WO2018154953A1 - Coil spring manufacturing device and coil spring manufacturing method - Google Patents

Coil spring manufacturing device and coil spring manufacturing method Download PDF

Info

Publication number
WO2018154953A1
WO2018154953A1 PCT/JP2017/046239 JP2017046239W WO2018154953A1 WO 2018154953 A1 WO2018154953 A1 WO 2018154953A1 JP 2017046239 W JP2017046239 W JP 2017046239W WO 2018154953 A1 WO2018154953 A1 WO 2018154953A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil spring
continuous material
pin
scratch
coiling
Prior art date
Application number
PCT/JP2017/046239
Other languages
French (fr)
Japanese (ja)
Inventor
充弘 杉山
慶光 小山
古瀬 武志
友祐 熊川
有史 森
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Publication of WO2018154953A1 publication Critical patent/WO2018154953A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F3/00Coiling wire into particular forms
    • B21F3/02Coiling wire into particular forms helically
    • B21F3/04Coiling wire into particular forms helically externally on a mandrel or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F35/00Making springs from wire

Definitions

  • the present invention relates to a coil spring manufacturing apparatus for manufacturing a coil spring using a long continuous material and a method for manufacturing the coil spring.
  • a coil spring is used in a vehicle suspension system.
  • Japanese Patent Application Laid-Open No. 11-197775 or Japanese Patent Application Laid-Open No. 2013-226484 discloses an example of a coil spring manufacturing apparatus. These are coiling machines that do not have a cored bar.
  • This type of coiling machine includes a material guide, a first pin, a second pin, a pitch tool, and a control unit. The material of the coil spring fed from the tip of the material guide is bent into an arc shape by the first pin and the second pin. Further, the coil spring is pitched by the pitch tool. The positions of the first pin and the second pin are controlled based on a computer program stored in the control unit, control data corresponding to the shape of the coil spring, and the like.
  • the continuous material (element wire made of spring steel), which is the material of the coil spring, is usually subjected to drawing and heat treatment before being supplied to the coiling machine.
  • the drawing process is performed by a die.
  • the heat treatment is quenching or tempering.
  • the long continuous material is wound in a hoop shape so that it is convenient for transportation and storage.
  • Many coil springs can be manufactured from one continuous material.
  • the hoop-like continuous material is placed on the material supply unit.
  • the hoop-like continuous material is continuously supplied from the material supply unit toward the coiling machine.
  • a coil spring having a predetermined coil diameter, pitch, and number of turns is formed by the coiling machine.
  • a coiling machine using a continuous material can efficiently produce a coil spring.
  • the continuous material that is the material of the coil spring may be damaged before being delivered to the factory that manufactures the coil spring.
  • a flaw occurring in the continuous material can be detected before the drawing process by a flaw detection apparatus using an eddy current. If scratches are found before the drawing process, the drawing process is stopped. Then, after correcting the damaged part by polishing or the like, the drawing process is resumed.
  • the production line stops every time the scratches are corrected. For this reason, the production efficiency of the coil spring is greatly reduced.
  • An object of the present invention is to provide a coil spring manufacturing apparatus and a coil spring manufacturing method capable of suppressing a reduction in the production efficiency of the coil spring even if the continuous material is damaged.
  • the coil spring manufacturing apparatus includes a material supply unit, a flaw detection device, a storage unit, a coiling machine, and a sorting unit.
  • a continuous material that is a material of the coil spring is placed on the material supply unit.
  • the flaw detection apparatus detects the presence or absence of a flaw in the continuous material supplied from the material supply unit.
  • the storage means stores position information of a flaw when a flaw is detected by the flaw detection apparatus.
  • the coiling machine forms a coil spring by coiling the continuous material that has passed through the flaw detection apparatus regardless of the presence or absence of scratches.
  • the selecting unit stores a wound-free coil spring formed by a portion having no scratch on the continuous material and a wound coil spring formed by a portion having a scratch on the continuous material stored in the storage unit. Sort based on location information.
  • the sorting unit may include a robot that sorts the wound-free coil spring and the wound-shaped coil spring.
  • the sorting unit may include a sorting mechanism that sorts the wound-free coil spring and the scratched coil spring.
  • the sorting mechanism may move the wound-free coil spring toward the first transport unit and move the wound coil spring toward the second transport unit.
  • An example of a coiling machine includes a material feed roller, a material guide, a first pin, a second pin, a pitch tool, and a cutting tool.
  • the material feed roller moves the continuous material in the length direction.
  • the continuous material is inserted into the material guide.
  • the continuous material fed from the front end of the material guide contacts the first pin.
  • the second pin is disposed on the front side in the moving direction of the continuous material with respect to the first pin.
  • An arc portion is formed by bending the continuous material between the first pin and the second pin.
  • the pitch tool is disposed on the front side in the moving direction of the continuous material with respect to the second pin.
  • the continuous material contacts the pitch tool.
  • the cutting tool is disposed between the second pin and the pitch tool. The continuous material is cut between the cutting tool and a mandrel.
  • the positions of the first pin and the second pin of the coiling machine are controlled based on the position information stored in the storage means. For example, the coil diameter when coiling a portion where the continuous material is scratched is larger than the coil diameter when coiling a portion where the continuous material is not scratched.
  • the position is controlled.
  • the cutting tool may be controlled so that the number of turns when coiling a portion where the continuous material is scratched is smaller than the number of turns when coiling a portion where the continuous material is not scratched.
  • FIG. 1 is a plan view schematically showing an example of equipment for drawing a continuous material.
  • FIG. 2 is a plan view schematically showing an example of equipment for performing heat treatment of a continuous material.
  • FIG. 3 is a plan view schematically showing a coil spring manufacturing apparatus according to one embodiment. 4 is a side view of a part of the coiling machine of the coil spring manufacturing apparatus shown in FIG.
  • FIG. 5 is a block diagram showing an electrical configuration of a control unit of the coil spring manufacturing apparatus.
  • FIG. 6 is a flowchart showing the first embodiment of the manufacturing process of the coil spring.
  • FIG. 7 is a perspective view illustrating an example of the transport unit.
  • FIG. 8 is a plan view illustrating an example of the selection unit.
  • FIG. 9 is a flowchart showing the second embodiment of the manufacturing process of the coil spring.
  • FIG. 10 is a front view showing two types of coil springs having different shapes.
  • FIG. 1 schematically shows a facility 10 for drawing a continuous material (long strand made of spring steel) 1A.
  • the equipment 10 that performs the drawing process includes a material supply unit 11, a die unit 12, a winding unit 13, and the like.
  • a continuous material 1 ⁇ / b> A wound in a hoop shape is placed on the material supply unit 11.
  • the winding unit 13 has a rotatable drum.
  • the continuous material 1A placed on the material supply unit 11 may be referred to as a hoop material.
  • the continuous material 1A may have a total length of several hundred meters (or more) when unwound.
  • the continuous material 1 ⁇ / b> A fed out from the material supply unit 11 passes through the die unit 12.
  • the area reduction rate is, for example, 10 to 20%.
  • the continuous material 1 ⁇ / b> B pulled out from the die portion 12 is wound up on the drum of the winding portion 13.
  • FIG. 2 schematically shows equipment 20 for heat treatment of the continuous material 1B.
  • the equipment 20 for heat treatment includes a material supply unit 21, a quenching unit 22, a tempering unit 23, a winding unit 24, and the like.
  • a continuous material 1B wound in a hoop shape is placed on the material supply unit 21.
  • Induction hardening of the continuous material 1B is performed by the quenching part 22.
  • the continuous material 1B is tempered.
  • the winding unit 24 winds the tempered continuous material 1C.
  • the continuous material 1B fed out from the material supply unit 21 is heated to a quenchable temperature in the quenching unit 22 by high frequency induction heating.
  • a coolant such as water
  • a hardened structure is formed in the continuous material 1B.
  • the tempering part 23 after the continuous material 1B is reheated to an appropriate temperature, it is gradually cooled.
  • the continuous material 1 ⁇ / b> C tempered in this way is wound up by the winding unit 24.
  • FIG. 3 shows a coil spring manufacturing apparatus 30 according to one embodiment.
  • the coil spring manufacturing apparatus 30 includes a material supply unit 31, a straightener 32, a flaw detection device 33, a guide roller 34, a coiling machine 40, and a control unit 41.
  • a hoop-like continuous material 1 ⁇ / b> C that is a material of a coil spring is placed on the material supply unit 31.
  • the straight line machine 32 corrects the shape so that the continuous material 1C is substantially straight.
  • the flaw detector 33 detects the presence or absence of a flaw on the continuous material 1C.
  • the control unit 41 controls the coiling machine 40.
  • One continuous material 1C has a length sufficient to manufacture a large number of coil springs. There is a possibility that the surface of the continuous material 1C is scratched for some reason.
  • the continuous material 1C fed from the material supply unit 31 passes through the linear machine 32. Further, the toner passes through the flaw detector 33 and is supplied toward the coiling machine 40 through the guide roller 34.
  • the flaw detector 33 detects the presence or absence of a flaw on the surface of the continuous material 1C using, for example, eddy current. If there is a flaw detection device having reliability comparable to the eddy current method as the flaw detection device 33, it may be used.
  • the flaw detector 33 may detect a flaw having a size or depth exceeding the allowable value in the continuous material 1C. In that case, the position (position information regarding the length direction of the continuous material 1 ⁇ / b> C) where the scratch exists is stored in the storage means (memory) 44 of the control unit 41.
  • the continuous material 1C is supplied to the coiling machine 40 regardless of the presence or absence of scratches, whereby the coil spring W1 is manufactured.
  • Coiling machine 40 manufactures coil spring W1 by forming continuous material 1C into a spiral shape.
  • coil spring W1 there are various forms of the coil spring W1.
  • various coil springs such as a cylindrical coil spring, a barrel coil spring, a drum coil spring, a taper coil spring, an unequal pitch coil spring, and a coil spring having a minus pitch portion may be used.
  • FIG. 4 schematically shows a part of the coiling machine 40.
  • the coiling machine 40 includes a plurality of material feed rollers (feed rollers) 45, a material guide 46, a first pin 47, and a second pin 48.
  • the material feed roller 45 moves the continuous material 1C, which is a material of the coil spring, in the direction indicated by the arrow F1 (the length direction of the continuous material 1C).
  • the continuous material 1 ⁇ / b> C is inserted into the material guide 46.
  • the continuous material 1 ⁇ / b> C sent out from the tip 46 a of the material guide 46 first comes into contact with the first pin 47.
  • the continuous material 1 ⁇ / b> C bent by the first pin 47 is in contact with the second pin 48.
  • Each of the first pin 47 and the second pin 48 may be a roller member that is rotatable about an axis, or may be a pin member that does not rotate.
  • the coiling machine 40 includes a pitch tool 50, a cutting tool 51, a mandrel 52, and the like.
  • the pitch tool 50 is disposed on the front side in the moving direction of the continuous material 1 ⁇ / b> C with respect to the second pin 48.
  • the pitch tool 50 When the continuous material 1C bent by the second pin 48 contacts the pitch tool 50, the coil spring is pitched.
  • the cutting tool 51 has a blade part 51a.
  • the cutting tool 51 moves toward the mandrel 52 in the direction indicated by the arrow Z1 (shown in FIG. 4). Accordingly, the continuous material 1C is cut (sheared) between the receiving blade 52a of the mandrel 52 and the blade portion 51a.
  • FIG. 5 is a block diagram showing an electrical configuration of the control unit 41 and the like.
  • the control unit 41 controls the coiling machine 40.
  • the control unit 41 includes a CPU (Central Processing Unit) 60 that functions as a controller.
  • the CPU 60 is connected to a ROM (Read Only Memory) 62, a RAM (Random Access Memory) 63, a communication interface unit 64, a display / operation driver 65, a material feed driver 66, a first pin moving driver 67 via a bus line 61.
  • a second pin moving driver 68, a pitch tool driver 69, a cutting driver 70, and the like are connected.
  • the ROM 62 stores a program for controlling the CPU 60 and various fixed data.
  • the RAM 63 includes various data necessary for forming the coil spring and a memory as the storage unit 44.
  • the storage unit 44 stores the position information of the flaws of the continuous material 1C detected by the flaw detector 33.
  • the communication interface unit 64 controls data communication performed with an external device via a communication line.
  • the display / operation driver 65 controls the display operation unit 71. By operating the display operation unit 71, information necessary for coiling can be stored in a memory such as the RAM 63.
  • the material feed driver 66 controls a motor 80 for rotating the material feed roller 45.
  • the first pin moving driver 67 controls an actuator 81 for driving the first pin 47.
  • the second pin moving driver 68 controls an actuator 82 for driving the second pin 48.
  • the pitch tool driver 69 controls an actuator 83 for driving the pitch tool 50.
  • the cutting driver 70 controls an actuator 84 for driving the cutting tool 51.
  • the control unit 41 includes a CPU 60.
  • the control unit 41 includes a control circuit that controls the rotation of the material feed roller 45, a control circuit that controls the positions of the first pin 47 and the second pin 48, a control circuit that controls the position of the pitch tool 50, and cutting.
  • a control circuit for controlling the tool 51 is included.
  • the control unit 41 controls the actuators 81, 82, and 83 so that the positions of the first pin 47, the second pin 48, and the pitch tool 50 change according to the shape data of the coil spring.
  • the shape data is, for example, the coil diameter, pitch, number of turns, and coil length, and is input to the control unit 41.
  • a personal computer 85 can be connected to the control unit 41 via the communication interface unit 64.
  • the personal computer 85 includes a storage medium 86 that can be attached and detached as necessary.
  • step ST ⁇ b> 1 in FIG. 6 the continuous material 1 ⁇ / b> C is supplied to the flaw detector 33 through the linear machine 32.
  • the continuous material 1C is placed on a material supply unit 31 (shown in FIG. 3).
  • step ST ⁇ b> 2 the continuous material 1 ⁇ / b> C passes through the flaw detector 33.
  • the flaw detector 33 inspects whether or not the surface of the continuous material 1C has a scratch having a size or depth exceeding the allowable value. If no flaw is detected (“NO” in step ST3), the process jumps to step ST5.
  • step ST3 When a scratch exceeding the allowable value is detected (“YES” in step ST3), the process proceeds to step ST4.
  • step ST4 the position of the detected scratch (position in the length direction of the continuous material 1C) is stored in the storage means 44 of the control unit 41, and the process proceeds to step ST5.
  • step ST5 the continuous material 1C is supplied to the coiling machine 40. That is, the continuous material 1C is supplied to the coiling machine 40 regardless of the presence or absence of scratches, and coiling is performed in step ST6.
  • Coiling machine 40 manufactures coil spring W1 based on a computer program stored in control unit 41 and shape data for control stored in a memory such as RAM 63. The operation of the coiling machine 40 is automated by the CPU 60.
  • the control unit 41 forms (coiling) the coil spring W1 while changing the positions of the first pin 47, the second pin 48, and the pitch tool 50 according to the shape data of the coil spring.
  • the shape data is, for example, the coil diameter, pitch, number of turns, coil length, and the like.
  • the continuous material 1C is continuously moved by the material feed roller 45 in the direction indicated by the arrow F1.
  • the continuous material 1 ⁇ / b> C moves from the tip 46 a of the material guide 46 toward the first pin 47.
  • the continuous material 1C is bent in an arc shape by the first pin 47 and the second pin 48 with the tip 46a of the material guide 46 as a starting point of bending.
  • circular arc part 1D is shape
  • step ST7 in FIG. 6 it is determined whether or not the molded coil spring is damaged. That is, it is determined based on the position information of the wound sent from the storage means 44 whether or not the coil spring is formed by the scratched portion of the continuous material 1C. If it is determined in step ST7 that the coil spring W1 is not scratched (coil spring without scratch) ("NO" in step ST7), the process proceeds to step ST8.
  • the wound-free coil spring is a coil spring formed by a portion having no scratch in the continuous material 1C.
  • step ST8 the scratch-free coil spring W1 is sent to the next step by the transport unit 91 including a conveyor or the like in the sorting unit 90 shown in FIG.
  • the next process is, for example, a strain relief annealing process, a setting process, a shot peening process, or the like.
  • the conveyor of the conveyance unit 91 continuously conveys the coil spring W1 in the direction indicated by the arrow F2.
  • step ST7 If it is determined in step ST7 that the coil spring is flawed (coil spring having a flaw) ("YES" in step ST7), the process proceeds to step ST9.
  • the wound coil spring is a coil spring formed by a scratched portion of the continuous material 1C.
  • step ST9 in the sorting unit 90, the wound coil spring W2 is sent, for example, by the robot 92 to the receiving unit for the recycling process.
  • the robot 92 can hold the coil spring W ⁇ b> 2 by a chuck 94 provided at the tip of the arm 93.
  • FIG. 8 shows a sorting unit 90A having a sorting mechanism 95 as another example of the sorting unit.
  • the sorting mechanism 95 sorts the wound-free coil spring W1 and the scratched coil spring W2.
  • the sorting unit 90 ⁇ / b> A includes a first transport unit 96 and a second transport unit 97.
  • the wound-free coil spring W1 moves through the first transport unit 96.
  • the wound coil spring W ⁇ b> 2 moves to the second transport unit 97.
  • the sorting mechanism 95 has a movable member 99.
  • the movable member 99 is switched between the first position P1 and the second position P2 by the actuator 98.
  • the movable member 99 moves to the first position P1 when the coiled coil spring is not damaged.
  • the movable member 99 switches to the second position P2 when the coil spring is damaged.
  • step ST ⁇ b> 8 the coil spring W ⁇ b> 1 is sent to the first transport unit 96.
  • the movable member 99 moves to the second position P2.
  • step ST9 the wound coil spring W2 passes through the second transport unit 97 and is carried into a collection box 100 as a receiving unit for recycling processing.
  • the coil spring is manufactured by the coiling machine 40 regardless of whether or not the long continuous material 1C is damaged. For this reason, a coil spring can be manufactured efficiently compared with the case where the production line is stopped and the flaw is corrected each time a flaw is detected as in the prior art. In particular, it is effective in suppressing a reduction in the productivity of the coil spring when a continuous material with relatively many scratches must be used.
  • the method for manufacturing the coil spring according to the present embodiment includes the following steps automated by the control unit 41.
  • (1) The continuous material 1C placed on the material supply unit 31 is moved toward the flaw detector 33, (2) The flaw detector 33 detects the presence or absence of scratches on the continuous material 1C (flaw detection process), (3) When it is detected that the continuous material 1C has a flaw, the position of the flaw is stored in the storage means (memory) 44 of the control unit 41, (4)
  • the continuous material 1C that has passed through the flaw detector 33 is supplied to the coiling machine 40 regardless of the presence or absence of scratches, and a coil spring is formed, (5) Identifying a wound-free coil spring formed by a portion having no scratch on the continuous material 1C and a wound coil spring formed by a portion having a scratch on the continuous material 1C; (6)
  • the wound coil spring is sent to a receiving portion (receiving portion for recycling or the like) different from the conveying portion for the wound spring without scratch.
  • FIG. 9 is a flowchart showing the manufacturing process of the coil spring.
  • the coil spring manufacturing apparatus used in this manufacturing process is the same as the coil spring manufacturing apparatus 30 shown in FIGS.
  • step ST 9 is common to steps ST1 to ST5 of the manufacturing process of the first embodiment shown in FIG. 6 from step ST1 to step ST5.
  • step ST ⁇ b> 1 in FIG. 9 the continuous material 1 ⁇ / b> C placed on the material supply unit 31 (shown in FIG. 3) is supplied to the flaw detector 33.
  • step ST2 it is inspected whether or not the surface of the continuous material 1C is flawed. If a flaw is detected (“YES” in step ST3), the process proceeds to step ST4.
  • the position of the flaw position information in the length direction of the continuous material 1C
  • step ST5 the continuous material 1C is supplied to the coiling machine 40.
  • step ST10 is followed by step ST10.
  • step ST10 in FIG. 9 it is determined whether or not the continuous material 1C supplied to the coiling machine 40 is damaged. If it is determined that the continuous material 1C is not damaged ("NO” in step ST10), the process proceeds to step ST11. When it is determined that the continuous material 1C has a scratch (“YES” in step ST10), the process proceeds to step ST12.
  • the coiling machine 40 forms a coil spring W1 having a normal shape using the continuous material 1C having no scratch.
  • the coil spring W1 having a normal shape is a coil spring having a predetermined coil diameter, pitch, coil length, and the like.
  • FIG. 10 shows an example of a coil spring W1 having a normal shape. Since the operation of the coiling machine 40 when forming the normal coil spring W1 is the same as that of the first embodiment, the description thereof is omitted.
  • the coiling machine 40 forms the deformed coil spring W3 using the continuous material 1C having scratches.
  • the deformed coil spring W3 is a coil spring that clearly differs in shape from a normal coil spring.
  • the deformed coil spring W3 has a shape that can be distinguished from a normal coil spring W1 by visual observation.
  • the control unit 41 controls the timing of cutting the coil spring by the cutting tool 51 so that the number of turns of the deformed coil spring W3 is smaller than that of the normal coil spring W1.
  • the deformed coil spring W3 is formed by enlarging the coil diameter in the portion where the continuous material is scratched. For this reason, it is relieved that stress concentrates on a crack, and the danger that a continuous material will break during coiling is controlled. Further, when coiling a portion having a scratch on the continuous material, the number of turns may be reduced. As a result, the length of the wound coil spring to be disposed of is reduced, and the waste of the material spent on the wound coil spring can be reduced as much as possible.
  • the formed coil springs can be selected, for example, visually by an inspector in step ST13 in FIG.
  • a normal coil spring (coil spring W1 without damage) is sent to the next process.
  • the next process is, for example, a strain relief annealing process, a setting process, a shot peening process, or the like.
  • the deformed coil spring W3 is selected from the normal coil spring W1 by a robot (shown in FIG. 7) or a sorting mechanism 95 (shown in FIG. 8).
  • the deformed coil spring W3 is sent to a receiving part (such as a collection box) for disposal or recycling.
  • the structure and arrangement of elements constituting the coil spring manufacturing apparatus including a material supply unit for placing a continuous material such as a hoop material, a flaw detection device, a coiling machine, a control unit, and a sorting unit.
  • a material supply unit for placing a continuous material such as a hoop material
  • a flaw detection device such as a hoop material
  • a coiling machine such as a hoop material
  • a control unit such as a coiling machine
  • a control unit such as a sorting unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Wire Processing (AREA)

Abstract

This coil spring manufacturing device (30) includes a material supply part (31), a defect detecting device (33), a coiling machine (40), and a control unit (41). When a defect in a continuous material (1C) is detected by the defect detecting device (33), positional information about the defect is stored in a storage means (44) of the control unit (41). The continuous material (1C) is supplied to the coiling machine (40) regardless of the presence of defects, and coil springs are manufactured. The presence of defects in the continuous material (1C) supplied to the coiling machine (40) is determined on the basis of the defect position information stored in the control unit (41). In a sorting part, the shaped coil springs having defects are sorted out from defect-free coil springs. When a portion having a defect in the continuous material (1C) is coiled, shaping is performed such that the coil diameter and the number of turns are different from those of a typical coil spring.

Description

コイルばね製造装置と、コイルばねの製造方法Coil spring manufacturing apparatus and coil spring manufacturing method
 この発明は、長尺な連続材を用いてコイルばねを製造するコイルばね製造装置と、コイルばねの製造方法に関する。 The present invention relates to a coil spring manufacturing apparatus for manufacturing a coil spring using a long continuous material and a method for manufacturing the coil spring.
 コイルばねには様々の種類があり各種用途に使用されている。例えば車両の懸架装置にコイルばねが使用されている。日本の特開平11-197775号公報あるいは特開2013-226584号公報に、コイルばねの製造装置の例が開示されている。これらは芯金を有しないコイリングマシンである。この種のコイリングマシンは、材料ガイドと、第1ピンと、第2ピンと、ピッチツールと、制御部とを有している。前記材料ガイドの先端から送り出されたコイルばねの材料が、前記第1ピンと第2ピンとによって円弧状に曲げられる。さらにこのコイルばねは前記ピッチツールによってピッチ付けが行なわれる。前記第1ピンと第2ピンの位置は、前記制御部に格納されたコンピュータプログラムと、コイルばねの形状に応じた制御用データなどに基いて制御される。 There are various types of coil springs and they are used for various purposes. For example, a coil spring is used in a vehicle suspension system. Japanese Patent Application Laid-Open No. 11-197775 or Japanese Patent Application Laid-Open No. 2013-226484 discloses an example of a coil spring manufacturing apparatus. These are coiling machines that do not have a cored bar. This type of coiling machine includes a material guide, a first pin, a second pin, a pitch tool, and a control unit. The material of the coil spring fed from the tip of the material guide is bent into an arc shape by the first pin and the second pin. Further, the coil spring is pitched by the pitch tool. The positions of the first pin and the second pin are controlled based on a computer program stored in the control unit, control data corresponding to the shape of the coil spring, and the like.
 コイルばねの材料である連続材(ばね鋼からなる素線)は、コイリングマシンに供給される前に、引き抜き加工と熱処理が行われるのが通例である。前記引き抜き加工は、ダイスによって行われる。前記熱処理は、焼入れや焼戻しなどである。長尺な連続材は、運搬や保管に便利なように、フープ状に巻かれている。多くのコイルばねを1つの連続材から製造することができる。フープ状の連続材は材料供給部に載置されている。このフープ状の連続材が、前記材料供給部からコイリングマシンに向けて連続的に供給される。そしてコイリングマシンによって、所定のコイル径、ピッチ、巻数のコイルばねが成形される。連続材を用いるコイリングマシンは、コイルばねを能率良く生産することができる。 The continuous material (element wire made of spring steel), which is the material of the coil spring, is usually subjected to drawing and heat treatment before being supplied to the coiling machine. The drawing process is performed by a die. The heat treatment is quenching or tempering. The long continuous material is wound in a hoop shape so that it is convenient for transportation and storage. Many coil springs can be manufactured from one continuous material. The hoop-like continuous material is placed on the material supply unit. The hoop-like continuous material is continuously supplied from the material supply unit toward the coiling machine. A coil spring having a predetermined coil diameter, pitch, and number of turns is formed by the coiling machine. A coiling machine using a continuous material can efficiently produce a coil spring.
特開平11-197775号公報Japanese Patent Laid-Open No. 11-197775 特開2013-226584号公報JP 2013-226484 A
 コイルばねの材料である連続材は、コイルばねを製造する工場に納入される前に傷が生じている可能性がある。連続材に生じている傷は、渦電流を利用する探傷装置によって、引抜き加工前に発見することができる。引抜き加工前に傷が発見された場合、引き抜き加工が停止される。そして傷がある個所を研磨等によって修正したのち、引き抜き加工が再開される。傷が少ない良質な連続材の場合には特に大きな問題は生じない。しかし傷が生じている頻度が比較的多い連続材の場合、傷を修正するたびに生産ラインが停止する。このためコイルばねの生産効率が大幅に低下してしまう。 The continuous material that is the material of the coil spring may be damaged before being delivered to the factory that manufactures the coil spring. A flaw occurring in the continuous material can be detected before the drawing process by a flaw detection apparatus using an eddy current. If scratches are found before the drawing process, the drawing process is stopped. Then, after correcting the damaged part by polishing or the like, the drawing process is resumed. In the case of a high-quality continuous material with few scratches, no particular problem arises. However, in the case of a continuous material with a relatively high frequency of scratches, the production line stops every time the scratches are corrected. For this reason, the production efficiency of the coil spring is greatly reduced.
 本発明の目的は、連続材に傷があったとしても、コイルばねの生産効率が低下することを抑制できるコイルばね製造装置と、コイルばねの製造方法を提供することにある。 An object of the present invention is to provide a coil spring manufacturing apparatus and a coil spring manufacturing method capable of suppressing a reduction in the production efficiency of the coil spring even if the continuous material is damaged.
 1つの実施形態に係るコイルばね製造装置は、材料供給部と、探傷装置と、記憶手段と、コイリングマシンと、選別部とを具備している。コイルばねの材料である連続材が前記材料供給部に載置される。前記探傷装置は、前記材料供給部から供給される前記連続材の傷の有無を検出する。前記記憶手段は、前記探傷装置によって傷が検出された場合に、その傷の位置情報を記憶する。前記コイリングマシンは、前記探傷装置を通った前記連続材を、傷の有無にかかわらずコイリングすることによりコイルばねを成形する。前記選別部は、前記連続材の傷が無い部分によって成形された傷無しコイルばねと、前記連続材の傷が有る部分によって成形された傷有りコイルばねとを、前記記憶手段に記憶された前記位置情報に基いて選別する。 The coil spring manufacturing apparatus according to one embodiment includes a material supply unit, a flaw detection device, a storage unit, a coiling machine, and a sorting unit. A continuous material that is a material of the coil spring is placed on the material supply unit. The flaw detection apparatus detects the presence or absence of a flaw in the continuous material supplied from the material supply unit. The storage means stores position information of a flaw when a flaw is detected by the flaw detection apparatus. The coiling machine forms a coil spring by coiling the continuous material that has passed through the flaw detection apparatus regardless of the presence or absence of scratches. The selecting unit stores a wound-free coil spring formed by a portion having no scratch on the continuous material and a wound coil spring formed by a portion having a scratch on the continuous material stored in the storage unit. Sort based on location information.
 前記選別部は、前記傷無しコイルばねと前記傷有りコイルばねとを仕分けるロボットを備えていてもよい。前記選別部は、前記傷無しコイルばねと前記傷有りコイルばねとを振り分ける仕分け機構を有してもよい。、前記仕分け機構は、前記傷無しコイルばねを第1の搬送部に向けて移動させ、前記傷有りコイルばねを第2の搬送部に向けて移動させてもよい。 The sorting unit may include a robot that sorts the wound-free coil spring and the wound-shaped coil spring. The sorting unit may include a sorting mechanism that sorts the wound-free coil spring and the scratched coil spring. The sorting mechanism may move the wound-free coil spring toward the first transport unit and move the wound coil spring toward the second transport unit.
 コイリングマシンの一例は、材料送りローラと、材料ガイドと、第1ピンと、第2ピンと、ピッチツールと、カッティングツールとを具備している。前記材料送りローラは、前記連続材を長さ方向に移動させる。前記材料ガイドに前記連続材が挿入される。前記材料ガイドの先端から送り出された前記連続材が、前記第1ピンに接する。前記第2ピンは、前記第1ピンに対し前記連続材の移動方向前側に配置されている。前記第1ピンと前記第2ピンとの間で、前記連続材を曲げることにより、円弧部が形成される。前記ピッチツールは、前記第2ピンに対し前記連続材の移動方向前側に配置されている。このピッチツールに前記連続材が接する。前記カッティングツールは、前記第2ピンと前記ピッチツールとの間に配置されている。前記カッティングツールとマンドレルとの間で前記連続材が切断される。 An example of a coiling machine includes a material feed roller, a material guide, a first pin, a second pin, a pitch tool, and a cutting tool. The material feed roller moves the continuous material in the length direction. The continuous material is inserted into the material guide. The continuous material fed from the front end of the material guide contacts the first pin. The second pin is disposed on the front side in the moving direction of the continuous material with respect to the first pin. An arc portion is formed by bending the continuous material between the first pin and the second pin. The pitch tool is disposed on the front side in the moving direction of the continuous material with respect to the second pin. The continuous material contacts the pitch tool. The cutting tool is disposed between the second pin and the pitch tool. The continuous material is cut between the cutting tool and a mandrel.
 前記コイリングマシンの前記第1ピンと前記第2ピンの位置は、それぞれ、前記記憶手段に記憶された前記位置情報に基いて制御される。例えば、前記連続材の傷が有る部分をコイリングするときのコイル径を、前記連続材の傷が無い部分をコイリングするときのコイル径よりも大きくなるように、前記第1ピンと前記第2ピンの位置が制御される。あるいは、前記連続材の傷が有る部分をコイリングするときの巻数を、前記連続材の傷が無い部分をコイリングするときの巻数よりも少なくなるように、前記カッティングツールが制御されてもよい。 The positions of the first pin and the second pin of the coiling machine are controlled based on the position information stored in the storage means. For example, the coil diameter when coiling a portion where the continuous material is scratched is larger than the coil diameter when coiling a portion where the continuous material is not scratched. The position is controlled. Alternatively, the cutting tool may be controlled so that the number of turns when coiling a portion where the continuous material is scratched is smaller than the number of turns when coiling a portion where the continuous material is not scratched.
 本発明によれば、コイルばねの材料(連続材)に多少の傷があってもコイルばねの生産効率が低下することを抑制でき、1つの連続材から多くのコイルばねを能率良く製造することができる。 ADVANTAGE OF THE INVENTION According to this invention, even if there are some cracks in the material (continuous material) of a coil spring, it can suppress that the production efficiency of a coil spring falls, and manufactures many coil springs efficiently from one continuous material. Can do.
図1は、連続材の引抜き加工を行う設備の一例を模式的に示す平面図である。FIG. 1 is a plan view schematically showing an example of equipment for drawing a continuous material. 図2は、連続材の熱処理を行う設備の一例を模式的に示す平面図である。FIG. 2 is a plan view schematically showing an example of equipment for performing heat treatment of a continuous material. 図3は、1つの実施形態に係るコイルばね製造装置を模式的に示す平面図である。FIG. 3 is a plan view schematically showing a coil spring manufacturing apparatus according to one embodiment. 図4は、図3に示されたコイルばね製造装置のコイリングマシンの一部の側面図である。4 is a side view of a part of the coiling machine of the coil spring manufacturing apparatus shown in FIG. 図5は、同コイルばね製造装置の制御部の電気的構成を表したブロック図である。FIG. 5 is a block diagram showing an electrical configuration of a control unit of the coil spring manufacturing apparatus. 図6は、コイルばねの製造工程の第1の実施形態を表したフローチャートである。FIG. 6 is a flowchart showing the first embodiment of the manufacturing process of the coil spring. 図7は、搬送部の一例を示す斜視図である。FIG. 7 is a perspective view illustrating an example of the transport unit. 図8は、選別部の一例を示す平面図である。FIG. 8 is a plan view illustrating an example of the selection unit. 図9は、コイルばねの製造工程の第2の実施形態を表したフローチャートである。FIG. 9 is a flowchart showing the second embodiment of the manufacturing process of the coil spring. 図10は、形状が互いに異なる2種類のコイルばねを示す正面図である。FIG. 10 is a front view showing two types of coil springs having different shapes.
 以下に1つの実施形態に係るコイルばね製造装置と、コイルばねの製造方法について、図1から図7を参照して説明する。 
 図1は連続材(ばね鋼からなる長尺な素線)1Aの引抜き加工を行う設備10を模式的に示している。引抜き加工を行う設備10は、材料供給部11と、ダイス部12と、巻取部13などを有している。材料供給部11には、フープ状に巻かれた連続材1Aが載置されている。巻取部13は、回転可能なドラムを有している。
A coil spring manufacturing apparatus and a method of manufacturing a coil spring according to one embodiment will be described below with reference to FIGS.
FIG. 1 schematically shows a facility 10 for drawing a continuous material (long strand made of spring steel) 1A. The equipment 10 that performs the drawing process includes a material supply unit 11, a die unit 12, a winding unit 13, and the like. A continuous material 1 </ b> A wound in a hoop shape is placed on the material supply unit 11. The winding unit 13 has a rotatable drum.
 材料供給部11に載置された連続材1Aは、フープ材と称されることがある。この連続材1Aは、巻きが解かれたときの全長が数百メートル(またはそれ以上)に及ぶことがある。材料供給部11から繰り出された連続材1Aがダイス部12を通る。これにより、連続材1Aの径が所定の減面率で減少する。減面率は例えば10~20%である。ダイス部12から引抜かれた連続材1Bが巻取部13のドラムに巻取られる。 The continuous material 1A placed on the material supply unit 11 may be referred to as a hoop material. The continuous material 1A may have a total length of several hundred meters (or more) when unwound. The continuous material 1 </ b> A fed out from the material supply unit 11 passes through the die unit 12. As a result, the diameter of the continuous material 1A decreases at a predetermined area reduction rate. The area reduction rate is, for example, 10 to 20%. The continuous material 1 </ b> B pulled out from the die portion 12 is wound up on the drum of the winding portion 13.
 図2は、連続材1Bの熱処理のための設備20を模式的に示している。熱処理のための設備20は、材料供給部21と、焼入れ部22と、焼戻し部23と、巻取部24などを有している。材料供給部21には、フープ状に巻かれた連続材1Bが載置される。焼入れ部22によって、連続材1Bの高周波焼入が行われる。焼戻し部23において、連続材1Bの焼戻しが行われる。巻取部24は、焼戻された連続材1Cを巻取る。 FIG. 2 schematically shows equipment 20 for heat treatment of the continuous material 1B. The equipment 20 for heat treatment includes a material supply unit 21, a quenching unit 22, a tempering unit 23, a winding unit 24, and the like. A continuous material 1B wound in a hoop shape is placed on the material supply unit 21. Induction hardening of the continuous material 1B is performed by the quenching part 22. In the tempering unit 23, the continuous material 1B is tempered. The winding unit 24 winds the tempered continuous material 1C.
 材料供給部21から繰り出された連続材1Bは、焼入れ部22において、高周波誘導加熱によって焼入可能な温度に加熱される。加熱された直後の連続材1Bが、水などの冷却材によって急冷されることにより、連続材1Bに焼入組織が形成される。焼戻し部23において、連続材1Bが適当な温度に再加熱されたのち、徐々に冷却される。こうして焼戻された連続材1Cが巻取部24に巻き取られる。 The continuous material 1B fed out from the material supply unit 21 is heated to a quenchable temperature in the quenching unit 22 by high frequency induction heating. When the continuous material 1B immediately after being heated is rapidly cooled by a coolant such as water, a hardened structure is formed in the continuous material 1B. In the tempering part 23, after the continuous material 1B is reheated to an appropriate temperature, it is gradually cooled. The continuous material 1 </ b> C tempered in this way is wound up by the winding unit 24.
 図3は、1つの実施形態に係るコイルばね製造装置30を示している。コイルばね製造装置30は、材料供給部31と、直線機(straightener)32と、探傷装置33と、ガイドローラ34と、コイリングマシン40と、制御部41を含んでいる。材料供給部31には、コイルばねの材料であるフープ状の連続材1Cが載置される。直線機32は、連続材1Cがほぼ直線となるように形状を矯正する。探傷装置33は、連続材1Cの傷の有無を検出する。制御部41は、コイリングマシン40を制御する。1つの連続材1Cは多数のコイルばねを製造するに足る長さを有している。連続材1Cの表面には、何らかの原因により傷が生じている可能性がある。 FIG. 3 shows a coil spring manufacturing apparatus 30 according to one embodiment. The coil spring manufacturing apparatus 30 includes a material supply unit 31, a straightener 32, a flaw detection device 33, a guide roller 34, a coiling machine 40, and a control unit 41. A hoop-like continuous material 1 </ b> C that is a material of a coil spring is placed on the material supply unit 31. The straight line machine 32 corrects the shape so that the continuous material 1C is substantially straight. The flaw detector 33 detects the presence or absence of a flaw on the continuous material 1C. The control unit 41 controls the coiling machine 40. One continuous material 1C has a length sufficient to manufacture a large number of coil springs. There is a possibility that the surface of the continuous material 1C is scratched for some reason.
 材料供給部31から繰り出された連続材1Cが直線機32を通る。さらに探傷装置33を通り、ガイドローラ34を経てコイリングマシン40に向けて供給される。探傷装置33は、例えば渦電流を利用して連続材1Cの表面の傷の有無を検出する。探傷装置33として、渦電流方式に匹敵する信頼性を有する探傷手段があれば、それを用いてもよい。 The continuous material 1C fed from the material supply unit 31 passes through the linear machine 32. Further, the toner passes through the flaw detector 33 and is supplied toward the coiling machine 40 through the guide roller 34. The flaw detector 33 detects the presence or absence of a flaw on the surface of the continuous material 1C using, for example, eddy current. If there is a flaw detection device having reliability comparable to the eddy current method as the flaw detection device 33, it may be used.
 探傷装置33によって、連続材1Cに許容値を越える大きさあるいは深さの傷が発見されることがある。その場合、傷があった個所の位置(連続材1Cの長さ方向に関する位置情報)が制御部41の記憶手段(メモリ)44に記憶される。この連続材1Cは、傷の有無にかかわらずコイリングマシン40に供給されることにより、コイルばねW1が製造される。 The flaw detector 33 may detect a flaw having a size or depth exceeding the allowable value in the continuous material 1C. In that case, the position (position information regarding the length direction of the continuous material 1 </ b> C) where the scratch exists is stored in the storage means (memory) 44 of the control unit 41. The continuous material 1C is supplied to the coiling machine 40 regardless of the presence or absence of scratches, whereby the coil spring W1 is manufactured.
 コイリングマシン40は、連続材1Cを螺旋形に成形することにより、コイルばねW1を製造する。コイルばねW1の形態は様々である。例えば円筒コイルばねをはじめとして、たる形コイルばね、鼓形コイルばね、テーパコイルばね、不等ピッチコイルばね、マイナスピッチの部分を有するコイルばね等など、様々な形態のコイルばねであってもよい。 Coiling machine 40 manufactures coil spring W1 by forming continuous material 1C into a spiral shape. There are various forms of the coil spring W1. For example, various coil springs such as a cylindrical coil spring, a barrel coil spring, a drum coil spring, a taper coil spring, an unequal pitch coil spring, and a coil spring having a minus pitch portion may be used.
 図4は、コイリングマシン40の一部を模式的に表わしている。コイリングマシン40は、複数の材料送りローラ(フィードローラ)45と、材料ガイド46と、第1ピン47と、第2ピン48とを有している。材料送りローラ45は、コイルばねの材料である連続材1Cを、矢印F1で示す方向(連続材1Cの長さ方向)に移動させる。材料ガイド46に連続材1Cが挿入される。第1ピン47には、材料ガイド46の先端46aから送り出された連続材1Cが最初に接する。第2ピン48には、第1ピン47によって曲げられた連続材1Cが接する。第1ピン47と第2ピン48とは、それぞれ、軸を中心に回転自在なローラ部材でもよいし、回転しないピン部材であってもよい。 FIG. 4 schematically shows a part of the coiling machine 40. The coiling machine 40 includes a plurality of material feed rollers (feed rollers) 45, a material guide 46, a first pin 47, and a second pin 48. The material feed roller 45 moves the continuous material 1C, which is a material of the coil spring, in the direction indicated by the arrow F1 (the length direction of the continuous material 1C). The continuous material 1 </ b> C is inserted into the material guide 46. The continuous material 1 </ b> C sent out from the tip 46 a of the material guide 46 first comes into contact with the first pin 47. The continuous material 1 </ b> C bent by the first pin 47 is in contact with the second pin 48. Each of the first pin 47 and the second pin 48 may be a roller member that is rotatable about an axis, or may be a pin member that does not rotate.
 コイリングマシン40は、ピッチツール50と、カッティングツール51と、マンドレル52などを有している。ピッチツール50は、第2ピン48に対して連続材1Cの移動方向前側に配置されている。第2ピン48によって曲げられた連続材1Cがピッチツール50に接することにより、コイルばねのピッチ付けがなされる。カッティングツール51は刃部51aを有している。カッティングツール51がマンドレル52に向かって矢印Z1(図4に示す)で示す方向に移動する。これにより、マンドレル52の受け刃52aと刃部51aとの間で連続材1Cが切断(剪断)される。 The coiling machine 40 includes a pitch tool 50, a cutting tool 51, a mandrel 52, and the like. The pitch tool 50 is disposed on the front side in the moving direction of the continuous material 1 </ b> C with respect to the second pin 48. When the continuous material 1C bent by the second pin 48 contacts the pitch tool 50, the coil spring is pitched. The cutting tool 51 has a blade part 51a. The cutting tool 51 moves toward the mandrel 52 in the direction indicated by the arrow Z1 (shown in FIG. 4). Accordingly, the continuous material 1C is cut (sheared) between the receiving blade 52a of the mandrel 52 and the blade portion 51a.
 図5は、制御部41等の電気的構成を示すブロック図である。制御部41はコイリングマシン40を制御する。制御部41は、コントローラとして機能するCPU(Central Processing Unit)60を備えている。CPU60に、バスライン61を介してROM(Read Only Memory)62、RAM(Random Access Memory)63、通信インタフェース部64、表示/操作用ドライバ65、材料送り用ドライバ66、第1ピン移動用ドライバ67、第2ピン移動用ドライバ68、ピッチツール用ドライバ69、カッティング用ドライバ70などが接続されている。 FIG. 5 is a block diagram showing an electrical configuration of the control unit 41 and the like. The control unit 41 controls the coiling machine 40. The control unit 41 includes a CPU (Central Processing Unit) 60 that functions as a controller. The CPU 60 is connected to a ROM (Read Only Memory) 62, a RAM (Random Access Memory) 63, a communication interface unit 64, a display / operation driver 65, a material feed driver 66, a first pin moving driver 67 via a bus line 61. A second pin moving driver 68, a pitch tool driver 69, a cutting driver 70, and the like are connected.
 ROM62には、CPU60を制御するためのプログラムや各種の固定的データが格納されている。RAM63は、コイルばねを成形するのに必要な各種データや、記憶手段44としてのメモリを備えている。記憶手段44には、探傷装置33によって検出された連続材1Cの傷の位置情報などが記憶される。通信インタフェース部64は、通信回線を介して外部機器との間で行なうデータ通信を制御する。表示/操作用ドライバ65は、表示操作部71を制御する。表示操作部71を操作することにより、コイリングに必要な情報をRAM63等のメモリに格納することができる。 The ROM 62 stores a program for controlling the CPU 60 and various fixed data. The RAM 63 includes various data necessary for forming the coil spring and a memory as the storage unit 44. The storage unit 44 stores the position information of the flaws of the continuous material 1C detected by the flaw detector 33. The communication interface unit 64 controls data communication performed with an external device via a communication line. The display / operation driver 65 controls the display operation unit 71. By operating the display operation unit 71, information necessary for coiling can be stored in a memory such as the RAM 63.
 材料送り用ドライバ66は、材料送りローラ45を回転させるためのモータ80を制御する。第1ピン移動用ドライバ67は、第1ピン47を駆動するためのアクチュエータ81を制御する。第2ピン移動用ドライバ68は、第2ピン48を駆動するためのアクチュエータ82を制御する。ピッチツール用ドライバ69は、ピッチツール50を駆動するためのアクチュエータ83を制御する。カッティング用ドライバ70は、カッティングツール51を駆動するためのアクチュエータ84を制御する。 The material feed driver 66 controls a motor 80 for rotating the material feed roller 45. The first pin moving driver 67 controls an actuator 81 for driving the first pin 47. The second pin moving driver 68 controls an actuator 82 for driving the second pin 48. The pitch tool driver 69 controls an actuator 83 for driving the pitch tool 50. The cutting driver 70 controls an actuator 84 for driving the cutting tool 51.
 制御部41はCPU60を含んでいる。この制御部41は、材料送りローラ45の回転を制御する制御回路と、第1ピン47および第2ピン48の位置を制御する制御回路と、ピッチツール50の位置を制御する制御回路と、カッティングツール51を制御する制御回路を含んでいる。制御部41は、コイルばねの形状データに応じて、第1ピン47と第2ピン48とピッチツール50のそれぞれの位置が変化するように、アクチュエータ81,82,83を制御する。前記形状データは、例えばコイル径やピッチ、巻数、コイル長さであり、制御部41に入力されている。制御部41には、通信インタフェース部64を介してパーソナルコンピュータ85を接続することが可能である。パーソナルコンピュータ85は、必要に応じて着脱可能な記憶媒体86を備えている。 The control unit 41 includes a CPU 60. The control unit 41 includes a control circuit that controls the rotation of the material feed roller 45, a control circuit that controls the positions of the first pin 47 and the second pin 48, a control circuit that controls the position of the pitch tool 50, and cutting. A control circuit for controlling the tool 51 is included. The control unit 41 controls the actuators 81, 82, and 83 so that the positions of the first pin 47, the second pin 48, and the pitch tool 50 change according to the shape data of the coil spring. The shape data is, for example, the coil diameter, pitch, number of turns, and coil length, and is input to the control unit 41. A personal computer 85 can be connected to the control unit 41 via the communication interface unit 64. The personal computer 85 includes a storage medium 86 that can be attached and detached as necessary.
 次に、コイルばねの製造工程の第1の実施形態について、図6のフローチャートを参照して説明する。 
 図6中のステップST1において、連続材1Cが、直線機32を通って探傷装置33に供給される。この連続材1Cは、材料供給部31(図3に示す)に載置されている。ステップST2において、連続材1Cが探傷装置33を通る。この連続材1Cの表面に許容値を越える大きさあるいは深さの傷が有るか否かが探傷装置33によって検査される。傷が検出されない場合(ステップST3で“NO”)には、ステップST5に飛ぶ。
Next, a first embodiment of the manufacturing process of the coil spring will be described with reference to the flowchart of FIG.
In step ST <b> 1 in FIG. 6, the continuous material 1 </ b> C is supplied to the flaw detector 33 through the linear machine 32. The continuous material 1C is placed on a material supply unit 31 (shown in FIG. 3). In step ST <b> 2, the continuous material 1 </ b> C passes through the flaw detector 33. The flaw detector 33 inspects whether or not the surface of the continuous material 1C has a scratch having a size or depth exceeding the allowable value. If no flaw is detected (“NO” in step ST3), the process jumps to step ST5.
 許容値を越える傷が検出された場合(ステップST3で“YES”)、ステップST4に移行する。ステップST4では、検出された傷の位置(連続材1Cの長さ方向の位置)が制御部41の記憶手段44に記憶され、ステップST5に移る。 When a scratch exceeding the allowable value is detected (“YES” in step ST3), the process proceeds to step ST4. In step ST4, the position of the detected scratch (position in the length direction of the continuous material 1C) is stored in the storage means 44 of the control unit 41, and the process proceeds to step ST5.
 ステップST5では、連続材1Cがコイリングマシン40に供給される。すなわち連続材1Cは、傷の有無にかかわらずコイリングマシン40に供給され、ステップST6においてコイリングが行われる。 In step ST5, the continuous material 1C is supplied to the coiling machine 40. That is, the continuous material 1C is supplied to the coiling machine 40 regardless of the presence or absence of scratches, and coiling is performed in step ST6.
 コイリングマシン40は、制御部41に格納されたコンピュータプログラムと、RAM63等のメモリに記憶された制御用の形状データに基いて、コイルばねW1を製造する。コイリングマシン40の動作はCPU60によって自動化されている。制御部41は、コイルばねの形状データに応じて、第1ピン47と第2ピン48とピッチツール50のそれぞれの位置を変化させながら、コイルばねW1の成形(コイリング)を行う。形状データは例えばコイル径やピッチ、巻数、コイル長さなどである。 Coiling machine 40 manufactures coil spring W1 based on a computer program stored in control unit 41 and shape data for control stored in a memory such as RAM 63. The operation of the coiling machine 40 is automated by the CPU 60. The control unit 41 forms (coiling) the coil spring W1 while changing the positions of the first pin 47, the second pin 48, and the pitch tool 50 according to the shape data of the coil spring. The shape data is, for example, the coil diameter, pitch, number of turns, coil length, and the like.
 例えば図4に示されるように、連続材1Cが材料送りローラ45によって矢印F1で示す方向に連続的に移動する。連続材1Cは、材料ガイド46の先端46aから第1ピン47に向けて移動する。この連続材1Cは、材料ガイド46の先端46aを曲げの始点として、第1ピン47と第2ピン48とによって円弧状に曲がる。これにより、円弧部1Dが連続的に成形される。こうして1個分のコイルばねが成形されたら、カッティングツール51が作動することにより、コイルばねの後端、すなわち次に成形されるコイルばねの前端が切断される。 For example, as shown in FIG. 4, the continuous material 1C is continuously moved by the material feed roller 45 in the direction indicated by the arrow F1. The continuous material 1 </ b> C moves from the tip 46 a of the material guide 46 toward the first pin 47. The continuous material 1C is bent in an arc shape by the first pin 47 and the second pin 48 with the tip 46a of the material guide 46 as a starting point of bending. Thereby, circular arc part 1D is shape | molded continuously. When one coil spring is formed in this way, the cutting tool 51 is operated to cut the rear end of the coil spring, that is, the front end of the next formed coil spring.
 図6中のステップST7では、成形されたコイルばねに傷が有るか否かが判定される。すなわち、連続材1Cの傷の有る部分によって成形されたコイルばねであるか否かが、記憶手段44から送られる傷の位置情報に基いて判定される。ステップST7において、コイルばねW1に傷が無い(傷無しコイルばね)と判断された場合(ステップST7で“NO”)、ステップST8に移行する。傷無しコイルばねは、連続材1Cの傷の無い部分によって成形されたコイルばねである。 In step ST7 in FIG. 6, it is determined whether or not the molded coil spring is damaged. That is, it is determined based on the position information of the wound sent from the storage means 44 whether or not the coil spring is formed by the scratched portion of the continuous material 1C. If it is determined in step ST7 that the coil spring W1 is not scratched (coil spring without scratch) ("NO" in step ST7), the process proceeds to step ST8. The wound-free coil spring is a coil spring formed by a portion having no scratch in the continuous material 1C.
 ステップST8では、図7に示す選別部90において、傷無しコイルばねW1が、コンベア等を備えた搬送部91によって、次工程に送られる。ここで次工程とは、例えば歪取り焼鈍工程、セッチング工程、ショットピーニング工程などである。搬送部91のコンベアは、コイルばねW1を矢印F2で示す方向に連続的に搬送する。 In step ST8, the scratch-free coil spring W1 is sent to the next step by the transport unit 91 including a conveyor or the like in the sorting unit 90 shown in FIG. Here, the next process is, for example, a strain relief annealing process, a setting process, a shot peening process, or the like. The conveyor of the conveyance unit 91 continuously conveys the coil spring W1 in the direction indicated by the arrow F2.
 ステップST7において、コイルばねに傷が有る(傷有りコイルばね)と判断された場合(ステップST7で“YES”)、ステップST9に移行する。傷有りコイルばねは、連続材1Cの傷の有る部分によって成形されたコイルばねである。ステップST9では、選別部90において、傷有りコイルばねW2が、例えばロボット92によって、リサイクル処理のための受取部へ送られる。ロボット92は、アーム93の先端に設けられたチャック94によって、コイルばねW2を保持することができる。 If it is determined in step ST7 that the coil spring is flawed (coil spring having a flaw) ("YES" in step ST7), the process proceeds to step ST9. The wound coil spring is a coil spring formed by a scratched portion of the continuous material 1C. In step ST9, in the sorting unit 90, the wound coil spring W2 is sent, for example, by the robot 92 to the receiving unit for the recycling process. The robot 92 can hold the coil spring W <b> 2 by a chuck 94 provided at the tip of the arm 93.
 図8は、選別部の他の例として、仕分け機構95を備えた選別部90Aを示している。仕分け機構95は、傷無しコイルばねW1と、傷有りコイルばねW2とを振り分ける。選別部90Aは、第1の搬送部96と、第2の搬送部97とを有している。第1の搬送部96を傷無しコイルばねW1が移動する。第2の搬送部97には、傷有りコイルばねW2が移動する。仕分け機構95は可動部材99を有している。可動部材99は、アクチュエータ98によって、第1の位置P1と第2の位置P2とに切替わる。可動部材99は、コイリングされたコイルばねが傷無しの場合に、第1の位置P1に移動する。またこの可動部材99は、コイルばねが傷有りの場合に、第2の位置P2に切替る。 FIG. 8 shows a sorting unit 90A having a sorting mechanism 95 as another example of the sorting unit. The sorting mechanism 95 sorts the wound-free coil spring W1 and the scratched coil spring W2. The sorting unit 90 </ b> A includes a first transport unit 96 and a second transport unit 97. The wound-free coil spring W1 moves through the first transport unit 96. The wound coil spring W <b> 2 moves to the second transport unit 97. The sorting mechanism 95 has a movable member 99. The movable member 99 is switched between the first position P1 and the second position P2 by the actuator 98. The movable member 99 moves to the first position P1 when the coiled coil spring is not damaged. The movable member 99 switches to the second position P2 when the coil spring is damaged.
 例えばコイリングマシン40によって傷無しコイルばねW1が成形された場合(図6中のステップST7で“NO”)は、可動部材99が第1の位置P1にある。そしてステップST8において、コイルばねW1が第1の搬送部96に送られる。傷有りコイルばねW2の場合には(図6中のステップST7で“YES”)は、可動部材99が第2の位置P2に移動する。そしてステップST9において、傷有りコイルばねW2が第2の搬送部97を通って、リサイクル処理のための受取部としての回収箱100に搬入される。 For example, when the wound-free coil spring W1 is formed by the coiling machine 40 (“NO” in step ST7 in FIG. 6), the movable member 99 is at the first position P1. In step ST <b> 8, the coil spring W <b> 1 is sent to the first transport unit 96. In the case of the wound coil spring W2 (“YES” in step ST7 in FIG. 6), the movable member 99 moves to the second position P2. In step ST9, the wound coil spring W2 passes through the second transport unit 97 and is carried into a collection box 100 as a receiving unit for recycling processing.
 本実施形態のコイルばね製造装置30と、コイルばねの製造方法によれば、長尺な連続材1Cに傷が有るか否かにかかわらず、コイリングマシン40によってコイルばねが製造される。このため、従来のように傷が検出されるたびに生産ラインを止めて傷の修正を行っていた場合と比較して、コイルばねを能率良く製造することができる。特に、比較的傷が多い連続材を用いざるを得ない場合に、コイルばねの生産性が低下することを抑制する上で有効である。 According to the coil spring manufacturing apparatus 30 and the coil spring manufacturing method of the present embodiment, the coil spring is manufactured by the coiling machine 40 regardless of whether or not the long continuous material 1C is damaged. For this reason, a coil spring can be manufactured efficiently compared with the case where the production line is stopped and the flaw is corrected each time a flaw is detected as in the prior art. In particular, it is effective in suppressing a reduction in the productivity of the coil spring when a continuous material with relatively many scratches must be used.
 以上説明したように本実施形態のコイルばねの製造方法は、制御部41によって自動化された下記の工程を含んでいる。 
(1)材料供給部31に載置された連続材1Cを探傷装置33に向けて移動させ、 
(2)連続材1Cの傷の有無を探傷装置33によって検出し(探傷工程)、 
(3)連続材1Cに傷が有ることが検出された場合、その傷の位置を制御部41の記憶手段(メモリ)44に記憶し、 
(4)探傷装置33を通った連続材1Cを傷の有無にかかわらずコイリングマシン40に供給してコイルばねを成形し、 
(5)連続材1Cの傷が無い部分によって成形された傷無しコイルばねと、連続材1Cの傷が有る部分によって成形された傷有りコイルばねとを識別し、 
(6)傷有りコイルばねは、傷無しコイルばねのための搬送部とは異なる受取部(リサイクル等のための受取部)に送る。
As described above, the method for manufacturing the coil spring according to the present embodiment includes the following steps automated by the control unit 41.
(1) The continuous material 1C placed on the material supply unit 31 is moved toward the flaw detector 33,
(2) The flaw detector 33 detects the presence or absence of scratches on the continuous material 1C (flaw detection process),
(3) When it is detected that the continuous material 1C has a flaw, the position of the flaw is stored in the storage means (memory) 44 of the control unit 41,
(4) The continuous material 1C that has passed through the flaw detector 33 is supplied to the coiling machine 40 regardless of the presence or absence of scratches, and a coil spring is formed,
(5) Identifying a wound-free coil spring formed by a portion having no scratch on the continuous material 1C and a wound coil spring formed by a portion having a scratch on the continuous material 1C;
(6) The wound coil spring is sent to a receiving portion (receiving portion for recycling or the like) different from the conveying portion for the wound spring without scratch.
 次に、コイルばねの製造工程の第2の実施形態について、図9と図10を参照して説明する。図9はコイルばねの製造工程を示すフローチャートである。この製造工程で使用するコイルばね製造装置は、図3~図5に示すコイルばね製造装置30と同様である。 Next, a second embodiment of the coil spring manufacturing process will be described with reference to FIGS. FIG. 9 is a flowchart showing the manufacturing process of the coil spring. The coil spring manufacturing apparatus used in this manufacturing process is the same as the coil spring manufacturing apparatus 30 shown in FIGS.
 図9中のステップST1からステップST5までは、図6に示された第1の実施形態の製造工程のステップST1~ST5と共通である。図9中のステップST1において、材料供給部31(図3に示す)に載置されている連続材1Cが探傷装置33に供給される。ステップST2において、連続材1Cの表面に傷が有るか否かが検査される。傷が検出された場合(ステップST3で“YES”)、ステップST4に移行する。そして傷の位置(連続材1Cの長さ方向の位置情報)が制御部41の記憶手段44に記憶され、ステップST5に移る。ステップST5では、連続材1Cがコイリングマシン40に供給される。ステップST5の後にステップST10が続く。 9 is common to steps ST1 to ST5 of the manufacturing process of the first embodiment shown in FIG. 6 from step ST1 to step ST5. In step ST <b> 1 in FIG. 9, the continuous material 1 </ b> C placed on the material supply unit 31 (shown in FIG. 3) is supplied to the flaw detector 33. In step ST2, it is inspected whether or not the surface of the continuous material 1C is flawed. If a flaw is detected (“YES” in step ST3), the process proceeds to step ST4. The position of the flaw (position information in the length direction of the continuous material 1C) is stored in the storage means 44 of the control unit 41, and the process proceeds to step ST5. In step ST5, the continuous material 1C is supplied to the coiling machine 40. Step ST10 is followed by step ST10.
 図9中のステップST10では、コイリングマシン40に供給された連続材1Cに傷が有るか否かが判断される。連続材1Cに傷が無いと判断された場合(ステップST10で“NO”)は、ステップST11に移行する。連続材1Cに傷が有ると判断された場合(ステップST10で“YES”)は、ステップST12に移行する。 In step ST10 in FIG. 9, it is determined whether or not the continuous material 1C supplied to the coiling machine 40 is damaged. If it is determined that the continuous material 1C is not damaged ("NO" in step ST10), the process proceeds to step ST11. When it is determined that the continuous material 1C has a scratch ("YES" in step ST10), the process proceeds to step ST12.
 ステップST11では、コイリングマシン40によって、傷の無い連続材1Cを用いて正常な形状のコイルばねW1が成形される。ここで正常な形状のコイルばねW1とは、所定のコイル径やピッチ、コイル長さ等のコイルばねである。図10に正常な形状のコイルばねW1の例が示されている。正常なコイルばねW1を成形する際のコイリングマシン40の動作は、第1の実施形態と同様であるため説明を省略する。 In step ST11, the coiling machine 40 forms a coil spring W1 having a normal shape using the continuous material 1C having no scratch. Here, the coil spring W1 having a normal shape is a coil spring having a predetermined coil diameter, pitch, coil length, and the like. FIG. 10 shows an example of a coil spring W1 having a normal shape. Since the operation of the coiling machine 40 when forming the normal coil spring W1 is the same as that of the first embodiment, the description thereof is omitted.
 これに対しステップST12では、コイリングマシン40は、傷が有る連続材1Cを用いて、異形コイルばねW3が成形される。ここで異形コイルばねW3とは、正常なコイルばねとは明らかに形状が異なるコイルばねである。図10に示されるように、異形コイルばねW3は、目視によって正常なコイルばねW1と区別することができる形状とする。例えば異形コイルばねW3を成形する際には、正常なコイルばねW1のコイル径D1と比較して、異形コイルばねW3のコイル径D2が大きくなるように、第1ピン47と第2ピン48(図4に示す)の位置が制御部41によって制御される。あるいは、正常なコイルばねW1よりも異形コイルばねW3の巻数が少なくなるように、カッティングツール51によるコイルばね切断のタイミングが制御部41によって制御される。 On the other hand, in step ST12, the coiling machine 40 forms the deformed coil spring W3 using the continuous material 1C having scratches. Here, the deformed coil spring W3 is a coil spring that clearly differs in shape from a normal coil spring. As shown in FIG. 10, the deformed coil spring W3 has a shape that can be distinguished from a normal coil spring W1 by visual observation. For example, when the deformed coil spring W3 is formed, the first pin 47 and the second pin 48 (in order that the coil diameter D2 of the deformed coil spring W3 is larger than the coil diameter D1 of the normal coil spring W1. The position shown in FIG. Alternatively, the control unit 41 controls the timing of cutting the coil spring by the cutting tool 51 so that the number of turns of the deformed coil spring W3 is smaller than that of the normal coil spring W1.
 連続材の傷が有る部分がコイリングされると、場合によっては傷に応力が集中し、傷を起点として連続材が折れる可能性がある。しかし本実施形態では、連続材の傷が有る部分はコイル径を大きくして異形コイルばねW3を成形する。このため、傷に応力が集中することが緩和され、コイリング中に連続材が折損する危険が抑制される。また連続材の傷が有る部分をコイリングする際に、その巻数を少なくしてもよい。これにより、廃棄処分の対象となる傷有りコイルばねの長さが小さくなり、傷有りコイルばねに費やされる材料の無駄を極力少なくすることができる。 If coiled parts with continuous material flaws, stress may concentrate on the flaws in some cases, and the continuous material may break starting from the flaws. However, in the present embodiment, the deformed coil spring W3 is formed by enlarging the coil diameter in the portion where the continuous material is scratched. For this reason, it is relieved that stress concentrates on a crack, and the danger that a continuous material will break during coiling is controlled. Further, when coiling a portion having a scratch on the continuous material, the number of turns may be reduced. As a result, the length of the wound coil spring to be disposed of is reduced, and the waste of the material spent on the wound coil spring can be reduced as much as possible.
 成形されたコイルばねは、図9中のステップST13において、例えば検査員の目視によって選別することが可能である。正常なコイルばね(傷無しコイルばねW1)は、次工程に送られる。ここで次工程とは、例えば歪取り焼鈍工程、セッチング工程、ショットピーニング工程などである。あるいは、ロボット(図7に示す)や仕分け機構95(図8に示す)によって、異形コイルばねW3が正常なコイルばねW1と選別される。異形コイルばねW3は、廃棄あるいはリサイクルのための受取部(回収箱等)に送られる。 The formed coil springs can be selected, for example, visually by an inspector in step ST13 in FIG. A normal coil spring (coil spring W1 without damage) is sent to the next process. Here, the next process is, for example, a strain relief annealing process, a setting process, a shot peening process, or the like. Alternatively, the deformed coil spring W3 is selected from the normal coil spring W1 by a robot (shown in FIG. 7) or a sorting mechanism 95 (shown in FIG. 8). The deformed coil spring W3 is sent to a receiving part (such as a collection box) for disposal or recycling.
 本発明を実施するに当たり、フープ材等の連続材を載置する材料供給部や、探傷装置、コイリングマシン、制御部、選別部をはじめとして、コイルばね製造装置を構成する要素の構造や配置等の態様を必要に応じて種々に変更して実施できることは言うまでもない。また、傷の位置情報を記憶する記憶手段としては、制御部に内蔵されたメモリ以外に、各種の外部メモリ(外部記憶媒体)が使用されてもよい。 In carrying out the present invention, the structure and arrangement of elements constituting the coil spring manufacturing apparatus, including a material supply unit for placing a continuous material such as a hoop material, a flaw detection device, a coiling machine, a control unit, and a sorting unit. Needless to say, the embodiment of the present invention can be implemented with various modifications as required. In addition to the memory built in the control unit, various external memories (external storage media) may be used as storage means for storing the position information of the scratches.
 1C…連続材、W1,W2…コイルばね、W3…異形コイルばね、30…コイルばね製造装置、31…材料供給部、33…探傷装置、40…コイリングマシン、41…制御部、44…記憶手段、46…材料ガイド、47…第1ピン、48…第2ピン、50…ピッチツール、51…カッティングツール、52…マンドレル。 DESCRIPTION OF SYMBOLS 1C ... Continuous material, W1, W2 ... Coil spring, W3 ... Deformed coil spring, 30 ... Coil spring manufacturing apparatus, 31 ... Material supply part, 33 ... Flaw detection apparatus, 40 ... Coiling machine, 41 ... Control part, 44 ... Memory | storage means 46 ... Material guide 47 ... First pin 48 ... Second pin 50 ... Pitch tool 51 ... Cutting tool 52 ... Mandrel

Claims (9)

  1.  コイルばね(W1)(W2)の材料である連続材(1C)を載置する材料供給部(31)と、
     前記材料供給部(31)から供給される前記連続材(1C)の傷の有無を検出する探傷装置(33)と、
     前記探傷装置(33)によって傷が検出された場合にその傷の位置情報を記憶する記憶手段(44)と、
     前記探傷装置(33)を通った前記連続材(1C)を傷の有無にかかわらずコイリングすることによりコイルばねを成形するコイリングマシン(40)と、
     前記連続材(1C)の傷が無い部分によって成形された傷無しコイルばねと、前記連続材(1C)の傷が有る部分によって成形された傷有りコイルばねとを、前記記憶手段(44)に記憶された前記位置情報に基いて選別する選別部(90)(90A)と、
     を具備したことを特徴とするコイルばね製造装置。
    A material supply unit (31) for placing the continuous material (1C) which is a material of the coil spring (W1) (W2);
    A flaw detector (33) for detecting the presence or absence of scratches on the continuous material (1C) supplied from the material supply unit (31);
    When a flaw is detected by the flaw detector (33), storage means (44) for storing position information of the flaw,
    A coiling machine (40) for forming a coil spring by coiling the continuous material (1C) that has passed through the flaw detector (33) regardless of the presence or absence of scratches;
    The scratchless coil spring formed by a portion having no scratch on the continuous material (1C) and the wound coil spring formed by a portion having a scratch on the continuous material (1C) are stored in the storage means (44). Sorting unit (90) (90A) for sorting based on the stored position information;
    A coil spring manufacturing apparatus comprising:
  2.  請求項1に記載のコイルばね製造装置において、
     前記選別部(90)(90A)が前記傷無しコイルばねと前記傷有りコイルばねとを仕分けるロボット(92)を備えている。
    In the coil spring manufacturing apparatus according to claim 1,
    The sorting section (90) (90A) includes a robot (92) that sorts the wound-free coil spring and the wound coil spring.
  3.  請求項1に記載のコイルばね製造装置において、
     前記選別部(90)(90A)が前記傷無しコイルばねと前記傷有りコイルばねとを振り分ける仕分け機構(95)を有し、該仕分け機構(95)は、前記傷無しコイルばねを第1の搬送部(96)に向けて移動させ、前記傷有りコイルばねを第2の搬送部(97)に向けて移動させる。
    In the coil spring manufacturing apparatus according to claim 1,
    The sorting section (90) (90A) has a sorting mechanism (95) for sorting the coil spring without scratch and the coil spring with scratch, and the sorting mechanism (95) uses the coil spring without scratch as a first one. It moves toward the conveyance part (96), The said coil spring with a damage | wound is moved toward the 2nd conveyance part (97).
  4.  請求項1に記載のコイルばね製造装置において、
     前記コイリングマシン(40)が、
     前記連続材(1C)を長さ方向に移動させる材料送りローラ(45)と、
     前記連続材(1C)が挿入される材料ガイド(46)と、
     前記材料ガイド(46)の先端(46a)から送り出された前記連続材(1C)が接する第1ピン(47)と、
     前記第1ピン(47)に対し前記連続材(1C)の移動方向前側に配置され、前記第1ピン(47)との間で前記連続材(1C)を曲げることにより前記第1ピン(47)との間に円弧部(1D)を形成する第2ピン(48)と、
     前記第2ピン(48)に対し前記連続材(1C)の移動方向前側に配置され、前記連続材(1C)が接するピッチツール(50)と、
     前記第2ピン(48)と前記ピッチツール(50)との間に配置され、マンドレル(52)との間で前記連続材(1C)を切断するカッティングツール(51)と、
     を具備している。
    In the coil spring manufacturing apparatus according to claim 1,
    The coiling machine (40)
    A material feed roller (45) for moving the continuous material (1C) in the length direction;
    A material guide (46) into which the continuous material (1C) is inserted;
    A first pin (47) with which the continuous material (1C) fed from the tip (46a) of the material guide (46) contacts;
    The first pin (47) is disposed on the front side in the moving direction of the continuous material (1C) with respect to the first pin (47), and the first pin (47) is bent by bending the continuous material (1C) between the first pin (47). ) And a second pin (48) forming a circular arc portion (1D),
    A pitch tool (50) disposed on the front side of the continuous material (1C) with respect to the second pin (48) and in contact with the continuous material (1C);
    A cutting tool (51) disposed between the second pin (48) and the pitch tool (50) and cutting the continuous material (1C) with a mandrel (52);
    It has.
  5.  請求項4に記載のコイルばね製造装置において、
     前記コイリングマシン(40)は、前記連続材(1C)の傷が有る部分をコイリングするときのコイル径を、前記連続材(1C)の傷が無い部分をコイリングするときのコイル径よりも大きくなるよう前記第1ピン(47)と前記第2ピン(48)の位置を、前記記憶手段(44)に記憶された前記位置情報に基いて制御する。
    In the coil spring manufacturing apparatus according to claim 4,
    In the coiling machine (40), the coil diameter when coiling a portion of the continuous material (1C) with a scratch is larger than the coil diameter when coiling a portion of the continuous material (1C) without a scratch. The positions of the first pin (47) and the second pin (48) are controlled based on the position information stored in the storage means (44).
  6.  請求項4または5に記載のコイルばね製造装置において、
     前記コイリングマシン(40)は、前記連続材(1C)の傷が有る部分をコイリングするときの巻数を、前記連続材(1C)の傷が無い部分をコイリングするときの巻数よりも少なくなるように前記カッティングツール(51)を制御する。
    In the coil spring manufacturing apparatus according to claim 4 or 5,
    The coiling machine (40) is configured so that the number of turns when coiling a portion of the continuous material (1C) with a scratch is smaller than the number of turns when coiling a portion of the continuous material (1C) without a scratch. The cutting tool (51) is controlled.
  7.  材料供給部(31)から供給される連続材(1C)に傷が有るか否かを探傷装置(33)によって検出し、
     前記探傷装置(33)によって傷が検出された場合にその傷の位置情報を記憶手段(44)に記憶し、
     前記探傷装置(33)を通った前記連続材(1C)を傷の有無にかかわらずコイリングマシン(40)に供給してコイルばね(W1)(W2)を成形し、
     前記連続材(1C)の傷が無い部分によって成形された傷無しコイルばねと、前記連続材(1C)の傷が有る部分によって成形された傷有りコイルばねとを前記記憶手段(44)に記憶された前記位置情報に基いて選別し、
     前記傷有りコイルばねを前記傷無しコイルばねとは異なる受取部(100)に送ることを特徴とするコイルばねの製造方法。
    The flaw detector (33) detects whether the continuous material (1C) supplied from the material supply unit (31) is flawed,
    When a flaw is detected by the flaw detector (33), the position information of the flaw is stored in the storage means (44),
    The continuous material (1C) that has passed through the flaw detector (33) is supplied to a coiling machine (40) regardless of the presence or absence of a flaw to form a coil spring (W1) (W2),
    The storage means (44) stores a wound-free coil spring formed by a portion having no scratch on the continuous material (1C) and a wound coil spring formed by a portion having a scratch on the continuous material (1C). Sorting based on the location information,
    A method of manufacturing a coil spring, wherein the wound coil spring is sent to a receiving portion (100) different from the wound coil spring.
  8.  請求項7に記載のコイルばねの製造方法において、
     前記連続材(1C)の傷が有る部分を成形する際のコイル径を、前記連続材(1C)の傷が無い部分を成形する際のコイル径よりも大きくなるようにコイリングを行う。
    In the manufacturing method of the coil spring according to claim 7,
    The coiling is performed so that the coil diameter when forming a portion of the continuous material (1C) with a flaw is larger than the coil diameter when forming the portion of the continuous material (1C) without a flaw.
  9.  請求項7または8に記載のコイルばねの製造方法において、
     前記連続材(1C)の傷が有る部分をコイリングする際の巻数を、前記連続材(1C)の傷が無い部分をコイリングする際の巻数よりも少なくする。
    In the manufacturing method of the coil spring according to claim 7 or 8,
    The number of turns when coiling a portion of the continuous material (1C) with a scratch is made smaller than the number of turns when coiling a portion of the continuous material (1C) without a scratch.
PCT/JP2017/046239 2017-02-27 2017-12-22 Coil spring manufacturing device and coil spring manufacturing method WO2018154953A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017034897A JP6704867B2 (en) 2017-02-27 2017-02-27 Coil spring manufacturing apparatus and coil spring manufacturing method
JP2017-034897 2017-02-27

Publications (1)

Publication Number Publication Date
WO2018154953A1 true WO2018154953A1 (en) 2018-08-30

Family

ID=63252560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046239 WO2018154953A1 (en) 2017-02-27 2017-12-22 Coil spring manufacturing device and coil spring manufacturing method

Country Status (3)

Country Link
JP (1) JP6704867B2 (en)
TW (1) TWI658881B (en)
WO (1) WO2018154953A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109454184A (en) * 2018-11-17 2019-03-12 唐彬 A kind of spring circumferential direction deviation correcting device
CN109530587A (en) * 2018-11-17 2019-03-29 唐彬 A kind of spring axial direction deviation correcting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110328252B (en) * 2019-07-10 2021-01-08 江阴康瑞成型技术科技有限公司 Processing technology of high-strength and high-elasticity nozzle spring wire and processing technology of spring

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238621A (en) * 1991-01-08 1992-08-26 Sumitomo Metal Ind Ltd Device and method for manufacturing wire rod
JPH081267A (en) * 1994-06-22 1996-01-09 Daido Steel Co Ltd Production of spring material and production of spring
JP2005271081A (en) * 2004-03-10 2005-10-06 Fujii Seisakusho:Kk Working system of metallic wire (bar)
JP2012117612A (en) * 2010-12-01 2012-06-21 Nhk Spring Co Ltd Hollow coil spring and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007031514A1 (en) * 2007-07-06 2009-01-08 Wafios Ag Wire forming machine
DE102012204344B4 (en) * 2012-03-19 2016-01-21 Wafios Ag forming machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238621A (en) * 1991-01-08 1992-08-26 Sumitomo Metal Ind Ltd Device and method for manufacturing wire rod
JPH081267A (en) * 1994-06-22 1996-01-09 Daido Steel Co Ltd Production of spring material and production of spring
JP2005271081A (en) * 2004-03-10 2005-10-06 Fujii Seisakusho:Kk Working system of metallic wire (bar)
JP2012117612A (en) * 2010-12-01 2012-06-21 Nhk Spring Co Ltd Hollow coil spring and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109454184A (en) * 2018-11-17 2019-03-12 唐彬 A kind of spring circumferential direction deviation correcting device
CN109530587A (en) * 2018-11-17 2019-03-29 唐彬 A kind of spring axial direction deviation correcting device
CN109454184B (en) * 2018-11-17 2020-07-07 扬州中碟弹簧制造有限公司 Spring circumference deviation correcting device

Also Published As

Publication number Publication date
JP2018140399A (en) 2018-09-13
TWI658881B (en) 2019-05-11
TW201831242A (en) 2018-09-01
JP6704867B2 (en) 2020-06-03

Similar Documents

Publication Publication Date Title
WO2018154953A1 (en) Coil spring manufacturing device and coil spring manufacturing method
CN102388232B (en) Compression coil spring, and coil spring manufacturing device and manufacturing method
US11141775B2 (en) System, method and apparatus for manufacturing boiler tubes
EP2775364B1 (en) Steel tube production control method
CN102947694B (en) Defect occurrence source identification method
US20220314291A1 (en) Processing method of npr steel rebar coil
JP2008296244A (en) Apparatus for working steel rod
US7373797B2 (en) Method for bending workpieces
EP1707284B1 (en) Method for the production of defect-free calibrated steel bars
JP2008238246A (en) Method of manufacturing pure nickel pipe and pure nickel pipe
US20180071812A1 (en) Device for manufacturing coil spring and method for manufacturing coil spring
JP4506766B2 (en) U-bend pipe marking method and online finishing equipment
US20220234133A1 (en) Fixing a strip end segment of a metal strip coil to an adjacent strip winding
US10427226B2 (en) Traveling saw sample cut system
JP4038541B2 (en) Heat treatment method for steel wire
KR101528053B1 (en) Mandrel of coil box
JP6665538B2 (en) Steel wire drawing apparatus and steel wire drawing method
KR20240110982A (en) Robotic unit and method for controlling metal products moving in a device, and method for producing metal reels
JP6243873B2 (en) Continuous terminal manufacturing equipment
JPH08197245A (en) Welding method for metal strip and equipment therefor
JP2006095555A (en) Method for manufacturing cold-finished steel bar having excellent surface property
JP5317116B2 (en) Shearing method with twisted strip
KR20170074316A (en) Winding device and Rolling facilities having the same
JPH0711330A (en) Method for heat-treating metallic parts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17898230

Country of ref document: EP

Kind code of ref document: A1