WO2018158827A1 - Heat medium system - Google Patents

Heat medium system Download PDF

Info

Publication number
WO2018158827A1
WO2018158827A1 PCT/JP2017/007821 JP2017007821W WO2018158827A1 WO 2018158827 A1 WO2018158827 A1 WO 2018158827A1 JP 2017007821 W JP2017007821 W JP 2017007821W WO 2018158827 A1 WO2018158827 A1 WO 2018158827A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat
inlet
heat medium
flow path
Prior art date
Application number
PCT/JP2017/007821
Other languages
French (fr)
Japanese (ja)
Inventor
大樹 広崎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/007821 priority Critical patent/WO2018158827A1/en
Priority to JP2019502325A priority patent/JP6645616B2/en
Publication of WO2018158827A1 publication Critical patent/WO2018158827A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters

Definitions

  • the present invention relates to a heat medium system.
  • the system disclosed in FIG. 1 of Patent Document 1 below includes a heat exchanger (2) that applies heat from the refrigerant in the refrigerant circuit to the water in the water circuit, and a heat exchange that applies heat from the water in the water circuit to the refrigerant in the refrigerant circuit. And a vessel (5).
  • the coefficient of performance (COP) can be improved by giving the heat of the intermediate temperature water to the refrigerant in the heat exchanger (5).
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a heat medium system that can increase opportunities for improving the coefficient of performance (COP).
  • COP coefficient of performance
  • the heat medium system of the present invention includes a heat storage tank that stores the heat medium, a compressor that compresses the refrigerant, a refrigerant that is compressed by the compressor, and a first heat exchanger that exchanges heat with the heat medium.
  • a second heat exchanger that exchanges heat between the refrigerant before being compressed by the compressor and the heat medium, and a first passage through which the heat medium flowing from the second heat exchanger to the first heat exchanger passes.
  • a flow path switching means having a first inlet, a second inlet, and an outlet, a second passage through which a heat medium flowing from the lower part of the heat storage tank to the first inlet of the flow path switching means, and a lower part of the heat storage tank From the third passage through which the heat medium flowing from the middle part to the second inlet of the flow path switching means passes, the fourth path through which the heat medium flowing from the outlet of the flow path switching means to the second heat exchanger passes, and from the first heat exchanger The fifth passage through which the heat medium that flows from the middle to the upper part of the heat storage tank passes, and the heat medium that has passed through the first heat exchanger above the heat storage tank.
  • control means for controlling the operation of the flow path switching unit during the execution of the thermal storage operation for flowing into those with a.
  • the heat medium can flow from the middle part of the heat storage tank to the second heat exchanger via the third passage, it is possible to increase the opportunities for improving the COP.
  • FIG. 1 is a diagram illustrating a heat medium system according to Embodiment 1.
  • FIG. 3 is a time chart illustrating an example of a heat storage operation according to the first embodiment.
  • 3 is a flowchart showing a process during a heat storage operation according to the first embodiment.
  • 6 is a flowchart showing a process during a heat storage operation according to the second embodiment.
  • 10 is a flowchart showing a process during a heat storage operation according to the third embodiment.
  • FIG. 1 is a diagram showing a heat medium system 1 according to the first embodiment.
  • the heat medium system 1 includes a heat storage tank 2 that stores a liquid heat medium.
  • the heat medium in the present invention may be water.
  • the heat medium in the present invention may be a liquid heat medium other than water, such as a calcium chloride aqueous solution, an ethylene glycol aqueous solution, or alcohol.
  • the heat storage tank 2 it is possible to form a temperature stratification in which the upper side is a high temperature and the lower side is a low temperature due to the difference in the density of the heat medium due to the temperature difference.
  • the heat storage tank 2 has an upper part 2a, a middle part 2b, and a lower part 2c.
  • the upper part 2a is higher than the middle part 2b.
  • the middle part 2b is higher than the lower part 2c.
  • the portions corresponding to 1/3 of the capacity of the heat storage tank 2 may be regarded as the upper portion 2a, the middle portion 2b, and the lower portion 2c, respectively, and the upper portion 2a, the middle portion 2b, and the lower portion 2c are determined at different positions. Also good.
  • the heat storage tank includes a plurality of tanks connected in series, in the entire hierarchy from the highest tank to the lowest tank, the upper, middle, and lower parts of the heat storage tank You just have to decide.
  • a water supply pipe 3 is connected to the lower part 2c of the heat storage tank 2.
  • the water supplied from the water source, that is, the low-temperature heat medium flows into the heat storage tank 2 through the water supply pipe 3, so that the heat storage tank 2 is maintained full.
  • the heat medium system 1 includes a compressor 4, a first heat exchanger 5, a second heat exchanger 6, a first passage 7, a flow path switching valve 8, a second passage 9, and a third passage 10. And a fourth passage 11, a fifth passage 12, and a control device 50.
  • Compressor 4 compresses the refrigerant.
  • the refrigerant may be, for example, carbon dioxide, ammonia, propane, isobutane, chlorofluorocarbon such as HFC, HFO-1123, or HFO-1234yf.
  • the first heat exchanger 5 exchanges heat between the refrigerant compressed by the compressor 4 and the heat medium. In the first heat exchanger 5, the heat of the high-temperature and high-pressure refrigerant is given to the heat medium.
  • the second heat exchanger 6 exchanges heat between the refrigerant before being compressed by the compressor 4 and the heat medium.
  • the heat of the heat medium is given to the low-pressure refrigerant.
  • the heat medium that has passed through the second heat exchanger 6 can flow to the first heat exchanger 5 through the first passage 7.
  • the flow path switching valve 8 has a first inlet 8a, a second inlet 8b, and an outlet 8c.
  • the flow path switching valve 8 is an example of a flow path switching means.
  • the second passage 9 connects between the lower part 2 c of the heat storage tank 2 and the first inlet 8 a of the flow path switching valve 8.
  • the heat medium in the lower part 2 c of the heat storage tank 2 can flow to the first inlet 8 a of the flow path switching valve 8 through the second passage 9.
  • the third passage 10 connects between the middle part 2 b of the heat storage tank 2 and the second inlet 8 b of the flow path switching valve 8.
  • the heat medium in the middle part 2 b of the heat storage tank 2 can flow to the second inlet 8 b of the flow path switching valve 8 through the third passage 10.
  • the fourth passage 11 connects the outlet 8c of the flow path switching valve 8 and the second heat exchanger 6.
  • the heat medium can flow from the outlet 8 c of the flow path switching valve 8 to the second heat exchanger 6 through the fourth passage 11.
  • the fifth passage 12 connects between the first heat exchanger 5 and the upper part 2 a of the heat storage tank 2. The heat medium that has passed through the first heat exchanger 5 can flow to the upper portion 2 a of the heat storage tank 2 through the fifth passage 12.
  • the heat medium system 1 can execute a heat storage operation for storing heat in the heat storage tank 2.
  • the heat medium heated by the first heat exchanger 5 flows into the upper portion 2 a of the heat storage tank 2 through the fifth passage 12.
  • the control device 50 controls the operation of the flow path switching valve 8 during execution of the heat storage operation.
  • the heat medium system 1 further includes a circulation pump 13, a decompression device 14, an evaporator 15, and a third heat exchanger 16.
  • the circulation pump 13 circulates the heat medium.
  • the circulation pump 13 is connected in the middle of the fourth passage 11.
  • the decompression device 14 expands and decompresses the high-pressure refrigerant that has passed through the first heat exchanger 5.
  • the decompression device 14 may be, for example, an expansion valve whose opening degree can be adjusted, or a capillary tube.
  • the evaporator 15 evaporates the low-pressure refrigerant on the downstream side of the decompression device 14.
  • the evaporator 15 evaporates the refrigerant by causing the refrigerant to absorb the heat of the outside air.
  • a fan motor 17 and a fan 18 are disposed adjacent to the evaporator 15. When the fan motor 17 rotates the fan 18, outside air is blown to the evaporator 15.
  • the evaporator 15 may evaporate the refrigerant with the heat of other heat sources such as ground water, drainage, solar hot water, and geothermal heat.
  • the third heat exchanger 16 exchanges heat between the high-pressure refrigerant that has passed through the first heat exchanger 5 and the low-pressure refrigerant that has passed through the evaporator 15.
  • the heat of the high-pressure refrigerant is given to the low-pressure refrigerant.
  • the high-pressure refrigerant that has passed through the first heat exchanger 5 can flow to the decompression device 14 via the third heat exchanger 16.
  • the low-pressure refrigerant that has passed through the evaporator 15 can flow to the second heat exchanger 6 via the third heat exchanger 16.
  • the low-pressure refrigerant that has passed through the second heat exchanger 6 is sucked into the compressor 4.
  • the flow of the refrigerant and the heat medium in the first heat exchanger 5 is a counter flow.
  • the flow of the refrigerant and the heat medium in the second heat exchanger 6 is a counter flow.
  • the temperature of the heat medium flowing into the first heat exchanger 5 may be referred to as “inlet temperature”.
  • the heat medium system 1 may include a temperature sensor 19 as a means for detecting the inlet temperature.
  • a temperature sensor 19 is attached to the first passage 7.
  • the heat medium system 1 may include a temperature sensor 20 as means for detecting the lower temperature.
  • the temperature sensor 20 is attached to the lower part 2 c of the heat storage tank 2. Instead of this, the temperature sensor 20 may be attached to the second passage 9.
  • the heat medium system 1 may include a temperature sensor 21 as a means for detecting the middle temperature.
  • a temperature sensor 21 is attached to the middle part 2 b of the heat storage tank 2. Instead of this, the temperature sensor 21 may be attached to the third passage 10.
  • the heat medium system 1 of the present embodiment can supply a heat medium from the heat storage tank 2 to the heat demand unit 60.
  • the heat demand unit 60 may include at least one heater that warms the room with the heat of the heat medium.
  • the heating appliance may be, for example, at least one of a floor heating panel installed under the floor, a radiator or panel heater installed on an indoor wall surface, and a fan convector.
  • the heat demand unit 60 is not limited to heating, and may include, for example, a heat exchanger for keeping water in a bathtub or a swimming pool.
  • the heat demand unit 60 may be a hot water supply heat exchanger that heats water by exchanging heat between water supplied from a water supply pipe (not shown) and a heat medium.
  • the sixth passage 61 connects the upper part 2a of the heat storage tank 2 and the heat demand section 60.
  • the seventh passage 62 connects the lower part 2 c of the heat storage tank 2 and the heat demand unit 60.
  • a circulation pump 63 is connected in the middle of the seventh passage 62. When the circulation pump 63 is operated, a high-temperature heat medium is supplied from the heat storage tank 2 to the heat demand unit 60 through the sixth passage 61. The heat medium that has passed through the heat demand section 60 flows into the lower portion 2 c of the heat storage tank 2 through the seventh passage 62.
  • a hot water supply pipe 22 is connected to the upper portion 2a of the heat storage tank 2.
  • a hot-water tap 23 is connected downstream of the hot water supply pipe 22.
  • the hot-water tap 23 may supply hot water to at least one of faucets such as a bathtub, a shower, and a kitchen.
  • hot water which is a high-temperature heat medium in the heat storage tank 2
  • water which is a low-temperature heat medium, flows into the heat storage tank 2 from the water supply pipe 3, whereby the heat storage tank 2 maintains a full state.
  • a mixing valve (not shown) for adjusting the hot water supply temperature by mixing low temperature water supplied from a water source may be provided in the middle of the hot water supply pipe 22.
  • the control device 50 may control not only the flow path switching valve 8 but also at least one of the operation of the compressor 4, the circulation pump 13, the decompression device 14, the fan motor 17, and the circulation pump 63.
  • Each function of the control device 50 may be realized by a processing circuit.
  • the processing circuit of the control device 50 may include at least one processor and at least one memory.
  • the at least one processor may realize each function of the control device 50 by reading and executing a program stored in at least one memory.
  • the processing circuit of the control device 50 may include at least one dedicated hardware.
  • the configuration is not limited to the configuration in which the operation is controlled by the single control device 50, and the configuration may be such that the operation is controlled by cooperation of a plurality of control devices.
  • the heat medium system 1 may include a temperature sensor 24 as means for detecting the temperature of the heat medium flowing out from the first heat exchanger 5.
  • the control device 50 has at least one of the circulation pump 13, the compressor 4, the decompression device 14, and the fan motor 17 so that the temperature detected by the temperature sensor 24 is equal to the target temperature.
  • One operation may be controlled.
  • the second heat exchanger 6 passes the medium temperature heat medium in the middle part 2b of the heat storage tank 2 through the third passage 10, the flow path switching valve 8, and the fourth passage 11. Can be allowed to flow into.
  • the medium temperature heat medium heats the refrigerant, whereby the enthalpy of the refrigerant sucked into the compressor 4 can be increased.
  • a coefficient of performance (COP) can be improved.
  • the COP tends to increase as the inlet temperature to the first heat exchanger 5 decreases. If it is this Embodiment, since the entrance temperature to the 1st heat exchanger 5 will fall because a heat carrier is cooled with the 2nd heat exchanger 6, COP can be improved.
  • the operation is as follows.
  • the control device 50 switches the flow path switching valve 8 so that the first inlet 8a is closed and the second inlet 8b is opened.
  • the heat medium flowing out from the middle part 2 b of the heat storage tank 2 flows into the second heat exchanger 6 through the third passage 10, the flow path switching valve 8, and the fourth passage 11.
  • the reference temperature is set to 30 ° C. as an example.
  • the control device 50 switches the flow path switching valve 8 so that the first inlet 8a is opened and the second inlet 8b is closed.
  • the second reference temperature is lower than the reference temperature described above.
  • the second reference temperature is set to 20 ° C. as an example.
  • the control device 50 controls the flow path switching valve 8 so that the first inlet 8a is closed and the second inlet 8b is opened. Switch. In this case, the heat medium flowing out from the middle part 2 b of the heat storage tank 2 flows into the second heat exchanger 6 through the third passage 10, the passage switching valve 8, and the fourth passage 11.
  • the controller 50 controls the flow path switching valve 8 so that the first inlet 8a is opened and the second inlet 8b is closed. Switch.
  • the heat medium flowing out from the lower portion 2 c of the heat storage tank 2 flows into the second heat exchanger 6 through the second passage 9, the flow path switching valve 8, and the fourth passage 11. According to said control, it can prevent more reliably that the heat medium of the lower part 2c of the thermal storage tank 2 retains over a long time.
  • FIG. 2 is a time chart showing an example of the heat storage operation according to the first embodiment. This time chart shows changes in the middle temperature, the lower temperature, and the state of the flow path switching valve 8.
  • the heat storage operation starts at time t0 in FIG.
  • the medium temperature heat medium of 20 ° C. or more in the heat storage tank 2 exists above the position of the temperature sensor 21, and the middle temperature and the lower temperature are less than 20 ° C.
  • the control device 50 opens the first inlet 8 a communicating with the second passage 9 and closes the second inlet 8 b communicating with the third passage 10.
  • the heat medium flowing out from the lower part 2 c of the heat storage tank 2 is operated so as to pass through the second heat exchanger 6 and the first heat exchanger 5 and flow into the upper part 2 a of the heat storage tank 2.
  • the medium temperature heat medium of 20 ° C. or more in the heat storage tank 2 gradually moves downward.
  • the control device 50 opens the second inlet 8 b communicating with the third passage 10 and closes the first inlet 8 a communicating with the second passage 9.
  • the heat medium flowing out from the middle part 2b of the heat storage tank 2 passes through the second heat exchanger 6 and the first heat exchanger 5 and flows into the upper part 2a of the heat storage tank 2.
  • the central temperature detected by the temperature sensor 21 reaches 30 ° C.
  • the control device 50 opens the first inlet 8 a communicating with the second passage 9 and closes the second inlet 8 b communicating with the third passage 10.
  • the heat medium flowing out from the lower part 2c of the heat storage tank 2 passes through the second heat exchanger 6 and the first heat exchanger 5 and flows into the upper part 2a of the heat storage tank 2.
  • FIG. 3 is a flowchart showing processing during the heat storage operation according to the first embodiment.
  • the controller 50 periodically repeats the process of this flowchart in the heat storage operation.
  • step S ⁇ b> 1 of FIG. 3 the control device 50 detects the middle temperature Ta by the temperature sensor 21. The process proceeds to step S2. If the middle temperature Ta is 30 ° C. or less of the reference temperature and the middle temperature Ta is 20 ° C. or more of the second reference temperature, the process proceeds from step S2 to step S3.
  • step S3 the control device 50 closes the first inlet 8a to block the second passage 9, and opens the second inlet 8b so that the third passage 10 is opened. Switch.
  • the intermediate temperature Ta is higher than the reference temperature 30 ° C.
  • step S2 the process proceeds from step S2 to step S4.
  • step S4 the control device 50 closes the second inlet 8b so as to block the third passage 10 and opens the first inlet 8a so that the second passage 9 is opened. Switch.
  • the control device 50 may control the operation of the flow path switching valve 8 so that the flow path switching valve 8 is gradually switched. By doing so, sudden changes in the temperature of the heat medium flowing into the fourth passage 11 from the flow path switching valve 8 can be reliably prevented, so that sudden changes in the temperature of the heat medium flowing out from the first heat exchanger 5 are ensured. Can be prevented.
  • the heat medium system 1 only needs to include at least a means for detecting the middle temperature, and may not include other temperature detection means.
  • FIG. 4 is a flowchart showing the processing during the heat storage operation according to the second embodiment.
  • the control device 50 periodically repeats the process of the flowchart of FIG. 4 during the heat storage operation.
  • the control device 50 controls the operation of the flow path switching valve 8 based on the lower temperature and the inlet temperature.
  • the flow path switching valve 8 switches so as to open the second inlet 8 b communicating with the third passage 10 and close the first inlet 8 a communicating with the second passage 9. It has been. That is, at the beginning of the heat storage operation, the heat medium flowing out from the middle part 2 b of the heat storage tank 2 passes through the second heat exchanger 6 and the first heat exchanger 5 and flows into the upper part 2 a of the heat storage tank 2. Drive to.
  • control device 50 detects the lower temperature Tb by the temperature sensor 20. The process proceeds to step S ⁇ b> 12, and the control device 50 detects the inlet temperature Tc by the temperature sensor 19. The process proceeds to step S13.
  • the “first temperature” is a temperature obtained by adding a predetermined positive value to the lower temperature Tb. In the following description, this “predetermined value” is set to 5 ° C. as an example.
  • the control device 50 compares the inlet temperature Tc with the first temperature (Tb + 5 ° C.). If the inlet temperature Tc is equal to or lower than the first temperature (Tb + 5 ° C.), the process proceeds from step S13 to step S14.
  • step S ⁇ b> 14 the control device 50 operates the flow path switching valve 8 in a direction that increases the flow rate of the heat medium passing through the third passage 10.
  • control device 50 switches the flow path so that the opening degree of the second inlet 8b communicating with the third passage 10 is slightly increased and the opening degree of the first inlet 8a communicating with the second passage 9 is slightly reduced.
  • Actuate valve 8 When the opening degree of the second inlet 8b is already fully opened and the opening degree of the first inlet 8a is already fully closed, the state is maintained.
  • step S15 the control device 50 operates the flow path switching valve 8 in a direction to increase the flow rate of the heat medium passing through the second passage 9. That is, the control device 50 switches the flow path so that the opening degree of the first inlet 8a communicating with the second passage 9 is slightly increased and the opening degree of the second inlet 8b communicating with the third passage 10 is slightly reduced. Actuate valve 8.
  • the opening degree of the first inlet 8a is already fully opened and the opening degree of the second inlet 8b is already fully closed, the state is maintained.
  • the heat storage operation is as follows. As described above, at the beginning of the heat storage operation, the heat medium flowing out from the middle part 2b of the heat storage tank 2 passes through the second heat exchanger 6 and the first heat exchanger 5 and enters the upper part 2a of the heat storage tank 2. It is operated to flow in. Thereafter, since the temperature of the heat medium flowing out from the middle portion 2b of the heat storage tank 2 to the third passage 10 gradually increases, the inlet temperature Tc gradually increases. When the inlet temperature Tc becomes higher than the first temperature (Tb + 5 ° C.), the first inlet 8a of the flow path switching valve 8 starts to open by the process of step S15.
  • the following effects can be obtained. Since the switching operation of the flow path switching valve 8 becomes gradual, a sudden change in the temperature of the heat medium flowing into the fourth passage 11 from the flow path switching valve 8 can be prevented more reliably. As a result, a sudden change in the temperature of the heat medium flowing out from the first heat exchanger 5 can be prevented more reliably.
  • Embodiment 3 FIG. Next, the third embodiment will be described with reference to FIG. 5. The description will focus on the differences from the first embodiment described above, and the description of the same or corresponding parts will be simplified or omitted.
  • the hardware configuration of the heat medium system 1 of the third embodiment is the same as or similar to that of the first embodiment shown in FIG.
  • FIG. 5 is a flowchart showing the processing during the heat storage operation according to the third embodiment.
  • control device 50 periodically repeats the process of the flowchart of FIG. 5 during the heat storage operation.
  • the control device 50 controls the operation of the flow path switching valve 8 based on the lower temperature, the middle temperature, and the inlet temperature.
  • the flow path switching valve 8 switches so as to open the second inlet 8 b communicating with the third passage 10 and close the first inlet 8 a communicating with the second passage 9. It has been. That is, at the beginning of the heat storage operation, the heat medium flowing out from the middle part 2 b of the heat storage tank 2 passes through the second heat exchanger 6 and the first heat exchanger 5 and flows into the upper part 2 a of the heat storage tank 2. Drive to.
  • control device 50 detects the middle temperature Ta by the temperature sensor 21.
  • the process proceeds to step S22, and the control device 50 detects the lower temperature Tb by the temperature sensor 20.
  • the process proceeds to step S23, and the control device 50 detects the inlet temperature Tc by the temperature sensor 19.
  • the process proceeds to step S24.
  • the “first temperature” is a temperature obtained by adding a predetermined positive value to the lower temperature Tb. In the following description, this “predetermined value” is set to 5 ° C. as an example.
  • the “first condition” is a condition that the inlet temperature Tc is equal to or lower than the first temperature (Tb + 5 ° C.).
  • the “second condition” is a condition that the middle temperature Ta is equal to or lower than the reference temperature. In the following description, this reference temperature is set to 30 ° C. as an example.
  • step S24 the control device 50 determines whether or not the “first condition” and the “second condition” are satisfied.
  • both the “first condition” and the “second condition” are satisfied, that is, when the inlet temperature Tc is not more than the first temperature (Tb + 5 ° C.) and the middle temperature Ta is not more than the reference temperature 30 ° C.
  • the process proceeds from step S24 to step S25.
  • step S ⁇ b> 25 the control device 50 operates the flow path switching valve 8 in a direction to increase the flow rate of the heat medium passing through the third passage 10. That is, the control device 50 switches the flow path so that the opening degree of the second inlet 8b communicating with the third passage 10 is slightly increased and the opening degree of the first inlet 8a communicating with the second passage 9 is slightly reduced. Actuate valve 8.
  • the opening degree of the second inlet 8b is already fully opened and the opening degree of the first inlet 8a is already fully closed, the state is maintained.
  • step S24 if at least one of the “first condition” and “second condition” is not satisfied in step S24, that is, the inlet temperature Tc is higher than the first temperature (Tb + 5 ° C.), or the middle temperature Ta is the reference. If the temperature is higher than 30 ° C, the process proceeds to step S26.
  • step S ⁇ b> 26 the control device 50 operates the flow path switching valve 8 in a direction to increase the flow rate of the heat medium passing through the second passage 9. That is, the control device 50 switches the flow path so that the opening degree of the first inlet 8a communicating with the second passage 9 is slightly increased and the opening degree of the second inlet 8b communicating with the third passage 10 is slightly reduced. Actuate valve 8.
  • the opening degree of the first inlet 8a is already fully opened and the opening degree of the second inlet 8b is already fully closed, the state is maintained.
  • the heat storage operation is as follows. As described above, at the beginning of the heat storage operation, the heat medium flowing out from the middle part 2b of the heat storage tank 2 passes through the second heat exchanger 6 and the first heat exchanger 5 and enters the upper part 2a of the heat storage tank 2. It is operated to flow in. Thereafter, since the temperature of the heat medium flowing out from the middle portion 2b of the heat storage tank 2 to the third passage 10 gradually increases, the inlet temperature Tc gradually increases. When the inlet temperature Tc becomes higher than the first temperature (Tb + 5 ° C.), the first inlet 8a of the flow path switching valve 8 starts to open by the process of step S26.
  • the heat medium flowing out from the middle part 2b of the heat storage tank 2 to the third passage 10 and the heat medium flowing out from the lower part 2c of the heat storage tank 2 to the second passage 9 are mixed and flow into the fourth passage 11. Drive to.
  • the inlet temperature Tc continues to be higher than the first temperature (Tb + 5 ° C.)
  • the flow rate of the heat medium passing through the second passage 9 further increases and the flow rate of the heat medium passing through the third passage 10 decreases.
  • the middle temperature Ta becomes higher than the reference temperature of 30 ° C. the process of step S26 is repeatedly performed, so that the flow rate of the heat medium passing through the third passage 10 is reduced to zero.
  • the following effects can be obtained. Since the switching operation of the flow path switching valve 8 becomes gradual, a sudden change in the temperature of the heat medium flowing into the fourth passage 11 from the flow path switching valve 8 can be prevented more reliably. As a result, a sudden change in the temperature of the heat medium flowing out from the first heat exchanger 5 can be prevented more reliably.

Abstract

A heat medium system (1) is provided with: a first heat exchanger (5) for exchanging heat between a heat medium and a refrigerant compressed by a compressor (4); a second heat exchanger (6) for exchanging heat between the heat medium and the refrigerant prior to compression by the compressor (4); a first passage (7) through which passes the heat medium flowing from the second heat exchanger (6) to the first heat exchanger (5); a second passage (9) through which passes the heat medium flowing from a lower part (2c) of a heat storage tank (2) to a first inlet (8a) of a flow path switching valve (8); a third passage (10) through which passes the heat medium flowing from a middle part (2b) of the heat storage tank (2) to a second inlet (8b) of the flow path switching valve (8); a fourth passage (11) through which passes the heat medium flowing from an outlet (8c) of the flow path switching valve (8) to the second heat exchanger (6); and a control device (50) for controlling the operation of the flow path switching valve (8) during execution of a heat storing operation which causes the heat medium that has passed through the first heat exchanger (5) to flow into an upper part (2a) of the heat storage tank (2).

Description

熱媒体システムHeat transfer system
 本発明は、熱媒体システムに関する。 The present invention relates to a heat medium system.
 下記特許文献1の図1に開示されたシステムは、冷媒回路の冷媒から水回路の水に熱を与える熱交換器(2)と、水回路の水から冷媒回路の冷媒に熱を与える熱交換器(5)とを備える。このシステムでは、貯湯タンク(7)の下部に中温水が存在するとき、熱交換器(5)にて中温水の熱を冷媒へ与えることで、成績係数(COP)を改善できる。 The system disclosed in FIG. 1 of Patent Document 1 below includes a heat exchanger (2) that applies heat from the refrigerant in the refrigerant circuit to the water in the water circuit, and a heat exchange that applies heat from the water in the water circuit to the refrigerant in the refrigerant circuit. And a vessel (5). In this system, when intermediate temperature water exists in the lower part of the hot water storage tank (7), the coefficient of performance (COP) can be improved by giving the heat of the intermediate temperature water to the refrigerant in the heat exchanger (5).
日本特開2007-155275号公報Japanese Unexamined Patent Publication No. 2007-155275
 上述した従来のシステムでは、貯湯タンクの下部に中温水が存在するときでなければ、水から冷媒へと熱を与える熱交換器において、水から冷媒へ熱を有効に与えることができない。すなわち、貯湯タンクの下部に中温水が存在するときでなければ、水から冷媒へと熱を与える熱交換器による、COP改善の効果が得られない。 In the conventional system described above, heat cannot be effectively applied from the water to the refrigerant in the heat exchanger that applies heat from the water to the refrigerant unless intermediate temperature water exists in the lower part of the hot water storage tank. That is, unless medium temperature water is present in the lower part of the hot water storage tank, the COP improvement effect by the heat exchanger that gives heat from the water to the refrigerant cannot be obtained.
 本発明は、上述のような課題を解決するためになされたもので、成績係数(COP)を改善する機会を増やすことのできる熱媒体システムを提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a heat medium system that can increase opportunities for improving the coefficient of performance (COP).
 本発明の熱媒体システムは、熱媒体を貯留する蓄熱槽と、冷媒を圧縮する圧縮機と、圧縮機で圧縮された冷媒と、熱媒体との間で熱を交換する第一熱交換器と、圧縮機で圧縮される前の冷媒と、熱媒体との間で熱を交換する第二熱交換器と、第二熱交換器から第一熱交換器へ流れる熱媒体が通る第一通路と、第一入口、第二入口、及び出口を有する流路切替手段と、蓄熱槽の下部から流路切替手段の第一入口へ流れる熱媒体が通る第二通路と、蓄熱槽の下部より上位の中部から流路切替手段の第二入口へ流れる熱媒体が通る第三通路と、流路切替手段の出口から第二熱交換器へ流れる熱媒体が通る第四通路と、第一熱交換器から、蓄熱槽の中部より上位の上部へ流れる熱媒体が通る第五通路と、第一熱交換器を通過した熱媒体を蓄熱槽の上部へ流入させる蓄熱運転の実行中に流路切替手段の動作を制御する制御手段と、を備えるものである。 The heat medium system of the present invention includes a heat storage tank that stores the heat medium, a compressor that compresses the refrigerant, a refrigerant that is compressed by the compressor, and a first heat exchanger that exchanges heat with the heat medium. A second heat exchanger that exchanges heat between the refrigerant before being compressed by the compressor and the heat medium, and a first passage through which the heat medium flowing from the second heat exchanger to the first heat exchanger passes. , A flow path switching means having a first inlet, a second inlet, and an outlet, a second passage through which a heat medium flowing from the lower part of the heat storage tank to the first inlet of the flow path switching means, and a lower part of the heat storage tank From the third passage through which the heat medium flowing from the middle part to the second inlet of the flow path switching means passes, the fourth path through which the heat medium flowing from the outlet of the flow path switching means to the second heat exchanger passes, and from the first heat exchanger The fifth passage through which the heat medium that flows from the middle to the upper part of the heat storage tank passes, and the heat medium that has passed through the first heat exchanger above the heat storage tank. And control means for controlling the operation of the flow path switching unit during the execution of the thermal storage operation for flowing into those with a.
 本発明によれば、蓄熱槽の中部から第三通路を介して第二熱交換器へ熱媒体が流れることができるので、COPを改善する機会を増やすことが可能となる。 According to the present invention, since the heat medium can flow from the middle part of the heat storage tank to the second heat exchanger via the third passage, it is possible to increase the opportunities for improving the COP.
実施の形態1による熱媒体システムを示す図である。1 is a diagram illustrating a heat medium system according to Embodiment 1. FIG. 実施の形態1による蓄熱運転の例を示すタイムチャートである。3 is a time chart illustrating an example of a heat storage operation according to the first embodiment. 実施の形態1による蓄熱運転のときの処理を示すフローチャートである。3 is a flowchart showing a process during a heat storage operation according to the first embodiment. 実施の形態2による蓄熱運転のときの処理を示すフローチャートである。6 is a flowchart showing a process during a heat storage operation according to the second embodiment. 実施の形態3による蓄熱運転のときの処理を示すフローチャートである。10 is a flowchart showing a process during a heat storage operation according to the third embodiment.
 以下、図面を参照して実施の形態について説明する。各図において共通または対応する要素には、同一の符号を付して、重複する説明を簡略化または省略する。本開示は、以下の各実施の形態で説明する構成のうち、組み合わせ可能な構成のあらゆる組み合わせを含み得る。 Hereinafter, embodiments will be described with reference to the drawings. In the drawings, common or corresponding elements are denoted by the same reference numerals, and redundant description is simplified or omitted. The present disclosure may include all combinations of configurations that can be combined among the configurations described in the following embodiments.
実施の形態1.
 図1は、実施の形態1による熱媒体システム1を示す図である。図1に示すように、熱媒体システム1は、液状の熱媒体を貯留する蓄熱槽2を備える。本発明における熱媒体は、水でもよい。本発明における熱媒体は、例えば、塩化カルシウム水溶液、エチレングリコール水溶液、アルコールのような、水以外の液状熱媒体でもよい。蓄熱槽2内には、温度の違いによる熱媒体の密度の差により、上側が高温で下側が低温となる温度成層を形成可能である。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a heat medium system 1 according to the first embodiment. As shown in FIG. 1, the heat medium system 1 includes a heat storage tank 2 that stores a liquid heat medium. The heat medium in the present invention may be water. The heat medium in the present invention may be a liquid heat medium other than water, such as a calcium chloride aqueous solution, an ethylene glycol aqueous solution, or alcohol. In the heat storage tank 2, it is possible to form a temperature stratification in which the upper side is a high temperature and the lower side is a low temperature due to the difference in the density of the heat medium due to the temperature difference.
 蓄熱槽2は、上部2a、中部2b、及び下部2cを有する。上部2aは、中部2bに対して上位にある。中部2bは、下部2cに対して上位にある。蓄熱槽2の容量の1/3ずつに相当する部分をそれぞれ上部2a、中部2b、下部2cとみなしてもよいし、それとは異なる位置を境に上部2a、中部2b、及び下部2cを定めてもよい。なお、本発明において、蓄熱槽が、直列に接続された複数のタンクを備える場合には、最上位のタンクから最下位のタンクまでの全体の階層において、蓄熱槽の上部、中部、及び下部を定めればよい。 The heat storage tank 2 has an upper part 2a, a middle part 2b, and a lower part 2c. The upper part 2a is higher than the middle part 2b. The middle part 2b is higher than the lower part 2c. The portions corresponding to 1/3 of the capacity of the heat storage tank 2 may be regarded as the upper portion 2a, the middle portion 2b, and the lower portion 2c, respectively, and the upper portion 2a, the middle portion 2b, and the lower portion 2c are determined at different positions. Also good. In the present invention, when the heat storage tank includes a plurality of tanks connected in series, in the entire hierarchy from the highest tank to the lowest tank, the upper, middle, and lower parts of the heat storage tank You just have to decide.
 本実施の形態において蓄熱槽2の下部2cには、給水管3が接続されている。水源から供給される水、すなわち低温の熱媒体が、給水管3を通って蓄熱槽2に流入することで、蓄熱槽2が満杯の状態に維持される。 In the present embodiment, a water supply pipe 3 is connected to the lower part 2c of the heat storage tank 2. The water supplied from the water source, that is, the low-temperature heat medium flows into the heat storage tank 2 through the water supply pipe 3, so that the heat storage tank 2 is maintained full.
 熱媒体システム1は、圧縮機4と、第一熱交換器5と、第二熱交換器6と、第一通路7と、流路切替弁8と、第二通路9と、第三通路10と、第四通路11と、第五通路12と、制御装置50とをさらに備える。 The heat medium system 1 includes a compressor 4, a first heat exchanger 5, a second heat exchanger 6, a first passage 7, a flow path switching valve 8, a second passage 9, and a third passage 10. And a fourth passage 11, a fifth passage 12, and a control device 50.
 圧縮機4は、冷媒を圧縮する。冷媒は、例えば、二酸化炭素、アンモニア、プロパン、イソブタン、HFCなどのフロン、HFO-1123、HFO-1234yfのいずれかでもよい。第一熱交換器5は、圧縮機4で圧縮された冷媒と、熱媒体との間で熱を交換させる。第一熱交換器5では、高温高圧の冷媒の熱が、熱媒体へ与えられる。 Compressor 4 compresses the refrigerant. The refrigerant may be, for example, carbon dioxide, ammonia, propane, isobutane, chlorofluorocarbon such as HFC, HFO-1123, or HFO-1234yf. The first heat exchanger 5 exchanges heat between the refrigerant compressed by the compressor 4 and the heat medium. In the first heat exchanger 5, the heat of the high-temperature and high-pressure refrigerant is given to the heat medium.
 第二熱交換器6は、圧縮機4で圧縮される前の冷媒と、熱媒体との間で熱を交換させる。第二熱交換器6では、熱媒体の熱が、低圧の冷媒へ与えられる。第二熱交換器6を通過した熱媒体は、第一通路7を通って、第一熱交換器5へ流れることができる。 The second heat exchanger 6 exchanges heat between the refrigerant before being compressed by the compressor 4 and the heat medium. In the second heat exchanger 6, the heat of the heat medium is given to the low-pressure refrigerant. The heat medium that has passed through the second heat exchanger 6 can flow to the first heat exchanger 5 through the first passage 7.
 流路切替弁8は、第一入口8a、第二入口8b、及び出口8cを有する。流路切替弁8は、流路切替手段の例である。第二通路9は、蓄熱槽2の下部2cと、流路切替弁8の第一入口8aとの間をつなぐ。蓄熱槽2の下部2c内の熱媒体は、第二通路9を通って、流路切替弁8の第一入口8aへ流れることができる。第三通路10は、蓄熱槽2の中部2bと、流路切替弁8の第二入口8bとの間をつなぐ。蓄熱槽2の中部2b内の熱媒体は、第三通路10を通って、流路切替弁8の第二入口8bへ流れることができる。 The flow path switching valve 8 has a first inlet 8a, a second inlet 8b, and an outlet 8c. The flow path switching valve 8 is an example of a flow path switching means. The second passage 9 connects between the lower part 2 c of the heat storage tank 2 and the first inlet 8 a of the flow path switching valve 8. The heat medium in the lower part 2 c of the heat storage tank 2 can flow to the first inlet 8 a of the flow path switching valve 8 through the second passage 9. The third passage 10 connects between the middle part 2 b of the heat storage tank 2 and the second inlet 8 b of the flow path switching valve 8. The heat medium in the middle part 2 b of the heat storage tank 2 can flow to the second inlet 8 b of the flow path switching valve 8 through the third passage 10.
 第四通路11は、流路切替弁8の出口8cと、第二熱交換器6との間をつなぐ。熱媒体は、流路切替弁8の出口8cから、第四通路11を通って、第二熱交換器6へ流れることができる。第五通路12は、第一熱交換器5と、蓄熱槽2の上部2aとの間をつなぐ。第一熱交換器5を通過した熱媒体は、第五通路12を通って、蓄熱槽2の上部2aへ流れることができる。 The fourth passage 11 connects the outlet 8c of the flow path switching valve 8 and the second heat exchanger 6. The heat medium can flow from the outlet 8 c of the flow path switching valve 8 to the second heat exchanger 6 through the fourth passage 11. The fifth passage 12 connects between the first heat exchanger 5 and the upper part 2 a of the heat storage tank 2. The heat medium that has passed through the first heat exchanger 5 can flow to the upper portion 2 a of the heat storage tank 2 through the fifth passage 12.
 熱媒体システム1は、蓄熱槽2に熱を蓄積するための蓄熱運転を実行できる。蓄熱運転では、第一熱交換器5で加熱された熱媒体が、第五通路12を通って、蓄熱槽2の上部2aに流入する。制御装置50は、蓄熱運転の実行中に、流路切替弁8の動作を制御する。 The heat medium system 1 can execute a heat storage operation for storing heat in the heat storage tank 2. In the heat storage operation, the heat medium heated by the first heat exchanger 5 flows into the upper portion 2 a of the heat storage tank 2 through the fifth passage 12. The control device 50 controls the operation of the flow path switching valve 8 during execution of the heat storage operation.
 本実施の形態において熱媒体システム1は、循環ポンプ13、減圧装置14、蒸発器15、及び第三熱交換器16をさらに備える。循環ポンプ13は、熱媒体を循環させる。循環ポンプ13は、第四通路11の途中に接続されている。減圧装置14は、第一熱交換器5を通過した高圧冷媒を、膨張及び減圧させる。減圧装置14は、例えば、開度を調整可能な膨張弁でもよいし、キャピラリーチューブでもよい。 In the present embodiment, the heat medium system 1 further includes a circulation pump 13, a decompression device 14, an evaporator 15, and a third heat exchanger 16. The circulation pump 13 circulates the heat medium. The circulation pump 13 is connected in the middle of the fourth passage 11. The decompression device 14 expands and decompresses the high-pressure refrigerant that has passed through the first heat exchanger 5. The decompression device 14 may be, for example, an expansion valve whose opening degree can be adjusted, or a capillary tube.
 蒸発器15は、減圧装置14の下流側の低圧冷媒を蒸発させる。本実施の形態において、蒸発器15は、外気の熱を冷媒に吸収させることで冷媒を蒸発させる。ファンモータ17及びファン18が蒸発器15に隣接して配置されている。ファンモータ17がファン18を回転させると、外気が蒸発器15へ送風される。このような構成に代えて、蒸発器15は、例えば、地下水、排水、太陽熱温水、地熱、のような他の熱源の熱で冷媒を蒸発させてもよい。 The evaporator 15 evaporates the low-pressure refrigerant on the downstream side of the decompression device 14. In the present embodiment, the evaporator 15 evaporates the refrigerant by causing the refrigerant to absorb the heat of the outside air. A fan motor 17 and a fan 18 are disposed adjacent to the evaporator 15. When the fan motor 17 rotates the fan 18, outside air is blown to the evaporator 15. Instead of such a configuration, the evaporator 15 may evaporate the refrigerant with the heat of other heat sources such as ground water, drainage, solar hot water, and geothermal heat.
 第三熱交換器16は、第一熱交換器5を通過した高圧冷媒と、蒸発器15を通過した低圧冷媒との間で熱を交換させる。第三熱交換器16では、高圧冷媒の熱が低圧冷媒へ与えられる。第一熱交換器5を通過した高圧冷媒は、第三熱交換器16を経由して、減圧装置14へ流れることができる。蒸発器15を通過した低圧冷媒は、第三熱交換器16を経由して、第二熱交換器6へ流れることができる。第二熱交換器6を通過した低圧冷媒は、圧縮機4に吸入される。 The third heat exchanger 16 exchanges heat between the high-pressure refrigerant that has passed through the first heat exchanger 5 and the low-pressure refrigerant that has passed through the evaporator 15. In the third heat exchanger 16, the heat of the high-pressure refrigerant is given to the low-pressure refrigerant. The high-pressure refrigerant that has passed through the first heat exchanger 5 can flow to the decompression device 14 via the third heat exchanger 16. The low-pressure refrigerant that has passed through the evaporator 15 can flow to the second heat exchanger 6 via the third heat exchanger 16. The low-pressure refrigerant that has passed through the second heat exchanger 6 is sucked into the compressor 4.
 本実施の形態において、第一熱交換器5内の冷媒及び熱媒体の流れは対向流となる。また、第二熱交換器6内の冷媒及び熱媒体の流れは対向流となる。以下の説明では、第一熱交換器5に流入する熱媒体の温度を「入口温度」と呼ぶことがある。熱媒体システム1は、入口温度を検出する手段としての温度センサ19を備えてもよい。図示の例では、第一通路7に温度センサ19が取り付けられている。 In the present embodiment, the flow of the refrigerant and the heat medium in the first heat exchanger 5 is a counter flow. Moreover, the flow of the refrigerant and the heat medium in the second heat exchanger 6 is a counter flow. In the following description, the temperature of the heat medium flowing into the first heat exchanger 5 may be referred to as “inlet temperature”. The heat medium system 1 may include a temperature sensor 19 as a means for detecting the inlet temperature. In the illustrated example, a temperature sensor 19 is attached to the first passage 7.
 以下の説明では、蓄熱槽2の下部2cにある熱媒体の温度を「下部温度」と呼ぶことがある。熱媒体システム1は、下部温度を検出する手段としての温度センサ20を備えてもよい。図示の例では、蓄熱槽2の下部2cに温度センサ20が取り付けられている。これに代えて、第二通路9に温度センサ20が取り付けられてもよい。 In the following description, the temperature of the heat medium in the lower part 2c of the heat storage tank 2 may be referred to as “lower temperature”. The heat medium system 1 may include a temperature sensor 20 as means for detecting the lower temperature. In the illustrated example, the temperature sensor 20 is attached to the lower part 2 c of the heat storage tank 2. Instead of this, the temperature sensor 20 may be attached to the second passage 9.
 以下の説明では、蓄熱槽2の中部2bにある熱媒体の温度を「中部温度」と呼ぶことがある。熱媒体システム1は、中部温度を検出する手段としての温度センサ21を備えてもよい。図示の例では、蓄熱槽2の中部2bに温度センサ21が取り付けられている。これに代えて、第三通路10に温度センサ21が取り付けられてもよい。 In the following description, the temperature of the heat medium in the middle part 2b of the heat storage tank 2 may be referred to as “middle part temperature”. The heat medium system 1 may include a temperature sensor 21 as a means for detecting the middle temperature. In the illustrated example, a temperature sensor 21 is attached to the middle part 2 b of the heat storage tank 2. Instead of this, the temperature sensor 21 may be attached to the third passage 10.
 本実施の形態の熱媒体システム1は、蓄熱槽2から熱需要部60へ熱媒体を供給可能である。熱需要部60は、熱媒体の熱で部屋を暖める、少なくとも一つの暖房器具を含んでもよい。当該暖房器具は、例えば、床下に設置される床暖房パネル、室内壁面に設置されるラジエータまたはパネルヒーター、ファンコンベクターのうちの少なくとも一種でもよい。熱需要部60は、暖房用に限らず、例えば、浴槽またはスウィミングプールの水を保温するための熱交換器を備えるものでもよい。または、熱需要部60は、図示しない給水管から供給される水と、熱媒体との間で熱を交換することで、この水を加熱する給湯用熱交換器でもよい。 The heat medium system 1 of the present embodiment can supply a heat medium from the heat storage tank 2 to the heat demand unit 60. The heat demand unit 60 may include at least one heater that warms the room with the heat of the heat medium. The heating appliance may be, for example, at least one of a floor heating panel installed under the floor, a radiator or panel heater installed on an indoor wall surface, and a fan convector. The heat demand unit 60 is not limited to heating, and may include, for example, a heat exchanger for keeping water in a bathtub or a swimming pool. Alternatively, the heat demand unit 60 may be a hot water supply heat exchanger that heats water by exchanging heat between water supplied from a water supply pipe (not shown) and a heat medium.
 第六通路61は、蓄熱槽2の上部2aと熱需要部60との間をつなぐ。第七通路62は、蓄熱槽2の下部2cと熱需要部60との間をつなぐ。第七通路62の途中に、循環ポンプ63が接続されている。循環ポンプ63が運転されると、蓄熱槽2から高温の熱媒体が第六通路61を通って熱需要部60へ供給される。熱需要部60を通過した熱媒体は、第七通路62を通って、蓄熱槽2の下部2cに流入する。 The sixth passage 61 connects the upper part 2a of the heat storage tank 2 and the heat demand section 60. The seventh passage 62 connects the lower part 2 c of the heat storage tank 2 and the heat demand unit 60. A circulation pump 63 is connected in the middle of the seventh passage 62. When the circulation pump 63 is operated, a high-temperature heat medium is supplied from the heat storage tank 2 to the heat demand unit 60 through the sixth passage 61. The heat medium that has passed through the heat demand section 60 flows into the lower portion 2 c of the heat storage tank 2 through the seventh passage 62.
 本実施の形態では、蓄熱槽2の上部2aに給湯管22が接続されている。給湯管22の下流には、給湯栓23が接続されている。給湯栓23は、例えば、浴槽、シャワー、キッチン等の蛇口のうちの少なくとも一つに給湯するものでもよい。ユーザーが給湯栓23を開くと、蓄熱槽2内の高温の熱媒体である湯が、給湯管22を通って、給湯栓23へ供給される。蓄熱槽2から給湯管22へ湯が流出すると同時に、低温の熱媒体である水が給水管3から蓄熱槽2に流入することで、蓄熱槽2は満杯状態を維持する。給湯管22の途中に、水源から供給される低温水を混合することで給湯温度を調整するための混合弁(図示省略)が備えられてもよい。 In the present embodiment, a hot water supply pipe 22 is connected to the upper portion 2a of the heat storage tank 2. A hot-water tap 23 is connected downstream of the hot water supply pipe 22. The hot-water tap 23 may supply hot water to at least one of faucets such as a bathtub, a shower, and a kitchen. When the user opens the hot-water tap 23, hot water, which is a high-temperature heat medium in the heat storage tank 2, is supplied to the hot-water tap 23 through the hot-water pipe 22. At the same time as hot water flows out from the heat storage tank 2 to the hot water supply pipe 22, water, which is a low-temperature heat medium, flows into the heat storage tank 2 from the water supply pipe 3, whereby the heat storage tank 2 maintains a full state. A mixing valve (not shown) for adjusting the hot water supply temperature by mixing low temperature water supplied from a water source may be provided in the middle of the hot water supply pipe 22.
 制御装置50は、流路切替弁8だけでなく、圧縮機4、循環ポンプ13、減圧装置14、ファンモータ17、及び循環ポンプ63のうちの少なくとも一つの運転を制御してもよい。制御装置50の各機能は、処理回路により実現されてもよい。制御装置50の処理回路は、少なくとも一つのプロセッサと少なくとも一つのメモリとを備えてもよい。少なくとも一つのプロセッサは、少なくとも一つのメモリに記憶されたプログラムを読み出して実行することにより、制御装置50の各機能を実現してもよい。制御装置50の処理回路は、少なくとも一つの専用のハードウェアを備えてもよい。単一の制御装置50により動作が制御される構成に限定されるものではなく、複数の制御装置が連携することで動作を制御する構成にしてもよい。 The control device 50 may control not only the flow path switching valve 8 but also at least one of the operation of the compressor 4, the circulation pump 13, the decompression device 14, the fan motor 17, and the circulation pump 63. Each function of the control device 50 may be realized by a processing circuit. The processing circuit of the control device 50 may include at least one processor and at least one memory. The at least one processor may realize each function of the control device 50 by reading and executing a program stored in at least one memory. The processing circuit of the control device 50 may include at least one dedicated hardware. The configuration is not limited to the configuration in which the operation is controlled by the single control device 50, and the configuration may be such that the operation is controlled by cooperation of a plurality of control devices.
 熱媒体システム1は、第一熱交換器5から流出する熱媒体の温度を検出する手段として、温度センサ24を備えてもよい。蓄熱運転のときに、制御装置50は、温度センサ24で検出される温度が、目標温度に等しくなるように、循環ポンプ13、圧縮機4、減圧装置14、及びファンモータ17のうちの少なくとも一つの運転を制御してもよい。 The heat medium system 1 may include a temperature sensor 24 as means for detecting the temperature of the heat medium flowing out from the first heat exchanger 5. At the time of the heat storage operation, the control device 50 has at least one of the circulation pump 13, the compressor 4, the decompression device 14, and the fan motor 17 so that the temperature detected by the temperature sensor 24 is equal to the target temperature. One operation may be controlled.
 循環ポンプ63が運転されると、熱需要部60を通過する間に熱を奪われた中温の熱媒体が、第七通路62から蓄熱槽2内に流入する。このため、循環ポンプ63が運転されると、蓄熱槽2の中部2b及び下部2cに、中温の熱媒体の層が形成されうる。また、給湯栓23が開かれて、低温の熱媒体が給水管3から蓄熱槽2の下部2cに流入すると、中温の熱媒体の層は、蓄熱槽2内で上に移動しうる。このようなことから、蓄熱槽2の中部2b内に、中温の熱媒体が溜まることがある。 When the circulation pump 63 is operated, an intermediate temperature heat medium that has been deprived of heat while passing through the heat demand section 60 flows into the heat storage tank 2 from the seventh passage 62. For this reason, when the circulation pump 63 is operated, an intermediate temperature heat medium layer may be formed in the middle part 2b and the lower part 2c of the heat storage tank 2. Further, when the hot-water tap 23 is opened and a low-temperature heat medium flows into the lower portion 2 c of the heat storage tank 2 from the water supply pipe 3, the medium-temperature heat medium layer can move up in the heat storage tank 2. For this reason, a medium-temperature heat medium may accumulate in the middle part 2b of the heat storage tank 2.
 本実施の形態であれば、蓄熱運転において、蓄熱槽2の中部2bにある中温の熱媒体を、第三通路10、流路切替弁8、及び第四通路11を通して、第二熱交換器6に流入させることができる。第二熱交換器6で、中温の熱媒体が冷媒を加熱することで、圧縮機4に吸入される冷媒のエンタルピを上昇させることができる。これにより、成績係数(COP)を改善できる。また、第一熱交換器5への入口温度が低いほど、COPは高くなる傾向がある。本実施の形態であれば、第二熱交換器6で熱媒体が冷却されることで、第一熱交換器5への入口温度が低下するので、COPを改善できる。 In the present embodiment, in the heat storage operation, the second heat exchanger 6 passes the medium temperature heat medium in the middle part 2b of the heat storage tank 2 through the third passage 10, the flow path switching valve 8, and the fourth passage 11. Can be allowed to flow into. In the second heat exchanger 6, the medium temperature heat medium heats the refrigerant, whereby the enthalpy of the refrigerant sucked into the compressor 4 can be increased. Thereby, a coefficient of performance (COP) can be improved. Further, the COP tends to increase as the inlet temperature to the first heat exchanger 5 decreases. If it is this Embodiment, since the entrance temperature to the 1st heat exchanger 5 will fall because a heat carrier is cooled with the 2nd heat exchanger 6, COP can be improved.
 上記のように、本実施の形態であれば、中温の熱媒体が蓄熱槽2の下部2cに存在する場合だけでなく、中温の熱媒体が蓄熱槽2の中部2bに存在する場合にも、第二熱交換器6によるCOP改善の効果が得られる。このため、COPを改善する機会を増やすことが可能となる。 As described above, according to the present embodiment, not only when the medium temperature heat medium is present in the lower part 2c of the heat storage tank 2, but also when the medium temperature heat medium is present in the middle part 2b of the heat storage tank 2, The effect of COP improvement by the second heat exchanger 6 is obtained. For this reason, it becomes possible to increase the opportunity to improve COP.
 加えて、本実施の形態であれば、第二熱交換器6で熱媒体が冷媒を加熱することで、圧縮機4に液冷媒が流入することを確実に防止できる。よって、圧縮機4による液圧縮を確実に防止できるので、熱媒体システム1における圧縮機4の信頼性を向上できる。 In addition, according to the present embodiment, it is possible to reliably prevent the liquid refrigerant from flowing into the compressor 4 by the heat medium heating the refrigerant in the second heat exchanger 6. Therefore, liquid compression by the compressor 4 can be reliably prevented, so that the reliability of the compressor 4 in the heat medium system 1 can be improved.
 本実施の形態の蓄熱運転のときには、以下のようになる。制御装置50は、温度センサ21で検出される中部温度が基準温度以下の場合には、第一入口8aが閉じて第二入口8bが開くように流路切替弁8を切り替える。これにより、蓄熱槽2の中部2bから流出した熱媒体が、第三通路10、流路切替弁8、及び第四通路11を通って、第二熱交換器6に流入する。以下の説明では、例として、上記基準温度を30℃とする。制御装置50は、温度センサ21で検出される中部温度が、基準温度の30℃より高くなると、第一入口8aが開いて第二入口8bが閉じるように流路切替弁8を切り替える。これにより、蓄熱槽2の下部2cから流出した熱媒体が、第二通路9、流路切替弁8、及び第四通路11を通って、第二熱交換器6に流入する。上記の制御によれば、第一熱交換器5への入口温度が高くなり過ぎることをより確実に防止できるので、COPの低下をより確実に防止できる。 In the heat storage operation of the present embodiment, the operation is as follows. When the central temperature detected by the temperature sensor 21 is equal to or lower than the reference temperature, the control device 50 switches the flow path switching valve 8 so that the first inlet 8a is closed and the second inlet 8b is opened. Thereby, the heat medium flowing out from the middle part 2 b of the heat storage tank 2 flows into the second heat exchanger 6 through the third passage 10, the flow path switching valve 8, and the fourth passage 11. In the following description, the reference temperature is set to 30 ° C. as an example. When the central temperature detected by the temperature sensor 21 is higher than the reference temperature of 30 ° C., the control device 50 switches the flow path switching valve 8 so that the first inlet 8a is opened and the second inlet 8b is closed. Thereby, the heat medium flowing out from the lower part 2 c of the heat storage tank 2 flows into the second heat exchanger 6 through the second passage 9, the flow path switching valve 8, and the fourth passage 11. According to said control, since it can prevent more reliably that the entrance temperature to the 1st heat exchanger 5 becomes high too much, the fall of COP can be prevented more reliably.
 第二基準温度は、前述した基準温度より低い温度である。以下の説明では、例として、第二基準温度を20℃とする。本実施の形態の蓄熱運転のときには、以下のようになる。制御装置50は、温度センサ21で検出される中部温度が、第二基準温度の20℃以上の場合には、第一入口8aが閉じて第二入口8bが開くように流路切替弁8を切り替える。この場合には、蓄熱槽2の中部2bから流出した熱媒体が、第三通路10、流路切替弁8、及び第四通路11を通って、第二熱交換器6に流入する。制御装置50は、温度センサ21で検出される中部温度が、第二基準温度の20℃より低い場合には、第一入口8aが開いて第二入口8bが閉じるように流路切替弁8を切り替える。この場合には、蓄熱槽2の下部2cから流出した熱媒体が、第二通路9、流路切替弁8、及び第四通路11を通って、第二熱交換器6に流入する。上記の制御によれば、蓄熱槽2の下部2cの熱媒体が長時間に渡って滞留するようなことをより確実に防止できる。 The second reference temperature is lower than the reference temperature described above. In the following description, the second reference temperature is set to 20 ° C. as an example. At the time of the heat storage operation of the present embodiment, the operation is as follows. When the central temperature detected by the temperature sensor 21 is equal to or higher than the second reference temperature of 20 ° C., the control device 50 controls the flow path switching valve 8 so that the first inlet 8a is closed and the second inlet 8b is opened. Switch. In this case, the heat medium flowing out from the middle part 2 b of the heat storage tank 2 flows into the second heat exchanger 6 through the third passage 10, the passage switching valve 8, and the fourth passage 11. When the central temperature detected by the temperature sensor 21 is lower than the second reference temperature of 20 ° C., the controller 50 controls the flow path switching valve 8 so that the first inlet 8a is opened and the second inlet 8b is closed. Switch. In this case, the heat medium flowing out from the lower portion 2 c of the heat storage tank 2 flows into the second heat exchanger 6 through the second passage 9, the flow path switching valve 8, and the fourth passage 11. According to said control, it can prevent more reliably that the heat medium of the lower part 2c of the thermal storage tank 2 retains over a long time.
 図2は、実施の形態1による蓄熱運転の例を示すタイムチャートである。このタイムチャートは、中部温度、下部温度、及び流路切替弁8の状態のそれぞれの変化を示す。図2中の時刻t0にて蓄熱運転が開始する。時刻t0において、蓄熱槽2内の20℃以上の中温の熱媒体は、温度センサ21の位置よりも上位に存在しており、中部温度及び下部温度は、20℃未満である。このため、蓄熱運転が開始すると、制御装置50は、第二通路9に連通する第一入口8aを開き、第三通路10に連通する第二入口8bを閉じる。その結果、蓄熱槽2の下部2cから流出した熱媒体が、第二熱交換器6及び第一熱交換器5を通過して、蓄熱槽2の上部2aに流入するように運転される。そのようにして運転が続くと、蓄熱槽2内の20℃以上の中温の熱媒体が徐々に下へ移動する。図2中の時刻t1になると、温度センサ21で検出される中部温度が20℃に達する。これにより、制御装置50は、第三通路10に連通する第二入口8bを開き、第二通路9に連通する第一入口8aを閉じる。その結果、時刻t1からは、蓄熱槽2の中部2bから流出した熱媒体が、第二熱交換器6及び第一熱交換器5を通過して、蓄熱槽2の上部2aに流入するように運転される。その後、図2中の時刻t2になると、温度センサ21で検出される中部温度が30℃に達する。これにより、制御装置50は、第二通路9に連通する第一入口8aを開き、第三通路10に連通する第二入口8bを閉じる。その結果、時刻t2からは、蓄熱槽2の下部2cから流出した熱媒体が、第二熱交換器6及び第一熱交換器5を通過して、蓄熱槽2の上部2aに流入するように運転される。 FIG. 2 is a time chart showing an example of the heat storage operation according to the first embodiment. This time chart shows changes in the middle temperature, the lower temperature, and the state of the flow path switching valve 8. The heat storage operation starts at time t0 in FIG. At time t0, the medium temperature heat medium of 20 ° C. or more in the heat storage tank 2 exists above the position of the temperature sensor 21, and the middle temperature and the lower temperature are less than 20 ° C. For this reason, when the heat storage operation starts, the control device 50 opens the first inlet 8 a communicating with the second passage 9 and closes the second inlet 8 b communicating with the third passage 10. As a result, the heat medium flowing out from the lower part 2 c of the heat storage tank 2 is operated so as to pass through the second heat exchanger 6 and the first heat exchanger 5 and flow into the upper part 2 a of the heat storage tank 2. When the operation continues in this manner, the medium temperature heat medium of 20 ° C. or more in the heat storage tank 2 gradually moves downward. At time t1 in FIG. 2, the central temperature detected by the temperature sensor 21 reaches 20 ° C. Thereby, the control device 50 opens the second inlet 8 b communicating with the third passage 10 and closes the first inlet 8 a communicating with the second passage 9. As a result, from time t1, the heat medium flowing out from the middle part 2b of the heat storage tank 2 passes through the second heat exchanger 6 and the first heat exchanger 5 and flows into the upper part 2a of the heat storage tank 2. Driven. Thereafter, at time t2 in FIG. 2, the central temperature detected by the temperature sensor 21 reaches 30 ° C. Thereby, the control device 50 opens the first inlet 8 a communicating with the second passage 9 and closes the second inlet 8 b communicating with the third passage 10. As a result, from time t2, the heat medium flowing out from the lower part 2c of the heat storage tank 2 passes through the second heat exchanger 6 and the first heat exchanger 5 and flows into the upper part 2a of the heat storage tank 2. Driven.
 図3は、実施の形態1による蓄熱運転のときの処理を示すフローチャートである。制御装置50は、蓄熱運転において本フローチャートの処理を周期的に繰り返し実行する。図3のステップS1において、制御装置50は、温度センサ21により中部温度Taを検出する。処理はステップS2へ進む。中部温度Taが基準温度の30℃以下、かつ、中部温度Taが第二基準温度の20℃以上の場合には、処理はステップS2からステップS3へ進む。ステップS3で、制御装置50は、第一入口8aを閉じることで第二通路9を遮断するとともに、第二入口8bを開くことで第三通路10を開通させるように、流路切替弁8を切り替える。これに対し、ステップS2で、中部温度Taが基準温度の30℃より高いか、または、中部温度Taが第二基準温度の20℃未満の場合には、処理はステップS2からステップS4へ進む。ステップS4で、制御装置50は、第二入口8bを閉じることで第三通路10を遮断するとともに、第一入口8aを開くことで第二通路9を開通させるように、流路切替弁8を切り替える。 FIG. 3 is a flowchart showing processing during the heat storage operation according to the first embodiment. The controller 50 periodically repeats the process of this flowchart in the heat storage operation. In step S <b> 1 of FIG. 3, the control device 50 detects the middle temperature Ta by the temperature sensor 21. The process proceeds to step S2. If the middle temperature Ta is 30 ° C. or less of the reference temperature and the middle temperature Ta is 20 ° C. or more of the second reference temperature, the process proceeds from step S2 to step S3. In step S3, the control device 50 closes the first inlet 8a to block the second passage 9, and opens the second inlet 8b so that the third passage 10 is opened. Switch. On the other hand, if the intermediate temperature Ta is higher than the reference temperature 30 ° C. or the intermediate temperature Ta is lower than the second reference temperature 20 ° C. in step S2, the process proceeds from step S2 to step S4. In step S4, the control device 50 closes the second inlet 8b so as to block the third passage 10 and opens the first inlet 8a so that the second passage 9 is opened. Switch.
 制御装置50は、流路切替弁8が徐々に切り替わるように流路切替弁8の動作を制御してもよい。そのようにすることで、流路切替弁8から第四通路11に流入する熱媒体の温度の急変を確実に防止できるので、第一熱交換器5から流出する熱媒体の温度の急変を確実に防止できる。 The control device 50 may control the operation of the flow path switching valve 8 so that the flow path switching valve 8 is gradually switched. By doing so, sudden changes in the temperature of the heat medium flowing into the fourth passage 11 from the flow path switching valve 8 can be reliably prevented, so that sudden changes in the temperature of the heat medium flowing out from the first heat exchanger 5 are ensured. Can be prevented.
 実施の形態1において熱媒体システム1は、中部温度を検出する手段を少なくとも備えていればよく、その他の温度検出手段を備えていなくてもよい。 In the first embodiment, the heat medium system 1 only needs to include at least a means for detecting the middle temperature, and may not include other temperature detection means.
実施の形態2.
 次に、図4を参照して、実施の形態2について説明するが、前述した実施の形態1との相違点を中心に説明し、同一部分または相当部分については説明を簡略化または省略する。実施の形態2の熱媒体システム1のハードウェア構成は、図1による実施の形態1と同一または類似であるので、説明を省略する。図4は、実施の形態2による蓄熱運転のときの処理を示すフローチャートである。実施の形態2において制御装置50は、蓄熱運転のときに図4のフローチャートの処理を周期的に繰り返し実行する。
Embodiment 2. FIG.
Next, the second embodiment will be described with reference to FIG. 4. The description will focus on the differences from the first embodiment described above, and the description of the same or corresponding parts will be simplified or omitted. The hardware configuration of the heat medium system 1 of the second embodiment is the same as or similar to that of the first embodiment shown in FIG. FIG. 4 is a flowchart showing the processing during the heat storage operation according to the second embodiment. In the second embodiment, the control device 50 periodically repeats the process of the flowchart of FIG. 4 during the heat storage operation.
 実施の形態2において制御装置50は、下部温度及び入口温度に基づいて流路切替弁8の動作を制御する。実施の形態2において、蓄熱運転の開始当初は、流路切替弁8は、第三通路10に連通する第二入口8bを開き、第二通路9に連通する第一入口8aを閉じるように切り替えられている。すなわち、蓄熱運転の開始当初は、蓄熱槽2の中部2bから流出した熱媒体が、第二熱交換器6及び第一熱交換器5を通過して、蓄熱槽2の上部2aに流入するように運転される。 In the second embodiment, the control device 50 controls the operation of the flow path switching valve 8 based on the lower temperature and the inlet temperature. In the second embodiment, at the beginning of the heat storage operation, the flow path switching valve 8 switches so as to open the second inlet 8 b communicating with the third passage 10 and close the first inlet 8 a communicating with the second passage 9. It has been. That is, at the beginning of the heat storage operation, the heat medium flowing out from the middle part 2 b of the heat storage tank 2 passes through the second heat exchanger 6 and the first heat exchanger 5 and flows into the upper part 2 a of the heat storage tank 2. Drive to.
 図4のステップS11において、制御装置50は、温度センサ20により下部温度Tbを検出する。処理はステップS12へ進み、制御装置50は、温度センサ19により入口温度Tcを検出する。処理はステップS13へ進む。 4, the control device 50 detects the lower temperature Tb by the temperature sensor 20. The process proceeds to step S <b> 12, and the control device 50 detects the inlet temperature Tc by the temperature sensor 19. The process proceeds to step S13.
 「第一温度」は、下部温度Tbに正の所定値を加算した温度である。以下の説明では、例として、この「所定値」を5℃とする。ステップS13で、制御装置50は、入口温度Tcを、第一温度(Tb+5℃)と比較する。入口温度Tcが第一温度(Tb+5℃)以下の場合には、処理はステップS13からステップS14に進む。ステップS14で、制御装置50は、第三通路10を通る熱媒体の流量を増やす方向に流路切替弁8を作動させる。すなわち、制御装置50は、第三通路10に連通する第二入口8bの開度が少し拡大するとともに第二通路9に連通する第一入口8aの開度が少し縮小するように、流路切替弁8を作動させる。ここで、第二入口8bの開度が全開で第一入口8aの開度が全閉の状態に既になっている場合には、その状態を維持する。 The “first temperature” is a temperature obtained by adding a predetermined positive value to the lower temperature Tb. In the following description, this “predetermined value” is set to 5 ° C. as an example. In step S13, the control device 50 compares the inlet temperature Tc with the first temperature (Tb + 5 ° C.). If the inlet temperature Tc is equal to or lower than the first temperature (Tb + 5 ° C.), the process proceeds from step S13 to step S14. In step S <b> 14, the control device 50 operates the flow path switching valve 8 in a direction that increases the flow rate of the heat medium passing through the third passage 10. That is, the control device 50 switches the flow path so that the opening degree of the second inlet 8b communicating with the third passage 10 is slightly increased and the opening degree of the first inlet 8a communicating with the second passage 9 is slightly reduced. Actuate valve 8. Here, when the opening degree of the second inlet 8b is already fully opened and the opening degree of the first inlet 8a is already fully closed, the state is maintained.
 これに対し、ステップS13で、入口温度Tcが第一温度(Tb+5℃)より高い場合には、処理はステップS15に進む。ステップS15で、制御装置50は、第二通路9を通る熱媒体の流量を増やす方向に流路切替弁8を作動させる。すなわち、制御装置50は、第二通路9に連通する第一入口8aの開度が少し拡大するとともに第三通路10に連通する第二入口8bの開度が少し縮小するように、流路切替弁8を作動させる。ここで、第一入口8aの開度が全開で第二入口8bの開度が全閉の状態に既になっている場合には、その状態を維持する。 On the other hand, if the inlet temperature Tc is higher than the first temperature (Tb + 5 ° C.) in step S13, the process proceeds to step S15. In step S <b> 15, the control device 50 operates the flow path switching valve 8 in a direction to increase the flow rate of the heat medium passing through the second passage 9. That is, the control device 50 switches the flow path so that the opening degree of the first inlet 8a communicating with the second passage 9 is slightly increased and the opening degree of the second inlet 8b communicating with the third passage 10 is slightly reduced. Actuate valve 8. Here, when the opening degree of the first inlet 8a is already fully opened and the opening degree of the second inlet 8b is already fully closed, the state is maintained.
 本実施の形態2において蓄熱運転のときには、以下のようになる。前述したように、蓄熱運転の開始当初は、蓄熱槽2の中部2bから流出した熱媒体が、第二熱交換器6及び第一熱交換器5を通過して、蓄熱槽2の上部2aに流入するように運転される。その後、蓄熱槽2の中部2bから第三通路10へ流出する熱媒体の温度が徐々に上昇するので、入口温度Tcが徐々に上昇する。そして、入口温度Tcが第一温度(Tb+5℃)より高くなると、ステップS15の処理により、流路切替弁8の第一入口8aが開き始める。これにより、蓄熱槽2の中部2bから第三通路10へ流出した熱媒体と、蓄熱槽2の下部2cから第二通路9へ流出した熱媒体とが混合して第四通路11に流入するように運転される。入口温度Tcが第一温度(Tb+5℃)より高い状態が続くと、第二通路9を通る熱媒体の流量がさらに増加するとともに第三通路10を通る熱媒体の流量は低下する。 In the second embodiment, the heat storage operation is as follows. As described above, at the beginning of the heat storage operation, the heat medium flowing out from the middle part 2b of the heat storage tank 2 passes through the second heat exchanger 6 and the first heat exchanger 5 and enters the upper part 2a of the heat storage tank 2. It is operated to flow in. Thereafter, since the temperature of the heat medium flowing out from the middle portion 2b of the heat storage tank 2 to the third passage 10 gradually increases, the inlet temperature Tc gradually increases. When the inlet temperature Tc becomes higher than the first temperature (Tb + 5 ° C.), the first inlet 8a of the flow path switching valve 8 starts to open by the process of step S15. Thereby, the heat medium flowing out from the middle part 2b of the heat storage tank 2 to the third passage 10 and the heat medium flowing out from the lower part 2c of the heat storage tank 2 to the second passage 9 are mixed and flow into the fourth passage 11. Drive to. When the inlet temperature Tc continues to be higher than the first temperature (Tb + 5 ° C.), the flow rate of the heat medium passing through the second passage 9 further increases and the flow rate of the heat medium passing through the third passage 10 decreases.
 本実施の形態2であれば、実施の形態1に類似した効果に加えて、以下の効果が得られる。流路切替弁8の切り替わりの動作が緩やかになるので、流路切替弁8から第四通路11に流入する熱媒体の温度の急変をより確実に防止できる。その結果、第一熱交換器5から流出する熱媒体の温度の急変をより確実に防止できる。 In the second embodiment, in addition to the effects similar to those of the first embodiment, the following effects can be obtained. Since the switching operation of the flow path switching valve 8 becomes gradual, a sudden change in the temperature of the heat medium flowing into the fourth passage 11 from the flow path switching valve 8 can be prevented more reliably. As a result, a sudden change in the temperature of the heat medium flowing out from the first heat exchanger 5 can be prevented more reliably.
実施の形態3.
 次に、図5を参照して、実施の形態3について説明するが、前述した実施の形態1との相違点を中心に説明し、同一部分または相当部分については説明を簡略化または省略する。実施の形態3の熱媒体システム1のハードウェア構成は、図1による実施の形態1と同一または類似であるので、説明を省略する。図5は、実施の形態3による蓄熱運転のときの処理を示すフローチャートである。実施の形態3において制御装置50は、蓄熱運転のときに図5のフローチャートの処理を周期的に繰り返し実行する。
Embodiment 3 FIG.
Next, the third embodiment will be described with reference to FIG. 5. The description will focus on the differences from the first embodiment described above, and the description of the same or corresponding parts will be simplified or omitted. The hardware configuration of the heat medium system 1 of the third embodiment is the same as or similar to that of the first embodiment shown in FIG. FIG. 5 is a flowchart showing the processing during the heat storage operation according to the third embodiment. In Embodiment 3, control device 50 periodically repeats the process of the flowchart of FIG. 5 during the heat storage operation.
 実施の形態3において制御装置50は、下部温度、中部温度、及び入口温度に基づいて流路切替弁8の動作を制御する。実施の形態3において、蓄熱運転の開始当初は、流路切替弁8は、第三通路10に連通する第二入口8bを開き、第二通路9に連通する第一入口8aを閉じるように切り替えられている。すなわち、蓄熱運転の開始当初は、蓄熱槽2の中部2bから流出した熱媒体が、第二熱交換器6及び第一熱交換器5を通過して、蓄熱槽2の上部2aに流入するように運転される。 In the third embodiment, the control device 50 controls the operation of the flow path switching valve 8 based on the lower temperature, the middle temperature, and the inlet temperature. In the third embodiment, at the beginning of the heat storage operation, the flow path switching valve 8 switches so as to open the second inlet 8 b communicating with the third passage 10 and close the first inlet 8 a communicating with the second passage 9. It has been. That is, at the beginning of the heat storage operation, the heat medium flowing out from the middle part 2 b of the heat storage tank 2 passes through the second heat exchanger 6 and the first heat exchanger 5 and flows into the upper part 2 a of the heat storage tank 2. Drive to.
 図5のステップS21において、制御装置50は、温度センサ21により中部温度Taを検出する。処理はステップS22へ進み、制御装置50は、温度センサ20により下部温度Tbを検出する。処理はステップS23へ進み、制御装置50は、温度センサ19により入口温度Tcを検出する。処理はステップS24へ進む。 5, the control device 50 detects the middle temperature Ta by the temperature sensor 21. The process proceeds to step S22, and the control device 50 detects the lower temperature Tb by the temperature sensor 20. The process proceeds to step S23, and the control device 50 detects the inlet temperature Tc by the temperature sensor 19. The process proceeds to step S24.
 「第一温度」は、下部温度Tbに正の所定値を加算した温度である。以下の説明では、例として、この「所定値」を5℃とする。「第一条件」は、入口温度Tcが第一温度(Tb+5℃)以下であるという条件である。「第二条件」は、中部温度Taが基準温度以下であるという条件である。以下の説明では、例として、この基準温度を30℃とする。 The “first temperature” is a temperature obtained by adding a predetermined positive value to the lower temperature Tb. In the following description, this “predetermined value” is set to 5 ° C. as an example. The “first condition” is a condition that the inlet temperature Tc is equal to or lower than the first temperature (Tb + 5 ° C.). The “second condition” is a condition that the middle temperature Ta is equal to or lower than the reference temperature. In the following description, this reference temperature is set to 30 ° C. as an example.
 ステップS24で、制御装置50は、上記「第一条件」及び「第二条件」が満たされるかどうかを判断する。「第一条件」及び「第二条件」の双方が満たされる場合、すなわち、入口温度Tcが第一温度(Tb+5℃)以下で、かつ、中部温度Taが基準温度の30℃以下の場合には、処理はステップS24からステップS25に進む。ステップS25で、制御装置50は、第三通路10を通る熱媒体の流量を増やす方向に流路切替弁8を作動させる。すなわち、制御装置50は、第三通路10に連通する第二入口8bの開度が少し拡大するとともに第二通路9に連通する第一入口8aの開度が少し縮小するように、流路切替弁8を作動させる。ここで、第二入口8bの開度が全開で第一入口8aの開度が全閉の状態に既になっている場合には、その状態を維持する。 In step S24, the control device 50 determines whether or not the “first condition” and the “second condition” are satisfied. When both the “first condition” and the “second condition” are satisfied, that is, when the inlet temperature Tc is not more than the first temperature (Tb + 5 ° C.) and the middle temperature Ta is not more than the reference temperature 30 ° C. The process proceeds from step S24 to step S25. In step S <b> 25, the control device 50 operates the flow path switching valve 8 in a direction to increase the flow rate of the heat medium passing through the third passage 10. That is, the control device 50 switches the flow path so that the opening degree of the second inlet 8b communicating with the third passage 10 is slightly increased and the opening degree of the first inlet 8a communicating with the second passage 9 is slightly reduced. Actuate valve 8. Here, when the opening degree of the second inlet 8b is already fully opened and the opening degree of the first inlet 8a is already fully closed, the state is maintained.
 これに対し、ステップS24で、上記「第一条件」及び「第二条件」の少なくとも一方が満たされない場合、すなわち、入口温度Tcが第一温度(Tb+5℃)より高いか、中部温度Taが基準温度の30℃より高い場合には、処理はステップS26に進む。ステップS26で、制御装置50は、第二通路9を通る熱媒体の流量を増やす方向に流路切替弁8を作動させる。すなわち、制御装置50は、第二通路9に連通する第一入口8aの開度が少し拡大するとともに第三通路10に連通する第二入口8bの開度が少し縮小するように、流路切替弁8を作動させる。ここで、第一入口8aの開度が全開で第二入口8bの開度が全閉の状態に既になっている場合には、その状態を維持する。 On the other hand, if at least one of the “first condition” and “second condition” is not satisfied in step S24, that is, the inlet temperature Tc is higher than the first temperature (Tb + 5 ° C.), or the middle temperature Ta is the reference. If the temperature is higher than 30 ° C, the process proceeds to step S26. In step S <b> 26, the control device 50 operates the flow path switching valve 8 in a direction to increase the flow rate of the heat medium passing through the second passage 9. That is, the control device 50 switches the flow path so that the opening degree of the first inlet 8a communicating with the second passage 9 is slightly increased and the opening degree of the second inlet 8b communicating with the third passage 10 is slightly reduced. Actuate valve 8. Here, when the opening degree of the first inlet 8a is already fully opened and the opening degree of the second inlet 8b is already fully closed, the state is maintained.
 本実施の形態3において蓄熱運転のときには、以下のようになる。前述したように、蓄熱運転の開始当初は、蓄熱槽2の中部2bから流出した熱媒体が、第二熱交換器6及び第一熱交換器5を通過して、蓄熱槽2の上部2aに流入するように運転される。その後、蓄熱槽2の中部2bから第三通路10へ流出する熱媒体の温度が徐々に上昇するので、入口温度Tcが徐々に上昇する。そして、入口温度Tcが第一温度(Tb+5℃)より高くなると、ステップS26の処理により、流路切替弁8の第一入口8aが開き始める。これにより、蓄熱槽2の中部2bから第三通路10へ流出した熱媒体と、蓄熱槽2の下部2cから第二通路9へ流出した熱媒体とが混合して第四通路11に流入するように運転される。入口温度Tcが第一温度(Tb+5℃)より高い状態が続くと、第二通路9を通る熱媒体の流量がさらに増加するとともに第三通路10を通る熱媒体の流量は低下する。また、中部温度Taが基準温度の30℃より高くなると、ステップS26の処理が繰り返し行われるので、第三通路10を通る熱媒体の流量はゼロにまで低下する。 In the third embodiment, the heat storage operation is as follows. As described above, at the beginning of the heat storage operation, the heat medium flowing out from the middle part 2b of the heat storage tank 2 passes through the second heat exchanger 6 and the first heat exchanger 5 and enters the upper part 2a of the heat storage tank 2. It is operated to flow in. Thereafter, since the temperature of the heat medium flowing out from the middle portion 2b of the heat storage tank 2 to the third passage 10 gradually increases, the inlet temperature Tc gradually increases. When the inlet temperature Tc becomes higher than the first temperature (Tb + 5 ° C.), the first inlet 8a of the flow path switching valve 8 starts to open by the process of step S26. Thereby, the heat medium flowing out from the middle part 2b of the heat storage tank 2 to the third passage 10 and the heat medium flowing out from the lower part 2c of the heat storage tank 2 to the second passage 9 are mixed and flow into the fourth passage 11. Drive to. When the inlet temperature Tc continues to be higher than the first temperature (Tb + 5 ° C.), the flow rate of the heat medium passing through the second passage 9 further increases and the flow rate of the heat medium passing through the third passage 10 decreases. Further, when the middle temperature Ta becomes higher than the reference temperature of 30 ° C., the process of step S26 is repeatedly performed, so that the flow rate of the heat medium passing through the third passage 10 is reduced to zero.
 本実施の形態3であれば、実施の形態1に類似した効果に加えて、以下の効果が得られる。流路切替弁8の切り替わりの動作が緩やかになるので、流路切替弁8から第四通路11に流入する熱媒体の温度の急変をより確実に防止できる。その結果、第一熱交換器5から流出する熱媒体の温度の急変をより確実に防止できる。 In the third embodiment, in addition to the effects similar to the first embodiment, the following effects can be obtained. Since the switching operation of the flow path switching valve 8 becomes gradual, a sudden change in the temperature of the heat medium flowing into the fourth passage 11 from the flow path switching valve 8 can be prevented more reliably. As a result, a sudden change in the temperature of the heat medium flowing out from the first heat exchanger 5 can be prevented more reliably.
1 熱媒体システム、 2 蓄熱槽、 4 圧縮機、 5 第一熱交換器、 6 第二熱交換器、 7 第一通路、 8 流路切替弁、 8a 第一入口、 8b 第二入口、 8c 出口、 9 第二通路、 10 第三通路、 11 第四通路、 12 第五通路、 13 循環ポンプ、 14 減圧装置、 15 蒸発器、 19,20,21,24 温度センサ、 23 給湯栓、 50 制御装置、 60 熱需要部 1 heat medium system, 2 heat storage tank, 4 compressor, 5 first heat exchanger, 6 second heat exchanger, 7 first passage, 8 flow path switching valve, 8a first inlet, 8b second inlet, 8c outlet , 9 2nd passage, 10 3rd passage, 11 4th passage, 12 5th passage, 13 circulation pump, 14 decompression device, 15 evaporator, 19, 20, 21, 24 temperature sensor, 23 hot water tap, 50 control device 60 heat demand department

Claims (7)

  1.  熱媒体を貯留する蓄熱槽と、
     冷媒を圧縮する圧縮機と、
     前記圧縮機で圧縮された前記冷媒と、前記熱媒体との間で熱を交換する第一熱交換器と、
     前記圧縮機で圧縮される前の前記冷媒と、前記熱媒体との間で熱を交換する第二熱交換器と、
     前記第二熱交換器から前記第一熱交換器へ流れる前記熱媒体が通る第一通路と、
     第一入口、第二入口、及び出口を有する流路切替手段と、
     前記蓄熱槽の下部から前記流路切替手段の前記第一入口へ流れる前記熱媒体が通る第二通路と、
     前記蓄熱槽の前記下部より上位の中部から前記流路切替手段の前記第二入口へ流れる前記熱媒体が通る第三通路と、
     前記流路切替手段の前記出口から前記第二熱交換器へ流れる前記熱媒体が通る第四通路と、
     前記第一熱交換器から、前記蓄熱槽の前記中部より上位の上部へ流れる前記熱媒体が通る第五通路と、
     前記第一熱交換器を通過した前記熱媒体を前記蓄熱槽の前記上部へ流入させる蓄熱運転の実行中に前記流路切替手段の動作を制御する制御手段と、
     を備える熱媒体システム。
    A heat storage tank for storing a heat medium;
    A compressor for compressing the refrigerant;
    A first heat exchanger that exchanges heat between the refrigerant compressed by the compressor and the heat medium;
    A second heat exchanger that exchanges heat between the refrigerant before being compressed by the compressor and the heat medium;
    A first passage through which the heat medium flowing from the second heat exchanger to the first heat exchanger passes;
    Flow path switching means having a first inlet, a second inlet, and an outlet;
    A second passage through which the heat medium flowing from the lower part of the heat storage tank to the first inlet of the flow path switching unit passes,
    A third passage through which the heat medium flowing from the middle part above the lower part of the heat storage tank to the second inlet of the flow path switching unit passes;
    A fourth passage through which the heat medium flowing from the outlet of the flow path switching unit to the second heat exchanger passes,
    From the first heat exchanger, a fifth passage through which the heat medium flowing to the upper part above the middle part of the heat storage tank passes,
    Control means for controlling the operation of the flow path switching means during execution of a heat storage operation in which the heat medium that has passed through the first heat exchanger flows into the upper portion of the heat storage tank;
    A heat medium system comprising:
  2.  前記蓄熱槽の前記中部にある前記熱媒体の温度である中部温度を検出する手段を備え、
     前記制御手段は、前記中部温度が基準温度以下の場合には前記第一入口が閉じて前記第二入口が開くように前記流路切替手段を切り替え、前記中部温度が前記基準温度より高い場合には前記第一入口が開いて前記第二入口が閉じるように前記流路切替手段を切り替える請求項1に記載の熱媒体システム。
    Means for detecting a middle temperature which is a temperature of the heat medium in the middle of the heat storage tank;
    The control means switches the flow path switching means so that the first inlet is closed and the second inlet is opened when the middle temperature is equal to or lower than a reference temperature, and when the middle temperature is higher than the reference temperature. The heat medium system according to claim 1, wherein the flow path switching means is switched so that the first inlet is opened and the second inlet is closed.
  3.  第二基準温度は、前記基準温度より低い温度であり、
     前記制御手段は、前記中部温度が前記第二基準温度以上の場合には前記第一入口が閉じて前記第二入口が開くように前記流路切替手段を切り替え、前記中部温度が前記第二基準温度より低い場合には前記第一入口が開いて前記第二入口が閉じるように前記流路切替手段を切り替える請求項2に記載の熱媒体システム。
    The second reference temperature is a temperature lower than the reference temperature,
    The control means switches the flow path switching means so that the first inlet is closed and the second inlet is opened when the intermediate temperature is equal to or higher than the second reference temperature, and the intermediate temperature is set to the second reference temperature. The heat medium system according to claim 2, wherein when the temperature is lower than the temperature, the flow path switching unit is switched so that the first inlet is opened and the second inlet is closed.
  4.  前記蓄熱槽の前記下部にある前記熱媒体の温度である下部温度を検出する手段と、
     前記第一熱交換器に流入する前記熱媒体の温度である入口温度を検出する手段と、
     を備え、
     前記制御手段は、前記下部温度及び前記入口温度に基づいて前記流路切替手段の動作を制御する請求項1に記載の熱媒体システム。
    Means for detecting a lower temperature which is a temperature of the heat medium in the lower part of the heat storage tank;
    Means for detecting an inlet temperature which is a temperature of the heat medium flowing into the first heat exchanger;
    With
    The heat medium system according to claim 1, wherein the control unit controls the operation of the flow path switching unit based on the lower temperature and the inlet temperature.
  5.  第一温度は、前記下部温度に所定値を加算した温度であり、
     前記制御手段は、前記入口温度が前記第一温度以下の場合には、前記第一入口を通る流量が減少して前記第二入口を通る流量が増加するように前記流路切替手段を作動させ、前記入口温度が前記第一温度より高い場合には、前記第一入口を通る流量が増加して前記第二入口を通る流量が減少するように前記流路切替手段を作動させる請求項4に記載の熱媒体システム。
    The first temperature is a temperature obtained by adding a predetermined value to the lower temperature,
    When the inlet temperature is equal to or lower than the first temperature, the control means operates the flow path switching means so that the flow rate through the first inlet decreases and the flow rate through the second inlet increases. 5. When the inlet temperature is higher than the first temperature, the flow path switching means is operated so that the flow rate through the first inlet increases and the flow rate through the second inlet decreases. The heat carrier system described.
  6.  前記蓄熱槽の前記下部にある前記熱媒体の温度である下部温度を検出する手段と、
     前記蓄熱槽の前記中部にある前記熱媒体の温度である中部温度を検出する手段と、
     前記第一熱交換器に流入する前記熱媒体の温度である入口温度を検出する手段と、
     を備え、
     前記制御手段は、前記下部温度、前記中部温度、及び前記入口温度に基づいて前記流路切替手段の動作を制御する請求項1に記載の熱媒体システム。
    Means for detecting a lower temperature which is a temperature of the heat medium in the lower part of the heat storage tank;
    Means for detecting a middle temperature which is a temperature of the heat medium in the middle of the heat storage tank;
    Means for detecting an inlet temperature which is a temperature of the heat medium flowing into the first heat exchanger;
    With
    The heat medium system according to claim 1, wherein the control unit controls the operation of the flow path switching unit based on the lower temperature, the middle temperature, and the inlet temperature.
  7.  前記制御手段は、第一条件及び第二条件の双方が満たされる場合には、前記第一入口を通る流量が減少して前記第二入口を通る流量が増加するように前記流路切替手段を作動させ、前記第一条件及び前記第二条件の少なくとも一方が満たされない場合には、前記第一入口を通る流量が増加して前記第二入口を通る流量が減少するように前記流路切替手段を作動させ、
     第一温度は、前記下部温度に所定値を加算した温度であり、
     前記第一条件は、前記入口温度が前記第一温度以下であるという条件であり、
     前記第二条件は、前記中部温度が基準温度以下であるという条件である請求項6に記載の熱媒体システム。
    When both the first condition and the second condition are satisfied, the control means controls the flow path switching means so that the flow rate through the first inlet decreases and the flow rate through the second inlet increases. The flow path switching means is operated so that when at least one of the first condition and the second condition is not satisfied, the flow rate through the first inlet increases and the flow rate through the second inlet decreases. And
    The first temperature is a temperature obtained by adding a predetermined value to the lower temperature,
    The first condition is a condition that the inlet temperature is equal to or lower than the first temperature,
    The heat medium system according to claim 6, wherein the second condition is a condition that the intermediate temperature is equal to or lower than a reference temperature.
PCT/JP2017/007821 2017-02-28 2017-02-28 Heat medium system WO2018158827A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/007821 WO2018158827A1 (en) 2017-02-28 2017-02-28 Heat medium system
JP2019502325A JP6645616B2 (en) 2017-02-28 2017-02-28 Heat transfer system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/007821 WO2018158827A1 (en) 2017-02-28 2017-02-28 Heat medium system

Publications (1)

Publication Number Publication Date
WO2018158827A1 true WO2018158827A1 (en) 2018-09-07

Family

ID=63370316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007821 WO2018158827A1 (en) 2017-02-28 2017-02-28 Heat medium system

Country Status (2)

Country Link
JP (1) JP6645616B2 (en)
WO (1) WO2018158827A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098429A (en) * 2000-09-26 2002-04-05 Sekisui Chem Co Ltd Heat pump, hot water supply system using the same, and heating system
JP2004198037A (en) * 2002-12-19 2004-07-15 Sanyo Electric Co Ltd Hot water supply system
JP2006010116A (en) * 2004-06-23 2006-01-12 Gastar Corp Hot water supply system
JP2007155275A (en) * 2005-12-08 2007-06-21 Sharp Corp Heat pump hot water feeder
JP2010091131A (en) * 2008-10-03 2010-04-22 Daikin Ind Ltd Heat exchanger and water heating system
WO2010122759A1 (en) * 2009-04-21 2010-10-28 パナソニック株式会社 Hot water storage-type hot water supply device, hot water supply and heating device, operation control device, operation control method, and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098429A (en) * 2000-09-26 2002-04-05 Sekisui Chem Co Ltd Heat pump, hot water supply system using the same, and heating system
JP2004198037A (en) * 2002-12-19 2004-07-15 Sanyo Electric Co Ltd Hot water supply system
JP2006010116A (en) * 2004-06-23 2006-01-12 Gastar Corp Hot water supply system
JP2007155275A (en) * 2005-12-08 2007-06-21 Sharp Corp Heat pump hot water feeder
JP2010091131A (en) * 2008-10-03 2010-04-22 Daikin Ind Ltd Heat exchanger and water heating system
WO2010122759A1 (en) * 2009-04-21 2010-10-28 パナソニック株式会社 Hot water storage-type hot water supply device, hot water supply and heating device, operation control device, operation control method, and program

Also Published As

Publication number Publication date
JP6645616B2 (en) 2020-02-14
JPWO2018158827A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
AU2014399713B2 (en) Heating and hot water supply system
JP4931848B2 (en) Heat pump type outdoor unit for hot water supply
JP4485406B2 (en) Hot water storage water heater
WO2011089637A1 (en) Air conditioning-hot water supply combined system
KR101155641B1 (en) Ground heat pump for house
WO2017203655A1 (en) Heat pump type air conditioning and hot water supplying device
JP2010249448A (en) Heat pump type water heater-air conditioner
JP5300806B2 (en) Heat pump equipment
JP5264936B2 (en) Air conditioning and hot water supply complex system
JP2009264717A (en) Heat pump hot water system
JP6438765B2 (en) Thermal equipment
JP2007046851A (en) Heat pump hot-water supply bathroom heating/drying device
JP5129972B2 (en) Water heater with heat recovery path
JP2012132573A (en) Heat pump system
JP5150300B2 (en) Heat pump type water heater
WO2018158827A1 (en) Heat medium system
JP5629366B2 (en) Air conditioner, operation control method of air conditioner, and cooling system
JP2009264716A (en) Heat pump hot water system
JP6281736B2 (en) Heat pump water heater
JP2016114319A (en) Heating system
JP5741256B2 (en) Hot water storage water heater
JP7097755B2 (en) Hot water heater
JP2009109061A (en) Heat pump type air conditioning device comprising heating panel
JP6391414B2 (en) Heating and hot water supply equipment
JP6102793B2 (en) Heat pump type hot water heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899118

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019502325

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899118

Country of ref document: EP

Kind code of ref document: A1