WO2018155884A1 - 무선 통신 시스템에서 보안 키를 생성하기 위한 장치 및 방법 - Google Patents

무선 통신 시스템에서 보안 키를 생성하기 위한 장치 및 방법 Download PDF

Info

Publication number
WO2018155884A1
WO2018155884A1 PCT/KR2018/002076 KR2018002076W WO2018155884A1 WO 2018155884 A1 WO2018155884 A1 WO 2018155884A1 KR 2018002076 W KR2018002076 W KR 2018002076W WO 2018155884 A1 WO2018155884 A1 WO 2018155884A1
Authority
WO
WIPO (PCT)
Prior art keywords
beams
measurement
channel
reference signals
information related
Prior art date
Application number
PCT/KR2018/002076
Other languages
English (en)
French (fr)
Inventor
장상현
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to US16/488,154 priority Critical patent/US11646882B2/en
Priority to EP18756614.6A priority patent/EP3576339B1/en
Priority to CN201880013569.8A priority patent/CN110337796B/zh
Publication of WO2018155884A1 publication Critical patent/WO2018155884A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0875Generation of secret information including derivation or calculation of cryptographic keys or passwords based on channel impulse response [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0819Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
    • H04L9/0822Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s) using key encryption key
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0891Revocation or update of secret information, e.g. encryption key update or rekeying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/041Key generation or derivation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/80Wireless

Definitions

  • the present disclosure generally relates to wireless communication, and more particularly, to an apparatus and a method for generating a security key.
  • a 5G communication system or a pre-5G communication system is called a Beyond 4G Network communication system or a Long Term Evolution (LTE) system (Post LTE) system.
  • LTE Long Term Evolution
  • 5G communication systems are being considered for implementation in the ultra-high frequency (mmWave) band (eg, such as the 60 Gigabit (60 GHz) band).
  • mmWave ultra-high frequency
  • 60 GHz 60 Gigabit
  • beamforming, massive array multiple input / output (Full-Dimensional MIMO, FD-MIMO) in 5G communication systems Array antenna, analog beam-forming, and large scale antenna techniques are discussed.
  • the 5G communication system includes an evolved small cell, an advanced small cell, a cloud radio access network (cloud RAN), an ultra-dense network, Device to Device communication (D2D), wireless backhaul, moving network, cooperative communication, coordinated multi-points (CoMP), and interference cancellation Technology development is underway.
  • cloud RAN cloud radio access network
  • D2D Device to Device communication
  • CoMP coordinated multi-points
  • FQAM Hybrid Frequency Shift Keying and Quadrature Amplitude Modulation
  • SWSC sliding window superposition coding
  • ACM Advanced Coding Modulation
  • FBMC Filter Bank MultiCarrier
  • Data transmitted or received in a wireless environment may be encrypted for enhanced security.
  • an encryption key is required.
  • the encryption key may be determined based on a public key or shared key exchanged through signaling between two devices performing communication. At this point, if the public key is exchanged over the wireless channel, there is a risk of leaking to a third party. Therefore, there is a need for a key generation scheme with stronger security.
  • various embodiments of the present disclosure may provide an apparatus and method for generating a more robust secure key in a wireless communication system.
  • various embodiments of the present disclosure may provide an apparatus and a method for generating a security key using information related to channel measurement in a wireless communication system.
  • various embodiments of the present disclosure may provide an apparatus and a method for generating a security key using information related to beam measurement results in a wireless communication system.
  • various embodiments of the present disclosure may provide an apparatus and a method for using a security key generated based on channel reciprocity in a wireless communication system.
  • a method of operating a transmitting end in a wireless communication system may include generating an encryption key using information related to channel measurement and transmitting data encrypted using the encryption key to a receiving end. It includes.
  • a method of operating a receiver in a wireless communication system may include generating a decryption key using information related to channel measurement, and encrypting data encrypted using an encryption key corresponding to the decryption key. Receiving from the transmitting end.
  • a transmitting end device in a wireless communication system includes a control unit generating an encryption key using information related to channel measurement, and a communication unit transmitting data encrypted using the encryption key to a receiving end. do.
  • a receiving end device in a wireless communication system may include a control unit for generating a decryption key using information related to channel measurement, and data encrypted using a encryption key corresponding to the decryption key from a transmitting end. It includes a communication unit for receiving.
  • Various embodiments of the present disclosure may provide enhanced security by generating a secure key based on information related to a channel.
  • FIG. 1 illustrates a wireless communication system according to various embodiments of the present disclosure.
  • FIG. 2 illustrates a configuration of a device for performing communication in a wireless communication system according to various embodiments of the present disclosure.
  • 3A to 3C illustrate a configuration of a communication unit in a wireless communication system according to various embodiments of the present disclosure.
  • FIG. 4 shows an example of a scenario in which a public key is leaked in a wireless communication system.
  • FIG. 5 is a flowchart illustrating a method of operating an apparatus for transmitting data in a wireless communication system according to various embodiments of the present disclosure.
  • FIG. 6 illustrates a method of operating an apparatus for receiving data in a wireless communication system according to various embodiments of the present disclosure.
  • FIG. 7 illustrates an operation method for generating a security key in a wireless communication system according to various embodiments of the present disclosure.
  • FIG. 8 illustrates a signal exchange for performing encrypted data communication in a wireless communication system according to various embodiments of the present disclosure.
  • FIG. 9 illustrates a method of operating an apparatus for generating an encryption key in a wireless communication system according to various embodiments of the present disclosure.
  • FIG. 10 illustrates a method of operating an apparatus for generating a decryption key in a wireless communication system according to various embodiments of the present disclosure.
  • 11A illustrates a signal exchange for performing communication using a security key based on a channel impulse response in a wireless communication system according to various embodiments of the present disclosure.
  • 11B illustrates an example of an estimation result of a channel impulse response in a wireless communication system according to various embodiments of the present disclosure.
  • FIG. 12A illustrates a signal exchange for performing communication using a security key based on an angle of incidence pattern in a wireless communication system according to various embodiments of the present disclosure.
  • 12B illustrates an example of an estimation result of an incident angle pattern in a wireless communication system according to various embodiments of the present disclosure.
  • FIG. 13 illustrates a signal exchange for performing communication using a security key based on signal strength in a wireless communication system according to various embodiments of the present disclosure.
  • the present disclosure relates to an apparatus and method for generating a secure key in a wireless communication system. Specifically, the present disclosure describes techniques for generating a security key based on information associated with a channel in a wireless communication system.
  • LTE long term evolution
  • LTE-A LTE-advanced
  • Wireless communication may provide users with higher convenience than wired communication in terms of mobility.
  • signals transmitted or received in a wireless communication system may be vulnerable in terms of security because they are transmitted from the device to another device via a wireless environment.
  • a security key includes an encryption key for encryption and a decryption key for decryption.
  • the transmitting end may encrypt the signal to be transmitted using a security key, that is, an encryption key, before transmitting the signal to another device.
  • the receiving end receiving the encrypted signal may decrypt the encrypted signal using a decryption key corresponding to the encryption key.
  • Security keys such as encryption keys and decryption keys, are not transmitted over a wireless link between devices to maintain security, but are generated directly within each device. However, since the decryption key must correspond to the encryption key, i.e. in pairs, the sender and the receiver are generally able to exchange a public key for generating a security key over the wireless link. have.
  • FIG. 1 illustrates a wireless communication system according to various embodiments of the present disclosure.
  • a wireless communication system may include device A 110 and device B 120.
  • one of the device A 110 and the device B 120 may operate as a transmitting end and the other as a receiving end.
  • the division of the transmitting end and the receiving end is a relative concept and may change according to an operation state.
  • the device A 110 or the device B 120 may transmit and receive data.
  • the device A 110 or the device B 120 may perform beamforming. That is, the device A 110 or the device B 120 may improve the transmission gain through transmission beamforming. Also, the device A 110 or the device B 120 may improve reception gain through reception beamforming.
  • device A 110 or device B 120 may transmit or receive a signal in a millimeter wave (mmWave) band (eg, 28 GHz, 30 GHz, 38 GHz, 60 GHz) through at least one transmission beam.
  • mmWave millimeter wave
  • at least one of the device A 110 and the device B 120 may not include a universal subscriber identity module (USIM).
  • USB universal subscriber identity module
  • At least one of the device A 110 and the device B 120 may be a device having mobility.
  • Device A 110 or Device B 120 may be a mobile phone, a smart phone, a music player, a portable game console, a navigation system, a laptop computer, or the like. Can be.
  • the device A 110 or the device B 120 is a 'terminal', 'user equipment (UE)', 'mobile station', 'subscriber station', 'remote terminal (remote) terminal ',' wireless terminal ', or' user device 'or other terms having equivalent technical meanings.
  • the device A 110 and the device B 120 may perform device-to-device (D2D) communication.
  • D2D device-to-device
  • At least one of the device A 110 and the device B 120 may be a fixed device (eg, consumer premise equipment (CPE)).
  • CPE consumer premise equipment
  • at least one of the device A 110 and the device B 120 may support Internet of Things (IoT) communication.
  • IoT Internet of Things
  • at least one of the device A 110 and the device B 120 may perform machine type communication (MTC).
  • MTC machine type communication
  • At least one of the device A 110 and the device B 120 may be a node constituting a wireless access network.
  • device A 110 or device B 120 may be an infrastructure for an access network such as a base station, an access point (AP), or the like.
  • the device A 110 or the device B 120 may be an 'access point (AP)', 'eNodeB, eNB', '5G generation node', or 'wireless point'.
  • 2 illustrates a configuration of an apparatus for performing communication in a wireless communication system according to various embodiments of the present disclosure.
  • 2 may be understood as a configuration of device A 110 or device B 120. Used below '... Wealth,
  • the term 'herein' refers to a unit for processing at least one function or operation, which may be implemented by hardware or software, or a combination of hardware and software.
  • the apparatus includes a communication unit 210, a storage unit 220, and a control unit 230.
  • the communication unit 210 performs functions for transmitting and receiving a signal through a wireless channel.
  • the communication unit 210 performs a baseband signal and bit string conversion function according to the physical layer standard of the system. For example, during data transmission, the communication unit 210 generates complex symbols by encoding and modulating a transmission bit string.
  • the communication unit 210 restores the received bit string by demodulating and decoding the baseband signal.
  • the communication unit 210 up-converts the baseband signal into a radio frequency (RF) band signal and transmits it through an antenna, and downconverts the RF band signal received through the antenna into a baseband signal.
  • the communication unit 210 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a digital to analog convertor (DAC), an analog to digital convertor (ADC), and the like.
  • the communication unit 210 may include a plurality of transmission and reception paths. Furthermore, the communication unit 210 may include at least one antenna array composed of a plurality of antenna elements. In terms of hardware, the wireless communication unit 210 may be composed of a digital circuit and an analog circuit (for example, radio frequency integrated circuit (RFIC)). In addition, the communication unit 210 may include a plurality of RF chains. In addition, the communication unit 210 may perform beamforming.
  • RFIC radio frequency integrated circuit
  • the communication unit 210 transmits and receives a signal as described above. Accordingly, the communication unit 210 may be referred to as a 'transmitter', 'receiver' or 'transceiver'. In addition, in the following description, transmission and reception performed through a wireless channel are used by the communication unit 210 to mean that the above-described processing is performed.
  • the storage unit 220 stores data such as a basic program, an application program, and setting information for operating the device.
  • the storage unit 220 may be configured as a volatile memory, a nonvolatile memory, or a combination of the volatile memory and the nonvolatile memory.
  • the storage 220 provides the stored data at the request of the controller 230.
  • the controller 230 controls overall operations of the device. For example, the controller 230 transmits and receives a signal through the communication unit 210. In addition, the controller 230 records and reads data in the storage 220. To this end, the controller 230 may include at least one processor or a micro processor, or may be part of the processor. In particular, according to various embodiments of the present disclosure, the controller 230 may control the device to generate a security key based on information related to channel measurement. For example, the controller 230 may control the device to perform operations according to various embodiments described below.
  • 3A to 3C illustrate a configuration of a communication unit in a wireless communication system according to various embodiments of the present disclosure.
  • 3A to 3C illustrate examples of detailed configurations of the communication unit 210 of FIG. 2.
  • FIGS. 3A to 3C illustrate components for performing beamforming as part of the communication unit 210 of FIG. 2.
  • the communication unit 210 or 310 includes an encoding and modulation unit 302, a digital beamforming unit 304, a plurality of transmission paths 306-1 to 306-N, and an analog beamforming unit 308.
  • the encoding and modulation unit 302 performs channel encoding. For channel encoding, at least one of a low density parity check (LDPC) code, a convolution code, and a polar code may be used.
  • LDPC low density parity check
  • the encoding and modulation unit 302 generates modulation symbols by performing constellation mapping.
  • the digital beamforming unit 304 performs beamforming on the digital signal (eg, modulation symbols). To this end, the digital beamforming unit 304 multiplies the modulation symbols by beamforming weights.
  • the beamforming weights are used to change the magnitude and phase of the signal, and may be referred to as a 'precoding matrix', 'precoder', or the like.
  • the digital beamforming unit 304 outputs the digital beamformed modulation symbols in the plurality of transmission paths 306-1 to 306-N.
  • modulation symbols may be multiplexed, or the same modulation symbols may be provided in a plurality of transmission paths 306-1 to 306-N.
  • each of the plurality of transmission paths 306-1 to 306-N may include an inverse fast fourier transform (IFFT) calculator, a cyclic prefix (CP) inserter, a DAC, and an up-converter.
  • the CP insertion unit is for an orthogonal frequency division multiplexing (OFDM) scheme and may be excluded when another physical layer scheme (for example, a filter bank multi-carrier (FBMC)) is applied. That is, the multiple transmission paths 306-1 through 306-N provide an independent signal processing process for the multiple streams generated through digital beamforming. However, depending on the implementation manner, some of the components of the plurality of transmission paths 306-1 to 306-N may be used in common.
  • the analog beamforming unit 308 performs beamforming on the analog signal. To this end, the digital beamforming unit 304 multiplies the analog signals by beamforming weights. Here, beamforming weights are used to change the magnitude and phase of the signal.
  • the analog beamforming unit 308 may be configured as shown in FIG. 3B or 3C according to the connection structure between the plurality of transmission paths 306-1 to 306-N and the antennas.
  • signals input to the analog beamforming unit 308 are transmitted through antennas through phase / magnitude conversion and amplification.
  • the signal of each path is transmitted through different antenna sets, that is, antenna arrays.
  • the signal is converted into signal sequences having different or the same phase / magnitude by the phase / magnitude converters 312-1-1 through 312-1-M, and the amplifiers 314-. Amplified by 1-1 through 314-1-M, then transmitted via antennas.
  • signals input to the analog beamforming unit 308 are transmitted through antennas through phase / size conversion and amplification.
  • the signal of each path is transmitted through the same antenna set, that is, the antenna array.
  • the signal is converted into signal sequences having different or the same phase / magnitude by the phase / magnitude converters 312-1-1 through 312-1-M, and the amplifiers 314-. Amplified by 1-1 to 314-1-M.
  • the amplified signals are summed by the summation units 316-1-1 through 316-1-M based on the antenna element to be transmitted through one antenna array, and then transmitted through the antennas.
  • FIG. 3B illustrates an example in which an independent antenna array for each transmission path is used
  • FIG. 3C illustrates an example in which transmission paths share one antenna array.
  • some transmission paths may use an independent antenna array, and the other transmission paths may share one antenna array.
  • by applying a switchable structure between transmission paths and antenna arrays a structure that can be adaptively changed according to a situation may be used.
  • encryption may be performed to protect data.
  • a key agreement scheme based on a public key and a secret key is used, there is a possibility of leakage of the security key.
  • FIG. 4. 4 shows an example of a scenario in which a public key is leaked.
  • the device A 110 may transmit the public key x of the device A 110 to the device B 120 so that the device B 120 may generate a decryption key corresponding to the encryption key of the device A 110.
  • the device B 120 may transmit the public key y of the device B 120 to the device A 110 so that the device A 110 may generate an encryption key corresponding to the decryption key. Since public key x and public key y are transmitted over the wireless link between device A 110 and device B 120, they may be leaked to an unintended third party device.
  • unintentional device 130 may intercept public key x to be sent to device B 120.
  • the unintentional device 130 may send a fake public key m to device B 120 in place of public key x.
  • Device B 120 may mistake the fake public key m received from device 130 for which it is not intended as public key x. Due to this misconception, device B 120 may receive unintended data, such as hacked data, from unintentional device 130.
  • unintentional device 130 may intercept public key y to be transmitted to device A 110.
  • the unintentional device 130 may transmit a fake public key n to the device A 110 in place of the public key y.
  • Device A 110 may mistake the fake public key n received from device 130 for which it is not intended as public key y. Due to this misconception, the unintended device 130 may intercept the data to be sent to device B 120.
  • the procedure of exchanging public keys can cause an unintended device to intercept data or inject unintended data such as hacked data or the like. Accordingly, the present disclosure describes various embodiments for further enhancing security by generating a security key based on a channel between devices.
  • each of the device A 110 and the device B 120 may generate a security key based on information related to a channel between the device A 110 and the device B 120.
  • Device A 110 and Device B 120 each exchange a public key that is likely to be leaked to an unintended device (or user) by generating a security key based on information related to the channel between Device A 110 and Device B 120. Procedures to do this may not be performed.
  • FIG. 5 is a flowchart illustrating a method of operating an apparatus for transmitting data in a wireless communication system according to various embodiments of the present disclosure.
  • FIG. 5 illustrates an operation method of a device A 110 or a device B 120 that transmits data, that is, performs encryption on the data.
  • the operating subject of FIG. 5 is referred to as a 'transmitting node'.
  • the transmitting end generates an encryption key using information related to channel measurement.
  • the information related to channel measurement may be related to at least one of a result of channel measurement, a resource used for channel measurement, and a procedure for channel measurement.
  • information related to channel measurement can be determined from the measurement results for the beams.
  • the measurement results for the beam pairs include signal strength, channel impulse response (CIR), angle of arrival (AOA), time of arrival (TOA), and multi-path. It may be related to counts or other metrics related to signal measurements.
  • the transmitting end transmits the data encrypted using the encryption key.
  • the transmitting end performs encryption by replacing or modifying at least a part of the data by using the encryption key, and transmits the encrypted data through the wireless channel.
  • the transmitter may transmit data using a transmission beam corresponding to the reception beam selected based on the measurement result of the beam pairs, or a transmission beam selected through separate beam measurement.
  • FIG. 6 illustrates a method of operating an apparatus for receiving data in a wireless communication system according to various embodiments of the present disclosure.
  • FIG. 6 illustrates a method of operating a device A 110 or a device B 120, which receives data, that is, decrypts data.
  • the operating entity of FIG. 6 is referred to as a 'receiving node'.
  • a receiver in step 601, a receiver generates a decryption key using information related to channel measurement.
  • the information related to channel measurement may be related to at least one of a result of channel measurement, a resource used for channel measurement, and a procedure for channel measurement.
  • the information related to the channel measurement may be determined from the measurement result for the beams.
  • the measurement results for the beam pairs may be related to signal strength, channel impulse response, angle of incidence, arrival time, number of multipaths or other indicators related to signal measurement.
  • the receiving end receives the data encrypted using the encryption key corresponding to the decryption key. Accordingly, although not shown in FIG. 6, the receiving end may decrypt the encrypted data using the decryption key. In this case, the receiving end may receive data by using the reception beam selected based on the measurement result of the beam pairs, or the reception beam selected through separate beam measurement.
  • the transmitter and the receiver generate an encryption key and a decryption key based on information related to channel measurement, specifically, information derived from measurement results for beam pairs.
  • the encryption key and the decryption key are generated by different devices, but may correspond to each other. This is based on channel reciprocity that the channel value measured at the transmitter and the channel value measured at the receiver are the same. However, even if channel reciprocity is not guaranteed, various embodiments may be applied in the same manner if substantial channel reciprocity is recognized through compensation of a channel value in at least one of a transmitting end and a receiving end.
  • the measurement result for the beam pairs depends on the channel. Therefore, if the channel between the third apparatus and the transmitting end is different from the channel between the receiving end and the transmitting end, even if the third apparatus receives the beamformed reference signals transmitted from the transmitting end, the third apparatus cannot obtain the same measurement result. . Therefore, under normal circumstances, the third device will not be able to obtain the same measurement result. This is because the measurement result for the beam pairs depends on the channel, so the measurement result changes as the channel changes.
  • the device may further enhance security by changing the order of the beams periodically or on an event basis. The operation of the device for this is as follows.
  • FIG. 7 illustrates an operation method for generating a security key in a wireless communication system according to various embodiments of the present disclosure.
  • FIG. 7 illustrates an operation method for generating an encryption key or decryption key as an operation method of device A 110 or device B 120.
  • the operating subject of FIG. 7 is referred to as an 'device'.
  • the apparatus determines an order of beams for beam sweeping. Prior to performing the measurements on the beam pairs, the apparatus may determine in what order to sweep the operable beams. The order of the beams may be changed in each of the plurality of beam measurement intervals, or may be changed in two or more measurement intervals. Alternatively, the order of the beams may be changed if a predefined condition is met.
  • the apparatus performs receive beam sweeping.
  • the apparatus receives beamformed reference signals transmitted from the counterpart apparatus through a plurality of receive beams.
  • the apparatus changes the reception beams in the order of decision in step 701.
  • the device may change the beam direction sequentially, at regular intervals, or randomly.
  • the device generates a security key based on the beam measurement result.
  • the security key includes at least one of an encryption key or a decryption key.
  • at least one value derived from the beam measurement result is used.
  • the at least one value may be used as the security key itself, a seed value for generating the security key, a value for modifying the security key, or a portion thereof.
  • the apparatus determines the order of the beams for beam sweeping. Accordingly, the device may sweep the receive beams in a different order than the order used in the previous beam measurement interval. Accordingly, security can be further enhanced.
  • FIG. 8 illustrates a signal exchange for performing encrypted data communication in a wireless communication system according to various embodiments of the present disclosure.
  • FIG. 8 illustrates a situation in which device A 110 transmits data to device B 120 as a signal exchange between device A 110 and device B 120.
  • the device A 110 transmits a plurality of reference signals to the device B 120.
  • the reference signals are transmitted beamformed by the device A 110. That is, device A 110 transmits reference signals through transmit beam sweeping.
  • the device B 120 performs receive beam sweeping. Accordingly, the device B 120 may measure the beam pairs.
  • the device B 120 In operation 803, the device B 120 generates a decryption key based on the beam measurement result.
  • the beam measurement result may include signal strength, channel impulse response, angle of incidence, arrival time, number of multipaths, or other indicators related to signal measurement.
  • the device B 120 transmits a plurality of reference signals to the device A 110.
  • the reference signals are transmitted beamformed by device B 120. That is, device B 120 transmits reference signals through transmit beam sweeping.
  • the device B 120 may sweep the transmission beams in an order corresponding to the order used for the reception beam sweep in step 801. This is to maintain the sameness of the measurement results of steps 801 and 805.
  • Device A 110 may perform receive beam sweeping and perform measurement on beam pairs. Similarly, the device A 110 may sweep the reception beams in an order corresponding to the order used for transmission beam sweeping in step 801.
  • the device A 110 generates an encryption key based on the beam measurement result.
  • the beam measurement result may include signal strength, channel impulse response, angle of incidence, arrival time, number of multipaths, or other indicators related to signal measurement.
  • the device A 110 may generate an encryption key according to the same method as that used by the device B 120 in step 803.
  • the device A 110 transmits encrypted data.
  • the device A 110 encrypts the data using an encryption key and transmits the data through a wireless channel.
  • the device B 120 receives the encrypted data and decrypts the encrypted data using the decryption key.
  • the device A 110 may use the transmission beam selected based on the measurement result of step 803 or 805.
  • the device B 120 may use the transmission beam selected based on the measurement result of step 803 or 805.
  • an operation of transmitting feedback information indicating an optimal beam from the device A 110 to the device B 120 or from the device B 120 to the device A 110 may be further performed.
  • an apparatus may generate a security key based on information related to channel measurement.
  • the device since the device generates a security key based on information related to the channel without receiving data from another device, the security can be further enhanced.
  • the device since the device does not consume power for signaling to share the public key, power consumption due to the operation for generating the security key can be reduced.
  • each device may generate a security key after beam measurement. Therefore, when determining the security key for every beam measurement, the security key can be updated every time the beam measurement is performed. That is, the period of beam measurement and the update period of the security key may coincide.
  • FIG. 9 illustrates a method of operating an apparatus for generating an encryption key in a wireless communication system according to various embodiments of the present disclosure.
  • FIG. 9 illustrates a method of operating a device A 110 or a device B 120, which transmits data, that is, performs encryption of data.
  • the operating entity of FIG. 9 is referred to as a 'transmitting node'.
  • a transmitter generates an encryption key based on a plurality of values for indicating a channel from a receiver to a transmitter.
  • a plurality of values for representing a channel may be determined based on a reference signal transmitted from each other through a plurality of transmit beams of another device.
  • the transmitting end may receive reference signals through a plurality of receive beams.
  • Each of the plurality of values for representing a channel may be defined for each of a plurality of beam pairs determined by a combination of each of a plurality of receive beams of a transmitter and each of a plurality of transmit beams of a receiver.
  • the plurality of values may be a channel impulse response and may be expressed as Equation 1 below.
  • AB represents a channel from a receiving end (e.g., device A) to a transmitting end (e.g., device B), and ij (e.g., 11, ..., NM, etc.) Represents a beam pair composed of a combination of the j th received beam of a transmitter, Denotes a channel impulse response for a beam pair consisting of a combination of an i-th transmit beam of a receiver and a j-th receive beam of a transmitter in a channel from a receiver to a transmitter.
  • the transmitter may generate an encryption key based on bit sequences generated by quantizing a plurality of values, such as Equation 1.
  • the encryption key may be updated for each reception period of the reference signal.
  • the encryption key may be changed according to a predetermined rule according to the seed of the transmitter.
  • step 903 the transmitting end generates the encrypted data by encrypting the data to be transmitted based on the generated encryption key.
  • the device transmits the encrypted data to the receiving end. Accordingly, the receiving end can receive the encrypted data.
  • FIG. 10 illustrates a method of operating an apparatus for generating a decryption key in a wireless communication system according to various embodiments of the present disclosure.
  • FIG. 10 illustrates a method of operating a device A 110 or a device B 120, which receives data, that is, decrypts data.
  • the operating entity of FIG. 6 is referred to as a 'receiving node'.
  • a receiving end receives encrypted data from a transmitting end.
  • the encrypted data may be data generated by the procedure shown in FIG. 10.
  • the receiving end decrypts the encrypted data based on the decryption key generated based on a plurality of values for representing the channel.
  • the plurality of values may be determined based on reference signals transmitted through each of the plurality of transmission beams from the transmitter.
  • the receiving end may receive a reference signal through a plurality of receive beams. Multiple values for representing a channel may be defined for multiple beam pairs determined by each combination of multiple receive beams at the receive end and each of multiple transmit beams at the transmit end.
  • the plurality of values may be a channel impulse response and may be expressed as Equation 2 below.
  • BA represents a channel from a transmitting end (e.g., device B) to a receiving end (e.g., device A), and ij (e.g., 11, ..., MN, etc.) Represents a beam pair consisting of a combination of the j th transmission beam of the transmitting end, Denotes a channel impulse response for a beam pair consisting of a combination of an i-th receive beam of a receiver and a j-th transmit beam of a transmitter in a channel from a transmitter to a receiver.
  • the receiving end may generate a decryption key based on bit sequences generated by quantizing a plurality of values, such as Equation 2.
  • the decryption key may be updated for each reception period of the reference signal.
  • the decryption key may be changed according to a predetermined rule according to the seed of the device A.
  • the transmitting end may encrypt data based on the encryption key, and the receiving end may decrypt the encrypted data based on the decryption key.
  • Equation 1> Is included in Equation 2 Can correspond to This is because the channel from device A to device B and the device B to device A have channel reciprocity. For example, Wow May have a relationship as in Equation 3 below.
  • Equation 3 Is the channel impulse response for the beam pair consisting of the combination of the i-th transmit beam of device A and the j-th receive beam of device B in the channel from device A to device B, Denotes a channel impulse response for a beam pair consisting of a combination of the i-th receive beam of device A and the j-th transmit beam of device B in the channel from device B to device A.
  • Equation 3 indicates that the channel impulse response of the channel from the device A to the device B and the channel impulse response of the channel from the device B to the device A correspond to or correspond to each other.
  • the encrypted data is transmitted from device B to device A (e.g., Channel impulse response from device A to device B (e.g., Since the device A is encrypted using an encryption key generated on the basis of), the device A can successfully decrypt the encrypted data even without receiving a separate public key from the device B that transmitted the encrypted data.
  • a device may generate a decryption key based on a plurality of values for representing a channel from another device to the device.
  • the device may, based on the decryption key, encrypt data based on an encryption key generated based on a channel impulse response from another device to the device and a channel impulse response from the device having a channel interrelationship relationship to the other device. I can decipher it. Therefore, in a data transmission / reception procedure according to various embodiments, an operation for obtaining a separate security key from another device may be excluded. Since the device does not perform an operation for exchanging security keys, the device can operate more robustly against risks such as hacking. In addition, since the device does not consume power for separate signaling to obtain a security key, it can reduce power consumption caused by signaling.
  • 11A illustrates a signal exchange for performing communication using a security key based on a channel impulse response in a wireless communication system according to various embodiments of the present disclosure.
  • 11A illustrates a signal exchange between device A 110 and device B 120, in which device B 120 generates a security key, that is, an encryption key or a decryption key.
  • the device A 110 transmits a reference signal through beam sweeping of a plurality of transmit beams of the device A 110.
  • the device B 120 receives a reference signal through beam sweeping of the plurality of receive beams of the device B 120.
  • the device B 120 may perform measurement on a plurality of beam pairs configured by combining a plurality of transmission beams of the device A 110 and each of the plurality of reception beams of the device B 120.
  • the device B 120 determines a channel impulse response for each beam pair.
  • Reference signals transmitted and received over one beam pair may undergo multiple paths and be divided into a number of components. Therefore, for each beam pair, the device B 120 may determine the channel impulse response by estimating the TOA for each component of the reference signal and estimating the magnitude of each component.
  • the channel impulse response for each beam pair may be determined as shown in FIG. 11B.
  • the horizontal axis represents the difference between the reference time and the reception time of the reference signal, and the vertical axis represents the magnitude of the measured value.
  • each of the channel impulse responses 1110-11 through 1110-NM for multiple beam pairs includes measurement values having different magnitudes and reception times.
  • the device B 120 generates a security key based on the determined channel impulse response.
  • the device B 120 may generate at least one sequence based on the information representing the channel impulse responses 1110-11 to 1110-NM, and may generate a security key based on the at least one sequence.
  • the device B 120 may generate a new security key using at least one sequence, or may modify the security key generated by another algorithm.
  • the information indicating the channel impulse responses may include at least one of a value indicating a channel impulse response and at least one of values indicating a beam pair corresponding to the channel impulse response. In the information representing the channel impulse responses, each beam pair may be indicated by the index of the resource carrying the reference signal.
  • the device B 120 processes data based on the generated security key. That is, the device B 120 may encrypt the transmission data using the security key or decrypt the encrypted received data using the security key.
  • 12A illustrates a signal exchange for performing communication using a security key based on an angle of incidence pattern in a wireless communication system according to various embodiments of the present disclosure.
  • 12A illustrates a signal exchange between device A 110 and device B 120, in which device B 120 generates a security key, that is, an encryption key or a decryption key.
  • the device A 110 transmits a reference signal through beam sweeping of a plurality of transmit beams of the device A 110.
  • the device B 120 receives a reference signal through beam sweeping of the plurality of receive beams of the device B 120.
  • the device B 120 may perform measurement on a plurality of beam pairs configured by combining a plurality of transmission beams of the device A 110 and each of the plurality of reception beams of the device B 120.
  • the device B 120 determines an incident angle pattern of the beams.
  • the incident angle pattern may be determined by measuring an incident angle with respect to each of the transmission beams of the device A 110. That is, device B 120 estimates AOAs for reference signals transmitted from device A 110.
  • the apparatus B 120 may use the measurement values of the plurality of receive beams for one transmit beam.
  • the device B 120 may estimate an incident angle of the transmission beam based on the direction of the reception beam providing the largest signal gain with respect to the transmission beam. For example, the direction of the receive beam that provides the largest signal gain can be estimated as the angle of incidence.
  • the device B 120 may estimate an incident angle of the transmission beam based on a pattern of measured signal intensity values of the plurality of reception beams with respect to the transmission beam. For example, the device B 120 may estimate an incident angle by identifying an incident angle corresponding to a pattern most similar to a signal strength pattern measured according to a maximum likelihood (ML) method, from mapping information between a predefined signal strength pattern and an incident angle mapping information. Can be.
  • ML maximum likelihood
  • the incident angle pattern 120 as illustrated in FIG. 12B may be determined.
  • the first axis is an elevation angle, that is, an angle formed by the horizontal plane and the beam
  • the second axis is an azimuth angle, that is, an angle formed by the vertical plane and the beam
  • the third axis is incident at the corresponding angle.
  • the incident angle pattern may be determined to be different from that of FIG. 12B.
  • the incident angle pattern may be defined as a set of angle values for each reference signal without the magnitude of the measured value.
  • the device B 120 generates a security key based on the determined angle of incidence pattern.
  • the device B 120 may generate at least one sequence based on information representing the incident angle pattern, and generate a security key based on the at least one sequence. For example, the device B 120 may generate a new security key using at least one sequence, or may modify the security key generated by another algorithm.
  • the information indicating the incident angle pattern may include at least one of values indicating an incident angle and values indicating a beam corresponding to the incident angle. In the information representing the incident angle pattern, each beam may be indicated by an index of a resource carrying a reference signal.
  • the device B 120 processes data based on the generated security key. That is, the device B 120 may encrypt the transmission data using the security key or decrypt the encrypted received data using the security key.
  • FIG. 13 illustrates a signal exchange for performing communication using a security key based on signal strength in a wireless communication system according to various embodiments of the present disclosure.
  • FIG. 13 illustrates a signal exchange between device A 110 and device B 120, in which device B 120 generates a security key, that is, an encryption key or a decryption key.
  • the device A 110 transmits a reference signal through beam sweeping of a plurality of transmit beams of the device A 110.
  • the device B 120 receives a reference signal through beam sweeping of the plurality of receive beams of the device B 120.
  • the device B 120 may perform measurement on a plurality of beam pairs configured by combining a plurality of transmission beams of the device A 110 and each of the plurality of reception beams of the device B 120.
  • the device B 120 determines the signal strength order of the beam pairs.
  • the combination of transmit beams and receive beams includes a plurality of beam pairs, and the beamforming gain provided by each beam pair may be different depending on the relative positional relationship of the device A 110 and the device B 120 and the channel environment. Thus, depending on the beam pair used to transmit and receive the reference signal, the signal strength measured for the reference signal may vary.
  • the device B 120 generates a security key based on the determined signal strength order.
  • the device B 120 may generate at least one sequence from information representing the signal strength order, and generate a security key based on the at least one sequence.
  • the device B 120 may generate a new security key using at least one sequence, or may modify the security key generated by another algorithm.
  • the information indicating the signal strength order may include at least one of values indicating a beam pair and values indicating a signal strength.
  • each beam pair may be indicated by an index of a resource carrying a reference signal.
  • the device B 120 processes data based on the generated security key. That is, the device B 120 may encrypt the transmission data using the security key or decrypt the encrypted received data using the security key.
  • the security key may be determined based on information on at least one beam pair that satisfies a specific condition. For example, the information indicating the beam pair providing the maximum reception strength, the information indicating the beam pair providing the nth reception strength, or the information indicating the beam pairs providing the reception strength above a threshold may be generated. Can be used for
  • the security key may be determined based on a difference in a reception order for beam pairs satisfying a specific condition. For example, a difference in the reception order of beam pairs that provide a reception strength above a threshold (eg, mn when the beam pair used in the nth resource and the beam pair used in the mth resource provides a reception strength above the threshold) is secured. Can be used to generate a key.
  • a threshold eg, mn when the beam pair used in the nth resource and the beam pair used in the mth resource provides a reception strength above the threshold
  • a computer-readable storage medium for storing one or more programs (software modules) may be provided.
  • One or more programs stored in a computer readable storage medium are configured for execution by one or more processors in a device.
  • One or more programs include instructions that cause an apparatus to execute methods in accordance with embodiments described in the claims or specifications of this disclosure.
  • Such programs may include random access memory, non-volatile memory including flash memory, read only memory (ROM), and electrically erasable programmable ROM.
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • magnetic disc storage device compact disc ROM (CD-ROM), digital versatile discs (DVDs) or other forms
  • CD-ROM compact disc ROM
  • DVDs digital versatile discs
  • It can be stored in an optical storage device, a magnetic cassette. Or, it may be stored in a memory composed of some or all of these combinations.
  • each configuration memory may be included in plural.
  • the program is accessed through a communication network consisting of a communication network such as the Internet, an intranet, a local area network (LAN), a wide area network (WLAN), or a storage area network (SAN), or a combination thereof. It may be stored in an attachable storage device that is accessible. Such a storage device is connected to a device that performs an embodiment of the present disclosure through an external port. In addition, a separate storage device on a communication network may be connected to a device that performs an embodiment of the present disclosure.
  • a communication network such as the Internet, an intranet, a local area network (LAN), a wide area network (WLAN), or a storage area network (SAN), or a combination thereof. It may be stored in an attachable storage device that is accessible. Such a storage device is connected to a device that performs an embodiment of the present disclosure through an external port.
  • a separate storage device on a communication network may be connected to a device that performs an embodiment of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 개시는 LTE(Long Term Evolution)와 같은 4G(4th generation) 통신 시스템 이후 보다 높은 데이터 전송률을 지원하기 위한 5G(5th generation) 또는 pre-5G 통신 시스템에 관련된 것이다. 본 개시는 무선 통신 시스템에서 보안 키의 생성에 과한 것으로, 송신단의 동작 방법은, 채널 측정과 관련된 정보를 이용하여 암호화 키를 생성하는 과정과, 상기 암호화 키를 이용하여 암호화된 데이터를 수신단으로 송신하는 과정을 포함한다.

Description

무선 통신 시스템에서 보안 키를 생성하기 위한 장치 및 방법
본 개시(disclosure)는 일반적으로 무선 통신(wireless communication)에 관한 것으로, 보다 구체적으로 보안 키를 생성하기 위한 장치 및 방법에 관한 것이다.
4G(4th generation) 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G(5th generation) 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후(Beyond 4G Network) 통신 시스템 또는 LTE(Long Term Evolution) 시스템 이후(Post LTE) 시스템이라 불리어지고 있다.
높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역(예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO, FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다.
또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀(advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network, cloud RAN), 초고밀도 네트워크(ultra-densenetwork), 기기 간 통신(Device to Device communication, D2D), 무선 백홀 (wireless backhaul), 이동 네트워크(moving network), 협력 통신(cooperative communication), CoMP(Coordinated Multi-Points), 및 수신 간섭제거(interference cancellation) 등의 기술 개발이 이루어지고 있다.
이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation, ACM) 방식인 FQAM(Hybrid Frequency Shift Keying and Quadrature Amplitude Modulation) 및 SWSC(Sliding Window SuperpositionCoding)과, 진보된 접속 기술인 FBMC(Filter Bank MultiCarrier), NOMA(Non Orthogonal Multiple Access), 및 SCMA(Sparse Code Multiple Access) 등이 개발되고 있다.
무선 환경에서 송신되거나 수신되는 데이터는 보안성의 강화를 위하여 암호화될 수 있다. 이러한 암호화를 위하여, 암호화 키(encryption key)가 요구된다. 일반적으로, 암호화 키는 통신을 수행하는 2개의 장치들 사이의 시그널링을 통해 교환되는 공개 키(public key) 또는 공유 키(shared key)에 기반하여 결정될 수 있다. 이때, 공개 키가 무선 채널을 통해 교환되면, 제3자에게 유출될 위험이 존재한다. 따라서, 보다 강한 보안성을 가지는 키 생성 기법(scheme)이 요구된다.
상술한 바와 같은 논의를 바탕으로, 본 개시(disclosure)의 다양한 실시 예들은, 무선 통신 시스템에서 보다 강건한 보안 키(secure key)를 생성하기 위한 장치 및 방법을 제공할 수 있다.
또한, 본 개시의 다양한 실시 예들은, 무선 통신 시스템에서 채널 측정과 관련된 정보를 이용하여 보안 키를 생성하기 위한 장치 및 방법을 제공할 수 있다.
또한, 본 개시의 다양한 실시 예들은, 무선 통신 시스템에서 빔 측정 결과와 관련된 정보를 이용하여 보안 키를 생성하기 위한 장치 및 방법을 제공할 수 있다.
또한, 본 개시의 다양한 실시 예들은, 무선 통신 시스템에서 채널 상호성(channel reciprocity)에 기반하여 생성된 보안 키를 이용하기 위한 장치 및 방법을 제공할 수 있다.
본 개시의 다양한 실시 예들에 따르면, 무선 통신 시스템에서 송신단의 동작 방법은, 채널 측정과 관련된 정보를 이용하여 암호화 키를 생성하는 과정과, 상기 암호화 키를 이용하여 암호화된 데이터를 수신단으로 송신하는 과정을 포함한다.
본 개시의 다양한 실시 예들에 따르면, 무선 통신 시스템에서 수신단의 동작 방법은, 채널 측정과 관련된 정보를 이용하여 해독 키를 생성하는 과정과, 상기 해독 키에 대응하는 암호화 키를 이용하여 암호화된 데이터를 송신단으로부터 수신하는 과정을 포함한다.
본 개시의 다양한 실시 예들에 따르면, 무선 통신 시스템에서 송신단 장치는, 채널 측정과 관련된 정보를 이용하여 암호화 키를 생성하는 제어부와, 상기 암호화 키를 이용하여 암호화된 데이터를 수신단으로 송신하는 통신부를 포함한다.
본 개시의 다양한 실시 예들에 따르면, 무선 통신 시스템에서 수신단 장치는, 채널 측정과 관련된 정보를 이용하여 해독 키를 생성하는 제어부와, 상기 해독 키에 대응하는 암호화 키를 이용하여 암호화된 데이터를 송신단으로부터 수신하는 통신부를 포함한다.
본 개시의 다양한 실시 예들은, 채널에 관련된 정보에 기반하여 보안 키(secure key)를 생성함으로써, 보다 강화된(enhanced) 보안성(security)을 제공할 수 있다.
본 개시에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템을 도시한다.
도 2은 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 통신을 수행하는 장치(device)의 구성을 도시한다.
도 3a 내지 3c는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 통신부의 구성을 도시한다.
도 4는 무선 통신 시스템에서 공개 키(public key)가 유출되는 시나리오의 예를 도시한다.
도 5는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 데이터를 송신하는 장치의 동작 방법을 도시한다.
도 6은 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 데이터를 수신하는 장치의 동작 방법을 도시한다.
도 7은 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 보안 키를 생성하기 위한 동작 방법을 도시한다.
도 8은 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 암호화된 데이터 통신을 수행하기 위한 신호 교환을 도시한다.
도 9는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 암호화 키(encryption key)를 생성하는 장치의 동작 방법을 도시한다.
도 10은 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 해독 키(decryption key)를 생성하는 장치의 동작 방법을 도시한다.
도 11a는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 채널 임펄스 응답에 기반한 보안 키를 이용하여 통신을 수행하기 위한 신호 교환을 도시한다.
도 11b는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 채널 임펄스 응답의 추정 결과의 예를 도시한다.
도 12a는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 입사각 패턴에 기반한 보안 키를 이용하여 통신을 수행하기 위한 신호 교환을 도시한다.
도 12b는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 입사각 패턴의 추정 결과의 예를 도시한다.
도 13은 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 신호 세기 순서에 기반한 보안 키를 이용하여 통신을 수행하기 위한 신호 교환을 도시한다.
본 개시에서 사용되는 용어들은 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 다른 실시 예의 범위를 한정하려는 의도가 아닐 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 다수의 표현을 포함할 수 있다. 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 용어들은 본 개시에 기재된 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가질 수 있다. 본 개시에 사용된 용어들 중 일반적인 사전에 정의된 용어들은, 관련 기술의 문맥상 가지는 의미와 동일 또는 유사한 의미로 해석될 수 있으며, 본 개시에서 명백하게 정의되지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. 경우에 따라서, 본 개시에서 정의된 용어일지라도 본 개시의 실시 예들을 배제하도록 해석될 수 없다.
이하에서 설명되는 본 개시의 다양한 실시 예들에서는 하드웨어적인 접근 방법을 예시로서 설명한다. 하지만, 본 개시의 다양한 실시 예들에서는 하드웨어와 소프트웨어를 모두 사용하는 기술을 포함하고 있으므로, 본 개시의 다양한 실시 예들이 소프트웨어 기반의 접근 방법을 제외하는 것은 아니다.
이하 본 개시는 무선 통신 시스템에서 보안 키(secure key)를 생성하기 위한 장치 및 방법에 관한 것이다. 구체적으로, 본 개시는 무선 통신 시스템에서 채널과 관련된 정보에 기초하여 보안 키를 생성하기 위한 기술을 설명한다.
이하 설명에서 사용되는 신호를 지칭하는 용어, 채널을 지칭하는 용어, 측정을 통해 얻어진 결과물을 지칭하는 용어, 제어 정보를 지칭하는 용어, 네트워크 객체(network entity)들을 지칭하는 용어, 장치의 구성 요소를 지칭하는 용어 등은 설명의 편의를 위해 예시된 것이다. 따라서, 본 개시가 후술되는 용어들에 한정되는 것은 아니며, 동등한 기술적 의미를 가지는 다른 용어가 사용될 수 있다.
또한, 본 개시는, 일부 통신 규격(예: LTE(long term evolution) 시스템과 LTE-A(LTE-advanced))에서 사용되는 용어들을 이용하여 다양한 실시 예들을 설명하지만, 이는 설명을 위한 예시일 뿐이다. 본 개시의 다양한 실시 예들은, 다른 통신 시스템에서도, 용이하게 변형되어 적용될 수 있다.
무선 통신은 이동성(mobility) 측면에서 사용자에게 유선 통신보다 높은 편의성(convenience)을 제공할 수 있다. 하지만, 무선 통신 시스템에서 송신되거나 수신되는 신호는, 무선 환경(air)을 통해 장치로부터 다른 장치에게 전달되기 때문에, 보안성 측면에서 취약할 수 있다. 이러한 취약점(weak point)를 극복하기 위하여, 보안 키가 사용될 수 있다. 여기서, 보안 키는 암호화를 위한 암호화 키(encryption key) 및 해독을 위한 해독 키(decryption key)를 포함한다. 구체적으로, 송신단은 다른 장치에게 신호를 송신하기 전에, 보안 키, 즉, 암호화 키를 이용하여 송신될 신호를 암호화할 수 있다. 또한, 암호화된 신호를 수신한 수신단은, 암호화 키에 대응하는 해독 키를 이용하여 암호화된 신호를 해독할 수 있다.
이러한 암호화 키와 해독 키와 같은 보안 키는, 보안성을 유지하기 위하여, 장치들 간의 무선 링크(wireless link)를 통해 송신되지 않고, 각 장치들 내에서 직접 생성된다. 하지만, 해독 키는 암호화 키에 대응하여야 하기 때문에, 즉, 쌍(pair)을 이루어야 하기 때문에, 송신단 및 수신단은 일반적으로 보안 키를 생성하기 위한 공개 키(public key)를 무선 링크를 통해 교환할 수 있다.
하지만, 공개 키가 의도되지 않은(non-intended) 제3자에게 유출되는 경우, 송신 데이터가 왜곡된 상태로 전달되거나, 데이터가 유출될 위험이 존재한다. 따라서, 본 개시의 다양한 실시 예들은 이러한 위험을 해소하기 위한 방안(solution)을 제공한다.
도 1은 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템을 도시한다.
도 1을 참고하면, 무선 통신 시스템은 장치A 110 및 장치B 120을 포함할 수 있다. 여기서, 장치A 110 및 장치B 120 중 하나는 송신단으로서, 나머지 하나는 수신단으로서 동작할 수 있다. 하지만, 송신단 및 수신단의 구분은 상대적인 개념으로서, 동작 상태에 따라 변화할 수 있다.
장치A 110 또는 장치B 120은 데이터를 송신하고, 수신할 수 있다. 일 실시 예에 따라, 장치A 110 또는 장치B 120은 빔포밍을 수행할 수 있다. 즉, 장치A 110 또는 장치B 120은 송신 빔포밍을 통해 송신 이득을 향상시킬 수 있다. 또한, 장치A 110 또는 장치B 120은 수신 빔포밍을 통해 수신 이득을 향상시킬 수 있다. 예를 들면, 장치A 110 또는 장치B 120은 적어도 하나의 송신 빔을 통해 밀리미터 웨이브(mmWave) 대역 (예: 28GHz, 30GHz, 38GHz, 60GHz)에서 신호를 송신하거나 수신할 수 있다. 또한, 일 실시 예에 따라, 장치A 110 및 장치B 120 중 적어도 하나는 USIM(universal subscriberidentity module)을 구비하지 아니할 수 있다.
일 실시 예에 따라, 장치A 110 및 장치B 120 중 적어도 하나는 이동성(mobility)을 가지는 장치일 수 있다. 장치A 110 또는 장치B 120은 휴대폰(mobile phone), 스마트 폰(smart phone), 음악 재생기(music player), 휴대용 게임 콘솔(portable game console), 네비게이션(navigation) 시스템, 랩탑 컴퓨터(laptop computer) 등일 수 있다. 이 경우, 장치A 110 또는 장치B 120은 '단말(terminal)', '사용자 장비(userequipment, UE)', '이동국(mobile station)', '가입자국(subscriber station)', '원격 단말(remote terminal)', '무선 단말(wireless terminal)', 또는 '사용자 장치(userdevice)' 또는 이와 동등한 기술적 의미를 가지는 다른 용어로 지칭될 수 있다. 이 경우, 일 실시 예에 따라, 장치A 110 및 장치B 120은 D2D(device-to-device) 통신을 수행할 수 있다.
다른 실시 예에 따라, 장치A 110 및 장치B 120 중 적어도 하나는 고정된(fixed) 장치일 수 있다(예: CPE(consumer premise equipment)). 예를 들어, 장치A 110 및 장치B 120 중 적어도 하나는 IoT(Internet of things) 통신을 지원할 수 있다. 또는, 장치A 110 및 장치B 120 중 적어도 하나는 기계 타입 통신(machine type communication, MTC)을 수행할 수 있다.
또 다른 실시 예에 따라, 장치A 110 및 장치B 120 중 적어도 하나는 무선 접속 망(access network)을 구성하는 노드(node)일 수 있다. 예를 들어, 장치A 110 또는 장치B 120은 기지국, AP(access point) 등과 같은 접속 망을 위한 인프라스트럭쳐(infrastructure)일 수 있다. 장치A 110 또는 장치B 120은 기지국(base station) 외에 '액세스 포인트(access point, AP)', '이노드비(eNodeB, eNB)', '5G 노드(5th generation node)', '무선 포인트(wireless point)', '송수신 포인트(transmission/reception point, TRP)' 또는 이와 동등한 기술적 의미를 가지는 다른 용어로 지칭될 수 있다.
도 2은 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 통신을 수행하는 장치의 구성을 도시한다. 도 2는 장치A 110 또는 장치B 120의 구성으로 이해될 수 있다. 이하 사용되는 '…부', '…기' 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어, 또는, 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
도 2를 참고하면, 장치는 통신부 210, 저장부 220, 제어부 230를 포함한다.
통신부 210은 무선 채널을 통해 신호를 송수신하기 위한 기능들을 수행한다. 예를 들어, 통신부 210은 시스템의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행한다. 예를 들어, 데이터 송신 시, 통신부 210은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성한다. 또한, 데이터 수신 시, 통신부 210은 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원한다. 또한, 통신부 210은 기저대역 신호를 RF(radio frequency) 대역 신호로 상향변환한 후 안테나를 통해 송신하고, 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향변환한다. 예를 들어, 통신부 210은 송신 필터, 수신 필터, 증폭기, 믹서(mixer), 오실레이터(oscillator), DAC(digital to analog convertor), ADC(analog to digital convertor) 등을 포함할 수 있다.
또한, 통신부 210은 다수의 송수신 경로(path)들을 포함할 수 있다. 나아가, 통신부 210은 다수의 안테나 요소들로 구성된 적어도 하나의 안테나 어레이를 포함할 수 있다. 하드웨어의 측면에서, 무선통신부(210)는 디지털 회로 및 아날로그 회로(예: RFIC(radio frequency integrated circuit))로 구성될 수 있다. 또한, 통신부 210은 다수의 RF 체인들을 포함할 수 있다. 나아가, 통신부 210은 빔포밍을 수행할 수 있다.
통신부 210은 상술한 바와 같이 신호를 송신 및 수신한다. 이에 따라, 통신부 210은 '송신부', '수신부' 또는 '송수신부'로 지칭될 수 있다. 또한, 이하 설명에서 무선 채널을 통해 수행되는 송신 및 수신은 통신부 210에 의해 상술한 바와 같은 처리가 수행되는 것을 포함하는 의미로 사용된다.
저장부 220은 장치의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 저장부 220은 휘발성 메모리, 비휘발성 메모리 또는 휘발성 메모리와 비휘발성 메모리의 조합으로 구성될 수 있다. 그리고, 저장부 220은 제어부 230의 요청에 따라 저장된 데이터를 제공한다.
제어부 230은 장치의 전반적인 동작들을 제어한다. 예를 들어, 제어부 230은 통신부 210를 통해 신호를 송신 및 수신한다. 또한, 제어부 230은 저장부 220에 데이터를 기록하고, 읽는다. 이를 위해, 제어부 230은 적어도 하나의 프로세서 또는 마이크로(micro) 프로세서를 포함하거나, 또는, 프로세서의 일부일 수 있다. 특히, 다양한 실시 예들에 따라, 제어부 230은 장치가 채널 측정에 관련된 정보에 기반하여 보안 키를 생성하도록 제어할 수 있다. 예를 들어, 제어부 230은 장치가 후술하는 다양한 실시 예들에 따른 동작들을 수행하도록 제어할 수 있다.
도 3a 내지 3c는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 통신부의 구성을 도시한다. 도 3a 내지 3c는 도 2의 통신부 210의 상세한 구성에 대한 예를 도시한다. 구체적으로, 도 3a 내지 3c는 도 2의 통신부 210의 일부로서, 빔포밍을 수행하기 위한 구성요소들을 예시한다.
도 3a를 참고하면, 통신부 210 또는 310는 부호화 및 변조부 302, 디지털 빔포밍부 304, 다수의 송신 경로들 306-1 내지 306-N, 아날로그 빔포밍부 308를 포함한다.
부호화 및 변조부 302는 채널 인코딩을 수행한다. 채널 인코딩을 위해, LDPC(low density parity check) 코드, 컨볼루션(convoluation) 코드, 폴라(polar) 코드 중 적어도 하나가 사용될 수 있다. 부호화 및 변조부 302는 성상도 맵핑(contellation mapping)을 수행함으로써 변조 심벌들을 생성한다.
디지털 빔포밍부 304은 디지털 신호(예: 변조 심벌들)에 대한 빔포밍을 수행한다. 이를 위해, 디지털 빔포밍부 304은 변조 심벌들에 빔포밍 가중치들을 곱한다. 여기서, 빔포밍 가중치들은 신호의 크기 및 위상을 변경하기 위해 사용되며, '프리코딩 행렬(precoding matrix)', '프리코더(precoder)' 등으로 지칭될 수 있다. 디지털 빔포밍부 304는 다수의 송신 경로들 306-1 내지 306-N로 디지털 빔포밍된 변조 심벌들을 출력한다. 이때, MIMO(multiple input multipleoutput)전송 기법에 따라, 변조 심벌들은 다중화되거나, 다수의 송신 경로들 306-1 내지 306-N로 동일한 변조 심벌들이 제공될 수 있다.
다수의 송신 경로들 306-1 내지 306-N은 디지털 빔포밍된 디지털 신호들을 아날로그 신호로 변환한다. 이를 위해, 다수의 송신 경로들 306-1 내지 306-N 각각은 IFFT(inverse fast fourier transform) 연산부, CP(cyclic prefix) 삽입부, DAC, 상향 변환부를 포함할 수 있다. CP 삽입부는 OFDM(orthogonal frequency division multiplexing) 방식을 위한 것으로, 다른 물리 계층 방식(예: FBMC(filter bank multi-carrier))이 적용되는 경우 제외될 수 있다. 즉, 다수의 송신 경로들 306-1 내지 306-N은 디지털 빔포밍을 통해 생성된 다수의 스트림(stream)들에 대하여 독립된 신호처리 프로세스를 제공한다. 단, 구현 방식에 따라, 다수의 송신 경로들 306-1 내지 306-N의 구성요소들 중 일부는 공용으로 사용될 수 있다.
아날로그 빔포밍부 308는 아날로그 신호에 대한 빔포밍을 수행한다. 이를 위해, 디지털 빔포밍부 304은 아날로그 신호들에 빔포밍 가중치들을 곱한다. 여기서, 빔포밍 가중치들은 신호의 크기 및 위상을 변경하기 위해 사용된다. 구체적으로, 다수의 송신 경로들 306-1 내지 306-N 및 안테나들 간 연결 구조에 따라, 아날로그 빔포밍부 308는 도 3b 또는 도 3c와 같이 구성될 수 있다.
도 3b를 참고하면, 아날로그 빔포밍부 308로 입력된 신호들은 위상/크기 변환, 증폭의 연산을 거쳐, 안테나들을 통해 송신된다. 이때, 각 경로의 신호는 서로 다른 안테나 집합들 즉, 안테나 어레이들을 통해 송신된다. 첫번째 경로를 통해 입력된 신호의 처리를 살펴보면, 신호는 위상/크기 변환부들 312-1-1 내지 312-1-M에 의해 서로 다른 또는 동일한 위상/크기를 가지는 신호열로 변환되고, 증폭기들 314-1-1 내지 314-1-M에 의해 증폭된 후, 안테나들을 통해 송신된다.
도 3c를 참고하면, 아날로그 빔포밍부 308로 입력된 신호들은 위상/크기 변환, 증폭의 연산을 거쳐, 안테나들을 통해 송신된다. 이때, 각 경로의 신호는 동일한 안테나 집합, 즉, 안테나 어레이를 통해 송신된다. 첫번째 경로를 통해 입력된 신호의 처리를 살펴보면, 신호는 위상/크기 변환부들 312-1-1 내지 312-1-M에 의해 서로 다른 또는 동일한 위상/크기를 가지는 신호열로 변환되고, 증폭기들 314-1-1 내지 314-1-M에 의해 증폭된다. 그리고, 하나의 안테나 어레이를 통해 송신되도록, 증폭된 신호들은 안테나 요소를 기준으로 합산부들 316-1-1 내지 316-1-M에 의해 합산된 후, 안테나들을 통해 송신된다.
도 3b는 송신 경로 별 독립적 안테나 어레이가 사용되는 예를, 도 3c 송신 경로들이 하나의 안테나 어레이를 공유하는 예를 나타낸다. 그러나, 다른 실시 예에 따라, 일부 송신 경로들은 독립적 안테나 어레이를 사용하고, 나머지 송신 경로들은 하나의 안테나 어레이를 공유할 수 있다. 나아가, 또 다른 실시 예에 따라, 송신 경로들 및 안테나 어레이들 간 스위치 가능한(switchable) 구조를 적용함으로써, 상황에 따라 적응적으로 변화할 수 있는 구조가 사용될 수 있다.
상술한 바와 같은 장치들이 통신을 수행하는 경우, 데이터 보호를 위해 암호화가 수행될 수 있다. 이때, 공개 키 및 비밀 키에 기반한 키 합의 기법(key agreement scheme)이 사용되는 경우, 보안 키의 유출 가능성이 존재한다. 예를 들어, 보안 키가 유출되는 시나리오의 예는 도 4와 같다. 도 4는 공개 키가 유출되는 시나리오의 예를 도시한다.
도 4를 참고하면, 장치A 110은 장치B 120이 장치A 110의 암호화 키에 대응하는 해독 키를 생성할 수 있도록 장치A 110의 공개 키 x를 장치B 120에게 송신할 수 있다. 또한, 장치B 120은 장치A 110이 해독 키에 대응하는 암호화 키를 생성할 수 있도록 장치B 120의 공개 키 y를 장치A 110에게 송신할 수 있다. 공개 키 x와 공개 키 y는, 장치A 110 및 장치B 120 사이의 무선 링크를 통해 송신되기 때문에, 의도되지 않은 제3의 장치에게 유출될 수 있다.
예를 들면, 무선 통신 시스템 120에서, 의도되지 않은 장치 130은 장치B 120에게 송신될 공개 키 x를 가로챌 수 있다. 의도되지 않은 장치 130은 공개 키 x를 대신하여 모조(fake) 공개 키 m을 장치B 120에게 송신할 수 있다. 장치B 120은 의도되지 않은 장치 130으로부터 수신되는 모조 공개 키 m을 공개 키 x로 오인할 수 있다. 이러한 오인으로 인하여, 장치B 120은 해킹 데이터와 같은 의도되지 않은 데이터를 의도되지 않은 장치 130으로부터 수신할 수 있다.
다른 예를 들면, 무선 통신 시스템 120과 같이, 의도되지 않은 장치 130은 장치A 110에게 송신될 공개 키 y를 가로챌 수 있다. 의도되지 않은 장치 130은 공개 키 y를 대신하여 모조 공개 키 n을 장치A 110에게 송신할 수 있다. 장치A 110은 의도되지 않은 장치 130으로부터 수신되는 모조 공개 키 n을 공개 키 y로 오인할 수 있다. 이러한 오인으로 인하여, 의도되지 않은 장치 130은 장치B 120에게 송신될 데이터를 가로챌 수 있다.
상술한 바와 같이, 공개 키를 교환하는 절차는, 의도되지 않은 장치가 데이터를 가로채거나 해킹 데이터 등과 같은 의도되지 않은 데이터를 주입하는 것을 야기시킬 수 있다. 따라서, 이하 본 개시는 장치들 간의 채널에 기반하여 보안 키를 생성함으로써, 보안을 보다 강화하기 위한 다양한 실시 예들을 설명한다.
다양한 실시 예들에 따라, 장치A 110 및 장치B 120 각각은, 장치A 110 및 장치B 120 사이의 채널에 관련된 정보에 기반하여 보안 키를 생성할 수 있다. 장치A 110 및 장치B 120 각각은, 장치A 110 및 장치B 120 사이의 채널에 관련된 정보에 기반하여 보안 키를 생성함으로 인해, 의도되지 않은 장치(또는 사용자)에게 유출 가능성이 높은 공개 키를 교환하기 위한 절차가 수행되지 아니할 수 있다.
도 5는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 데이터를 송신하는 장치의 동작 방법을 도시한다. 도 5는 장치A 110 또는 장치B 120의 동작 방법으로서, 데이터를 송신하는, 즉, 데이터에 대한 암호화를 수행하는 장치의 동작 방법을 예시한다. 이하 설명에서, 도 5의 동작 주체는 '송신단(transmitting node)'으로 지칭된다.
도 5를 참고하면, 501 단계에서, 송신단은 채널 측정과 관련된 정보를 이용하여 암호화 키를 생성한다. 여기서, 채널 측정과 관련된 정보는 채널 측정의 결과, 채널 측정을 위해 사용되는 자원, 채널 측정을 위한 절차 중 적어도 하나에 관련될 수 있다. 예를 들어, 채널 측정과 관련된 정보는 빔들에 대한 측정 결과로부터 결정될 수 있다. 여기서, 빔 쌍들에 대한 측정 결과는 신호 세기, 채널 임펄스 응답(channel impulse response, CIR), 입사각(angle of arrival, AOA), 도달 시각(time of arrival, TOA), 다중 경로(multi-path)의 개수 또는 신호 측정과 관련된 다른 지표(metric)와 관련될 수 있다.
이후, 503 단계에서, 송신단은 암호화 키를 이용하여 암호화된 데이터를 송신한다. 다시 말해, 송신단은 암호화 키를 이용하여 데이터의 적어도 일부를 치환하거나 변형함으로써 암호화를 수행하고, 암호화된 데이터를 무선 채널을 통해 송신한다. 이때, 송신단은 빔 쌍들에 대한 측정 결과에 기반하여 선택된 수신 빔에 대응하는 송신 빔, 또는 별도의 빔 측정을 통해 선택된 송신 빔을 이용하여 데이터를 송신할 수 있다.
도 6은 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 데이터를 수신하는 장치의 동작 방법을 도시한다. 도 6은 장치A 110 또는 장치B 120의 동작 방법으로서, 데이터를 수신하는, 즉, 데이터에 대한 해독을 수행하는 장치의 동작 방법을 예시한다. 이하 설명에서, 도 6의 동작 주체는 '수신단(receiving node)'으로 지칭된다.
도 6을 참고하면, 601 단계에서, 수신단은 채널 측정과 관련된 정보를 이용하여 해독 키를 생성한다. 여기서, 채널 측정과 관련된 정보는 채널 측정의 결과, 채널 측정을 위해 사용되는 자원, 채널 측정을 위한 절차 중 적어도 하나에 관련될 수 있다. 여기서, 채널 측정과 관련된 정보는 빔들에 대한 측정 결과로부터 결정될 수 있다. 여기서, 빔 쌍들에 대한 측정 결과는 신호 세기, 채널 임펄스 응답, 입사각, 도달 시각, 다중 경로의 개수 또는 신호 측정과 관련된 다른 지표와 관련될 수 있다.
이후, 603 단계에서, 수신단은 해독 키에 대응하는 암호화 키를 이용하여 암호화된 데이터를 수신한다. 이에 따라, 도 6에 도시되지 아니하였으나, 수신단은 암호화된 데이터를 해독 키를 이용하여 해독할 수 있다. 이때, 수신단은 빔 쌍들에 대한 측정 결과에 기반하여 선택된 수신 빔, 또는 별도의 빔 측정을 통해 선택된 수신 빔을 이용하여 데이터를 수신할 수 있다.
도 5 및 도 6을 참고하여 설명한 바와 같이, 송신단 및 수신단은 채널 측정에 관련된 정보, 구체적으로, 빔 쌍들에 대한 측정 결과로부터 도출된 정보에 기초하여 암호화 키 및 해독 키를 생성한다. 이때, 암호화 키 및 해독 키는 서로 다른 장치에 의해 생성되지만, 서로 상응할 수 있다. 이는, 송신단에서 측정한 채널 값 및 수신단에서 측정한 채널 값이 동일하다는 채널 상호성(channel reciprocity)에 근거한다. 단, 채널 상호성이 보장되지 아니하더라도, 송신단 및 수신단 중 적어도 하나에서 채널 값의 보상을 통해 실질적 채널 상호성이 인정되면, 다양한 실시 예들이 동일하게 적용될 수 있다.
빔 쌍들에 대한 측정 결과는 채널에 의존한다. 따라서, 제3의 장치 및 송신단 간의 채널이 수신단 및 송신단 간의 채널과 다르다면, 송신단에서 송신되는 빔포밍된 기준 신호들을 제3의 장치가 수신하더라도, 제3의 장치가 동일한 측정 결과를 얻을 수 없다. 그러므로, 일반적인 환경에서, 제3의 장치가 동일한 측정 결과를 얻을 수 없을 것이다. 이는 빔 쌍들에 대한 측정 결과가 채널에 의존하기 때문에, 채널이 변화하면 측정 결과가 변화하기 때문이다.
또한, 빔 쌍들의 측정 결과는 빔 스위핑 시 사용하는 빔들의 순서에도 의존한다. 따라서, 제3의 장치가 수신단과 매우 근접하는 등의 이유로, 채널들이 유사하더라도, 측정하는 장치에서 사용하는 빔들의 순서를 알 수 없다면, 제3의 장치는 동일한 측정 결과를 얻을 수 없다. 이에 따라, 일 실시 예에서, 장치는 주기적으로 또는 이벤트 기반으로 빔들의 순서를 변경함으로써, 보안성을 더욱 강화할 수 있다. 이를 위한 장치의 동작은 다음과 같다.
도 7은 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 보안 키를 생성하기 위한 동작 방법을 도시한다. 도 7은 장치A 110 또는 장치B 120의 동작 방법으로서, 암호화 키 또는 해독 키를 생성하기 위한 동작 방법을 예시한다. 이하 설명에서, 도 7의 동작 주체는 '장치'로 지칭된다.
도 7을 참고하면, 701 단계에서, 장치는 빔 스위핑을 위한 빔들의 순서를 결정한다. 빔 쌍들에 대한 측정을 수행하기에 앞서, 장치는 운용 가능한 빔들을 어떠한 순서로 스위핑할지 결정할 수 있다. 빔들의 순서는 다수의 빔 측정 구간들 각각에서 변경되거나, 또는, 2 이상의 측정 구간들마다 변경될 수 있다. 또는, 빔들의 순서는 미리 정의된 조건이 만족되는 경우 변경될 수 있다.
이후, 703 단계에서, 장치는 수신 빔 스위핑을 수행한다. 다시 말해, 장치는 상대방 장치에서 송신된 빔포밍된 기준 신호들을 다수의 수신 빔들을 통해 수신한다. 이때, 장치는 701 단계에서 결정도니 순서로 수신 빔들을 변경한다. 예를 들어, 장치는 빔 방향을 순차적으로 변경하거나, 일정한 간격으로 변경하거나, 또는 랜덤하게 변경할 수 있다.
705 단계에서, 장치는 빔 측정 결과에 기초하여 보안 키를 생성한다. 여기서, 보안 키는 암호화 키 또는 해독 키 중 적어도 하나를 포함한다. 보안 키의 생성을 위해, 빔 측정 결과로부터 도출되는 적어도 하나의 값이 사용된다. 예를 들어, 적어도 하나의 값은, 보안 키 자체, 보안 키를 생성하기 위한 시드(seed) 값, 보안 키를 변형하기 위한 값 또는 이들의 일부로서 사용될 수 있다.
도 7을 참고하여 설명한 바와 같이, 장치는 빔 스위핑을 위한 빔들의 순서를 결정한다. 이에 따라, 장치는 이전 빔 측정 구간에서 사용된 순서와 다른 순서로 수신 빔들을 스위핑할 수 있다. 이에 따라, 보안성이 더욱 강화될 수 있다.
도 8은 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 암호화된 데이터 통신을 수행하기 위한 신호 교환을 도시한다. 도 8은 장치A 110 및 장치B 120 간 신호 교환으로서, 장치A 110가 장치B 120으로 데이터를 송신하는 상황을 예시한다.
도 8을 참고하면, 801 단계에서, 장치A 110은 장치B 120으로 다수의 기준 신호들을 송신한다. 기준 신호들은 장치A 110에 의해 송신 빔포밍된다. 즉, 장치A 110은 송신 빔 스위핑을 통해 기준 신호들을 송신한다. 이때, 장치B 120은 수신 빔 스위핑을 수행한다. 이에 따라, 장치B 120은 빔 쌍들에 대한 측정을 수행할 수 있다.
803 단계에서, 장치B 120은 빔 측정 결과에 기반하여 해독 키를 생성한다. 여기서, 빔 측정 결과는 신호 세기, 채널 임펄스 응답, 입사각, 도달 시각, 다중 경로의 개수 또는 신호 측정과 관련된 다른 지표를 포함할 수 있다.
이후, 805 단계에서, 장치B 120은 장치A 110으로 다수의 기준 신호들을 송신한다. 기준 신호들은 장치B 120에 의해 송신 빔포밍된다. 즉, 장치B 120은 송신 빔 스위핑을 통해 기준 신호들을 송신한다. 이때, 장치B 120은 801 단계에서 수신 빔 스위핑을 위해 사용한 순서와 대응하는 순서로 송신 빔들을 스위핑할 수 있다. 이는 801 단계 및 805 단계의 측정 결과들의 동일성을 유지하기 위함이다. 장치A 110은 수신 빔 스위핑을 수행하고, 빔 쌍들에 대한 측정을 수행할 수 있다. 마찬가지로, 장치A 110은 801 단계에서 송신 빔 스위핑을 위해 사용한 순서와 대응하는 순서로 수신 빔들을 스위핑할 수 있다.
807 단계에서, 장치A 110은 빔 측정 결과에 기반하여 암호화 키를 생성한다. 여기서, 빔 측정 결과는 신호 세기, 채널 임펄스 응답, 입사각, 도달 시각, 다중 경로의 개수 또는 신호 측정과 관련된 다른 지표를 포함할 수 있다. 이때, 장치A 110은 장치B 120가 803 단계에서 사용한 방식과 동일한 방식에 따라 암호화 키를 생성할 수 있다.
809 단계에서, 장치A 110은 암호화된 데이터를 송신한다. 이를 위해, 장치A 110은 암호화 키를 이용하여 데이터를 암호화하고, 무선 채널을 통해 송신한다. 장치B 120은 암호화된 데이터를 수신하고, 해독 키를 이용하여 암호화된 데이터를 해독한다. 이때, 장치A 110은 803 단계 또는 805 단계의 측정 결과에 기반하여 선택된 송신 빔을 사용할 수 있다. 또한, 장치B 120은 803 단계 또는 805 단계의 측정 결과에 기반하여 선택된 송신 빔을 사용할 수 있다. 이를 위해, 도 8에 도시되지 아니하였으나, 장치A 110에서 장치B 120로, 또는 장치B 120에서 장치A 110으로 최적의 빔을 지시하는 피드백 정보를 송신하는 동작이 더 수행될 수 있다.
상술한 바와 같이, 본 개시의 다양한 실시 예들에 따른 장치는 채널 측정에 관련된 정보에 기반하여 보안 키를 생성할 수 있다. 다시 말해, 장치는, 데이터를 다른 장치로부터 공개 키를 수신하지 아니하고, 채널에 관련된 정보에 기반하여 보안 키를 생성하기 때문에, 보안성이 보다 강화될 수 있다. 또한, 장치는 공개 키를 공유하기 위한 시그널링을 위해 전력을 소비하지 않기 때문에, 보안 키를 생성하기 위한 연산으로 인한 전력 소비가 감소될 수 있다.
또한, 도 8을 참고하여 설명한 바와 같이, 각 장치는 빔 측정 후 보안 키를 생성할 수 있다. 따라서, 매 빔 측정 마다 보안 키를 결정하는 경우, 빔 측정이 수행될 때마다, 보안 키가 갱신될 수 있다. 즉, 빔 측정의 주기와 보안 키의 갱신 주기가 일치할 수 있다.
도 9는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 암호화 키를 생성하는 장치의 동작 방법을 도시한다. 도 9는 장치A 110 또는 장치B 120의 동작 방법으로서, 데이터를 송신하는, 즉, 데이터에 대한 암호화를 수행하는 장치의 동작 방법을 예시한다. 이하 설명에서, 도 9의 동작 주체는 '송신단(transmitting node)'으로 지칭된다.
도 9를 참고하면, 901 단계에서, 송신단은 수신단에서 송신단으로의 채널을 나타내기 위한 다수의 값들에 기반하여 암호화 키를 생성한다. 일 실시 예에 따라, 채널을 나타내기 위한 다수의 값들은 다른 장치로부터 다른 장치의 다수의 송신 빔들 각각을 통해 송신되는 기준 신호에 기반하여 결정될 수 있다. 일 실시 예에 따라, 송신단은 다수의 수신 빔들을 통해 기준 신호들을 수신할 수 있다. 채널을 나타내기 위한 다수의 값들 각각은 송신단의 다수의 수신 빔들 각각과 수신단의 다수의 송신 빔들 각각의 조합에 의해 결정되는 다수의 빔 쌍들 각각 별로 정의될 수 있다. 예를 들면, 다수의 값들은 채널 임펄스 응답일 수 있고, 하기의 <수학식 1>과 같이 표현될 수 있다.
Figure PCTKR2018002076-appb-M000001
<수학식 1>에서, AB는 수신단(예: 장치A)에서 송신단(예: 장치B)로의 채널을 나타내고, ij(예: 11, ... , NM 등)는 수신단의 i번째 송신 빔과 송신단의 j번째 수신 빔의 조합으로 구성된 빔 쌍(pair)을 나타내며,
Figure PCTKR2018002076-appb-I000001
는 수신단에서 송신단으로의 채널에서 수신단의 i번째 송신 빔과 송신단의 j번째 수신 빔의 조합으로 구성된 빔 쌍에 대한 채널 임펄스 응답을 나타낸다.
송신단은 <수학식 1>과 같은 다수의 값들을 양자화(quantize)함으로써 생성되는 비트 시퀀스(bit sequence)들에 기반하여 암호화 키를 생성할 수 있다. 일 실시 예에 따라, 암호화 키는, 기준 신호의 수신 주기마다 갱신될 수 있다. 다른 일 실시 예에 따라, 암호화 키는, 송신단의 시드에 따라 미리 결정된 규칙에 따라 변경될 수 있다.
903 단계에서, 송신단은 생성된 암호화 키에 기반하여 송신될 데이터를 암호화함으로써 암호화된 데이터를 생성한다. 그리고, 905 단계에서, 장치는 암호화된 데이터를 수신단으로 송신한다. 이에 따라, 수신단은 암호화된 데이터를 수신할 수 있다.
도 10은 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 해독 키를 생성하는 장치의 동작 방법을 도시한다. 도 10은 장치A 110 또는 장치B 120의 동작 방법으로서, 데이터를 수신하는, 즉, 데이터에 대한 해독을 수행하는 장치의 동작 방법을 예시한다. 이하 설명에서, 도 6의 동작 주체는 '수신단(receiving node)'으로 지칭된다.
도 10을 참고하면, 1001 단계에서, 수신단은 송신단으로부터 암호화된 데이터를 수신한다. 암호화된 데이터는 도 10에 도시된 절차에 의해 생성된 데이터일 수 있다.
이후, 1003 단계에서, 수신단은 채널을 나타내기 위한 다수의 값들에 기반하여 생성되는 해독 키에 기반하여 암호화된 데이터를 해독한다. 일 실시 예에 따라, 다수의 값들은 송신단으로부터 다수의 송신 빔들 각각을 통해 송신되는 기준 신호들에 기반하여 결정될 수 있다. 일 실시 예에 따라, 수신단은 다수의 수신 빔들을 통해 기준 신호드을 수신할 수 있다. 채널을 나타내기 위한 다수의 값들은 수신단의 다수의 수신 빔들 각각과 송신단의 다수의 송신 빔들 각각의 조합에 의해 결정되는 다수의 빔 쌍들들에 대하여 정의될 수 있다. 예를 들면, 다수의 값들은 채널 임펄스 응답일 수 있고, 하기의 <수학식 2>와 같이 표현될 수 있다.
Figure PCTKR2018002076-appb-M000002
<수학식 2>에서, BA는 송신단(예: 장치B)에서 수신단(예: 장치A)로의 채널을 나타내고, ij(예: 11, ... , MN 등)은 수신단의 i번째 수신 빔과 송신단의 j번째 송신 빔의 조합으로 구성된 빔 쌍을 나타내며,
Figure PCTKR2018002076-appb-I000002
는 송신단에서 수신단으로의 채널에서 수신단의 i번째 수신 빔과 송신단의 j번째 송신 빔의 조합으로 구성된 빔 쌍에 대한 채널 임펄스 응답을 나타낸다.
수신단은 <수학식 2>와 같은 다수의 값들을 양자화함으로써 생성되는 비트 시퀀스들에 기반하여 해독 키를 생성할 수 있다. 일 실시 예에 따라, 해독 키는, 기준 신호의 수신 주기마다 갱신될 수 있다. 다른 일 실시 예에 따라, 해독 키는, 장치A의 시드에 따라 미리 결정된 규칙에 따라 변경될 수 있다.
도 9 및 도 10을 참고하여 설명한 바와 같이, 송신단은 암호화 키에 기반하여 데이터를 암호화하고, 수신단은 해독 키에 기반하여 암호화된 데이터를 해독할 수 있다. 여기서, <수학식 1>에 포함된
Figure PCTKR2018002076-appb-I000003
는 <수학식 2>에 포함된
Figure PCTKR2018002076-appb-I000004
와 대응할 수 있다. 왜냐하면, 장치A에서 장치B로의 채널 및 장치B에서 장치A로의 채널은 채널 상호성(channel reciprocity)를 가지기 때문이다. 예를 들면,
Figure PCTKR2018002076-appb-I000005
Figure PCTKR2018002076-appb-I000006
는 하기의 <수학식 3>과 같은 관계를 가질 수 있다.
Figure PCTKR2018002076-appb-M000003
<수학식 3>에서,
Figure PCTKR2018002076-appb-I000007
는 장치A에서 장치B으로의 채널에서 장치A의 i번째 송신 빔과 장치B의 j번째 수신 빔의 조합으로 구성된 빔 쌍에 대한 채널 임펄스 응답,
Figure PCTKR2018002076-appb-I000008
는 장치B에서 장치A으로의 채널에서 장치A의 i번째 수신 빔과 장치B의 j번째 송신 빔의 조합으로 구성된 빔 쌍에 대한 채널 임펄스 응답을 나타낸다.
<수학식 3>은, 장치A에서 장치B으로의 채널의 채널 임펄스 응답과 장치B에서 장치A로의 채널의 채널 임펄스 응답이 서로 대응 또는 동일한다는 것을 나타낸다. 이에 따라, 암호화된 데이터는 장치B에서 장치A으로의 채널 임펄스 응답(예:
Figure PCTKR2018002076-appb-I000009
)에 대응하는 장치A에서 장치B으로의 채널 임펄스 응답(예:
Figure PCTKR2018002076-appb-I000010
)에 기반하여 생성되는 암호화 키를 이용하여 암호화되었기 때문에, 장치A은 암호화된 데이터를 송신한 장치B으로부터 별도의 공개 키를 제공받지 않더라도, 암호화된 데이터를 성공적으로 해독할 수 있다.
상술한 바와 같이, 본 개시의 다양한 실시 예들에 따른 장치는 다른 장치에서 장치로의 채널을 나타내기 위한 다수의 값들에 기반하여 해독 키를 생성할 수 있다. 구체적으로, 장치는, 해독 키에 기반하여, 다른 장치에서 장치로의 채널 임펄스 응답과 채널 상호성 관계를 가지는 장치에서 다른 장치로의 채널 임펄스 응답에 기반하여 생성된 암호화 키에 기반하여 암호화된 데이터를 해독할 수 있다. 따라서, 다양한 실시 예에 따른 데이터 송수신 절차에서, 다른 장치로부터 별도의 보안 키를 획득하기 위한 동작이 제외될 수 있다. 보안 키를 교환하기 위한 동작을 수행하지 않기 때문에, 장치는 해킹 등의 위험에 대하여 보다 강건(robust)하게 동작할 수 있다. 또한, 장치는 보안 키를 획득하기 위한 별도의 시그널링을 위해 전력을 소비하지 않기 때문에, 시그널링으로 인하여 야기되는 전력 소비를 감소시킬 수 있다.
도 11a는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 채널 임펄스 응답에 기반한 보안 키를 이용하여 통신을 수행하기 위한 신호 교환을 도시한다. 도 11a는 장치A 110 및 장치B 120 간 신호 교환으로서, 장치B 120가 보안 키, 즉, 암호화 키 또는 해독 키를 생성하는 상황을 예시한다.
도 11a를 참고하면, 1101 단계에서, 장치A 110은 장치A 110의 다수의 송신 빔들의 빔 스위핑을 통해 기준 신호를 송신한다. 이에 따라, 장치B 120은 장치B 120의 다수의 수신 빔들의 빔 스위핑을 통해 기준 신호를 수신한다. 이때, 장치B 120은 장치A 110의 다수의 송신 빔들 각각과 장치B 120의 다수의 수신 빔들 각각의 조합으로 구성된 다수의 빔 쌍들에 대한 측정을 수행할 수 있다.
1103 단계에서, 장치B 120은 빔 쌍 별 채널 임펄스 응답을 결정한다. 하나의 빔 쌍을 통해 송신 및 수신되는 기준 신호는 다중 경로를 겪으며 다수의 성분들로 나뉘어 수신될 수 있다. 따라서, 각 빔 쌍에 대하여, 장치B 120은 기준 신호의 성분 별 TOA를 추정하고, 각 성분의 크기를 추정함으로써, 채널 임펄스 응답을 결정할 수 있다.
이에 따라, 빔 쌍 별 채널 임펄스 응답은 도 11b와 같이 결정될 수 있다. 도 11b를 참고하면, 채널 임펄스 응답들 1110-11 내지 1110-NM 각각에서, 가로축은 기준 시각과 기준 신호의 수신 시각 간의 차이를, 세로축은 측정 값의 크기(magnitude)를 나타낸다. 도 11b에 도시된 바와 같이, 다수의 빔 쌍들에 대한 채널 임펄스 응답들 1110-11 내지 1110-NM 각각은 서로 다른 크기 및 수신 시각을 가지는 측정 값들을 포함한다.
1105 단계에서, 장치B 120은 결정된 채널 임펄스 응답에 기반하여 보안 키를 생성한다. 장치B 120은 채널 임펄스 응답들 1110-11 내지 1110-NM을 나타내는 정보에 기반하여 적어도 하나의 시퀀스를 생성하고, 적어도 하나의 시퀀스에 기반하여 보안 키를 생성할 수 있다. 예를 들어, 장치B 120은 적어도 하나의 시퀀스를 이용하여 새로운 보안 키를 생성하거나, 다른 알고리즘에 의해 생성된 보안 키를 변형할 수 있다. 여기서, 채널 임펄스 응답들을 나타내는 정보는 채널 임펄스 응답을 나타내는 값의 적어도 일부, 채널 임펄스 응답에 대응하는 빔 쌍을 지시하는 값들 중 적어도 하나를 포함할 수 있다. 채널 임펄스 응답들을 나타내는 정보에서, 각 빔 쌍은 기준 신호를 전달한(carrying) 자원의 인덱스로 지시될 수 있다.
1107 단계에서, 장치B 120은 생성된 보안 키에 기반하여 데이터를 처리한다. 즉, 장치B 120은 송신 데이터를 보안 키를 이용하여 암호화하거나, 암호화된 수신 데이터를 보안 키를 이용하여 해독할 수 있다.
도 12a는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 입사각 패턴에 기반한 보안 키를 이용하여 통신을 수행하기 위한 신호 교환을 도시한다. 도 12a는 장치A 110 및 장치B 120 간 신호 교환으로서, 장치B 120가 보안 키, 즉, 암호화 키 또는 해독 키를 생성하는 상황을 예시한다.
도 12a를 참고하면, 1201 단계에서, 장치A 110은 장치A 110의 다수의 송신 빔들의 빔 스위핑을 통해 기준 신호를 송신한다. 이에 따라, 장치B 120은 장치B 120의 다수의 수신 빔들의 빔 스위핑을 통해 기준 신호를 수신한다. 이때, 장치B 120은 장치A 110의 다수의 송신 빔들 각각과 장치B 120의 다수의 수신 빔들 각각의 조합으로 구성된 다수의 빔 쌍들에 대한 측정을 수행할 수 있다.
1203 단계에서, 장치B 120은 빔들의 입사각 패턴을 결정한다. 여기서, 입사각 패턴은 장치A 110의 송신 빔 각각에 대한 입사각을 측정함으로써 결정될 수 있다. 즉, 장치B 120는 장치A 110에서 송신된 기준 신호들에 대한 AOA들을 추정한다. 입사각을 추정하기 위해, 장치B 120은 하나의 송신 빔에 대한 다수의 수신 빔들의 측정 값들을 이용할 수 있다. 일 실시 예에 따라, 장치B 120은 송신 빔에 대하여 가장 큰 신호 이득을 제공하는 수신 빔의 방향에 기반하여 그 송신 빔의 입사각을 추정할 수 있다. 예를 들어, 가장 큰 신호 이득을 제공하는 수신 빔의 방향이 입사각으로 추정될 수 있다. 다른 실시 예에 따라, 장치B 120은 송신 빔에 대한 다수의 수신 빔들의 측정된 신호 세기 값들의 패턴에 기반하여 그 송신 빔의 입사각을 추정할 수 있다. 예를 들어, 장치B 120은 미리 정의된 신호 세기 패턴 및 입사각 간 매핑 정보에서, ML(maximum likelihood) 방식에 따라 측정된 신호 세기 패턴과 가장 유사한 패턴에 대응하는 입사각을 확인함으로써, 입사각을 추정할 수 있다.
이에 따라, 일 예로서, 도 12b와 같은 입사각 패턴 120이 결정될 수 있다. 도 12b를 참고하면, 제1축은 고도각(elevation angle) 즉, 수평면과 빔이 이루는 각을, 제2축은 방위각(azimuth angle), 즉, 수직면과 빔이 이루는 각, 제3축은 해당 각도에서 입사된 신호의 측정 값의 크기를 나타낸다. 다른 실시 예에 따라, 입사각 패턴은 도 12b와 다른 형태로 결정될 수 있다. 예를 들어, 입사각 패턴은, 측정 값의 크기 없이, 기준 신호 별 각도 값들의 집합으로 정의될 수 있다.
1205 단계에서, 장치B 120은 결정된 입사각 패턴에 기반하여 보안 키를 생성한다. 장치B 120은 입사각 패턴을 나타내는 정보에 기반하여 적어도 하나의 시퀀스를 생성하고, 적어도 하나의 시퀀스에 기반하여 보안 키를 생성할 수 있다. 예를 들어, 장치B 120은 적어도 하나의 시퀀스를 이용하여 새로운 보안 키를 생성하거나, 다른 알고리즘에 의해 생성된 보안 키를 변형할 수 있다. 여기서, 입사각 패턴을 나타내는 정보는 입사각을 나타내는 값들, 입사각에 대응하는 빔을 지시하는 값들 중 적어도 하나를 포함할 수 있다. 입사각 패턴을 나타내는 정보에서, 각 빔은 기준 신호를 전달한(carrying) 자원의 인덱스로 지시될 수 있다. 1207 단계에서, 장치B 120은 생성된 보안 키에 기반하여 데이터를 처리한다. 즉, 장치B 120은 송신 데이터를 보안 키를 이용하여 암호화하거나, 암호화된 수신 데이터를 보안 키를 이용하여 해독할 수 있다.
도 13은 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 신호 세기 순서에 기반한 보안 키를 이용하여 통신을 수행하기 위한 신호 교환을 도시한다. 도 13은 장치A 110 및 장치B 120 간 신호 교환으로서, 장치B 120가 보안 키, 즉, 암호화 키 또는 해독 키를 생성하는 상황을 예시한다.
도 13를 참고하면, 1301 단계에서, 장치A 110은 장치A 110의 다수의 송신 빔들의 빔 스위핑을 통해 기준 신호를 송신한다. 이에 따라, 장치B 120은 장치B 120의 다수의 수신 빔들의 빔 스위핑을 통해 기준 신호를 수신한다. 이때, 장치B 120은 장치A 110의 다수의 송신 빔들 각각과 장치B 120의 다수의 수신 빔들 각각의 조합으로 구성된 다수의 빔 쌍들에 대한 측정을 수행할 수 있다.
1303 단계에서, 장치B 120은 빔 쌍들의 신호 세기 순서를 결정한다. 송신 빔들 및 수신 빔들의 조합은 다수의 빔 쌍들을 포함하며, 장치A 110 및 장치B 120의 상대적 위치 관계 및 채널 환경에 따라 각 빔 쌍에 의해 제공되는 빔포밍 이득은 서로 다를 수 있다. 따라서, 기준 신호를 송신 및 수신하기 위해 사용된 빔 쌍에 따라, 기준 신호에 대하여 측정된 신호 세기는 달라질 수 있다.
1305 단계에서, 장치B 120은 결정된 신호 세기 순서에 기반하여 보안 키를 생성한다. 장치B 120는 신호 세기 순서를 나타내는 정보로부터 적어도 하나의 시퀀스를 생성하고, 적어도 하나의 시퀀스에 기반하여 보안 키를 생성할 수 있다. 예를 들어, 장치B 120은 적어도 하나의 시퀀스를 이용하여 새로운 보안 키를 생성하거나, 다른 알고리즘에 의해 생성된 보안 키를 변형할 수 있다. 여기서, 신호 세기 순서를 나타내는 정보는 빔 쌍을 지시하는 값들, 신호 세기를 지시하는 값들 중 적어도 하나를 포함할 수 있다. 신호 세기 순서를 나타내는 정보에서, 각 빔 쌍은 기준 신호를 전달한(carrying) 자원의 인덱스로 지시될 수 있다.
1307 단계에서, 장치B 120은 생성된 보안 키에 기반하여 데이터를 처리한다. 즉, 장치B 120은 송신 데이터를 보안 키를 이용하여 암호화하거나, 암호화된 수신 데이터를 보안 키를 이용하여 해독할 수 있다.
도 11a 내지 도 13을 참고하여, 채널에 관련된 정보를 이용한 보안 키 생성의 구체적인 실시 예들이 설명되었다. 하지만, 다양한 실시 예들에 따라, 상술한 실시 예들 외 다른 형태의 정보가 보안 키를 생성하기 위해 이용될 수 있다. 나아가, 상술한 실시 예들에서 제시된 둘 이상의 정보가 함께 보안 키를 생성하기 위해 사용될 수 있다.
일 실시 예에 따라, 보안 키는 특정 조건을 만족하는 적어도 하나의 빔 쌍에 관한 정보에 기초하여 결정될 수 있다. 일 예로, 최대 수신 세기를 제공하는 빔 쌍을 지시하는 정보, n번째 수신 세기를 제공하는 빔 쌍을 지시하는 정보, 또는 임계치 이상의 수신 세기를 제공하는 빔 쌍들을 지시하는 정보가 보안 키를 생성하기 위해 사용될 수 있다.
다른 실시 예에 따라, 보안 키는 특정 조건을 만족하는 빔 쌍들에 대한 수신 순서의 차이에 기초하여 결정될 수 있다. 일 예로, 임계치 이상의 수신 세기를 제공하는 빔 쌍들의 수신 순서의 차이(예: n번째 자원에서 사용된 빔 쌍 및 m번째 자원에서 사용된 빔 쌍이 임계치 이상의 수신 세기를 제공하는 경우, m-n)가 보안 키를 생성하기 위해 사용될 수 있다.
본 개시의 청구항 또는 명세서에 기재된 실시 예들에 따른 방법들은 하드웨어, 소프트웨어, 또는 하드웨어와 소프트웨어의 조합의 형태로 구현될(implemented) 수 있다.
소프트웨어로 구현하는 경우, 하나 이상의 프로그램(소프트웨어 모듈)을 저장하는 컴퓨터 판독 가능 저장 매체가 제공될 수 있다. 컴퓨터 판독 가능 저장 매체에 저장되는 하나 이상의 프로그램은, 장치(device) 내의 하나 이상의 프로세서에 의해 실행 가능하도록 구성된다(configured for execution). 하나 이상의 프로그램은, 장치로 하여금 본 개시의 청구항 또는 명세서에 기재된 실시 예들에 따른 방법들을 실행하게 하는 명령어(instructions)를 포함한다.
이러한 프로그램(소프트웨어 모듈, 소프트웨어)은 랜덤 액세스 메모리 (random access memory), 플래시(flash) 메모리를 포함하는 불휘발성(non-volatile) 메모리, 롬(ROM: Read Only Memory), 전기적 삭제가능 프로그램가능 롬(EEPROM: Electrically Erasable Programmable Read Only Memory), 자기 디스크 저장 장치(magnetic disc storage device), 컴팩트 디스크 롬(CD-ROM: Compact Disc-ROM), 디지털 다목적 디스크(DVDs: Digital Versatile Discs) 또는 다른 형태의 광학 저장 장치, 마그네틱 카세트(magnetic cassette)에 저장될 수 있다. 또는, 이들의 일부 또는 전부의 조합으로 구성된 메모리에 저장될 수 있다. 또한, 각각의 구성 메모리는 다수 개 포함될 수도 있다.
또한, 프로그램은 인터넷(Internet), 인트라넷(Intranet), LAN(Local Area Network), WLAN(Wide LAN), 또는 SAN(Storage Area Network)과 같은 통신 네트워크, 또는 이들의 조합으로 구성된 통신 네트워크를 통하여 접근(access)할 수 있는 부착 가능한(attachable) 저장 장치(storage device)에 저장될 수 있다. 이러한 저장 장치는 외부 포트를 통하여 본 개시의 실시 예를 수행하는 장치에 접속한다. 또한, 통신 네트워크상의 별도의 저장장치가 본 개시의 실시 예를 수행하는 장치에 접속할 수도 있다.
상술한 본 개시의 구체적인 실시 예들에서, 개시에 포함되는 구성 요소는 제시된 구체적인 실시 예에 따라 단수 또는 복수로 표현되었다. 그러나, 단수 또는 다수의 표현은 설명의 편의를 위해 제시한 상황에 적합하게 선택된 것으로서, 본 개시가 단수 또는 다수의 구성 요소에 제한되는 것은 아니며, 복수로 표현된 구성 요소라 하더라도 단수로 구성되거나, 단수로 표현된 구성 요소라 하더라도 복수로 구성될 수 있다.
한편 본 개시의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 개시의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 개시의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며 후술하는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.

Claims (15)

  1. 무선 통신 시스템에서 송신단의 동작 방법에 있어서,
    채널 측정과 관련된 정보를 이용하여 암호화 키를 생성하는 과정과,
    상기 암호화 키를 이용하여 암호화된 데이터를 수신단으로 송신하는 과정을 포함하는 방법.
  2. 청구항 1에 있어서,
    상기 수신단에서 다수의 송신 빔들을 통해 송신된 기준 신호들을 다수의 수신 빔들을 통해 수신하는 과정과,
    상기 기준 신호들에 대한 측정 결과를 이용하여 상기 채널 측정과 관련된 정보를 생성하는 과정을 더 포함하는 방법.
  3. 청구항 2에 있어서,
    상기 기준 신호들을 다수의 수신 빔들을 통해 수신하는 과정은,
    이전 빔 측정 구간에서 사용된 순서와 다른 순서로 수신 빔들을 스위핑하는 과정을 포함하는 방법.
  4. 무선 통신 시스템에서 수신단의 동작 방법에 있어서,
    채널 측정과 관련된 정보를 이용하여 해독 키를 생성하는 과정과,
    상기 해독 키에 대응하는 암호화 키를 이용하여 암호화된 데이터를 송신단으로부터 수신하는 과정을 포함하는 방법.
  5. 청구항 4에 있어서,
    상기 송신단에서 다수의 송신 빔들을 통해 송신된 기준 신호들을 다수의 수신 빔들을 통해 수신하는 과정과,
    상기 기준 신호들에 대한 측정 결과를 이용하여 상기 채널 측정과 관련된 정보를 생성하는 과정을 더 포함하는 방법.
  6. 청구항 5에 있어서,
    상기 기준 신호들을 다수의 수신 빔들을 통해 수신하는 과정은,
    이전 빔 측정 구간에서 사용된 순서와 다른 순서로 수신 빔들을 스위핑하는 과정을 포함하는 방법.
  7. 무선 통신 시스템에서 송신단 장치에 있어서,
    채널 측정과 관련된 정보를 이용하여 암호화 키를 생성하는 제어부와,
    상기 암호화 키를 이용하여 암호화된 데이터를 수신단으로 송신하는 통신부를 포함하는 장치.
  8. 청구항 7에 있어서,
    상기 제어부는, 상기 수신단에서 다수의 송신 빔들을 통해 송신된 기준 신호들을 다수의 수신 빔들을 통해 수신하고, 상기 기준 신호들에 대한 측정 결과를 이용하여 상기 채널 측정과 관련된 정보를 생성하도록 제어하는장치.
  9. 청구항 8에 있어서,
    상기 통신부는, 상기 기준 신호들을 다수의 수신 빔들을 통해 수신하는 동안, 이전 빔 측정 구간에서 사용된 순서와 다른 순서로 수신 빔들을 스위핑하는 장치.
  10. 무선 통신 시스템에서 수신단 장치에 있어서,
    채널 측정과 관련된 정보를 이용하여 해독 키를 생성하는 제어부와,
    상기 해독 키에 대응하는 암호화 키를 이용하여 암호화된 데이터를 송신단으로부터 수신하는 통신부를 포함하는 장치.
  11. 청구항 10에 있어서,
    상기 제어부는, 상기 송신단에서 다수의 송신 빔들을 통해 송신된 기준 신호들을 다수의 수신 빔들을 통해 수신하고, 상기 기준 신호들에 대한 측정 결과를 이용하여 상기 채널 측정과 관련된 정보를 생성하도록 제어하는 장치.
  12. 청구항 11에 있어서,
    상기 통신부는, 상기 기준 신호들을 다수의 수신 빔들을 통해 수신하는 동안, 이전 빔 측정 구간에서 사용된 순서와 다른 순서로 수신 빔들을 스위핑하는 장치.
  13. 청구항 1, 청구항 4, 청구항 7 또는 청구항 10에 있어서,
    상기 채널 측정에 관련된 정보는, 상기 채널 측정의 결과, 상기 채널 측정을 위해 사용되는 자원, 상기 채널 측정을 위한 절차 중 적어도 하나에 기초하여 결정되는 방법 또는 장치.
  14. 청구항 1, 청구항 4, 청구항 7 또는 청구항 10에 있어서,
    상기 채널 측정에 관련된 정보는, 신호 세기, 채널 임펄스 응답(channel impulse response, CIR), 입사각(angle of arrival, AOA), 도달 시각(time of arrival, TOA), 다중 경로(multi-path)의 개수 중 적어도 하나를 포함하는 방법 또는 장치.
  15. 청구항 1, 청구항 4, 청구항 7 또는 청구항 10에 있어서,
    상기 암호화 키는, 빔 측정의 주기에 따라 갱신되는 방법 또는 장치.
PCT/KR2018/002076 2017-02-24 2018-02-20 무선 통신 시스템에서 보안 키를 생성하기 위한 장치 및 방법 WO2018155884A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/488,154 US11646882B2 (en) 2017-02-24 2018-02-20 Apparatus and method for generating security key in wireless communication system
EP18756614.6A EP3576339B1 (en) 2017-02-24 2018-02-20 Apparatus and method for generating security key in wireless communication system
CN201880013569.8A CN110337796B (zh) 2017-02-24 2018-02-20 用于在无线通信系统中生成安全密钥的装置和方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0024669 2017-02-24
KR1020170024669A KR20180097903A (ko) 2017-02-24 2017-02-24 무선 통신 시스템에서 보안 키를 생성하기 위한 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2018155884A1 true WO2018155884A1 (ko) 2018-08-30

Family

ID=63252715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002076 WO2018155884A1 (ko) 2017-02-24 2018-02-20 무선 통신 시스템에서 보안 키를 생성하기 위한 장치 및 방법

Country Status (5)

Country Link
US (1) US11646882B2 (ko)
EP (1) EP3576339B1 (ko)
KR (1) KR20180097903A (ko)
CN (1) CN110337796B (ko)
WO (1) WO2018155884A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021061352A1 (en) * 2019-09-24 2021-04-01 Qualcomm Incorporated Massive mimo physical layer based cryptography
CN114514726A (zh) * 2019-10-04 2022-05-17 诺基亚技术有限公司 无线网络中的安全密钥生成

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190112932A (ko) * 2018-03-27 2019-10-08 한국전자통신연구원 비밀 데이터를 송, 수신하는 방법 및 송신기
US11395136B2 (en) * 2019-09-25 2022-07-19 Qualcomm Incorporated Impairment based physical layer fingerprint
WO2021066707A1 (en) * 2019-10-04 2021-04-08 Telefonaktiebolaget Lm Ericsson (Publ) Frequency domain scheduling with time domain beamforming
CN111786789B (zh) * 2020-08-11 2023-07-14 南方电网科学研究院有限责任公司 一种基于随机波束和边缘计算的物理层密钥分发方法
CN112533200B (zh) * 2020-11-23 2021-10-08 广州技象科技有限公司 基于系统变更的数据跳传链路管理方法及装置
US11503464B2 (en) * 2020-12-17 2022-11-15 Qualcomm Incorporated Spatial physical layer security in wireless communication systems
US11917401B2 (en) * 2021-09-16 2024-02-27 Qualcomm Incorporated Directional secure communications
US20230422027A1 (en) * 2022-06-27 2023-12-28 Qualcomm Incorporated Techniques for path information-based physical layer security

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110076992A (ko) * 2005-01-27 2011-07-06 인터디지탈 테크날러지 코포레이션 다른 것에 공유되지 않는 결합 랜덤성을 이용하여 암호화 키를 유도하는 방법 및 시스템
KR101269026B1 (ko) * 2011-12-21 2013-05-29 한국전자통신연구원 무선 채널의 상태를 이용하여 그룹키를 생성하는 장치 및 그 방법
KR101269502B1 (ko) * 2011-12-14 2013-05-30 한국전자통신연구원 무선 통신 네트워크에서 무선 채널 변화를 이용한 비밀키 생성을 위한 장치 및 방법
KR101446629B1 (ko) * 2013-07-17 2014-10-06 한국전자통신연구원 무선 통신 시스템에서 보안 데이터 전송 장치 및 방법
US20160134352A1 (en) * 2014-11-06 2016-05-12 Futurewei Technologies, Inc. System and Method for Beam-Formed Channel State Reference Signals

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2387996B (en) * 2002-04-23 2006-01-11 Lucent Technologies Inc Wireless communication network with automatic threshold adjustment
US8929550B2 (en) * 2013-02-01 2015-01-06 Department 13, LLC LPI/LPD communication systems
JP4379031B2 (ja) * 2003-07-17 2009-12-09 日本ビクター株式会社 情報伝送方式及びそれに用いる情報送信装置及び情報受信装置
GB0405573D0 (en) * 2004-03-11 2004-04-21 Univ Heriot Watt Secure data communication system
US8280046B2 (en) * 2005-09-12 2012-10-02 Interdigital Technology Corporation Method and system for deriving an encryption key using joint randomness not shared by others
US20070036353A1 (en) * 2005-05-31 2007-02-15 Interdigital Technology Corporation Authentication and encryption methods using shared secret randomness in a joint channel
US7688976B2 (en) * 2005-07-14 2010-03-30 Tara Chand Singhal Random wave envelope derived random numbers and their use in generating transient keys in communication security application part I
KR100978876B1 (ko) * 2005-12-20 2010-08-31 인터디지탈 테크날러지 코포레이션 결합 랜덤성으로부터 비밀키를 발생하는 방법 및 시스템
KR101123993B1 (ko) * 2006-04-18 2012-04-16 인터디지탈 테크날러지 코포레이션 무선 통신 보호 방법 및 시스템
KR100765892B1 (ko) * 2006-08-30 2007-10-10 주식회사 팬택 이동통신 시스템의 셀간 간섭을 제어하는 방법
TW200824395A (en) * 2006-10-11 2008-06-01 Interdigital Tech Corp Increasing a secret bit generation rate in wireless communication
EP1918913A1 (en) * 2006-10-31 2008-05-07 Thomson Holding Germany GmbH & Co. OHG Method for producing a security mark on an optical data carrier
TW200826554A (en) * 2006-12-15 2008-06-16 Inst Information Industry Measuring system and method of heterogeneous network mobile communication apparatus and recording medium thereof
CN101933285B (zh) * 2007-11-06 2013-01-02 交互数字专利控股公司 用于实现物理层密钥生成的方法和装置
US8515061B2 (en) * 2008-09-11 2013-08-20 The University Of Utah Research Foundation Method and system for high rate uncorrelated shared secret bit extraction from wireless link characteristics
WO2010030927A2 (en) * 2008-09-11 2010-03-18 University Of Utah Research Foundation Method and system for secret key exchange using wireless link characteristics and random device movement
GB0917060D0 (en) * 2009-09-29 2009-11-11 Qinetiq Ltd Methods and apparatus for use in quantum key distribution
US9465582B1 (en) * 2010-11-18 2016-10-11 The Boeing Company Significant random number generator
EP2555466B1 (en) * 2011-08-05 2014-07-02 SELEX ES S.p.A. System for distributing cryptographic keys
US8750896B2 (en) * 2011-10-13 2014-06-10 At&T Mobility Ii Llc Femtocell measurements for macro beam steering
US9997830B2 (en) * 2012-05-13 2018-06-12 Amir Keyvan Khandani Antenna system and method for full duplex wireless transmission with channel phase-based encryption
WO2013191636A1 (en) * 2012-06-19 2013-12-27 Telefonaktiebolaget L M Ericsson (Publ) Method and controlling node for controlling measurements by a user equipment
EP2683191B1 (en) * 2012-07-02 2016-12-28 Alcatel Lucent Inter-cell interference coordination for co-channel heterogeneous networks
KR101988506B1 (ko) * 2012-12-14 2019-09-30 삼성전자 주식회사 무선 이동통신 시스템에서 디스커버리 신호를 송/수신하는 방법 및 장치
US9818315B2 (en) * 2013-06-04 2017-11-14 At&T Intellectual Property I, L.P. Secure multi-party device pairing using sensor data
WO2014199474A1 (ja) * 2013-06-12 2014-12-18 株式会社日立製作所 高セキュリティ通信システム、並びにそれに用いる送信機及び受信機
KR102008458B1 (ko) 2013-08-30 2019-08-07 삼성전자주식회사 무선 통신시스템의 무선 기기 탐색 장치 및 방법
US9998187B2 (en) * 2014-10-13 2018-06-12 Nxgen Partners Ip, Llc System and method for combining MIMO and mode-division multiplexing
DE102014221893A1 (de) * 2014-10-28 2016-04-28 Robert Bosch Gmbh Verfahren und Vorrichtung zum Erzeugen eines geheimen Schlüssels
US9825360B2 (en) * 2015-01-19 2017-11-21 Raytheon Company Side lobe modulation system and related techniques
US10038517B2 (en) * 2015-05-11 2018-07-31 Electronics And Telecommunications Research Institute Method and apparatus for generating secret key in wireless communication network
FR3046315B1 (fr) * 2015-12-29 2018-04-27 Thales Procede d'extraction univalente et univoque de cles a partir du canal de propagation
US10129022B1 (en) * 2016-02-22 2018-11-13 The Regents Of The University Of California Secret key for wireless communication in cyber-physical automotive systems
CN106102052A (zh) 2016-03-01 2016-11-09 南京邮电大学 一种联合信道幅度和相位的二维无线物理层密钥生成方法
US10404457B2 (en) * 2016-05-20 2019-09-03 Qatar University Method for generating a secret key for encrypted wireless communications
KR102083713B1 (ko) * 2016-06-24 2020-03-02 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서의 ue 빔 포밍 및 빔 스위핑을 위한 방법 및 장치
US10469260B2 (en) * 2016-07-08 2019-11-05 Microsoft Technology Licensing, Llc Multiple cryptographic key generation for two-way communication
DE102016220734A1 (de) * 2016-10-21 2018-04-26 Robert Bosch Gmbh Verfahren und Vorrichtung zum Erzeugen eines kryptographischen Schlüssels

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110076992A (ko) * 2005-01-27 2011-07-06 인터디지탈 테크날러지 코포레이션 다른 것에 공유되지 않는 결합 랜덤성을 이용하여 암호화 키를 유도하는 방법 및 시스템
KR101269502B1 (ko) * 2011-12-14 2013-05-30 한국전자통신연구원 무선 통신 네트워크에서 무선 채널 변화를 이용한 비밀키 생성을 위한 장치 및 방법
KR101269026B1 (ko) * 2011-12-21 2013-05-29 한국전자통신연구원 무선 채널의 상태를 이용하여 그룹키를 생성하는 장치 및 그 방법
KR101446629B1 (ko) * 2013-07-17 2014-10-06 한국전자통신연구원 무선 통신 시스템에서 보안 데이터 전송 장치 및 방법
US20160134352A1 (en) * 2014-11-06 2016-05-12 Futurewei Technologies, Inc. System and Method for Beam-Formed Channel State Reference Signals

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021061352A1 (en) * 2019-09-24 2021-04-01 Qualcomm Incorporated Massive mimo physical layer based cryptography
US11528600B2 (en) 2019-09-24 2022-12-13 Qualcomm Incorporated Massive MIMO physical layer based cryptography
CN114514726A (zh) * 2019-10-04 2022-05-17 诺基亚技术有限公司 无线网络中的安全密钥生成

Also Published As

Publication number Publication date
EP3576339A4 (en) 2020-01-15
CN110337796B (zh) 2023-03-31
US11646882B2 (en) 2023-05-09
CN110337796A (zh) 2019-10-15
US20200044840A1 (en) 2020-02-06
EP3576339B1 (en) 2024-07-03
EP3576339A1 (en) 2019-12-04
KR20180097903A (ko) 2018-09-03

Similar Documents

Publication Publication Date Title
WO2018155884A1 (ko) 무선 통신 시스템에서 보안 키를 생성하기 위한 장치 및 방법
Melki et al. A survey on OFDM physical layer security
WO2018155977A1 (ko) 무선 통신 시스템에서 기준 신호를 전송하기 위한 장치 및 방법
WO2021091172A1 (en) Method and apparatus for fast beam management
WO2018038476A1 (ko) 무선 통신 시스템에서 전송 기법에 관련한 제어 정보의 시그널링 장치 및 방법
WO2018230994A1 (ko) 무선 통신 시스템에서 하향링크 제어 채널을 송신하기 위한 장치 및 방법
WO2017039400A1 (ko) 기준 신호 관련 정보 전송 방법 및 장치
US20080090572A1 (en) Increasing a secret bit generation rate in wireless communication
Li et al. Sum secret key rate maximization for TDD multi-user massive MIMO wireless networks
TW201108763A (en) Method and apparatus of deriving security key(s)
WO2015023233A1 (en) Precoding-codebook-based secure uplink in lte
US20190098497A1 (en) Establishing Secured Communication Over a Wireless Channel
WO2021162491A1 (en) Method and apparatus for interference measurement
WO2017211217A1 (zh) 用于多天线通信装置的电子设备和方法
BR112020003293A2 (pt) dispositivo eletrônico, método de comunicação, e, mídia legível por computador
WO2020117014A1 (en) Method and apparatus for controlling transmission power in wireless communication system
WO2016195328A1 (ko) 무선 통신 시스템에서의 필터 뱅크 다중 반송파 심벌들을 검출하는 장치 및 방법
WO2018174652A1 (en) Apparatus and method for non-coherent joint detection in wireless communication systems
WO2018070853A1 (ko) 무선 셀룰러 통신 시스템에서 네트워크 지원 간섭 제거 및 억제를 위한 방법 및 장치
WO2014003397A1 (en) Method of transmitting secret information at transmitting end and method of receiving secret information at receiving end, based on mimo multiplexing using antennas
EP3629515B1 (en) Secure communication in a wireless network
WO2018097416A1 (ko) 무선 통신 시스템에서 빔 불일치를 탐지하기 위한 장치 및 방법
WO2019035680A1 (ko) 무선 통신 시스템에서 비-승인 통신을 위한 장치 및 방법
WO2020167081A1 (ko) 밀리미터파 무선 통신 시스템에서 기준 신호 송수신 방법 및 장치
US11757855B2 (en) Method and apparatus for communications using secret key in communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18756614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018756614

Country of ref document: EP

Effective date: 20190828