WO2018154931A1 - Centrifugal pump - Google Patents
Centrifugal pump Download PDFInfo
- Publication number
- WO2018154931A1 WO2018154931A1 PCT/JP2017/044883 JP2017044883W WO2018154931A1 WO 2018154931 A1 WO2018154931 A1 WO 2018154931A1 JP 2017044883 W JP2017044883 W JP 2017044883W WO 2018154931 A1 WO2018154931 A1 WO 2018154931A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- suction
- discharge
- flow path
- side scroll
- pump body
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/06—Units comprising pumps and their driving means the pump being electrically driven
- F04D13/0646—Units comprising pumps and their driving means the pump being electrically driven the hollow pump or motor shaft being the conduit for the working fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/06—Units comprising pumps and their driving means the pump being electrically driven
- F04D13/0666—Units comprising pumps and their driving means the pump being electrically driven the motor being of the plane gap type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/426—Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
- F04D29/4273—Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps suction eyes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/426—Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
- F04D29/4293—Details of fluid inlet or outlet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/44—Fluid-guiding means, e.g. diffusers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/44—Fluid-guiding means, e.g. diffusers
- F04D29/445—Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/20—Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
- H02K5/203—Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/14—Structural association with mechanical loads, e.g. with hand-held machine tools or fans
Definitions
- the present invention relates to a centrifugal pump for circulating a cooling fluid, for example.
- the centrifugal pump using the axial gap type motor described above can be thinned, the flow path on the suction side forms a flow path that is orthogonal to the inside of the base, and the cross-sectional area of the flow path is uniform. Therefore, the flow path loss is high.
- a back yoke equipped with a coil that constitutes an axial gap motor is molded and formed in the base, so the thickness of the base tends to increase, and the cross-sectional area of the suction side flow path formed in the base Is not widely available. Further, since the suction side flow path flows into the pump chamber through the inside of the hollow fixed shaft of the impeller 4, it is necessary to form the suction side flow path across the back yoke in the radial direction.
- the present invention has been made to solve these problems.
- the object of the present invention is to reduce the thickness of the flow path from the suction flow path to the discharge flow path by using a radial gap type motor.
- Another object of the present invention is to provide a centrifugal pump that can efficiently dissipate heat generated by a coil without providing a special cooling structure.
- the present invention comprises the following arrangement.
- a centrifugal pump that rotationally drives an impeller with a radial gap type electric motor to suck fluid into the pump chamber from the outer peripheral side of the pump body and discharge the fluid from the pump chamber from the outer peripheral side of the pump main body, the base portion, A rotor shaft that is supported by standing upright with at least one end prevented from being attached to the base portion, an impeller that is rotatably attached to the rotor shaft, and a rotor magnet that is concentrically assembled to the impeller.
- a rotor a suction-side scroll passage that sucks fluid from the outer peripheral side of the impeller toward the radial center, and a discharge-side scroll passage that discharges fluid from the radial central portion of the impeller toward the outer periphery.
- a stator having a stator core formed with stator pole teeth disposed in a radial direction opposite to the rotor magnet is integrally assembled.
- a pump body wherein the rotor and the pump body are arranged concentrically about the rotor shaft, and the suction-side scroll passage and the discharge-side scroll passage formed in the pump body Are communicated with each other through a central flow path formed in the pump body and the impeller.
- the suction-side scroll flow path and the discharge-side scroll flow path formed in the pump main body communicate with each other via the central flow path formed in the pump main body and the impeller. Thinning can also be realized using a type motor. In addition, there is little flow path loss from the suction-side scroll flow path to the discharge-side flow path scroll, and the fluid passes so as to surround both ends of the stator core in the axial direction. Can do.
- the suction-side scroll flow path is partitioned so that a suction hole provided on the outer peripheral surface of the pump body and the fluid that has entered from the suction hole are guided toward the suction-side center hole while turning in the circumferential direction. It is preferable that a suction-side scroll groove is formed so that the groove depth becomes shallower from the suction hole toward the suction-side center hole. As a result, the fluid sucked into the pump body from the suction hole is guided toward the suction-side center hole while turning along the suction-side scroll groove, and the groove depth gradually decreases toward the suction-side center hole. The fluid is guided axially to the impeller side through the central flow path. At this time, the height of the pump chamber is unnecessary, and even if the pump chamber is thinned, the flow path is not lost.
- the suction-side scroll flow path is preferably formed between the suction-side scroll groove formed on one axial end surface of the pump body and the other base portion superimposed on the one axial end surface. .
- the axial height of the pump main body can be suppressed, the reduction in thickness can be promoted, and the pump main body can be assembled on the base portion so that it can be assembled.
- the discharge-side scroll channel includes a discharge-side center hole formed so as to communicate with the suction-side center hole via the center channel, and an outer periphery of the pump body while fluid swirls from the discharge-side center hole
- the fluid sucked into the discharge side center hole from the central flow path is pressurized by the rotation of the impeller and guided to the discharge side scroll groove where the groove depth gradually increases from the discharge side center hole toward the discharge hole.
- the fluid is discharged from the discharge port. At this time, the height of the pump chamber is unnecessary, and even if the pump chamber is thinned, the flow path is not lost.
- the discharge-side scroll flow path is formed between the discharge-side scroll groove formed on the other axial end surface of the pump body and one base portion superimposed on the other axial end surface.
- the axial height of the pump body can be suppressed, the reduction in thickness can be promoted, and the pump body can be assembled on the base portion so that it can be assembled.
- a shallow groove and a deep groove are combined so that the bottom of the groove is close to the suction side scroll flow path and the discharge side scroll flow path so that the fluid flow rate is uniform. It is preferable that As a result, the suction-side scroll groove and the discharge-side scroll groove formed by partitioning in the radial direction in the pump chamber are combined so that the shallow groove and the deep groove are close to each other so that the flow velocity of the fluid is uniform. Therefore, the pump chamber volume does not increase in the axial direction, it is possible to promote thinning, and the flow path loss from the suction port to the discharge port is minimized. The pump performance can be maintained.
- an annular portion to which the rotor is assembled and a blade portion to be assembled to the rotor shaft may be integrally formed.
- a centrifugal pump that can be thinned using a radial gap type motor has little flow loss from the suction flow path to the discharge flow path, and can efficiently dissipate the heat generated by the coil without providing a special cooling structure. Can be provided.
- FIG. 2 is a cross-sectional view in the direction of arrow XX in FIG. 1.
- FIG. 2 is a cross-sectional view in the direction of arrow YY in FIG. 1 and a top half view seen through the base portion. It is the suction side perspective view and discharge side perspective view of a pump main body.
- centrifugal pump that rotationally drives an impeller using a radial gap type inner rotor type motor
- a DC brushless motor is used as the inner rotor type motor.
- a centrifugal pump 1 is formed on the outer periphery of the pump body 2 by sucking fluid from a suction port 3 formed on the outer periphery of the pump body 2 by rotating the impeller 9 by a radial gap type electric motor M It discharges from the discharged outlet 4.
- a pair of plate-like base portions 5a and 5b are superposed so that both end faces of the resin-molded pump body 2 are sandwiched, and fixing bolts 6 are attached to the outer peripheral edge portions of the base portions 5a and 5b facing each other via the pump body 2. Are assembled together by screw fitting.
- One end of the rotor shaft 7 is raised and supported and fixed to one base portion 5a of the pair of base portions 5a and 5b.
- An impeller 9 is integrally assembled to the rotor shaft 7 via a sliding bearing 8.
- the impeller 9 is assembled integrally with the rotor shaft 7 by being secured to the other end of the rotor shaft 7 by a C-type retaining ring 7a via a thrust receiver 7b.
- the impeller 9 is integrally assembled with the rotor 13.
- the impeller 9 is integrally formed with an annular portion 9a that forms the central flow path 10a and a blade portion 9b that feeds fluid from the central portion toward the outer peripheral side.
- An annular back yoke 11 is attached to the outer peripheral surface of the annular portion 9a, and a rotor magnet 12 is integrally assembled to the outer peripheral side thereof by adhesion or insert molding.
- the rotor magnet 12 may be a magnet formed in a ring shape in advance or a magnet divided into a plurality of segments. Further, a stepped portion 9c is formed in the suction side opening of the annular portion 9a.
- the impeller 9 and the rotor 13 are integrally formed, for example, it is preferable that the impeller 9 and the rotor 13 are integrally formed with PPS (polyphenylene sulfide) resin or the like in consideration of durability and the like.
- a central flow path 10a (hollow hole) is formed around the connecting portion of the impeller 9 with the rotor shaft 7 along the axial direction.
- the central flow path 10a is formed so as to communicate with the central flow path 10b formed in the pump body 2. That is, the suction-side scroll flow path 14 that sucks fluid from the outer peripheral side of the impeller 9 toward the radial center, and the discharge-side scroll flow path 15 that discharges fluid from the central part of the impeller 9 toward the outer peripheral side in the radial direction. Are communicated with each other through the central flow paths 10a and 10b.
- a suction-side scroll flow path 14 that sucks fluid in a radial direction from the outer peripheral side of the impeller 9 toward the center portion of the pump chamber 16 is formed at one axial end portion 2 a of the pump body 2.
- the suction-side scroll channel 14 is overlapped with the suction-side scroll groove (concave portion) 14a formed in the axial one end 2a of the pump body 2 and the suction-side scroll groove 14a.
- the base portion 5b to be assembled.
- the axial direction one end part 2a is extended in the diameter direction inner side so that the annular part 9a of the impeller 9 may be extended,
- rip part 2c turning structure
- the lip portion 2c is disposed so as to mesh with the stepped portion 9c of the annular portion 9a.
- the inner peripheral surface of the lip portion 2c forms a central flow path 10b that communicates with the central flow path 10a.
- a discharge-side scroll passage 15 that discharges fluid in the radial direction from the center of the impeller 9 toward the outer peripheral side is formed at the other axial end 2 b of the pump body 2.
- the discharge-side scroll passage 15 is formed between a discharge-side scroll groove (concave portion) 15a formed in the other axial end 2b of the pump body 2 and the base portion 5a.
- the pump chamber 16 provided in the pump body 2 is formed by connecting the suction-side scroll flow path 14 and the discharge-side scroll flow path 15 with the central flow paths 10a and 10b.
- the suction-side scroll flow path 14 and the discharge-side scroll flow path 15 do not necessarily have to be formed between the axial end of the pump body 2 and the base portion, and are other members instead of the base portion. May be.
- a stator 17 is assembled to the pump body 2.
- the stator 17 includes a stator core 17c in which stator pole teeth 17b project radially from a radially inner side of the annular core back portion 17a.
- a coil 17d is wound around each stator pole tooth 17b.
- the pump body 2 is assembled to the base portions 5a and 5b with the stator pole teeth 17b facing the rotor magnet 12 in the radial direction.
- the discharge-side scroll flow path 15 communicates with the central flow paths 10b and 10a formed in the impeller 9.
- the suction-side scroll flow path 14 that sucks fluid from the outer peripheral side of the impeller 9 (annular portion 9a) toward the radial center portion, and the central portion of the impeller 9 (blade portion 9b). Since the discharge-side scroll flow path 15 that discharges fluid in the radial direction toward the outer peripheral side communicates with the pump main body 2 and the central flow paths 10b and 10a formed in the impeller 9, the radial gap type Thinning can be realized even using a motor.
- the passage loss from the suction-side scroll passage 14 to the discharge-side scroll passage 15 is small and the fluid passes so as to surround both end surfaces in the axial direction of the stator core 17c, the heat generation of the coil 17d is efficiently performed. It can dissipate heat well.
- FIG. 4A is a perspective view showing the axial one end 2a of the pump body 2, in which a fluid suction side scroll channel 14 is formed.
- the fluid that has entered from the suction hole 14b provided on the outer peripheral surface of the pump body 2 is guided toward the suction-side center hole 14c while turning in the circumferential direction.
- the suction-side scroll groove 14a is partitioned by a partition wall 14d, and is formed by turning so that the groove depth gradually decreases from the suction hole 14b toward the suction-side center hole 14c (lip portion 2c: see FIG. 3B). ing.
- FIG. 5B is a perspective view showing the other axial end 2b of the pump body 2, in which a fluid discharge side scroll channel 15 is formed.
- the fluid flowing in from the discharge-side center hole 15b through the central flow path 10a is guided to the discharge hole 15c provided on the outer peripheral surface of the pump body 2 while turning in the circumferential direction along the blade portion 9b of the impeller 9.
- the discharge-side scroll groove 15a is partitioned by a partition wall 15d, and is formed by turning so that the groove depth gradually increases from the discharge-side center hole 15b toward the discharge hole 15c.
- the fluid flowing into the discharge side center hole 15b from the central flow path 10a is pressurized by the rotation of the impeller 9 (blade portion 9b) and guided toward the outer peripheral surface of the pump body 2. That is, the pressurized fluid is sent while being swung along the discharge side scroll groove 15a in which the groove depth gradually increases from the discharge side central hole 15b toward the discharge hole 15c, and is discharged from the discharge port 4. At this time, even if the fluid of the pump body 2 is swung, the height of the pump chamber 16 is not required and even if the pump body 2 is thinned, the flow path is not lost.
- the axial end surface of the pump body 2 is preferably formed so that the grooves are arranged in a point-symmetric manner so that the flow velocity of the fluid flowing through the suction-side scroll groove 14a and the discharge-side scroll groove 15a is uniform. .
- the suction-side scroll groove 14a and the discharge-side scroll groove 15a are combined so that the shallow groove and the deep groove are close to the groove bottom on the axial end surface of the pump body 2. Is formed.
- the axial end surface of the pump body 2 is shallow so that the flow velocity of the fluid flowing through the suction-side scroll groove 14a and the discharge-side scroll groove 15a formed by being partitioned in the radial direction in the pump chamber 16 is uniform. Since the groove and the deep groove are formed in combination, the volume of the pump chamber 16 does not increase in the axial direction, and the reduction in thickness can be promoted. In addition, from the suction port 3 to the discharge port 4 The flow path loss can be reduced as much as possible, and the pump performance can be maintained.
- annular seal materials 18 and 19 are provided between the pair of base portions 5a and 5b that are superposed on the pump body 2. Thereby, the sealing performance of the fluid of the suction side scroll flow path 14 and the discharge side scroll flow path 15 can be improved.
- FIG. 2 when the electric motor is started, the impeller 9 assembled integrally with the rotor shaft 8 is rotationally driven. As a result, fluid is sucked from the suction port 3 through the suction-side scroll passage 14, and the fluid sucked into the pump chamber 16 from the suction hole 14b is guided to the suction-side scroll groove 14a and turns into the suction-side central hole 14c. (See FIG. 4A).
- the fluid is sent out from the suction side center hole 14c to the discharge side center hole 15b through the central flow paths 10b and 10a (see FIG. 3B).
- the fluid flowing into the discharge side center hole 15b from the central flow path 10a is guided toward the outer peripheral surface of the pump body 2 while turning the discharge side scroll groove 15a by the rotation of the impeller 9, and is discharged from the discharge side center hole 15b to the discharge side.
- Pressure is applied to the discharge hole 15c through the scroll flow path 15, and the liquid is discharged from the discharge port 4 (see FIG. 4B).
- a radial gap type electric motor is used to reduce the thickness of the coil 17d so that the passage loss from the suction-side scroll passage 14 to the discharge-side scroll passage 15 is small, and the heat generation of the coil 17d is exceptional.
- the centrifugal pump 1 that can efficiently dissipate heat.
- the impeller 9 assembled concentrically with the rotor shaft 8 as the center has the annular portion 9a and the blade portion 9b integrally formed of resin, but may be constituted by separate parts. Further, although the rotor shaft 8 is fixed and the rotor 13 and the impeller 9 are rotated, the rotor 13 and the impeller 9 may be rotated together with the rotor shaft 8.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Motor Or Generator Cooling System (AREA)
Abstract
The present invention addresses the problem of providing a centrifugal pump with which thinning is achieved by using a radial gap type motor, with which flow passage losses from a suction flow passage to a discharge flow passage are small, and with which it is possible for heat generated in a coil to be dissipated efficiently without providing a special cooling structure. As a means of overcoming the problem, a rotor (13) and a pump main body (2) are disposed concentrically about a rotor shaft (7), and a suction side scroll flow passage (14) and a discharge side scroll flow passage (15) formed in the pump main body (2) communicate with one another by way of a central flow passage (10b), (10a) formed in the pump main body (2) and in an impeller (9).
Description
本発明は、例えば冷却用の流体を循環させる遠心ポンプに関する。
The present invention relates to a centrifugal pump for circulating a cooling fluid, for example.
従来、ノートパソコン等の電子機器には、LED,CPU,MPU等の高発熱電子部品が設けられており、これらを搭載した制御回路を冷却する流体循環用に遠心ポンプが用いられている。
2. Description of the Related Art Conventionally, electronic devices such as notebook personal computers are provided with high heat-generating electronic components such as LEDs, CPUs, and MPUs, and centrifugal pumps are used for fluid circulation for cooling control circuits on which these are mounted.
また、電子機器の小型薄型化を促進するため、遠心ポンプも薄型化する必要がある。このため、通常インペラの軸方向中心から流体を吸込んで流体をスクロールしながら加圧した流体を周方向から吐出する流体の吸込み側流路を吐出側流路と平行となるように90°曲げて形成された遠心ポンプが提案されている(特許文献1参照)。
Also, in order to promote the reduction in size and thickness of electronic equipment, it is necessary to reduce the thickness of the centrifugal pump. For this reason, the fluid suction side flow path for discharging the pressurized fluid from the circumferential direction by normally sucking the fluid from the axial center of the impeller and scrolling the fluid is bent by 90 ° so as to be parallel to the discharge side flow path. A formed centrifugal pump has been proposed (see Patent Document 1).
また、ケーシングに吸込み流路が形成されるため、ケーシングの厚さが厚くなるため、インペラを回転駆動するモータをラジアルギャップ型のモータに替えてアキシャルギャップ型のモータを採用した遠心ポンプも提案されている(特許文献2参照)。
In addition, since a suction flow path is formed in the casing, the casing becomes thicker. Therefore, a centrifugal pump that uses an axial gap type motor instead of a radial gap type motor instead of a motor that rotates the impeller is also proposed. (See Patent Document 2).
上述したアキシャルギャップ型のモータを採用した遠心ポンプは、薄型化を実現できるが、吸込み側の流路は、ベース内を直交する流路を形成しており流路断面積も一様とは言えず流路損失が高い構成となっている。特に、アキシャルギャップ型のモータを構成するコイルを搭載したバックヨークは、ベース内にモールドされて形成されているため、ベースの厚さが厚くなり易く、ベースに形成される吸込み側流路断面積は広くとれない。
また、吸込み側流路がインペラ4の中空固定軸内を通じてポンプ室側に流入するため、バックヨークを径方向に横切って吸込み側流路を形成する必要がある。このため、バックヨークに間欠部を設ける必要があるため、この部分にコイルを配置することができないため、磁束量が低減するとともにロータに作用する有効磁束が減少し、モータ特性も低下し易い。
更には、吸込み側流路はコイルを回避して形成されるため、コイルの発熱を効率良く逃がすことができない。冷却構造を別途設けるとすれば、薄型化は実現できず、製造コストも上昇する。 Although the centrifugal pump using the axial gap type motor described above can be thinned, the flow path on the suction side forms a flow path that is orthogonal to the inside of the base, and the cross-sectional area of the flow path is uniform. Therefore, the flow path loss is high. In particular, a back yoke equipped with a coil that constitutes an axial gap motor is molded and formed in the base, so the thickness of the base tends to increase, and the cross-sectional area of the suction side flow path formed in the base Is not widely available.
Further, since the suction side flow path flows into the pump chamber through the inside of the hollow fixed shaft of theimpeller 4, it is necessary to form the suction side flow path across the back yoke in the radial direction. For this reason, since it is necessary to provide an intermittent part in the back yoke, a coil cannot be disposed in this part. Therefore, the amount of magnetic flux is reduced, the effective magnetic flux acting on the rotor is reduced, and the motor characteristics are likely to deteriorate.
Furthermore, since the suction side flow path is formed avoiding the coil, the heat generation of the coil cannot be efficiently released. If a cooling structure is provided separately, the thinning cannot be realized and the manufacturing cost increases.
また、吸込み側流路がインペラ4の中空固定軸内を通じてポンプ室側に流入するため、バックヨークを径方向に横切って吸込み側流路を形成する必要がある。このため、バックヨークに間欠部を設ける必要があるため、この部分にコイルを配置することができないため、磁束量が低減するとともにロータに作用する有効磁束が減少し、モータ特性も低下し易い。
更には、吸込み側流路はコイルを回避して形成されるため、コイルの発熱を効率良く逃がすことができない。冷却構造を別途設けるとすれば、薄型化は実現できず、製造コストも上昇する。 Although the centrifugal pump using the axial gap type motor described above can be thinned, the flow path on the suction side forms a flow path that is orthogonal to the inside of the base, and the cross-sectional area of the flow path is uniform. Therefore, the flow path loss is high. In particular, a back yoke equipped with a coil that constitutes an axial gap motor is molded and formed in the base, so the thickness of the base tends to increase, and the cross-sectional area of the suction side flow path formed in the base Is not widely available.
Further, since the suction side flow path flows into the pump chamber through the inside of the hollow fixed shaft of the
Furthermore, since the suction side flow path is formed avoiding the coil, the heat generation of the coil cannot be efficiently released. If a cooling structure is provided separately, the thinning cannot be realized and the manufacturing cost increases.
本発明はこれらの課題を解決すべくなされたものであり、その目的とするところは、ラジアルギャップ型のモータを用いて薄型化を実現し吸込み流路から吐出流路に至る流路損失が少なくかつ格別な冷却構造を設けることなくコイルの発熱を効率良く放熱することができる遠心ポンプを提供することにある。
The present invention has been made to solve these problems. The object of the present invention is to reduce the thickness of the flow path from the suction flow path to the discharge flow path by using a radial gap type motor. Another object of the present invention is to provide a centrifugal pump that can efficiently dissipate heat generated by a coil without providing a special cooling structure.
本発明は上記目的を達成するため、次の構成を備える。
ラジアルギャップ型の電動モータによりインペラを回転駆動させて流体をポンプ本体の外周側よりポンプ室に吸い込んで当該ポンプ室から前記ポンプ本体の外周側より吐出させる遠心ポンプであって、ベース部と、前記ベース部に少なくとも一端が抜け止めされて起立して支持された回転子軸と、前記回転子軸に回転自在に取り付けられたインペラと、前記インペラに同心状に組み付けられた回転子マグネットを備えた回転子と、前記インペラの外周側から径方向中心部に向かって流体を吸込む吸込み側スクロール流路と、前記インペラの径方向中心部から外周側に向かって流体を吐出する吐出側スクロール流路と、前記回転子マグネットと径方向に対向配置される固定子極歯が形成された固定子コアを有する固定子が一体に組み付けられた前記ポンプ本体と、を備え、前記回転子と前記ポンプ本体とが前記回転子軸を中心として同心状に配置され、前記ポンプ本体に形成された前記吸込み側スクロール流路と前記吐出側スクロール流路とが前記ポンプ本体及び前記インペラに形成された中央流路を介して連通していることを特徴とする。 In order to achieve the above object, the present invention comprises the following arrangement.
A centrifugal pump that rotationally drives an impeller with a radial gap type electric motor to suck fluid into the pump chamber from the outer peripheral side of the pump body and discharge the fluid from the pump chamber from the outer peripheral side of the pump main body, the base portion, A rotor shaft that is supported by standing upright with at least one end prevented from being attached to the base portion, an impeller that is rotatably attached to the rotor shaft, and a rotor magnet that is concentrically assembled to the impeller. A rotor, a suction-side scroll passage that sucks fluid from the outer peripheral side of the impeller toward the radial center, and a discharge-side scroll passage that discharges fluid from the radial central portion of the impeller toward the outer periphery. A stator having a stator core formed with stator pole teeth disposed in a radial direction opposite to the rotor magnet is integrally assembled. A pump body, wherein the rotor and the pump body are arranged concentrically about the rotor shaft, and the suction-side scroll passage and the discharge-side scroll passage formed in the pump body Are communicated with each other through a central flow path formed in the pump body and the impeller.
ラジアルギャップ型の電動モータによりインペラを回転駆動させて流体をポンプ本体の外周側よりポンプ室に吸い込んで当該ポンプ室から前記ポンプ本体の外周側より吐出させる遠心ポンプであって、ベース部と、前記ベース部に少なくとも一端が抜け止めされて起立して支持された回転子軸と、前記回転子軸に回転自在に取り付けられたインペラと、前記インペラに同心状に組み付けられた回転子マグネットを備えた回転子と、前記インペラの外周側から径方向中心部に向かって流体を吸込む吸込み側スクロール流路と、前記インペラの径方向中心部から外周側に向かって流体を吐出する吐出側スクロール流路と、前記回転子マグネットと径方向に対向配置される固定子極歯が形成された固定子コアを有する固定子が一体に組み付けられた前記ポンプ本体と、を備え、前記回転子と前記ポンプ本体とが前記回転子軸を中心として同心状に配置され、前記ポンプ本体に形成された前記吸込み側スクロール流路と前記吐出側スクロール流路とが前記ポンプ本体及び前記インペラに形成された中央流路を介して連通していることを特徴とする。 In order to achieve the above object, the present invention comprises the following arrangement.
A centrifugal pump that rotationally drives an impeller with a radial gap type electric motor to suck fluid into the pump chamber from the outer peripheral side of the pump body and discharge the fluid from the pump chamber from the outer peripheral side of the pump main body, the base portion, A rotor shaft that is supported by standing upright with at least one end prevented from being attached to the base portion, an impeller that is rotatably attached to the rotor shaft, and a rotor magnet that is concentrically assembled to the impeller. A rotor, a suction-side scroll passage that sucks fluid from the outer peripheral side of the impeller toward the radial center, and a discharge-side scroll passage that discharges fluid from the radial central portion of the impeller toward the outer periphery. A stator having a stator core formed with stator pole teeth disposed in a radial direction opposite to the rotor magnet is integrally assembled. A pump body, wherein the rotor and the pump body are arranged concentrically about the rotor shaft, and the suction-side scroll passage and the discharge-side scroll passage formed in the pump body Are communicated with each other through a central flow path formed in the pump body and the impeller.
上記遠心ポンプの構成によれば、ポンプ本体に形成された吸込み側スクロール流路と吐出側スクロール流路とがポンプ本体及びインペラに形成された中央流路を介して連通しているので、ラジアルギャップ型のモータを用いても薄型化を実現することができる。また、吸込み側スクロール流路から吐出側流路スクロールに至る流路損失が少なくかつこれらが固定子コアの軸方向両端面側を囲むように流体が通過するのでコイルの発熱を効率良く放熱することができる。
According to the above centrifugal pump configuration, the suction-side scroll flow path and the discharge-side scroll flow path formed in the pump main body communicate with each other via the central flow path formed in the pump main body and the impeller. Thinning can also be realized using a type motor. In addition, there is little flow path loss from the suction-side scroll flow path to the discharge-side flow path scroll, and the fluid passes so as to surround both ends of the stator core in the axial direction. Can do.
前記吸込み側スクロール流路は、前記ポンプ本体の外周面に設けられた吸込み孔と、前記吸込み孔より進入した流体が周方向に旋回しながら吸込み側中心孔に向かって案内されるように仕切られ、前記吸込み孔から前記吸込み側中心孔に向かって溝深さが浅くなるように形成された吸込み側スクロール溝を備えていることが好ましい。
これにより、吸込み孔よりポンプ本体に吸込まれた流体が吸込み側スクロール溝に沿って旋回しながら吸込み側中心孔に向かって案内され、吸込み側中心孔に向かって溝深さが徐々に浅くなるので、流体は中央流路を通じてインペラ側に軸方向に案内される。このとき、ポンプ室の高さは不要であり薄型化しても流路の損失は生じない。 The suction-side scroll flow path is partitioned so that a suction hole provided on the outer peripheral surface of the pump body and the fluid that has entered from the suction hole are guided toward the suction-side center hole while turning in the circumferential direction. It is preferable that a suction-side scroll groove is formed so that the groove depth becomes shallower from the suction hole toward the suction-side center hole.
As a result, the fluid sucked into the pump body from the suction hole is guided toward the suction-side center hole while turning along the suction-side scroll groove, and the groove depth gradually decreases toward the suction-side center hole. The fluid is guided axially to the impeller side through the central flow path. At this time, the height of the pump chamber is unnecessary, and even if the pump chamber is thinned, the flow path is not lost.
これにより、吸込み孔よりポンプ本体に吸込まれた流体が吸込み側スクロール溝に沿って旋回しながら吸込み側中心孔に向かって案内され、吸込み側中心孔に向かって溝深さが徐々に浅くなるので、流体は中央流路を通じてインペラ側に軸方向に案内される。このとき、ポンプ室の高さは不要であり薄型化しても流路の損失は生じない。 The suction-side scroll flow path is partitioned so that a suction hole provided on the outer peripheral surface of the pump body and the fluid that has entered from the suction hole are guided toward the suction-side center hole while turning in the circumferential direction. It is preferable that a suction-side scroll groove is formed so that the groove depth becomes shallower from the suction hole toward the suction-side center hole.
As a result, the fluid sucked into the pump body from the suction hole is guided toward the suction-side center hole while turning along the suction-side scroll groove, and the groove depth gradually decreases toward the suction-side center hole. The fluid is guided axially to the impeller side through the central flow path. At this time, the height of the pump chamber is unnecessary, and even if the pump chamber is thinned, the flow path is not lost.
前記吸込み側スクロール流路は、前記ポンプ本体の軸方向一端面に形成された前記吸込み側スクロール溝と、軸方向一端面に重ね合せられる他方のベース部との間に形成されていることが好ましい。
これによりポンプ本体の軸方向の高さを抑えることができ、薄型化を促進できるうえに、ベース部上にポンプ本体を重ね合わせて組み立てられるので組立性もよい。 The suction-side scroll flow path is preferably formed between the suction-side scroll groove formed on one axial end surface of the pump body and the other base portion superimposed on the one axial end surface. .
As a result, the axial height of the pump main body can be suppressed, the reduction in thickness can be promoted, and the pump main body can be assembled on the base portion so that it can be assembled.
これによりポンプ本体の軸方向の高さを抑えることができ、薄型化を促進できるうえに、ベース部上にポンプ本体を重ね合わせて組み立てられるので組立性もよい。 The suction-side scroll flow path is preferably formed between the suction-side scroll groove formed on one axial end surface of the pump body and the other base portion superimposed on the one axial end surface. .
As a result, the axial height of the pump main body can be suppressed, the reduction in thickness can be promoted, and the pump main body can be assembled on the base portion so that it can be assembled.
前記吐出側スクロール流路は、前記吸込み側中心孔に前記中央流路を介して連通するように形成された吐出側中心孔と、前記吐出側中心孔から流体が旋回しながら前記ポンプ本体の外周面に設けられた吐出孔に案内されるように仕切られ、前記吐出側中心孔から前記吐出孔に向かって溝深さが深くなるように形成された吐出側スクロール溝を備えていることが好ましい。
これにより中央流路から吐出側中心孔に吸込まれた流体は、インペラの回転によって加圧され、吐出側中心孔から吐出孔に向かって溝深さが徐々に深くなる吐出側スクロール溝に案内されて流体が吐出口より吐出される。このとき、ポンプ室の高さは不要であり薄型化しても流路の損失は生じない。 The discharge-side scroll channel includes a discharge-side center hole formed so as to communicate with the suction-side center hole via the center channel, and an outer periphery of the pump body while fluid swirls from the discharge-side center hole It is preferable to include a discharge-side scroll groove that is partitioned so as to be guided by a discharge hole provided on the surface and that has a groove depth that increases from the discharge-side center hole toward the discharge hole. .
As a result, the fluid sucked into the discharge side center hole from the central flow path is pressurized by the rotation of the impeller and guided to the discharge side scroll groove where the groove depth gradually increases from the discharge side center hole toward the discharge hole. The fluid is discharged from the discharge port. At this time, the height of the pump chamber is unnecessary, and even if the pump chamber is thinned, the flow path is not lost.
これにより中央流路から吐出側中心孔に吸込まれた流体は、インペラの回転によって加圧され、吐出側中心孔から吐出孔に向かって溝深さが徐々に深くなる吐出側スクロール溝に案内されて流体が吐出口より吐出される。このとき、ポンプ室の高さは不要であり薄型化しても流路の損失は生じない。 The discharge-side scroll channel includes a discharge-side center hole formed so as to communicate with the suction-side center hole via the center channel, and an outer periphery of the pump body while fluid swirls from the discharge-side center hole It is preferable to include a discharge-side scroll groove that is partitioned so as to be guided by a discharge hole provided on the surface and that has a groove depth that increases from the discharge-side center hole toward the discharge hole. .
As a result, the fluid sucked into the discharge side center hole from the central flow path is pressurized by the rotation of the impeller and guided to the discharge side scroll groove where the groove depth gradually increases from the discharge side center hole toward the discharge hole. The fluid is discharged from the discharge port. At this time, the height of the pump chamber is unnecessary, and even if the pump chamber is thinned, the flow path is not lost.
前記吐出側スクロール流路は、前記ポンプ本体の軸方向他端面に形成された前記吐出側スクロール溝と軸方向他端面に重ね合せられる一方のベース部との間に形成されていることが好ましい。
これにより、ポンプ本体の軸方向の高さを抑えることができ、薄型化を促進できるうえに、ベース部上にポンプ本体を重ね合わせて組み立てられるので組立性もよい。 It is preferable that the discharge-side scroll flow path is formed between the discharge-side scroll groove formed on the other axial end surface of the pump body and one base portion superimposed on the other axial end surface.
As a result, the axial height of the pump body can be suppressed, the reduction in thickness can be promoted, and the pump body can be assembled on the base portion so that it can be assembled.
これにより、ポンプ本体の軸方向の高さを抑えることができ、薄型化を促進できるうえに、ベース部上にポンプ本体を重ね合わせて組み立てられるので組立性もよい。 It is preferable that the discharge-side scroll flow path is formed between the discharge-side scroll groove formed on the other axial end surface of the pump body and one base portion superimposed on the other axial end surface.
As a result, the axial height of the pump body can be suppressed, the reduction in thickness can be promoted, and the pump body can be assembled on the base portion so that it can be assembled.
前記ポンプ本体の軸方向端面には、前記吸込み側スクロール流路と前記吐出側スクロール流路に流体の流速が一様になるように浅溝と深溝とが溝底部を近接するように組み合わせて配置されていることが好ましい。
これにより、ポンプ室内で径方向に仕切られて形成されている吸込み側スクロール溝と吐出側スクロール溝が流体の流速が一様になるように浅溝と深溝とが溝底部を近接するように組み合わせて配置されているので、ポンプ室の容積が軸方向に大型化することはなく、薄型化を促進することができるうえに、吸込み口から吐出口に至るまでの流路損失を可及的に減らすことができ、ポンプ性能を維持することができる。 On the axial end face of the pump body, a shallow groove and a deep groove are combined so that the bottom of the groove is close to the suction side scroll flow path and the discharge side scroll flow path so that the fluid flow rate is uniform. It is preferable that
As a result, the suction-side scroll groove and the discharge-side scroll groove formed by partitioning in the radial direction in the pump chamber are combined so that the shallow groove and the deep groove are close to each other so that the flow velocity of the fluid is uniform. Therefore, the pump chamber volume does not increase in the axial direction, it is possible to promote thinning, and the flow path loss from the suction port to the discharge port is minimized. The pump performance can be maintained.
これにより、ポンプ室内で径方向に仕切られて形成されている吸込み側スクロール溝と吐出側スクロール溝が流体の流速が一様になるように浅溝と深溝とが溝底部を近接するように組み合わせて配置されているので、ポンプ室の容積が軸方向に大型化することはなく、薄型化を促進することができるうえに、吸込み口から吐出口に至るまでの流路損失を可及的に減らすことができ、ポンプ性能を維持することができる。 On the axial end face of the pump body, a shallow groove and a deep groove are combined so that the bottom of the groove is close to the suction side scroll flow path and the discharge side scroll flow path so that the fluid flow rate is uniform. It is preferable that
As a result, the suction-side scroll groove and the discharge-side scroll groove formed by partitioning in the radial direction in the pump chamber are combined so that the shallow groove and the deep groove are close to each other so that the flow velocity of the fluid is uniform. Therefore, the pump chamber volume does not increase in the axial direction, it is possible to promote thinning, and the flow path loss from the suction port to the discharge port is minimized. The pump performance can be maintained.
前記インペラは前記回転子が組み付けられる環状部と前記回転子軸に組み付けられる羽根部とが一体成形されていてもよい。
これにより、回転子とインペラを回転子軸に対して同時に組み付けることができ、軸方向の配置もコンパクトにすることができる。 In the impeller, an annular portion to which the rotor is assembled and a blade portion to be assembled to the rotor shaft may be integrally formed.
Thereby, a rotor and an impeller can be assembled | attached simultaneously with respect to a rotor axis | shaft, and the arrangement | positioning of an axial direction can also be made compact.
これにより、回転子とインペラを回転子軸に対して同時に組み付けることができ、軸方向の配置もコンパクトにすることができる。 In the impeller, an annular portion to which the rotor is assembled and a blade portion to be assembled to the rotor shaft may be integrally formed.
Thereby, a rotor and an impeller can be assembled | attached simultaneously with respect to a rotor axis | shaft, and the arrangement | positioning of an axial direction can also be made compact.
ラジアルギャップ型のモータを用いて薄型化を実現し吸込み流路から吐出流路に至る流路損失が少なくかつコイルの発熱を格別な冷却構造を設けることなく率良く放熱することができる遠心ポンプを提供することができる。
A centrifugal pump that can be thinned using a radial gap type motor, has little flow loss from the suction flow path to the discharge flow path, and can efficiently dissipate the heat generated by the coil without providing a special cooling structure. Can be provided.
以下、本発明に係る遠心ポンプの一実施形態について、図1乃至図4に示す添付図面を参照しながら説明する。本実施形態は、ラジアルギャップ型のインナーロータ型モータを用いてインペラを回転駆動する遠心ポンプを例示して説明する。インナーロータ型モータとしては、DCブラシレスモータが用いられる。
Hereinafter, an embodiment of a centrifugal pump according to the present invention will be described with reference to the accompanying drawings shown in FIGS. In the present embodiment, a centrifugal pump that rotationally drives an impeller using a radial gap type inner rotor type motor will be described as an example. A DC brushless motor is used as the inner rotor type motor.
図1において、遠心ポンプ1は、ラジアルギャップ型の電動モータMによりインペラ9を回転駆動させて流体をポンプ本体2の外周に形成された吸込み口3から流体を吸い込んでポンプ本体2の外周に形成された吐出口4より吐出させる。
一対の板状のベース部5a,5bにより樹脂成形されたポンプ本体2の両端面を挟み込むように重ね合わせ、ポンプ本体2を介して対向するベース部5a,5bどうしの外周縁部に固定ボルト6をねじ嵌合させて一体に組み付けられている。 In FIG. 1, acentrifugal pump 1 is formed on the outer periphery of the pump body 2 by sucking fluid from a suction port 3 formed on the outer periphery of the pump body 2 by rotating the impeller 9 by a radial gap type electric motor M It discharges from the discharged outlet 4.
A pair of plate- like base portions 5a and 5b are superposed so that both end faces of the resin-molded pump body 2 are sandwiched, and fixing bolts 6 are attached to the outer peripheral edge portions of the base portions 5a and 5b facing each other via the pump body 2. Are assembled together by screw fitting.
一対の板状のベース部5a,5bにより樹脂成形されたポンプ本体2の両端面を挟み込むように重ね合わせ、ポンプ本体2を介して対向するベース部5a,5bどうしの外周縁部に固定ボルト6をねじ嵌合させて一体に組み付けられている。 In FIG. 1, a
A pair of plate-
次に遠心ポンプ1の構造について図2を参照して詳述する。
一対のベース部5a,5bのうち一方のベース部5aには、回転子軸7の一端が起立して支持固定されている。回転子軸7には、滑り軸受8を介してインペラ9が一体に組み付けられている。インペラ9は回転子軸7の他端にスラスト受け7bを介してC型止め輪7aにより抜け止めされることで回転子軸7と一体に組み付けられている。 Next, the structure of thecentrifugal pump 1 will be described in detail with reference to FIG.
One end of therotor shaft 7 is raised and supported and fixed to one base portion 5a of the pair of base portions 5a and 5b. An impeller 9 is integrally assembled to the rotor shaft 7 via a sliding bearing 8. The impeller 9 is assembled integrally with the rotor shaft 7 by being secured to the other end of the rotor shaft 7 by a C-type retaining ring 7a via a thrust receiver 7b.
一対のベース部5a,5bのうち一方のベース部5aには、回転子軸7の一端が起立して支持固定されている。回転子軸7には、滑り軸受8を介してインペラ9が一体に組み付けられている。インペラ9は回転子軸7の他端にスラスト受け7bを介してC型止め輪7aにより抜け止めされることで回転子軸7と一体に組み付けられている。 Next, the structure of the
One end of the
図2,図3Bにおいて、インペラ9には、回転子13が一体に組み付けられている。インペラ9は、中央流路10aを形成する環状部9aと流体を中心部から外周側に向かって送り出す羽根部9bとが一体成形されている。環状部9aの外周面に環状のバックヨーク11及びその外周側に回転子マグネット12が接着或いはインサート成形等により一体に組み付けられている。これにより、回転子13とインペラ9を回転子軸7に対して同時に同心状に組み付けることができ、軸方向の配置もコンパクトにすることができる。回転子マグネット12は、予め環状に成形されたマグネットであっても複数のセグメントに分割されたマグネットであってもいずれでもよい。また、環状部9aの吸込み側開口部には段付き部9cが形成されている。尚、インペラ9と回転子13が一体成形される場合には、例えば、耐久性等を考慮してPPS(ポリフェニレンサルファイド)樹脂等により一体成形されることが好ましい。
2 and 3B, the impeller 9 is integrally assembled with the rotor 13. The impeller 9 is integrally formed with an annular portion 9a that forms the central flow path 10a and a blade portion 9b that feeds fluid from the central portion toward the outer peripheral side. An annular back yoke 11 is attached to the outer peripheral surface of the annular portion 9a, and a rotor magnet 12 is integrally assembled to the outer peripheral side thereof by adhesion or insert molding. Thereby, the rotor 13 and the impeller 9 can be assembled | attached concentrically simultaneously with respect to the rotor shaft | axis 7, and the arrangement | positioning of an axial direction can also be made compact. The rotor magnet 12 may be a magnet formed in a ring shape in advance or a magnet divided into a plurality of segments. Further, a stepped portion 9c is formed in the suction side opening of the annular portion 9a. In the case where the impeller 9 and the rotor 13 are integrally formed, for example, it is preferable that the impeller 9 and the rotor 13 are integrally formed with PPS (polyphenylene sulfide) resin or the like in consideration of durability and the like.
また、インペラ9の回転子軸7との連結部の周囲には、軸方向に沿って中央流路10a(中空孔)が形成されている。この中央流路10aは、後述するように、ポンプ本体2に形成された中央流路10bと連通するように形成されている。即ち、インペラ9の外周側から径方向中心部に向かって流体を吸込む吸込み側スクロール流路14と、インペラ9の中心部から外周側に向かって径方向に流体を吐出する吐出側スクロール流路15とが中央流路10a,10bを通じて連通するようになっている。
Further, a central flow path 10a (hollow hole) is formed around the connecting portion of the impeller 9 with the rotor shaft 7 along the axial direction. As will be described later, the central flow path 10a is formed so as to communicate with the central flow path 10b formed in the pump body 2. That is, the suction-side scroll flow path 14 that sucks fluid from the outer peripheral side of the impeller 9 toward the radial center, and the discharge-side scroll flow path 15 that discharges fluid from the central part of the impeller 9 toward the outer peripheral side in the radial direction. Are communicated with each other through the central flow paths 10a and 10b.
次にポンプ本体2の構成について説明する。
図2において、ポンプ本体2の軸方向一端部2aには、インペラ9の外周側からポンプ室16の中心部に向かって径方向に流体を吸込む吸込み側スクロール流路14が形成されている。具体的には、吸込側スクロール流路14は、ポンプ本体2の軸方向一端部2aに形成された吸込み側スクロール溝(凹部)14aと、吸込み側スクロール溝14aを覆って軸方向端面に重ね合せて組み付けられるベース部5bとの間に形成されている。また、軸方向一端部2aは、インペラ9の環状部9aを覆って径方向内側に延設され、その端部がL字状に形成されたリップ部2c(返し構造)が形成されている。リップ部2cは環状部9aの段付き部9cと噛み合うように配置されている。リップ部2cの内周面は中央流路10aと連通する中央流路10bを形成している。これにより、インペラ9とポンプ本体2の隙間から流体が中央流路10aに向かって逆流するのを防ぐことができる。 Next, the configuration of thepump body 2 will be described.
In FIG. 2, a suction-sidescroll flow path 14 that sucks fluid in a radial direction from the outer peripheral side of the impeller 9 toward the center portion of the pump chamber 16 is formed at one axial end portion 2 a of the pump body 2. Specifically, the suction-side scroll channel 14 is overlapped with the suction-side scroll groove (concave portion) 14a formed in the axial one end 2a of the pump body 2 and the suction-side scroll groove 14a. And the base portion 5b to be assembled. Moreover, the axial direction one end part 2a is extended in the diameter direction inner side so that the annular part 9a of the impeller 9 may be extended, The lip | rip part 2c (turning structure) by which the edge part was formed in the L-shape is formed. The lip portion 2c is disposed so as to mesh with the stepped portion 9c of the annular portion 9a. The inner peripheral surface of the lip portion 2c forms a central flow path 10b that communicates with the central flow path 10a. Thereby, it is possible to prevent the fluid from flowing backward from the gap between the impeller 9 and the pump body 2 toward the central flow path 10a.
図2において、ポンプ本体2の軸方向一端部2aには、インペラ9の外周側からポンプ室16の中心部に向かって径方向に流体を吸込む吸込み側スクロール流路14が形成されている。具体的には、吸込側スクロール流路14は、ポンプ本体2の軸方向一端部2aに形成された吸込み側スクロール溝(凹部)14aと、吸込み側スクロール溝14aを覆って軸方向端面に重ね合せて組み付けられるベース部5bとの間に形成されている。また、軸方向一端部2aは、インペラ9の環状部9aを覆って径方向内側に延設され、その端部がL字状に形成されたリップ部2c(返し構造)が形成されている。リップ部2cは環状部9aの段付き部9cと噛み合うように配置されている。リップ部2cの内周面は中央流路10aと連通する中央流路10bを形成している。これにより、インペラ9とポンプ本体2の隙間から流体が中央流路10aに向かって逆流するのを防ぐことができる。 Next, the configuration of the
In FIG. 2, a suction-side
また、図2において、ポンプ本体2の軸方向他端部2bには、インペラ9の中心部から外周側に向かって径方向に流体を吐出する吐出側スクロール流路15が形成されている。具体的には、吐出側スクロール流路15は、ポンプ本体2の軸方向他端部2bに形成された吐出側スクロール溝(凹部)15aと、ベース部5aとの間に形成されている。ポンプ本体2に設けられるポンプ室16は、吸込み側スクロール流路14と吐出側スクロール流路15と、これらを中央流路10a,10bで連通することにより形成されている。尚、吸込側スクロール流路14及び吐出側スクロール流路15は、必ずしもポンプ本体2の軸方向端部とベース部との間に形成される必要はなく、ベース部に替えて他の部材であってもよい。
In FIG. 2, a discharge-side scroll passage 15 that discharges fluid in the radial direction from the center of the impeller 9 toward the outer peripheral side is formed at the other axial end 2 b of the pump body 2. Specifically, the discharge-side scroll passage 15 is formed between a discharge-side scroll groove (concave portion) 15a formed in the other axial end 2b of the pump body 2 and the base portion 5a. The pump chamber 16 provided in the pump body 2 is formed by connecting the suction-side scroll flow path 14 and the discharge-side scroll flow path 15 with the central flow paths 10a and 10b. The suction-side scroll flow path 14 and the discharge-side scroll flow path 15 do not necessarily have to be formed between the axial end of the pump body 2 and the base portion, and are other members instead of the base portion. May be.
また、図3Aに示すように、ポンプ本体2には、固定子17が組み付けられている。固定子17は、環状に形成されたコアバック部17aより径方向内側に向けて固定子極歯17bが放射状に突設された固定子コア17cを備えている。各固定子極歯17bにはコイル17dが巻き付けられている。
Further, as shown in FIG. 3A, a stator 17 is assembled to the pump body 2. The stator 17 includes a stator core 17c in which stator pole teeth 17b project radially from a radially inner side of the annular core back portion 17a. A coil 17d is wound around each stator pole tooth 17b.
図3A,Bに示すように、ポンプ本体2をベース部5a,5bに対して、固定子極歯17bが回転子マグネット12と径方向に対向させて組み付けることで、吸込み側スクロール流路14と吐出側スクロール流路15がインペラ9に形成された中央流路10b,10aを介して連通するようになっている。
As shown in FIGS. 3A and 3B, the pump body 2 is assembled to the base portions 5a and 5b with the stator pole teeth 17b facing the rotor magnet 12 in the radial direction. The discharge-side scroll flow path 15 communicates with the central flow paths 10b and 10a formed in the impeller 9.
上記遠心ポンプ1の構成によれば、インペラ9(環状部9a)の外周側から径方向中心部に向かって流体を吸込む吸込み側スクロール流路14と、インペラ9(羽根部9b)の中心部から外周側に向かって径方向に流体を吐出する吐出側スクロール流路15と、がポンプ本体2及びインペラ9に形成された中央流路10b,10aを介して連通しているので、ラジアルギャップ型のモータを用いても薄型化を実現することができる。また、吸込み側スクロール流路14から吐出側スクロール流路15に至る流路損失が少なくかつこれらが固定子コア17cの軸方向両端面側を囲むように流体が通過するのでコイル17dの発熱を効率良く放熱することができる。
According to the configuration of the centrifugal pump 1, the suction-side scroll flow path 14 that sucks fluid from the outer peripheral side of the impeller 9 (annular portion 9a) toward the radial center portion, and the central portion of the impeller 9 (blade portion 9b). Since the discharge-side scroll flow path 15 that discharges fluid in the radial direction toward the outer peripheral side communicates with the pump main body 2 and the central flow paths 10b and 10a formed in the impeller 9, the radial gap type Thinning can be realized even using a motor. Further, since the passage loss from the suction-side scroll passage 14 to the discharge-side scroll passage 15 is small and the fluid passes so as to surround both end surfaces in the axial direction of the stator core 17c, the heat generation of the coil 17d is efficiently performed. It can dissipate heat well.
次にポンプ本体2の内部構成について図4を参照して説明する。
図4Aは、ポンプ本体2の軸方向一端部2aを示す斜視図であり、流体吸込み側スクロール流路14が形成されている。ポンプ本体2の外周面に設けられた吸込み孔14bより進入した流体が周方向に旋回しながら吸込み側中心孔14cに向かって案内される。吸込み側スクロール溝14aは、仕切り壁14dによって仕切られ、吸込み孔14bから吸込み側中心孔14c(リップ部2c:図3B参照)に向かって溝深さが徐々に浅くなるように旋回して形成されている。 Next, the internal structure of thepump body 2 will be described with reference to FIG.
FIG. 4A is a perspective view showing the axial oneend 2a of the pump body 2, in which a fluid suction side scroll channel 14 is formed. The fluid that has entered from the suction hole 14b provided on the outer peripheral surface of the pump body 2 is guided toward the suction-side center hole 14c while turning in the circumferential direction. The suction-side scroll groove 14a is partitioned by a partition wall 14d, and is formed by turning so that the groove depth gradually decreases from the suction hole 14b toward the suction-side center hole 14c (lip portion 2c: see FIG. 3B). ing.
図4Aは、ポンプ本体2の軸方向一端部2aを示す斜視図であり、流体吸込み側スクロール流路14が形成されている。ポンプ本体2の外周面に設けられた吸込み孔14bより進入した流体が周方向に旋回しながら吸込み側中心孔14cに向かって案内される。吸込み側スクロール溝14aは、仕切り壁14dによって仕切られ、吸込み孔14bから吸込み側中心孔14c(リップ部2c:図3B参照)に向かって溝深さが徐々に浅くなるように旋回して形成されている。 Next, the internal structure of the
FIG. 4A is a perspective view showing the axial one
これにより、吸込み孔14bよりを通じてポンプ室16に吸込まれた流体が吸込み側スクロール溝14aを旋回しながら吸込み側中心孔14cに向かって案内される。このとき、吸込み側中心孔14cに向かって徐々に溝深さが浅くなるので、流体は中央流路10bを通じてインペラ9側の中央流路10aに軸方向に案内される。ポンプ本体2は流体が旋回移動しても、ポンプ室16の高さは不要であり薄型化しても流路の損失は生じない。
Thereby, the fluid sucked into the pump chamber 16 through the suction hole 14b is guided toward the suction side center hole 14c while turning the suction side scroll groove 14a. At this time, since the groove depth gradually decreases toward the suction-side center hole 14c, the fluid is guided in the axial direction to the central flow path 10a on the impeller 9 side through the central flow path 10b. Even if the fluid moves in the pump body 2, the height of the pump chamber 16 is not required, and even if the pump body 2 is thinned, the flow path is not lost.
図5Bはポンプ本体2の軸方向他端部2bを示す斜視図であり、流体吐出側スクロール流路15が形成されている。中央流路10aを通じて吐出側中心孔15bから流入した流体は、インペラ9の羽根部9bに沿って周方向に旋回しながらポンプ本体2の外周面に設けられた吐出孔15cまで案内される。吐出側スクロール溝15aは、仕切り壁15dによって仕切られ、吐出側中心孔15bから吐出孔15cに向かって溝深さが徐々に深くなるように旋回して形成されている。
FIG. 5B is a perspective view showing the other axial end 2b of the pump body 2, in which a fluid discharge side scroll channel 15 is formed. The fluid flowing in from the discharge-side center hole 15b through the central flow path 10a is guided to the discharge hole 15c provided on the outer peripheral surface of the pump body 2 while turning in the circumferential direction along the blade portion 9b of the impeller 9. The discharge-side scroll groove 15a is partitioned by a partition wall 15d, and is formed by turning so that the groove depth gradually increases from the discharge-side center hole 15b toward the discharge hole 15c.
これにより中央流路10aから吐出側中心孔15bに流入した流体は、インペラ9(羽根部9b)の回転によって加圧されポンプ本体2の外周面に向かって案内される。即ち、吐出側中心孔15bから吐出孔15cに向かって溝深さが徐々に深くなる吐出側スクロール溝15aに沿って加圧された流体が旋回しながら送り出され吐出口4より吐出される。このとき、ポンプ本体2は流体が旋回移動しても、ポンプ室16の高さは不要であり薄型化しても流路の損失は生じない。
Thereby, the fluid flowing into the discharge side center hole 15b from the central flow path 10a is pressurized by the rotation of the impeller 9 (blade portion 9b) and guided toward the outer peripheral surface of the pump body 2. That is, the pressurized fluid is sent while being swung along the discharge side scroll groove 15a in which the groove depth gradually increases from the discharge side central hole 15b toward the discharge hole 15c, and is discharged from the discharge port 4. At this time, even if the fluid of the pump body 2 is swung, the height of the pump chamber 16 is not required and even if the pump body 2 is thinned, the flow path is not lost.
ポンプ本体2の軸方向端面には、吸込み側スクロール溝14aと吐出側スクロール溝15aに流れる流体の流速が一様になるように溝どうしが点対称配置となるように形成されていることが好ましい。具体的には、図2及び図3Bに示すように吸込み側スクロール溝14aと吐出側スクロール溝15aは、ポンプ本体2の軸方向端面に浅溝と深溝とが溝底部を近接するように組み合わせて形成されている。
The axial end surface of the pump body 2 is preferably formed so that the grooves are arranged in a point-symmetric manner so that the flow velocity of the fluid flowing through the suction-side scroll groove 14a and the discharge-side scroll groove 15a is uniform. . Specifically, as shown in FIGS. 2 and 3B, the suction-side scroll groove 14a and the discharge-side scroll groove 15a are combined so that the shallow groove and the deep groove are close to the groove bottom on the axial end surface of the pump body 2. Is formed.
このように、ポンプ室16内で径方向に仕切られて形成される吸込み側スクロール溝14aと吐出側スクロール溝15aに流れる流体の流速が一様になるようにポンプ本体2の軸方向端面に浅溝と深溝とを組み合わせて形成されているので、ポンプ室16の容積が軸方向に大型化することはなく、薄型化を促進することができるうえに、吸込み口3から吐出口4に至るまでの流路損失を可及的に減らすことができ、ポンプ性能を維持することができる。
As described above, the axial end surface of the pump body 2 is shallow so that the flow velocity of the fluid flowing through the suction-side scroll groove 14a and the discharge-side scroll groove 15a formed by being partitioned in the radial direction in the pump chamber 16 is uniform. Since the groove and the deep groove are formed in combination, the volume of the pump chamber 16 does not increase in the axial direction, and the reduction in thickness can be promoted. In addition, from the suction port 3 to the discharge port 4 The flow path loss can be reduced as much as possible, and the pump performance can be maintained.
図1において、ポンプ本体2と重ね合わせられる一対のベース部5a,5bとの間には環状シール材18,19(Oリング等)が設けられていることが好ましい。これにより、吸込み側スクロール流路14及び吐出側スクロール流路15の流体のシール性を高めることができる。
In FIG. 1, it is preferable that annular seal materials 18 and 19 (O-rings or the like) are provided between the pair of base portions 5a and 5b that are superposed on the pump body 2. Thereby, the sealing performance of the fluid of the suction side scroll flow path 14 and the discharge side scroll flow path 15 can be improved.
ここで、遠心ポンプ1の流体送出動作の一例について説明する。
図2において、電動モータを起動すると、回転子軸8に一体に組み付けられたインペラ9が回転駆動される。
これにより、吸込み口3より流体が吸込み側スクロール流路14を通じて吸込まれ、吸込み孔14bよりポンプ室16に吸込まれた流体が吸込み側スクロール溝14aに案内されて旋回しながら吸込み側中心孔14cに向かって送られる(図4A参照)。 Here, an example of the fluid delivery operation of thecentrifugal pump 1 will be described.
In FIG. 2, when the electric motor is started, theimpeller 9 assembled integrally with the rotor shaft 8 is rotationally driven.
As a result, fluid is sucked from thesuction port 3 through the suction-side scroll passage 14, and the fluid sucked into the pump chamber 16 from the suction hole 14b is guided to the suction-side scroll groove 14a and turns into the suction-side central hole 14c. (See FIG. 4A).
図2において、電動モータを起動すると、回転子軸8に一体に組み付けられたインペラ9が回転駆動される。
これにより、吸込み口3より流体が吸込み側スクロール流路14を通じて吸込まれ、吸込み孔14bよりポンプ室16に吸込まれた流体が吸込み側スクロール溝14aに案内されて旋回しながら吸込み側中心孔14cに向かって送られる(図4A参照)。 Here, an example of the fluid delivery operation of the
In FIG. 2, when the electric motor is started, the
As a result, fluid is sucked from the
そして、吸込み側中心孔14cより中央流路10b,10a(図3B参照)を通じて流体は吐出側中心孔15bへ送り出される。中央流路10aから吐出側中心孔15bに流入した流体は、インペラ9の回転によって吐出側スクロール溝15aを旋回しながらポンプ本体2の外周面に向かって案内され、吐出側中心孔15bから吐出側スクロール流路15を通じて吐出孔15cに向かって加圧され、吐出口4より吐出される(図4B参照)。
Then, the fluid is sent out from the suction side center hole 14c to the discharge side center hole 15b through the central flow paths 10b and 10a (see FIG. 3B). The fluid flowing into the discharge side center hole 15b from the central flow path 10a is guided toward the outer peripheral surface of the pump body 2 while turning the discharge side scroll groove 15a by the rotation of the impeller 9, and is discharged from the discharge side center hole 15b to the discharge side. Pressure is applied to the discharge hole 15c through the scroll flow path 15, and the liquid is discharged from the discharge port 4 (see FIG. 4B).
以上説明したように、ラジアルギャップ型の電動モータを用いて薄型化を実現し吸込み側スクロール流路14から吐出側スクロール流路15に至る流路損失が少なくかつコイル17dの発熱を格別な冷却構造を設けることなく効率良く放熱することができる遠心ポンプ1を提供することができる。
As described above, a radial gap type electric motor is used to reduce the thickness of the coil 17d so that the passage loss from the suction-side scroll passage 14 to the discharge-side scroll passage 15 is small, and the heat generation of the coil 17d is exceptional. Thus, it is possible to provide the centrifugal pump 1 that can efficiently dissipate heat.
上述した実施形態では、回転子軸8を中心に同心状に組み付けられるインペラ9は、環状部9aと羽根部9bが一体に樹脂形成されていたが、別部品で構成してもよい。
また回転子軸8を固定して回転子13及びインペラ9を回転するようにしたが、回転子軸8と共に回転子13及びインペラ9が一体に回転するようにしてもよい。
In the above-described embodiment, theimpeller 9 assembled concentrically with the rotor shaft 8 as the center has the annular portion 9a and the blade portion 9b integrally formed of resin, but may be constituted by separate parts.
Further, although therotor shaft 8 is fixed and the rotor 13 and the impeller 9 are rotated, the rotor 13 and the impeller 9 may be rotated together with the rotor shaft 8.
また回転子軸8を固定して回転子13及びインペラ9を回転するようにしたが、回転子軸8と共に回転子13及びインペラ9が一体に回転するようにしてもよい。
In the above-described embodiment, the
Further, although the
Claims (7)
- ラジアルギャップ型の電動モータによりインペラを回転駆動させて流体をポンプ本体の外周側よりポンプ室に吸い込んで当該ポンプ室から前記ポンプ本体の外周側より吐出させる遠心ポンプであって、
ベース部と、
前記ベース部に少なくとも一端が抜け止めされて起立して支持された回転子軸と、前記回転子軸に回転自在に取り付けられたインペラと、
前記インペラに同心状に組み付けられた回転子マグネットを備えた回転子と、
前記インペラの外周側から径方向中心部に向かって流体を吸込む吸込み側スクロール流路と、前記インペラの径方向中心部から外周側に向かって流体を吐出する吐出側スクロール流路と、前記回転子マグネットと径方向に対向配置される固定子極歯が形成された固定子コアを有する固定子が一体に組み付けられた前記ポンプ本体と、を備え、
前記回転子と前記ポンプ本体とが前記回転子軸を中心として同心状に配置され、前記ポンプ本体に形成された前記吸込み側スクロール流路と前記吐出側スクロール流路とが前記ポンプ本体及び前記インペラに形成された中央流路を介して連通していることを特徴とする遠心ポンプ。 A centrifugal pump that rotates and drives an impeller by a radial gap type electric motor, sucks fluid into the pump chamber from the outer peripheral side of the pump body, and discharges the fluid from the outer peripheral side of the pump body from the pump chamber,
A base part;
A rotor shaft that is supported upright with at least one end being prevented from being detached from the base portion, and an impeller that is rotatably attached to the rotor shaft;
A rotor comprising a rotor magnet concentrically assembled to the impeller;
A suction-side scroll flow path for sucking fluid from the outer peripheral side of the impeller toward the radial center; a discharge-side scroll flow path for discharging fluid from the radial central part of the impeller toward the outer periphery; and the rotor The pump body integrally assembled with a stator having a stator core formed with stator pole teeth that are arranged to be opposed to the magnet in the radial direction; and
The rotor and the pump body are arranged concentrically about the rotor shaft, and the suction-side scroll passage and the discharge-side scroll passage formed in the pump body include the pump body and the impeller. A centrifugal pump characterized in that it is communicated through a central flow path formed in the above. - 前記吸込み側スクロール流路は、前記ポンプ本体の外周面に設けられた吸込み孔と、前記吸込み孔より進入した流体が周方向に旋回しながら吸込み側中心孔に向かって案内されるように仕切られ、前記吸込み孔から前記吸込み側中心孔に向かって溝深さが浅くなるように形成された吸込み側スクロール溝を備えている請求項1記載の遠心ポンプ。 The suction-side scroll flow path is partitioned so that a suction hole provided on the outer peripheral surface of the pump body and the fluid that has entered from the suction hole are guided toward the suction-side center hole while turning in the circumferential direction. The centrifugal pump according to claim 1, further comprising a suction-side scroll groove formed so that a groove depth becomes shallower from the suction hole toward the suction-side center hole.
- 前記吸込み側スクロール流路は、前記ポンプ本体の軸方向一端部に形成された前記吸込み側スクロール溝と、軸方向一端部に重ね合せられるベース部との間に形成される請求項2記載の遠心ポンプ。 The centrifuge according to claim 2, wherein the suction-side scroll flow path is formed between the suction-side scroll groove formed at one axial end portion of the pump body and a base portion overlapped with the one axial end portion. pump.
- 前記吐出側スクロール流路は、前記吸込み側中心孔に前記中央流路を介して連通するように形成された吐出側中心孔と、前記吐出側中心孔から旋回しながら前記ポンプ本体の外周面に設けられた吐出孔に案内されるように仕切られ、前記吐出側中心孔から前記吐出孔に向かって溝深さが深くなるように形成された吐出側スクロール溝を備えている請求項1乃至請求項3のいずれかに記載の遠心ポンプ。 The discharge-side scroll flow path is formed on the outer peripheral surface of the pump body while turning from the discharge-side center hole and the discharge-side center hole formed so as to communicate with the suction-side center hole via the central flow path. The discharge-side scroll groove that is partitioned so as to be guided by the provided discharge hole and that has a groove depth that increases from the discharge-side center hole toward the discharge hole. Item 4. The centrifugal pump according to any one of Items 3.
- 前記吐出側スクロール流路は、前記ポンプ本体の軸方向他端部に形成された前記吐出側スクロール溝と前記軸方向他端部に重ね合せられるベース部との間に形成されている請求項4項記載の遠心ポンプ。 5. The discharge-side scroll flow path is formed between the discharge-side scroll groove formed at the other axial end portion of the pump body and a base portion overlapped with the other axial end portion. The centrifugal pump according to item.
- 前記ポンプ本体の軸方向端面には、前記吸込み側スクロール流路と前記吐出側スクロール流路に流体の流速が一様になるように浅溝と深溝とが溝底部を近接するように組み合わせて配置されている請求項1乃至請求項5のいずれかに記載の遠心ポンプ。 On the axial end face of the pump body, a shallow groove and a deep groove are combined so that the bottom of the groove is close to the suction side scroll flow path and the discharge side scroll flow path so that the fluid flow rate is uniform. The centrifugal pump according to any one of claims 1 to 5, wherein:
- 前記インペラは前記回転子が組み付けられる環状部と前記回転子軸に組み付けられる羽根部とが一体成形されている請求項1乃至請求項6のいずれかに記載の遠心ポンプ。
The centrifugal pump according to any one of claims 1 to 6, wherein the impeller is integrally formed with an annular portion to which the rotor is assembled and a blade portion to be assembled with the rotor shaft.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/098,070 US20190368495A1 (en) | 2017-02-22 | 2017-12-14 | Centrifugal pump |
EP17898028.0A EP3438463A4 (en) | 2017-02-22 | 2017-12-14 | Centrifugal pump |
CN201780030807.1A CN109154309A (en) | 2017-02-22 | 2017-12-14 | centrifugal pump |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017030913A JP2018135805A (en) | 2017-02-22 | 2017-02-22 | Centrifugal Pump |
JP2017-030913 | 2017-02-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018154931A1 true WO2018154931A1 (en) | 2018-08-30 |
Family
ID=63254329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/044883 WO2018154931A1 (en) | 2017-02-22 | 2017-12-14 | Centrifugal pump |
Country Status (5)
Country | Link |
---|---|
US (1) | US20190368495A1 (en) |
EP (1) | EP3438463A4 (en) |
JP (1) | JP2018135805A (en) |
CN (1) | CN109154309A (en) |
WO (1) | WO2018154931A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102555267B1 (en) * | 2016-06-13 | 2023-07-14 | 엘지전자 주식회사 | Drain pump for laundry treating appratus |
CN109356856B (en) * | 2018-12-19 | 2020-05-19 | 华中科技大学 | Ultrathin centrifugal micropump |
US10934992B2 (en) * | 2019-02-18 | 2021-03-02 | Toto Ltd. | Hydraulic generator, spouting apparatus, and method for manufacturing hydraulic generator |
CN110360125B (en) * | 2019-07-01 | 2024-06-14 | 深圳兴奇宏科技有限公司 | Thin pump structure |
TWI705194B (en) * | 2019-11-19 | 2020-09-21 | 建準電機工業股份有限公司 | Liquid cooling system and pump thereof |
TWI718766B (en) * | 2019-11-19 | 2021-02-11 | 建準電機工業股份有限公司 | Liquid cooling system and series-connected pump thereof |
TWI714437B (en) * | 2020-01-17 | 2020-12-21 | 建準電機工業股份有限公司 | Liquid-cooling heat dissipation system and pump |
TWI722832B (en) * | 2020-03-16 | 2021-03-21 | 建準電機工業股份有限公司 | Liquid cooling system and pump thereof |
TWI728768B (en) * | 2020-03-31 | 2021-05-21 | 建準電機工業股份有限公司 | Thin pump |
CN112780605A (en) * | 2020-12-31 | 2021-05-11 | 东莞市鸿盈电子科技有限公司 | Novel impeller and micro water pump comprising same |
CN113738657B (en) * | 2021-11-03 | 2022-03-15 | 西安泵阀总厂有限公司 | Rare earth permanent magnet motor driven centrifugal pump and self-lubricating method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001132699A (en) | 1999-10-29 | 2001-05-18 | Matsushita Electric Ind Co Ltd | Micro-centrifugal pump and circulating system having this |
JP2004134423A (en) * | 2002-10-08 | 2004-04-30 | Hitachi Ltd | Electronic apparatus cooling device |
JP2009008055A (en) | 2007-06-29 | 2009-01-15 | Minebea Co Ltd | Thin electric pump |
JP2010229871A (en) * | 2009-03-26 | 2010-10-14 | Mitsubishi Heavy Ind Ltd | Centrifugal fan and air conditioning apparatus for vehicle |
JP2014084755A (en) * | 2012-10-22 | 2014-05-12 | Shinano Kenshi Co Ltd | Air blower |
JP2016182013A (en) * | 2015-03-25 | 2016-10-13 | シナノケンシ株式会社 | Outer rotor type motor and manufacturing method of the same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000297775A (en) * | 1999-04-13 | 2000-10-24 | Matsushita Electric Ind Co Ltd | Self-priming type pump |
DE10251461A1 (en) * | 2002-11-05 | 2004-05-13 | BSH Bosch und Siemens Hausgeräte GmbH | Axial pump for domestic appliances, has an integrated electric motor rotor and impeller assembly drawing the liquid through a passage in the rotor |
US9388811B2 (en) * | 2009-06-23 | 2016-07-12 | Asia Vital Components Co., Ltd. | Micropump structure |
JP6381451B2 (en) * | 2015-01-17 | 2018-08-29 | 株式会社鷺宮製作所 | Centrifugal pump |
-
2017
- 2017-02-22 JP JP2017030913A patent/JP2018135805A/en not_active Withdrawn
- 2017-12-14 US US16/098,070 patent/US20190368495A1/en not_active Abandoned
- 2017-12-14 WO PCT/JP2017/044883 patent/WO2018154931A1/en active Application Filing
- 2017-12-14 EP EP17898028.0A patent/EP3438463A4/en not_active Withdrawn
- 2017-12-14 CN CN201780030807.1A patent/CN109154309A/en not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001132699A (en) | 1999-10-29 | 2001-05-18 | Matsushita Electric Ind Co Ltd | Micro-centrifugal pump and circulating system having this |
JP2004134423A (en) * | 2002-10-08 | 2004-04-30 | Hitachi Ltd | Electronic apparatus cooling device |
JP2009008055A (en) | 2007-06-29 | 2009-01-15 | Minebea Co Ltd | Thin electric pump |
JP2010229871A (en) * | 2009-03-26 | 2010-10-14 | Mitsubishi Heavy Ind Ltd | Centrifugal fan and air conditioning apparatus for vehicle |
JP2014084755A (en) * | 2012-10-22 | 2014-05-12 | Shinano Kenshi Co Ltd | Air blower |
JP2016182013A (en) * | 2015-03-25 | 2016-10-13 | シナノケンシ株式会社 | Outer rotor type motor and manufacturing method of the same |
Non-Patent Citations (1)
Title |
---|
See also references of EP3438463A4 |
Also Published As
Publication number | Publication date |
---|---|
CN109154309A (en) | 2019-01-04 |
EP3438463A4 (en) | 2019-06-05 |
US20190368495A1 (en) | 2019-12-05 |
JP2018135805A (en) | 2018-08-30 |
EP3438463A1 (en) | 2019-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018154931A1 (en) | Centrifugal pump | |
US20150349594A1 (en) | Electric Pump | |
US20160281712A1 (en) | Tandem electric pump | |
US10215173B2 (en) | Electric gear pump with specific proportions for the fluid passages | |
CN112534141B (en) | Pump, in particular for a liquid circuit in a vehicle | |
JP2006257978A (en) | Fluid pump | |
TWI407018B (en) | Flat miniature pump | |
US20140050602A1 (en) | Combined electronic water and oil pump | |
US11821428B2 (en) | Motor-integrated fluid machine | |
JP2012031807A (en) | Fuel pump | |
JP2016185032A (en) | Compressor | |
CN110701066A (en) | Vortex type micro pump | |
JP2006348802A (en) | Electric pump | |
JP4630123B2 (en) | Fluid pump | |
US20190040874A1 (en) | Centrifugal Impeller and Centrifugal Blower | |
JP2014020322A (en) | Multistage regenerative pump | |
JP2009074470A (en) | Pump | |
US10233881B2 (en) | Fuel pump | |
JP2020084815A (en) | Centrifugal pump | |
JP2017048779A (en) | Centrifugal Pump | |
CN214788179U (en) | Pump device | |
EP4317703A1 (en) | Electric blower | |
JP6786436B2 (en) | Fuel pump | |
JP2007120373A (en) | Centrifugal pump | |
JP2008031889A (en) | Swirl type compressor and manufacturing process of swirl type compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2017898028 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017898028 Country of ref document: EP Effective date: 20181031 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17898028 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |