WO2014199474A1 - 高セキュリティ通信システム、並びにそれに用いる送信機及び受信機 - Google Patents
高セキュリティ通信システム、並びにそれに用いる送信機及び受信機 Download PDFInfo
- Publication number
- WO2014199474A1 WO2014199474A1 PCT/JP2013/066268 JP2013066268W WO2014199474A1 WO 2014199474 A1 WO2014199474 A1 WO 2014199474A1 JP 2013066268 W JP2013066268 W JP 2013066268W WO 2014199474 A1 WO2014199474 A1 WO 2014199474A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- random number
- receiver
- number sequence
- transmitter
- common key
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/06—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
- H04L9/065—Encryption by serially and continuously modifying data stream elements, e.g. stream cipher systems, RC4, SEAL or A5/3
- H04L9/0656—Pseudorandom key sequence combined element-for-element with data sequence, e.g. one-time-pad [OTP] or Vernam's cipher
- H04L9/0662—Pseudorandom key sequence combined element-for-element with data sequence, e.g. one-time-pad [OTP] or Vernam's cipher with particular pseudorandom sequence generator
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/06—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04K—SECRET COMMUNICATION; JAMMING OF COMMUNICATION
- H04K1/00—Secret communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04K—SECRET COMMUNICATION; JAMMING OF COMMUNICATION
- H04K1/00—Secret communication
- H04K1/02—Secret communication by adding a second signal to make the desired signal unintelligible
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0816—Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
- H04L9/0819—Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
- H04L9/0822—Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s) using key encryption key
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L2209/00—Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
- H04L2209/34—Encoding or coding, e.g. Huffman coding or error correction
Definitions
- the present invention relates to a high security communication system, and a transmitter and a receiver used therefor, and more particularly, to a communication system improved in safety in optical communication, and a transmitter and a receiver used therefor.
- information is increasing in volume and networking, and information is being concentrated in specific locations as represented by data centers. If the information is concentrated, a security hole in one place will lead to fatal information leakage. In that sense, the confidentiality of information on the communication path is an important issue.
- Non-Patent Document 1 Although quantum cryptography is well known as a method for improving the confidentiality of a communication channel (see, for example, Non-Patent Document 1), it is based on quantum mechanics that governs the microscopic world. However, there are restrictions such as a maximum transmission distance of about 100 km and a high transmission rate, and there are many problems to incorporate in a network. A method called ⁇ - ⁇ protocol has been proposed with the aim of overcoming these restrictions, but since the quantum mechanical properties are the basis of safety, only a few photons per signal are used. The problem has not been solved yet (see, for example, Non-Patent Document 2).
- the method devised there is a safe optical communication method using fluctuation (phase fluctuation, amplitude fluctuation, anti-squeezing fluctuation, etc.) (see, for example, Patent Documents 1-4).
- This method improves confidentiality by utilizing the fact that fluctuations are unpredictable, and does not use quantum mechanical properties and can be operated with the light quantity in normal optical communication. In principle, there are no restrictions, and it is compatible with existing optical communication systems. However, how to use the unpredictability of fluctuation is a problem.
- the unpredictability of fluctuation is obtained by using a seed key, a parity check symbol (error correction code), and a plurality of bases. Made available.
- a sender and a regular receiver share a seed key, and a shared basis is determined based on the seed key.
- the sender transmits a random number according to a randomly selected basis (random number basis).
- the random number of the slot in which the shared basis and the random number basis match is referred to as a random number sequence 1
- the random number of the slot that does not match is referred to as a random number sequence 2.
- parity check symbols for one or both of the random number bases 1 and 2 are transmitted.
- the regular receiver determines the random number base, and separates the random numbers transmitted by collation with the shared base into the random number sequences 1 and 2. At this time, there is a basis determination error due to fluctuation.
- Whether or not there is a determination error is determined by checking the parity of the random number sequence 1 or the random number sequence 2 and observing the state of coincidence with the check symbol. If there is a base determination error, the random number in that slot is treated as belonging to a sequence different from the original sequence, so the number of random number sequences 1 and 2 changes, and the correspondence with the parity check symbols is disturbed. As a result, a large number of parity errors occur, and it can be roughly estimated where the basis determination error occurred.
- the parity check is repeated by changing the basis determination of the slot estimated to be a determination error. This iterative process is performed for all judgment errors to correct the bases of all slots. Bit errors are also corrected through this process.
- the shared basis is unknown. Since the random numbers cannot be separated into the random number sequences 1 and 2, the parity check symbol cannot be used, the base determination error cannot be corrected, and the bit error cannot be corrected. In this way, a difference is set between the authorized recipient and the unauthorized recipient. (5) The transmitted / received random number is reduced to an information amount corresponding to the difference between the information amount obtained by the authorized recipient and the information amount obtained by the unauthorized recipient (safe information amount), and used as a secret key. The actual data is encrypted and communicated using the secret key.
- This method is superior in that it uses fluctuations (bit errors) skillfully to improve safety, but it requires an exhaustive process for correcting the bases. Again, the base decision is changed and the parity check is performed.
- this exhaustive processing is extremely heavy, and becomes a major obstacle to the introduction into an actual system.
- As a method for reducing the exhaustive processing it is conceivable to increase the redundancy at the time of encoding. However, in this case, the coding rate is lowered and the amount of safe information is also reduced. Further, even if the redundancy is increased in this way, the point that comprehensive processing is required on the receiving side does not change and it does not become a radical solution.
- an object of the present invention is to provide a communication system using an encoding method that is easy for a legitimate receiver to easily correct a bit error and difficult for an illegal receiver to correct the bit error, and a transmitter and a receiver used therefor. Is to provide.
- a transmitter that transmits a random number sequence includes an encoder that encodes the random number sequence, and the encoder previously uses a common key between the transmitter and a receiver that receives a signal transmitted from the transmitter. And each bit value constituting the common key is made to correspond to each slot of the random number sequence based on a predetermined correspondence, and the random number sequence is divided into two, or two or more random number sequences.
- the random number sequence is independently encoded.
- the main features of the receiver according to the present invention are as follows.
- the receiver In the receiver that receives the random number sequence, the receiver has a detector that detects the random number sequence and a decoder that decodes the detected random number sequence, and the detector receives the encoded random number sequence.
- the decoder shares a common key in advance between the receiver and the transmitter that transmits the signal received by the receiver, and each bit value constituting the common key is assigned to each slot of the random number sequence in a predetermined number.
- the random number sequence is divided into two or two or more random number sequences, and the random number sequences are independently decoded.
- a communication system comprising a transmitter for transmitting a random number sequence, a receiver for receiving the random number sequence, and a transmission path for transmitting the random number sequence between the transmitter and the receiver.
- a transmitter for transmitting a random number sequence
- a receiver for receiving the random number sequence
- a transmission path for transmitting the random number sequence between the transmitter and the receiver.
- Each bit value is made to correspond to each slot of the random number sequence based on a predetermined correspondence, the random number sequence is divided into two or more random number sequences, and the divided random number sequences are encoded independently,
- the receiver has a detector that detects a random number sequence and a decoder that decodes the detected random number sequence, the detector receives the encoded random number sequence, and the decoder receives the Between the transmitter and the transmitter that transmits the signal received by the receiver.
- the transmission path is characterized by having a first transmission path for transmitting a random number sequence from the transmitter to the receiver and a second transmission path for transmitting actual data to the receiver. That is, the above configuration has the following characteristics.
- a random number sequence is transmitted and received using a transmission path in which bit errors are appropriately controlled, and a common key is shared in advance between the transmitter and the receiver.
- the common key and the random number sequence are fixedly associated with each bit position, the random number sequence is divided into two or more random number sequences according to the correspondence relationship, and a parity check symbol is generated by encoding each random number sequence. .
- the unit of encoding is not less than the length of the common key so that partial analysis by an unauthorized receiver is impossible.
- the key distribution is performed prior to the transmission of the actual data because it is necessary to reduce the total number of data for enhancing the secrecy, and the reduction process cannot be performed if the actual data is used. It was found that secure communication is possible if p B ⁇ p E with the above configuration. Therefore, how to achieve p B ⁇ p E is a problem.
- An error correction code is a code in which information to be transmitted is made redundant. When there is a bit error, the position is detected and corrected.
- a conceptual diagram of the error correction code is shown in FIG. It consists of an information symbol and a parity check symbol corresponding to redundant data, which operate together.
- the important point in the present invention is that the information symbol and the parity check symbol operate together. Even if a fraudulent receiver obtains a parity check symbol that does not correspond to an information symbol, it cannot be used as meaningful information. Therefore, the correspondence between information symbols and parity check symbols is determined by a common key. In this way, an authorized receiver holding a common key can associate an information symbol with a parity check symbol, so error correction is possible, but an unauthorized receiver who does not hold a common key can associate an information symbol with a parity check symbol. It cannot be attached and cannot be corrected. As a result, the bit error rate after error correction becomes p B ⁇ p E, and safe communication can be realized.
- Patent Document 2-4 There is a method disclosed in Patent Document 2-4 for associating an information symbol with a parity check symbol.
- this method is extremely heavy in processing at the receiver and causes a practical problem. Therefore, in the present invention, the method illustrated in FIG. 3 is used.
- This correspondence is determined for each bit slot and is fixed no matter what the random number sequence is, and the authorized receiver holding the common key can reliably separate the received random number sequence into the random number sequences 1 and 2.
- it is a simple random number sequence that is transmitted from an unauthorized recipient. Since the transmitted random number sequence does not include the common key information, an unauthorized recipient who does not hold the common key cannot separate the random number sequence into the random number sequence 1 and the random number sequence 2.
- the random number sequence 1 and the random number sequence 2 are independently error correction encoded.
- the transmission path 201 transmission path for key distribution
- the transmission path 202 normal transmission path
- the legitimate receiver can accurately separate the random number sequences 1 and 2 and correct the error by using the respective parity check symbols
- the illegal receiver cannot separate the random number sequences 1 and 2, so the parity check symbols can be changed. Even if you get it, you can't use it. This is the difference formed between legitimate recipients and unauthorized recipients.
- the common key is used only in the transmitter / receiver, and the information on the common key is not reflected in the signal on the transmission path.
- the secret key generated after key distribution originates from the amount of information corresponding to the bit error of the unauthorized recipient, and the information of the common key is not used. Therefore, the common key can be repeatedly used in principle. If repeated use is allowed, it is possible to use a pseudo-random number instead of the common key in FIG.
- a common key may be used as a seed key for the pseudo random number.
- the length of the common key is 128 bits.
- the total number of exhaustive searches is 2 to the 128th power (2 128 ). If the time required to check one common key candidate is 1 ns, the time required for exhaustive search is 10 22 (10 22 ) years. This is long enough that there is virtually no worry of being deciphered by exhaustive search. Furthermore, if the length of the common key is increased, the time required for exhaustive search increases exponentially. However, if the common key partial search is possible, this general theory does not hold, so a mechanism that does not allow partial search is necessary.
- the encoding unit is set to be equal to or longer than the common key length. That is, in encoding, a parity check symbol is generated from the number of random data that is equal to or greater than the length of the common key. For example, the length of the common key is k. If the random number sequence is divided into n series, the encoding unit of each series is set to k / n or more. If encoding is performed in this way, the parity check symbol cannot be used unless data of k or more is handled, and partial analysis of the common key is not permitted.
- a typical code that allows such a specification is the Reed-Solomon code.
- the redundancy of the error correction code to be used is determined according to the bit error rate.
- the bit error rate of the system is controlled according to the redundancy of the error correction code. In this way, by controlling the bit error rate and the code redundancy in a correlated manner, an error can be corrected for a normal receiver, but a situation where error correction is difficult for an illegal receiver is created.
- the error correction code to be used is one in which the number of bits that can be corrected is clearly determined for each encoding unit. Error correction capability is set for legitimate recipients through redundancy control, so unnecessary error correction capability is not necessary, and extra correction capability gives additional information to unauthorized recipients. This is because there is a possibility that it will end up. In order to eliminate such a concern, a code in which the minimum guaranteed number and the maximum correctable number of error-correctable bit numbers (correctable number for each encoding unit) match is preferable. For example, a Reed-Solomon code satisfies this condition.
- the process of allocating the received random number sequence to each random number sequence for the regular receiver holding the common key can be easily corrected by using a parity check symbol for each random number sequence.
- the coding / decoding and the communication protocol for implementing the present invention have been described including the principle.
- a specific configuration example of the transmitter and the receiver will be described.
- an optical transmission path will be described as an example, but electromagnetic waves other than light (either wireless or wired) may be used as a communication medium.
- FIG. 4 shows an example for carrying out the present invention. It consists of a transmitter 100, transmission lines 201 and 202, and a receiver 300.
- the transmission line 201 is a transmission line for transmitting and receiving random numbers (key distribution), and uses a light source 130 with a large fluctuation so that a bit error becomes large.
- the transmission path 202 is a transmission path for transmitting and receiving actual data, and is a normal transmission path. Since this is preferably transmitted reliably, the smaller the bit error rate, the better.
- common keys 112 and 312 that are important for realizing secret communication are prepared in advance.
- the common key can be used as it is, but it is also possible to generate and use a pseudo random number using the common key as a seed key.
- the same algorithm is used in the pseudo-random number generators 112 and 312.
- the random number transmitted and received in the key distribution uses the output from the random number generator 111.
- the output from the random number generator 111 is transferred to three locations. First, it is transferred to the modulator 140 and transmitted to the receiver through the transmission line 201 as an information symbol.
- the third is the transfer to the encoder 120 for generating parity check symbols.
- the encoder 120 first divides the output random number sequence from the random number generator 111 into a plurality of random number sequences using the common key 112 by the method described in FIG. 3 (121). After the division, a parity check symbol is generated independently (error correction coding). Independently generated parity check symbols are collectively transferred to the multiplexer 153. The parity check symbol and the encrypted actual data are multiplexed at 153, transferred to the optical transmission unit 160, and transmitted to the transmission path 202.
- the random number data transmitted through the transmission path 201 is received by the detector 330, and the encrypted actual data and the parity check symbol transmitted through the transmission path 202 are received by the detector 360.
- the former random number data is transferred to the error correction code decoder 320.
- the latter encrypted real data and parity check symbol are transferred to the demultiplexer 353 to separate them.
- the encrypted actual data is transferred to the plaintext decoder 352, and the parity check symbol is transferred to the error correction code decoder 320.
- the decoder 320 separates random number data into random number sequences using the common key 312 (321), and corrects errors using the parity check symbols of each sequence. After error correction, the data is collectively transferred again to the secret key generator 351.
- the secret key generator 351 generates a secret key using the same algorithm as 151 in the transmitter (enhancement of secrecy), transfers it to the plaintext decoder 352, and decrypts the encrypted real data into plaintext. This completes a series of secret communication protocols.
- Example 2 a systematic code in which the information symbol and the parity check symbol are clearly separated is used, and the information symbol is transmitted through the transmission line 201 and the parity check symbol is transmitted through the transmission line 202.
- the parity check symbol on the same transmission path as the information symbol.
- FIG. 5 shows an embodiment in that case.
- the multiplexer 153 and the demultiplexer 353 required in the second embodiment are not required, and the information symbol and the parity check symbol are transmitted and received through the same transmission path, so that both can be easily synchronized. is there.
- the parity check symbol is transmitted / received through the normal transmission line 202, there is an advantage that transmission / reception can be reliably performed with few bit errors.
- Examples 2 and 3 explained the case where systematic codes were used.
- the information symbol and the parity check symbol are transmitted separately, it is essential to use a systematic code.
- the information symbol and the parity check symbol are changed. There is no need to separate. Therefore, it is possible to use a non-systematic code in which the information symbol and the parity check symbol are not separated, which is the present embodiment (FIG. 6).
- the output of the random number generator 111 is directly guided to the modulator 140 as an information symbol.
- FIG. 6 there is no line directly connecting the random number generator 111 and the modulator 140.
- the output is encoded and then directed to the modulator 140.
- the other parts of the present embodiment are the same as those of the third embodiment except that unstructured codes are used.
- the present invention realizes secret communication by organically using the three parties of fluctuation (bit error), error correction code, and common key.
- bit error fluctuation
- error correction code error correction code
- common key common key
- the use of the error correction code and the common key has been mainly described on the assumption that there is a moderate bit error. Since the redundancy of the error correction code should be determined according to the bit error (fluctuation magnitude), the fluctuation magnitude needs to be controlled.
- the origin of the fluctuation may be anything as long as it is sufficiently random.
- the phase modulation method requires phase fluctuation, and the amplitude modulation method requires amplitude fluctuation. This fluctuation for ensuring confidentiality is necessary, but the smaller the other fluctuation (noise), the better.
- One of the practically advantageous methods satisfying this requirement is a method in which a laser diode (LD) for carrier light is operated near a threshold value and its phase fluctuation is utilized.
- LD laser diode
- This is an excellent method with a simple apparatus configuration and sufficient randomness. Therefore, the embodiment will be described by taking as an example the case of utilizing the phase fluctuation of the LD.
- the most basic of the differential types is DPSK (Differential Phase-Shift Keying) that handles binary signals, and the following description is based on DPSK.
- the case of multi-value communication with two or more values is the same as the case of two values.
- the principle is the same for DQPSK (Differential Quaternary Phase-Shift Keying) that handles quaternary signals and multi-value formats.
- DQPSK Different Quaternary Phase-Shift Keying
- the asymmetric interferometer 331 (FIG. 7) is used to cause interference between adjacent slots when receiving. At this time, phase fluctuation is added due to the time difference in the asymmetric interferometer 331. In the present invention, this fluctuation (bit error) is used as the origin of a safe amount of information.
- the fluctuation light source 130 is denoted as LD in FIG.
- the phase fluctuation of the LD can be stably controlled by the injected current.
- DPSK is a differential signal format, it is necessary to convert signal values prior to signal transmission.
- the DPSK converter 141 in FIG. 7 is for this purpose. Specifically, for example, if the phase superimposed on the carrier light is “00 ⁇ 0 ⁇ ”, the differential phase obtained by taking the difference between the slots is “0 ⁇ 0”. The actual signal is the latter “0 ⁇ 0”. The modulation actually performed by the transmitter to send this signal becomes the former “00 ⁇ 0 ⁇ ”.
- the DPSK converter 141 performs the conversion for that purpose. An image of phase modulation is shown in the transmitter of FIG.
- the receiver in order to detect differentially, signal light is shifted by one slot by an asymmetrical interferometer 331 and interfered, and detected by photodetectors 332 and 333.
- the differential phase is “0”
- the signal light is detected by the photodetector 332
- the differential phase is “ ⁇ ”
- the photodetectors 332 and 333 are arranged in a balanced manner, and common non-signal components incident on both detectors are canceled out.
- Information on which of the photodetectors 332 and 333 has detected the signal light is transferred to the binary decision unit 335 through the amplifier 334, and is judged and output as a binary signal of “0” and “1”.
- the phase fluctuation of the LD for carrier light is used as the fluctuation source. It is also possible to use thermal fluctuation, a random number generator or the like as the fluctuation source (Patent Documents 2 to 4).
- Example 5 the phase fluctuation of the LD was used as the fluctuation source.
- the magnitude of the phase fluctuation is controlled by the current injected into the LD, and this control is performed by a constant current source which is an external control system. Since the constant current source is composed of an electric circuit, it generates a certain amount of noise. Therefore, external noise may be added to the LD.
- the operating temperature needs to be kept constant, and a temperature controller is used. This can also be an external noise source.
- various noises may be added in the middle of the transmission path or in the receiver. A countermeasure against these external noises will be described in this embodiment.
- the method for transmitting and receiving signals in the DPSK format has been described.
- This is also a differential format.
- this is a form adopted to moderately control the bit error rate, and another stage of differentiation is required to remove external noise.
- FIGS. 8A and 8B An example in that case is shown in FIGS. 8A and 8B.
- a converter 143 to differential data is added in the transmitter, and an inverse modulator 336 is added in the receiver to return the differential phase to the original data phase.
- FIG. 8B An example of data conversion is shown in FIG. 8B. If the input data (random number data) to the modulator 140 is “100101...” (FIG. 8B (a)), the differential data is “0111001 ...” (FIG. 8B (b)). If the difference between the data in (b) is taken, it can be confirmed that the data in (a) is obtained. In the conversion to differential data, since the number of data increases by one, there are two types of differential data that give the same original data. In (b), not only “0111001 ...” but also “1000110 ...” obtained by inverting it gives the same original data. In the present embodiment, the former is adopted. This is a method of selecting the first data as “0”.
- the conversion to the DPSK format may be performed in the same manner, and “0111001 ...” (FIG. 8B (b)), which is differential data, is converted to “00101110 ...” (FIG. 8B (c)).
- the first data was selected as “0”.
- the optical modulator 142 modulates “0” with phase 0 and “1” with phase ⁇ (FIG. 8B (d)).
- the DPSK signal is detected by an asymmetric interferometer (DPSK inverse modulator) and a balanced detector.
- the detected phase is “0 ⁇ 00 ⁇ ...” (FIG. 8B (e)). Since this stage is still in the state of differential data, the differential is taken by the inverse modulator 336 to “ ⁇ 00 ⁇ 0 ⁇ ...” (FIG. 8B (f)).
- the phase at this stage corresponds to the original data, and becomes the original data if the binary discriminator determines that phase 0 is “0” and phase ⁇ is “1” (FIG. 8B (g)).
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Optical Communication System (AREA)
- Detection And Prevention Of Errors In Transmission (AREA)
Abstract
Description
(1)送信者と正規受信者が種鍵を共有し、それに基づき共有基底を決定する。
(2)送信者はランダムに選んだ基底(乱数基底)により乱数を送信する。共有基底と乱数基底が一致したスロットの乱数を乱数系列1とし、一致しなかったスロットの乱数を乱数系列2とする。また、乱数基底1及び2の一方、あるいは両者に対するパリティ検査記号も送信する。
(3)正規受信者は乱数基底を判定し、共有基底との照合により伝送されてきた乱数を乱数系列1と2に分離する。この際、揺らぎがあるために基底の判定誤りがある。判定誤りがあったかどうかは乱数系列1あるいは乱数系列2のパリティを調べ、検査記号との一致の様子を見ることにより行う。基底の判定誤りがあった場合、そのスロットの乱数は本来の系列とは異なる系列に所属するものとして扱われるので乱数系列1と2の個数が変化し、パリティ検査記号との対応関係が乱れる。その結果、パリティエラーが多数発生し、基底の判定誤りがどこで発生したのかを概ね推定できる。判定誤りの疑いありと推定されたスロットの基底判定を変更してパリティ検査を繰り返す。すべての判定誤りに対してこの繰り返し処理を実施してすべてのスロットの基底を正しくする。またこの処理を通してビット誤りも訂正する。
(4)不正受信者は種鍵を保有していないために共有基底が分からない。乱数を乱数系列1と2に分離できないためにパリティ検査記号を利用できず、基底の判定誤りを訂正できず、またビット誤りも訂正できない。このようにして正規受信者と不正受信者に差を付ける。
(5)正規受信者の得た情報量と不正受信者の得た情報量の差に相当する情報量(安全な情報量)まで、送受信した乱数を減らして秘密鍵とする。その秘密鍵を利用して実データを暗号通信する。
(1)乱数列を送信する送信機において、乱数列を符号化する符号器を備え、符号器は、送信機と、送信機から送信される信号を受信する受信機との間で予め共通鍵を共有し、該共通鍵を構成する各ビット値を乱数列の各スロットに所定の対応関係に基づいて対応させ、乱数列を2つ、もしくは2つ以上の乱数系列に分割し、分割された該乱数系列をそれぞれ独立に符号化することを特徴とする。
また、本発明に係る受信機の主な特徴は、以下の通りである。
(2)乱数列を受信する受信機において、乱数列を検出する検出器と、検出された乱数列を復号化する復号器と、を有し、検出器は符号化された乱数列を受信し、復号器は、受信機と、受信機で受信される信号を送信する送信機との間で予め共通鍵を共有し、該共通鍵を構成する各ビット値を乱数列の各スロットに所定の対応関係に基づいて対応させ、乱数列を2つ、もしくは2つ以上の乱数系列に分割し、乱数系列をそれぞれ独立に復号化することを特徴とする。
また、本発明に係る通信システムの主な特徴は、以下の通りである。
(3)乱数列を送信する送信機と、該乱数列を受信する受信機と、送信機と受信機との間に該乱数列を伝送する伝送路と、を備える通信システムにおいて、送信機においては、乱数列を符号化する符号器を備え、符号器は、送信機と、送信機から送信される信号を受信する受信機との間で予め共通鍵を共有し、該共通鍵を構成する各ビット値を乱数列の各スロットに所定の対応関係に基づいて対応させ、乱数列を2つ、もしくは2つ以上の乱数系列に分割し、分割された該乱数系列をそれぞれ独立に符号化し、受信機においては、乱数列を検出する検出器と、検出された前記乱数列を復号化する復号器と、を有し、検出器は符号化された乱数列を受信し、復号器は、受信機と、受信機で受信される信号を送信する送信機との間で予め共通鍵を共有し、該共通鍵を構成する各ビット値を乱数列の各スロットに所定の対応関係に基づいて対応させ、乱数列を2つ、もしくは2つ以上の乱数系列に分割し、乱数系列をそれぞれ独立に復号化し、伝送路は、乱数列を送信機から受信機へ伝送する第1伝送路、及び実データを受信機へ伝送する第2伝送路とを有することを特徴とする。
すなわち、上記構成は、以下のような特徴を有する。ビット誤りが適度に制御された伝送路を用いて乱数列を送受信し、送信機と受信機とで予め共通鍵を共有する。該共通鍵と該乱数列とをビットの位置ごとに固定的に対応させ、その対応関係により乱数列を2つ以上の乱数系列に分割し、乱数系列ごとに符号化してパリティ検査記号を生成する。符号化の単位は不正受信者による部分解析を不可能にするために共通鍵の長さ以上とする。
(1)伝送路201を用いて送信者・正規受信者間で乱数を送受信する。これを鍵配送と呼ぶ。
(2)I(pE)の情報量を不正受信者が得ている可能性があるので、Csで決まる安全な情報量まで送受信した乱数の総数を演算により減らす。この処理は秘匿性の増強と呼ばれる(秘密鍵生成器151及び351)。秘匿性の増強をした後の乱数は安全な情報になるので、その乱数を秘密鍵とする。
(3)その秘密鍵を利用して実データを暗号化して送受信する。秘密鍵は秘匿性の増強を通して安全性が保障されているので実データは安全に伝送できる。
以上の構成でpB < pEならば安全な通信が可能になることが分かった。そこで如何にpB < pEを実現するかが課題になる。
正規受信者は正確に乱数系列1と2に分離できるのでそれぞれのパリティ検査記号を利用して誤り訂正可能であるが、不正受信者は乱数系列1と2に分離できないために、パリティ検査記号を得たとしてもそれを利用することができない。これが正規受信者と不正受信者の間に形成される差である。
さらにこの方法では乱数基底を利用しないので基底は一種類のみでよい。
本実施例では揺らぎ源としてキャリア光用のLDの位相揺らぎを利用した。揺らぎ源として熱揺らぎや乱数発生器等を利用することも可能である(特許文献2~4)。
111:乱数発生器、
112:共通鍵(疑似乱数発生器)、
120:符号器、
121:乱数列を系列化する手段、
130:揺らぎ光源、
140:変調器、
141:DPSKフォーマットへの変換器、
142:光変調器、
143:差動データへの変換器、
151:秘密鍵生成器、
152:暗号器、
153:多重器、
160:光送信部、
201:伝送路、
202:伝送路、
300:受信機、
312:共通鍵(疑似乱数発生器)、
320:復号器、
321:乱数系列に分離する手段、
330:検出器、
331:非対称干渉計(DPSK逆変調器)、
332:光検出器、
333:光検出器、
334:増幅器、
335:2値判定器、
336:逆変調器、
351:秘密鍵生成器、
352:復号器、
353:逆多重器、
360:光検出器。
Claims (15)
- 乱数列を送信する送信機において、
前記乱数列を符号化する符号器を備え、
前記符号器は、前記送信機と、前記送信機から送信される信号を受信する受信機との間で予め共有する共通鍵を用いることとし、該共通鍵を構成する各ビット値を前記乱数列の各スロットに所定の対応関係に基づいて対応させ、前記乱数列を2つ、もしくは2つ以上の乱数系列に分割し、分割された該乱数系列をそれぞれ独立に符号化する
ことを特徴とする送信機。 - 前記乱数系列の符号化において該符号化の単位を前記共通鍵の長さ以上に設定することにより、不正受信者による前記共通鍵の部分解析を抑止することとし、
前記共通鍵を基に誤り訂正用のパリティ検査記号を生成し、該パリティ検査記号を、前記乱数列を前記受信機へ伝送する第1伝送路または、実データを前記受信機へ伝送する第2伝送路を通して前記受信機へ送信する
ことを特徴とする請求項1記載の送信機。 - 前記乱数系列の符号化は、誤り訂正符号を利用し、符号化の単位毎の誤り訂正可能なビット数は、正規受信者が誤り訂正に必要な数とし、それ以上の訂正能力を有しない符号を利用する
ことを特徴とする請求項1記載の送信機。 - 前記共通鍵を種鍵として疑似乱数発生器で疑似乱数を生成し、該疑似乱数を新たな共通鍵として利用する
ことを特徴とする請求項1記載の送信機。 - 隣り合うスロット間の差分を信号とする差動フォーマットを用いて前記乱数列を送信し、前記乱数列に対する外部ノイズの影響を排除する
ことを特徴とする請求項1記載の送信機。 - 前記乱数列に対して、乱数の総数をビット誤り率から決定される安全な情報量まで減らす減数処理を行い、その減数処理された乱数列を秘密鍵にして実データを暗号化して送信する
ことを特徴とする請求項1記載の送信機。 - 乱数列を受信する受信機において、
前記乱数列を検出する検出器と、
検出された前記乱数列を復号化する復号器と、を有し、
前記検出器は符号化された乱数列を受信し、前記復号器は、前記受信機と、前記受信機で受信される信号を送信する送信機との間で予め共有する共通鍵を用いることとし、該共通鍵を構成する各ビット値を前記乱数列の各スロットに所定の対応関係に基づいて対応させ、前記乱数列を2つ、もしくは2つ以上の乱数系列に分割し、
前記乱数系列をそれぞれ独立に復号化する
ことを特徴とする受信機。 - 前記送信機における前記乱数系列の符号化において該符号化の単位を前記共通鍵の長さ以上に設定することにより、不正受信者による前記共通鍵の部分解析を抑止することとし、
前記共通鍵を基に誤り訂正用のパリティ検査記号を生成し、該パリティ検査記号を、前記乱数列を前記受信機へ伝送する第1伝送路または、実データを前記受信機へ伝送する第2伝送路を通して前記受信機へ送信する
ことを特徴とする請求項7記載の受信機。 - 符号化の単位毎の誤り訂正可能なビット数は誤り訂正に必要な数に制限され、必要以上の訂正能力を有しない符号を利用して前記送信機において符号化された前記乱数系列を受信する
ことを特徴とする請求項7記載の受信機。 - 隣り合うスロット間の差分を信号とする差動フォーマットを用いて前記送信機から送信される前記乱数列を受信し、前記乱数列に対する外部ノイズの影響を排除する
ことを特徴とする請求項7記載の受信機。 - 前記乱数列に対して、乱数の総数をビット誤り率から決定される安全な情報量まで減らす減数処理を行い、その減数処理された乱数列を秘密鍵にして実データを暗号化して前記送信機から送信し、
前記受信機において該暗号化した実データを受信する
ことを特徴とする請求項7記載の受信機。 - 乱数列を送信する送信機と、該乱数列を受信する受信機と、前記送信機と前記受信機との間に該乱数列を伝送する伝送路と、を備える通信システムにおいて、
前記送信機においては、
前記乱数列を符号化する符号器を備え、
前記符号器は、前記送信機と、前記送信機から送信される信号を受信する受信機との間で予め共有する共通鍵を用いることとし、該共通鍵を構成する各ビット値を前記乱数列の各スロットに所定の対応関係に基づいて対応させ、前記乱数列を2つ、もしくは2つ以上の乱数系列に分割し、分割された該乱数系列をそれぞれ独立に符号化し、
前記受信機においては、
前記乱数列を検出する検出器と、
検出された前記乱数列を復号化する復号器と、を有し、
前記検出器は符号化された前記乱数列を受信し、前記復号器は、前記受信機と、前記受信機で受信される信号を送信する送信機との間で予め共有する共通鍵を用いることとし、該共通鍵を構成する各ビット値を前記乱数列の各スロットに所定の対応関係に基づいて対応させ、前記乱数列を2つ、もしくは2つ以上の乱数系列に分割し、前記乱数系列をそれぞれ独立に復号化し、
前記伝送路は、前記乱数列を前記送信機から前記受信機へ伝送する第1伝送路、及び実データを前記受信機へ伝送する第2伝送路とを有する
ことを特徴とする通信システム。 - 前記送信機における前記乱数系列の符号化において該符号化の単位を前記共通鍵の長さ以上に設定することにより、不正受信者による前記共通鍵の部分解析を抑止することとし、
前記共通鍵を基に誤り訂正用のパリティ検査記号を生成し、該パリティ検査記号を、前記第1伝送路または、前記第2伝送路を通して前記受信機へ送信する
ことを特徴とする請求項12に記載の通信システム。 - 隣り合うスロット間の差分を信号とする差動フォーマットを用いて前記乱数列を前記送信機から前記受信機へ送信することで、前記乱数列に対する外部ノイズの影響を排除する
ことを特徴とする請求項12記載の通信システム。 - 前記乱数列に対して、乱数の総数をビット誤り率から決定される安全な情報量まで減らす減数処理を行い、その減数処理された乱数列を秘密鍵にして実データを暗号化して前記送信機から前記受信機に送信する
ことを特徴とする請求項12記載の通信システム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/897,390 US10305681B2 (en) | 2013-06-12 | 2013-06-12 | High-security communication system, and transmitter and receiver both used therein |
PCT/JP2013/066268 WO2014199474A1 (ja) | 2013-06-12 | 2013-06-12 | 高セキュリティ通信システム、並びにそれに用いる送信機及び受信機 |
JP2015522334A JP6199385B2 (ja) | 2013-06-12 | 2013-06-12 | 高セキュリティ通信システム、並びにそれに用いる送信機及び受信機 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/066268 WO2014199474A1 (ja) | 2013-06-12 | 2013-06-12 | 高セキュリティ通信システム、並びにそれに用いる送信機及び受信機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014199474A1 true WO2014199474A1 (ja) | 2014-12-18 |
Family
ID=52021805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/066268 WO2014199474A1 (ja) | 2013-06-12 | 2013-06-12 | 高セキュリティ通信システム、並びにそれに用いる送信機及び受信機 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10305681B2 (ja) |
JP (1) | JP6199385B2 (ja) |
WO (1) | WO2014199474A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11451524B2 (en) | 2018-11-28 | 2022-09-20 | Hitachi, Ltd. | Network system interface for controlling confidential information |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9213653B2 (en) | 2013-12-05 | 2015-12-15 | Intel Corporation | Memory integrity |
US9990249B2 (en) * | 2015-12-24 | 2018-06-05 | Intel Corporation | Memory integrity with error detection and correction |
US10594491B2 (en) * | 2015-12-24 | 2020-03-17 | Intel Corporation | Cryptographic system memory management |
KR20180097903A (ko) * | 2017-02-24 | 2018-09-03 | 삼성전자주식회사 | 무선 통신 시스템에서 보안 키를 생성하기 위한 장치 및 방법 |
US9912479B1 (en) * | 2017-06-09 | 2018-03-06 | ISARA Corporation | Key encapsulation mechanisms |
US10454681B1 (en) | 2017-11-17 | 2019-10-22 | ISARA Corporation | Multi-use key encapsulation processes |
US10061636B1 (en) | 2017-12-22 | 2018-08-28 | ISARA Corporation | Conversion schemes for public key cryptosystems |
US10031795B1 (en) | 2017-12-22 | 2018-07-24 | ISARA Corporation | Using conversion schemes in public key cryptosystems |
KR102510077B1 (ko) * | 2018-04-24 | 2023-03-14 | 삼성에스디에스 주식회사 | 부채널 공격에 안전한 연산 장치 및 방법 |
US11115199B2 (en) * | 2018-07-18 | 2021-09-07 | Kabushiki Kaisha Toshiba | Information processing method, and computer program product |
US11005598B1 (en) * | 2019-09-16 | 2021-05-11 | Xilinx, Inc. | System and method for a forward error correction decoder with error reporting |
CN111478885B (zh) * | 2020-03-16 | 2022-05-06 | 湖南遥昇通信技术有限公司 | 一种非对称加解密方法、设备及存储介质 |
CN111641503A (zh) * | 2020-06-09 | 2020-09-08 | 中国电子科技集团公司第五十四研究所 | 一种用于多无人平台的可信数据传输方法 |
FR3120457B1 (fr) * | 2021-03-05 | 2024-02-23 | St Microelectronics Rousset | Générateur de nombres aléatoires |
US12034834B1 (en) * | 2023-01-30 | 2024-07-09 | Randaemon Sp. Z O.O. | Method and apparatus for steganographic cipher encryption using true random number generator |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002538745A (ja) * | 1999-02-26 | 2002-11-12 | エリクソン インコーポレイテッド | セルラー通信システム用認証方法 |
JP2010035072A (ja) * | 2008-07-31 | 2010-02-12 | Hitachi Ltd | 光通信システム |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10301492A (ja) * | 1997-04-23 | 1998-11-13 | Sony Corp | 暗号化装置および方法、復号装置および方法、並びに情報処理装置および方法 |
JP4829628B2 (ja) * | 2005-10-31 | 2011-12-07 | 富士通株式会社 | 暗号化方法,暗号復号化方法,暗号化装置,暗号復号化装置および通信システム |
JP4822811B2 (ja) | 2005-11-02 | 2011-11-24 | 株式会社日立製作所 | 光通信装置 |
WO2010103628A1 (ja) | 2009-03-11 | 2010-09-16 | 株式会社日立製作所 | 暗号通信システム |
JP5282147B2 (ja) | 2010-02-15 | 2013-09-04 | 株式会社日立製作所 | 暗号通信システム及びそれに用いる送信機及び受信機 |
-
2013
- 2013-06-12 US US14/897,390 patent/US10305681B2/en active Active
- 2013-06-12 JP JP2015522334A patent/JP6199385B2/ja active Active
- 2013-06-12 WO PCT/JP2013/066268 patent/WO2014199474A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002538745A (ja) * | 1999-02-26 | 2002-11-12 | エリクソン インコーポレイテッド | セルラー通信システム用認証方法 |
JP2010035072A (ja) * | 2008-07-31 | 2010-02-12 | Hitachi Ltd | 光通信システム |
Non-Patent Citations (2)
Title |
---|
TATSUYA TOMARU: "DPSK Taio no Iso Yuragi Hyokaho", 2010 NEN SHUKI DAI 71 KAI EXTENDED ABSTRACTS, vol. 14P-E-12, 30 August 2010 (2010-08-30) * |
TATSUYA TOMARU: "Iso Yuragi to Shujo o Mochiita Himitsu Kagi Haiso no Kosokuka", 2010 NEN SHUNKI DAI 57 KAI EXTENDED ABSTRACTS, vol. 18A-L-14, 3 March 2010 (2010-03-03), pages 04 - 014 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11451524B2 (en) | 2018-11-28 | 2022-09-20 | Hitachi, Ltd. | Network system interface for controlling confidential information |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014199474A1 (ja) | 2017-02-23 |
US20160112189A1 (en) | 2016-04-21 |
JP6199385B2 (ja) | 2017-09-20 |
US10305681B2 (en) | 2019-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6199385B2 (ja) | 高セキュリティ通信システム、並びにそれに用いる送信機及び受信機 | |
JP5282147B2 (ja) | 暗号通信システム及びそれに用いる送信機及び受信機 | |
JP6899773B2 (ja) | 短期的に安全な暗号化された量子通信による永続的に安全な通信 | |
WO2010103628A1 (ja) | 暗号通信システム | |
US20120328100A1 (en) | Optical transmission device and reception device for yuen encryption, optical transmission method and reception method for yuen encryption, and encrypted communication system | |
JP2008042496A (ja) | データ送信装置 | |
JP6471903B2 (ja) | 光秘匿通信システム | |
Wu et al. | Channel-based dynamic key generation for physical layer security in OFDM-PON systems | |
JP5260171B2 (ja) | 光通信システム | |
JP6059959B2 (ja) | 光秘匿通信システムおよび光秘匿伝送装置並びに光秘匿通信システムの制御方法 | |
JP5472850B2 (ja) | パルスポジション変調雑音秘匿通信方式 | |
JP2013021422A (ja) | 暗号送信装置 | |
US7606367B2 (en) | Quantum cryptography with fewer random numbers | |
JP5280518B2 (ja) | 暗号通信システム | |
JP5062642B2 (ja) | 暗号光送信装置及び受信装置、暗号光送信方法及び受信方法、並びに暗号通信システム | |
JP6367639B2 (ja) | 光送信装置、光中継装置、光受信装置、光通信システムおよび光通信方法 | |
JP2008079297A (ja) | データ送信装置及びデータ受信装置 | |
JP5710521B2 (ja) | 高セキュリティ通信システム、並びにそれに用いる送信機及び受信機 | |
Abd Aziz et al. | Physical Layer Security Using Scrambled BCH with Adaptive Granular HARQ | |
Alias et al. | Physical Layer Security Using Scrambled BCH with Adaptive Granular HARQ | |
Xiao et al. | High-Capacity Quantum Secure Communication with Authentication Using Einstein-Podolsky-Rosen Pairs | |
Kim | Photonic CDMA systems with security physical layers | |
Cincotti | On the security of spectrally encoded quantum-encryption protocols | |
JP2009017231A (ja) | データ送信装置及びデータ受信装置 | |
Tomaru | Secret key distribution protocol for practical optical channels using a preshared key and phase fluctuations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13886751 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015522334 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14897390 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13886751 Country of ref document: EP Kind code of ref document: A1 |