WO2018157507A1 - 一种显示面板及其制程 - Google Patents

一种显示面板及其制程 Download PDF

Info

Publication number
WO2018157507A1
WO2018157507A1 PCT/CN2017/089176 CN2017089176W WO2018157507A1 WO 2018157507 A1 WO2018157507 A1 WO 2018157507A1 CN 2017089176 W CN2017089176 W CN 2017089176W WO 2018157507 A1 WO2018157507 A1 WO 2018157507A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode layer
substrate
display panel
photoresist
Prior art date
Application number
PCT/CN2017/089176
Other languages
English (en)
French (fr)
Inventor
简重光
Original Assignee
惠科股份有限公司
重庆惠科金渝光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司, 重庆惠科金渝光电科技有限公司 filed Critical 惠科股份有限公司
Priority to US16/336,976 priority Critical patent/US10852601B2/en
Publication of WO2018157507A1 publication Critical patent/WO2018157507A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136259Repairing; Defects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1316Methods for cleaning the liquid crystal cells, or components thereof, during manufacture: Materials therefor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1292Multistep manufacturing methods using liquid deposition, e.g. printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/861Repairing

Definitions

  • the present application relates to the field of display technologies, and more particularly to a display panel and a process thereof.
  • the liquid crystal display has many advantages such as thin body, power saving, no radiation, and has been widely used.
  • Most of the liquid crystal displays on the market are backlight type liquid crystal displays, which include a liquid crystal panel and a backlight module.
  • the working principle of the liquid crystal panel is to place liquid crystal molecules in two parallel glass substrates, and apply a driving voltage on the two glass substrates to control the rotation direction of the liquid crystal molecules to refract the light of the backlight module to generate a picture.
  • a thin film transistor liquid crystal display includes a liquid crystal panel including a color filter substrate (CF Substrate, also referred to as a color filter substrate), a thin film transistor array substrate (Thin Film Transistor Substrate, TFT Substrate), and a backlight module.
  • CF Substrate also referred to as a color filter substrate
  • Thin Film Transistor Substrate TFT Substrate
  • a backlight module In the mask, a transparent electrode is present on the opposite side of the substrate. A layer of liquid crystal molecules (Liquid Crystal, LC) is sandwiched between the two substrates.
  • the technical problem to be solved by the present application is to provide a display surface with high repair success rate and normal alignment. board.
  • the present application also provides a process for displaying a display panel.
  • the present application also provides a display device.
  • a display panel including
  • An electrode layer the electrode layer being disposed on the substrate
  • a first defect bit and an electrode repair layer are disposed on the electrode layer, and the transparent conductive repair layer is overlaid on the first defect bit.
  • the transparent conductive repair layer is made of a colloidal material.
  • Colloid also known as colloidal dispersion, is a relatively homogeneous mixture containing two different states of matter in the colloid, one dispersed phase and the other continuous phase. Part of the dispersoid is composed of tiny particles or droplets.
  • the dispersion with a diameter of between 1 and 100 nm is a colloid; the colloid is a dispersion of particles between the coarse dispersion and the solution.
  • Class dispersion system which is a highly dispersed heterogeneous heterogeneous system.
  • the composition of the colloidal material is indium oxide, tin oxide, zinc oxide, or a mixture of the foregoing components.
  • Indium oxide is a new n-type transparent semiconductor functional material with a wide band gap, low resistivity and high catalytic activity.
  • Tin Oxide An excellent transparent conductive material that is often used for doping in order to improve its conductivity and stability.
  • Zinc oxide has a large band gap and exciton binding energy, high transparency, and excellent room temperature luminescence.
  • the display panel includes a first photoresist layer, the first photoresist layer is disposed on the surface of the electrode layer, and the first photoresist layer is provided with a second defect corresponding to the position of the first defect bit. Bit and first photoresist repair layer.
  • the second photoresist layer covers the surface of the electrode layer, the second defect bit corresponds to the position of the first defect bit, and the transparent conductive repair layer is overlaid on the first defect bit for repair, and the first photoresist layer is covered. Placed in the second defect position for repair.
  • the display panel includes a second photoresist layer
  • the electrode layer is overlaid on the second photoresist layer
  • the surface of the second photoresist layer is provided with a third defect bit and a second photoresist layer corresponding to the position of the first defect bit.
  • the third defect bit corresponds to the position of the first defect bit
  • the second photoresist layer is overlaid on the third defect bit for repair, and the transparent conductive repair layer is covered. Placed in the first defect position for repair.
  • the substrate includes a first substrate, and the first substrate is provided with an active switch; the electrode layer includes a pixel electrode layer coupled to the active switch; the first defect bit and the Transparent conductive repair layer.
  • the specific setting of the display panel is provided with a first defect bit and a transparent conductive repair layer on the pixel electrode layer.
  • the substrate includes a second substrate, and the electrode layer includes a common electrode layer overlying the second substrate; the first defect bit and the transparent conductive repair layer are disposed on the common electrode layer.
  • the specific arrangement of the display panel is provided with a first defect bit and a transparent conductive repair layer on the common electrode layer.
  • the present application further discloses a process for displaying a display panel, the display panel comprising a substrate, including the steps of:
  • the electrode layer has a first defect bit, and a transparent conductive repair layer is overlaid on the first defect bit.
  • the process of the display panel adopts an ink coating method.
  • the ink coating (INK) method has good effect, excellent adhesion performance, simple operation process, and is not prone to falling off and light leakage.
  • the present application further discloses a display device including a backlight module and the display panel according to any of the above.
  • the electrode layer since the first defect bit on the electrode layer is directly repaired by using the transparent conductive repair layer, the electrode layer returns to the normal working function, and the problem of poor alignment is better to display the taste, and the repair success rate is improved, thereby avoiding Because the defect is too large, it is scrapped.
  • FIG. 1 is a schematic structural view of a display panel according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a display panel according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a display panel according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a display panel according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a display panel according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a process of a display panel according to an embodiment of the present application.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated. Thus, features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • a plurality means two or more unless otherwise stated.
  • the term “comprises” and its variations are intended to cover a non-exclusive inclusion.
  • connection In the description of the present application, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise specifically defined and defined. Connected, or connected in one piece; it can be a mechanical connection or an electrical connection; it can be directly connected, It can also be connected indirectly through an intermediate medium, which can be the internal communication between two components.
  • an intermediate medium which can be the internal communication between two components.
  • the display panel includes a substrate 1; an electrode layer 2, the electrode layer 2 is disposed on the substrate 1; and the electrode layer 2 is provided with a first defect
  • the bit 23 and the electrode repair layer are overlaid on the first defect bit 23. Since the first defect bit 23 on the electrode layer 2 is directly repaired by using the transparent conductive repair layer 24, the electrode layer 2 is restored to the normal working function, and the problem of poor alignment is better to display the taste and the repair success rate is improved. To avoid scrapping due to excessive defects.
  • the transparent conductive repair layer 24 is made of a colloidal material.
  • Colloid also known as colloidal dispersion, is a relatively homogeneous mixture containing two different states of matter in the colloid, one dispersed phase and the other continuous phase. Part of the dispersoid is composed of tiny particles or droplets.
  • the dispersion with a diameter of between 1 and 100 nm is a colloid; the colloid is a dispersion of particles between the coarse dispersion and the solution.
  • Class dispersion system which is a highly dispersed heterogeneous heterogeneous system.
  • the electrode layer 2 includes indium tin oxide (ITO), indium zinc oxide (IZO) or other transparent conductive material. Therefore, the composition of the transparent conductive repair layer 246 may be composed of, for example, a plurality of transparent conductive examples and a solvent.
  • the composition of the colloidal material is indium oxide, tin oxide, zinc oxide, or a mixture of the foregoing components.
  • Indium oxide is a new n-type transparent semiconductor functional material with a wide band gap, low resistivity and high catalytic activity.
  • Tin Oxide An excellent transparent conductive material that is often used for doping in order to improve its conductivity and stability.
  • Zinc oxide has a large band gap and exciton binding energy. High brightness and excellent room temperature luminescence.
  • Representative TCO materials include indium oxide, tin oxide, zinc oxide, cadmium oxide, indium cadmium tetraoxide, dicadmium tin oxide, di-tin-tin di-zinc and indium oxide-tin oxide.
  • the energy gap of these oxide semiconductors is above 3 eV, so the energy of visible light (about 1.6-3.3 eV) is not enough to excite the electrons of the valence band to the conduction band, only the wavelength is 350-400 nm ( UV light can be used below. Therefore, the light absorption caused by the migration of electrons between the energy bands does not occur in the visible light range, and the TCO is transparent to visible light.
  • Sn becomes ITO
  • Sb, F is added to tin oxide
  • a dopant such as In, Ga (becomes GZO) or A1 (becomes AZO) is added to ZnO, and the carrier can be loaded.
  • the concentration of (carrier) is increased to 10-10 cm, which lowers the specific resistance.
  • dopants for example, tetravalent Sn in ITO replaces the trivalent In position, and in GZO or AZO, trivalent Ga or A1 replaces divalent Zn, so one dopant atom can provide one Carrier.
  • dopants are such displacement type solid solution, and they may exist as neutral atoms in the crystal lattice, become scattering centers, or segregate on grain boundaries or surfaces. How to effectively form a displacement type solid solution and improve the doping efficiency is very important for the fabrication of a low-resistance transparent conductive film.
  • the display panel includes a substrate 1; an electrode layer 2, the electrode layer 2 is disposed on the substrate 1, and the electrode layer 2 is provided with a first The defect bit 23 and the electrode repair layer, the transparent conductive repair layer 24 is overlaid on the first defect bit 23.
  • the display panel includes a first photoresist layer 5, the first photoresist layer 5 is disposed on the surface of the electrode layer 2, and the first photoresist layer 5 is disposed at a position corresponding to the first defect layer 23.
  • the second defect bit 51 and the first photoresist repair layer is provided.
  • the transparent conductive repair layer 24 is made of a colloidal material.
  • Colloid also known as colloidal dispersion, is a relatively homogeneous mixture containing two different states of matter in the colloid, one dispersed phase and the other continuous phase. Part of the dispersoid is composed of tiny particles or droplets.
  • the dispersion with a diameter of between 1 and 100 nm is a colloid; the colloid is a dispersion of particles between the coarse dispersion and the solution.
  • Class dispersion system which is a highly dispersed heterogeneous heterogeneous system.
  • the electrode layer 2 includes indium tin oxide (ITO) and indium zinc oxide (IZO). Or other transparent conductive material, the composition of the transparent conductive repair layer 246 may be composed of, for example, a plurality of transparent conductive examples, a solvent, or the like.
  • the composition of the colloidal material is indium oxide, tin oxide, zinc oxide, or a mixture of the foregoing components.
  • Indium oxide is a new n-type transparent semiconductor functional material with a wide band gap, low resistivity and high catalytic activity.
  • Tin Oxide An excellent transparent conductive material that is often used for doping in order to improve its conductivity and stability.
  • Zinc oxide has a large band gap and exciton binding energy, high transparency, and excellent room temperature luminescence.
  • Representative TCO materials include indium oxide, tin oxide, zinc oxide, cadmium oxide, indium cadmium tetraoxide, dicadmium tin oxide, di-tin-tin di-zinc and indium oxide-tin oxide.
  • the energy gap of these oxide semiconductors is above 3 eV, so the energy of visible light (about 1.6-3.3 eV) is not enough to excite the electrons of the valence band to the conduction band, only the wavelength is 350-400 nm ( UV light can be used below. Therefore, the light absorption caused by the migration of electrons between the energy bands does not occur in the visible light range, and the TCO is transparent to visible light.
  • Sn becomes ITO
  • Sb, F is added to tin oxide
  • a dopant such as In, Ga (becomes GZO) or A1 (becomes AZO) is added to ZnO, and the carrier can be loaded.
  • the concentration of (carrier) is increased to 10-10 cm, which lowers the specific resistance.
  • dopants for example, tetravalent Sn in ITO replaces the trivalent In position, and in GZO or AZO, trivalent Ga or A1 replaces divalent Zn, so one dopant atom can provide one Carrier.
  • dopants are such displacement type solid solution, and they may exist as neutral atoms in the crystal lattice, become scattering centers, or segregate on grain boundaries or surfaces. How to effectively form a displacement type solid solution and improve the doping efficiency is very important for the fabrication of a low-resistance transparent conductive film.
  • the first photoresist repair layer adopts a color photoresist repair layer
  • the photoresist repair layer adopts a black photoresist repair layer.
  • the second defect bit 51 restores the color exhibited by the original pixel in the electrode layer 2 by the color and or black photoresist repair layer, thereby improving display quality.
  • the color resists such as RGB, but not limited to R pixels, G pixels, B pixels, may also include pixels corresponding to colors such as W (White White) and Y (Yellow Yellow), and the colors are richer and the display effect is better.
  • the display panel includes a substrate 1; an electrode Layer 2, the electrode layer 2 is disposed on the substrate 1; the electrode layer 2 is provided with a first defect bit 23 and an electrode repair layer, and the transparent conductive repair layer 24 is overlaid on the first defect bit 23 on.
  • the display panel includes a second photoresist layer 6 , the electrode layer 2 is disposed on the surface of the second photoresist layer 6 , and the second photoresist layer 6 is disposed corresponding to the position of the first defect layer 23 .
  • the three defect bits 61 and the second photoresist repair layer are provided.
  • the transparent conductive repair layer 24 is made of a colloidal material.
  • Colloid also known as colloidal dispersion, is a relatively homogeneous mixture containing two different states of matter in the colloid, one dispersed phase and the other continuous phase. Part of the dispersoid is composed of tiny particles or droplets.
  • the dispersion with a diameter of between 1 and 100 nm is a colloid; the colloid is a dispersion of particles between the coarse dispersion and the solution.
  • Class dispersion system which is a highly dispersed heterogeneous heterogeneous system.
  • the electrode layer 2 includes indium tin oxide (ITO), indium zinc oxide (IZO) or other transparent conductive material. Therefore, the composition of the transparent conductive repair layer 246 may be composed of, for example, a plurality of transparent conductive examples and a solvent.
  • the composition of the colloidal material is indium oxide, tin oxide, zinc oxide, or a mixture of the foregoing components.
  • Indium oxide is a new n-type transparent semiconductor functional material with a wide band gap, low resistivity and high catalytic activity.
  • Tin Oxide An excellent transparent conductive material that is often used for doping in order to improve its conductivity and stability.
  • Zinc oxide has a large band gap and exciton binding energy, high transparency, and excellent room temperature luminescence.
  • Representative TCO materials include indium oxide, tin oxide, zinc oxide, cadmium oxide, indium cadmium tetraoxide, dicadmium tin oxide, di-tin-tin di-zinc and indium oxide-tin oxide.
  • the energy gap of these oxide semiconductors is above 3 eV, so the energy of visible light (about 1.6-3.3 eV) is not enough to excite the electrons of the valence band to the conduction band, only the wavelength is 350-400 nm ( UV light can be used below. Therefore, the light absorption caused by the migration of electrons between the energy bands does not occur in the visible light range, and the TCO is transparent to visible light.
  • Sn becomes ITO
  • Sb, F is added to tin oxide
  • a dopant such as In, Ga (becomes GZO) or A1 (becomes AZO) is added to ZnO, and the carrier can be loaded.
  • the concentration of (carrier) is increased to 10-10 cm, which lowers the specific resistance.
  • dopants for example, tetravalent Sn in ITO, replace the trivalent In position, GZO Or in AZO, trivalent Ga or A1 replaces divalent Zn, so a dopant atom can provide a carrier.
  • dopants are such displacement type solid solution, and they may exist as neutral atoms in the crystal lattice, become scattering centers, or segregate on grain boundaries or surfaces. How to effectively form a displacement type solid solution and improve the doping efficiency is very important for the fabrication of a low-resistance transparent conductive film.
  • the second photoresist repair layer adopts a color photoresist repair layer, and alternatively, the photoresist repair layer adopts a black photoresist repair layer.
  • the third defect bit 61 is restored to the color exhibited by the original pixel in the electrode layer 2 by the color and or black photoresist repair layer, thereby improving the display quality.
  • the color resists such as RGB, but not limited to R pixels, G pixels, B pixels, may also include pixels corresponding to colors such as W (White White) and Y (Yellow Yellow), and the colors are richer and the display effect is better.
  • the foreign matter 33 is initially subjected to ink coating (INK) repair in the upper left corner of the figure; the foreign object 33 is knocked off by a laser in the upper right corner of the figure, but also the electrode layer 2 and the second
  • the photoresist layer 6 is also removed by attack at the corresponding position; the second photoresist layer 6 is repaired by the second photoresist layer in the lower right corner of the figure; the electrode layer 2 is transparently conductive to the lower left corner of the figure.
  • the repair layer 24 is repaired.
  • the first defect bit 23 still has the alignment capability. This step can be easily repaired regardless of the size or shape of the first defect bit 23.
  • the display panel includes a substrate 1; an electrode layer 2, the electrode layer 2 is disposed on the substrate 1, and the electrode layer 2 is provided with a first The defect bit 23 and the electrode repair layer, the transparent conductive repair layer 24 is overlaid on the first defect bit 23.
  • the substrate 1 includes a first substrate 11 on which an active switch 7 is disposed; the electrode layer 2 includes a pixel electrode layer 21 coupled to the active switch 7; and the pixel electrode layer 21 is provided with the A defect bit 23 and the transparent conductive repair layer 24.
  • the transparent conductive repair layer 24 is made of a colloidal material.
  • Colloid also known as colloidal dispersion, is a relatively homogeneous mixture containing two different states of matter in the colloid, one dispersed phase and the other continuous phase. Part of the dispersoid is composed of tiny particles or droplets.
  • the dispersion with a diameter between 1 and 100 nm is a colloid; the colloid is a dispersoid.
  • the electrode layer 2 includes indium tin oxide (ITO), indium zinc oxide (IZO) or other transparent conductive material. Therefore, the composition of the transparent conductive repair layer 246 may be composed of, for example, a plurality of transparent conductive examples and a solvent.
  • the composition of the colloidal material is indium oxide, tin oxide, zinc oxide, or a mixture of the foregoing components.
  • Indium oxide is a new n-type transparent semiconductor functional material with a wide band gap, low resistivity and high catalytic activity.
  • Tin Oxide An excellent transparent conductive material that is often used for doping in order to improve its conductivity and stability.
  • Zinc oxide has a large band gap and exciton binding energy, high transparency, and excellent room temperature luminescence.
  • Representative TCO materials include indium oxide, tin oxide, zinc oxide, cadmium oxide, indium cadmium tetraoxide, dicadmium tin oxide, di-tin-tin di-zinc and indium oxide-tin oxide.
  • the energy gap of these oxide semiconductors is above 3 eV, so the energy of visible light (about 1.6-3.3 eV) is not enough to excite the electrons of the valence band to the conduction band, only the wavelength is 350-400 nm ( UV light can be used below. Therefore, the light absorption caused by the migration of electrons between the energy bands does not occur in the visible light range, and the TCO is transparent to visible light.
  • Sn becomes ITO
  • Sb, F is added to tin oxide
  • a dopant such as In, Ga (becomes GZO) or A1 (becomes AZO) is added to ZnO, and the carrier can be loaded.
  • the concentration of (carrier) is increased to 10-10 cm, which lowers the specific resistance.
  • dopants for example, tetravalent Sn in ITO replaces the trivalent In position, and in GZO or AZO, trivalent Ga or A1 replaces divalent Zn, so one dopant atom can provide one Carrier.
  • dopants are such displacement type solid solution, and they may exist as neutral atoms in the crystal lattice, become scattering centers, or segregate on grain boundaries or surfaces. How to effectively form a displacement type solid solution and improve the doping efficiency is very important for the fabrication of a low-resistance transparent conductive film.
  • the active switch 7 can adopt a thin film transistor (TFT).
  • TFT thin film transistor
  • the display panel includes a substrate 1; an electrode layer 2, the electrode layer 2 is disposed on the substrate 1; the electrode layer 2 is provided with a first defect bit 23 and an electrode repair
  • the transparent conductive repair layer 24 is overlaid on the first defect location 23.
  • the substrate 1 includes a
  • the second substrate 12 includes the common electrode layer 22 overlying the second substrate 12; the common electrode layer 22 is provided with the first defect bit 23 and the transparent conductive repair layer 24.
  • the specific arrangement of the display panel is provided with a first defect bit 23 and a transparent conductive repair layer 24 on the common electrode layer 22.
  • the transparent conductive repair layer 24 is made of a colloidal material.
  • Colloid also known as colloidal dispersion, is a relatively homogeneous mixture containing two different states of matter in the colloid, one dispersed phase and the other continuous phase. Part of the dispersoid is composed of tiny particles or droplets.
  • the dispersion with a diameter of between 1 and 100 nm is a colloid; the colloid is a dispersion of particles between the coarse dispersion and the solution.
  • Class dispersion system which is a highly dispersed heterogeneous heterogeneous system.
  • the electrode layer 2 includes indium tin oxide (ITO), indium zinc oxide (IZO) or other transparent conductive material. Therefore, the composition of the transparent conductive repair layer 246 may be composed of, for example, a plurality of transparent conductive examples and a solvent.
  • the composition of the colloidal material is indium oxide, tin oxide, zinc oxide, or a mixture of the foregoing components.
  • Indium oxide is a new n-type transparent semiconductor functional material with a wide band gap, low resistivity and high catalytic activity.
  • Tin Oxide An excellent transparent conductive material that is often used for doping in order to improve its conductivity and stability.
  • Zinc oxide has a large band gap and exciton binding energy, high transparency, and excellent room temperature luminescence.
  • Representative TCO materials include indium oxide, tin oxide, zinc oxide, cadmium oxide, indium cadmium tetraoxide, dicadmium tin oxide, di-tin-tin di-zinc and indium oxide-tin oxide.
  • the energy gap of these oxide semiconductors is above 3 eV, so the energy of visible light (about 1.6-3.3 eV) is not enough to excite the electrons of the valence band to the conduction band, only the wavelength is 350-400 nm ( UV light can be used below. Therefore, the light absorption caused by the migration of electrons between the energy bands does not occur in the visible light range, and the TCO is transparent to visible light.
  • Sn becomes ITO
  • Sb, F is added to tin oxide
  • a dopant such as In, Ga (becomes GZO) or A1 (becomes AZO) is added to ZnO, and the carrier can be loaded.
  • the concentration of (carrier) is increased to 10-10 cm, which lowers the specific resistance.
  • dopants for example, tetravalent Sn in ITO replaces the trivalent In position, and in GZO or AZO, trivalent Ga or A1 replaces divalent Zn, so one dopant atom can provide one Carrier.
  • dopants may Neutral atoms exist between the crystal lattices, become scattering centers, or segregate on grain boundaries or surfaces. How to effectively form a displacement type solid solution and improve the doping efficiency is very important for the fabrication of a low-resistance transparent conductive film.
  • the process of the display panel, the display panel includes the following steps:
  • the electrode layer 2 has a first defect bit 23 on which a transparent conductive repair layer 24 is placed.
  • the process of the display panel adopts an ink coating method.
  • the ink coating (INK) method has good effect, excellent adhesion performance, simple operation process, and is not prone to falling off and light leakage. It is also possible to use a method of sputtering a conductive patch by chemical vapor deposition on the process.
  • CVD Chemical Vapor Deposition
  • chemical vapor deposition developed in the gas phase at high temperatures, as a means of coating, but not only for the coating of heat-resistant substances, but also for the purification of high-purity metals, powder synthesis, semiconductors Film and the like.
  • the deposition temperature is low, the film composition is easy to control, the film thickness is proportional to the deposition time, the uniformity, the repeatability is good, and the step coverage is excellent.
  • PVD Physical Vapor Deposition
  • physical vapor deposition can also be used to realize the transfer of atoms by physical processes, and transfer atoms or molecules from the source to the surface of the substrate. Its function is to make some particles with special properties (high strength, wear resistance, heat dissipation, corrosion resistance, etc.) spray on the lower performance mother body, so that the mother body has better performance.
  • PVD vacuum evaporation, sputtering, ion plating (hollow cathode ion plating, hot cathode ion plating, arc ion plating, active reactive ion plating, radio frequency ion plating, DC discharge ion plating).
  • the display device of the embodiment of the present application includes a backlight module and a display panel as described above.
  • the material of the substrate 1 may be glass, plastic or the like.
  • the display panel includes a liquid crystal panel, an OLED panel, a curved display panel, a plasma panel, and the like.
  • the liquid crystal panel includes an array substrate and a color filter substrate (CF), and the array substrate and the color filter substrate Relatively disposed, a liquid crystal and a space are arranged between the array substrate and the color filter substrate
  • a photo spacer (PS) is provided with a thin film transistor (TFT) on the array substrate, and a color filter layer is disposed on the color filter substrate.
  • TFT thin film transistor
  • the color film and the TFT array may be formed on the same substrate, and the array substrate may include a color filter layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板及其制程,显示面板包括基板(1);电极层(2),电极层(2)设置在基板(1)上;电极层(2)上设置有第一缺陷位(23)和透明导电修补层(24),透明导电修补层(24)覆置于第一缺陷位(23)上。

Description

一种显示面板及其制程 【技术领域】
本申请涉及显示技术领域,更具体的说,涉及一种显示面板及其制程。
【背景技术】
液晶显示器具有机身薄、省电、无辐射等众多优点,得到了广泛的应用。现有市场上的液晶显示器大部分为背光型液晶显示器,其包括液晶面板及背光模组(backlightmodule)。液晶面板的工作原理是在两片平行的玻璃基板当中放置液晶分子,并在两片玻璃基板上施加驱动电压来控制液晶分子的旋转方向,以将背光模组的光线折射出来产生画面。
其中,薄膜晶体管液晶显示器(Thin Film Transistor-Liquid Crystal Display,TFT-LCD)由于具有低的功耗、优异的画面品质以及较高的生产良率等性能,目前已经逐渐占据了显示领域的主导地位。同样,薄膜晶体管液晶显示器包含液晶面板和背光模组,液晶面板包括彩膜基板(Color Filter Substrate,CF Substrate,也称彩色滤光片基板)、薄膜晶体管阵列基板(Thin Film Transistor Substrate,TFTSubstrate)和光罩(Mask),上述基板的相对内侧存在透明电极。两片基板之间夹一层液晶分子(LiquidCrystal,LC)。
然而在设置间隔单元(photo spacer,PS)后通常需要进行修补,例如有异物附着,由于异物与基板间的附着性差,在对异物的清除时容易产生因移除异物而导致电极层部分剥落出现缺陷,或者存在的其他导致电极层部分剥落出现缺陷的情形,这样在工作时缺陷区域附近的液晶将无法正常动作,彩膜基板和或阵列基板无Vcom电位,电位出现Floating,导致点灯时会有配向不良的问题,例如偏黑异常,因此显示品味降低。
【发明内容】
本申请所要解决的技术问题是提供一种修补成功率高、配向正常的显示面 板。
此外,本申请还提供一种显示面板的制程。
另外,本申请还提供一种显示装置。
本申请的目的是通过以下技术方案来实现的:
一种显示面板,所述显示面板包括
基板;
电极层,所述电极层设置在所述基板上;
所述电极层上设置有第一缺陷位和电极修补层,所述透明导电修补层覆置于所述第一缺陷位上。
其中,所述透明导电修补层采用胶体材料。胶体(Colloid)又称胶状分散体(colloidal dispersion)是一种较均匀混合物,在胶体中含有两种不同状态的物质,一种分散相,另一种连续相。分散质的一部分是由微小的粒子或液滴所组成,分散质粒子直径在1-100nm之间的分散系是胶体;胶体是一种分散质粒子直径介于粗分散体系和溶液之间的一类分散体系,这是一种高度分散的多相不均匀体系。
其中,所述胶体材料的成分为氧化铟、氧化锡、氧化锌、或前述成分的混合物。氧化铟是一种新的n型透明半导体功能材料,具有较宽的禁带宽度、较小的电阻率和较高的催化活性。氧化锡一种优秀的透明导电材料,为了提高其导电性和稳定性,常进行掺杂使用。氧化锌的能带隙和激子束缚能较大,透明度高,有优异的常温发光性能。
其中,所述显示面板包括第一光阻层,所述第一光阻层覆置在所述电极层表面,所述第一光阻层对应所述第一缺陷位的位置设置有第二缺陷位和第一光阻修补层。第二光阻层覆盖设置在电极层表面的情形时,第二缺陷位与第一缺陷位的位置相对应,透明导电修补层覆置于第一缺陷位进行修补,第一光阻修补层覆置于第二缺陷位进行修补。
其中,所述显示面板包括第二光阻层,所述电极层覆置在所述第二光阻层 表面,所述第二光阻层对应第一缺陷位的位置设置有第三缺陷位和第二光阻修补层。电极层覆盖设置在第二光阻层表面的情形时,第三缺陷位与第一缺陷位的位置相对应,第二光阻修补层覆置于第三缺陷位进行修补,透明导电修补层覆置于第一缺陷位进行修补。
其中,所述基板包括第一基板,第一基板上设置有主动开关;所述电极层包括与主动开关耦合的像素电极层;所述像素电极层上设置有所述第一缺陷位和所述透明导电修补层。显示面板的具体设置,像素电极层上设置有第一缺陷位和透明导电修补层。
其中,所述基板包括第二基板,所述电极层包括覆盖在第二基板上的公共电极层;所述公共电极层上设置有所述第一缺陷位和所述透明导电修补层。显示面板的具体设置,公共电极层上设置有第一缺陷位和透明导电修补层。
根据本申请的另一个方面,本申请还公开了一种显示面板的制程,所述显示面板包括基板,包括步骤:
在所述基板上设置电极层;
所述电极层具有第一缺陷位,在所述第一缺陷位上覆置透明导电修补层。
其中,所述显示面板的制程采用油墨涂布方式。油墨涂布(INK)的方式效果佳,粘附性能优异,操作工艺简单,不容易出现脱落和漏光的现象。
根据本申请的另一个方面,本申请还公开了一种显示装置,所述显示装置包括背光模组和上述任一项所述的显示面板。
本申请由于对电极层上的第一缺陷位直接使用透明导电修补层进行修补,使得电极层恢复正常工作的功能,解决配向不良的问题具有更佳的显示品味,更提高了修补成功率,避免因为缺陷过大造成报废。
【附图说明】
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原 理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是本申请实施例一种显示面板的结构示意图;
图2是本申请实施例一种显示面板的结构示意图;
图3是本申请实施例一种显示面板的结构示意图;
图4是本申请实施例一种显示面板的结构示意图;
图5是本申请实施例一种显示面板的结构示意图;
图6是本申请实施例一种显示面板的制程示意图。
【具体实施方式】
这里所公开的具体结构和功能细节仅仅是代表性的,并且是用于描述本申请的示例性实施例的目的。但是本申请可以通过许多替换形式来具体实现,并且不应当被解释成仅仅受限于这里所阐述的实施例。
在本申请的描述中,需要理解的是,术语“中心”、“横向”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。另外,术语“包括”及其任何变形,意图在于覆盖不排他的包含。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连, 也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
这里所使用的术语仅仅是为了描述具体实施例而不意图限制示例性实施例。除非上下文明确地另有所指,否则这里所使用的单数形式“一个”、“一项”还意图包括复数。还应当理解的是,这里所使用的术语“包括”和/或“包含”规定所陈述的特征、整数、步骤、操作、单元和/或组件的存在,而不排除存在或添加一个或更多其他特征、整数、步骤、操作、单元、组件和/或其组合。
下面结合附图和较佳的实施例对本申请作进一步详细说明。
作为本申请的一个实施例,如图1所示,所述显示面板包括基板1;电极层2,所述电极层2设置在所述基板1上;所述电极层2上设置有第一缺陷位23和电极修补层,所述透明导电修补层24覆置于所述第一缺陷位23上。由于对电极层2上的第一缺陷位23直接使用透明导电修补层24进行修补,使得电极层2恢复正常工作的功能,解决配向不良的问题具有更佳的显示品味,更提高了修补成功率,避免因为缺陷过大造成报废。
具体的,所述透明导电修补层24采用胶体材料。胶体(Colloid)又称胶状分散体(colloidal dispersion)是一种较均匀混合物,在胶体中含有两种不同状态的物质,一种分散相,另一种连续相。分散质的一部分是由微小的粒子或液滴所组成,分散质粒子直径在1-100nm之间的分散系是胶体;胶体是一种分散质粒子直径介于粗分散体系和溶液之间的一类分散体系,这是一种高度分散的多相不均匀体系。其中,电极层2中包括材质氧化铟锡(ITO)、氧化铟锌(IZO)或其他透明导电材料,所以透明导电修补层246的组成可采用例如为复数透明导电例子以及溶剂等所组成。
具体的,所述胶体材料的成分为氧化铟、氧化锡、氧化锌、或前述成分的混合物。氧化铟是一种新的n型透明半导体功能材料,具有较宽的禁带宽度、较小的电阻率和较高的催化活性。氧化锡一种优秀的透明导电材料,为了提高其导电性和稳定性,常进行掺杂使用。氧化锌的能带隙和激子束缚能较大,透 明度高,有优异的常温发光性能。代表性的TCO材料有氧化铟、氧化锡、氧化锌、氧化镉、四氧化二铟镉、四氧化锡二镉、四氧化锡二锌和氧化铟-氧化锡等。这些氧化物半导体的能隙都在3eV以上,所以可见光(约1.6-3.3eV)的能量不足以将价带(valence band)的电子激发到导带(conduction band),只有波长在350-400nm(紫外线)以下的光才可以。因此,由电子在能带间迁移而产生的光吸收,在可见光范围中不会发生,TCO对可见光为透明。如果进一步地在氧化铟中加入Sn(成为ITO),在氧化锡中加入Sb、F,或在ZnO中加入In、Ga(成为GZO)或A1(成为AZO)等掺杂物,可将载子(carrier)的浓度增加到10-10cm,使比电阻降低。这些掺杂物,例如在ITO中为4价的Sn置换了3价的In位置,GZO或AZO中则是3价的Ga或A1置换了2价的Zn,因此一个掺杂物原子可以提供一个载子。然而现实中并非所有掺杂物都是这种置换型固溶,它们有可能以中性原子存在于晶格间,成为散射中心,或偏析在晶界或表面上。要如何有效地形成置换型固溶,提升掺杂的效率,对于低电阻透明导电膜的制作是非常重要的。
作为本申请的又一个实施例,如图2所示,所述显示面板包括基板1;电极层2,所述电极层2设置在所述基板1上;所述电极层2上设置有第一缺陷位23和电极修补层,所述透明导电修补层24覆置于所述第一缺陷位23上。所述显示面板包括第一光阻层5,所述第一光阻层5覆置在所述电极层2表面,所述第一光阻层5对应所述第一缺陷位23的位置设置有第二缺陷位51和第一光阻修补层。
具体的,所述透明导电修补层24采用胶体材料。胶体(Colloid)又称胶状分散体(colloidal dispersion)是一种较均匀混合物,在胶体中含有两种不同状态的物质,一种分散相,另一种连续相。分散质的一部分是由微小的粒子或液滴所组成,分散质粒子直径在1-100nm之间的分散系是胶体;胶体是一种分散质粒子直径介于粗分散体系和溶液之间的一类分散体系,这是一种高度分散的多相不均匀体系。其中,电极层2中包括材质氧化铟锡(ITO)、氧化铟锌(IZO) 或其他透明导电材料,所以透明导电修补层246的组成可采用例如为复数透明导电例子以及溶剂等所组成。
具体的,所述胶体材料的成分为氧化铟、氧化锡、氧化锌、或前述成分的混合物。氧化铟是一种新的n型透明半导体功能材料,具有较宽的禁带宽度、较小的电阻率和较高的催化活性。氧化锡一种优秀的透明导电材料,为了提高其导电性和稳定性,常进行掺杂使用。氧化锌的能带隙和激子束缚能较大,透明度高,有优异的常温发光性能。代表性的TCO材料有氧化铟、氧化锡、氧化锌、氧化镉、四氧化二铟镉、四氧化锡二镉、四氧化锡二锌和氧化铟-氧化锡等。这些氧化物半导体的能隙都在3eV以上,所以可见光(约1.6-3.3eV)的能量不足以将价带(valence band)的电子激发到导带(conduction band),只有波长在350-400nm(紫外线)以下的光才可以。因此,由电子在能带间迁移而产生的光吸收,在可见光范围中不会发生,TCO对可见光为透明。如果进一步地在氧化铟中加入Sn(成为ITO),在氧化锡中加入Sb、F,或在ZnO中加入In、Ga(成为GZO)或A1(成为AZO)等掺杂物,可将载子(carrier)的浓度增加到10-10cm,使比电阻降低。这些掺杂物,例如在ITO中为4价的Sn置换了3价的In位置,GZO或AZO中则是3价的Ga或A1置换了2价的Zn,因此一个掺杂物原子可以提供一个载子。然而现实中并非所有掺杂物都是这种置换型固溶,它们有可能以中性原子存在于晶格间,成为散射中心,或偏析在晶界或表面上。要如何有效地形成置换型固溶,提升掺杂的效率,对于低电阻透明导电膜的制作是非常重要的。
具体的,所述第一光阻修补层采用彩色光阻修补层,并且或者,所述光阻修补层采用黑色光阻修补层。通过彩色和或黑色光阻修补层使得第二缺陷位51恢复电极层2中原有像素所呈现的颜色,提高显示品质。彩色光阻例如RGB,但不限于R像素、G像素、B像素还可以包括W(White白)、Y(Yellow黄)等颜色对应的像素,色彩更丰富,显示效果也更好。
作为本申请的又一个实施例,如图3所示,所述显示面板包括基板1;电极 层2,所述电极层2设置在所述基板1上;所述电极层2上设置有第一缺陷位23和电极修补层,所述透明导电修补层24覆置于所述第一缺陷位23上。.所述显示面板包括第二光阻层6,所述电极层2覆置在所述第二光阻层6表面,所述第二光阻层6对应第一缺陷位23的位置设置有第三缺陷位61和第二光阻修补层。
具体的,所述透明导电修补层24采用胶体材料。胶体(Colloid)又称胶状分散体(colloidal dispersion)是一种较均匀混合物,在胶体中含有两种不同状态的物质,一种分散相,另一种连续相。分散质的一部分是由微小的粒子或液滴所组成,分散质粒子直径在1-100nm之间的分散系是胶体;胶体是一种分散质粒子直径介于粗分散体系和溶液之间的一类分散体系,这是一种高度分散的多相不均匀体系。其中,电极层2中包括材质氧化铟锡(ITO)、氧化铟锌(IZO)或其他透明导电材料,所以透明导电修补层246的组成可采用例如为复数透明导电例子以及溶剂等所组成。
具体的,所述胶体材料的成分为氧化铟、氧化锡、氧化锌、或前述成分的混合物。氧化铟是一种新的n型透明半导体功能材料,具有较宽的禁带宽度、较小的电阻率和较高的催化活性。氧化锡一种优秀的透明导电材料,为了提高其导电性和稳定性,常进行掺杂使用。氧化锌的能带隙和激子束缚能较大,透明度高,有优异的常温发光性能。代表性的TCO材料有氧化铟、氧化锡、氧化锌、氧化镉、四氧化二铟镉、四氧化锡二镉、四氧化锡二锌和氧化铟-氧化锡等。这些氧化物半导体的能隙都在3eV以上,所以可见光(约1.6-3.3eV)的能量不足以将价带(valence band)的电子激发到导带(conduction band),只有波长在350-400nm(紫外线)以下的光才可以。因此,由电子在能带间迁移而产生的光吸收,在可见光范围中不会发生,TCO对可见光为透明。如果进一步地在氧化铟中加入Sn(成为ITO),在氧化锡中加入Sb、F,或在ZnO中加入In、Ga(成为GZO)或A1(成为AZO)等掺杂物,可将载子(carrier)的浓度增加到10-10cm,使比电阻降低。这些掺杂物,例如在ITO中为4价的Sn置换了3价的In位置,GZO 或AZO中则是3价的Ga或A1置换了2价的Zn,因此一个掺杂物原子可以提供一个载子。然而现实中并非所有掺杂物都是这种置换型固溶,它们有可能以中性原子存在于晶格间,成为散射中心,或偏析在晶界或表面上。要如何有效地形成置换型固溶,提升掺杂的效率,对于低电阻透明导电膜的制作是非常重要的。
具体的,所述第二光阻修补层采用彩色光阻修补层,并且或者,所述光阻修补层采用黑色光阻修补层。通过彩色和或黑色光阻修补层使得第三缺陷位61恢复电极层2中原有像素所呈现的颜色,提高显示品质。彩色光阻例如RGB,但不限于R像素、G像素、B像素还可以包括W(White白)、Y(Yellow黄)等颜色对应的像素,色彩更丰富,显示效果也更好。
具体的,如图5所示,图中左上角对异物33开始做油墨涂布(INK)修补;图中右上角采用激光(Laser)将异物33打掉,但也因此电极层2和第二光阻层6也在相应位置遭到攻击被清除;图中右下角对其中的第二光阻层6用第二光阻修补层进行修补;图中左下角对其中的电极层2用透明导电修补层24进行修补。这样第一缺陷位23仍旧具备配向能力。不论第一缺陷位23的大小或形状均可方便的采用此步骤进行修补。
作为本申请的又一个实施例,如图4所示,所述显示面板包括基板1;电极层2,所述电极层2设置在所述基板1上;所述电极层2上设置有第一缺陷位23和电极修补层,所述透明导电修补层24覆置于所述第一缺陷位23上。所述基板1包括第一基板11,第一基板11上设置有主动开关7;所述电极层2包括与主动开关7耦合的像素电极层21;所述像素电极层21上设置有所述第一缺陷位23和所述透明导电修补层24。
具体的,所述透明导电修补层24采用胶体材料。胶体(Colloid)又称胶状分散体(colloidal dispersion)是一种较均匀混合物,在胶体中含有两种不同状态的物质,一种分散相,另一种连续相。分散质的一部分是由微小的粒子或液滴所组成,分散质粒子直径在1-100nm之间的分散系是胶体;胶体是一种分散质 粒子直径介于粗分散体系和溶液之间的一类分散体系,这是一种高度分散的多相不均匀体系。其中,电极层2中包括材质氧化铟锡(ITO)、氧化铟锌(IZO)或其他透明导电材料,所以透明导电修补层246的组成可采用例如为复数透明导电例子以及溶剂等所组成。
具体的,所述胶体材料的成分为氧化铟、氧化锡、氧化锌、或前述成分的混合物。氧化铟是一种新的n型透明半导体功能材料,具有较宽的禁带宽度、较小的电阻率和较高的催化活性。氧化锡一种优秀的透明导电材料,为了提高其导电性和稳定性,常进行掺杂使用。氧化锌的能带隙和激子束缚能较大,透明度高,有优异的常温发光性能。代表性的TCO材料有氧化铟、氧化锡、氧化锌、氧化镉、四氧化二铟镉、四氧化锡二镉、四氧化锡二锌和氧化铟-氧化锡等。这些氧化物半导体的能隙都在3eV以上,所以可见光(约1.6-3.3eV)的能量不足以将价带(valence band)的电子激发到导带(conduction band),只有波长在350-400nm(紫外线)以下的光才可以。因此,由电子在能带间迁移而产生的光吸收,在可见光范围中不会发生,TCO对可见光为透明。如果进一步地在氧化铟中加入Sn(成为ITO),在氧化锡中加入Sb、F,或在ZnO中加入In、Ga(成为GZO)或A1(成为AZO)等掺杂物,可将载子(carrier)的浓度增加到10-10cm,使比电阻降低。这些掺杂物,例如在ITO中为4价的Sn置换了3价的In位置,GZO或AZO中则是3价的Ga或A1置换了2价的Zn,因此一个掺杂物原子可以提供一个载子。然而现实中并非所有掺杂物都是这种置换型固溶,它们有可能以中性原子存在于晶格间,成为散射中心,或偏析在晶界或表面上。要如何有效地形成置换型固溶,提升掺杂的效率,对于低电阻透明导电膜的制作是非常重要的。
具体的,所述主动开关7可采用薄膜晶体管(TFT)。
作为本申请的又一个实施例,所述显示面板包括基板1;电极层2,所述电极层2设置在所述基板1上;所述电极层2上设置有第一缺陷位23和电极修补层,所述透明导电修补层24覆置于所述第一缺陷位23上。所述基板1包括第 二基板12,所述电极层2包括覆盖在第二基板12上的公共电极层22;所述公共电极层22上设置有所述第一缺陷位23和所述透明导电修补层24。显示面板的具体设置,公共电极层22上设置有第一缺陷位23和透明导电修补层24。
具体的,所述透明导电修补层24采用胶体材料。胶体(Colloid)又称胶状分散体(colloidal dispersion)是一种较均匀混合物,在胶体中含有两种不同状态的物质,一种分散相,另一种连续相。分散质的一部分是由微小的粒子或液滴所组成,分散质粒子直径在1-100nm之间的分散系是胶体;胶体是一种分散质粒子直径介于粗分散体系和溶液之间的一类分散体系,这是一种高度分散的多相不均匀体系。其中,电极层2中包括材质氧化铟锡(ITO)、氧化铟锌(IZO)或其他透明导电材料,所以透明导电修补层246的组成可采用例如为复数透明导电例子以及溶剂等所组成。
具体的,所述胶体材料的成分为氧化铟、氧化锡、氧化锌、或前述成分的混合物。氧化铟是一种新的n型透明半导体功能材料,具有较宽的禁带宽度、较小的电阻率和较高的催化活性。氧化锡一种优秀的透明导电材料,为了提高其导电性和稳定性,常进行掺杂使用。氧化锌的能带隙和激子束缚能较大,透明度高,有优异的常温发光性能。代表性的TCO材料有氧化铟、氧化锡、氧化锌、氧化镉、四氧化二铟镉、四氧化锡二镉、四氧化锡二锌和氧化铟-氧化锡等。这些氧化物半导体的能隙都在3eV以上,所以可见光(约1.6-3.3eV)的能量不足以将价带(valence band)的电子激发到导带(conduction band),只有波长在350-400nm(紫外线)以下的光才可以。因此,由电子在能带间迁移而产生的光吸收,在可见光范围中不会发生,TCO对可见光为透明。如果进一步地在氧化铟中加入Sn(成为ITO),在氧化锡中加入Sb、F,或在ZnO中加入In、Ga(成为GZO)或A1(成为AZO)等掺杂物,可将载子(carrier)的浓度增加到10-10cm,使比电阻降低。这些掺杂物,例如在ITO中为4价的Sn置换了3价的In位置,GZO或AZO中则是3价的Ga或A1置换了2价的Zn,因此一个掺杂物原子可以提供一个载子。然而现实中并非所有掺杂物都是这种置换型固溶,它们有可能以 中性原子存在于晶格间,成为散射中心,或偏析在晶界或表面上。要如何有效地形成置换型固溶,提升掺杂的效率,对于低电阻透明导电膜的制作是非常重要的。
作为本申请的又一个实施例,显示面板的制程,所述显示面板,包括步骤:
在所述基板1上设置电极层2;
所述电极层2具有第一缺陷位23,在所述第一缺陷位23上覆置透明导电修补层24。
具体的,所述显示面板的制程采用油墨涂布方式。油墨涂布(INK)的方式效果佳,粘附性能优异,操作工艺简单,不容易出现脱落和漏光的现象。也可以在制程上采用采用化学气相沉积溅镀导电修补体的方式。CVD(Chemical Vapor Deposition)化学气相沉积法,在高温下的气相反应,作为涂层的手段而开发,但不只应用于耐热物质的涂层,而且应用于高纯度金属的精制、粉末合成、半导体薄膜等。沉积温度低,薄膜成份易控,膜厚与淀积时间成正比,均匀性,重复性好,台阶覆盖性优良。同样也可以采用PVD(Physical Vapor Deposition)物理气相沉积法,利用物理过程实现物质转移,将原子或分子由源转移到基材表面上的过程。它的作用是可以使某些有特殊性能(强度高、耐磨性、散热性、耐腐性等)的微粒喷涂在性能较低的母体上,使得母体具有更好的性能。PVD基本方法:真空蒸发、溅射、离子镀(空心阴极离子镀、热阴极离子镀、电弧离子镀、活性反应离子镀、射频离子镀、直流放电离子镀)。
作为本申请的又一个实施例,本申请实施例的显示装置包括背光模组和如上所述的显示面板。
需要说明的是,在上述实施例中,所述基板1的材料可以选用玻璃、塑料等。
在上述实施例中,显示面板包括液晶面板、OLED面板、曲面显示面板、等离子面板等,以液晶面板为例,液晶面板包括阵列基板和彩膜基板(CF),所述阵列基板与彩膜基板相对设置,所述阵列基板与彩膜基板之间设有液晶和间隔 单元(photo spacer,PS),所述阵列基板上设有薄膜晶体管(TFT),彩膜基板上设有彩色滤光层。
在一实施例中,彩膜及TFT阵列可形成于同一基板上,阵列基板可包括彩色滤光层。
以上内容是结合具体的优选实施方式对本申请所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本申请的保护范围。

Claims (20)

  1. 一种显示面板,包括
    基板;
    电极层,所述电极层设置在所述基板上;
    所述电极层上设置有第一缺陷位和电极修补层,所述透明导电修补层覆置于所述第一缺陷位上;所述透明导电修补层采用胶体材料,所述胶体材料的成分为氧化铟、氧化锡、氧化锌、或前述成分的混合物;
    所述显示面板包括第一光阻层,所述第一光阻层覆置在所述电极层表面,所述第一光阻层对应所述第一缺陷位的位置设置有第二缺陷位和第一光阻修补层;或者,所述显示面板包括第二光阻层,所述电极层覆置在所述第二光阻层表面,所述第二光阻层对应第一缺陷位的位置设置有第三缺陷位和第二光阻修补层;
    所述基板包括第一基板,第一基板上设置有主动开关;所述电极层包括与主动开关耦合的像素电极层;所述像素电极层上设置有所述第一缺陷位和所述透明导电修补层;所述基板包括第二基板,所述电极层包括覆盖在第二基板上的公共电极层;所述公共电极层上设置有所述第一缺陷位和所述透明导电修补层。
  2. 一种显示面板,包括
    基板;
    电极层,所述电极层设置在所述基板上;
    所述电极层上设置有第一缺陷位和电极修补层,所述透明导电修补层覆置于所述第一缺陷位上。
  3. 如权利要求2所述的显示面板,其中所述透明导电修补层采用胶体材料。
  4. 如权利要求3所述的显示面板,其中所述胶体材料的成分为氧化铟、氧化锡、氧化锌、或前述成分的混合物。
  5. 如权利要求2所述的显示面板,其中所述透明导电修补层采用胶体材料,所述胶体材料的成分为氧化铟、氧化锡、氧化锌、或前述成分的混合物。
  6. 如权利要求2所述的显示面板,其中所述显示面板包括第一光阻层,所述第一光阻层覆置在所述电极层表面,所述第一光阻层对应所述第一缺陷位的位置设置有第二缺陷位和第一光阻修补层。
  7. 如权利要求2所述的显示面板,其中所述显示面板包括第一光阻层,所述第一光阻层覆置在所述电极层表面,所述第一光阻层对应所述第一缺陷位的位置设置有第二缺陷位和第一光阻修补层,所述透明导电修补层采用胶体材料。
  8. 如权利要求2所述的显示面板,其中所述显示面板包括第一光阻层,所述第一光阻层覆置在所述电极层表面,所述第一光阻层对应所述第一缺陷位的位置设置有第二缺陷位和第一光阻修补层,所述透明导电修补层采用胶体材料,所述胶体材料的成分为氧化铟、氧化锡、氧化锌、或前述成分的混合物。
  9. 如权利要求2所述的显示面板,其中所述显示面板包括第二光阻层,所述电极层覆置在所述第二光阻层表面,所述第二光阻层对应第一缺陷位的位置设置有第三缺陷位和第二光阻修补层。
  10. 如权利要求2所述的显示面板,其中所述显示面板包括第二光阻层,所述电极层覆置在所述第二光阻层表面,所述第二光阻层对应第一缺陷位的位置设置有第三缺陷位和第二光阻修补层,所述透明导电修补层采用胶体材料。
  11. 如权利要求2所述的显示面板,其中所述显示面板包括第二光阻层,所述电极层覆置在所述第二光阻层表面,所述第二光阻层对应第一缺陷位的位置设置有第三缺陷位和第二光阻修补层,所述透明导电修补层采用胶体材料,所述胶体材料的成分为氧化铟、氧化锡、氧化锌、或前述成分的混合物。
  12. 如权利要求2所述的显示面板,其中所述基板包括第一基板,第一基板上设置有主动开关;所述电极层包括与主动开关耦合的像素电极层;所述像素电极层上设置有所述第一缺陷位和所述透明导电修补层。
  13. 如权利要求2所述的显示面板,其中所述基板包括第一基板,第一基 板上设置有主动开关;所述电极层包括与主动开关耦合的像素电极层;所述像素电极层上设置有所述第一缺陷位和所述透明导电修补层,所述透明导电修补层采用胶体材料。
  14. 如权利要求2所述的显示面板,其中所述基板包括第一基板,第一基板上设置有主动开关;所述电极层包括与主动开关耦合的像素电极层;所述像素电极层上设置有所述第一缺陷位和所述透明导电修补层,所述透明导电修补层采用胶体材料,所述胶体材料的成分为氧化铟、氧化锡、氧化锌、或前述成分的混合物。
  15. 如权利要求2所述的显示面板,其中所述基板包括第二基板,所述电极层包括覆盖在第二基板上的公共电极层;所述公共电极层上设置有所述第一缺陷位和所述透明导电修补层。
  16. 如权利要求2所述的显示面板,其中所述基板包括第二基板,所述电极层包括覆盖在第二基板上的公共电极层;所述公共电极层上设置有所述第一缺陷位和所述透明导电修补层,所述透明导电修补层采用胶体材料。
  17. 如权利要求2所述的显示面板,其中所述基板包括第二基板,所述电极层包括覆盖在第二基板上的公共电极层;所述公共电极层上设置有所述第一缺陷位和所述透明导电修补层,所述透明导电修补层采用胶体材料,所述胶体材料的成分为氧化铟、氧化锡、氧化锌、或前述成分的混合物。
  18. 如权利要求2所述的显示面板,其中所述显示面板包括第一光阻层,所述第一光阻层覆置在所述电极层表面,所述第一光阻层对应所述第一缺陷位的位置设置有第二缺陷位和第一光阻修补层;或者,所述显示面板包括第二光阻层,所述电极层覆置在所述第二光阻层表面,所述第二光阻层对应第一缺陷位的位置设置有第三缺陷位和第二光阻修补层;
    所述基板包括第一基板,第一基板上设置有主动开关;所述电极层包括与主动开关耦合的像素电极层;所述像素电极层上设置有所述第一缺陷位和所述透明导电修补层;所述基板包括第二基板,所述电极层包括覆盖在第二基板上 的公共电极层;所述公共电极层上设置有所述第一缺陷位和所述透明导电修补层;
    所述透明导电修补层采用胶体材料,所述胶体材料的成分为氧化铟、氧化锡、氧化锌、或前述成分的混合物。
  19. 一种显示面板的制程,所述显示面板包括基板,所述制程包括步骤:
    在所述基板上设置电极层;
    所述电极层具有第一缺陷位,在所述第一缺陷位上覆置透明导电修补层。
  20. 如权利要求19所述的显示面板的制程,其中所述显示面板的制程采用油墨涂布方式。
PCT/CN2017/089176 2017-03-03 2017-06-20 一种显示面板及其制程 WO2018157507A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/336,976 US10852601B2 (en) 2017-03-03 2017-06-20 Display panel and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710122563.1 2017-03-03
CN201710122563.1A CN106950758B (zh) 2017-03-03 2017-03-03 一种显示面板及其制程和显示装置

Publications (1)

Publication Number Publication Date
WO2018157507A1 true WO2018157507A1 (zh) 2018-09-07

Family

ID=59467139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089176 WO2018157507A1 (zh) 2017-03-03 2017-06-20 一种显示面板及其制程

Country Status (3)

Country Link
US (1) US10852601B2 (zh)
CN (1) CN106950758B (zh)
WO (1) WO2018157507A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108365132B (zh) * 2018-02-07 2020-02-14 深圳市华星光电半导体显示技术有限公司 一种顶发光oled基板及其制备方法、oled显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267517A (ja) * 1988-09-02 1990-03-07 Seiko Epson Corp 液晶表示パネルの製造方法
JPH02301723A (ja) * 1989-05-16 1990-12-13 Matsushita Electric Ind Co Ltd 電極の欠陥修正法および液晶表示素子の欠陥修正法
JPH0385523A (ja) * 1989-08-29 1991-04-10 Sharp Corp 透明電極の欠陥修正方法
US20010028417A1 (en) * 2000-03-29 2001-10-11 Fujitsu Limited Liquid crystal display device and defect repairing method therefor
CN101403827A (zh) * 2007-10-05 2009-04-08 日本麦可罗尼克斯股份有限公司 液晶显示装置的电路缺陷修补方法以及装置
US20160054608A1 (en) * 2014-08-25 2016-02-25 Japan Display Inc. Liquid crystal display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4320564B2 (ja) * 2002-06-28 2009-08-26 日亜化学工業株式会社 透明導電膜形成用組成物、透明導電膜形成用溶液および透明導電膜の形成方法
TWI283000B (en) * 2003-05-15 2007-06-21 Au Optronics Corp A method for repairing electrode pattern defects
TWI447575B (zh) * 2005-01-21 2014-08-01 Photon Dynamics Inc 自動缺陷修復系統

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267517A (ja) * 1988-09-02 1990-03-07 Seiko Epson Corp 液晶表示パネルの製造方法
JPH02301723A (ja) * 1989-05-16 1990-12-13 Matsushita Electric Ind Co Ltd 電極の欠陥修正法および液晶表示素子の欠陥修正法
JPH0385523A (ja) * 1989-08-29 1991-04-10 Sharp Corp 透明電極の欠陥修正方法
US20010028417A1 (en) * 2000-03-29 2001-10-11 Fujitsu Limited Liquid crystal display device and defect repairing method therefor
CN101403827A (zh) * 2007-10-05 2009-04-08 日本麦可罗尼克斯股份有限公司 液晶显示装置的电路缺陷修补方法以及装置
US20160054608A1 (en) * 2014-08-25 2016-02-25 Japan Display Inc. Liquid crystal display device

Also Published As

Publication number Publication date
CN106950758A (zh) 2017-07-14
US10852601B2 (en) 2020-12-01
CN106950758B (zh) 2019-06-18
US20190219877A1 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
CN101908489B (zh) 氧化物薄膜晶体管的制造方法
US7547494B2 (en) Color filter substrate, manufacturing method thereof and liquid crystal display
US7961262B2 (en) Liquid crystal display and manufacturing method thereof
WO2018152907A1 (zh) 微发光二极管阵列基板及显示面板
US8058116B2 (en) Method of fabricating an amorphous zinc-oxide based thin film transistor (TFT) including source/drain electrodes formed between two oxide semiconductor layers
CN102053435B (zh) 液晶显示设备及其制造方法
CN100443977C (zh) 液晶显示装置及其制造方法
JP5352878B2 (ja) 表示用基板及びその製造方法並びに表示装置
CN102707528B (zh) 阵列基板及其制作方法、液晶显示面板及其工作方法
CN104503150A (zh) 液晶面板及其制作方法
CN103700688A (zh) 彩膜基板及其制作方法、显示装置
US20160043343A1 (en) Oled display device and fabrication method thereof
CN102543754A (zh) 氧化物薄膜晶体管及其制造方法
CN102736325A (zh) 一种像素结构及其制造方法、显示装置
WO2019052043A1 (zh) 显示面板及其制造方法
WO2018157507A1 (zh) 一种显示面板及其制程
CN101666949B (zh) Ips型tft-lcd阵列基板及其制造方法
US10964755B2 (en) Organic light emitting diode panel including light emitting units and color filter layer, method for manufacturing the same, and display device
CN108538902A (zh) Oled背板的制作方法及oled背板
CN104793418A (zh) 一种阵列基板及其制作方法和显示装置
CN105633015B (zh) 一种阵列基板的制造方法、阵列基板及显示装置
CN110161743A (zh) 一种基板及其制备方法、液晶显示面板及液晶显示装置
CN102856392B (zh) 薄膜晶体管主动装置及其制作方法
KR101820167B1 (ko) 산화물 박막 트랜지스터의 제조방법
WO2018205358A1 (zh) 一种显示面板和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.12.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17898520

Country of ref document: EP

Kind code of ref document: A1