WO2018158918A1 - 位置検出装置及び電力伝送装置 - Google Patents

位置検出装置及び電力伝送装置 Download PDF

Info

Publication number
WO2018158918A1
WO2018158918A1 PCT/JP2017/008353 JP2017008353W WO2018158918A1 WO 2018158918 A1 WO2018158918 A1 WO 2018158918A1 JP 2017008353 W JP2017008353 W JP 2017008353W WO 2018158918 A1 WO2018158918 A1 WO 2018158918A1
Authority
WO
WIPO (PCT)
Prior art keywords
power transmission
power
coil
side element
transmission side
Prior art date
Application number
PCT/JP2017/008353
Other languages
English (en)
French (fr)
Inventor
道也 早馬
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018549367A priority Critical patent/JP6440921B1/ja
Priority to PCT/JP2017/008353 priority patent/WO2018158918A1/ja
Publication of WO2018158918A1 publication Critical patent/WO2018158918A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques

Definitions

  • the present invention relates to a position detection device and a power transmission device that determine a distance between a power transmission circuit that transmits power and a power reception circuit that receives power from the power transmission circuit.
  • the resonance method is vulnerable to misalignment, and there is a problem that transmission efficiency is significantly affected when deviating from the designed transmission distance.
  • One method for solving these problems is to detect the distance between power transmission and reception and adjust the parameters on the power transmission side.
  • a method for measuring the distance between the power transmitting and receiving coils a method using reflection of light like an optical position sensor abbreviated as PSD (Position Sensitive Detector), a method of calculating from the reflection time of ultrasonic waves, etc. are common. Used for.
  • PSD Position Sensitive Detector
  • the components used for the in-satellite equipment are used in an environment exposed to high radiation peculiar to outer space, and therefore require extremely high reliability. For this reason, it is often difficult to apply general consumer components to satellite equipment.
  • the above-described method uses a dedicated device for measurement and is difficult to apply to satellite equipment.
  • a method for solving such a problem a method in which the coil itself used for wireless power transmission is used for distance measurement can be considered.
  • resonance type wireless power transmission to inter-substrate power transmission, it is necessary to measure the distance between a power transmission circuit and a power reception circuit, which is necessary for parameter adjustment for eliminating the distance dependency of transmission efficiency.
  • Patent Document 1 includes three orthogonal transmission coils and a plurality of reception coils arranged at different positions on the XY plane, receives a magnetic signal from each transmission coil, and analyzes the reception intensity distribution.
  • a method for identifying a position is disclosed.
  • the distance measurement independent of the absolute value of the reception intensity is enabled by using the half-value bandwidth of the reception intensity distribution for the distance measurement from the XY plane on which the reception coil is arranged.
  • the method of Patent Document 1 identifies positions from the reception strengths of a plurality of reception coils that are shifted on the XY plane. Since the method of Patent Document 1 uses the half-value bandwidth of the received power distribution for the measurement from the receiving coil, the distance can be identified without depending on the transmission power. On the other hand, in order to measure the half-value bandwidth of the received power distribution, it is necessary to arrange a large number of receiving coils in a wide range, and it is difficult to apply to a narrow place between boards where a non-contact connector is installed.
  • the present invention has been made in view of the above, and an object thereof is to provide a position detection device and a power transmission device capable of suppressing an increase in installation location.
  • the position detection apparatus is configured to receive power by using a plurality of power transmission side elements that generate at least a magnetic field and a magnetic field generated by the plurality of power transmission side elements.
  • a plurality of power receiving side elements that output power, a detection element that detects electromotive force generated by the plurality of power transmission side elements and outputs a signal corresponding to the detected electromotive force, and power is supplied to the plurality of power transmission side elements.
  • a processing device that obtains information indicating the distance between the power transmission side element and the power reception side element based on the magnitude of the signal received from the detection element.
  • the degree of coupling of the elements that form a group among the plurality of power transmission side elements and the plurality of power reception side elements is a distribution that differs from the other elements that correspond to the distance, In addition, the degree of coupling of the elements constituting each pair coincides at a specific distance.
  • the position detection device according to the present invention has an effect that it is possible to provide a position detection device and a power transmission device that can suppress an increase in installation location.
  • Circuit diagram of position detecting apparatus according to Embodiment 1 The figure which shows the positional relationship of the element which the position detection apparatus which concerns on Embodiment 1 has.
  • the figure which shows the relationship between the distance between the power transmission circuit and power receiving circuit which concern on Embodiment 1, and mutual inductance The figure which shows the relationship between the number of turns of the 1st coil which concerns on Embodiment 1, offset amount, the length of one side, and a specific distance.
  • Circuit diagram of power transmission circuit included in position detection device according to embodiment 2 The figure which shows the positional relationship of the element which the position detection apparatus which concerns on Embodiment 2 has.
  • FIG. The flowchart which shows an example of the process which the processing apparatus of the position detection apparatus which concerns on Embodiment 2 performs.
  • the flowchart which shows an example of the process which the processing apparatus of the position detection apparatus which concerns on Embodiment 3 performs.
  • Circuit diagram of power transmission circuit included in position detecting device according to embodiment 4 The figure showing distribution of the coupling degree between each element of the position detection apparatus concerning Embodiment 4.
  • the flowchart which shows an example of the process which the processing apparatus of the position detection apparatus which concerns on Embodiment 4 performs.
  • the figure which looked at the multilayer substrate concerning Embodiment 5 from the surface side The figure which shows the multilayer substrate which concerns on Embodiment 5.
  • FIG. 1 is a diagram illustrating a position detection device 1 according to the first embodiment.
  • FIG. 2 is a circuit diagram of the position detection apparatus 1 according to the first embodiment.
  • FIG. 3 is a diagram illustrating the positional relationship of elements included in the position detection device 1 according to the first embodiment.
  • the position detection device 1 includes a coupling element group 11 on the power transmission side, a coupling element group 12 on the power reception side, detection coils 103 and 104, and a processing device 106.
  • the position detection device 1 determines the distance between the power transmitting side coupling element group 11 and the power receiving side coupling element group 12 when power is transmitted from the power transmitting side coupling element group 11 to the power receiving side coupling element group 12. It is a device that obtains and outputs information to be indicated.
  • the position detection device 1 has a function for obtaining information indicating the distance between the coupling element group 11 on the power transmission side and the coupling element group 12 on the power reception side, and the coupling element group 12 on the power reception side from the coupling element group 11 on the power transmission side. And a function of transmitting power.
  • the position detection device 1 is also a power transmission device.
  • the position detection device 1 may be referred to as a power transmission device 1.
  • the power transmission device 1 transmits power wirelessly.
  • the power transmission side coupling element group 11 includes a first power transmission side element 101 and a second power transmission side element 102 which are a plurality of power transmission side elements.
  • the coupling element group 11 on the power transmission side is appropriately referred to as a power transmission circuit 11.
  • the first power transmission side element 101 and the second power transmission side element 102 receive power and generate at least a magnetic field.
  • the first power transmission side element 101 and the second power transmission side element 102 are coils.
  • the first power transmission side element 101 is appropriately referred to as a first coil 101
  • the second power transmission side element 102 is appropriately referred to as a second coil 102.
  • the power transmission circuit 11 includes a detection element that detects an electromotive force generated by a plurality of power transmission side elements and outputs a signal corresponding to the detected electromotive force.
  • the detection coil 103 and the detection coil 104 correspond to detection elements.
  • the detection coil 103 detects the electromotive force of the first coil 101 and outputs a signal corresponding to the detected electromotive force, specifically, an electrical signal.
  • the detection coil 104 detects the electromotive force of the second coil 102 and outputs a signal corresponding to the detected electromotive force, specifically, an electrical signal.
  • the first coil 101 has a square shape with a side length of a.
  • the second coil 102 has a square shape with a side length of b.
  • the first coil 101 and the second coil 102 are electrically connected in series as shown in FIG. Electric power is supplied from the power feeding unit 105 to the first coil 101 and the second coil 102 that are electrically connected in series.
  • the power supply unit 105 is an AC power supply that supplies AC power to the power transmission circuit 11.
  • the first coil 101 and the second coil 102 are combined.
  • the first coil 101 is disposed inside the second coil 102.
  • the arrangement of the first coil 101 and the second coil 102 is not limited to this arrangement, and the second coil 102 may be arranged inside the first coil 101, and one side of the first coil 101 is the first side. Two sides of the second coil 102 and one side of the second coil 102 may be arranged inside the first coil 101.
  • the first coil 101 and the second coil 102 are arranged at different angles. That the first coil 101 and the second coil 102 are arranged at different angles means that the first coil 101 and the second coil 102 are combined and the axis Z1 of the first coil 101 shown in FIG. When a part and the part of the axis Z2 of the second coil 102 are matched, this means that the axis Z1 and the axis Z2 have an angle.
  • the axis Z ⁇ b> 1 passes through the centroid of the plane surrounded by the conducting wire constituting the first coil 101, and is orthogonal to this plane.
  • the axis Z2 passes through the centroid of the plane surrounded by the conducting wire constituting the second coil 102, and is orthogonal to this plane.
  • first coil 101 and the second coil 102 are arranged at different angles means that the plane surrounded by the conductive wire constituting the first coil 101 and the plane surrounded by the conductive wire constituting the second coil 102 are. It can be said that they are not parallel.
  • the first coil 101 and the second coil 102 are orthogonal to each other. Specifically, when a part of the axis Z1 and a part of the axis Z2 are made to coincide with each other, the axis Z1 and the axis Z2 are orthogonal to each other, that is, the plane surrounded by the conducting wire constituting the first coil 101 and the second coil The plane surrounded by the conductive wire constituting 102 is orthogonal. In the first embodiment, it is preferable that the first coil 101 and the second coil 102 are orthogonal to each other because the power transmission efficiency of the power transmission device 1 is high, but within the range where the power transmission efficiency of the power transmission device 1 can be tolerated. The first coil 101 and the second coil 102 may deviate from being orthogonal to each other.
  • the first coil 101 is disposed offset from the center position of the second coil 102.
  • the offset amount of the first coil 101 is defined as x1.
  • the center position of the second coil 102 is the center of one side of the second coil 102 facing one side of the first coil 101.
  • the center position of the second coil 102 is a position separated by b / 2 from both ends of one side of the second coil 102 facing one side of the first coil 101.
  • the center of one side of the first coil 101 that faces one side of the second coil 102 is disposed at the position of the second coil 102.
  • the first coil 101 protrudes by a / 2 from the first side and the second side, respectively, with reference to the plane surrounded by the conducting wire constituting the second coil 102.
  • the portion arranged at the position of the second coil 102 may not be the center of one side facing one side of the second coil 102.
  • the shape of the first coil 101 and the shape of the second coil 102 are both square, but the shape is not limited to a square.
  • the shape of the first coil 101 and the shape of the second coil 102 may be other shapes such as a rectangle, a circle, or an ellipse.
  • the detection coils 103 and 104 described above are coupled to the first coil 101 and the second coil 102 with a degree of coupling that does not affect the first coil 101 and the second coil 102, respectively.
  • the degree of coupling is a measure representing the degree of coupling when elements are coupled electromagnetically.
  • the power receiving side coupling element group 12 includes a first power receiving side element 101r and a second power receiving side element 102r, which are a plurality of power receiving side elements.
  • the power receiving side coupling element group 12 is appropriately referred to as a power receiving circuit 12.
  • the first power receiving side element 101r and the second power receiving side element 102r output power by a magnetic field generated by the first power transmitting side element 101 and the second power transmitting side element 102 of the power transmission circuit 11.
  • the first power receiving side element 101r and the second power receiving side element 102r supply the generated power to the power receiving unit 107.
  • the power receiving unit 107 is an AC / DC (Alternative Current / Direct Current) converter, an AC / AC converter, a transformer, or the like, but is not limited thereto.
  • the first power receiving side element 101r and the second power receiving side element 102r are coils.
  • the first power receiving side element 101r is appropriately referred to as a first coil 101r
  • the second power receiving side element 102r is appropriately referred to as a second coil 102r.
  • the first coil 101r and the second coil 102r of the power receiving circuit 12 have the same structure and arrangement as the first coil 101 and the second coil 102 of the power transmission circuit 11. Therefore, the contents described for the first coil 101 and the second coil 102 of the power transmission circuit 11 are also applied to the first coil 101r and the second coil 102r of the power reception circuit 12.
  • the first coil 101 r and the second coil 102 r are electrically connected in series like the power transmission circuit 11.
  • the first coil 101r of the power receiving circuit 12 is arranged offset from the center position of the second coil 102r.
  • the offset amount is defined as x2.
  • the offset amount x2 of the power receiving circuit 12 may be the same value as or different from the offset amount x1 of the power transmission circuit 11.
  • the magnetic fluxes generated by the first coil 101 of the power transmission circuit 11 do not penetrate the second coil 102 r of the power reception circuit 12 and do not couple with each other.
  • the magnetic fluxes generated by the second coil 102 of the power transmission circuit 11 do not penetrate the first coil 101 of the power reception circuit 12 and are not coupled to each other.
  • the total mutual inductance of the power transmission circuit 11 and the power receiving circuit 12 includes a mutual inductance M 42 of the first coil 101 and 101r each other, represented by the sum of the second coil 102 and 102r mutual inductance M 31 between.
  • the first coil 101 of the power transmission circuit 11 and the first coil 101r of the power reception circuit 12 are a first coil 101 and a second coil 102 that are a plurality of power transmission side elements, and a first coil 101r and a second coil that are a plurality of power reception side elements. A pair is formed with the two coils 102r. The same applies to the second coil 102 of the power transmission circuit 11 and the second coil 102r of the power reception circuit 12.
  • the first coil 101 of the power transmission circuit 11 and the first coil 101r of the power reception circuit 12 form a first set
  • the second coil 102 of the power transmission circuit 11 and the second coil 102r of the power reception circuit 12 form a second set.
  • Mutual inductance M 42 of the first coil 101 and 101r each other represents a coupling degree of the first coil 101 and 101r.
  • the mutual inductance M 31 of the second coil 102 and 102r each other represents a coupling degree of the second coil 102 and 102r.
  • FIG. 4 is a diagram illustrating a relationship between the distance d between the power transmission circuit 11 and the power reception circuit 12 and the mutual inductance M according to the first embodiment.
  • the distance d between the power transmission circuit 11 and the power reception circuit 12 is the distance between the axis Z2 of the second coil 102 of the power transmission circuit 11 and the axis Z2 of the second coil 102r of the power reception circuit 12, but is limited to this distance. Not.
  • Offset x1, x2 by adjusting the dimensions of the first coil 101,101r and second coil 102,102R, as shown in FIG. 4, at a certain distance de, mutual inductance M 42 and mutual inductance the magnitude relation between M 31 can be obtained a characteristic inverted. If such characteristic is obtained, the mutual inductance M 42 of the first coil 101 and 101r each other, and the second coil 102 and 102r mutual inductance M 31 between, consistent with certain distance de.
  • the absolute value of the difference between the mutual inductance M 42 and mutual inductance M 31 is
  • Specific distance de is the distance position the magnitude relationship is inverted with the mutual inductance M 42 and mutual inductance M 31.
  • the specific distance de is set in advance to a size that maximizes the transmission efficiency of power from the power transmission circuit 11 to the power reception circuit 12.
  • the specific distance de is the number of turns of the first coil 101 and the second coil 102 of the power transmission circuit 11 and the power reception circuit 12, the positional relationship of the first coil 101 and the second coil 102 to be combined, the power transmission circuit 11 and the power reception circuit 12, It is set by adjusting the positional relationship and the like.
  • 5 to 7 are diagrams showing the relationship among the number N of turns of the first coils 101 and 101r, the offset amounts x1 and x2, the length a of one side, and the specific distance de according to the first embodiment. is there.
  • the number of turns N of the first coils 101 and 101r increases in the order of N1, N2, and N3.
  • the offset amounts x1 and x2 are 0, the positions of the first coils 101 and 101r are the center positions of the second coils 102 and 102r.
  • the offset amounts x1 and x2 are positive, the absolute values of the offset amounts x1 and x2 increase and the distance between the first coils 101 and 101r increases.
  • the absolute values of the offset amounts x1 and x2 increase and the distance between the first coils 101 and 101r decreases.
  • the length a of one side of the first coils 101 and 101r increases in the order of a1, a2, a3, a4, and a5.
  • the specific distance de increases in the order of de1, de2, de3, de4, and de5.
  • the specific distance de is the offset amount x1. And increases with increasing x2.
  • the specific distance de is the offset amounts x1 and x2.
  • the specific distance de is the offset amount x1.
  • the specific distance de is de2. It can be.
  • the specific distance de is determined by changing at least one of the number N of turns of the first coils 101 and 101r, the length a of one side of the first coils 101 and 101r, and the offset amounts x1 and x2. Is changed.
  • the position detecting device 1 the voltage generated in the detection coil 103 and 104 during power transmission is proportional to the mutual inductance M 42 and the mutual inductance M 31.
  • the detection coil 103 When the distance d between the power transmission circuit 11 and the power reception circuit 12 is smaller than a specific distance de indicating the determination boundary 121, the detection coil 103 outputs a voltage higher than that of the detection coil 104.
  • the detection coil 104 When the distance d between the power transmission circuit 11 and the power reception circuit 12 is larger than the specific distance de, the detection coil 104 outputs a voltage larger than that of the detection coil 103.
  • the detection coil 103 and the detection coil 104 When the distance d between the power transmission circuit 11 and the power reception circuit 12 is equal to the specific distance de, the detection coil 103 and the detection coil 104 output voltages having the same magnitude.
  • the processing device 106 is in a state where power is supplied to the first coil 101 and the second coil 102 of the power transmission circuit 11, and based on the signals received from the detection coils 103 and 104, that is, the magnitude of the voltage. And information indicating the distance d between the power receiving circuit 12 and the power receiving circuit 12 is output. Specifically, the processing device 106 compares the voltage of the detection coil 103 with the voltage of the detection coil 104.
  • the processing device 106 When the voltage of the detection coil 103 is greater than the voltage of the detection coil 104, the processing device 106 outputs information indicating that the distance d between the power transmission circuit 11 and the power reception circuit 12 is smaller than the specific distance de. To do. When the voltage of the detection coil 104 is larger than the voltage of the detection coil 103, the processing device 106 outputs information indicating that the distance d between the power transmission circuit 11 and the power reception circuit 12 is larger than the specific distance de. To do. When the voltage of the detection coil 103 is equal to the voltage of the detection coil 104, the processing device 106 outputs information indicating that the distance d between the power transmission circuit 11 and the power reception circuit 12 is a specific distance de. Thus, the information indicating the distance d between the power transmission circuit 11 and the power receiving circuit 12 is information indicating whether the distance d is larger or smaller than the specific distance de and whether the distance d is equal to the specific distance de. is there.
  • the position detection apparatus 1 includes a power transmission circuit 11 in which a first coil 101 and a second coil 102 are electrically connected in series, and a power reception circuit 12 in which a first coil 101r and a second coil 102r are electrically connected in series. Is it closer than a specific distance de at a predetermined determination boundary 121 by simply comparing the voltages output from the detection coils 103 and 104 provided for the first coil 101 and the second coil 102, respectively? You can determine whether it is far away or equidistant.
  • the first coil 101, the second coil 102, the first coil 101r, and the second coil 102r used for power transmission can be used as a detector for measuring the distance, a dedicated device is not required. Can do.
  • FIG. 8 is a diagram illustrating a configuration example of the processing apparatus 106 according to the first embodiment.
  • the processing device 106 includes a processor 110, a memory 111, a comparator 112, and detection circuits 113 and 114.
  • the detection circuit 113 is connected to the detection coil 103.
  • the detection circuit 114 is connected to the detection coil 104.
  • the functions of the processing device 106 are realized by the processor 110.
  • the processor 110 is also referred to as a CPU (Central Processing Unit), a microprocessor, a microcomputer, or a DSP (Digital Signal Processor).
  • CPU Central Processing Unit
  • microprocessor a microcomputer
  • DSP Digital Signal Processor
  • the processor 110 implements the function of the processing device 106 by reading and executing a program stored in the memory 111. It can be said that these programs cause the computer to execute the procedure executed by the processing device 106.
  • the memory 111 is a volatile or non-volatile semiconductor memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), and EEPROM (Electrically Erasable Programmable Read Only Memory), Magnetic disks, flexible disks, optical disks, compact disks, mini disks, and DVDs (Digital Versatile Discs) are applicable.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory EPROM (Erasable Programmable Read Only Memory), and EEPROM (Electrically Erasable Programmable Read Only Memory), Magnetic disks, flexible disks, optical disks, compact disks, mini disks, and DVDs (Digital Versatile Discs) are applicable.
  • the function of the processing device 106 may be realized by a processing circuit that is dedicated hardware.
  • the processing circuit corresponds to a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. .
  • the detection circuits 113 and 114 detect the signals output from the detection coils 103 and 104, specifically the amplitude of the voltage, and output the detected results as amplitude values.
  • the comparator 112 compares the amplitude values output from the detection circuits 113 and 114.
  • the processor 110 obtains and outputs information indicating the distance d between the power transmission circuit 11 and the power reception circuit 12 based on the comparison result of the comparator 112.
  • FIG. 9 is a flowchart illustrating an example of processing executed by the processing device 106 of the position detection device 1 according to the first embodiment.
  • the detection circuit 113 of the processing device 106 acquires the voltage V ⁇ b> 1 detected by the detection coil 103 and supplies it to the comparator 112.
  • the detection circuit 114 acquires the voltage V ⁇ b> 2 detected by the detection coil 104 and supplies it to the comparator 112.
  • step S102 the comparator 112 compares the voltage V1 with the voltage V2, and gives the result to the processor 110.
  • the processor 110 determines that the distance d is smaller than the specific distance de in step S103, and outputs the result.
  • step S102 when the voltage V1 is not greater than the voltage V2 (No in step S102), the processor 110 determines the comparison result of the comparator 112 in step S104.
  • the processor 110 determines that the distance d is larger than the specific distance de in step S105, and outputs the result.
  • step S104 when the voltage V1 is not smaller than the voltage V2 (No in step S104), the voltage V1 is equal to the voltage V2. In this case, the processor 110 determines that the distance d is equal to the specific distance de in step S106, and outputs the result.
  • the processing device 106 transmits power to the power transmission circuit 11, that is, when the power supply unit 105 supplies power to the power transmission circuit 11.
  • the parameter is adjusted to suppress a decrease in power transmission efficiency at the actual distance d.
  • the parameters for power transmission include the frequency and voltage of AC power supplied to the power transmission circuit 11.
  • the power supply unit 105 includes a converter that converts AC power into DC power, and an inverter that converts DC power converted by the converter into AC power.
  • the first embodiment can easily determine whether the distance d between the power transmission circuit 11 and the power reception circuit 12 is closer, farther, or equidistant from a predetermined distance de set in advance.
  • the first coil 101, the second coil 102, the first coil 101r, and the second coil 102r used for power transmission can be used as a detector for measuring the distance, a dedicated device is not required. be able to.
  • Embodiment 1 can provide a position detection device and a power transmission device capable of suppressing an increase in installation location.
  • Embodiment 1 information on the distance d between the power transmission circuit 11 and the power reception circuit 12 is obtained on the power transmission circuit 11 side, but information on the distance d may be obtained on the power reception circuit 12 side.
  • the detection coil 103 detects the electromotive force of the first coil 101r of the power receiving circuit 12
  • the detection coil 104 detects the electromotive force of the second coil 102r of the power receiving circuit 12.
  • FIG. FIG. 10 is a diagram showing a position detection apparatus 1A according to the second embodiment.
  • FIG. 11 is a circuit diagram of the power transmission circuit 31 included in the position detection device 1A according to the second embodiment.
  • FIG. 12 is a diagram illustrating a positional relationship of elements included in the position detection device 1A according to the second embodiment.
  • the position detection device 1A according to the second embodiment is the same as the position detection device 1 according to the first embodiment, but the power transmission circuit 31 includes a plurality of first coils 131, 132, and 133 as a plurality of first power transmission side elements. It has different points. In the following description, parts common to the first embodiment are omitted as appropriate. Since the position detection device 1A also has a power transmission function, it also functions as a power transmission device.
  • the power transmission circuit 31 detects the plurality of first coils 131, 132, and 133, the second coil 102, and the electromotive force of each of the first coils 131, 132, and 133.
  • Detection coils 134, 135, and 136, and a detection coil 104 that detects an electromotive force of the second coil 102.
  • the first coil 131 and the first coil 132 are arranged with an interval x3.
  • the first coil 132 and the first coil 133 are arranged with an interval x4.
  • the first coils 131, 132, and 133 are connected in parallel.
  • the second coil 102 and the first coils 131, 132, and 133 connected in parallel are connected in series.
  • a switch 138 is connected to the opposite side of the first coils 131, 132, and 133 from the second coil 102.
  • the switch 138 selects one from the first coils 131, 132, and 133.
  • the second coil 102 and the switch 138 are connected to the power feeding unit 105.
  • the selected one and the second coil 102 are connected in series. That is, a current flows from the power feeding unit 105 only to the first coil selected by the switch 138. In this way, the power feeding unit 105 supplies power to the power transmission circuit 31 via the switch 138.
  • the processing apparatus 137 controls a switch 138 that switches the plurality of first coils 131, 132, and 133. Further, the processing device 137 monitors the voltage generated in the detection coils 104, 134, 135 and 136.
  • the power transmission circuit 31 of the position detection apparatus 1A has a plurality of first coils 131, 132, and 133.
  • the power transmission circuit 31 includes the three first coils 131, 132, and 133.
  • the power transmission circuit 31 may have a plurality of first coils and is limited to three. Not.
  • the first coil 101r of the power receiving circuit 12 and the first coils 131, 132, and 133 of the power transmission circuit 31 constitute a plurality of first sets. Specifically, a set of first coils 101r and 131, a set of first coils 101r and 132, and a set of first coils 101r and 133 are configured.
  • the distance between the power transmission circuit 31 and the power reception circuit 12 is defined as d.
  • the mutual inductance representing the degree of coupling between the first coil 101r of the power receiving circuit 12 and the first coil 131 of the power transmitting circuit 31 is M 42 (1)
  • the first coil 101r of the power receiving circuit 12 is.
  • M 42 (2) representing the degree of coupling between the first coil 132 of the power transmission circuit 31 and the first coil 132 of the power transmission circuit 31, and the mutual inductance representing the degree of coupling between the first coil 101r of the power receiving circuit 12 and the first coil 133 of the power transmission circuit 31. It is defined as M42 (3) .
  • the mutual inductance M42 (1) , the mutual inductance M42 (2), and the mutual inductance M42 (3) are different.
  • FIG. 13 is a diagram illustrating the relationship between the distance d between the power transmission circuit 31 and the power reception circuit 12 and the mutual inductance M according to the second embodiment.
  • the absolute value of the difference between the mutual inductance M 42 (1) and the mutual inductance M 31 is
  • the absolute difference between the mutual inductance M 42 (2) and the mutual inductance M 31 is absolute.
  • the absolute value of the difference between the mutual inductance M 42 (3) and the mutual inductance M 31 is
  • the relationship shown in FIG. 13 can be obtained with respect to the absolute value of the above-described mutual inductance difference.
  • the three determination boundaries 141, 142, and 143 can be defined based on the magnitude relationship of the electromotive forces detected by the detection coils 104, 134, 135, and 136.
  • the electromotive force is a voltage.
  • the specific distance d1 indicates the determination boundary 141
  • the specific distance d2 indicates the determination boundary 142
  • the specific distance d3 indicates the determination boundary 143.
  • a region where the distance d is smaller than the determination boundary 141 means that the voltage of the detection coil 134 is larger than the detection coil 104.
  • Mutual inductance M 42 (1) is greater than the mutual inductance M 31.
  • a region where the distance d is larger than the determination boundary 141 means that the voltage of the detection coil 134 is smaller than the detection coil 104.
  • Mutual inductance M 42 (1) is smaller than mutual inductance M 31.
  • a region where the distance d is smaller than the determination boundary 142 means that the voltage of the detection coil 135 is larger than the detection coil 104.
  • Mutual inductance M 42 (2) is greater than the mutual inductance M 31.
  • a region where the distance d is larger than the determination boundary 142 means that the voltage of the detection coil 135 is smaller than the detection coil 104.
  • Mutual inductance M 42 (2) is smaller than mutual inductance M 31.
  • a region where the distance d is smaller than the determination boundary 143 means that the voltage of the detection coil 136 is larger than the detection coil 104.
  • Mutual inductance M 42 (3) is greater than the mutual inductance M 31.
  • a region where the distance d is greater than the determination boundary 143 means that the voltage of the detection coil 136 is smaller than the detection coil 104.
  • Mutual inductance M 42 (3) is smaller than mutual inductance M 31.
  • the processing device 137 can determine which position in the region where the power transmission circuit 31 and the power reception circuit 12 are separated by the determination boundaries 141, 142, and 143.
  • FIG. 14 is a diagram illustrating a configuration example of the processing device 137 according to the second embodiment.
  • the processing device 137 includes a processor 158, a memory 159, comparators 155, 156 and 157, detection circuits 151, 152, 153 and 154, and a switch drive circuit 160.
  • the detection circuit 151 is connected to the detection coil 104.
  • the detection circuit 152 is connected to the detection coil 134.
  • the detection circuit 153 is connected to the detection coil 135.
  • the detection circuit 154 is connected to the detection coil 136.
  • the detection circuits 151, 152, 153, and 154 detect signals output from the detection coils 104, 134, 135, and 136, specifically the amplitude of the voltage, and output the detected results as amplitude values.
  • the comparator 155 compares the amplitude values output from the detection circuits 151 and 152.
  • the comparator 156 compares the amplitude values output from the detection circuits 151 and 153.
  • the comparator 156 compares the amplitude values output from the detection circuits 151 and 154.
  • the processor 158 obtains information indicating the distance d between the power transmission circuit 31 and the power reception circuit 12 based on the comparison results of the comparators 155, 156, and 157. Then, the processor 158 operates the switch 138 via the switch drive circuit 160 based on the obtained information, and selects one from the plurality of first coils 131, 132, and 133.
  • the switch 138 is a mechanical switch, a switching element, or the like.
  • the switch drive circuit 160 When the switch 138 is a mechanical switch, the switch drive circuit 160 generates a control signal for driving an actuator for operating the switch 138 based on a command from the processor 158 and supplies the control signal to the switch 138.
  • the switch drive circuit 160 When the switch 138 is a switching element, the switch drive circuit 160 generates a control signal for turning on or off the switching element based on a command from the processor 158 and supplies the control signal to the switch 138.
  • the processor 158 is the same as the processor 110 described in the first embodiment.
  • the memory 159 is similar to the memory 111 described in the first embodiment.
  • the processor 158 reads out and executes a program in which the function of the processing device 137 is described, and the function of the processing device 137 is realized, and the function of the processing device 137 is realized by a processing circuit that is dedicated hardware. Is the same as in the first embodiment.
  • FIG. 15 is a flowchart illustrating an example of processing executed by the processing device 137 of the position detection device 1A according to the second embodiment.
  • the processor 158 outputs a control signal for setting the connection destination of the switch 138 to the first coil 132 to the switch drive circuit 160.
  • the comparator 156 compares the voltage V2 of the second coil 102 detected by the detection coil 104 with the voltage V4 of the first coil 132 detected by the detection coil 135, and the result is processed by the processor. 158.
  • step S202 When the voltage V2 is equal to or higher than the voltage V4 (step S202, Yes), the processor 158 sets the connection destination of the switch 138 as the first coil 131 via the switch drive circuit 160 in step S203. Thereafter, in step S204, the comparator 155 compares the voltage V2 of the second coil 102 detected by the detection coil 104 with the voltage V3 of the first coil 131 detected by the detection coil 134, and the result is compared with the processor 158. To give.
  • step S205 the processor 158 determines that the distance between the power transmission circuit 31 and the power reception circuit 12 is equal to or greater than d1. Then, the processor 158 maintains the state where the first coil 131 is connected by the switch 138 in step S205.
  • step S206 processor 158 determines that the distance between power transmission circuit 31 and power reception circuit 12 is smaller than d1 and greater than or equal to d2. Then, in step S206, the processor 158 operates the switch 138 via the switch drive circuit 160 so that the second coil 132 is connected.
  • step S202 when the voltage V2 is smaller than the voltage V4 (step S202, No), the processor 158 sets the connection destination of the switch 138 to the first coil 133 via the switch drive circuit 160 in step S207. Thereafter, in step S208, the comparator 157 compares the voltage V2 of the second coil 102 detected by the detection coil 104 with the voltage V5 of the first coil 133 detected by the detection coil 136, and the result is compared with the processor 158. To give.
  • step S209 the processor 158 determines that the distance between the power transmission circuit 31 and the power reception circuit 12 is smaller than d2 and equal to or larger than d3. In this case, the processor 158 maintains the state where the first coil 133 is connected by the switch 138 in step S209.
  • step S210 the processor 158 determines that the distance between the power transmission circuit 31 and the power reception circuit 12 is smaller than d3. Then, the processor 158 maintains the state where the first coil 133 is connected by the switch 138 in step S210.
  • the voltage V2 is the voltage V4
  • the voltage V2 is the voltage V3
  • the voltage V2 is the voltage V5
  • the distance d is equal to the distances d1, d2, and d3, respectively.
  • the case where the voltage V2 is equal to or higher than the voltage V4 the case where the voltage V2 is equal to or higher than the voltage V3, and the case where the voltage V2 is equal to or higher than the voltage V5 are handled.
  • the processing device 137 allows a plurality of first coils 131, 132, and 133 having different at least one of arrangement, number of turns, and dimensions to be switched by a switch 138, and the electromotive force thereof is changed. The magnitude relationship is determined by comparison with the electromotive force of the second coil 102. By this processing, the processing device 137 can easily determine the distance d between the power transmission circuit 31 and the power reception circuit 12.
  • Embodiment 2 can provide a position detection device and a power transmission device capable of suppressing an increase in installation location. Furthermore, the processing device 137 can select an appropriate power supply path by the switch 138 based on the determination result of the distance d between the power transmission circuit 31 and the power reception circuit 12.
  • a plurality of first coils 131, 132, and 133 are arranged on the power transmission circuit 31 side, and information on the distance d between the power transmission circuit 31 and the power reception circuit 12 is obtained.
  • the first coils 131, 132, and 133 may be arranged to obtain information on the distance d.
  • the configuration described in the second embodiment can be applied as appropriate in the following embodiments.
  • FIG. 16 is a diagram illustrating a position detection device 1B according to the third embodiment.
  • FIG. 17 is a diagram illustrating an equivalent circuit of the position detection device 1B according to the third embodiment.
  • FIG. 18 is a diagram illustrating the distribution of the degree of coupling between the elements of the position detection device 1B according to the third embodiment.
  • the position detection device 1B according to the third embodiment uses the third power transmission side elements 212 and 213 that generate an electric field in place of the second coil 102 included in the position detection device 1 according to the first embodiment. The difference is that three power receiving side elements 212 and 213 are provided. Since the position detection device 1B also has a power transmission function, it also functions as a power transmission device. In the following description, parts common to the first embodiment are omitted as appropriate.
  • the power transmission circuit 41 includes a first coil 201 that is a first power transmission side element, and third power transmission side elements 212 and 213.
  • the third power transmission side elements 212 and 213 are elements that generate an electric field, and are a pair of metal plates in the third embodiment.
  • the 3rd power transmission side elements 212 and 213 should just be able to generate an electric field, and are not limited to a metal plate.
  • the 3rd power transmission side elements 212 and 213 are suitably called the electrode plates 212 and 213.
  • the first coil 201 and the electrode plates 212 and 213 are arranged apart by a distance x.
  • the first coil 201 and the electrode plates 212 and 213 are arranged to face each other.
  • the plane surrounded by the conductive wire constituting the first coil 201 and the electrode plates 212 and 213 are parallel to each other, but may not be parallel as long as the power transmission efficiency of the position detection device 1B can be tolerated. The same applies to the power receiving circuit 42.
  • the power transmission circuit 41 includes current detectors 203 and 204 as detection elements.
  • the current detector 203 detects a current flowing through the first coil 201 and outputs a corresponding signal.
  • the current detector 204 detects the current flowing through the electrode plates 212 and 213 and outputs a corresponding signal.
  • the current detectors 203 and 204 are a coil or a Hall element that detects a magnetic field generated in proportion to a current flowing through a conductor to be measured, a circuit that measures a voltage drop generated in a minute resistor arranged on the path of the conductor, etc. Is mentioned.
  • the current detectors 203 and 204 are not limited to these.
  • the processing device 206 acquires the current value that is the output of the current detectors 203 and 204, and compares the magnitude of the amplitude of the acquired current value, thereby indicating information indicating the distance d between the power transmission circuit 41 and the power reception circuit 42. Is output.
  • the distance d is a distance between the electrode plates 212 and 213 of the power transmission circuit 41 and the electrode plates 212 and 213 of the power reception circuit 42.
  • the first coil 201 is a square coil with one side having a length, but the first coil 201 is not limited to this.
  • the first coil 201 may be a rectangular, circular, or elliptical coil.
  • the electrode plates 212 and 213 are rectangular plates having a long side length h and a short side length c.
  • the distance between the electrode plate 212 and the electrode plate 213 is defined as g, the electrode plate 212 is defined as e1, and the electrode plate 213 is defined as e2.
  • the shape of the electrode plates 212 and 213 may be other than a rectangle.
  • the power receiving circuit 42 includes a first coil 201 and third power receiving side elements 212 and 213.
  • the power reception circuit 42 has the same shape and the same structure as the power transmission circuit 41.
  • the third power receiving side elements 212 and 213 will be appropriately referred to as electrode plates 212 and 213.
  • the electrode plate 212 of the power receiving circuit 42 is defined as e3, and the electrode plate 213 is defined as e4.
  • the power receiving circuit 42 is connected to a power receiving unit 207 for extracting power.
  • e1, e2, e3, and e4 indicate the electrode plates 212 and 213 of the power transmission circuit 41 and the power reception circuit 42, respectively.
  • Cs indicates a capacitance between the electrode plate e1 and the electrode plate e3 and a capacitance between the electrode plate e2 and the electrode plate e4.
  • Cp indicates a capacitance between the electrode plate e1 and the electrode plate e2, and a capacitance between the electrode plate e3 and the electrode plate e4.
  • Cx indicates a capacitance between the electrode plate e1 and the electrode plate e4 and a capacitance between the electrode plate e2 and the electrode plate e3.
  • L 1 indicates the first coil 201 of the power transmission circuit 41 and the power reception circuit 42.
  • the first coil 201 of the power transmission circuit 41 and the first coil 201 of the power reception circuit 42 are coupled by magnetic field coupling to transmit power.
  • the electrode plates 212 and 213 of the power transmission circuit 41 and the electrode plates 212 and 213 of the power reception circuit 42 are coupled by electric field coupling to transmit power.
  • the magnetic field coupling and the electric field coupling have different distributions with respect to the distance.
  • the total degree of coupling between the power transmission circuit 41 and the power reception circuit 42 is expressed by the sum or difference of magnetic field coupling and electric field coupling.
  • FIG. As in the first embodiment, by adjusting the dimensions of the first coil 201, the dimensions of the electrode plates 212 and 213, the distance between the first coil 201 and the electrode plates 212 and 213, and the like, FIG. As shown, it is possible to obtain such a characteristic that the magnitude relationship between magnetic field coupling and electric field coupling is reversed at a specific distance de.
  • the absolute value of the difference between the coupling degree k c of the electric field coupling and the coupling degree k m of the magnetic field coupling changes as indicated by a solid line indicated by
  • Position detection device 1B the amount of current observed by the current detector 203 and 204 in the power transmission, the coupling degree km magnetic coupling is proportional to the degree of coupling k c of the electric field coupling. Therefore, when the distance d between the power transmission circuit 41 and the power reception circuit 42 is smaller than the specific distance de representing the determination boundary 141, a current larger than the current detector 204 is detected by the current detector 203.
  • the processing device 206 compares the current value of the current detector 203 with the current value of the current detector 204. When the current value of the current detector 203 is larger than the current value of the current detector 204, the processing device 206 determines that the distance d between the power transmission circuit 41 and the power reception circuit 42 is greater than the specific distance de. Is also determined to be small. When the current value of the current detector 204 is greater than the current value of the current detector 203, the processing device 206 determines that the distance d between the power transmission circuit 41 and the power reception circuit 42 is greater than a specific distance de. judge. In the processing device 206, when the current value of the current detector 204 and the current value of the current detector 203 are the same, the distance d between the power transmission circuit 41 and the power reception circuit 42 is equal to the specific distance de. judge.
  • FIG. 19 is a diagram illustrating a configuration example of the processing device 206 according to the third embodiment.
  • the processing device 206 has the same configuration as the processing device 106 of the first embodiment.
  • the detection circuit 223 of the processing device 206 is connected to the current detector 203, and the detection circuit 224 is connected to the current detector 204.
  • the detection circuits 223 and 224 detect the signals output from the current detectors 203 and 204, specifically, the amplitude of the current, and output the detected result as an amplitude value.
  • the comparator 222 compares the amplitude values output from the detection circuits 223 and 224.
  • the processor 220 obtains and outputs information indicating the distance d between the power transmission circuit 41 and the power reception circuit 42 based on the comparison result of the comparator 222.
  • the processor 220 of the processing device 206 is the same as the processor 110 described in the first embodiment.
  • the memory 221 of the processing device 206 is the same as the memory 111 described in the first embodiment.
  • the function of the processing device 206 is realized by the processor 220 reading and executing a program in which the function of the processing device 206 is described, and the function of the processing device 206 is realized by a processing circuit that is dedicated hardware. Is the same as in the first embodiment.
  • FIG. 20 is a flowchart illustrating an example of processing executed by the processing device 206 of the position detection device 1B according to the third embodiment.
  • the detection circuit 223 of the processing device 206 acquires the current value I ⁇ b> 1 detected by the current detector 203 and supplies it to the comparator 222.
  • the detection circuit 224 acquires the current value I2 detected by the current detector 204 and supplies the current value I2 to the comparator 222.
  • step S302 the comparator 222 compares the current value I1 with the current value I2, and gives the result to the processor 220.
  • the processor 220 determines that the distance d is smaller than the specific distance de in step S303, and outputs the result.
  • step S302 when the current value I1 is not larger than the current value I2 (step S302, No), the processor 220 determines the comparison result of the comparator 222 in step S304. If the current value I1 is smaller than the current value I2 (step S304, Yes), the processor 220 determines in step S305 that the distance d is greater than the specific distance de and outputs the result. In step S304, when the current value I1 is not smaller than the current value I2 (No in step S304), the current value I1 is equal to the current value I2. In this case, the processor 220 determines in step S306 that the distance d is equal to the specific distance de, and outputs the result.
  • the processing device 206 adjusts power transmission parameters when the distance d is larger than the specific distance de and when the distance d is smaller than the specific distance de, and suppresses a decrease in power transmission efficiency at the actual distance d. To do.
  • the third embodiment can provide a position detection device and a power transmission device that can prevent the installation location from becoming larger than that of the first embodiment.
  • FIG. 21 is a diagram illustrating a position detection apparatus 1C according to the fourth embodiment.
  • FIG. 22 is a circuit diagram of the power transmission circuit 43 included in the position detection device 1C according to the fourth embodiment.
  • the position detection device 1C of the fourth embodiment is the same as the position detection device 1B of the third embodiment, but the power transmission circuit 43 includes a plurality of first coils 331, 332, and 333 as a plurality of first power transmission side elements. It has different points. Since the position detection apparatus 1C also has a power transmission function, it also functions as a power transmission apparatus. In the following description, portions common to the third embodiment are omitted as appropriate.
  • the power transmission circuit 43 includes a plurality of first coils 331, 332, and 333 that are first power transmission side elements, electrode plates 212 and 213 that are third power transmission side elements, and a current detector 341. , 342 and 343 and a current detector 204.
  • the current detectors 341, 342, and 343 are detectors that detect currents flowing through the first coils 331, 332, and 333 and output corresponding signals.
  • the current detector 204 is a detector that detects a current flowing through the electrode plates 212 and 213 and outputs a corresponding signal.
  • the power receiving circuit 42 is the same as the power receiving circuit 42 according to the third embodiment, and a description thereof will be omitted.
  • the first coil 333 and the electrode plates 212 and 213 are spaced apart by a distance x4.
  • the first coil 332 and the electrode plates 212 and 213 are spaced apart by a distance x5.
  • the first coil 331 and the electrode plates 212 and 213 are spaced apart by a distance x6.
  • the first coils 331, 332, and 333 and the electrode plates 212 and 213 are electrically connected in parallel.
  • the plane surrounded by the conductive wires constituting the first coils 331, 332, and 333 and the electrode plates 212 and 213 are parallel to each other. However, if the power transmission efficiency of the position detection device 1C is acceptable, the first coils 331, 332 are allowed.
  • the electrode plates 212 and 213 do not have to be parallel to at least one of the planes surrounded by the conductive wires constituting the 333 and 333. In the power receiving circuit 42, the plane surrounded by the conductive wire constituting the first coil 201 and the electrode plates 212 and 213 are parallel to each other. However, if the power transmission efficiency of the position detection device 1C can be allowed, it may not be parallel. Good.
  • a switch 338 is connected to one end side of the first coils 331, 332 and 333.
  • the switch 338 selects one of the first coils 331, 332, and 333.
  • the power feeding unit 205 is connected to the first coils 331, 332, and 333 and the electrode plates 212 and 213.
  • the switch 338 can change the path of the power supplied from the power supply unit 205. In this way, the power feeding unit 205 supplies power to the power transmission circuit 43 via the switch 338.
  • the processing device 337 controls a switch 338 that switches the plurality of first coils 331, 332, and 333.
  • the processing device 337 obtains information indicating the distance d between the power transmission circuit 43 and the power reception circuit 42 from the current values detected by the current detectors 341, 342, and 343, and how large the distance d is. Judgment is made.
  • the distance d is a distance between the electrode plates 212 and 213 of the power transmission circuit 43 and the electrode plates 212 and 213 of the power reception circuit 42.
  • the power transmission circuit 43 of the position detection apparatus 1C includes a plurality of first coils 331, 332, and 333.
  • the power transmission circuit 43 includes the three first coils 331, 332, and 333.
  • the power transmission circuit 43 may have a plurality of first coils and is limited to three. Not.
  • the first coil 201 of the power receiving circuit 42 and the first coils 331, 332, and 333 of the power transmission circuit 43 constitute a plurality of first sets. Specifically, a set of first coils 201 and 331, a set of first coils 201 and 332, and a set of first coils 201 and 333 are configured.
  • the first coil 201 of the power receiving circuit 42 and the first coils 331, 332, and 333 of the power transmission circuit 43 are magnetically coupled.
  • the electrode plates 212 and 213 of the power receiving circuit 42 are electrically coupled to the electrode plates 212 and 213 of the power transmission circuit 43.
  • the distance between the power transmission circuit 43 and the power reception circuit 42 is d
  • the degree of coupling due to magnetic field coupling between the first coil 201 of the power reception circuit 42 and the first coil 331 of the power transmission circuit 43 is km (1 )
  • the degree of coupling by magnetic field coupling between the first coil 201 of the power reception circuit 42 and the first coil 332 of the power transmission circuit 43 is km (2)
  • the degree of coupling by magnetic field coupling is defined as km (3) .
  • the degree of coupling km (1) , the degree of coupling km (2), and the degree of coupling km (3) are different.
  • the degree of coupling due to electric field coupling between the electrode plates 212 and 213 of the power transmission circuit 43 and the electrode plates 212 and 213 of the power reception circuit 42 is defined as k c .
  • FIG. 23 is a diagram illustrating a distribution of coupling degrees between elements of the position detection device 1C according to the fourth embodiment.
  • a is the absolute of the difference between the degree of coupling k m (2) and the degree of coupling k c
  • the value is
  • the relationship shown in FIG. 23 can be obtained with respect to the absolute value of the above-described difference in coupling degree.
  • three determination boundaries 351, 352, and 353 can be defined based on the magnitude relationship between the current values detected by the current detectors 204, 341, 342, and 343.
  • the specific distance d1 indicates the determination boundary 351
  • the specific distance d2 indicates the determination boundary 352
  • the specific distance d3 indicates the determination boundary 353.
  • a region where the distance d is smaller than the determination boundary 351 means that the current value of the current detector 341 is larger than the current detector 204.
  • a region where the distance d is larger than the determination boundary 351 means that the current value of the current detector 341 is smaller than the current detector 204.
  • a region where the distance d is smaller than the determination boundary 352 means that the current value of the current detector 342 is larger than the current detector 204.
  • Coupling degree k m (2) is greater than the degree of coupling k c.
  • a region where the distance d is larger than the determination boundary 352 means that the current value of the current detector 342 is smaller than the current detector 204.
  • Coupling degree k m (2) is smaller than the degree of coupling k c.
  • the region where the distance d is smaller than the determination boundary 353 means that the current value of the current detector 343 is larger than the current detector 204.
  • Coupling degree k m (3) is larger than the degree of coupling k c.
  • a region where the distance d is larger than the determination boundary 353 means that the current value of the current detector 343 is smaller than the current detector 204.
  • Coupling degree k m (3) is smaller than the degree of coupling k c.
  • the processing device 337 can determine which position in the region where the power transmission circuit 43 and the power reception circuit 42 are separated by the determination boundaries 351, 352, and 353.
  • FIG. 24 is a diagram illustrating a configuration example of the processing device 337 according to the fourth embodiment.
  • the processing device 337 includes a processor 458, a memory 459, comparators 455, 456 and 457, detection circuits 451, 452, 453, 454, and a switch drive circuit 460.
  • the detection circuit 451 is connected to the current detector 204.
  • the detection circuit 452 is connected to the current detector 341.
  • the detection circuit 453 is connected to the current detector 342.
  • the detection circuit 454 is connected to the current detector 343.
  • the detection circuits 451, 452, 453, and 454 detect the signals output from the current detectors 204, 341, 342, and 343, specifically the amplitude of the current, and output the detected results as amplitude values.
  • the comparator 455 compares the amplitude values output from the detection circuits 451 and 452.
  • the comparator 456 compares the amplitude values output from the detection circuits 451 and 453.
  • the comparator 457 compares the amplitude values output from the detection circuits 451 and 454.
  • the processor 458 obtains information indicating the distance d between the power transmission circuit 43 and the power reception circuit 42 based on the comparison results of the comparators 455, 456, and 457. Then, the processor 458 operates the switch 338 via the switch drive circuit 460 based on the obtained information, and selects one from the plurality of first coils 331, 332, and 333.
  • switch 338 and the switch drive circuit 460 are the same as the switch 338 and the switch drive circuit 160 of the second embodiment, description thereof is omitted.
  • the processor 458 is the same as the processor 110 described in the first embodiment.
  • the memory 459 is similar to the memory 111 described in Embodiment 1.
  • the processor 458 reads out and executes a program in which the function of the processing device 337 is described, and the function of the processing device 337 is realized, and the function of the processing device 337 is realized by a processing circuit that is dedicated hardware. Is the same as in the first embodiment.
  • FIG. 25 is a flowchart illustrating an example of processing executed by the processing device 337 of the position detection device 1C according to the fourth embodiment.
  • the processor 458 outputs a control signal for setting the connection destination of the switch 338 to the first coil 332 to the switch drive circuit 460.
  • the comparator 456 compares the current value I2 of the current flowing through the electrode plates 212 and 213 detected by the current detector 204 and the current flowing through the first coil 332 detected by the current detector 342. The current value I4 is compared, and the result is given to the processor 458.
  • step S402 When the current value I2 is equal to or greater than the current value I4 (step S402, Yes), the processor 458 sets the connection destination of the switch 338 as the first coil 331 via the switch drive circuit 460 in step S403. Thereafter, in step S404, the comparator 455 compares the current value I2 detected by the current detector 204 with the current value I3 of the current flowing through the first coil 331 detected by the current detector 341, and the result is obtained. To the processor 458.
  • step S405 the processor 458 determines that the distance between the power transmission circuit 43 and the power reception circuit 42 is equal to or greater than d1. Then, the processor 458 maintains the state where the first coil 331 is connected by the switch 338 in step S405.
  • step S406 the processor 458 determines that the distance between the power transmission circuit 43 and the power reception circuit 42 is smaller than d1 and greater than or equal to d2. . Then, in step S406, the processor 458 operates the switch 338 via the switch drive circuit 460 so that the second coil 332 is connected.
  • step S402 when the current value I2 is smaller than the current value I4 (step S402, No), the processor 458 sets the connection destination of the switch 338 as the first coil 333 via the switch drive circuit 460 in step S407. . Thereafter, in step S408, the comparator 457 compares the current value I2 detected by the current detector 204 with the current value I5 of the current flowing through the first coil 333 detected by the current detector 343, and compares the result. To the processor 458.
  • step S409 the processor 458 determines that the distance between the power transmission circuit 43 and the power reception circuit 42 is smaller than d2 and greater than or equal to d3. . Then, the processor 458 maintains the state where the first coil 333 is connected by the switch 338 in step S409.
  • step S410 the processor 458 determines that the distance between the power transmission circuit 43 and the power reception circuit 42 is smaller than d3. Then, the processor 458 maintains the state where the first coil 333 is connected by the switch 338 in step S410.
  • the distance d is equal to the distances d1, d2, and d3, respectively.
  • the current value I2 is greater than or equal to the current value I4
  • the current value I2 is greater than or equal to the current value I3, and the current value I2 is greater than or equal to the current value I5.
  • the first coils 331, 332, and 333 having different at least one of the arrangement, the number of turns, and the size can be switched by the switch 338, and the current value thereof is the current value of the electrode plates 212 and 213. Compare the magnitude relationship with.
  • the fourth embodiment can easily determine the distance d between the power transmission circuit 43 and the power reception circuit 42.
  • an appropriate power supply path can be selected by the switch 338 based on the determination result of the distance d between the power transmission circuit 43 and the power reception circuit 42.
  • the position detection device 1C having a smaller thickness can be provided as compared with the second embodiment.
  • the fourth embodiment can provide a position detection device and a power transmission device that can prevent an installation location from becoming larger than that of the second embodiment.
  • a plurality of first coils 331, 332, and 333 are arranged on the power transmission circuit 43 side, and information on the distance d between the power transmission circuit 43 and the power reception circuit 42 is obtained. It is not limited. In the fourth embodiment, a plurality of first coils 331, 332, and 333 may be arranged on the power receiving circuit 42 side to obtain information regarding the distance d.
  • Embodiment 5 FIG.
  • the fifth embodiment includes the first coil 101 and the second coil 102 according to the first embodiment, the first coil 201 and the electrode plates 212 and 213 according to the third embodiment, and the first coil according to the fourth embodiment.
  • the wiring patterns 331, 332, 333 and 201 and the electrode plates 212 and 213 are arranged in different layers in the multilayer substrate.
  • FIG. 26 is a diagram showing a multilayer substrate 80 according to the fifth embodiment.
  • FIG. 27 is a diagram illustrating the layers 81, 82, and 83 of the multilayer substrate 80 according to the fifth embodiment.
  • the multilayer substrate 80 includes a first layer 81, a second layer 82, and a third layer 83.
  • the second layer 82 has a spiral wiring pattern 102P.
  • the wiring pattern 102P corresponds to the second coil 102 of the position detection device 1 according to the first embodiment.
  • Through holes TH1 and TH2 penetrating the first layer 81 are attached to both ends of the wiring pattern 102P.
  • the through holes TH1 and TH2 are exposed on the surface 81P of the first layer 81 and are connected to wirings or terminals.
  • the first coil 101 of the position detection apparatus 1 includes the wiring patterns 101a, 101c, and 101e included in the first layer 81, the wiring patterns 101b and 101d included in the third layer 83, the first layer 81, The through holes TH3, TH4, TH5, TH6 that penetrate the second layer 82 and the third layer 83 are formed.
  • the wiring patterns 101a, 101c, and 101e are formed on the surface 81P of the first layer 81, and the wiring patterns 101b and 101d are formed on the surface 83P of the third layer 83.
  • the first end of the wiring pattern 101a formed on the surface 81P of the first layer 81 is electrically connected to the first end of the wiring pattern 101b formed on the surface 83P of the third layer 83 through the through hole TH3.
  • the second end of the wiring pattern 101b is electrically connected to the first end of the wiring pattern 101c formed on the surface 81P of the first layer 81 through the through hole TH4.
  • the second end of the wiring pattern 101c is electrically connected to the first end of the wiring pattern 101d formed on the surface 83P of the third layer 83 through the through hole TH5.
  • the second end of the wiring pattern 101d is electrically connected to the first end of the wiring pattern 101e formed on the surface 81P of the first layer 81 through the through hole TH6.
  • one spiral wiring pattern is formed on the multilayer substrate 80 by the wiring patterns 101a to 101e and the through holes TH1 to TH6.
  • This one wiring pattern corresponds to the first coil 101 of the position detection apparatus 1 according to the first embodiment.
  • the second end of the wiring pattern 101 a formed on the surface 81 P of the first layer 81 and the second end of the wiring pattern 101 e formed on the surface 81 P of the first layer 81 serve as the terminals of the first coil 101.
  • the multilayer substrate 80 includes a plurality of spiral wiring patterns obtained by the wiring patterns 101a to 101e and the through holes TH1 to TH6 inside or outside the wiring pattern 102P, so that the position according to the second embodiment is achieved.
  • the multilayer substrate 80 having the first coils 131, 132, 133 and the second coil 102 of the detection apparatus 1A can be obtained.
  • FIG. 28 shows a multilayer substrate 90 according to the fifth embodiment.
  • FIG. 29 is a diagram of the multilayer substrate 90 according to the fifth embodiment as viewed from the front surface 91P side.
  • the multilayer substrate 90 has a first layer 91 and a second layer 92.
  • the first layer 91 has a spiral wiring pattern 201P.
  • the second layer 92 includes wiring patterns 212P and 213P whose shapes viewed from the surface 91P of the first layer 91 of the multilayer substrate 90 are rectangular.
  • the wiring pattern 201P and the wiring patterns 212P and 213P overlap.
  • the wiring pattern 201P formed on the surface 91P of the first layer 91 corresponds to the first coil 201 of the position detection device 1B according to the third embodiment.
  • the wiring patterns 212P and 213P formed on the surface 92P of the second layer 92 correspond to the electrode plates 212 and 213 according to the third embodiment.
  • FIG. 30 is a diagram showing a multilayer substrate 90a according to the fifth embodiment.
  • the multilayer substrate 90a includes a first layer 91a, a second layer 92a, a third layer 93a, and a fourth layer 94a.
  • the first layer 91a has a spiral wiring pattern 331P.
  • the second layer 92a has a spiral wiring pattern 332P.
  • the third layer 93a has a spiral wiring pattern 333P.
  • the wiring patterns 331P, 332P and 333P have the same shape as the wiring pattern 201P shown in FIG.
  • the fourth layer 94a has wiring patterns 212P and 213P whose shapes viewed from the surface 91Pa of the first layer 91a of the multilayer substrate 90a are rectangular. When viewed from the surface 91P of the first layer 91 of the multilayer substrate 90, the wiring patterns 331P, 332P, and 333P overlap the wiring patterns 212P and 213P.
  • the wiring pattern 331P formed on the surface 91Pa of the first layer 91a corresponds to the first coil 331 of the position detection device 1C according to the fourth embodiment.
  • the wiring pattern 332P formed on the surface 92Pa of the second layer 92a corresponds to the first coil 332 of the position detection device 1C according to the fourth embodiment.
  • the wiring pattern 333P formed on the surface 93Pa of the third layer 93a corresponds to the first coil 333 of the position detection device 1C according to the fourth embodiment.
  • the wiring patterns 212P and 213P formed on the surface 94Pa of the fourth layer 94a correspond to the electrode plates 212 and 213 according to the fourth embodiment.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit and change the part.
  • 1, 1A, 1B, 1C position detection device 11, 31, 41, 43 power transmission circuit, 12, 42 power reception circuit, 80, 90, 90a multilayer substrate, 101, 101r, 201, 131, 132, 133 first coil, 102, 102r second coil, 103, 104, 134, 135, 136 detection coil, 105, 205 power supply unit, 106, 206, 137, 337 processing device, 107, 207 power receiving unit, 138, 338 switch, 151, 152, 153, 154 detection circuit, 203, 204, 341, 342, 343 current detector, 212, 213 electrode plate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

位置検出装置は、電力を受け取って少なくとも磁界を発生する複数の送電側素子と、複数の送電側素子が発生する磁界によって電力を出力する複数の受電側素子と、複数の送電側素子が発生する起電力を検出して、検出した起電力に対応する信号を出力する検出素子と、複数の送電側素子に電力が供給されている状態で、検出素子から受け取った信号の大きさに基づいて、送電側素子と受電側素子との距離を示す情報を求める処理装置と、を含み、複数の送電側素子と複数の受電側素子との中で組となる素子の結合度は、他の組となる素子とは距離に対して異なる分布であり、かつそれぞれの組となる素子の結合度が特定の距離で一致する。

Description

位置検出装置及び電力伝送装置
 本発明は、電力を送る送電回路と、送電回路からの電力を受け取る受電回路との距離を判定する位置検出装置及び電力伝送装置に関する。
 衛星機器内の基板間信号伝送に非接触コネクタを適用することは、振動耐性の向上、接続基板数の増加、バックプレーン設計コスト低減等の効果が期待できる。しかしながら、完全なコネクタレスを実現するためには、給電部についても無線化する必要がある。また、基板間電力伝送を実現するにあたっては、バックプレーン側の送電部の配置がすべてのスロットで共通である必要がある一方、受電部の位置は部品配置及び配線の制約から、ある程度自由に変更できることが求められる。近年注目されている共鳴方式の無線電力伝送は、従来から利用されている電磁誘導方式では難しかった数cm以上の距離で実用的な伝送効率を得ることができ、基板間電力伝送への適用が可能である。
 共鳴方式は位置ずれに弱く、設計した伝送距離からずれた場合に伝送効率が顕著な影響を受ける、という課題がある。こうした課題を解決する方法の1つに、送受電間の距離を検出し送電側のパラメータを調整する方法がある。送受電コイル間の距離を測定する方法としては、PSD(Position Sensitive Detector)と略称される光位置センサのように光の反射を利用する方法、超音波の反射時間から算出する方法等が一般的に用いられる。しかし、衛星内機器に用いられる部品は、宇宙空間特有の高い放射線にさらされる環境下で用いられるので、極めて高い信頼性を必要とする。このために、一般的な民生用部品を衛星内機器に適用することが困難であることが多い。前述の方法は、計測のために専用のデバイスを用いており、衛星内機器への適用が難しい。
特開2006-118885号公報
 こうした課題を解決する手法としては、無線電力伝送に用いるコイル自体を距離測定に利用する方法が考えられる。共鳴方式の無線電力伝送を基板間電力伝送に適用するにあたっては、伝送効率の距離依存性を解消するためのパラメータ調整に必要となる、送電回路と受電回路との距離を測定する必要がある。特に衛星用途では特殊なセンサー部品等を用いずに距離測定を実現することが望ましく、無線電力伝送に用いるコイル自体をセンサーとして用いる方法が考えられる。
 特許文献1には、直交する3軸の送信コイルと、XY平面上で位置をずらして配置された複数の受信コイルから構成され、各送信コイルからの磁気信号を受信し受信強度分布を解析することで位置を同定する方法が開示されている。同手法では、受信コイルを配置したXY平面からの距離測定に受信強度分布の半値帯域幅を用いることで、受信強度の絶対値に依存しない距離測定を可能にしている。
 特許文献1の方法は、XY平面上でずらして配置した複数の受信コイルの受信強度から位置を同定する。特許文献1の方法は、受信コイルからの測定に受信電力分布の半値帯域幅を用いているので、送信電力に依存せず距離の同定が可能である。一方で、受信電力分布の半値帯域幅の計測には、多数の受信コイルを広範囲に配置する必要があり、非接触コネクタが設置されるような基板間の狭い場所への適用が難しい。
 本発明は、上記に鑑みてなされたものであって、設置場所が大きくなることを抑制できる位置検出装置及び電力伝送装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る位置検出装置は、電力を受け取って少なくとも磁界を発生する複数の送電側素子と、複数の送電側素子が発生する磁界によって電力を出力する複数の受電側素子と、複数の送電側素子が発生する起電力を検出して、検出した起電力に対応する信号を出力する検出素子と、複数の送電側素子に電力が供給されている状態で、検出素子から受け取った信号の大きさに基づいて、送電側素子と受電側素子との距離を示す情報を求める処理装置と、を含む。本発明に係る位置検出装置は、複数の送電側素子と複数の受電側素子との中で組となる素子の結合度は、他の組となる素子とは距離に対して異なる分布であり、かつそれぞれの組となる素子の結合度が特定の距離で一致する。
 本発明に係る位置検出装置は、設置場所が大きくなることを抑制できる位置検出装置及び電力伝送装置を提供できるという効果を奏する。
実施の形態1に係る位置検出装置を示す図 実施の形態1に係る位置検出装置の回路図 実施の形態1に係る位置検出装置が有する要素の位置関係を示す図 実施の形態1に係る送電回路と受電回路との間の距離と、相互インダクタンスとの関係を示す図 実施の形態1に係る第1コイルの巻き数と、オフセット量と、一辺の長さと、特定の距離との関係を示す図 実施の形態1に係る第1コイルの巻き数と、オフセット量と、一辺の長さと、特定の距離との関係を示す図 実施の形態1に係る第1コイルの巻き数と、オフセット量と、一辺の長さと、特定の距離との関係を示す図 実施の形態1に係る処理装置の構成例を示す図 実施の形態1に係る位置検出装置の処理装置が実行する処理の一例を示すフローチャート 実施の形態2に係る位置検出装置を示す図 実施の形態2に係る位置検出装置が有する送電回路の回路図 実施の形態2に係る位置検出装置が有する要素の位置関係を示す図 実施の形態2に係る送電回路と受電回路との間の距離と、相互インダクタンスとの関係を示す図 実施の形態2に係る処理装置の構成例を示す図 実施の形態2に係る位置検出装置の処理装置が実行する処理の一例を示すフローチャート 実施の形態3に係る位置検出装置を示す図 実施の形態3に係る位置検出装置の等価回路を示す図 実施の形態3に係る位置検出装置の各素子間の結合度の分布を表す図 実施の形態3に係る処理装置の構成例を示す図 実施の形態3に係る位置検出装置の処理装置が実行する処理の一例を示すフローチャート 実施の形態4に係る位置検出装置を示す図 実施の形態4に係る位置検出装置が有する送電回路の回路図 実施の形態4に係る位置検出装置の各素子間の結合度の分布を表す図 実施の形態4に係る処理装置の構成例を示す図 実施の形態4に係る位置検出装置の処理装置が実行する処理の一例を示すフローチャート 実施の形態5に係る多層基板を示す図 実施の形態5に係る多層基板の各層を示す図 実施の形態5に係る多層基板を示す図 実施の形態5に係る多層基板を表面側から見た図 実施の形態5に係る多層基板を示す図
 以下に、本発明の実施の形態に係る位置検出装置及び電力伝送装置を図面に基づいて詳細に説明する。以下に説明する実施の形態により本発明が限定されるものではない。
実施の形態1.
 図1は、実施の形態1に係る位置検出装置1を示す図である。図2は、実施の形態1に係る位置検出装置1の回路図である。図3は、実施の形態1に係る位置検出装置1が有する要素の位置関係を示す図である。
 位置検出装置1は、送電側の結合素子群11と、受電側の結合素子群12と、検出コイル103,104と、処理装置106と、を含む。位置検出装置1は、送電側の結合素子群11から受電側の結合素子群12に電力が伝送されているときに、送電側の結合素子群11と受電側の結合素子群12との距離を示す情報を求めて出力する装置である。すなわち、位置検出装置1は、送電側の結合素子群11と受電側の結合素子群12との距離を示す情報を求める機能と、送電側の結合素子群11から受電側の結合素子群12に電力を伝送する機能とを有する。位置検出装置1は、電力伝送装置でもある。以下において、位置検出装置1を電力伝送装置1と称することもある。電力伝送装置1は、無線で電力を伝送する。
 送電側の結合素子群11は、複数の送電側素子である第1送電側素子101と第2送電側素子102とを含む。以下の説明において、送電側の結合素子群11を適宜、送電回路11と称する。第1送電側素子101と第2送電側素子102は、電力を受け取って少なくとも磁界を発生する。実施の形態1において、第1送電側素子101及び第2送電側素子102はコイルである。以下において、第1送電側素子101を適宜、第1コイル101と称し、第2送電側素子102を適宜、第2コイル102と称する。
 送電回路11は、複数の送電側素子が発生する起電力を検出して、検出した起電力に対応する信号を出力する検出素子を含む。実施の形態1において、検出コイル103と検出コイル104とが検出素子に対応する。検出コイル103は、第1コイル101の起電力を検出し、検出した起電力に対応する信号、詳細には電気信号を出力する。検出コイル104は、第2コイル102の起電力を検出し、検出した起電力に対応する信号、詳細には電気信号を出力する。
 第1コイル101は、1辺の長さがaの正方形となっている。第2コイル102は、1辺の長さがbの正方形となっている。第1コイル101と第2コイル102とは、図2に示されるように、電気的に直列に接続される。電気的に直列に接続された第1コイル101と第2コイル102とは、給電部105から電力が供給される。給電部105は、交流電力を送電回路11に供給する交流電源である。
 実施の形態1において、第1コイル101と第2コイル102とは組み合わされる。第1コイル101は、第2コイル102の内側に配置される。第1コイル101と第2コイル102との配置は、この配置には限定されず、第2コイル102が第1コイル101の内側に配置されてもよいし、第1コイル101の1辺が第2コイル102の内側に、かつ第2コイル102の1辺が第1コイル101の内側に配置されてもよい。
 第1コイル101と第2コイル102とは、異なる角度で配置される。第1コイル101と第2コイル102とが異なる角度で配置されるとは、第1コイル101と第2コイル102とが組み合わされた状態で、図3に示される第1コイル101の軸Z1の一部と第2コイル102の軸Z2の一部とを一致させた場合に、軸Z1と軸Z2とが角度を有することを意味する。実施の形態1において、軸Z1は第1コイル101を構成する導線で囲まれた平面の図心を通り、かつこの面と直交する。軸Z2は第2コイル102を構成する導線で囲まれた平面の図心を通り、かつこの面と直交する。第1コイル101と第2コイル102とが異なる角度で配置されるとは、第1コイル101を構成する導線で囲まれた平面と、第2コイル102を構成する導線で囲まれた平面とが平行でない状態であるともいえる。
 実施の形態1において、第1コイル101と第2コイル102とは、直交している。詳細には、軸Z1の一部と軸Z2の一部とを一致させた場合に軸Z1と軸Z2とが直交する、すなわち第1コイル101を構成する導線で囲まれた平面と第2コイル102を構成する導線で囲まれた平面とが直交する。実施の形態1において、第1コイル101と第2コイル102とが直交する方が、電力伝送装置1の送電効率が高くなるので好ましいが、電力伝送装置1の送電効率が許容できる範囲で、第1コイル101と第2コイル102とは直交している状態からずれてもよい。
 図3に示されるように、第1コイル101は、第2コイル102の中心位置からオフセットして配置されている。第1コイル101のオフセット量はx1と定義される。第2コイル102の中心位置は、第1コイル101の1辺と向かい合う第2コイル102の1辺の中央である。第2コイル102の中心位置は、第1コイル101の1辺と向かい合う第2コイル102の1辺の両端から、それぞれb/2ずつ離れた位置である。
 図3に示されるように、第1コイル101は、第2コイル102の1辺と向かい合う1辺の中央が、第2コイル102の位置に配置される。このような配置によって、第1コイル101は、第2コイル102を構成する導線で囲まれた平面を基準として、第1側と第2側とにそれぞれa/2ずつ突出する。第1コイル101は、第2コイル102の位置に配置される部分が、第2コイル102の1辺と向かい合う1辺の中央でなくてもよい。
 実施の形態1において、第1コイル101の形状と第2コイル102の形状とをともに正方形としたが、正方形には限定されない。第1コイル101の形状と第2コイル102の形状とは、長方形、円形又は楕円等、他の形状であってもよい。
 前述した検出コイル103及び104は、第1コイル101及び第2コイル102に影響を与えない程度の結合度で、それぞれが第1コイル101及び第2コイル102に対して結合されている。結合度とは、素子同士が電磁気的に結合する場合の結合の程度を表す尺度である。
 図1に示されるように、受電側の結合素子群12は、複数の受電側素子である第1受電側素子101rと第2受電側素子102rとを含む。以下の説明において、受電側の結合素子群12を適宜、受電回路12と称する。第1受電側素子101r及び第2受電側素子102rは、送電回路11の第1送電側素子101及び第2送電側素子102が発生する磁界によって電力を出力する。第1受電側素子101r及び第2受電側素子102rは、発生した電力を受電部107に供給する。受電部107は、AC/DC(Alternative Current/Direct Current)コンバータ、AC/ACコンバータ、変圧器等であるが、これらに限定されない。
 実施の形態1において、第1受電側素子101r及び第2受電側素子102rはコイルである。以下において、第1受電側素子101rを適宜、第1コイル101rと称し、第2受電側素子102rを適宜、第2コイル102rと称する。
 図1及び図3に示されるように、受電回路12の第1コイル101r及び第2コイル102rは、送電回路11の第1コイル101及び第2コイル102と同様の構造及び配置となっている。したがって、送電回路11の第1コイル101及び第2コイル102で説明した内容は、受電回路12の第1コイル101r及び第2コイル102rにも適用される。
 図2に示されるように、受電回路12は、送電回路11と同様に第1コイル101rと第2コイル102rとが電気的に直列に接続されている。図3に示されるように、受電回路12の第1コイル101rは、第2コイル102rの中心位置からオフセットして配置されている。オフセット量はx2と定義される。受電回路12のオフセット量x2は、送電回路11のオフセット量x1と同じ値であってもよいし、異なっていてもよい。
 図1に示されるように、送電回路11の第1コイル101が発生する磁束は、受電回路12の第2コイル102rを貫かないため、互いに結合しない。同様に、送電回路11の第2コイル102が発生する磁束は、受電回路12の第1コイル101を貫かないため、互いに結合しない。したがって、送電回路11と受電回路12のトータルの相互インダクタンスは、第1コイル101及び101r同士の相互インダクタンスM42と、第2コイル102及び102r同士の相互インダクタンスM31との和で表される。
 送電回路11の第1コイル101及び受電回路12の第1コイル101rは、複数の送電側素子である第1コイル101及び第2コイル102と、複数の受電側素子である第1コイル101r及び第2コイル102rとの中で、組となる。送電回路11の第2コイル102及び受電回路12の第2コイル102rも同様である。送電回路11の第1コイル101及び受電回路12の第1コイル101rは、第1の組となり、送電回路11の第2コイル102及び受電回路12の第2コイル102rは第2の組となる。
 第1コイル101及び101r同士の相互インダクタンスM42は、第1コイル101及び101rの結合度を表す。また、第2コイル102及び102r同士の相互インダクタンスM31は、第2コイル102及び102rの結合度を表す。
 図4は、実施の形態1に係る送電回路11と受電回路12との間の距離dと、相互インダクタンスMとの関係を示す図である。送電回路11と受電回路12との間の距離dは、送電回路11の第2コイル102の軸Z2と受電回路12の第2コイル102rの軸Z2との距離とするが、この距離には限定されない。
 図4に示されるように、組となる第1コイル101及び101r同士の相互インダクタンスM42と、他の組となる第2コイル102及び102r同士の相互インダクタンスM31とは、距離dに対して異なる分布となる。オフセット量x1,x2、第1コイル101,101rの寸法及び第2コイル102,102rの寸法を調整することで、図4に示されるように、特定の距離deで、相互インダクタンスM42と相互インダクタンスM31との大小関係が反転する特性を得ることができる。このような特性が得られると、第1コイル101及び101r同士の相互インダクタンスM42と、第2コイル102及び102r同士の相互インダクタンスM31とは、特定の距離deで一致する。相互インダクタンスM42と相互インダクタンスM31との差の絶対値は|M42)-M31|で示される実線のように変化する。
 特定の距離deは、相互インダクタンスM42と相互インダクタンスM31との大小関係が反転する位置の距離である。特定の距離deは、例えば、送電回路11から受電回路12への電力の伝送効率が最も高くなる大きさに予め設定される。特定の距離deは、送電回路11及び受電回路12の第1コイル101及び第2コイル102の巻き数、組み合わされる第1コイル101及び第2コイル102の位置関係、送電回路11と受電回路12との位置関係等を調整することによって設定される。
 図5から図7は、実施の形態1に係る第1コイル101及び101rの巻き数Nと、オフセット量x1及びx2と、一辺の長さaと、特定の距離deとの関係を示す図である。第1コイル101及び101rの巻き数Nは、N1,N2,N3の順に大きくなる。オフセット量x1及びx2が0である場合、第1コイル101及び101rの位置は、第2コイル102及び102rの中心位置である。オフセット量x1及びx2が正である場合、オフセット量x1及びx2の絶対値が増加するとともに第1コイル101と101rとの距離が大きくなる。オフセット量x1及びx2が負である場合、オフセット量x1及びx2の絶対値が増加するとともに第1コイル101と101rとの距離が小さくなる。第1コイル101及び101rの一辺の長さaは、a1,a2,a3,a4,a5の順に大きくなる。特定の距離deは、de1,de2,de3,de4,de5の順に大きくなる。
 図5に示されるように、例えば、第1コイル101及び101rの巻き数N=N1で第1コイル101及び101rの一辺の長さaがa1である場合、特定の距離deは、オフセット量x1及びx2の増加とともに大きくなる。図6に示されるように、第1コイル101及び101rの巻き数N=N2で第1コイル101及び101rの一辺の長さaがa2である場合、特定の距離deは、オフセット量x1及びx2が増加するとともに大きくなる。図7に示されるように、例えば、第1コイル101及び101rの巻き数N=N3で第1コイル101及び101rの一辺の長さaがa5である場合、特定の距離deは、オフセット量x1及びx2の減少とともに大きくなる。
 例えば、第1コイル101及び101rの巻き数N=N1で第1コイル101及び101rの一辺の長さaがa1である場合、オフセット量x1及びx2をxcとすれば、特定の距離deをde2とすることができる。このように、第1コイル101及び101rの巻き数Nと、第1コイル101及び101rの一辺の長さaと、オフセット量x1及びx2との少なくとも1つが変更されることにより、特定の距離deが変更される。
 位置検出装置1において、送電中に検出コイル103及び104に発生する電圧は、相互インダクタンスM42及び相互インダクタンスM31に比例する。送電回路11と受電回路12との間の距離dが判定境界121を示す特定の距離deよりも小さい場合、検出コイル103は、検出コイル104よりも大きい電圧を出力する。送電回路11と受電回路12との間の距離dが特定の距離deよりも大きい場合、検出コイル104は、検出コイル103よりも大きい電圧を出力する。送電回路11と受電回路12との間の距離dが特定の距離deに等しい場合、検出コイル103及び検出コイル104は、同じ大きさの電圧を出力する。
 処理装置106は、送電回路11の第1コイル101及び第2コイル102に電力が供給されている状態で、検出コイル103及び104から受け取った信号、すなわち電圧の大きさに基づいて、送電回路11と受電回路12との距離dを示す情報を出力する。詳細には、処理装置106は、検出コイル103の電圧と検出コイル104の電圧とを比較する。
 処理装置106は、検出コイル103の電圧の方が検出コイル104の電圧よりも大きい場合、送電回路11と受電回路12との間の距離dが特定の距離deよりも小さいことを示す情報を出力する。処理装置106は、検出コイル104の電圧の方が検出コイル103の電圧よりも大きい場合、送電回路11と受電回路12との間の距離dが特定の距離deよりも大きいことを示す情報を出力する。処理装置106は、検出コイル103の電圧と検出コイル104の電圧とが等しい場合、送電回路11と受電回路12との間の距離dが特定の距離deであることを示す情報を出力する。このように、送電回路11と受電回路12との距離dを示す情報は、距離dが特定の距離deよりも大きいか、小さいか、及び距離dが特定の距離deに等しいかを示す情報である。
 位置検出装置1は、第1コイル101と第2コイル102とを電気的に直列に接続した送電回路11及び第1コイル101rと第2コイル102rとを電気的に直列に接続した受電回路12について、第1コイル101及び第2コイル102に対してそれぞれ設けた検出コイル103及び104から出力される電圧を単純比較することにより、予め設定された判定境界121での特定の距離deよりも近いか遠いか、等距離なのかを判定できる。また、電力の伝送に用いる第1コイル101、第2コイル102、第1コイル101r及び第2コイル102r自体を、距離を測定するための検出器として利用できることから、専用のデバイスを不要とすることができる。
 図8は、実施の形態1に係る処理装置106の構成例を示す図である。処理装置106は、プロセッサ110、メモリ111、比較器112及び検波回路113,114を有している。検波回路113は、検出コイル103に接続されている。検波回路114は、検出コイル104に接続されている。処理装置106の機能はプロセッサ110によって実現される。プロセッサ110は、CPU(Central Processing Unit:中央処理装置)、マイクロプロセッサ、マイクロコンピュータ、又はDSP(Digital Signal Processor)ともいう。
 処理装置106の機能は、ソフトウェア及びファームウェアはプログラムとして記述され、メモリ111に記憶される。プロセッサ110は、メモリ111に記憶されたプログラムを読み出して実行することにより、処理装置106の機能を実現する。これらのプログラムは、処理装置106が実行する手順をコンピュータに実行させるものであるともいえる。
 メモリ111は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、及びEEPROM(Electrically Erasable Programmable Read Only Memory)といった揮発性又は不揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、及びDVD(Digital Versatile Disc)が該当する。
 処理装置106の機能は、専用のハードウェアである処理回路によって実現されてもよい。この場合、処理回路は、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はこれらを組み合わせたものが該当する。
 検波回路113及び114は、検出コイル103及び104から出力される信号、詳細には電圧の振幅を検出し、検出した結果を振幅値として出力する。比較器112は、検波回路113及び114から出力される振幅値の大小を比較する。プロセッサ110は、比較器112の比較結果に基づいて、送電回路11と受電回路12との距離dを示す情報を求めて出力する。
 図9は、実施の形態1に係る位置検出装置1の処理装置106が実行する処理の一例を示すフローチャートである。ステップS101において、処理装置106の検波回路113は検出コイル103によって検出された電圧V1を取得し、比較器112に与える。検波回路114は検出コイル104によって検出された電圧V2を取得し、比較器112に与える。
 ステップS102において、比較器112は電圧V1と電圧V2とを比較し、結果をプロセッサ110に与える。プロセッサ110は、電圧V1が電圧V2よりも大きい場合(ステップS102,Yes)、ステップS103において距離dは特定の距離deよりも小さいと判定し、結果を出力する。
 ステップS102において、電圧V1が電圧V2よりも大きくない場合(ステップS102,No)、プロセッサ110は、ステップS104において比較器112の比較結果を判定する。電圧V1が電圧V2よりも小さい場合(ステップS104,Yes)、プロセッサ110は、ステップS105において距離dは特定の距離deよりも大きいと判定し、結果を出力する。ステップS104において、電圧V1が電圧V2よりも小さくない場合(ステップS104,No)、電圧V1は電圧V2と等しい。この場合、プロセッサ110は、ステップS106において距離dは特定の距離deに等しいと判定し、結果を出力する。
 処理装置106は、距離dが特定の距離deよりも大きい場合、及び距離dが特定の距離deよりも小さい場合に、送電のパラメータ、すなわち給電部105が送電回路11に電力を供給する際のパラメータを調整して、実際の距離dにおける送電効率の低下を抑制する。送電のパラメータは、例えば、送電回路11に供給される交流電力の周波数、電圧等が挙げられる。送電回路11に供給される交流電力の周波数、電圧が調整される場合、給電部105は、交流電力を直流電力に変換するコンバータと、コンバータによって変換された直流電力を交流電力に変換するインバータとを有する。
 以上、実施の形態1は、第1コイル101と第2コイル102とを電気的に直列に接続した送電回路11及び第1コイル101rと第2コイル102rとを電気的に直列に接続した受電回路12について、第1コイル101及び第2コイル102に対してそれぞれ設けた検出コイル103及び104から出力される電圧を比較する。このような処理により、実施の形態1は、送電回路11と受電回路12との距離dが、予め設定された特定の距離deよりも近いか遠いか、等距離なのかを簡易に判定できる。また、電力の伝送に用いられる第1コイル101、第2コイル102、第1コイル101r及び第2コイル102r自体を、距離を測定するための検出器として利用できることから、専用のデバイスを不要とすることができる。
 さらに、送電回路11の第1コイル101及び第2コイル102同士、受電回路12の第1コイル101r及び第2コイル102r同士は近接して配置することが可能なので、送電回路11と受電回路12との距離dを検出するために広い設置場所を必要としない。このため、実施の形態1は、設置場所が大きくなることを抑制できる位置検出装置及び電力伝送装置を提供できる。
 実施の形態1は、送電回路11側で送電回路11と受電回路12との距離dに関する情報を求めたが、受電回路12側で距離dに関する情報を求めてもよい。この場合、検出コイル103は受電回路12の第1コイル101rの起電力を検出し、検出コイル104は受電回路12の第2コイル102rの起電力を検出する。実施の形態1で説明した構成は、以下の実施の形態においても適宜適用できる。
実施の形態2.
 図10は、実施の形態2に係る位置検出装置1Aを示す図である。図11は、実施の形態2に係る位置検出装置1Aが有する送電回路31の回路図である。図12は、実施の形態2に係る位置検出装置1Aが有する要素の位置関係を示す図である。実施の形態2の位置検出装置1Aは、実施の形態1の位置検出装置1と同様であるが、送電回路31は複数の第1送電側素子として、複数の第1コイル131,132及び133を有する点が異なる。次においては、実施の形態1と共通する部分は適宜省略して説明する。位置検出装置1Aは、送電機能も有しているので、電力伝送装置としても機能する。
 図10及び図12に示されるように、送電回路31は、複数の第1コイル131,132及び133と、第2コイル102と、それぞれの第1コイル131,132及び133の起電力を検出するための検出コイル134,135及び136と、第2コイル102の起電力を検出する検出コイル104とを含む。図12に示されるように、第1コイル131と第1コイル132とは間隔x3を空けて配置される。第1コイル132と第1コイル133とは、間隔x4を空けて配置される。
 図11に示されるように、第1コイル131,132及び133は並列に接続されている。第2コイル102と、並列に接続された第1コイル131,132及び133とは直列に接続される。第1コイル131,132及び133の第2コイル102とは反対側には、スイッチ138が接続されている。スイッチ138は、第1コイル131,132及び133から1つを選択する。第2コイル102及びスイッチ138は、給電部105に接続される。スイッチ138によって第1コイル131,132及び133から1つが選択されると、選択されたものと第2コイル102とが直列接続される。すなわち、スイッチ138によって選択された第1コイルのみに、給電部105から電流が流れるようになっている。このようにして、給電部105は、スイッチ138を介して送電回路31に電力を供給する。
 処理装置137は、複数の第1コイル131,132及び133を切り替えるスイッチ138を制御する。また、処理装置137は、検出コイル104,134,135及び136に発生する電圧を監視する。
 位置検出装置1Aの送電回路31は、複数の第1コイル131,132及び133を有している。実施の形態2において、送電回路31は3個の第1コイル131,132及び133を有しているが、送電回路31が有する第1コイルの数は複数であればよく、3個には限定されない。
 受電回路12の第1コイル101rと、送電回路31のそれぞれの第1コイル131,132及び133とで、第1の組が複数構成される。詳細には、第1コイル101r及び131の組と、第1コイル101r及び132の組と、第1コイル101r及び133の組とが構成される。
 図12に示されるように、送電回路31と受電回路12との距離をdと定義する。また、図10に示されるように、受電回路12の第1コイル101rと送電回路31の第1コイル131との結合度を表す相互インダクタンスをM42(1)、受電回路12の第1コイル101rと送電回路31の第1コイル132との結合度を表す相互インダクタンスをM42(2)、受電回路12の第1コイル101rと送電回路31の第1コイル133との結合度を表す相互インダクタンスをM42(3)と定義する。相互インダクタンスM42(1)と、相互インダクタンスM42(2)と、相互インダクタンスM42(3)とは異なる。
 図13は、実施の形態2に係る送電回路31と受電回路12との間の距離dと、相互インダクタンスMとの関係を示す図である。相互インダクタンスM42(1)と、相互インダクタンスM31との差の絶対値は|M42(1)-M31|であり、相互インダクタンスM42(2)と相互インダクタンスM31との差の絶対値は|M42(2)-M31|であり、相互インダクタンスM42(3)と相互インダクタンスM31との差の絶対値は|M42(3)-M31|である。
 第1コイル131,132及び133の配置、巻き数、及び寸法のうち少なくとも1つを調整することで、前述した相互インダクタンスの差の絶対値に関して、図13に示すような関係を得ることができる。このような関係がある場合、検出コイル104,134,135及び136によって検出された起電力の大小関係に基づいて、3個の判定境界141,142及び143を定義することができる。起電力は、電圧である。特定の距離d1は判定境界141を示し、特定の距離d2は判定境界142を示し、特定の距離d3は判定境界143を示す。
(1)判定境界141よりも距離dが小さい領域は、検出コイル134の電圧が検出コイル104より大きいことを意味する。相互インダクタンスM42(1)は相互インダクタンスM31よりも大きくなる。
(2)判定境界141よりも距離dが大きい領域は、検出コイル134の電圧が検出コイル104より小さいことを意味する。相互インダクタンスM42(1)は相互インダクタンスM31よりも小さくなる。
(3)判定境界142よりも距離dが小さい領域は、検出コイル135の電圧が検出コイル104より大きいことを意味する。相互インダクタンスM42(2)は相互インダクタンスM31よりも大きくなる。
(4)判定境界142よりも距離dが大きい領域は、検出コイル135の電圧が検出コイル104より小さいことを意味する。相互インダクタンスM42(2)は相互インダクタンスM31よりも小さくなる。
(5)判定境界143よりも距離dが小さい領域は、検出コイル136の電圧が検出コイル104より大きいことを意味する。相互インダクタンスM42(3)は相互インダクタンスM31よりも大きくなる。
(6)判定境界143よりも距離dが大きい領域は、検出コイル136の電圧が検出コイル104より小さいことを意味する。相互インダクタンスM42(3)は相互インダクタンスM31よりも小さくなる。
 このような関係を用いることで、処理装置137は、送電回路31と受電回路12とが判定境界141,142及び143によって区切られる領域のどの位置にいるかを判定することが可能となる。
 図14は、実施の形態2に係る処理装置137の構成例を示す図である。処理装置137は、プロセッサ158と、メモリ159と、比較器155,156及び157と、検波回路151,152,153,154と、スイッチ駆動回路160とを有している。検波回路151は、検出コイル104に接続されている。検波回路152は、検出コイル134に接続されている。検波回路153は、検出コイル135に接続されている。検波回路154は、検出コイル136に接続されている。
 検波回路151,152,153及び154は、検出コイル104,134,135及び136から出力される信号、詳細には電圧の振幅を検出し、検出した結果を振幅値として出力する。比較器155は、検波回路151及び152から出力される振幅値の大小を比較する。比較器156は、検波回路151及び153から出力される振幅値の大小を比較する。比較器156は、検波回路151及び154から出力される振幅値の大小を比較する。プロセッサ158は、比較器155,156及び157の比較結果に基づいて、送電回路31と受電回路12との距離dを示す情報を求める。そして、プロセッサ158は、求めた情報に基づき、スイッチ駆動回路160を介してスイッチ138を動作させ、複数の第1コイル131,132及び133から1つを選択する。
 スイッチ138は、機械式のスイッチ、スイッチング素子等である。スイッチ138が機械式のスイッチである場合、スイッチ駆動回路160は、プロセッサ158からの指令に基づき、スイッチ138を動作させるためのアクチュエータを駆動する制御信号を生成してスイッチ138に供給する。スイッチ138がスイッチング素子である場合、スイッチ駆動回路160は、プロセッサ158からの指令に基づき、スイッチング素子をオン又はオフさせるための制御信号を生成してスイッチ138に供給する。
 プロセッサ158は、実施の形態1で説明したプロセッサ110と同様である。また、メモリ159は、実施の形態1で説明したメモリ111と同様である。処理装置137の機能が記述されたプログラムをプロセッサ158が読み出して実行することによって処理装置137の機能が実現されること、専用のハードウェアである処理回路によって処理装置137の機能が実現されることは、実施の形態1と同様である。
 図15は、実施の形態2に係る位置検出装置1Aの処理装置137が実行する処理の一例を示すフローチャートである。ステップS201において、プロセッサ158は、スイッチ駆動回路160にスイッチ138の接続先を第1コイル132とする制御信号を出力する。次に、ステップS202において、比較器156は、検出コイル104によって検出された第2コイル102の電圧V2と、検出コイル135によって検出された第1コイル132の電圧V4とを比較し、結果をプロセッサ158に与える。
 電圧V2が電圧V4以上である場合(ステップS202,Yes)、プロセッサ158は、ステップS203において、スイッチ駆動回路160を介してスイッチ138の接続先を第1コイル131とする。その後、ステップS204において、比較器155は、検出コイル104によって検出された第2コイル102の電圧V2と、検出コイル134によって検出された第1コイル131の電圧V3とを比較し、結果をプロセッサ158に与える。
 電圧V2が電圧V3以上である場合(ステップS204,Yes)、ステップS205において、プロセッサ158は送電回路31と受電回路12との間の距離がd1以上であると判定する。そして、プロセッサ158は、ステップS205において、スイッチ138によって第1コイル131が接続された状態を維持する。
 電圧V2が電圧V3よりも小さい場合(ステップS204,No)、ステップS206において、プロセッサ158は、送電回路31と受電回路12との間の距離がd1よりも小さくd2以上であると判定する。そして、プロセッサ158は、ステップS206において、スイッチ駆動回路160を介してスイッチ138を動作させて、第2コイル132が接続された状態とする。
 ステップS202に戻り、電圧V2が電圧V4よりも小さい場合(ステップS202,No)、プロセッサ158は、ステップS207において、スイッチ駆動回路160を介してスイッチ138の接続先を第1コイル133とする。その後、ステップS208において、比較器157は、検出コイル104によって検出された第2コイル102の電圧V2と、検出コイル136によって検出された第1コイル133の電圧V5とを比較し、結果をプロセッサ158に与える。
 電圧V2が電圧V5以上である場合(ステップS208,Yes)、ステップS209において、プロセッサ158は、送電回路31と受電回路12との間の距離がd2よりも小さくd3以上であると判定する。この場合、プロセッサ158は、ステップS209において、スイッチ138によって第1コイル133が接続された状態を維持する。
 電圧V2が電圧V5よりも小さい場合(ステップS208,No)、ステップS210において、プロセッサ158は、送電回路31と受電回路12との間の距離がd3よりも小さいと判定する。そして、プロセッサ158は、ステップS210において、スイッチ138によって第1コイル133が接続された状態を維持する。
 電圧V2が電圧V4である場合、電圧V2が電圧V3である場合及び電圧V2が電圧V5である場合、距離dは、それぞれ距離d1,d2及びd3に等しい。実施の形態2では、電圧V2が電圧V4以上である場合、電圧V2が電圧V3以上である場合及び電圧V2が電圧V5以上である場合として扱っている。
 実施の形態2において、処理装置137は、配置、巻き数及び寸法のうち少なくとも1つを異ならせた複数の第1コイル131,132及び133を、スイッチ138によって切り替えられるようにし、その起電力を第2コイル102の起電力と比較し大小関係を判定する。この処理によって、処理装置137は、送電回路31と受電回路12との間の距離dを簡易に判定することが可能となる。
 距離の検出に用いられる第1コイル131,132及び133は、すべて第2コイル102の内部に組み込むことが可能なので、第1コイル131,132及び133を設置する際には大きい面積は不要である。このため、実施の形態2は、設置場所が大きくなることを抑制できる位置検出装置及び電力伝送装置を提供できる。さらに、処理装置137は、送電回路31と受電回路12との間の距離dの判定結果に基づいて、スイッチ138によって適切な給電経路を選択することが可能となる。
 実施の形態2は、送電回路31側に複数の第1コイル131,132及び133を配置して、送電回路31と受電回路12との距離dに関する情報を求めたが、受電回路12側に複数の第1コイル131,132及び133を配置して、距離dに関する情報を求めてもよい。実施の形態2で説明した構成は、以下の実施の形態においても適宜適用できる。
実施の形態3.
 図16は、実施の形態3に係る位置検出装置1Bを示す図である。図17は、実施の形態3に係る位置検出装置1Bの等価回路を示す図である。図18は、実施の形態3に係る位置検出装置1Bの各素子間の結合度の分布を表す図である。
 実施の形態3の位置検出装置1Bは、実施の形態1の位置検出装置1が有する第2コイル102の代わりに、電界を発生する第3送電側素子212及び213と、同じく電界を発生する第3受電側素子212及び213を有する点が異なる。位置検出装置1Bは、送電機能も有しているので、電力伝送装置としても機能する。次においては、実施の形態1と共通する部分は適宜省略して説明する。
 送電回路41は、第1送電側素子である第1コイル201と、第3送電側素子212及び213とを有する。第3送電側素子212及び213は電界を発生する素子であり、実施の形態3では一対の金属板である。第3送電側素子212及び213は電界を発生できればよく、金属板に限定されない。以下において、第3送電側素子212及び213を適宜、電極板212及び213と称する。
 第1コイル201と電極板212及び213とは、距離xだけ離れて配置される。第1コイル201と電極板212及び213とは、対向して配置される。第1コイル201を構成する導線で囲まれた平面と、電極板212及び213とは平行になっているが、位置検出装置1Bの送電効率が許容できれば、平行でなくてもよい。受電回路42でも同様である。
 図17に示されるように、第1コイル201と電極板212及び213とは電気的に並列に接続されている。図16に示されるように、給電部205は、第1コイル201と電極板212及び213とに電力を供給する。送電回路41は、検出素子として電流検出器203及び204を有する。電流検出器203は、第1コイル201を流れる電流を検出し、対応する信号を出力する。電流検出器204は、電極板212及び213を流れる電流を検出し、対応する信号を出力する。
 電流検出器203及び204は、測定対象の導線を流れる電流に比例して発生する磁界を検出するコイル又はホール素子、導線の経路上に配置された微小抵抗に発生する電圧降下を測定する回路等が挙げられる。電流検出器203及び204は、これらに限定されない。処理装置206は、電流検出器203及び204の出力である電流値を取得し、取得した電流値の振幅の大きさを比較することで、送電回路41と受電回路42との距離dを示す情報を求めて出力する。距離dは、送電回路41の電極板212及び213と、受電回路42の電極板212及び213との距離である。
 図16に示すように、第1コイル201は、1辺が長さaの正方形のコイルであるが、第1コイル201はこれには限定されない。第1コイル201は、長方形、円形又は楕円形のコイルであってもよい。電極板212及び213は、長辺の長さがh、短辺の長さがcの長方形の板である。電極板212と電極板213との間の距離をg、電極板212をe1、電極板213をe2と定義する。電極板212及び213の形状は、長方形以外であってもよい。
 受電回路42は、第1コイル201と第3受電側素子212及び213とを有する。受電回路42は、送電回路41と同一形状かつ同一構造となっている。以下において、第3受電側素子212及び213を適宜、電極板212及び213と称する。送電回路41の電極板212及び213と区別するために、受電回路42の電極板212をe3、電極板213をe4と定義する。受電回路42は、電力を取り出すための受電部207と接続されている。
 図17において、e1,e2,e3及びe4は、送電回路41及び受電回路42の電極板212及び213を示す。Csは、電極板e1と電極板e3との間の静電容量、及び電極板e2と電極板e4との間の静電容量を示す。Cpは、電極板e1と電極板e2との間の静電容量、及び電極板e3と電極板e4との間の静電容量を示す。Cxは、電極板e1と電極板e4との間の静電容量、及び電極板e2と電極板e3との間の静電容量を示す。
 L1は、送電回路41及び受電回路42の第1コイル201を示す。送電回路41の第1コイル201と受電回路42の第1コイル201とは、磁界結合により結合して、電力を伝送する。送電回路41の電極板212及び213と、受電回路42の電極板212及び213とは電界結合により結合して電力を伝送する。このとき、磁界結合と電界結合とは距離に対して異なる分布を有する。また送電回路41と受電回路42とのトータルの結合度は、磁界結合と電界結合との和又は差によって表される。
 したがって、実施の形態1と同様に、第1コイル201の寸法、電極板212及び213の寸法、第1コイル201と電極板212及び213との間の距離等を調整することで、図18に示すように、特定の距離deで磁界結合と電界結合との大小関係が反転するような特性を得ることができる。この場合、電界結合の結合度kと磁界結合の結合度kとの差の絶対値は|k-k|で示される実線のように変化する。
 位置検出装置1Bは、送電中に電流検出器203及び204で観測される電流量が、磁界結合の結合度kmと、電界結合の結合度kとに比例する。したがって、送電回路41と受電回路42との間の距離dが判定境界141を表す特定の距離deよりも小さい場合には、電流検出器204よりも大きい電流が電流検出器203によって検出される。
 処理装置206は、電流検出器203の電流値と電流検出器204の電流値とを比較する。そして、電流検出器203の電流値の方が電流検出器204の電流値よりも大きい場合には、処理装置206は、送電回路41と受電回路42との間の距離dは特定の距離deよりも小さいと判定する。処理装置206は、電流検出器204の電流値の方が電流検出器203の電流値よりも大きい場合には、送電回路41と受電回路42との間の距離dは特定の距離deより大きいと判定する。処理装置206は、電流検出器204の電流値と電流検出器203の電流値とが同一である場合には、送電回路41と受電回路42との間の距離dは特定の距離deに等しいと判定する。
 図19は、実施の形態3に係る処理装置206の構成例を示す図である。処理装置206は、実施の形態1の処理装置106と同様の構成である。処理装置206の検波回路223は電流検出器203に接続され、検波回路224は電流検出器204に接続されている。検波回路223及び224は、電流検出器203,204から出力される信号、詳細には電流の振幅を検出し、検出した結果を振幅値として出力する。比較器222は、検波回路223及び224から出力される振幅値の大小を比較する。プロセッサ220は、比較器222の比較結果に基づいて、送電回路41と受電回路42との距離dを示す情報を求めて出力する。
 処理装置206のプロセッサ220は、実施の形態1で説明したプロセッサ110と同様である。また、処理装置206のメモリ221は、実施の形態1で説明したメモリ111と同様である。処理装置206の機能が記述されたプログラムをプロセッサ220が読み出して実行することによって処理装置206の機能が実現されること、専用のハードウェアである処理回路によって処理装置206の機能が実現されることは、実施の形態1と同様である。
 図20は、実施の形態3に係る位置検出装置1Bの処理装置206が実行する処理の一例を示すフローチャートである。ステップS301において、処理装置206の検波回路223は電流検出器203によって検出された電流値I1を取得し、比較器222に与える。検波回路224は電流検出器204によって検出された電流値I2を取得し、比較器222に与える。
 ステップS302において、比較器222は電流値I1と電流値I2とを比較し、結果をプロセッサ220に与える。プロセッサ220は、電流値I1が電流値I2よりも大きい場合(ステップS302,Yes)、ステップS303において距離dは特定の距離deよりも小さいと判定し、結果を出力する。
 ステップS302において、電流値I1が電流値I2よりも大きくない場合(ステップS302,No)、プロセッサ220は、ステップS304において比較器222の比較結果を判定する。電流値I1が電流値I2よりも小さい場合(ステップS304,Yes)、プロセッサ220は、ステップS305において距離dは特定の距離deよりも大きいと判定し、結果を出力する。ステップS304において、電流値I1が電流値I2よりも小さくない場合(ステップS304,No)、電流値I1は電流値I2と等しい。この場合、プロセッサ220は、ステップS306において距離dは特定の距離deに等しいと判定し、結果を出力する。
 処理装置206は、距離dが特定の距離deよりも大きい場合、及び距離dが特定の距離deよりも小さい場合に、送電のパラメータを調整して、実際の距離dにおける送電効率の低下を抑制する。
 実施の形態3においては、第1コイル201と電極板212及び213とを並列に接続した送電回路41及び受電回路42について、第1コイル201と電極板212及び213に対してそれぞれ設けた電流検出器203及び204から出力される電流値を比較する。このような処理により、送電回路41と受電回路42との距離dが、予め設定された特定の距離deよりも近いか遠いか、等距離なのかを簡易に判定できる。
 実施の形態3は、第1コイル201と電極板212及び213とが平行に配置されるため、実施の形態1の構造と比較して、薄型の構造を実現することができる。その結果、実施の形態3は、実施の形態1よりも設置場所が大きくなることを抑制できる位置検出装置及び電力伝送装置を提供できる。
 実施の形態3は、送電回路41側で送電回路41と受電回路42との距離dに関する情報を求めたが、受電回路42側で距離dに関する情報を求めてもよい。実施の形態3で開示した構成は、以下の実施の形態においても適宜適用できる。
実施の形態4.
 図21は、実施の形態4に係る位置検出装置1Cを示す図である。図22は、実施の形態4に係る位置検出装置1Cが有する送電回路43の回路図である。実施の形態4の位置検出装置1Cは、実施の形態3の位置検出装置1Bと同様であるが、送電回路43は複数の第1送電側素子として、複数の第1コイル331,332及び333を有する点が異なる。位置検出装置1Cは、送電機能も有しているので、電力伝送装置としても機能する。次においては、実施の形態3と共通する部分は適宜省略して説明する。
 図21に示されるように、送電回路43は、第1送電側素子である複数の第1コイル331,332及び333と、第3送電側素子である電極板212及び213と、電流検出器341,342及び343と、電流検出器204とを含む。電流検出器341,342及び343は、それぞれの第1コイル331,332及び333を流れる電流を検出し、対応する信号を出力する検出器である。電流検出器204は、電極板212及び213を流れる電流を検出し、対応する信号を出力する検出器である。受電回路42は、実施の形態3の受電回路42と同様なので説明を省略する。
 図21に示されるように、第1コイル333と電極板212及び213とは、距離x4だけ離れて配置される。第1コイル332と電極板212及び213とは、距離x5だけ離れて配置される。第1コイル331と電極板212及び213とは、距離x6だけ離れて配置される。図22に示されるように、第1コイル331,332及び333と電極板212及び213とは電気的に並列に接続されている。
 第1コイル331,332及び333を構成する導線で囲まれた平面と、電極板212及び213とは平行になっているが、位置検出装置1Cの送電効率が許容できれば、第1コイル331,332及び333を構成する導線で囲まれた平面の少なくとも1つと電極板212及び213とは平行でなくてもよい。受電回路42においては、第1コイル201を構成する導線で囲まれた平面と、電極板212及び213とは平行になっているが、位置検出装置1Cの送電効率が許容できれば平行でなくてもよい。
 第1コイル331,332及び333の一端側には、スイッチ338が接続されている。スイッチ338は、第1コイル331,332及び333から1つを選択する。給電部205は、第1コイル331,332及び333と電極板212及び213とに接続されている。スイッチ338によって第1コイル331,332及び333から1つが選択されると、選択されたものと電極板212及び213とに、給電部205から電力が供給される。すなわち、スイッチ338は、給電部205から供給される電力の経路を変更することができる。このようにして、給電部205は、スイッチ338を介して送電回路43に電力を供給する。
 処理装置337は、複数の第1コイル331,332及び333を切り替えるスイッチ338を制御する。また、処理装置337は、電流検出器341,342及び343によって検出される電流値から送電回路43と受電回路42との距離dを示す情報を求め、距離dがどの程度の大きさであるかの判定を行う。距離dは、送電回路43の電極板212及び213と、受電回路42の電極板212及び213との距離である。
 位置検出装置1Cの送電回路43は、複数の第1コイル331,332及び333を有している。実施の形態4において、送電回路43は3個の第1コイル331,332及び333を有しているが、送電回路43が有する第1コイルの数は複数であればよく、3個には限定されない。
 受電回路42の第1コイル201と、送電回路43のそれぞれの第1コイル331,332及び333とで、第1の組が複数構成される。詳細には、第1コイル201及び331の組と、第1コイル201及び332の組と、第1コイル201及び333の組とが構成される。
 受電回路42の第1コイル201と、送電回路43の第1コイル331,332及び333とは磁界結合する。受電回路42の電極板212及び213と送電回路43の電極板212及び213とは電界結合する。
 図21に示されるように、送電回路43と受電回路42との距離をd、受電回路42の第1コイル201と送電回路43の第1コイル331との磁界結合による結合度をkm(1)、受電回路42の第1コイル201と送電回路43の第1コイル332との磁界結合による結合度をkm(2)、受電回路42の第1コイル201と送電回路43の第1コイル333との磁界結合による結合度をkm(3)と定義する。結合度km(1)と、結合度km(2)と、結合度km(3)とは異なる。送電回路43の電極板212及び213と、受電回路42の電極板212及び213との電界結合による結合度をkと定義する。
 図23は、実施の形態4に係る位置検出装置1Cの各素子間の結合度の分布を表す図である。結合度km(1)と、結合度kとの差の絶対値は|km(1)-k|であり、結合度km(2)と結合度kとの差の絶対値は|km(2)-k|であり、結合度km(3)と結合度kとの差の絶対値は|km(3)-k|である。
 第1コイル331,332及び333の配置、巻き数、及び寸法のうち少なくとも1つを調整することで、前述した結合度の差の絶対値に関して、図23に示すような関係を得ることができる。このような関係がある場合、電流検出器204,341,342及び343によって検出された電流値の大小関係に基づいて、3個の判定境界351,352及び353を定義することができる。特定の距離d1は判定境界351を示し、特定の距離d2は判定境界352を示し、特定の距離d3は判定境界353を示す。
(1)判定境界351よりも距離dが小さい領域は、電流検出器341の電流値が電流検出器204より大きいことを意味する。結合度km(1)は結合度kよりも大きくなる。
(2)判定境界351よりも距離dが大きい領域は、電流検出器341の電流値が電流検出器204より小さいことを意味する。結合度km(1)は結合度kよりも小さくなる。
(3)判定境界352よりも距離dが小さい領域は、電流検出器342の電流値が電流検出器204より大きいことを意味する。結合度km(2)は結合度kよりも大きくなる。
(4)判定境界352よりも距離dが大きい領域は、電流検出器342の電流値が電流検出器204より小さいことを意味する。結合度km(2)は結合度kよりも小さくなる。
(5)判定境界353よりも距離dが小さい領域は、電流検出器343の電流値が電流検出器204より大きいことを意味する。結合度km(3)は結合度kよりも大きくなる。
(6)判定境界353よりも距離dが大きい領域は、電流検出器343の電流値が電流検出器204より小さいことを意味する。結合度km(3)は結合度kよりも小さくなる。
 このような関係を用いることで、処理装置337は、送電回路43と受電回路42とが判定境界351,352及び353によって区切られる領域のどの位置にいるかを判定することが可能となる。
 図24は、実施の形態4に係る処理装置337の構成例を示す図である。処理装置337は、プロセッサ458と、メモリ459と、比較器455,456及び457と、検波回路451,452,453,454と、スイッチ駆動回路460とを有している。検波回路451は、電流検出器204に接続されている。検波回路452は、電流検出器341に接続されている。検波回路453は、電流検出器342に接続されている。検波回路454は、電流検出器343に接続されている。
 検波回路451,452,453及び454は、電流検出器204,341,342及び343から出力される信号、詳細には電流の振幅を検出し、検出した結果を振幅値として出力する。比較器455は、検波回路451及び452から出力される振幅値の大小を比較する。比較器456は、検波回路451及び453から出力される振幅値の大小を比較する。比較器457は、検波回路451及び454から出力される振幅値の大小を比較する。
 プロセッサ458は、比較器455,456及び457の比較結果に基づいて、送電回路43と受電回路42との距離dを示す情報を求める。そして、プロセッサ458は、求めた情報に基づき、スイッチ駆動回路460を介してスイッチ338を動作させ、複数の第1コイル331,332及び333から1つを選択する。
 スイッチ338及びスイッチ駆動回路460は、実施の形態2のスイッチ338及びスイッチ駆動回路160と同様なので、説明を省略する。
 プロセッサ458は、実施の形態1で説明したプロセッサ110と同様である。また、メモリ459は、実施の形態1で説明したメモリ111と同様である。処理装置337の機能が記述されたプログラムをプロセッサ458が読み出して実行することによって処理装置337の機能が実現されること、専用のハードウェアである処理回路によって処理装置337の機能が実現されることは、実施の形態1と同様である。
 図25は、実施の形態4に係る位置検出装置1Cの処理装置337が実行する処理の一例を示すフローチャートである。ステップS401において、プロセッサ458は、スイッチ駆動回路460にスイッチ338の接続先を第1コイル332とする制御信号を出力する。次に、ステップS402において、比較器456は、電流検出器204によって検出された電極板212及び213を流れる電流の電流値I2と、電流検出器342によって検出された第1コイル332を流れる電流の電流値I4とを比較し、結果をプロセッサ458に与える。
 電流値I2が電流値I4以上である場合(ステップS402,Yes)、プロセッサ458は、ステップS403において、スイッチ駆動回路460を介してスイッチ338の接続先を第1コイル331とする。その後、ステップS404において、比較器455は、電流検出器204によって検出された電流値I2と、電流検出器341によって検出された第1コイル331を流れる電流の電流値I3とを比較し、結果をプロセッサ458に与える。
 電流値I2が電流値I3以上である場合(ステップS404,Yes)、ステップS405において、プロセッサ458は送電回路43と受電回路42との間の距離がd1以上であると判定する。そして、プロセッサ458は、ステップS405において、スイッチ338によって第1コイル331が接続された状態を維持する。
 電流値I2が電流値I3よりも小さい場合(ステップS404,No)、ステップS406において、プロセッサ458は、送電回路43と受電回路42との間の距離がd1よりも小さくd2以上であると判定する。そして、プロセッサ458は、ステップS406において、スイッチ駆動回路460を介してスイッチ338を動作させて、第2コイル332が接続された状態とする。
 ステップS402に戻り、電流値I2が電流値I4よりも小さい場合(ステップS402,No)、プロセッサ458は、ステップS407において、スイッチ駆動回路460を介してスイッチ338の接続先を第1コイル333とする。その後、ステップS408において、比較器457は、電流検出器204によって検出された電流値I2と、電流検出器343によって検出された第1コイル333を流れる電流の電流値I5とを比較し、結果をプロセッサ458に与える。
 電流値I2が電流値I5以上である場合(ステップS408,Yes)、ステップS409において、プロセッサ458は、送電回路43と受電回路42との間の距離がd2よりも小さくd3以上であると判定する。そして、プロセッサ458は、ステップS409において、スイッチ338によって第1コイル333が接続された状態を維持する。
 電流値I2が電流値I5よりも小さい場合(ステップS408,No)、ステップS410において、プロセッサ458は、送電回路43と受電回路42との間の距離がd3よりも小さいと判定する。そして、プロセッサ458は、ステップS410において、スイッチ338によって第1コイル333が接続された状態を維持する。
 電流値I2が電流値I4である場合、電流値I2が電流値I3である場合及び電流値I2が電流値I5である場合、距離dは、それぞれ距離d1,d2及びd3に等しい。実施の形態4では、電流値I2が電流値I4以上である場合、電流値I2が電流値I3以上である場合及び電流値I2が電流値I5以上である場合として扱っている。
 実施の形態4は、配置、巻き数及び寸法のうち少なくとも1つを異ならせた第1コイル331,332及び333をスイッチ338により切り替えられるようにし、その電流値を電極板212及び213の電流値と比較して大小関係を調べる。このような処理により、実施の形態4は、送電回路43と受電回路42との間の距離dを簡易に判定することが可能となる。実施の形態4は、送電回路43と受電回路42との間の距離dの判定結果に基づいて、スイッチ338によって適切な給電経路を選択することが可能となる。
 実施の形態4は、電極板212及び213と第1コイル331,332及び333とが対向して配置されるため、実施の形態2と比較して、より厚みの小さい位置検出装置1Cを提供できる。このように、実施の形態4は、実施の形態2よりも設置場所が大きくなることを抑制できる位置検出装置及び電力伝送装置を提供できる。電極板212及び213と、第1コイル331,332及び333とがすべて平行に配置されることで、すべて平行でない場合と比較して、さらに厚みの小さい位置検出装置1Cが提供される。
 実施の形態4は、送電回路43側に複数の第1コイル331,332及び333を配置して、送電回路43と受電回路42との距離dに関する情報を求めたが、このようなものには限定されない。実施の形態4は、受電回路42側に複数の第1コイル331,332及び333を配置して、距離dに関する情報を求めてもよい。
実施の形態5.
 実施の形態5は、実施の形態1に係る第1コイル101及び第2コイル102と、実施の形態3に係る第1コイル201及び電極板212,213と、実施の形態4に係る第1コイル331,332,333及び201及び電極板212,213とを、多層基板内の異なる層に配置される配線パターンとしたものである。
 図26は、実施の形態5に係る多層基板80を示す図である。図27は、実施の形態5に係る多層基板80の各層81,82及び83を示す図である。多層基板80は、第1層81と、第2層82と、第3層83とを有する。第2層82は、図27に示されるように螺旋状の配線パターン102Pを有する。配線パターン102Pは、実施の形態1に係る位置検出装置1の第2コイル102に相当する。配線パターン102Pの両端部には、第1層81を貫通するスルーホールTH1,TH2が取り付けられている。スルーホールTH1,TH2は、第1層81の表面81Pに露出して、配線又は端子と接続される。
 実施の形態5に係る位置検出装置1の第1コイル101は、第1層81が有する配線パターン101a,101c,101eと、第3層83が有する配線パターン101b,101dと、第1層81、第2層82及び第3層83を貫通するスルーホールTH3,TH4,TH5,TH6とで構成される。配線パターン101a,101c,101eは第1層81の表面81Pに形成され、配線パターン101b,101dは第3層83の表面83Pに形成される。
 第1層81の表面81Pに形成された配線パターン101aの第1端は、スルーホールTH3によって第3層83の表面83Pに形成された配線パターン101bの第1端と電気的に接続される。配線パターン101bの第2端は、スルーホールTH4によって第1層81の表面81Pに形成された配線パターン101cの第1端と電気的に接続される。配線パターン101cの第2端は、スルーホールTH5によって第3層83の表面83Pに形成された配線パターン101dの第1端と電気的に接続される。配線パターン101dの第2端は、スルーホールTH6によって第1層81の表面81Pに形成された配線パターン101eの第1端と電気的に接続される。
 このような構造により、配線パターン101a-101eと、スルーホールTH1-TH6によって1本の螺旋状の配線パターンが多層基板80に形成される。この1本の配線パターンが、実施の形態1に係る位置検出装置1の第1コイル101に相当する。第1層81の表面81Pに形成された配線パターン101aの第2端、及び第1層81の表面81Pに形成された配線パターン101eの第2端が、第1コイル101の端子となる。
 多層基板80が、配線パターン101a-101eと、スルーホールTH1-TH6によって得られる1本の螺旋状の配線パターンを、配線パターン102Pの内側又は外側に複数有することで、実施の形態2に係る位置検出装置1Aの第1コイル131,132,133及び第2コイル102を有する多層基板80とすることができる。
 図28は、実施の形態5に係る多層基板90を示す図である。図29は、実施の形態5に係る多層基板90を表面91P側から見た図である。多層基板90は、第1層91及び第2層92を有する。第1層91は螺旋状の配線パターン201Pを有する。第2層92は、多層基板90の第1層91の表面91Pから見た形状が長方形の配線パターン212P及び213Pを有する。多層基板90の第1層91の表面91Pから見ると、配線パターン201Pと、配線パターン212P及び213Pとは重なっている。
 第1層91の表面91Pに形成された配線パターン201Pは、実施の形態3に係る位置検出装置1Bの第1コイル201に相当する。第2層92の表面92Pに形成された配線パターン212P及び213Pは、実施の形態3に係る電極板212及び213に相当する。
 図30は、実施の形態5に係る多層基板90aを示す図である。多層基板90aは、第1層91a、第2層92a、第3層93a及び第4層94aを有する。第1層91aは螺旋状の配線パターン331Pを有する。第2層92aは螺旋状の配線パターン332Pを有する。第3層93aは螺旋状の配線パターン333Pを有する。配線パターン331P,332P及び333Pは、図28に示される配線パターン201Pと同様の形状である。第4層94aは、多層基板90aの第1層91aの表面91Paから見た形状が長方形の配線パターン212P及び213Pを有する。多層基板90の第1層91の表面91Pから見ると、配線パターン331P,332P及び333Pと、配線パターン212P及び213Pとは重なっている。
 第1層91aの表面91Paに形成された配線パターン331Pは、実施の形態4に係る位置検出装置1Cの第1コイル331に相当する。第2層92aの表面92Paに形成された配線パターン332Pは、実施の形態4に係る位置検出装置1Cの第1コイル332に相当する。第3層93aの表面93Paに形成された配線パターン333Pは、実施の形態4に係る位置検出装置1Cの第1コイル333に相当する。第4層94aの表面94Paに形成された配線パターン212P及び213Pは、実施の形態4に係る電極板212及び213に相当する。
 多層基板80,90又は90aが有する配線パターンによって、第1コイル101及び第2コイル102、第1コイル201及び電極板212,213と、又は第1コイル331,332,333及び201及び電極板212,213とが構成されることにより、位置検出装置1,1A,1B又は1Cの寸法、特に厚みを小さくできる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略及び変更することも可能である。
 1,1A,1B,1C 位置検出装置、11,31,41,43 送電回路、12,42 受電回路、80,90,90a 多層基板、101,101r,201,131,132,133 第1コイル、102,102r 第2コイル、103,104,134,135,136 検出コイル、105,205 給電部、106,206,137,337 処理装置、107,207 受電部、138,338 スイッチ、151,152,153,154 検波回路、203,204,341,342,343 電流検出器、212,213 電極板。

Claims (9)

  1.  電力を受け取って少なくとも磁界を発生する複数の送電側素子と、
     複数の前記送電側素子が発生する磁界によって電力を出力する複数の受電側素子と、
     複数の前記送電側素子が発生する起電力を検出して、検出した前記起電力に対応する信号を出力する検出素子と、
     複数の前記送電側素子に前記電力が供給されている状態で、前記検出素子から受け取った信号の大きさに基づいて、前記送電側素子と前記受電側素子との距離を示す情報を求める処理装置と、
     を含み、
     複数の前記送電側素子と複数の前記受電側素子との中で組となる素子の結合度は、他の組となる素子とは距離に対して異なる分布であり、かつそれぞれの前記組となる素子の結合度が特定の距離で一致する、位置検出装置。
  2.  前記複数の送電側素子は、磁界を発生する第1送電側素子及び第2送電側素子であり、
     前記複数の受電側素子は、第1送電側素子及び第2送電側素子が発生した磁界によって電力を出力する第1受電側素子及び第2受電側素子であり、
     前記第1送電側素子と前記第1受電側素子とが第1の前記組となり、
     前記第2送電側素子と前記第2受電側素子とが第2の前記組となる、請求項1に記載の位置検出装置。
  3.  前記第1送電側素子、前記第1受電側素子、前記第2送電側素子及び前記第2受電側素子はコイルであり、
     前記第1送電側素子と前記第2送電側素子とが異なる角度で配置され、
     前記第1受電側素子と前記第2受電側素子とが異なる角度で配置される、請求項2に記載の位置検出装置。
  4.  前記第1送電側素子、前記第1受電側素子、前記第2送電側素子及び前記第2受電側素子は、多層基板内の配線パターンである、請求項3に記載の位置検出装置。
  5.  前記複数の送電側素子は、磁界を発生する第1送電側素子と、電界を発生する第3送電側素子であり、
     前記複数の受電側素子は、磁界を発生する第1受電側素子と、電界を発生する第3受電側素子であり、
     前記第1送電側素子と前記第1受電側素子とが第1の前記組となり、
     前記第3送電側素子と前記第3受電側素子とが第2の前記組となり、
     前記検出素子は、複数の前記送電側素子を流れる電流を検出して、検出した前記電流に対応する信号を求める、
     請求項1に記載の位置検出装置。
  6.  前記第1送電側素子及び前記第1受電側素子はコイルであり、
     前記第3送電側素子及び前記第3受電側素子は金属板であり、
     前記第1送電側素子と前記第3送電側素子との組が平行に配置され、
     前記第1受電側素子と前記第3受電側素子との組が平行に配置される、請求項5に記載の位置検出装置。
  7.  前記第1送電側素子、前記第1受電側素子、前記第3送電側素子及び前記第3受電側素子は、多層基板内の配線パターンである、請求項6に記載の位置検出装置。
  8.  複数の前記第1送電側素子を有し、
     前記第1受電側素子とそれぞれの前記第1送電側素子とで構成される、複数の第1の前記組は、それぞれ結合度が異なり、
     さらに、複数の前記第1送電側素子から1つを選択するスイッチを有し、
     前記処理装置は、前記第1送電側素子と前記第1受電側素子との距離を示す情報に基づいて前記スイッチを動作させ、複数の前記第1送電側素子から1つを選択する、請求項2から請求項7のいずれか1項に記載の位置検出装置。
  9.  請求項1から請求項8のいずれか1項に記載の位置検出装置と、
     複数の前記送電側素子に電力を供給する電源と、
     を含む、電力伝送装置。
PCT/JP2017/008353 2017-03-02 2017-03-02 位置検出装置及び電力伝送装置 WO2018158918A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018549367A JP6440921B1 (ja) 2017-03-02 2017-03-02 位置検出装置及び電力伝送装置
PCT/JP2017/008353 WO2018158918A1 (ja) 2017-03-02 2017-03-02 位置検出装置及び電力伝送装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/008353 WO2018158918A1 (ja) 2017-03-02 2017-03-02 位置検出装置及び電力伝送装置

Publications (1)

Publication Number Publication Date
WO2018158918A1 true WO2018158918A1 (ja) 2018-09-07

Family

ID=63370820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008353 WO2018158918A1 (ja) 2017-03-02 2017-03-02 位置検出装置及び電力伝送装置

Country Status (2)

Country Link
JP (1) JP6440921B1 (ja)
WO (1) WO2018158918A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020012440A1 (en) * 2018-07-12 2020-01-16 Scuola Superiore Di Studi Universitari E Di Perfezionamento Sant'anna Sensitive system for increased proximity detection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189506A (ja) * 1996-01-10 1997-07-22 Tokimec Inc 位置検出装置
US20090140729A1 (en) * 2005-07-07 2009-06-04 Didier Roziere Inductive non-contact measurement of a relative movement or relative positioning of a first object relative to a second object
JP2012519287A (ja) * 2009-03-02 2012-08-23 マイクロ−エプシロン・メステヒニク・ゲーエムベーハー・ウント・コンパニー・カー・ゲー 位置センサ
JP2016125940A (ja) * 2015-01-06 2016-07-11 株式会社東海理化電機製作所 位置検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189506A (ja) * 1996-01-10 1997-07-22 Tokimec Inc 位置検出装置
US20090140729A1 (en) * 2005-07-07 2009-06-04 Didier Roziere Inductive non-contact measurement of a relative movement or relative positioning of a first object relative to a second object
JP2012519287A (ja) * 2009-03-02 2012-08-23 マイクロ−エプシロン・メステヒニク・ゲーエムベーハー・ウント・コンパニー・カー・ゲー 位置センサ
JP2016125940A (ja) * 2015-01-06 2016-07-11 株式会社東海理化電機製作所 位置検出装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020012440A1 (en) * 2018-07-12 2020-01-16 Scuola Superiore Di Studi Universitari E Di Perfezionamento Sant'anna Sensitive system for increased proximity detection

Also Published As

Publication number Publication date
JPWO2018158918A1 (ja) 2019-03-14
JP6440921B1 (ja) 2018-12-19

Similar Documents

Publication Publication Date Title
US10348139B2 (en) Configurable wireless charging transmit and receive monitoring device
TWI606666B (zh) 無線電力傳輸裝置及其金屬異物偵測線圈的結構
EP3093958B1 (en) Foreign object detecting device, wireless power transmitting apparatus, and wireless power transfer system
CN107430010B (zh) 用无线电源接收器检测磁通场特性的装置及相关方法
US10135107B2 (en) Directional coupler and microwave heater provided with the same
CN111637831A (zh) 用于提高使用感应式位置传感器的位置测量准确度的方法
EP3118633B1 (en) Planar differential current pickup for wireless power transmission
US9906048B2 (en) Non-contact power supply apparatus
JP2008185575A (ja) 三次元電磁界測定装置
JP6440921B1 (ja) 位置検出装置及び電力伝送装置
US9483673B2 (en) Non-contact communication module and card reader
JP5993754B2 (ja) 電磁波計測装置及び電磁波計測方法
US11320463B2 (en) Current detection device
US11912149B2 (en) Misalignment detection device and coil device
KR101939051B1 (ko) 전류 감지 장치
WO2021131609A1 (ja) 異物検出装置、送電装置、受電装置および電力伝送システム
CN111133679B (zh) 感应接近开关
US9329207B2 (en) Surface current probe
US10670634B2 (en) Sensor for measuring current in a conductor
JP2015200631A (ja) 電流検出用プリント基板および電流検出器
US11894696B2 (en) Method and apparatus for detecting electrically conductive foreign bodies during inductive energy transmission
US11982693B2 (en) Systems and methods to detect and measure the current mismatch among parallel semiconductor devices
US20200116763A1 (en) Systems and methods to detect and measure the current mismatch among parallel semiconductor devices
WO2013134928A1 (en) Coil assembly component of a detector
KR20220157857A (ko) 이물질 검출을 위한 코일 및 이를 포함하는 무선 전력 송신기

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018549367

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899132

Country of ref document: EP

Kind code of ref document: A1