WO2018157451A1 - 一种液态熔渣干式离心粒化的控制系统及方法 - Google Patents

一种液态熔渣干式离心粒化的控制系统及方法 Download PDF

Info

Publication number
WO2018157451A1
WO2018157451A1 PCT/CN2017/080327 CN2017080327W WO2018157451A1 WO 2018157451 A1 WO2018157451 A1 WO 2018157451A1 CN 2017080327 W CN2017080327 W CN 2017080327W WO 2018157451 A1 WO2018157451 A1 WO 2018157451A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
granulator
shaft
sleeve
temperature
Prior art date
Application number
PCT/CN2017/080327
Other languages
English (en)
French (fr)
Inventor
王树众
张茜
马立伟
于鹏飞
蔡建军
张忠清
陈林
孟海鱼
景泽锋
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Priority to US16/488,240 priority Critical patent/US11396683B2/en
Publication of WO2018157451A1 publication Critical patent/WO2018157451A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/022Methods of cooling or quenching molten slag
    • C21B2400/026Methods of cooling or quenching molten slag using air, inert gases or removable conductive bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/052Apparatus features including rotating parts
    • C21B2400/054Disc-shaped or conical parts for cooling, dispersing or atomising of molten slag rotating along vertical axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the technical field of liquid slag granulation, in particular to a control system and method for dry granulation of liquid slag.
  • China is currently the world's largest steel producer, with steel production ranking first in the world.
  • China's pig iron production reached 691 million tons, accounting for about 60% of the world's total production.
  • China's pig iron production was 586 million tons, accounting for about 60% of the world's total production.
  • blast furnace slag containing huge heat will be produced.
  • the blast furnace slag is generally discharged at temperatures between 1400 and 1550 ° C.
  • Each ton of slag contains (1260 ⁇ 1880) ⁇ 10 3 kJ sensible heat, equivalent to 60 kg standard. coal.
  • the dry slag pit cooling method and the water slag slag method are the most common blast furnace slag treatment methods in China.
  • the dry slag pit cooling method directly discharges the high-temperature liquid slag into the dry slag pit to be air-cooled, and assists water cooling.
  • the method generates a large amount of water vapor when cooling, and releases a large amount of H 2 S and SO 2 gas, corrodes buildings, damages equipment, and deteriorates the working environment. Generally, the method is used only in accident handling. 90% of blast furnace slag in China is treated by water slag.
  • the water slag method refers to the use of low-temperature cooling water to directly mix with high-temperature liquid slag, so that the liquid slag temperature is rapidly lowered and the glass body slag particles are formed.
  • the water slag method can be divided into Inba method, Tula method, bottom filtration method, Lhasa method and Mintek method according to different process flow.
  • the core of the technology is to spray water quenching of high temperature liquid slag to achieve the purpose of cooling and granulation, and then slag separation, the slag water is recirculated through precipitation filtration. use.
  • vitreous slag produced by this method can be used in the cement industry for resource utilization, the process wastes a lot of water resources, generates harmful gases such as SO 2 and H 2 S, and cannot effectively recover the high temperature liquid slag. Quality waste heat resources.
  • the liquid slag drops onto the surface of the rotating disc rotating at high speed, and is scooped out under the action of centrifugal force and friction force to form small droplets under the surface tension of the liquid slag.
  • the tiny droplets carry out forced convection heat transfer with the heat transfer medium (generally air) in the space, and radiate heat exchange with the surrounding environment, so that the temperature of the small droplets rapidly decreases, and then a phase change occurs to form a solidified layer. As the temperature is further reduced, the droplets gradually transform into solid small particles.
  • the motor drives the granulator to rotate at a high speed through the rotating shaft.
  • the molten blast furnace slag is continuously dropped onto the granulator.
  • the dry granulation technology generally has the following problems in the granulation process of liquid blast furnace slag:
  • the motor shaft is in a high temperature environment and is prone to deformation.
  • the temperature of the liquid blast furnace slag entering the granulation chamber is above 1350 ° C, and the heat of the blast furnace slag is transferred from the granulator to the rotating shaft.
  • the strength of the steel shaft decreases, which requires cooling of the shaft to ensure that the shaft runs within a certain temperature range.
  • the factors affecting the temperature of the shaft include the shaft cooling air flow rate and the liquid slag flow rate. This requires distinguishing the primary and secondary factors of the influencing factors, and controlling the shaft temperature within a certain range on the premise of ensuring the safe and efficient operation of the system.
  • the particle size distribution range of the slag particles is large, which affects the efficient recovery of waste heat in the subsequent stage.
  • the size of the slag particles is the main factor affecting the granulation effect of the slag, so the granulation process is very important for the control of the slag particle size.
  • the diameter of the slag particles is affected by many factors, including liquid slag temperature, wind disturbance, and motor speed. This requires a synergy between the various factors to achieve a good granulation effect.
  • the treatment method of high temperature liquid slag in the falling slag pipe is not clear when an accident occurs.
  • an accident such as damage to the granulator or damage to the granulated motor.
  • the system can not granulate the liquid slag in the slag pipe, and the liquid slag temperature reaches above 1350 ° C. Continue to drip the liquid slag onto the turntable will cause great damage to the granulation bin. Therefore, it is necessary to have a complete accident control operation method to properly handle the liquid slag in the slag pipe.
  • the object of the present invention is to provide a control system and method for dry granulation of liquid slag to solve the above technical problems, to maintain the temperature of the rotating shaft within a reasonable range, to effectively adjust the diameter of the slag particles, and to granulate.
  • the liquid slag which has not been granulated can be properly treated to ensure safe and stable operation of the granulator, better granulation effect, and preparation for efficient recovery of waste heat in the subsequent stage.
  • a liquid slag dry centrifugal granulation control system comprising a granulator cold air control unit and a feeding unit:
  • the granulator cold air control unit comprises a granulator, a rotating shaft, a motor and a cold air supply unit; the bottom of the granulator is fixed by a rotating shaft and a vertical motor; the rotating shaft is provided with a second temperature measuring component for monitoring the temperature of the rotating shaft;
  • the motor is sealed by a sealing cover, and a sealing cover tuyere is opened on the sealing cover, a shaft sleeve is sleeved on the outer circumference of the rotating shaft, and an inner sleeve of the air duct is fixed on the motor sealing cover; the inner sleeve of the air duct is disposed on the outer circumference of the shaft sleeve, and the shaft sleeve passes through the belt
  • the bearing of the vent is supported inside the sleeve of the air duct; the top of the motor sealing cover is connected with the sleeve of the air duct; the cooling sleeve of the ring sleeve is arranged
  • the cold air supply unit is divided into a shaft cooling air passage and an annular cooling air passage.
  • the cold air main pipeline is provided with a total control valve, and the outlet of the total control valve is divided into a shaft cooling air branch road and an annular cooling air branch road; the annular cooling wind An annular cooling wind branch control valve is arranged on the branch road, and a flow meter is arranged on the shaft cooling wind branch road; the shaft cooling air passage is composed of the inner tube sleeve and the shaft sleeve; the annular cooling air passage is composed of two air ducts having different outer diameters.
  • the sleeve and the outer sleeve of the air duct disposed on the outer circumference of the sleeve of the air duct are provided with a wind pipe outer sleeve air inlet at the bottom of the outer sleeve of the air duct, and a hood at the top;
  • the shaft cooling air branch is connected with the bottom cover of the sealing cover The tuyere;
  • the annular cooling air branch is connected to the outer sleeve of the outer sleeve of the air duct;
  • the feeding unit comprises a falling slag pipe disposed directly above the granulator; the falling slag pipe comprises upper and lower sections, the upper end has a larger diameter than the lower end, the lower section is provided with a sliding nozzle, and is equipped with an accident guiding trough; There is a first temperature measuring element for monitoring the temperature of the liquid slag in the slag pipe.
  • cooling tuyere is elongated.
  • the outer sleeve of the annular cooling air duct is welded with a wedge-shaped fixing block, and cooperates with the sliding block.
  • the sliding block and the fixing bracket are fixed by pins, and the position of the sliding block is adjusted by twisting the pin to adjust the granulator.
  • the distance between the falling slag and the falling slag tube is adjusted up and down.
  • a plurality of hoods are annularly disposed on the outer periphery of the lower portion of the granulator for further cooling and granulating the slag flying out of the granulator.
  • the air outlet of the upper part of the inner sleeve of the air duct is disposed at the lower part of the granulator, and the shaft cooling air of the shaft cooling air duct further cools the rotating shaft through the vent hole, and then exits from the upper part of the inner sleeve of the air duct to cool the granulator.
  • a control method for a liquid slag dry centrifugal granulation control system including shaft temperature adjustment, granulation particle size adjustment and accident control:
  • Adjustment of the shaft temperature when the temperature of the shaft measured by the second temperature measuring element is higher than the set temperature, the opening of the control valve of the annular cooling duct is reduced, and the opening of the total control valve is increased, so that the shaft cooling duct is entered.
  • the air volume is increased, and the shaft cooling air cools the rotating shaft through the shaft cooling air passage; if the adjustment still fails to meet the requirements, the feeding amount of the feeding unit to the granulator is reduced;
  • Granulation particle size adjustment When the slag particle size exceeds the set value, first check the slag temperature measured by the first temperature measuring element. If the slag temperature is lower than the set value, it is required to perform the supplementary slag before the slag is introduced. Increase the slag temperature; if the slag temperature meets the requirements, gradually increase the motor speed; if the motor speed increases to the maximum value and still does not meet the requirements, adjust the opening of the annular cooling air branch control valve to increase the annular wind inlet The air volume, while reducing the flow rate of the slag; when the particle size is lower than the set value, the motor speed is reduced;
  • the present invention has the following advantages:
  • the invention adopts the granulator cold air control unit to effectively reduce the working temperature of the motor and the rotating shaft, and ensure the normal operation for a long time, thereby ensuring the safety and stability of the granulator driving and better realizing the granulation effect.
  • the invention reasonably controls the particle size distribution, ensures the particle diameter in the range of 2-3 mm, satisfies the granulation requirement, and is beneficial to the efficient recovery of the residual heat in the subsequent stage.
  • the invention effectively realizes accident control, ensures fast and efficient replacement of the granulator after damage, and prevents personal occurrence Therefore, unnecessary equipment damage and economic loss are reduced.
  • FIG. 1 is a schematic structural view of a liquid slag dry centrifugal granulation control system according to the present invention
  • a control system for liquid slag dry centrifugal granulation of the present invention comprises: a granulator cold air control unit and a feeding unit.
  • the granulator cold air control unit includes a granulator 14, a rotating shaft 16, a motor 1, and a cold air supply unit.
  • the bottom of the granulator 14 is fixed to the motor 1 through the rotating shaft 16, and the rotating shaft 16 is provided with a second temperature measuring element 17 for monitoring the temperature of the rotating shaft;
  • the motor 1 is vertical and connected with the rotating shaft 16 through the coupling 3;
  • the motor 1 is sealed by a sealing cover 2, and the sealing cover 2 is provided with a tuyere 23, and the outer sleeve of the rotating shaft 16 is sleeved with a shaft sleeve 15, and the inner sleeve 7 of the air duct is fixed on the motor sealing cover 2;
  • the inner sleeve 7 of the air duct is disposed on the shaft sleeve
  • the shaft sleeve 15 is supported inside the duct inner sleeve 7 through a bearing with a vent; the top of the motor seal cover 2 communicates with the inner
  • the cold air supply unit is divided into a shaft cooling air passage and an annular cooling air passage.
  • the cold air main pipeline is provided with a total control valve 19, and the outlet of the total control valve is divided into a shaft cooling air branch road and an annular cooling air branch road;
  • a control valve 18 is arranged on the wind branch road, and a flow meter 22 is arranged on the shaft cooling wind branch road;
  • the shaft cooling air passage is composed of the inner tube sleeve 7 and the shaft sleeve 15;
  • the annular cooling air passage is composed of two air ducts having different outer diameters.
  • the sleeve (the inner sleeve 7 of the air duct and the outer sleeve 8 of the air duct) is formed at the bottom of the outer sleeve 8 of the air duct.
  • the air inlet 20 has a hood 9 at the top.
  • the shaft cooling air branch is connected to the bottom air outlet 23 of the sealing cover 2; the annular cooling air branch is connected to the bottom air inlet 20 of the outer sleeve 8 of the air duct.
  • the outer sleeve 8 of the annular cooling air duct is welded with the wedge-shaped fixing block 4, and cooperates with the sliding block 5, and the sliding block 5 and the fixing bracket 6 are fixed by pins, and the position of the sliding block is adjusted by twisting the pin to adjust the whole
  • the height of the granulating device realizes the up-and-down adjustment of the falling height of the liquid slag, and can control the slag temperature falling into the granulator to a certain extent, thereby controlling the temperature transmitted to the rotating shaft.
  • adjusting the height of the slag drop can also achieve the adjustment of the particle size to achieve a better granulation effect.
  • the feeding unit includes a slag pipe 11 disposed directly above the granulator 14.
  • the slag pipe 11 is divided into upper and lower sections, the upper end is larger in diameter than the lower end, the lower section is provided with a sliding nozzle 12, and the accidental diversion channel 13 is provided.
  • the liquid slag passes through the upper and lower sections of the slag pipe and falls into the rotating granulator 14 to perform centrifugal granulation.
  • the first temperature measuring element 10 for monitoring the temperature of the liquid slag in the falling slag tube 11 is provided in the slag pipe 11.
  • the annular cooling air enters from the air inlet 20, exits from the top hood 9, and the hood 9 is disposed on the outer periphery of the lower portion of the granulator to further cool and granulate the slag flying out of the granulator 14; the shaft cooling air is sealed from the seal
  • the tuyere 23 at the lower part of the cover 2 enters to cool the motor to prevent the heat generated during the operation of the motor from being transmitted to the rotating shaft, causing the temperature of the rotating shaft to rise, improving the reliability of the motor operation and the life of the motor; the shaft in the sealing cover 2
  • the cooling air enters the shaft cooling air passage through the vent hole, and the shaft sleeve 15 is provided with an elongated cooling air outlet 21 arranged in a ring shape symmetrically, which can better cool the rotating shaft 16 and prevent deformation of the rotating shaft from overheating, thereby affecting the driven granulation.
  • the granulation effect of the device 14; the shaft cooling air of the shaft cooling air passage further
  • a control method for a liquid slag dry centrifugal granulation control system including shaft temperature adjustment, granulation particle size adjustment and accident control:
  • Adjustment of the shaft temperature when the shaft temperature measured by the second temperature measuring element 17 is higher than the set temperature, the opening degree of the control valve 18 of the annular cooling duct is reduced, and the opening degree of the total control valve 19 is increased, so that the The total air volume of the system remains unchanged.
  • the axial cooling air volume is increased by the flow meter 22.
  • the shaft cooling air cools the rotating shaft through the optimized shaft cooling air passage; If the step adjustment still fails to meet the requirements, the slag system is required to reduce the amount of slag.
  • Granulation particle size adjustment When the particle size exceeds the set value, first check the slag temperature measured by the first temperature measuring element 10. If the slag temperature is lower than the set value, it is required to perform supplemental combustion before the slag is introduced, thereby improving If the slag temperature meets the requirements, the motor 1 speed will be gradually increased; if the motor speed increases to the maximum value, the control valve 18 opening degree of the annular cooling air duct should be adjusted to increase the annular wind. Inlet air volume, while reducing the flow rate of slag. When the particle size is lower than the set value, the motor speed is reduced.

Abstract

一种液态熔渣干式离心粒化的控制系统及方法,系统包括粒化器冷风控制单元和供料单元;粒化器冷风控制单元,包括粒化器(14)、转轴(16)、电机(1)和冷风供应单元;粒化器(14)与电机(1)固定;冷风供应单元分为轴冷却风道与环形冷却风道两路,轴冷却风道由风管内套筒(7)和轴套筒(15)组成,环形冷却风道由两个外径不同的风管内套筒(7)和设置在风管内套筒(7)外周的风管外套筒(8)组成;供料单元,包含设置于粒化器(14)正上方的落渣管(11);落渣管(11)下段设滑动水口(12),并配事故导流槽(13)。该系统能够使转轴温度保持在合理的范围内,有效调节渣粒的直径,并在粒化单元出现事故时能够妥善处理尚未粒化的液态熔渣,以确保粒化器能够安全、稳定运行,更好的实现粒化效果,为后续阶段的余热高效回收做准备。

Description

一种液态熔渣干式离心粒化的控制系统及方法 技术领域
本发明涉及液态熔渣粒化技术领域,特别涉及一种液态熔渣干式离心粒化的控制系统及方法。
背景技术
中国目前是全球最大的钢铁生产国,钢铁产量世界第一。2015年中国生铁产量达到6.91亿吨,约占世界总产量的60%。2016年10个月中国生铁产量为5.86亿吨,约占世界总产量的60%。在冶炼生铁的过程中会产生蕴含巨大热量的高炉渣,高炉渣的出炉温度一般在1400~1550℃之间,每吨渣含(1260~1880)×103kJ的显热,相当于60kg标准煤。在我国现有的炼铁技术下,每生产1吨生铁副产0.3吨高炉渣,以目前我国生铁产量5.86亿吨进行计算,可折合产生1.75亿吨以上的高炉渣,其显热量相当于1050万吨标准煤。
干渣坑冷却法和水冲渣法是目前我国最常见的高炉渣处理方法。干渣坑冷却法将高温的液态熔渣直接排入干渣坑空冷,辅助水冷。该法降温时产生大量水蒸气,同时释放出大量的H2S和SO2气体,腐蚀建筑、破坏设备和恶化工作环境,一般只在事故处理时使用该法。我国90%的高炉渣都采用水冲渣法处理。水冲渣法是指利用低温的冷却水直接与高温的液态熔渣混合,使得液态熔渣温度迅速降低并形成玻璃体态炉渣颗粒。水冲渣法按照不同的工艺流程可分为因巴法、图拉法、底滤法、拉萨法、明特克法。尽管水冲渣工艺不断发展,但其技术的核心还是对高温液态熔渣进行喷水水淬,进而达到冷却和粒化的目的,然后进行水渣分离,冲渣的水经过沉淀过滤后再循环使用。尽管该法产生的玻璃体态熔渣可以应用于水泥工业进行资源化利用,但是处理过程浪费大量水资源,产生SO2和H2S等有害气体,也不能有效回收高温液态熔渣所含有的高品质余热资源。
在高炉渣干法离心粒化过程中,液态炉渣滴落到由高速旋转的转盘表面,在离心力和摩擦力的作用下被甩出,在液态熔渣表面张力的作用下形成小液滴,这些微小的液滴与空间中的传热介质(一般为空气)进行强制对流换热,与周围环境进行辐射换热,使小液滴温度迅速降低,进而发生相变,形成凝固层。随着温度进一步降低,液滴逐渐转变成固体小颗粒。在液态高炉渣粒化过程中,电机通过转轴带动粒化器高速旋转。同时,熔融态的高炉渣不断地滴落到粒化器上。目前干式粒化技术在液态高炉渣粒化过程中普遍存在着以下问题:
1、电机转轴处于高温环境下,易发生形变。液态高炉渣进入粒化仓的温度是1350℃以上,高炉渣的热量从粒化器传到转轴上。在高温条件下,钢制转轴的强度下降,这就要求对转轴进行冷却,保证转轴在一定的温度范围内运行。而影响转轴温度的因素有轴冷却风流量和液态熔渣流量等,这就需要分清影响因素的主次,在保证系统安全、高效运行的前提下,将转轴温度控制在一定范围内。
2、渣粒粒径分布区间大,影响后续阶段余热的高效回收。渣粒的大小是影响熔渣粒化效果的主要因素,所以粒化过程对熔渣粒径的控制十分重要。而渣粒的直径受很多因素的影响,包括液态熔渣温度、风的扰动、电机转速等。这就需要各个因素之间的协同配合,共同实现良好的粒化效果。
3、发生事故时对落渣管内的高温液态熔渣的处理方法不明确。在粒化系统运行过程中,如发生事故,比如粒化器损坏或粒化电机损坏。系统不能将落渣管内的液态熔渣进行粒化,而液态熔渣温度达到1350℃以上,继续将液态熔渣滴落到转盘上将对粒化仓造成很大破坏。因此需要有完善的事故控制操作方法,妥善处理落渣管内的液态熔渣。
发明内容
本发明的目的在于提供一种液态熔渣干式离心粒化的控制系统及方法,以解决上述技术问题,能够使转轴温度保持在合理的范围内,有效调节渣粒的直径,并在粒化单元出现事故 时能够妥善处理尚未粒化的液态熔渣,以确保粒化器能够安全、稳定运行,更好的实现粒化效果,为后续阶段的余热高效回收做准备。
为了实现上述目的,本发明采用的技术方案是:
一种液态熔渣干式离心粒化的控制系统,包括粒化器冷风控制单元和供料单元:
粒化器冷风控制单元,包括粒化器、转轴、电机和冷风供应单元;粒化器的底部通过转轴与立式设置的电机固定;转轴上设有用于监测转轴温度的第二测温元件;电机通过密封罩密封,密封罩上开有密封罩风口,转轴外周套有轴套筒,电机密封罩上固定有风管内套筒;风管内套筒设置于轴套筒外周,轴套筒通过带通风口的轴承支撑在风管内套筒内部;电机密封罩的顶部与风管内套筒连通;轴套筒上开有环形对称布置的冷却风口;
冷风供应单元分为轴冷却风道与环形冷却风道两路,冷风总管路上设有总控制阀,总控制阀的出口分为轴冷却风支路和环形冷却风支路两路;环形冷却风支路上设有环形冷却风支路控制阀,轴冷却风支路上设有流量计;轴冷却风道由风管内套筒与轴套筒组成;环形冷却风道由两个外径不同的风管内套筒和设置于风管内套筒外周的风管外套筒组成,在风管外套筒底部开有风管外套筒进风口,顶部有风帽;轴冷却风支路连接密封罩底部密封罩风口;环形冷却风支路连接风管外套筒底部风管外套筒进风口;
供料单元,包含设置于粒化器正上方的落渣管;落渣管包括上、下两段,上端直径大于下端直径,下段设滑动水口,并配事故导流槽;落渣管中设有用于监测落渣管中液态熔渣温度的第一测温元件。
进一步的,冷却风口为长条状。
进一步的,环形冷却风道的风管外套筒外焊接楔形固定块,与滑动块相配合,滑动块与固定支架之间通过销钉固定,通过扭动销钉调节滑动块的位置进而调节粒化器与落渣管之间的间距,实现液态熔渣下落高度的上下调节。
进一步的,若干风帽环形设置于粒化器下部外周,用于对从粒化器中飞出的熔渣进一步冷却并加强粒化。
进一步的,风管内套筒上部的出风口设置于粒化器下部,轴冷却风道的轴冷却风通过通风孔对转轴进行进一步的冷却,然后从风管内套筒上部出来,冷却粒化器。
一种液态熔渣干式离心粒化的控制系统的控制方法,包括转轴温度的调节、粒化粒径调节和事故控制:
转轴温度的调节:当通过第二测温元件测得的转轴温度高于设定温度时,减小环形冷却风道的控制阀开度,总控制阀开度增大,使得进入轴冷却风道的风量增大,轴冷却风通过轴冷却风道对转轴进行冷却;若调节仍不能满足要求,则减少供料单元向粒化器的供料量;
粒化粒径调节:当熔渣粒径超过设定值时,首先检查第一测温元件所测得的进渣温度,若进渣温度低于设定值时,要求进渣前进行补燃,提高进渣温度;若进渣温度符合要求,则逐步调高电机转速;若电机转速增大至最大值仍不满足要求,则调节环形冷却风支路控制阀开度,加大环形风进风量,同时减少进渣流量;粒径低于设定值时,则减小电机转速;
事故控制:当出现粒化器损坏时,首先停止进渣,并关闭滑动水口,在落渣管与粒化器之间放置事故导流槽,粒化器转速保持不变,待落渣管内渣流尽后,关闭电机,当温度降至室温后更换粒化器。
相比现有技术,本发明有以下优点:
本发明通过粒化器冷风控制单元,有效降低电机与转轴工作温度,保证其长时间正常运转,从而保证粒化器驱动安全、稳定,更好的实现粒化效果。
本发明合理控制粒径分布,保证颗粒直径在2-3mm范围内,满足粒化要求,有利于后续阶段余热的高效回收。
本发明有效实现了事故控制,保证粒化器损坏后能够快速高效的更换,防止发生人身事 故,减少不必要的设备损坏和经济损失。
附图说明
下面结合附图和具体实施方式对本发明做进一步详细说明。
图1为本发明的一种液态熔渣干式离心粒化的控制系统的结构示意图;
1-电机;2-密封罩;3-联轴器;4-楔形固定块;5-滑动块;6-固定支架;7-风管内套筒;8-风管外套筒;9-风帽;10-第一测温元件;11-落渣管;12-滑动水口;13-事故导流槽;14-粒化器;15-轴套筒;16-转轴;17-第二测温元件;18-控制阀;19-总控制阀;20-进风口;21-冷却风口;22-流量计;23-风口。
具体实施方式
请参阅图1所示,本发明一种液态熔渣干式离心粒化的控制系统,包括:粒化器冷风控制单元与供料单元。
粒化器冷风控制单元,包括粒化器14、转轴16、电机1和冷风供应单元。粒化器14的底部通过转轴16与电机1固定,转轴16上设有用于监测转轴温度的第二测温元件17;电机1为立式,与转轴16之间通过联轴器3相连接;电机1通过密封罩2密封,密封罩2上开有风口23,转轴16外周套有轴套筒15,电机密封罩2上固定有风管内套筒7;风管内套筒7设置于轴套筒15外周,轴套筒15通过带通风口的轴承支撑在风管内套筒7内部;电机密封罩2的顶部与风管内套筒7连通。轴套筒15上开有环形对称布置的冷却风口21,冷却风口为长条状。
冷风供应单元分为轴冷却风道与环形冷却风道两路,冷风总管路上设有总控制阀19,总控制阀的出口分为轴冷却风支路和环形冷却风支路两路;环形冷却风支路上设有控制阀18,轴冷却风支路上设有流量计22;轴冷却风道由风管内套筒7与轴套筒15组成;环形冷却风道由两个外径不同的风管套筒(风管内套筒7和风管外套筒8)组成,在风管外套筒8底部开有 进风口20,顶部有风帽9。轴冷却风支路连接密封罩2底部风口23;环形冷却风支路连接风管外套筒8底部进风口20。
环形冷却风道的风管外套筒8外焊接楔形固定块4,与滑动块5相配合,滑动块5与固定支架6之间通过销钉固定,通过扭动销钉调节滑动块的位置进而调节整个粒化装置的高度,实现液态熔渣下落高度的上下调节,能够在一定程度上控制落入粒化器的渣温,从而控制传到转轴的温度。同时调节熔渣下落的高度也能够实现对粒径的调节,达到更好的粒化效果。
供料单元,包含设置于粒化器14正上方的落渣管11。落渣管11分为上、下两段,上端直径大于下端直径,下段设滑动水口12,并配事故导流槽13。液态熔渣通过落渣管上、下段后落入旋转的粒化器14中,进行离心粒化。落渣管11中设有用于监测落渣管11中液态熔渣温度的第一测温元件10。
环形冷却风从进风口20进入,从顶部的风帽9出来,风帽9设置于粒化器下部外周,对从粒化器14中飞出的熔渣进一步冷却并加强粒化;轴冷却风从密封罩2下部的风口23进入,对电机进行一定的冷却,能够防止电机运行时产生的热量传递到转轴引起转轴温度的升高,提高电机运行的可靠性和电机的寿命;密封罩2中的轴冷却风通过通风孔进入轴冷却风道,轴套筒15上开有环形对称布置的长条状冷却风口21,能够更好的冷却转轴16,防止转轴过热产生变形,影响到所驱动的粒化器14的粒化效果;轴冷却风道的轴冷却风通过上部的通风孔对转轴进行进一步的冷却,然后从风管内套筒7上部出来,冷却粒化器14。
一种液态熔渣干式离心粒化的控制系统的控制方法,包括转轴温度的调节、粒化粒径调节和事故控制:
转轴温度的调节:当通过第二测温元件17测得的转轴温度高于设定温度时,减小环形冷却风道的控制阀18开度,总控制阀19开度增大,使得进入该系统的总风量保持不变,通过流量计22观测到轴冷却风量增大,轴冷却风通过优化的轴冷却风道对转轴进行冷却;若上一 步调节仍不能满足要求,则要求进渣系统减少进渣量。
粒化粒径调节:粒径超过设定值时,首先检查第一测温元件10所测得的进渣温度,若进渣温度低于设定值时,要求进渣前进行补燃,提高进渣温度;若进渣温度符合要求,则逐步调高电机1转速;若电机转速增大至最大值仍不满足要求,则应调节环形冷却风道的控制阀门18开度,加大环形风进风量,同时减少进渣流量。粒径低于设定值时,则减小电机转速。
事故控制:当出现粒化器14损坏时,首先停止进渣,并关闭滑动水口12,在落渣管11与粒化器14之间放置事故导流槽13,粒化器转速保持不变,待落渣管内渣流尽后,关闭电机1,当温度降至室温后更换粒化器。
最后应说明的是:以上实施方式仅用以说明本发明而非限制本发明所描述的技术方案;因此,尽管本说明书参照上述的各个实施方式对本发明已进行了详细说明,但是,本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换;而一切不脱离本发明的精神和范围的技术方案及其改进,其均应涵盖在本发明的权利要求范围中。

Claims (6)

  1. 一种液态熔渣干式离心粒化的控制系统,其特征在于,包括粒化器冷风控制单元和供料单元:
    粒化器冷风控制单元,包括粒化器(14)、转轴(16)、电机(1)和冷风供应单元;粒化器(14)的底部通过转轴(16)与立式设置的电机(1)固定;转轴(16)上设有用于监测转轴温度的第二测温元件(17);电机(1)通过密封罩(2)密封,密封罩(2)上开有密封罩风口,转轴(16)外周套有轴套筒(15),电机密封罩(2)上固定有风管内套筒(7);风管内套筒(7)设置于轴套筒(15)外周,轴套筒(15)通过带通风口的轴承支撑在风管内套筒(7)内部;电机密封罩(2)的顶部与风管内套筒(7)连通;轴套筒(15)上开有环形对称布置的冷却风口(21);
    冷风供应单元分为轴冷却风道与环形冷却风道两路,冷风总管路上设有总控制阀(19),总控制阀的出口分为轴冷却风支路和环形冷却风支路两路;环形冷却风支路上设有环形冷却风支路控制阀,轴冷却风支路上设有流量计(22);轴冷却风道由风管内套筒(7)与轴套筒(15)组成;环形冷却风道由两个外径不同的风管内套筒(7)和设置于风管内套筒(7)外周的风管外套筒(8)组成,在风管外套筒(8)底部开有风管外套筒进风口,顶部有风帽(9);轴冷却风支路连接密封罩(2)底部密封罩风口;环形冷却风支路连接风管外套筒底部风管外套筒进风口;
    供料单元,包含设置于粒化器(14)正上方的落渣管(11);落渣管(11)包括上、下两段,上端直径大于下端直径,下段设滑动水口(12),并配事故导流槽(13);落渣管(11)中设有用于监测落渣管(11)中液态熔渣温度的第一测温元件(10)。
  2. 根据权利要求1所述的一种液态熔渣干式离心粒化的控制系统,其特征在于,冷却风口(21)为长条状。
  3. 根据权利要求1所述的一种液态熔渣干式离心粒化的控制系统,其特征在于,环形 冷却风道的风管外套筒(8)外焊接楔形固定块(4),与滑动块(5)相配合,滑动块(5)与固定支架(6)之间通过销钉固定,通过扭动销钉调节滑动块的位置进而调节粒化器(14)与落渣管(11)之间的间距,实现液态熔渣下落高度的上下调节。
  4. 根据权利要求1所述的一种液态熔渣干式离心粒化的控制系统,其特征在于,若干风帽(9)环形设置于粒化器下部外周,用于对从粒化器(14)中飞出的熔渣进一步冷却并加强粒化。
  5. 根据权利要求1所述的一种液态熔渣干式离心粒化的控制系统,其特征在于,风管内套筒(7)上部的出风口设置于粒化器(14)下部,轴冷却风道的轴冷却风通过通风孔对转轴进行进一步的冷却,然后从风管内套筒(7)上部出来,冷却粒化器(14)。
  6. 权利要求1至5中任一项所述的一种液态熔渣干式离心粒化的控制系统的控制方法,其特征在于,包括转轴温度的调节、粒化粒径调节和事故控制:
    转轴温度的调节:当通过第二测温元件(17)测得的转轴温度高于设定温度时,减小环形冷却风道的控制阀(18)开度,总控制阀(19)开度增大,使得进入轴冷却风道的风量增大,轴冷却风通过轴冷却风道对转轴进行冷却;若调节仍不能满足要求,则减少供料单元向粒化器(14)的供料量;
    粒化粒径调节:当熔渣粒径超过设定值时,首先检查第一测温元件(10)所测得的进渣温度,若进渣温度低于设定值时,要求进渣前进行补燃,提高进渣温度;若进渣温度符合要求,则逐步调高电机(1)转速;若电机(1)转速增大至最大值仍不满足要求,则调节环形冷却风支路控制阀开度,加大环形风进风量,同时减少进渣流量;粒径低于设定值时,则减小电机转速;
    事故控制:当出现粒化器(14)损坏时,首先停止进渣,并关闭滑动水口(12),在落渣管(11)与粒化器(14)之间放置事故导流槽(13),粒化器转速保持不变,待落渣管内渣 流尽后,关闭电机(1),当温度降至室温后更换粒化器。
PCT/CN2017/080327 2017-02-28 2017-04-13 一种液态熔渣干式离心粒化的控制系统及方法 WO2018157451A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/488,240 US11396683B2 (en) 2017-02-28 2017-04-13 Control system and method for dry centrifugal granulation of liquid slag

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710116640.2 2017-02-28
CN201710116640.2A CN106702045B (zh) 2017-02-28 2017-02-28 一种液态熔渣干式离心粒化的控制系统及方法

Publications (1)

Publication Number Publication Date
WO2018157451A1 true WO2018157451A1 (zh) 2018-09-07

Family

ID=58917846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080327 WO2018157451A1 (zh) 2017-02-28 2017-04-13 一种液态熔渣干式离心粒化的控制系统及方法

Country Status (3)

Country Link
US (1) US11396683B2 (zh)
CN (1) CN106702045B (zh)
WO (1) WO2018157451A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109487020A (zh) * 2018-12-16 2019-03-19 邯郸钢铁集团有限责任公司 一种inba高炉水渣处理装置及冲渣方法
CN112501366A (zh) * 2020-12-16 2021-03-16 河南省冶金研究所有限责任公司 一种具有风淬功能的冶炼熔渣双层离心粒化装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108300822B (zh) * 2018-02-26 2019-10-11 西安交通大学 一种具有快速更换及事故处理功能的液态熔渣流量控制装置
CN108330236B (zh) * 2018-02-26 2020-04-28 西安交通大学 液态熔渣干式离心粒化渣粒品质调控方法
CN108277310B (zh) * 2018-02-26 2019-10-11 西安交通大学 一种具有快速更换及事故处理功能的液态熔渣流量控制装置的操作方法
CN113601841B (zh) * 2021-08-16 2023-05-05 奥格瑞玛(重庆)医疗科技有限公司 一种义齿类3d打印机用气流调控装置及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100242683A1 (en) * 2009-03-26 2010-09-30 Tetsuo Yamaki Process for treating exhaust gas generated during water-granulation of slag and system for said treatment
CN105624347A (zh) * 2016-03-11 2016-06-01 西安交通大学 一种液态高温熔渣粒化及余热回收装置
CN105624348A (zh) * 2016-03-11 2016-06-01 西安交通大学 一种用于高温液态熔渣粒化系统
CN105755188A (zh) * 2016-03-11 2016-07-13 西安交通大学 一种用于粒化高温液态熔渣并回收高温显热的移动床装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102827969B (zh) * 2012-09-06 2014-08-06 西安交通大学 一种干式粒化液态熔渣的余热回收系统及方法
CN203096087U (zh) * 2013-03-06 2013-07-31 圣火科技(河南)有限责任公司 一种液态炉渣粒化装置
CN105624346A (zh) * 2016-03-11 2016-06-01 西安交通大学 一种带有流量控制功能的熔渣缓冲系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100242683A1 (en) * 2009-03-26 2010-09-30 Tetsuo Yamaki Process for treating exhaust gas generated during water-granulation of slag and system for said treatment
CN105624347A (zh) * 2016-03-11 2016-06-01 西安交通大学 一种液态高温熔渣粒化及余热回收装置
CN105624348A (zh) * 2016-03-11 2016-06-01 西安交通大学 一种用于高温液态熔渣粒化系统
CN105755188A (zh) * 2016-03-11 2016-07-13 西安交通大学 一种用于粒化高温液态熔渣并回收高温显热的移动床装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109487020A (zh) * 2018-12-16 2019-03-19 邯郸钢铁集团有限责任公司 一种inba高炉水渣处理装置及冲渣方法
CN112501366A (zh) * 2020-12-16 2021-03-16 河南省冶金研究所有限责任公司 一种具有风淬功能的冶炼熔渣双层离心粒化装置
CN112501366B (zh) * 2020-12-16 2022-04-22 河南省冶金研究所有限责任公司 一种具有风淬功能的冶炼熔渣双层离心粒化装置

Also Published As

Publication number Publication date
CN106702045B (zh) 2019-02-05
US11396683B2 (en) 2022-07-26
US20200232064A1 (en) 2020-07-23
CN106702045A (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
WO2018157451A1 (zh) 一种液态熔渣干式离心粒化的控制系统及方法
WO2018157450A1 (zh) 一种用于液态熔渣粒化的粒化器系统
WO2017152783A1 (zh) 一种用于高温液态熔渣粒化系统
CN105603135B (zh) 一种高温液态熔渣干式离心粒化余热回收系统与方法
CN105624347B (zh) 一种液态高温熔渣粒化及余热回收装置
CN105755188B (zh) 一种用于粒化高温液态熔渣并回收高温显热的移动床装置
WO2019161697A1 (zh) 液态熔渣干式离心粒化渣粒品质调控方法
CN108359757B (zh) 一种液态熔渣干式离心粒化装置
CN108411053B (zh) 一种带升降功能的液态熔渣粒化设备及驱动装置
WO2019161637A1 (zh) 液态熔渣干式离心粒化渣粒粒径控制方法
CN109385496B (zh) 一种液态熔渣机械离心粒化防粘结装置及其预热方法
CN202482336U (zh) 高炉熔渣分流取渣系统
CN112899425A (zh) 一种防止高炉泥套结渣的方法
CN108285942A (zh) 一种具有冷却功能的粒化器及其驱动系统
CN106702046B (zh) 一种粒化器驱动及冷却装置
WO2019161724A1 (zh) 一种具有快速更换及事故处理功能的液态熔渣流量控制装置的操作方法
CN214735865U (zh) 一种应急工况下的堵铁口装置
CN217556210U (zh) 一种环保型高炉渣连续处理装置
CN220926828U (zh) 一种风口套双冷却水循环装置
CN219670542U (zh) 一种布料器冷却水套
CN214299982U (zh) 一种提高干熄焦处理能力的系统
CN110793335A (zh) 一种炉窑水冷件漏水处理方法
CN206474671U (zh) 一种可保护出钢的钢水转运装置及可保护出钢的电炉炼钢系统
CN116606972A (zh) 一种炉缸高效打水方法
CN202116569U (zh) 吹氧管接头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17898977

Country of ref document: EP

Kind code of ref document: A1