%]
(数2)
残留歪み率=((L2-L0)/L0)×100        [%]
0 初期長さ
3 伸び=L1-L0
4 回復長さ=L1-L2             
5 残留歪み=L2-L0            
と、定義する。類似の測定法がJIS L 1096 織物および編物の生地試験法に定めてられているが、一定荷重負荷による伸張後の回復率では無くでは、一定長さまで伸張させた場合の回復率である点が異なる。実使用において伸縮性導体層に加わる負荷は、荷重とは無関係に、所定の長さまで繰り返し伸張される場合が多いため、一定荷重負荷法による伸張回復率では実用性能を表現することができない。特に断らない限り伸張回復率は25℃±3℃の環境下にて評価される。
The stretch recovery rate in the present invention means that the initial length is L 0 , when an elastic conductive sheet is suspended as shown in FIG. When the length when stretched by 20% to a predetermined percentage is L 1 and the length when the stretch load is removed is L 2 ,
(Equation 1)
Elongation recovery rate = ((L 1 −L 2 ) / (L 1 −L 0 )) × 100 [%]
(Equation 2)
Residual strain rate = ((L 2 −L 0 ) / L 0 ) × 100 [%]
L 0 initial length L 3 elongation = L 1 −L 0
L 4 recovery length = L 1- L 2
L 5 residual strain = L 2 −L 0
And define. A similar measurement method is stipulated in the JIS L 1096 woven and knitted fabric test method, but it is not the recovery rate after stretching under a constant load, but the recovery rate when stretched to a certain length. Different. In actual use, the load applied to the stretchable conductor layer is often repeatedly stretched to a predetermined length regardless of the load, so that the practical performance cannot be expressed by the stretch recovery rate by the constant load method. Unless otherwise specified, the extension recovery rate is evaluated under an environment of 25 ° C. ± 3 ° C.
 本発明におけるバインダー樹脂として、架橋型または非架橋型エラストマーを用いる。本発明では非架橋型エラストマーを用いる事が好ましい。
 非架橋型エラストマーとは、好ましくは弾性率が3~600MPaであり、好ましくはガラス転移温度が-60℃から0℃の範囲内の熱可塑性エラストマー樹脂を用いることができ、熱可塑性の合成樹脂、剛性ゴム、天然ゴムなどが挙げられる。塗膜(シート)の伸縮性を発現させるためには、ゴム、ポリウレタン樹脂、ポリエステル樹脂が好ましい。ゴムとしては、ウレタンゴム、アクリルゴム、シリコーンゴム、ブタジエンゴム、ニトリルゴムや水素化ニトリルゴムなどのニトリル基含有ゴム、イソプレンゴム、硫化ゴム、スチレンブタジエンゴム、ブチルゴム、クロロスルホン化ポリエチレンゴム、エチレンプロピレンゴム、フッ化ビニリデンコポリマーなどが挙げられる。この中でも、ニトリル基含有ゴム、クロロプレンゴム、クロロスルホン化ポリエチレンゴム、スチレンブタジエンゴムが好ましく、ニトリル基含有ゴムが特に好ましい。
A crosslinked or non-crosslinked elastomer is used as the binder resin in the present invention. In the present invention, it is preferable to use a non-crosslinked elastomer.
The non-crosslinked elastomer preferably has a modulus of elasticity of 3 to 600 MPa, and a thermoplastic elastomer resin having a glass transition temperature in the range of −60 ° C. to 0 ° C. can be preferably used. Examples include rigid rubber and natural rubber. In order to develop the stretchability of the coating film (sheet), rubber, polyurethane resin, and polyester resin are preferable. As rubber, urethane rubber, acrylic rubber, silicone rubber, butadiene rubber, nitrile group-containing rubber such as nitrile rubber and hydrogenated nitrile rubber, isoprene rubber, sulfurized rubber, styrene butadiene rubber, butyl rubber, chlorosulfonated polyethylene rubber, ethylene propylene Examples include rubber and vinylidene fluoride copolymer. Among these, nitrile group-containing rubber, chloroprene rubber, chlorosulfonated polyethylene rubber and styrene butadiene rubber are preferable, and nitrile group-containing rubber is particularly preferable.
 柔軟性樹脂の弾性率は、好ましくは3~600MPaであり、より好ましく10~500MPa、さらに好ましくは15~300MPa、さらにより好ましくは20~150MPa、特に好ましくは25~100MPaである。 The elastic modulus of the flexible resin is preferably 3 to 600 MPa, more preferably 10 to 500 MPa, still more preferably 15 to 300 MPa, still more preferably 20 to 150 MPa, and particularly preferably 25 to 100 MPa.
本発明のウレタン樹脂としては、ポリエーテル系、ポリエステル系、またはポリカーボネート系ポリオール等から成るソフトセグメントとジイソシアネート等から成るハードセグメントを反応させることにより得られる。ソフトセグメント成分としては、分子設計の自由度からポリエステルポリオールがより好ましい。 The urethane resin of the present invention can be obtained by reacting a soft segment made of a polyether, polyester, or polycarbonate polyol with a hard segment made of diisocyanate or the like. As the soft segment component, polyester polyol is more preferable from the viewpoint of molecular design freedom.
本発明におけるポリエーテルポリオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリプロピレントリオール、ポリプロピレンテトラオール、ポリテトラメチレングリコール、ポリテトラメチレントリオール、これらを合成するための環状エーテル等のモノマー材料を共重合させて得た共重合体等のポリアルキレングリコール、これらに側鎖を導入したり分岐構造を導入したりした誘導体、変性体、さらにはこれらの混合物等が挙げられる。これらのなかでは、ポリテトラメチレングリコールが好ましい。その理由は、機械的特性が優れるためである。 Examples of the polyether polyol in the present invention include copolymerization of monomer materials such as polyethylene glycol, polypropylene glycol, polypropylene triol, polypropylene tetraol, polytetramethylene glycol, polytetramethylene triol, and cyclic ether for synthesizing these. Examples thereof include polyalkylene glycols such as copolymers, derivatives obtained by introducing side chains or branched structures, modified products, and mixtures thereof. Of these, polytetramethylene glycol is preferred. The reason is that the mechanical properties are excellent.
本発明におけるポリエステルポリオールとしては芳香族計ポリエステルポリオール、芳香族/脂肪族共重合ポリエステルポリオール、脂肪族ポリエステルポリオール、脂環族ポリエステルポリオールを用いることができる。本発明におけるポリエステルポリオールとしては、飽和型、不飽和型、いずれを用いてもかまわない。この中でも脂肪族ポリエステルポリオールが好ましい。 As the polyester polyol in the present invention, aromatic polyester polyol, aromatic / aliphatic copolymer polyester polyol, aliphatic polyester polyol, and alicyclic polyester polyol can be used. As the polyester polyol in the present invention, either a saturated type or an unsaturated type may be used. Of these, aliphatic polyester polyols are preferred.
上記の脂肪族ポリエステルポリオールとしては、市販品を使用することもできる。市販品の具体例としては、例えば、ポリライトODX-688、ODX-2044、ODX-240(DIC社製)、クラレポリオールP-2010、P-2050、P-1010(クラレ)、テスラック2461、2455、2469(日立化成製)等が挙げられる。 A commercial item can also be used as said aliphatic polyester polyol. Specific examples of commercially available products include, for example, Polylite ODX-688, ODX-2044, ODX-240 (manufactured by DIC), Kuraray polyol P-2010, P-2050, P-1010 (Kuraray), Teslac 2461, 2455, 2469 (manufactured by Hitachi Chemical).
本発明におけるポリカプロラクトンジオールとしては、例えば、γ-ブチルラクトン、ε-カプロラクトン、δ-バレロラクトン等のラクトン類を開環付加反応させて得られるポリカプロラクトンジオール化合物等が挙げられる。 Examples of the polycaprolactone diol in the present invention include polycaprolactone diol compounds obtained by ring-opening addition reaction of lactones such as γ-butyllactone, ε-caprolactone, and δ-valerolactone.
本発明に使用できるポリカーボネートジオール化合物の市販品として(株)クラレ製クラレポリオールCシリーズ、旭化成ケミカルズ(株)デュラノールシリーズなどが挙げられる。例えば、クラレポリオールC-1015N、クラレポリオールC-1065N、クラレポリオールC-2015N、クラレポリオールC2065N、クラレポリオールC-1050、クラレポリオールC-1090、クラレポリオールC-2050、クラレポリオールC-2090、DURANOL-T5650E、DURANOL-T5651、DURANOL-T5652などを挙げることができる。 Examples of commercially available polycarbonate diol compounds that can be used in the present invention include Kuraray Kuraray Polyol C Series, Asahi Kasei Chemicals Duranol Series, and the like. For example, Kuraray polyol C-1015N, Kuraray polyol C-1065N, Kuraray polyol C-2015N, Kuraray polyol C2065N, Kuraray polyol C-1050, Kuraray polyol C-1090, Kuraray polyol C-2050, Kuraray polyol C-2090, DURANOL- Examples thereof include T5650E, DURANOL-T5651 and DURANOL-T5652.
 本発明におけるジイソシアネート化合物としては、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、p-フェニレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、m-フェニレンジイソシアネート、3,3’-ジメトキシ-4,4’-ビフェニレンジイソシアネート、2,6-ナフタレンジイソシアネート、3,3’-ジメチル-4,4’-ビフェニレンジイソシアネート、4,4’-ジフェニレンジイソシアネート、4,4’-ジイソシアネートジフェニルエーテル、1,5-ナフタレンジイソシアネート、m-キシレンジイソシアネート等の芳香族ジイソシアナートが、或いは1,6-ヘキサンジイソシアネート、イソホロンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、水素化キシリレンジイソシアネート(オルソ、メタ、パラ)の脂肪族、脂環族ジイソシアナートが挙げられる。これらの中で、4,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、イソホロンジイソシアネートが好ましい。また、必要に応じて上記イソシアネートの併用、三官能以上のポリイソシアネート化合物を併用しても良い。 Examples of the diisocyanate compound in the present invention include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, p-phenylene diisocyanate, 4,4′-diphenylmethane diisocyanate, m-phenylene diisocyanate, 3,3′-dimethoxy-4. , 4′-biphenylene diisocyanate, 2,6-naphthalene diisocyanate, 3,3′-dimethyl-4,4′-biphenylene diisocyanate, 4,4′-diphenylene diisocyanate, 4,4′-diisocyanate diphenyl ether, 1,5- Aromatic diisocyanates such as naphthalene diisocyanate and m-xylene diisocyanate, or 1,6-hexane diisocyanate, isophorone diisocyanate, 4,4′-diphenylmethane diisocyanate Over DOO, aliphatic hydrogenated xylylene diisocyanate (ortho, meta, para), and alicyclic diisocyanates. Of these, 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, and isophorone diisocyanate are preferable. Moreover, you may use together the said isocyanate combined use and the polyfunctional compound more than trifunctional as needed.
 本発明のポリウレタン樹脂には、必要に応じて一般的に鎖延長剤と呼ばれるジオール化合物等を共重合して良い。 The polyurethane resin of the present invention may be copolymerized with a diol compound or the like generally called a chain extender if necessary.
鎖延長剤として用いられるジオール化合物としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、2-ブチル-2-ヘキシル-1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、2-エチル-1,3-ヘキサンジオール、2,5-ジメチル-2,5-ヘキサンジオール、1,8-オクタンジオール、2-メチル-1,8-オクタンジオール及び1,9-ノナンジオール等の脂肪族グリコールが挙げられる。又はトリメチロールプロパンやトリエタノールアミンの様な低分子量トリオール、ジエチルアミンや4,4’-ジアミノジフェニルメタン等のジアミン化合物、或いはトリメチロールプロパンを挙げることが出来る。これらの中でも特に1,6-ヘキサンジオールが好ましい。 Examples of the diol compound used as a chain extender include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,3-propanediol, 2-methyl-1,3-propanediol. 2-methyl-2-propyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 2-butyl-2-hexyl-1,3-propanediol, 1,2- Butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 2-methyl-2,4-pentanediol, 3-methyl-1,5- Pentanediol, 2,2,4-trimethyl-1,3-pentanediol, neope Tyl glycol, 1,6-hexanediol, 2-ethyl-1,3-hexanediol, 2,5-dimethyl-2,5-hexanediol, 1,8-octanediol, 2-methyl-1,8-octane Aliphatic glycols such as diols and 1,9-nonanediol. Alternatively, low molecular weight triols such as trimethylolpropane and triethanolamine, diamine compounds such as diethylamine and 4,4'-diaminodiphenylmethane, and trimethylolpropane can be used. Among these, 1,6-hexanediol is particularly preferable.
本発明のポリウレタン樹脂のガラス転移温度は0℃以下であることが好ましく、さらに好ましくは-60℃以上-10℃以下、最も好ましくは-50℃以上-20℃以下である。ガラス転移温度が0℃を超えると、作製した導電塗膜の伸度が小さくなり、伸長時の抵抗上昇が悪くなる恐れがある。また、-60℃未満の場合、作製した導電塗膜がブロッキングを生じる恐れがある。また、還元粘度は0.2dl/g以上3.0dl/g以下であり、好ましくは0.3dl/g以上2.5dl/g以下、更に好ましくは0.4dl/g以上2.0dl/g以下である。0.2dl/g未満の場合、導電塗膜が脆くなり伸長時の抵抗上昇が悪くなる恐れがある。また3.0dl/gを超える場合、ポリウレタン樹脂組成物の溶液粘度が高くなり、ハンドリングが困難になる恐れがある。 The glass transition temperature of the polyurethane resin of the present invention is preferably 0 ° C. or lower, more preferably −60 ° C. or higher and −10 ° C. or lower, and most preferably −50 ° C. or higher and −20 ° C. or lower. When the glass transition temperature exceeds 0 ° C., the elongation of the produced conductive coating film becomes small, and there is a possibility that the resistance increase at the time of elongation becomes worse. On the other hand, when the temperature is lower than −60 ° C., the produced conductive coating film may cause blocking. The reduced viscosity is from 0.2 dl / g to 3.0 dl / g, preferably from 0.3 dl / g to 2.5 dl / g, more preferably from 0.4 dl / g to 2.0 dl / g. It is. If it is less than 0.2 dl / g, the conductive coating film becomes brittle and there is a risk that the resistance increase at the time of elongation will worsen. Moreover, when it exceeds 3.0 dl / g, there exists a possibility that the solution viscosity of a polyurethane resin composition may become high and handling may become difficult.
ポリウレタン樹脂を製造するときには、触媒としてオクチル酸第一錫、ジブチル錫ジラウリレート、トリエチルアミン、ビスマス金属等を用いてもよい。 When a polyurethane resin is produced, stannous octylate, dibutyltin dilaurate, triethylamine, bismuth metal, or the like may be used as a catalyst.
 ニトリル基を含有するゴムは、ニトリル基を含有するゴムやエラストマーであれば特に限定されないが、ニトリルゴムと水素化ニトリルゴムが好ましい。ニトリルゴムはブタジエンとアクリロニトリルの共重合体であり、結合アクリロニトリル量が多いと金属との親和性が増加するが、伸縮性に寄与するゴム弾性は逆に減少する。従って、結合アクリロニトリル量は、ニトリル含有ゴム(例えばアクリロニトリルブタジエン共重合体ゴム)100質量%中、18~50質量%であることが好ましく、30~50質量%であることがより好ましく、40~50質量%であることが特に好ましい。 The rubber containing a nitrile group is not particularly limited as long as it is a rubber or elastomer containing a nitrile group, but nitrile rubber and hydrogenated nitrile rubber are preferable. Nitrile rubber is a copolymer of butadiene and acrylonitrile. If the amount of bound acrylonitrile is large, the affinity with metal increases, but the rubber elasticity contributing to stretchability decreases conversely. Therefore, the amount of bound acrylonitrile is preferably 18 to 50% by mass, more preferably 30 to 50% by mass, and more preferably 40 to 50% by mass in 100% by mass of nitrile-containing rubber (for example, acrylonitrile butadiene copolymer rubber). It is particularly preferable that the content is% by mass.
かかるバインダー樹脂のガラス転移温度は0℃以下である事が好ましく、-8℃以下である事がさらに好ましく、-16℃以下である事がなお好ましく-24℃以下である事がなおさらに好ましい。ガラス転移温度がこの範囲を上回ると、伸張回復特性が発現しにくくなる。
ガラス転移温度は常法に従い示差走査熱量分析(DSC)により求める事ができる。
The glass transition temperature of such a binder resin is preferably 0 ° C. or lower, more preferably −8 ° C. or lower, even more preferably −16 ° C. or lower, still more preferably −24 ° C. or lower. When the glass transition temperature exceeds this range, the stretch recovery property is hardly exhibited.
The glass transition temperature can be determined by differential scanning calorimetry (DSC) according to a conventional method.
 本発明の導電性ペーストに用いられる有機溶剤は、沸点が100℃以上、300℃未満であることが好ましく、より好ましくは沸点が150℃以上、290℃未満である。有機溶剤の沸点が低すぎると、ペースト製造工程やペースト使用に際に溶剤が揮発し、導電性ペーストを構成する成分比が変化しやすい懸念がある。一方で、有機溶剤の沸点が高すぎると、低温乾燥工程が求められる場合(例えば150℃以下)において、溶剤が塗膜中に多量に残存する可能性があり、塗膜の信頼性低下を引き起こす懸念がある。 The organic solvent used in the conductive paste of the present invention preferably has a boiling point of 100 ° C. or higher and lower than 300 ° C., more preferably 150 ° C. or higher and lower than 290 ° C. If the boiling point of the organic solvent is too low, the solvent volatilizes during the paste manufacturing process or use of the paste, and there is a concern that the component ratio of the conductive paste is likely to change. On the other hand, if the boiling point of the organic solvent is too high, when a low-temperature drying step is required (for example, 150 ° C. or less), a large amount of the solvent may remain in the coating film, causing a decrease in the reliability of the coating film. There are concerns.
 このような高沸点溶剤としては、シクロヘキサノン、トルエン、イソホロン、γ-ブチロラクトン、ベンジルアルコール、エクソン化学製のソルベッソ100,150,200、プロピレングリコールモノメチルエーテルアセテート、ターピオネール、ブチルグリコールアセテート、ジアミルベンゼン(沸点:260~280℃)、トリアミルベンゼン(沸点:300~320℃)、n-ドデカノール(沸点:255~29℃)、ジエチレングリコール(沸点:245℃)、エチレングリコールモノエチルエーテルアセテート(沸点:145℃)、ジエチレングリコールモノエチルエーテルアセテート(沸点217℃)、ジエチレングリコールモノブチルエーテルアセテート(沸点:247℃)、ジエチレングリコールジブチルエーテル(沸点:255℃)、ジエチレングリコールモノアセテート(沸点:250℃)、トリエチレングリコールジアセテート(沸点:300℃)トリエチレングリコール(沸点:276℃)、トリエチレングリコールモノメチルエーテル(沸点:249℃)、トリエチレングリコールモノエチルエーテル(沸点:256℃)、トリエチレングリコールモノブチルエーテル(沸点:271℃)、テトラエチレングリコール(沸点:327℃)、テトラエチレングリコールモノブチルエーテル(沸点:304℃)、トリプロピレングリコール(沸点:267℃)、トリプロピレングリコールモノメチルエーテル(沸点:243℃)、2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレート(沸点:253℃)などが挙げられる。また、石油系炭化水素類としては、新日本石油社製のAFソルベント4号(沸点:240~265℃)、5号(沸点:275~306℃)、6号(沸点:296~317℃)、7号(沸点:259~282℃)、および0号ソルベントH(沸点:245~265℃)なども挙げられ、必要に応じてそれらの2種以上が含まれてもよい。このような有機溶剤は、導電性銀ペーストが印刷などに適した粘度となるように適宜含有される。 Examples of such high-boiling solvents include cyclohexanone, toluene, isophorone, γ-butyrolactone, benzyl alcohol, Exxon Chemical Solvesso 100, 150, 200, propylene glycol monomethyl ether acetate, terpionol, butyl glycol acetate, diamylbenzene ( Boiling point: 260 to 280 ° C., triamylbenzene (boiling point: 300 to 320 ° C.), n-dodecanol (boiling point: 255 to 29 ° C.), diethylene glycol (boiling point: 245 ° C.), ethylene glycol monoethyl ether acetate (boiling point: 145 ° C), diethylene glycol monoethyl ether acetate (boiling point 217 ° C), diethylene glycol monobutyl ether acetate (boiling point: 247 ° C), diethylene glycol dibutyl ether ( Point: 255 ° C.), diethylene glycol monoacetate (boiling point: 250 ° C.), triethylene glycol diacetate (boiling point: 300 ° C.), triethylene glycol (boiling point: 276 ° C.), triethylene glycol monomethyl ether (boiling point: 249 ° C.), tri Ethylene glycol monoethyl ether (boiling point: 256 ° C.), triethylene glycol monobutyl ether (boiling point: 271 ° C.), tetraethylene glycol (boiling point: 327 ° C.), tetraethylene glycol monobutyl ether (boiling point: 304 ° C.), tripropylene glycol ( Boiling point: 267 ° C.), tripropylene glycol monomethyl ether (boiling point: 243 ° C.), 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate (boiling point: 253 ° C.), and the like. As petroleum-based hydrocarbons, AF Solvent No. 4 (boiling point: 240 to 265 ° C.), No. 5 (boiling point: 275 to 306 ° C.), No. 6 (boiling point: 296 to 317 ° C.) manufactured by Nippon Oil Corporation No. 7, (boiling point: 259-282 ° C.), and No. 0 solvent H (boiling point: 245-265 ° C.), etc., and two or more of them may be included if necessary. Such an organic solvent is appropriately contained so that the conductive silver paste has a viscosity suitable for printing or the like.
 本発明の導電ペーストは、導電フィラー合計:バインダーの配合比が25~50体積%:50~75体積%であることが好ましく、より好ましくは30~40体積%:60~70体積%である。 In the conductive paste of the present invention, the blending ratio of the total conductive filler: binder is preferably 25 to 50% by volume: 50 to 75% by volume, more preferably 30 to 40% by volume: 60 to 70% by volume.
本発明における有機溶剤の配合比はエラストマーに対し、15~35重量%であり、好ましくは20~30重量%である。 The compounding ratio of the organic solvent in the present invention is 15 to 35% by weight, preferably 20 to 30% by weight, based on the elastomer.
 本発明の導電性ペーストは、ディゾルバー、三本ロールミル、自公転型混合機、アトライター、ボールミル、サンドミルなどの分散機により混合分散することにより得ることができる。 The conductive paste of the present invention can be obtained by mixing and dispersing with a disperser such as a dissolver, a three-roll mill, a self-revolving mixer, an attritor, a ball mill, and a sand mill.
 本発明の導電性ペーストには、発明の内容を損なわない範囲で、チキソ性付与剤、消泡剤、難燃剤、粘着付与剤、加水分解防止剤、レベリング剤、可塑剤、酸化防止剤、紫外線吸収剤、顔料、染料などの付与剤を配合することができる。 The conductive paste of the present invention includes a thixotropic agent, an antifoaming agent, a flame retardant, a tackifier, a hydrolysis inhibitor, a leveling agent, a plasticizer, an antioxidant, and an ultraviolet ray as long as the content of the invention is not impaired. Addition agents such as an absorbent, a pigment, and a dye can be blended.
本発明における付与剤の量は、導電フィラー合計に対し、0.1~10重量%の割合であることが好ましく、より好ましくは0.3~5重量%の割合である。 The amount of the imparting agent in the present invention is preferably 0.1 to 10% by weight, more preferably 0.3 to 5% by weight, based on the total amount of the conductive fillers.
 このようにして得られた導電性ペーストは基材上に塗布または印刷し、次いで有機溶剤を揮発乾燥させることで導電性塗膜を形成することができる。膜厚の範囲は特に限定されないが、1μm~1mmが好ましい。1μm以下の場合はピンホール等の塗膜欠陥が生じやすくなり、問題になる場合がある。1mmを超える場合は塗膜内部に有機溶剤が残留しやすくなり、塗膜物性の再現性に劣る場合がある。 The conductive paste thus obtained can be applied or printed on a substrate, and then an organic solvent is evaporated and dried to form a conductive coating film. The range of the film thickness is not particularly limited, but 1 μm to 1 mm is preferable. When the thickness is 1 μm or less, coating film defects such as pinholes are likely to occur, which may cause a problem. When it exceeds 1 mm, the organic solvent tends to remain inside the coating film, and the reproducibility of the coating film properties may be inferior.
 導電性銀ペーストが塗布される基材は特に限定されないが、可とう性または伸縮性のある基材が好ましい。可とう性基材の例として、紙、布、ポリエチレンテレフタレート、ポリ塩化ビニル、ポリエチレン、ポリイミドなどが挙げられる。伸縮性の基材としては、ポリウレタン、ポリジメチルシロキサン(PDMS)、ニトリルゴム、ブタジエンゴム、SBSエラストマー、SEBSエラストマーなどが挙げられる。これらの基材は、折り目を付けることが可能で、面方向に伸縮可能であることが好ましい。その点でゴムやエラストマーからなる基材が好ましい。 The substrate to which the conductive silver paste is applied is not particularly limited, but a flexible or stretchable substrate is preferable. Examples of flexible substrates include paper, cloth, polyethylene terephthalate, polyvinyl chloride, polyethylene, polyimide, and the like. Examples of the stretchable base material include polyurethane, polydimethylsiloxane (PDMS), nitrile rubber, butadiene rubber, SBS elastomer, SEBS elastomer, and the like. These base materials can be creased and are preferably stretchable in the surface direction. In this respect, a base material made of rubber or elastomer is preferable.
 導電性銀ペーストの塗膜を基材から剥離し、塗膜のみの配線、電極、シートを形成後、転写などを実施する場合は剥離性に優れる基材を選定することが好ましい。具体的にはシリコンシート、テフロン(登録商標)シートなどが挙げられ、容易に導電塗膜を剥離することができる。 When the conductive silver paste coating film is peeled off from the base material and the wiring, electrodes, and sheets only with the coating film are formed, and then transfer is performed, it is preferable to select a base material having excellent peelability. Specific examples include a silicon sheet and a Teflon (registered trademark) sheet, and the conductive coating film can be easily peeled off.
 導電性銀ペーストを基材上に塗布する工程は、特に限定されないが、例えば、コーティング法、印刷法などによって行うことができる。印刷法としては、スクリーン印刷法、平版オフセット印刷法、インクジェット法、フレキソ印刷法、グラビア印刷法、グラビアオフセット印刷法、スタンピング法、ディスペンス法、スキージ印刷などが挙げられる。
 本発明の導電性ペーストは、コーティング法によりシートに加工した後に、パンチング、打ち抜き、レーザーカッティング、切り抜き等の方法で所定の形状に加工して、基材にラミネートする方法で使用することもできる。
Although the process of apply | coating an electroconductive silver paste on a base material is not specifically limited, For example, it can carry out by the coating method, the printing method, etc. Examples of the printing method include screen printing method, planographic offset printing method, ink jet method, flexographic printing method, gravure printing method, gravure offset printing method, stamping method, dispensing method, squeegee printing and the like.
The conductive paste of the present invention can be used by a method of forming a sheet by a coating method, processing the sheet into a predetermined shape by a method such as punching, punching, laser cutting, or cutting and laminating it on a substrate.
 導電性銀ペーストを塗布された基材を加熱する工程は、大気下、真空雰囲気下、不活性ガス雰囲気下、還元性ガス雰囲気下などで行うことができる。加熱温度は20~200℃の範囲で行い、要求される導電率や基材の耐熱性などを考慮して選択される。有機溶剤が揮散され、場合により加熱下で硬化反応が進行し、乾燥後の導電性膜の導電性や密着性、表面硬度が良好となる。20℃未満では溶剤が塗膜中に残留し、導電性が得られない場合がある。長時間処理すれば導電性を発現するが、比抵抗が大幅に劣る場合がある。好ましい加熱温度は70~180℃である。70℃未満では塗膜の熱収縮が小さくなり、塗膜中の銀粉の導電ネットワークが十分に形成できず、比抵抗が高くなる場合がある。塗膜の緻密性から伸長率、繰返し伸縮性も悪化する場合がある。180℃を超える場合は耐熱性から基材が限定され、長時間処理すると基材の熱劣化が発生し、伸長率、繰返し伸縮性が悪化する場合がある。 The step of heating the substrate coated with the conductive silver paste can be performed in the air, in a vacuum atmosphere, in an inert gas atmosphere, in a reducing gas atmosphere, or the like. The heating temperature is in the range of 20 to 200 ° C., and is selected in consideration of the required conductivity and the heat resistance of the substrate. The organic solvent is volatilized, the curing reaction proceeds under heating in some cases, and the conductivity, adhesion, and surface hardness of the conductive film after drying become good. If it is less than 20 degreeC, a solvent may remain in a coating film and electroconductivity may not be acquired. If treated for a long period of time, conductivity is exhibited, but the specific resistance may be significantly inferior. A preferred heating temperature is 70 to 180 ° C. If it is less than 70 degreeC, the heat shrink of a coating film becomes small, the conductive network of the silver powder in a coating film cannot fully be formed, and a specific resistance may become high. The elongation rate and repeated stretchability may also deteriorate due to the denseness of the coating film. When the temperature exceeds 180 ° C., the base material is limited due to the heat resistance, and when it is treated for a long time, the base material may be thermally deteriorated, and the elongation rate and repeated stretchability may deteriorate.
 本発明の導電性ペーストは、比抵抗が1.0×10-3(Ω・cm)未満である塗膜を形成できることが好ましい。比抵抗が1.0×10-3(Ω・cm)以上になるとFPC、ロボット、スマートウェア、ヘルスケアセンサー、ディスプレイ、太陽電池、RFID、ゲーム機などの分野で用いられる伸縮配線、伸縮アンテナ、伸縮電極を設計する上で塗膜厚、配線長、配線幅などの制約が生じ、適応できない場合がある。 The conductive paste of the present invention is preferably capable of forming a coating film having a specific resistance of less than 1.0 × 10 −3 (Ω · cm). When the specific resistance is 1.0 × 10 −3 (Ω · cm) or more, the extension wiring, extension antenna, etc. used in the fields of FPC, robot, smart wear, healthcare sensor, display, solar cell, RFID, game machine, etc. In designing the stretchable electrode, restrictions such as the coating thickness, wiring length, wiring width, etc. may arise and may not be applicable.
さらに本発明の導電性ペーストは、破断伸度が35%よりも大きく、かつ伸長率20%で繰返し伸縮性評価を行った際に50回以上の繰返し伸縮で破断を発生しない塗膜を形成できることが好ましい。塗膜の破断伸度は人体やロボットの関節などに適応する場合を考えると60%以上であることがより好ましく、さらに信頼性の観点から100%以上であることがさらに好ましい。また、塗膜の伸長率20%で塗膜の繰返し伸縮性評価を行った際に、100回以上の繰返し伸縮で破断を発生しないことがより好ましく、使い捨て用途でなく、長期の信頼性を求められる場合は1000回以上の繰返し伸縮で破断を発生しないことがさらに好ましい。 Furthermore, the conductive paste of the present invention is capable of forming a coating film having a breaking elongation greater than 35% and capable of forming a coating that does not break by repeated stretching and stretching 50 times or more when an elongation rate of 20% is repeatedly evaluated. Is preferred. The breaking elongation of the coating film is more preferably 60% or more in view of adapting to the human body or robot joints, and more preferably 100% or more from the viewpoint of reliability. In addition, when repeated stretch evaluation of the coating film is performed at a coating film elongation rate of 20%, it is more preferable that breakage does not occur due to repeated stretching of 100 times or more. In the case where it is formed, it is more preferable that no breakage occurs due to repeated expansion and contraction 1000 times or more.
 以下、実施例を示し、本発明をより詳細かつ具体的に説明する。なお実施例中の評価結果などは以下の方法にて測定した。実施例中、単に部とあるのは重量部を示す。 Hereinafter, the present invention will be described in more detail and specifically with reference to examples. The evaluation results in the examples were measured by the following methods. In the examples, “parts” means “parts by weight”.
<表面エネルギー>
 固体材料として、銀メッキ処理を行った鏡面金属板、ポリエチレンテレフタレートフィルム、フッ素樹脂板を用い、各固体材料と添加剤との接触角を求め、拡張Fowkes式に基づいて算出した。なお接触角は協和界面化学(株)のDM-501を用い、固体材料の表面粗さは、中心線平均粗さで0.10μ以上0.20μ以下となるようエメリー研磨紙で研磨し、プローブ液滴は約1μLとした。測定環境は25℃とした。
<Surface energy>
As a solid material, a mirror-plated metal plate, a polyethylene terephthalate film, and a fluororesin plate subjected to silver plating were used, and the contact angle between each solid material and the additive was determined and calculated based on the extended Fowkes equation. The contact angle was DM-501 from Kyowa Interface Chemical Co., Ltd., and the surface roughness of the solid material was polished with emery polishing paper so that the center line average roughness was 0.10μ to 0.20μ. The droplet was about 1 μL. The measurement environment was 25 ° C.
<還元粘度、ガラス転移温度、力学物性測定用サンプル作成方法>
東洋紡績株式会社製ポリプロピレンフイルム(パイレンOT;50μm厚)上に300μmギャップ、幅130mmのアプリケーターを用いてポリウレタン樹脂組成物を塗布した(塗布面は130mm×200mm)。上記塗布物を厚紙に固定して熱風乾燥機(ヤマト科学株式会社製DH42)を用いて120℃30分乾燥後、冷却した。その後、ポリプロピレンフイルムから剥離して評価用サンプルを得た。
<Reducing viscosity, glass transition temperature, sample preparation method for mechanical properties>
A polyurethane resin composition was applied onto a polypropylene film (pyrene OT; 50 μm thickness) manufactured by Toyobo Co., Ltd. using an applicator having a 300 μm gap and a width of 130 mm (applied surface is 130 mm × 200 mm). The coated product was fixed on cardboard, dried using a hot air dryer (DH42 manufactured by Yamato Scientific Co., Ltd.) at 120 ° C. for 30 minutes, and then cooled. Then, it peeled from the polypropylene film and obtained the sample for evaluation.
<還元粘度>
前記の還元粘度サンプル作成方法に基づき作成したものを0.1g精秤して25mlのメスフラスコに入れる。フェノール/テトラクロロエタン=6/4(重量比)混合溶剤を20ml程度入れ加熱して樹脂を溶解する。完全に溶解した後、30℃で25mlの線までフェノール/テトラクロロエタン=6/4(重量比)混合溶剤を追加する。均一に混合してウーベローデ粘度管を用いて30℃で測定した。
<Reduced viscosity>
0.1 g of the sample prepared based on the above reduced viscosity sample preparation method is accurately weighed and placed in a 25 ml volumetric flask. About 20 ml of phenol / tetrachloroethane = 6/4 (weight ratio) mixed solvent is added and heated to dissolve the resin. After complete dissolution, a mixed solvent of phenol / tetrachloroethane = 6/4 (weight ratio) is added to a line of 25 ml at 30 ° C. It mixed uniformly and measured at 30 degreeC using the Ubbelohde viscosity tube.
<ガラス転移温度>
試料樹脂5mgをアルミニウム製サンプルパンに入れて密封し、セイコーインスツル(株)製の示差走査熱量分析計(DSC)DSC-7020を用いて、100℃まで、昇温速度20℃/分にて測定し、ガラス転移温度以下のベースラインの延長線と遷移部における最大傾斜を示す接線との交点の温度で求めた。
<Glass transition temperature>
5 mg of the sample resin is put in an aluminum sample pan and sealed, and the differential scanning calorimeter (DSC) DSC-7020 manufactured by Seiko Instruments Inc. is used to increase the temperature to 100 ° C. at a temperature rising rate of 20 ° C./min. Measured and determined at the temperature of the intersection of the baseline extension below the glass transition temperature and the tangent indicating the maximum slope at the transition.
<力学物性>
力学物性測定用サンプル作成方法に基づいて作成したサンプルからサンプルサイズ10mm×50mmのものを切り出し、引張り試験機(オリエンテック製RTA-100)のサンプル固定チャックに上下20mmずつ挟み固定し、チャック間距離10mm、引張り速度20mm/分、温度25℃60RH%の条件で測定し、S-S曲線より、弾性率、伸度を5回測定して平均した。
<Mechanical properties>
A sample with a sample size of 10 mm x 50 mm is cut out from the sample prepared based on the sample preparation method for measuring mechanical properties, and is clamped and fixed to the sample fixing chuck of a tensile tester (Orientec RTA-100) by 20 mm each, and the distance between chucks The measurement was performed under the conditions of 10 mm, a pulling speed of 20 mm / min, and a temperature of 25 ° C. and 60 RH%, and the elastic modulus and elongation were measured five times and averaged from the SS curve.
<ウレタン基濃度>
ウレタン基濃度は以下の式により算出する
ウレタン基濃度(eq/t) = (W ÷ (X÷Y)) ÷ Z × 10
W:ポリウレタン樹脂を構成するイソシアネートの重量
X:イソシアネートの分子量
Y:イソシアネートの1分子当たりのイソシアネート数
Z:ポリウレタン樹脂を構成する原料のトータル重量
<Urethane group concentration>
Urethane group concentration is calculated by the following formula: Urethane group concentration (eq / t) = (W ÷ (X ÷ Y)) ÷ Z × 10 6
W: Weight of isocyanate constituting polyurethane resin X: Molecular weight of isocyanate Y: Number of isocyanates per molecule of isocyanate Z: Total weight of raw materials constituting polyurethane resin
<導電性被膜の作製>
厚さ100μmの伸縮性のウレタンシート上にアプリケーターにて導電性ペーストを塗布し、120℃で20分間乾燥し、膜厚約80μmの導電性被膜を有するシートを作製した。比抵抗および繰り返し伸縮性はウレタンシート上に形成された導電被膜をウレタンシートとともに評価した。
<Preparation of conductive film>
A conductive paste was applied by an applicator on a stretchable urethane sheet having a thickness of 100 μm, and dried at 120 ° C. for 20 minutes to produce a sheet having a conductive film having a thickness of about 80 μm. Specific resistance and repeated stretchability were evaluated together with the urethane sheet on the conductive film formed on the urethane sheet.
<比抵抗の評価>
 自然状態(伸長率0%)の導電塗膜のシート抵抗と膜厚を測定し、比抵抗を算出した。膜厚はシックネスゲージ SMD-565L(TECLOCK社製)を用い、シート抵抗はLoresta-GP MCP-T610(三菱化学アナリテック社製)を用いて試験片4枚について測定し、その平均値を用いた。
 そして自然状態(伸長率0%)と同様にして、下記4.の方法にて伸長し、伸長率100%時の比抵抗を測定した。なお、伸長時の比抵抗は、所定の伸長度に達してから30秒後の値を読み取った。比抵抗は以下の式により算出した。
比抵抗(Ω・cm)=Rs(Ω/□)×t(cm)
ここで、Rsは各条件で測定されたシート抵抗、tは各条件で測定された膜厚を示す。
<Evaluation of specific resistance>
The sheet resistance and film thickness of the conductive coating film in the natural state (elongation rate 0%) were measured, and the specific resistance was calculated. Thickness gauge SMD-565L (manufactured by TECLOCK) was used for the film thickness, and sheet resistance was measured for four test pieces using Loresta-GP MCP-T610 (manufactured by Mitsubishi Chemical Analytech), and the average value was used. .
In the same manner as in the natural state (elongation rate 0%), the following 4. The specific resistance was measured when the elongation rate was 100%. In addition, the specific resistance at the time of extending | stretching read the value 30 seconds after reaching a predetermined expansion | extension degree. The specific resistance was calculated by the following formula.
Specific resistance (Ω · cm) = Rs (Ω / □ ) × t (cm)
Here, Rs represents the sheet resistance measured under each condition, and t represents the film thickness measured under each condition.
<繰返し伸縮性の評価>
 繰返し耐久試験機(レスカ社製、TIQ-100)を用い、試料膜を元の長さの20%伸長した状態及び元の長さに戻した状態とすることを繰り返す伸長率20%での繰返伸縮を1000回繰り返した後の元の長さに戻した状態(伸長率0%)での比抵抗を測定した。なお、伸長速度及び元の長さに戻す速度は、ともに10mm/秒とした。繰り返し伸縮性の指標として、1000回繰り返し伸張後の比抵抗を、初期比抵抗で除した値を用いた。
<Repetitive stretch evaluation>
Using a repeated durability tester (TIQ-100, manufactured by Reska Co., Ltd.), the sample film was repeatedly stretched by 20% of its original length and returned to its original length. The specific resistance was measured in a state where the length was returned to the original length after repeating the expansion and contraction 1000 times (elongation rate 0%). The elongation speed and the speed for returning to the original length were both 10 mm / second. As an index of repeated stretchability, a value obtained by dividing the specific resistance after 1000 times stretching by the initial specific resistance was used.
<コア粒子径およびアスペクト比の評価>
コア粒子の平均粒径、銀被覆粒子の平均粒径およびアスペクト比は、株式会社日立ハイテクノロジーズ製走査型電子顕微鏡(型番:S-4500)を用いて、ソフトウェア(品名:EMAX)により、倍率:2000倍で、300個のコア粒子を測定することで求めた。
<Evaluation of core particle diameter and aspect ratio>
The average particle diameter of the core particles, the average particle diameter of the silver-coated particles, and the aspect ratio were measured using a scanning electron microscope (model number: S-4500) manufactured by Hitachi High-Technologies Corporation, with software (product name: EMAX). It was determined by measuring 300 core particles at 2000 times.
<捻り性の評価>
初期状態の伸縮性導体シートの比抵抗と、捻り試験の捻りサイクルを100回繰り返した伸縮性導体シートの比抵抗とを算出し、以下の式により比抵抗の変化を算出した。比抵抗の変化(倍)=100回捻りサイクルを繰り返した伸縮性導体シートの比抵抗/初期状態の伸縮性導体シートの比抵抗
[捻り試験:
 試料:幅10mm、試験長さ100mm(試料の長手方向の片端を固定し、片端を回転させることにより捻りを加える。)
捻りサイクル:正方向に10回転(3600°)捻り、初期状態に戻し、
        負方向に10回転(-3600°)捻り、 初期状態に戻す]
<Evaluation of torsion>
The specific resistance of the stretchable conductor sheet in the initial state and the specific resistance of the stretchable conductor sheet obtained by repeating the twist cycle of the twist test 100 times were calculated, and the change in specific resistance was calculated by the following formula. Change in specific resistance (times) = specific resistance of stretchable conductor sheet after 100 twist cycles / specific resistance of stretchable conductor sheet in initial state
[Torsion test:
Sample: width 10 mm, test length 100 mm (One end in the longitudinal direction of the sample is fixed and twisted by rotating one end)
Twist cycle: Twist in the positive direction (3600 °), return to the initial state,
Twist in the negative direction (-3600 °) and return to the initial state]
<樹脂製造例1>
ポリウレタン樹脂組成物(A)の合成
1Lの4つ口フラスコにODX-2044(DIC製ポリエステルジオール)100部、P-2010(クラレ製ポリエステルジオール)33部、鎖延長剤として1、6-ヘキサンジオール(宇部興産製)30重量%をジエチレングリコールモノエチルエーテルアセテート125部に入れ、マントルヒーターにセットした。攪拌シールをつけた攪拌棒、還流冷却器、温度検出器、玉栓をフラスコにセットして50℃で30分攪拌して溶解した。デスモジュールI(バイエル社製、イソシアネート)を70部、ビスマス金属系触媒1部を添加した。反応熱による温度上昇が落ち着いたところで90℃に昇温して4時間反応することによりポリウレタン樹脂組成物(A)を得た。得られた樹脂の特性を表1に示した。
<Resin production example 1>
Synthesis of polyurethane resin composition (A) In a 1 L four-necked flask, 100 parts of ODX-2044 (DIC polyester diol), 33 parts P-2010 (Kuraray polyester diol), 1,6-hexanediol as a chain extender 30% by weight (manufactured by Ube Industries) was put in 125 parts of diethylene glycol monoethyl ether acetate and set in a mantle heater. A stir bar with a stirring seal, a reflux condenser, a temperature detector, and a ball stopper were set in the flask and dissolved by stirring at 50 ° C. for 30 minutes. 70 parts of Desmodur I (manufactured by Bayer, isocyanate) and 1 part of a bismuth metal catalyst were added. When the temperature rise due to the reaction heat settled, the temperature was raised to 90 ° C. and reacted for 4 hours to obtain a polyurethane resin composition (A). The properties of the obtained resin are shown in Table 1.
<樹脂製造例2>
ポリウレタン樹脂組成物(B)の合成
1Lの4つ口フラスコにODX-2044(DIC製ポリエステルジオール)100部、鎖延長剤として1、6-ヘキサンジオール(宇部興産製)33部をジエチレングリコールモノエチルエーテルアセテート100部に入れ、マントルヒーターにセットした。攪拌シールをつけた攪拌棒、還流冷却器、温度検出器、玉栓をフラスコにセットして50℃で30分攪拌して溶解した。T-100(東ソー製、イソシアネート)を58部、触媒としてジブチル錫ジラウレート0.1部を添加した。反応熱による温度上昇が落ち着いたところで90℃に昇温して4時間反応することによりポリウレタン樹脂組成物(B)を得た。得られた樹脂の特性を表1に示した。
<Resin production example 2>
Synthesis of polyurethane resin composition (B) In a 1 L four-necked flask, 100 parts of ODX-2044 (DIC polyester diol), 33 parts of 1,6-hexanediol (manufactured by Ube Industries) as a chain extender, diethylene glycol monoethyl ether It put into 100 parts of acetate and set to the mantle heater. A stir bar with a stirring seal, a reflux condenser, a temperature detector, and a ball stopper were set in the flask and dissolved by stirring at 50 ° C. for 30 minutes. 58 parts of T-100 (manufactured by Tosoh, isocyanate) and 0.1 part of dibutyltin dilaurate as a catalyst were added. When the temperature rise due to reaction heat settled, the temperature was raised to 90 ° C. and reacted for 4 hours to obtain a polyurethane resin composition (B). The properties of the obtained resin are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
<導電性ペーストの作製と評価>
 まず、所定の溶剤量の半分量の溶剤にバインダー樹脂を溶解し、得られた溶液に金属系粒子、処理剤、残りの溶剤を添加して予備混合の後、三本ロールミルにて分散することによりペースト化し、表2、表3、に示す実施例1~8、比較例1,2の導電ペーストを得た。得られた導電ペーストの評価結果を表2、表3に示す。
<Production and evaluation of conductive paste>
First, dissolve the binder resin in half the amount of the solvent specified, add the metal particles, the treating agent and the remaining solvent to the resulting solution, and after premixing, disperse in a three-roll mill. The conductive pastes of Examples 1 to 8 and Comparative Examples 1 and 2 shown in Tables 2 and 3 were obtained. The evaluation results of the obtained conductive paste are shown in Tables 2 and 3.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 なお表2、表3において
導電フィラー1:三菱マテリアル株式会社製 銀コート粉 汎用タイプ(平均粒径2μm)
導電フィラー2:三菱マテリアル株式会社製 銀コート粉 汎用タイプ(平均粒径1.2μm)
バインダー樹脂1:JSR株式会社 極高ニトリルタイプ N215SL
バインダー樹脂2:樹脂製造例1にて得られたポリウレタン樹脂組成物A
バインダー樹脂3:樹脂製造例2にて得られたポリウレタン樹脂組成物B
添加剤1:東京化成工業株式会社製 ペンタデカフルオロオクタン酸 (表面自由エネルギー:18mJ/m)
添加剤2:信越化学工業株式会社製 反応性シリコーンオイル片末端型(平均的片末端カルボキシル変性)(表面自由エネルギー:22mJ/m)
添加剤3:東京化成工業株式会社 ドデカン二酸(表面自由エネルギー:31mJ/m)
溶剤1:イソホロン
溶剤2:ジエチレングリコールモノエチルエーテルアセテート
である
In Tables 2 and 3, conductive filler 1: Silver coated powder, general-purpose type (average particle size 2 μm) manufactured by Mitsubishi Materials Corporation
Conductive filler 2: Silver coated powder, general-purpose type (average particle size 1.2μm), manufactured by Mitsubishi Materials Corporation
Binder resin 1: JSR Corporation very high nitrile type N215SL
Binder resin 2: Polyurethane resin composition A obtained in Resin Production Example 1
Binder resin 3: Polyurethane resin composition B obtained in Resin Production Example 2
Additive 1: Pentadecafluorooctanoic acid manufactured by Tokyo Chemical Industry Co., Ltd. (surface free energy: 18 mJ / m 2 )
Additive 2: Reactive silicone oil one-end type (average one-terminal carboxyl modification) manufactured by Shin-Etsu Chemical Co., Ltd. (surface free energy: 22 mJ / m 2 )
Additive 3: Tokyo Chemical Industry Co., Ltd. Dodecanedioic acid (surface free energy: 31 mJ / m 2 )
Solvent 1: Isophorone solvent 2: Diethylene glycol monoethyl ether acetate
 表2の実施例1は導電フィラー1、バインダー樹脂1を用い、導電フィラーに対し、添加剤1を0.1重量%添加してペーストを作製した例である。初期比抵抗は5.9×10-4(Ω・cm)、100%伸長時の比抵抗は86×10-4(Ω・cm)、20%繰り返し伸縮1000回後の比抵抗は5000×10-4(Ω・cm)となり、良好であった。 Example 1 in Table 2 is an example in which a conductive filler 1 and a binder resin 1 were used, and 0.1 wt% of additive 1 was added to the conductive filler to produce a paste. The initial specific resistance is 5.9 × 10 −4 (Ω · cm), the specific resistance at 100% elongation is 86 × 10 −4 (Ω · cm), and the specific resistance after 1000% expansion and contraction 20% is 5000 × 10. -4 (Ω · cm).
 表2の実施例2は導電フィラー1、バインダー樹脂1を用い、導電フィラーに対し、添加剤1を1重量%添加してペーストを作製した例である。初期比抵抗は5.4×10-4(Ω・cm)、100%伸長時の比抵抗は52×10-4(Ω・cm)、20%繰り返し伸縮1000回後の比抵抗は1300×10-4(Ω・cm)となり、極めて良好であった。 Example 2 in Table 2 is an example in which the conductive filler 1 and the binder resin 1 were used, and 1% by weight of the additive 1 was added to the conductive filler to produce a paste. The initial specific resistance is 5.4 × 10 −4 (Ω · cm), the specific resistance at 100% elongation is 52 × 10 −4 (Ω · cm), and the specific resistance after 1000% expansion and contraction 20% is 1300 × 10 -4 (Ω · cm), which was very good.
 表2の実施例3は導電フィラー1、バインダー樹脂1を用い、導電フィラーに対し、添加剤1を2重量%添加してペーストを作製した例である。初期比抵抗は6.4×10-4(Ω・cm)、100%伸長時の比抵抗は83×10-4(Ω・cm)、20%繰り返し伸縮1000回後の比抵抗は1100×10-4(Ω・cm)となり、極めて良好であった。 Example 3 in Table 2 is an example in which a conductive filler 1 and a binder resin 1 were used and 2% by weight of additive 1 was added to the conductive filler to produce a paste. The initial specific resistance is 6.4 × 10 −4 (Ω · cm), the specific resistance at 100% elongation is 83 × 10 −4 (Ω · cm), and the specific resistance after 1000% expansion and contraction 20% is 1100 × 10 -4 (Ω · cm), which was very good.
 表2の実施例4は導電フィラー2、バインダー樹脂1を用い、導電フィラーに対し、添加剤1を1重量%添加してペーストを作製した例である。初期比抵抗は3.5×10-4(Ω・cm)、100%伸長時の比抵抗は30×10-4(Ω・cm)、20%繰り返し伸縮1000回後の比抵抗は790×10-4(Ω・cm)となり、極めて良好であった。 Example 4 in Table 2 is an example in which the conductive filler 2 and the binder resin 1 were used, and 1% by weight of the additive 1 was added to the conductive filler to produce a paste. The initial specific resistance is 3.5 × 10 −4 (Ω · cm), the specific resistance at 100% elongation is 30 × 10 −4 (Ω · cm), and the specific resistance after 1000% expansion and contraction 20% is 790 × 10. -4 (Ω · cm), which was very good.
 表2の実施例5は導電フィラー1、バインダー樹脂1を用い、導電フィラーに対し、添加剤2を1重量%添加してペーストを作製した例である。初期比抵抗は36.6×10-4(Ω・cm)、100%伸長時の比抵抗は93×10-4(Ω・cm)、20%繰り返し伸縮1000回後の比抵抗は1600×10-4(Ω・cm)となり、極めて良好であった。 Example 5 in Table 2 is an example in which the conductive filler 1 and the binder resin 1 were used, and 1% by weight of the additive 2 was added to the conductive filler to produce a paste. The initial specific resistance is 36.6 × 10 −4 (Ω · cm), the specific resistance at 100% elongation is 93 × 10 −4 (Ω · cm), and the specific resistance after 1000% expansion and contraction 20% is 1600 × 10 -4 (Ω · cm), which was very good.
 表2の実施例6は導電フィラー1、バインダー樹脂1を用い、添加剤を添加せずにペーストを作製した例である。初期比抵抗は7.6×10-4(Ω・cm)、100%伸長時の比抵抗は110×10-(Ω・cm)、20%繰り返し伸縮1000回後の比抵抗は6800×10-(Ω・cm)となり、良好であった。 Example 6 in Table 2 is an example in which a conductive filler 1 and a binder resin 1 were used and a paste was prepared without adding additives. Initial resistivity is 7.6 × 10 -4 (Ω · cm ), 100% specific resistance at the time of extension 110 × 10- 4 (Ω · cm ), the specific resistance after 20% repeated stretching 1000 times 6800 × 10 - 4 (Ω · cm) was achieved, good.
 表2の実施例7は導電フィラー1、バインダー樹脂2を用い、導電フィラーに対し、添加剤1を1重量%添加してペーストを作製した例である。初期比抵抗は5.1×10-4(Ω・cm)、100%伸長時の比抵抗は39×10-4(Ω・cm)、20%繰り返し伸縮1000回後の比抵抗は1250×10-4(Ω・cm)となり、極めて良好であった。 Example 7 in Table 2 is an example in which a conductive filler 1 and a binder resin 2 were used, and 1% by weight of additive 1 was added to the conductive filler to produce a paste. The initial specific resistance is 5.1 × 10 −4 (Ω · cm), the specific resistance at 100% elongation is 39 × 10 −4 (Ω · cm), and the specific resistance after 1000% expansion and contraction 20% is 1250 × 10. It was −4 (Ω · cm), which was very good.
 表2の実施例8は導電フィラー1、バインダー樹脂3を用い、導電フィラーに対し、添加剤1を1重量%添加してペーストを作製した例である。初期比抵抗は5.2×10-4(Ω・cm)、100%伸長時の比抵抗は54×10-4(Ω・cm)、20%繰り返し伸縮1000回後の比抵抗は1000×10-4(Ω・cm)となり、極めて良好であった。 Example 8 in Table 2 is an example in which the conductive filler 1 and the binder resin 3 were used, and 1% by weight of the additive 1 was added to the conductive filler to produce a paste. The initial specific resistance is 5.2 × 10 −4 (Ω · cm), the specific resistance at 100% elongation is 54 × 10 −4 (Ω · cm), and the specific resistance after 1000 times of 20% repeated expansion and contraction is 1000 × 10 It was −4 (Ω · cm), which was very good.
 表2の比較例1は、導電フィラー1、バインダー樹脂1を用い、導電フィラーに対し、添加剤1を5.0重量%添加してペーストを作製した例である。初期比抵抗は7.2×10-4(Ω・cm)、100%伸長時の比抵抗は125×10-4(Ω・cm)、20%繰り返し伸縮1000回後には導通がなくなった。 Comparative Example 1 in Table 2 is an example in which conductive paste 1 and binder resin 1 were used, and 5.0 wt% of additive 1 was added to the conductive filler to produce a paste. The initial specific resistance was 7.2 × 10 −4 (Ω · cm), the specific resistance at 100% elongation was 125 × 10 −4 (Ω · cm), and conduction was lost after 1000 times of 20% repeated expansion and contraction.
 表2の比較例2は、導電フィラー1、バインダー樹脂1を用い、導電フィラーに対し、添加剤3を1.0重量%添加してペーストを作製した例である。初期比抵抗は21×10-4(Ω・cm)、100%伸長時、20%繰り返し伸縮1000回後には導通がなくなった。 Comparative Example 2 in Table 2 is an example in which conductive paste 1 and binder resin 1 were used, and 1.0 wt% of additive 3 was added to the conductive filler to produce a paste. The initial specific resistance was 21 × 10 −4 (Ω · cm), and when 100% stretched, conduction was lost after 20% repeated stretching 1000 times.
[応用実施例1]
 実施例1にて得られた導電ペーストから得られる導電皮膜を伸縮性導体層として用い、伸縮性絶縁高分子層には、日清紡株式会社製ホットメルト層付きエラストマーシート「モビロン」を用い、電極表面層は省略して、それぞれシートを所定形状に切り抜いて積層ラミネートする方法により、電極・配線付きのスポーツシャツを得た。
 得られた電極・配線付きのスポーツシャツは、左右の後腋窩線上と第7肋骨との交差点に直径50mmの円形電極があり、さらに円形電極から胸部中央までのストライプ状の伸縮性導体組成物による電気配線が内側に形成されている。なお左右の電極から頸部背面中央に伸びる配線の胸部中央側は一辺が20mmの矩形となっている。
[Application Example 1]
The conductive film obtained from the conductive paste obtained in Example 1 was used as a stretchable conductor layer, and the elastic insulating polymer layer used was an elastomer sheet “Mobilon” with a hot melt layer manufactured by Nisshinbo Co., Ltd. The sports shirt with electrodes and wiring was obtained by omitting the layers and cutting each sheet into a predetermined shape and laminating and laminating.
The obtained sports shirt with electrodes and wiring has a circular electrode with a diameter of 50 mm at the intersection of the left and right posterior axillary lines and the seventh rib, and further, by a striped stretchable conductor composition from the circular electrode to the center of the chest Electrical wiring is formed on the inside. Note that the chest central side of the wiring extending from the left and right electrodes to the center of the back of the neck is a rectangle with a side of 20 mm.
 続いて、胸部中央側の一対の電極部の表面側にステンレススチール製のホックを取り付け、裏側の配線部と電気的導通を確保するために金属細線を撚り込んだ導電糸を用いて伸縮性導体組成物層とステンレススチール製ホックとを電気的に接続した。
 ステンレススチール製ホックを介して、ユニオンツール社製の心拍センサWHS-2を接続し、同心拍センサWHS-2専用のアプリ「myBeat」を組み込んだアップル社製スマートホンで心拍データを受信し、画面表示できるように設定した。以上のようにして心拍計測機能を組み込んだスポーツシャツを作製した。
Subsequently, a stainless steel hook is attached to the surface side of the pair of electrode parts at the center of the chest, and a stretchable conductor using conductive yarn twisted with a thin metal wire to ensure electrical continuity with the wiring part on the back side. The composition layer and the stainless steel hook were electrically connected.
Connect a heart rate sensor WHS-2 made by Union Tool through a stainless steel hook, and receive heart rate data with an Apple smartphone incorporating the app “myBeat” dedicated to the heart rate sensor WHS-2. Set to display. A sports shirt incorporating a heart rate measurement function was produced as described above.
 本シャツを被験者に着用させ自動車運転中の心電データを取得した。得られた心電データはノイズが少なく、高解像度で、心電図としてメンタルな状態、体調、疲労度、眠気、緊張度合いなどを心拍間隔の変化、心電波形などから解析可能な品位を有していた。同じシャツを10名の被験者に着用して貰い、着用感を評価した。いずれの被験者も不快感や違和感を訴えなかった。 The electrocardiogram data while driving a car was acquired by wearing this shirt on a subject. The obtained electrocardiogram data has low noise, high resolution, and quality that can be analyzed from the heartbeat interval change, electrocardiogram waveform, etc., as the electrocardiogram mental state, physical condition, fatigue level, sleepiness, tension level, etc. It was. The same shirt was worn by 10 subjects, and the feeling of wearing was evaluated. None of the subjects complained of discomfort or discomfort.
<実施例11>
 まず、表4に示した組成比に従い、導電ペーストを製造した。所定の溶剤量の半分量の溶剤にバインダー樹脂を溶解し、得られた溶液に金属系粒子を添加して予備混合の後、三本ロールミルにて分散することにより、表1に示す導電ペーストD11を得た。
<Example 11>
First, a conductive paste was manufactured according to the composition ratio shown in Table 4. The binder resin is dissolved in half the solvent amount of the predetermined solvent amount, the metal particles are added to the resulting solution, premixed, and then dispersed by a three-roll mill, whereby the conductive paste D11 shown in Table 1 is obtained. Got.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 なお表4において
導電フィラーA1:三菱マテリアル株式会社製 銀コート粉 汎用タイプ (平均粒径2μm)
導電フィラーA2:三菱マテリアル株式会社製 銀コート粉 汎用タイプ(平均粒径1.2μm)
導電フィラーB:横沢金属工業株式会社製 YCCテクノパウダーシルバーコートチタン酸カリウム繊維 YTA-1575
バインダー樹脂11:JSR株式会社製 極高ニトリルタイプ N215SL
         伸張回復率99.9%以上
バインダー樹脂12:ポリウレタン樹脂組成物(B)
             伸張回復率99.9%以上
溶剤1:イソホロン
溶剤3:エチレングリコールモノエチルエーテルアセテート
である。
In Table 4, conductive filler A1: Silver coated powder, general-purpose type manufactured by Mitsubishi Materials Corporation (average particle size 2 μm)
Conductive filler A2: Silver coated powder, general-purpose type (average particle size 1.2μm) manufactured by Mitsubishi Materials Corporation
Conductive filler B: YCC techno powder silver coated potassium titanate fiber YTA-1575 manufactured by Yokozawa Metal Industry Co., Ltd.
Binder resin 11: Extremely high nitrile type N215SL made by JSR Corporation
Elongation recovery rate 99.9% or more Binder resin 12: Polyurethane resin composition (B)
Elongation recovery rate 99.9% or more Solvent 1: Isophorone solvent 3: Ethylene glycol monoethyl ether acetate
<導電性被膜の作製>
 厚さ1mmの伸縮性のウレタンシート上にアプリケーターにて得られた導電性ペーストD11を塗布し、120℃で20分間乾燥し、膜厚約80μmの導電性被膜を有するシートを作製した。以下必要に応じてウレタンシート上に形成された導電被膜をウレタンシートととも幅10mmも短冊状にスリットした試験片を用いて評価した。評価結果を表4に示す。
<Preparation of conductive film>
A conductive paste D11 obtained by an applicator was applied on a stretchable urethane sheet having a thickness of 1 mm, and dried at 120 ° C. for 20 minutes to produce a sheet having a conductive film with a thickness of about 80 μm. The conductive film formed on the urethane sheet was evaluated using a test piece that was slit into a strip shape with a width of 10 mm together with the urethane sheet. The evaluation results are shown in Table 4.
<実施例12~15、比較例11~14>
 以下、表4の組成比に従って実施例11と同様に操作し、導電ペーストD12~D19を得た。得られた導電ペーストを実施例11と同様に評価した。結果を表4.に示す。
<Examples 12 to 15 and Comparative Examples 11 to 14>
Thereafter, the same operation as in Example 11 was performed according to the composition ratio in Table 4, and conductive pastes D12 to D19 were obtained. The obtained conductive paste was evaluated in the same manner as in Example 11. The results are shown in Table 4. Shown in
[応用実施例2]
 図4に示す転写法による電気配線を有する心電図測定用の衣服型電子機器を製作した。
 厚さ125μmの離型PETフィルムに、まず電極表面層となるカーボンペーストを所定のパターンにてスクリーン印刷し、乾燥硬化した。次いで絶縁カバー層となる絶縁ペーストを所定のパターンにスクリーン印刷し、乾燥硬化した。心電測定用の電極表面層は直径30mmの円形である。また絶縁カバー層は電極部において内径が30mm、外径が36mmのドーナツ状であり電極から伸びる配線部は幅14mmで、配線部の終端には、センサとの接続用ホックを取り付けるために直径10mmの円形電極が同様にカーボンペーストで印刷されている。カーボンペースト層の厚さは乾燥膜厚で25μmであり、絶縁カバー層は15μm、である
 次いで、導体層となる導電ペーストD11を用いて電極部と配線部をスクリーン印刷し、所定の条件で乾燥硬化した。電極部は直径32mmの円形、配線部は幅10mmであり、絶縁カバー層上での乾燥厚さが30μmとなるように調整した。さらに下地層を絶縁カバー層と同じ絶縁ペーストを用いて乾燥厚さが20μmとなるように調整してスクリーン印刷し乾燥し、さらにもう一度同条件で下地層を印刷し、乾燥時間を調整して溶剤分が25質量%残存するようにして表面タック性を残し、転写性のある印刷電気配線を得た。
 次いで、以上の工程により得られた転写性の印刷電気配線を裏返したニット生地から成るスポーツシャツの所定部分に重ね、室温でプレスして印刷電気配線をスポーツシャツの裏側に仮接着し、離型PETフィルムを剥離し、スポーツシャツをハンガーに掛けて、さらに115℃にて30分間乾燥し、電気配線付きスポーツシャツを得た。配線パターンを図5に、シャツに対する配線パターンの配置を図6に示す。
 得られた電気配線付きスポーツシャツは、左右の後腋窩線上と第7肋骨との交差点に直径30mmの円形電極があり、さらに円形電極から後頸部中央までの幅10mmの伸縮性のある導体による電気配線が内側に形成されている。なお左右の電極から後頸部中央に伸びる配線は、頸部中央にて5mmのギャップを持ち、両者は短絡されていない。
[Application Example 2]
A clothes-type electronic device for measuring an electrocardiogram having electrical wiring by the transfer method shown in FIG. 4 was manufactured.
A carbon paste serving as an electrode surface layer was first screen-printed in a predetermined pattern on a release PET film having a thickness of 125 μm, and then dried and cured. Next, an insulating paste serving as an insulating cover layer was screen-printed in a predetermined pattern and dried and cured. The electrode surface layer for electrocardiogram measurement is a circle with a diameter of 30 mm. The insulating cover layer has a donut shape with an inner diameter of 30 mm and an outer diameter of 36 mm at the electrode portion, the wiring portion extending from the electrode has a width of 14 mm, and the end of the wiring portion has a diameter of 10 mm to attach a hook for connection with the sensor. The circular electrodes are similarly printed with carbon paste. The thickness of the carbon paste layer is 25 μm in terms of dry film thickness, and the insulating cover layer is 15 μm. Next, the electrode part and the wiring part are screen-printed using the conductive paste D11 as the conductor layer, and dried under predetermined conditions. Cured. The electrode part was circular with a diameter of 32 mm, the wiring part was 10 mm wide, and the dry thickness on the insulating cover layer was adjusted to 30 μm. Furthermore, the base layer is adjusted to a dry thickness of 20 μm using the same insulating paste as that of the insulating cover layer, screen-printed and dried, and the base layer is printed again under the same conditions, and the drying time is adjusted and the solvent is adjusted. The surface tackiness was left so that 25% by mass remained, and printed electric wiring having transferability was obtained.
Next, the transferable printed electrical wiring obtained by the above process is superimposed on a predetermined part of a sports shirt made of knitted fabric turned upside down, pressed at room temperature to temporarily bond the printed electrical wiring to the backside of the sports shirt, and release The PET film was peeled off, the sports shirt was hung on a hanger, and further dried at 115 ° C. for 30 minutes to obtain a sports shirt with electrical wiring. The wiring pattern is shown in FIG. 5, and the layout of the wiring pattern with respect to the shirt is shown in FIG.
The resulting sports shirt with electrical wiring has a circular electrode with a diameter of 30 mm at the intersection of the left and right posterior axillary lines and the seventh rib, and further with a stretchable conductor with a width of 10 mm from the circular electrode to the center of the posterior neck. Electrical wiring is formed on the inside. The wiring extending from the left and right electrodes to the center of the rear neck has a gap of 5 mm at the center of the neck, and both are not short-circuited.
 続いて、後頸部中央端の表面側にステンレススチール製のホックを取り付け、裏側の配線部と電気的導通を確保するために金属細線を撚り込んだ導電糸を用いて伸縮性導体組成物層とステンレススチール製ホックとを電気的に接続した。
 ステンレススチール製ホックを介して、ユニオンツール社製の心拍センサWHS-2を接続し、同心拍センサWHS-2専用のアプリ「myBeat」を組み込んだアップル社製スマートホンで心拍データを受信し、画面表示できるように設定した。以上のようにして心拍計測機能を組み込んだスポーツシャツを作製した。
Subsequently, a stainless steel hook is attached to the surface side of the central end of the rear neck, and a stretchable conductor composition layer using a conductive thread twisted with a thin metal wire to ensure electrical continuity with the wiring part on the back side And a stainless steel hook were electrically connected.
Connect a heart rate sensor WHS-2 made by Union Tool through a stainless steel hook, and receive heart rate data with an Apple smartphone incorporating the app “myBeat” dedicated to the heart rate sensor WHS-2. Set to display. A sports shirt incorporating a heart rate measurement function was produced as described above.
 本シャツを被験者に着用させ、ラジオ体操第1、ラジオ体操第2を連続して行い、その間の心電データを取得した。得られた心電データはノイズが少なく、高解像度で、心電図としてメンタルな状態、体調、疲労度、眠気、緊張度合いなどを心拍間隔の変化、心電波形などから解析可能な品位を有していた。同じシャツを10名の被験者に着用して貰い、着用感を評価した。いずれの被験者も不快感や違和感を訴えなかった。
 
The subject was made to wear this shirt, and radio exercises 1 and 2 were continuously performed, and electrocardiographic data during that time was acquired. The obtained electrocardiogram data has low noise, high resolution, and quality that can be analyzed from the heartbeat interval change, electrocardiogram waveform, etc., as the electrocardiogram mental state, physical condition, fatigue level, sleepiness, tension level, etc. It was. The same shirt was worn by 10 subjects, and the feeling of wearing was evaluated. None of the subjects complained of discomfort or discomfort.
産業上の利用分野Industrial application fields
 以上、示してきたように、本発明における導電ペーストおよび導電ペーストから得られる導電皮膜は、低コストでの作製が可能であり、伸縮性を有することにより、上記ペーストより得られる導電被膜の繰り返し曲げ性、繰り返し捻り性、繰り返し伸長性に優れ、さらに着用時の違和感も少ない。
本発明の伸縮性導電被膜をウェアラブル・スマート・デバイスに用いることにより、人体の持つ情報、すなわち筋電位、心電位などの生体電位、体温、脈拍、血圧などの生体情報を衣服に設けたセンサなど検知するためのウェアラブル装置や、あるいは、電気的な温熱装置を組み込んだ衣服、衣服圧を測定するためのセンサを組み込んだウェアラブル装置、衣服圧を利用して身体サイズを計測するウェア、足裏の圧力を測定するための靴下型装置、フレキシブルな太陽電池モジュールをテキスタイルに集積した衣服、テント、バッグなどの配線部、関節部を有する低周波治療器、温熱療養機などの配線部、屈曲度のセンシング部などに応用可能である。かかるウェアラブル装置は、人体を対象にするのみならず、ペットや家畜などの動物、あるいは伸縮部、屈曲部などを有する機械装置にも応用可能であり、ロボット義手、ロボット義足など機械装置と人体と接続して用いるシステムの電気配線としても利用できる。また体内に埋設して仕様するインプラントデバイス、体表面や粘膜表面に貼り付けて利用するパッチャブルデバイス、あるいは消化管の中で生体情報計測を行うエディブルデバイス等の配線材料としても応用可能である。
As described above, the conductive paste and the conductive film obtained from the conductive paste according to the present invention can be manufactured at low cost, and have elasticity, so that the conductive film obtained from the paste is repeatedly bent. Excellent in twisting, repetitive twisting, and repetitive stretchability, and less uncomfortable when worn.
By using the stretchable conductive film of the present invention in a wearable smart device, information on the human body, that is, a sensor provided with biological information such as bioelectric potential such as myoelectric potential and cardiac potential, body temperature, pulse, blood pressure, etc. Wearable device for detection, or clothing incorporating an electrical heating device, wearable device incorporating a sensor for measuring clothing pressure, clothing for measuring body size using clothing pressure, sole of foot Socks-type devices for measuring pressure, wiring parts such as clothes, tents and bags with flexible solar cell modules integrated in textiles, low-frequency treatment devices with joints, wiring parts such as thermotherapy machines, flexion degree It can be applied to sensing parts. Such wearable devices can be applied not only to the human body but also to animals such as pets and livestock, or mechanical devices having a telescopic part, a bent part, etc. It can also be used as electrical wiring for systems that are connected. It can also be applied as a wiring material for implant devices that are embedded and specified in the body, patchable devices that are used by being attached to the surface of the body or mucous membrane, or edible devices that measure biological information in the digestive tract.
1.基材(ファブリック)
2.絶縁下地層
3.伸縮性導体組成物層(伸縮性導体層)
4.伸縮性カバー層(絶縁カバー層)
5.伸縮性カーボン層(電極表面層)
6.接着層(絶縁下地層)
10.仮支持体(離型指示体)
 
 
 
 
1. Base material (fabric)
2. 2. Insulating underlayer Stretchable conductor composition layer (stretchable conductor layer)
4). Elastic cover layer (insulation cover layer)
5). Stretchable carbon layer (electrode surface layer)
6). Adhesive layer (insulating underlayer)
10. Temporary support (release indicator)



Claims (27)

  1. 非導電性のコア粒子の表面に金属層を有する金属被覆粒子からなる導電フィラー、エラストマーからなるバインダー樹脂、有機溶剤を少なくとも含有し、上記導電フィラーの表面が予め表面処理されていない事を特長とする伸縮可能な配線を形成する用途に用いられる導電性ペースト。 It is characterized in that it contains at least a conductive filler composed of metal-coated particles having a metal layer on the surface of non-conductive core particles, a binder resin composed of an elastomer, and an organic solvent, and the surface of the conductive filler is not previously surface-treated. Conductive paste used for forming stretchable wiring.
  2. 前記バインダー樹脂がニトリル基含有エラストマーもしくはウレタン樹脂であることを特長とする請求項1に記載の導電性ペースト。 2. The conductive paste according to claim 1, wherein the binder resin is a nitrile group-containing elastomer or a urethane resin.
  3.  表面自由エネルギーが30mJ/m以下である添加剤を導電フィラーに対して0.1~3.0質量%、含有することを特長とする請求項1または請求項2に記載の導電性ペースト。 The conductive paste according to claim 1 or 2, which contains 0.1 to 3.0% by mass of an additive having a surface free energy of 30 mJ / m 2 or less based on the conductive filler.
  4.  前記添加剤が、少なくとも片末端に、アミノ基、カルボキシル基、グリシジル基から選択される一種以上の官能基を有するポリジメチルシロキサンであることを特長とする請求項1から請求項3のいずれかに記載の導電性ペースト。 The additive according to any one of claims 1 to 3, wherein the additive is polydimethylsiloxane having at least one functional group selected from an amino group, a carboxyl group, and a glycidyl group at one terminal. The conductive paste as described.
  5.  前記添加剤の表面自由エネルギーが25mJ/m以下であることを特長とする請求項1から請求項4のいずれかに記載の導電性ペースト。 The conductive paste according to any one of claims 1 to 4, wherein the additive has a surface free energy of 25 mJ / m 2 or less.
  6. 前記添加剤が、少なくとも片末端にカルボキシル基を有するポリジメチルシロキサンであることを特長とする請求項1から請求項5のいずれかに記載の導電ペースト。 The conductive paste according to any one of claims 1 to 5, wherein the additive is polydimethylsiloxane having a carboxyl group at least at one end.
  7. 少なくとも、非導電性のコア粒子の表面に金属層を有する金属被覆粒子からなる導電フィラー、エラストマーからなるバインダー樹脂、有機溶剤を含有し、上記導電フィラーの表面が予め表面処理されていない事を特長とする伸縮可能な導電性被膜。 It contains at least a conductive filler composed of metal-coated particles having a metal layer on the surface of non-conductive core particles, a binder resin composed of an elastomer, and an organic solvent, and the surface of the conductive filler is not previously surface-treated. A stretchable conductive coating.
  8. 上記バインダー樹脂がニトリル基含有エラストマーもしくはウレタン樹脂であることを特長とする請求項7に記載の導電性被膜。 The conductive film according to claim 7, wherein the binder resin is a nitrile group-containing elastomer or a urethane resin.
  9.  表面自由エネルギーが30mJ/m以下である処理剤を導電フィラーに対して0.1~3.0質量%、含有することを特長とする請求項7または請求項8に記載の導電性皮膜。 The conductive film according to claim 7 or 8, comprising a treatment agent having a surface free energy of 30 mJ / m 2 or less in an amount of 0.1 to 3.0 mass% with respect to the conductive filler.
  10.  前記添加剤が、少なくとも片末端に、アミノ基、カルボキシル基、グリシジル基から選択される一種以上の官能基を有するポリジメチルシロキサンであることを特長とする請求項7から請求項9のいずれかに記載の導電性皮膜。 The additive according to any one of claims 7 to 9, wherein the additive is polydimethylsiloxane having at least one functional group selected from an amino group, a carboxyl group, and a glycidyl group at least at one end. The electroconductive film as described.
  11.  前記添加剤の表面自由エネルギーが25mJ/m以下であることを特長とする請求項7から請求項10のいずれかに記載の導電性皮膜。 11. The conductive film according to claim 7, wherein a surface free energy of the additive is 25 mJ / m 2 or less.
  12. 前記添加剤が、少なくとも片末端にカルボキシル基を有するポリジメチルシロキサンであることを特長とする請求項7から請求項11のいずれかに記載の導電性皮膜。 The conductive film according to any one of claims 7 to 11, wherein the additive is polydimethylsiloxane having a carboxyl group at least at one end.
  13. 前記導電性被膜の、100%伸張時の比抵抗が、非伸張時の比抵抗の20倍以内であることを特長とする請求項7から請求項12のいずれかに記載の伸縮性を有する導電性被膜。 The conductive film according to any one of claims 7 to 12, wherein the conductive film has a specific resistance when 100% stretched within 20 times of a specific resistance when not stretched. Coating.
  14.  前記導電性被膜の、20%繰り返し伸縮1000回後の導電性が維持されることを特長とする請求項7から請求項12に記載の伸縮性を有する導電性被膜。 The conductive film having stretchability according to any one of claims 7 to 12, wherein the conductivity of the conductive film after 1000 times of 20% repeated stretch is maintained.
  15.  請求項7から14に記載の伸縮性を有する導電性被膜からなる電気配線を有する衣服型電子機器。 A clothes-type electronic device having an electrical wiring made of the conductive film having elasticity according to claim 7.
  16.  前記金属被覆粒子からなる導電フィラーが、少なくとも導電フィラーA、導電フィラーBの二種類を含有し、前記導電フィラーAは長径と短径の比であるアスペクト比が1.5以下であり、非導電性のコア粒子の表面に金属層を有する金属被覆粒子であり、中心粒子径Dが0.5μm以上15μm以下であり、前記導電フィラーBは、長径と短径の比であるアスペクト比が5以上であり、非導電性のコア粒子表面に金属層を有する金属被覆粒子であり、長径の平均長さLが3μm以上30μm以下であり、導電フィラー合計に対する導電フィラーBの割合が25~60質量%である事を特長とする請求項1に記載の導電性ペースト。 The conductive filler composed of the metal-coated particles contains at least two types of conductive filler A and conductive filler B, and the conductive filler A has an aspect ratio which is a ratio of a major axis to a minor axis of 1.5 or less, and is non-conductive. Metal-coated particles having a metal layer on the surface of the conductive core particles, the center particle diameter D is 0.5 μm or more and 15 μm or less, and the conductive filler B has an aspect ratio of 5 or more, which is the ratio of the major axis to the minor axis The metal-coated particles having a metal layer on the surface of the non-conductive core particles, the average length L of the major axis is 3 μm or more and 30 μm or less, and the ratio of the conductive filler B to the total conductive filler is 25 to 60% by mass The conductive paste according to claim 1, wherein:
  17.  前記バインダー樹脂として用いられるエラストマーが非架橋のエラストマーである事を特長とする請求項16に記載の導電性ペースト The conductive paste according to claim 16, wherein the elastomer used as the binder resin is a non-crosslinked elastomer.
  18.  前記バインダー樹脂がニトリル基含有エラストマーであることを特長とする請求項16または請求項17に記載の導電性ペースト。 The conductive paste according to claim 16 or 17, wherein the binder resin is a nitrile group-containing elastomer.
  19.  前記バインダー樹脂がウレタン樹脂であることを特長とする請求項16または請求項17に記載の導電性ペースト。 The conductive paste according to claim 16 or 17, wherein the binder resin is a urethane resin.
  20.  導電フィラーと、バインダー樹脂を少なくとも構成成分とする導電性被膜において、導電フィラーとして少なくとも導電フィラーA、導電フィラーBの二種類を含有し、前記導電フィラーAは長径と短径の比であるアスペクト比が1.5以下であり、非導電性のコア粒子の表面に金属層を有する金属被覆粒子であり、中心粒子径Dが0.5 μm以上15μm以下であり、前記導電フィラーBは、長径と短径の比であるアスペクト比が5以上であり、非導電性のコア粒子表面に金属層を有する金属被覆粒子であり、長径の平均長さLが10μm以上30μm以下であり、導電フィラー合計に対する導電フィラーBの割合が25~60質量%であり、前記バインダー樹脂がエラストマーである事を特長とする伸縮性を有する導電性被膜。 In the conductive film containing at least a conductive filler and a binder resin as a constituent component, the conductive filler contains at least two kinds of conductive filler A and conductive filler B as the conductive filler, and the conductive filler A is an aspect ratio that is a ratio of the major axis to the minor axis. Is a metal-coated particle having a metal layer on the surface of the non-conductive core particle, the center particle diameter D is 0.5 μm or more and 15 μm or less, and the conductive filler B has a long diameter and The aspect ratio, which is the ratio of the minor axis, is a metal-coated particle having a metal layer on the surface of the non-conductive core particle, the average length L of the major axis is 10 μm or more and 30 μm or less, and the total conductive filler A stretchable conductive film characterized in that the ratio of the conductive filler B is 25 to 60% by mass and the binder resin is an elastomer.
  21.  前記バインダー樹脂がニトリル基含有エラストマーであることを特長とする請求項20に記載の導電性被膜。 The conductive film according to claim 20, wherein the binder resin is a nitrile group-containing elastomer.
  22.  前記バインダー樹脂がウレタン樹脂であることを特長とする請求項20に記載の導電性被膜。 The conductive film according to claim 20, wherein the binder resin is a urethane resin.
  23.  前記導電性被膜の、100%伸張時の比抵抗が、非伸張時の比抵抗の10倍以内であることを特長とする請求項20から請求項22のいずれかに記載の伸縮性を有する導電性被膜。 23. The electrically conductive film having stretchability according to any one of claims 20 to 22, wherein the conductive film has a specific resistance at 100% elongation of not more than 10 times the specific resistance at non-elongation. Coating.
  24.  前記導電性被膜の、20%繰り返し伸縮1000回後の導電性が維持されることを特長とする請求項20から請求項23のいずれかに記載の伸縮性を有する導電性被膜。 25. The conductive film having stretchability according to any one of claims 20 to 23, wherein the conductivity of the conductive film after 1000% stretching and stretching of 20% is maintained.
  25.  前記導電皮膜の、以下の捻り試験の捻りサイクルを100回繰り返した後のシートの比抵抗が、初期比抵抗の3.0倍以内であることを特徴とする請求項20から請求項24のいずれかに記載の導電性皮膜。
    [捻り試験:
    試料:幅10mm、長さ100mm(試料の長手方向の片端固定、他の片端の回転による捻り)
    捻りサイクル:正方向10回転(3600°)捻り、初期状態への戻り、負方向10回転(-3600°)捻り、初期状態への戻り]
    The specific resistance of the sheet after the twist cycle of the following twist test of the conductive film is repeated 100 times is within 3.0 times the initial specific resistance. The conductive film according to crab.
    [Torsion test:
    Sample: width 10 mm, length 100 mm (fixed at one end in the longitudinal direction of the sample, twisted by rotation of the other end)
    Twisting cycle: 10 rotations (3600 °) in the positive direction, return to the initial state, 10 rotations (-3600 °) in the negative direction, return to the initial state]
  26.  請求項20から請求項25のいずれかに記載の導電性被膜からなる電気配線を有する伸縮性電子部品。 A stretchable electronic component having an electrical wiring comprising the conductive coating according to any one of claims 20 to 25.
  27.  請求項20から請求項25のいずれかに記載の導電性被膜からなる電気配線を有する衣服型電子機器。
     
     
     
     
     
    26. A clothes-type electronic device having an electrical wiring made of the conductive film according to claim 20.




PCT/JP2018/005896 2017-03-02 2018-02-20 Electrically conductive paste, flexible wiring obtained using same, and garment-type electronic device having flexible wiring WO2018159374A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019502893A JP7167909B2 (en) 2017-03-02 2018-02-20 Conductive paste, stretchable wiring using the same, clothing-type electronic device having stretchable wiring

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-039323 2017-03-02
JP2017039323 2017-03-02
JP2017-045883 2017-03-10
JP2017045883 2017-03-10

Publications (1)

Publication Number Publication Date
WO2018159374A1 true WO2018159374A1 (en) 2018-09-07

Family

ID=63371091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005896 WO2018159374A1 (en) 2017-03-02 2018-02-20 Electrically conductive paste, flexible wiring obtained using same, and garment-type electronic device having flexible wiring

Country Status (3)

Country Link
JP (1) JP7167909B2 (en)
TW (1) TWI758423B (en)
WO (1) WO2018159374A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020071868A (en) * 2019-07-23 2020-05-07 合同会社Amphibia Product with electronic apparatus
WO2022059608A1 (en) * 2020-09-18 2022-03-24 ナミックス株式会社 Stretchable conductive paste and film
JP2022078861A (en) * 2020-11-13 2022-05-25 信越化学工業株式会社 Polyurethane, polyurethane production method, conductive paste composition, conductive wire, and method for producing conductive wire
WO2023282659A1 (en) * 2021-07-09 2023-01-12 Neograf Solutions, Llc Flexible graphite structure
US20230028970A1 (en) * 2019-12-10 2023-01-26 Asahi Kasei Kabushiki Kaisha Conductive film and roll thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3904068A4 (en) * 2018-12-27 2022-09-21 Toyobo Co., Ltd. Conductive paste for forming stretchable conductor, stretchable conductor layer, method for producing stretchable conductor layer, stretchable electrical wiring structure, and biometric information measuring device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004285128A (en) * 2003-03-19 2004-10-14 Ricoh Co Ltd Elastic conductive resin and wiring structure
JP2010153364A (en) * 2008-11-18 2010-07-08 Tokai Rubber Ind Ltd Conductive film and transducer equipped therewith, and flexible wiring board
WO2011001910A1 (en) * 2009-06-30 2011-01-06 東海ゴム工業株式会社 Flexible conductive material and transducer
WO2015005204A1 (en) * 2013-07-08 2015-01-15 東洋紡株式会社 Electrically conductive paste
WO2017141473A1 (en) * 2016-02-19 2017-08-24 三菱マテリアル株式会社 Electrically conductive paste and electrically conductive film formed by using same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101506321B (en) * 2006-08-22 2012-07-18 日立化成工业株式会社 Circuit connecting material, connection structure of circuit member, and method for manufacturing connection structure of circuit member
JP2009135044A (en) * 2007-11-30 2009-06-18 Tdk Corp Transparent conductive material and transparent conductor
TW201340125A (en) * 2012-03-27 2013-10-01 Ablestik Shanghai Ltd Conductive coatings for capacitors and capacitors employing the same
KR101459635B1 (en) * 2013-05-10 2014-11-27 이영태 Conductive compound and manufacturing method of the same
CN107075265A (en) * 2014-07-31 2017-08-18 拓自达电线株式会社 Conductive composition and the conducting strip containing the constituent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004285128A (en) * 2003-03-19 2004-10-14 Ricoh Co Ltd Elastic conductive resin and wiring structure
JP2010153364A (en) * 2008-11-18 2010-07-08 Tokai Rubber Ind Ltd Conductive film and transducer equipped therewith, and flexible wiring board
WO2011001910A1 (en) * 2009-06-30 2011-01-06 東海ゴム工業株式会社 Flexible conductive material and transducer
WO2015005204A1 (en) * 2013-07-08 2015-01-15 東洋紡株式会社 Electrically conductive paste
WO2017141473A1 (en) * 2016-02-19 2017-08-24 三菱マテリアル株式会社 Electrically conductive paste and electrically conductive film formed by using same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020071868A (en) * 2019-07-23 2020-05-07 合同会社Amphibia Product with electronic apparatus
US20230028970A1 (en) * 2019-12-10 2023-01-26 Asahi Kasei Kabushiki Kaisha Conductive film and roll thereof
US11815957B2 (en) * 2019-12-10 2023-11-14 Asahi Kasei Kabushiki Kaisha Conductive film and roll thereof
WO2022059608A1 (en) * 2020-09-18 2022-03-24 ナミックス株式会社 Stretchable conductive paste and film
US11932771B2 (en) 2020-09-18 2024-03-19 Namics Corporation Stretchable conductive paste and film
JP2022078861A (en) * 2020-11-13 2022-05-25 信越化学工業株式会社 Polyurethane, polyurethane production method, conductive paste composition, conductive wire, and method for producing conductive wire
WO2023282659A1 (en) * 2021-07-09 2023-01-12 Neograf Solutions, Llc Flexible graphite structure

Also Published As

Publication number Publication date
JPWO2018159374A1 (en) 2020-02-13
TW201839779A (en) 2018-11-01
JP7167909B2 (en) 2022-11-09
TWI758423B (en) 2022-03-21

Similar Documents

Publication Publication Date Title
WO2018159374A1 (en) Electrically conductive paste, flexible wiring obtained using same, and garment-type electronic device having flexible wiring
JP6607273B2 (en) Method for manufacturing clothing comprising electrodes and wiring
TWI712370B (en) Clothing-type electronic equipment and manufacturing method of clothing-type electronic equipment
JP2017168437A (en) Paste for forming flexible conductor, flexible conductor sheet and probe for measuring organism information
JP6973372B2 (en) Elastic conductor sheet and paste for forming elastic conductor sheet
JP6766869B2 (en) Wearable smart device
WO2020138477A2 (en) Conductive paste for forming stretchable conductor, stretchable conductor layer, method for producing stretchable conductor layer, stretchable electrical wiring structure, and biometric information measuring device
WO2017122639A1 (en) Elastic conductor composition, paste for forming elastic conductor, clothing having wires made from elastic conductor composition, and method for producing same
JP7147767B2 (en) Conductive pastes, stretchable conductors and electronic components using them, clothing-type electronic devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019502893

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18761592

Country of ref document: EP

Kind code of ref document: A1